brought to you by CORE

On: 02 September 2015, At: 05:00 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London, SW1P 1WG

European Journal of Phycology

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/tejp20</u>

Posters Published online: 20 Aug 2015.

To cite this article: (2015) Posters, European Journal of Phycology, 50:sup1, 121-217, DOI: <u>10.1080/09670262.2015.1069493</u>

To link to this article: http://dx.doi.org/10.1080/09670262.2015.1069493

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Marine benthic (sand-dwelling and epiphytic) dinoflagellates consists of known potentially toxic species, which are harmful to marine organisms as well as human by consumption of sea food in mostly tropical and subtropical region. Occurrence and distribution of these species are less studied from temperate region. The benthic dinoflagellates in the intertidal zone along the coasts of Jeju Island was determined by monthly collection of sand sediment and macroalgae samples from eight sampling locations from March 2011 to February 2012. Thirty-seven dinoflagellate taxa belong to eighteen genera were identified; twenty six found only in sand sediment, seven in macroalgae samples and four in both samples. The most frequently occurring species was Amphidinium carterae, followed by A. operculatum, Coolia malayensis, and Ostreopsis ovata, occurred at all sampling stations. G. vasumotoi and Gambierdiscus sp. were rarely occurred. The seasonal abundance of epiphytic dinoflagellates was also quantitatively estimated by monthly collection of macroalsamples (Rhodophyta, Phaeophyta, gae and Chlorophyta) from six sampling locations from July 2012 to June 2013. Ten epiphytic dinoflagellate taxa, including eight potentially toxic species Amphidinium carterae, A. operculatum, Gambierdiscus sp., Ostreopsis ovata, Prorocentrum concavum, P. emarginatum, P. lima, and P. rhathymum, were identified. A significant change in seasonal abundance was recorded with maximum (751.82 \pm 223.12 cells g⁻¹ wet weight of algae; cells g⁻¹ hereafter) in June, followed by October $(650.45\pm225.02 \text{ cells g}^{-1})$ and September (598.02 ± 197.82 cells g⁻¹). O. ovata was the most abundant $(338.21\pm11 \text{ cells g}^{-1})$ in October and Gambierdiscus sp. was the least abundant only in September (6.92 ± 16.97 cells g⁻¹) and October (average 6.54 ± 6.54 cells g^{-1}) at Hamduk. Significantly, highest spatial abundance of total dinoflagellates for all sampling stations was found at Hamduk (547.91 \pm 315 cells g⁻¹), while it was lowest at Hwasun (232.59±144.93 cells g^{-1}). Generally, each of the epiphytic dinoflagellates did not show specific preference of macroalgae as host.

10PO.14

ASSESSMENT OF CORALLINE ALGAL SPECIES DIVERSITY AND COMPOSITION AT EUROPEAN CO₂ SEEPS USING DNA BARCODING

<u>Viviana Peña¹</u> (vpena@udc.es), Pedro Range² (pran ge@qu.edu.qa), Marco Milazzo³ (marco.milazzo@ unipa.it), Olivier De Clerck⁴ (olivier.declerck@ugent. be), Line Le Gall⁵ (legall@mnhn.fr) and Jason M Hall-Spencer⁶ (jason.hall-spencer@plymouth.ac.uk)

¹BIOCOST Research Group, Universidade da Coruña, A Coruña 15071, Spain; ²Department of Environmental and Biological Sciences, Qatar University, Doha 2713, Qatar; ³CoNISMa, Dipartimento di Scienze della Terra e del Mare, Universitá di Palermo, Palermo 90123, Italy; ⁴Phycology Research Group, Ghent University, Ghent 9000, Belgium; ⁵Equipe Exploration, Espèces et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle (MNHN), Sorbonne Universités, Paris 75005, France and ⁶School of Marine Science and Engineering, Plymouth University, Plymouth PL4 8AA, United Kingdom

Coralline red algae are one of the most abundant groups of benthic seaweeds throughout the photic zone. In Europe, they are ecosystem engineers of high-diversity habitats such as maerl beds, coralligenous, vermetid reefs/trottoir. A major driver of change in coastal ecosystems is the rise of CO₂ levels which is warming surface waters and reducing the amount of carbonate available to calcified organisms. Work at volcanic seeps has shown that CO_2 is a resource for certain seaweeds but that carbonation causes dissolution of calcified organisms. Volcanic seeps are starting to be used as natural analogues for a high CO₂ world, but so far assessments of diversity of coralline algae around those seeps have not been studied in detail. We present the first study focused on coralline species diversity and composition along well constrained CO₂ gradients in two naturally acidified sites in Europe: Vulcano- Italy- in the Mediterranean, and Sao Miguel - Azores- in the Atlantic. Intertidal and subtidal transects were carried out along established CO₂ gradients. Both cover and habit for each coralline species were recorded, and samples were collected to be identified using molecular (DNA barcoding) and morphological (SEM) approaches. In addition, elemental analyses of specimens were examined using Energy-dispersive X-ray spectroscopy technique (EDS). Results obtained in terms of potential changes in species diversity and composition will be discussed. From an evolutionary perspective, our study could shed some light on which coralline lineages might be able to persist on low pH environments given the records of paleo-acidification events since the origin of this group.

10PO.15

REAL TIME *IN SITU* MONITORING OF TOXIC ALGAE

Linda K Medlin¹ (lkm@mba.ac.uk), Jahir Orozco² (jahirorozcoholguin@mircrobiaenvironnement.eu), Elise Villa² (elise.villa@microbiaenvironnement. com) and Delphine Guillebault² (delphine. Guillebault@microbiaenvironnement.com)