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a b s t r a c t

To better understand the marine biogeochemistry of the platinum group elements (PGE),

Rh(III), Pd(II) and Pt(IV) were added in combination and at ppb concentrations to cultures of

the marine microalga, Chlorella stigmatophora, maintained in sea water at 15 �C and under

60 mmol m�2 s�1 PAR. The accumulation of PGE was established in short-term (24-h) ex-

posures, and under varying conditions of algal biomass and PGE concentration, and in a

longer-term exposure (156-h) by ICP-MS analysis of sea water and nitric acid digests and

EDTA washes of the alga. In short-term exposures, and under all conditions, the extent of

accumulation by C. stigmatophora was in the order: Rh > Pd >> Pt; and Pd was internalised

(or resistant to EDTA extraction) to a considerably greater extent than Rh and Pt. Accu-

mulation isotherms were quasi-linear up to added PGE concentrations of 30 mg L�1 and all

metals displayed a significant reduction in accumulation on a weight-normalised basis

with increasing density (biomass) of C. stigmatophora, an effect attributed to the production

of exudates able to stabilise metals in sea water through complexation. In the longer-term

exposure, kinetic constraints on the reactivities of Rh and, in particular, Pt, resulted in final

degrees of accumulation and internalisation by C. stigmatophora that were greatest for Rh

and similar between Pd and Pt. Among the PGE, therefore, Rh is predicted to participate in

biological removal and transport processes in the marine environment to the greatest

extent while decoupling in the biogeochemistries of Pd and Pt is predicted in shorter-term

or more transient processes.

ª 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Rhodium, palladium and platinum (and hereafter collectively

referred to PGE) are used, predominantly, in automobile cat-

alytic converters to modify the composition of exhaust gases.

However, as the washcoat of the catalytic converter abrades

and deteriorates, fine particles of PGE are emitted with the

exhaust (Ravindra et al., 2004). A consequence of emissions

from vehicles is that concentrations of PGE are both elevated

and increasing in roadside dusts and soils (Mihajevic et al.,
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2013). Moreover, the fine, particulate association of PGE has

facilitated their long range transport to regions remote from

any urbanisation (Soyol-Erdene et al., 2011).

Through urban runoff and atmospheric deposition, PGE are

transported to the aquatic environment and, ultimately, to

coastal and oceanic waters where they are gradually solubi-

lised into aqueous forms (Colombo et al., 2008). Dissolved

Rh(III) is predicted to form relatively strong chloride com-

plexes in seawater ([RhCl6�x(H2O)x]
x�3, where x¼ 0e6) that are

characterised by variable ligand replacement times ranging

from a few minutes to a few months (Bertine et al., 1996;

Gerber et al., 2010), but no thermodynamic information ex-

ists concerning its complexation with organic ligands. The

inorganic speciation of Pd(II), Pt(II) and Pt(IV) in sea water is

dominated by chlorides and mixed hydroxychlorides

(Gammons, 1996) and the relative abundance of the respective

free ions is vanishingly small (e.g. [Pd2þ/[PdCl4
2�] <10�10.5 and

[Pt2þ/PtCl4
2�] w 10�13 at equilibrium; Cosden and Byrne, 2003).

Because of their strong interactions with soft ligands, cations

of both metals are predicted to complex readily with natural

organic ligands and surface functional groups (Wood, 1990;

Wood and Middlesworth, 2004). However, the slow rear-

rangements in the coordination spheres of Pt(II) and Pt(IV)

mean that reactions involving this metal are kinetically hin-

dered compared with those involving Pd (Cosden et al., 2003).

Despite increasing anthropogenic emissions of PGE,

coupledwith the known toxicities ofmany complexes of these

metals (Schmid et al., 2007; Wiseman and Zereini, 2009), little

is known about their biogeochemical behaviour in the aquatic

environment, and in particular in the marine environment.

Empirically derived constants defining the adsorption of PGE

by estuarine sediment suspended in sea water and their

accumulation by themarinemacroalga,Ulva lactucahave been

reported (Cosden et al., 2003; Turner, 2007; Turner et al., 2007;

Turner and Xu, 2008). What is lacking, however, is mecha-

nistic and kinetic information on the interactions of PGE with

marine microalgae. These organisms are excellent model

systems for investigating the processes controlling metal

accumulation at the cellular level (Vasconcelos and Leal,

2001a; Quigg et al., 2006) and, as decaying and settling parti-

cles, they also represent an important vehicle for the vertical

transport of contaminants in the marine environment

(Gonzalez-Davila, 1995; Twining et al., 2011). The unicellular

marinemicroalga, Chlorella stigmatophora, has been previously

utilised as a model planktonic organism for trace metal

studies (Christensen et al., 1979; Rebhun and Ben-Amotz,

1984) because it is relatively fast growing, with a cell size

ranging between about 2 and 5 mm, and can be manipulated

under controlled conditions in the laboratory. As with other

marine green algae, C. stigmatophora produces poly-

saccharides on its cell walls which can affect the specificity of

its metal complexing capacity (Kaplan et al., 1987). The pro-

duction of these compounds may also regulate the fraction of

metal bound to the external cell walls relative to that which is

internalised.

The present study examines the interactions of PGEwith C.

stigmatophora under carefully controlled laboratory condi-

tions. Specifically, we investigate the net accumulation and

surface bound-internalised distributions of PGE in a series of

short-term (24-h) exposures and, because of the kinetic

constraints on the reactivity of Rh and Pt, we also examine the

rates of these interactions in a longer-term (156-h) exposure.

2. Materials and methods

2.1. Materials and reagents

Except when purchased new or sterile, all plastic- and glass-

ware used in the experiments and for sample and analyte

storage were soaked in 1 M HCl for 24e48 h and subsequently

rinsed three times with double distilled water (DDW). Unless

otherwise stated, chemical reagents were purchased from

Fisher Scientific, VWRor Sigma andwere of analytical grade or

better. The stock culture of Chlorella stigmatophora was pro-

vided by the Marine Biological Association of the UK and En-

glish Channel sea water (pH w 7.8; salinity 34.1e34.3) was

collected in bulk and supplied to the laboratory fromfibreglass

storage tanks via polymer piping and was double filtered on-

line through 5 mm and 0.6 mm extruded carbon filters.

2.2. Algal culturing

Algal culturing was performed according to established pro-

tocols (Andersen, 2005). Sea water used for culturing and

experimental work was enriched by addition of nutrients

(except silicate), trace metals (Fe, Mn, Zn, Co, Cu, Mo), EDTA

and vitamins in accordance with Guillard’s f/2 formulation

(Guillard, 1975). As required, 5 mL of stock cells were trans-

ferred to 400 mL of sea water in a series of sterile 500 mL bo-

rosilicate bottles and the contents incubated at 15 �C and

under 60 mmolm�2 s�1 PAR supplied by fluorescent lighting on

a 14 h:10 h light:dark photoperiod in a Snijders Scientific

controlled environment cabinet. The bottle was continuously

aerated using a Pasteur pipette containing non-absorbent

cotton connected to an air pump via polyethylene airline

tubing. For the experiments, cells of C. stigmatophora in their

mid-exponential growth phase were used. (An example of a
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Fig. 1 e Typical growth curve of C. stigmatophora cultured

for a fifteen day period. The specific growth rate between 5

and 15 days was 0.25 ± 0.02 dL1. Errors represent the

standard deviation about the mean of three independent

measurements.
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typical growth curve, derived frommeasurementsmade using

a Neubauer improved ruling double chamber haemocy-

tometer, is shown in Fig. 1.) Cells were centrifuged at 4000 rpm

for 10 min and the residual pellet was resuspended in an

appropriate volume of nutrient-amended sea water and

allowed to acclimatise for 24 h under the conditions described

above. Subsequent microscopic observations of samples from

a variety of exposure conditions indicated no damage to cells

from centrifugation.

2.3. Exposure experiments

“Short-term” exposures were undertaken in triplicate or

quadruplicate as follows. Cell suspensions of 120 mL and

about 106 cells mL�1 (or 10e20 mg dry weight L�1) were added

to 150 mL sterile Styrolux (crystal polystyrene) beakers and

spiked with a mixed, 200 mg L�1 solution of Rh(III), Pd(II) and

Pt(IV), prepared by serial dilution of Spectrosol plasma emis-

sion standards in 0.4 M HCl, to obtain a concentration of

20 mg L�1 for each element. Beakers were loosely covered and

then agitated at 85 rpm on a Denley orbital mixer or Heidolph

UNIMAX2010 shaker (depending on the number of containers)

for 24 h and at 15 �C under the light conditions described

above. The pH was measured at regular intervals and with a

precision of 0.01 units using a Denver Instruments pH Meter.

Alterations of pH of more than 0.5 units were compensated by

dropwise addition of either 1 M HCl or 1 M NaOH. Control

treatments were performed under identical conditions in the

absence of PGE.

At the end of the exposure period, 15mL aliquots fromeach

beaker were vacuum-filtered through pre-weighed 0.2 mm

polycarbonate filter membranes (Cyclopore, 47 mm diameter,

Whatman) using a polysulphone filtration unit. Ten mL fil-

trates were transferred to clean 60 mL polystyrene containers

and acidified with 40 mL of 1 M HNO3 to reduce effects arising

from the saline matrix during subsequent analysis (see

below). Filters were rinsed with 10 mL of DDW before being

immersed in 15 mL of 5 mM EDTA in order to extract extra-

cellular or adsorbed PGE (Turner et al., 2007; Levy et al.,

2008). After cells had been re-filtered through the original fil-

ter, 10 mL of the EDTA extracts were stored in 30 mL poly-

propylene tubes and filters were allowed to dry at room

temperature for 24 h before being reweighed. Filters were then

digested in 2 mL of concentrated HNO3 for 40 min in new

30 mL polypropylene tubes while being agitated on a roller

mixer before being diluted to 20 mL in 1 M HNO3.

In similar experiments, the density (biomass) of C. stigma-

tophora was varied between about 106 and 107 mL�1 by inoc-

ulation of 120 mL of sea water with different quantities of the

stock culture. Accumulation isotherms were conducted as

above but the concentrations of PGE were varied (up to

30 mg L�1) by addition of different quantities of the PGE stock

solution.

A “longer-term” exposurewas undertaken in triplicate over

a period of 156 h in 1.5 L cell suspensions contained in sterile

2 L narrow necked Nalgene polycarbonate bottles. Reactors

were continuously aerated using a Pasteur pipette connected

to an air supply, rather than being agitated, under conditions

that were otherwise identical to those described earlier. Sub-

samples were abstracted and filtered after 30 min and

thereafter every 12 h, and filtrates and filters were processed

as above. The pH was recorded initially and before sub-

sampling throughout the experiment and was adjusted, when

necessary, by microlitre additions of either 1 M HCl or 1 M

NaOH. This exposure was also undertaken in triplicate in sea

water that had not been amended with nutrient trace metals,

vitamins and EDTA in order to ascertain any potential con-

founding effects (e.g. competition, complexation) arising from

the presence of these chemicals.

2.4. PGE analysis

Inductively coupled plasma-mass spectrometry (ICP-MS) was

employed for the determination of Rh (as 103Rh), Pd (as 108Pd)

and Pt (as 196Pt) in acidified filtrates, EDTA washes and acid

digests using a Thermo Elemental PlasmaQuad PQ2þ with a

Meinhard nebuliser. The instrument was calibrated over the

range 0e7 mg L�1 using multi-element standards prepared by

dilution of individual plasma emission standards in either 1 M

HNO3 (for digested cells), a 1:4 mixture of sea water:1 M HNO3

(for acidified filtrates) or 5 mM EDTA (for EDTA washes). In-

ternal standardisation was achieved by the addition of

10 mg L�1 of 115In and 191Ir to all samples and standards. A PGE

standard was analysed after every seven samples as a check

and the instrument was flushed between samples and stan-

dards with 0.1 M HNO3. Samples and standards were read

three times during the analysis, while blanks of each matrix

were read nine times. Limits of detection, based on three

standard deviations of replicate readings of blanks, varied

between the different matrices and the different experiments

but were generally greatest in acidified sea water (up to about

0.2 mg L�1, 0.8 mg L�1 and 0.08 mg L�1, after dilution correction,

for Rh, Pd and Pt, respectively).

2.5. Data presentation and analysis

Molecular ion interferences were detected in the filtrates,

EDTA washes and digests of the control treatments, and sig-

nals were subtracted from the corresponding concentrations

in samples that had undergone PGE exposure. Corrected

concentrations of PGE in the alga are presented on a dry

weight basis, although cell density is also given for each set of

results. Errors shown in each case represent one standard

deviation arising from replicate experimental measurements

(n ¼ 3 or 4). Errors were generally greatest for Rh because of

analytical interferences in the acid digests and aqueous con-

centrations that were often close to the detection limit of the

metal.

3. Results

3.1. Recovery of PGE

In all experiments, the recovery of PGE was examined by

comparing the total w/v concentration analysed (that is, the

summed concentrations in sea water, the EDTA extract and

algal digest) with that added at the beginning of the exposure

period. Thus, in the short-term exposures, recovery of Pt was

close to 100%, while between about 20 and 40% of Rh and
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about 50 and 70% of Pd was unaccounted for; loss of these

metals was largely independent of density of algae and the

concentration of metal added. In the longer-term experiment,

loss of Pd and Pt increased over the exposure period such that

about 80% was unaccounted for after 156 h; in contrast, Rh

loss was about 20% and exhibited no clear dependence on

exposure time. Presumably, loss of metals arises from their

rapid (Rh) or progressive (Pd and Pt) adsorption to the

container surfaces, an effect that has been described in detail

for different polymericmaterials by Cobelo-Garcia et al. (2007).

It is reasonable to assume that metal lost from the system to

the container surfaces has no impact on its partitioning be-

tween C. stigmatophora and sea water. Clearly, however, for an

accurate assessment of the algal-sea water distribution of PGE

it is critical that concentrations in both phases are measured.

3.2. Accumulation/adsorption isotherms

In Fig. 2, the dry w/w concentrations of PGE adsorbed by C.

stigmatophora, [Meads] (extracted by EDTA), and that accumu-

lated by the alga, [Mealg] (derived from the sum of metal

concentrations in the EDTA extract and HNO3 digest), are

shown as a function of the corresponding PGE concentrations

remaining in seawater, [Meaq]. Note that, for clarity, error bars

are shown for [Mealg] and [Meads] but not for [Meaq]. In each

case, data could be defined with statistical confidence

(p < 0.05) by a linear isotherm:

�
Mealg

� ¼ AF
�
Meaq

�
(1a)

½Meads� ¼ Kads

�
Meaq

�
(1b)

where AF (v/w) represents an accumulation factor and Kads (v/

w) an adsorption constant. However, marginally better fits

were obtained with a Freundlich-type equation:

�
Mealg

� ¼ AFF

�
Meaq

�n
(2a)

½Meads� ¼ KF

�
Meaq

�n
(2b)

where AFF and KF are the corresponding Freundlich constants

and n is a measure of the non-linearity of the relationship.

Constantsderived fromboth linear andnon-linearfittingof the

data are given in Table 1. Also shown in Fig. 2 is the fraction of

accumulated PGE that is internalised, and as operationally
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Fig. 2 e Concentrations of PGE accumulated (filled symbols) and adsorbed (open symbols) and the fraction of PGE

internalised (right-hand panels) byw106 cells mLL1 of C. stigmatophora over a 24-h period as a function of PGE concentration

remaining in sea water. Errors represent the standard deviation about the mean of four independent measurements.

Constants quantifying the accumulation and adsorption isotherms are given in Table 1.
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defined by the proportion of total metal accumulated by C.

stigmatophora that is resistant to EDTA extraction:

fraction internalised ¼
�
Mealg

�� ½Meads��
Mealg

� (3)

Measures of internalisation are variable amongst replicates

but, with increasing [Meaq], mean values exhibit a decrease

(Pt), an increase (Pd), or are relatively invariant (Rh).

Results of experiments in which the density of C. stigma-

tophora was varied are shown in Fig. 3. Here, metal accumu-

lation is expressed as an accumulation factor, AF (v/w),

calculated from the ratio of w/w concentration of metal

associated with the algae to concentration of metal in the

aqueous phase (Equation (1a)). For all metals, a reduction in AF

with increasing cell density is observed, an effect defined by

an equation of the form:

AF ¼ a½cell��b (4)

where a and b are empirical constants whose values are an-

notated in each case. The magnitude of a, or the AF normal-

ised to a cell density of 106 mL�1, is an order of magnitude

greater for Rh than Pd and Pt; the magnitude of b, or the

gradient of the effect, is greatest for Rh and Pt.

3.3. Accumulation kinetics

Results of the longer-term experiment, in which C. stigmato-

phora was exposed to 20 mg L�1 of PGE over a 156-h period, are

shown in Fig. 4. Here, PGE are expressed in terms of the per-

centage of total analytical metal that is accumulated by C.

stigmatophora:

% accumulated ¼
�
Mealg

�½alg�$100%
�
Meaq

�þ �
Mealg

�½alg� (5)

where [alg] is the concentration of alga in the treatment on a

dry weight basis. In this experiment, pH exhibited no signifi-

cant change over the exposure period but algal density

increased from about 50 mg L�1 at the beginning of the

experiment to about 90 mg L�1 at its termination. Continuous,

relatively rapid accumulation of Rh occurs during the first

50 h, followed by a period of slower accumulation in which

equilibrium appears to be attained. Palladium exhibits rapid

accumulation within the first 24 h and apparent equilibrium

thereafter, while Pt exhibits continuous accumulation over

the timeframe of the exposure.

The fraction of PGE internalised by the alga and calculated

according to Equation (3) is also shown in Fig. 4 as a function of

time over the 156-h exposure period. For Rh, internalisation

increases within the first 50 h and thereafter is almost

completely internalised. Platinum exhibits a continuous in-

crease in internalisation during the experiment whereas the

internalisation of Pd increases rapidly during the first 12 h and

subsequently declines throughout the remainder of the

exposure. By the end of the experiment, the fraction of both Pd

and Pt internalised is about 0.4.

Table 1e Constants defining the accumulation and adsorption of PGE by C. stigmatophora according to Equations (1) and (2).

PGE Equation (1a) Equation (1b) Equation (2a) Equation (2b)

AF, mL g�1 r2 Kads, mL g�1 r2 AFF n r2 KF n r2

Rh 23,400 0.956 3830 0.374 41,400 0.847 0.933 28,500 0.507 0.725

Pd 16,300 0.956 1160 0.918 8730 1.160 0.991 2910 0.753 0.989

Pt 1280 0.984 1010 0.979 2190 0.886 0.992 1110 0.980 0.990

Rh
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Fig. 3 e The accumulation of PGE by C. stigmatophora

(shown in terms of accumulation factors) as a function of

cell density over a 24-h period. Errors represent the

standard deviation about the mean of four independent

measurements. Also shown are the best fit equations to

the accumulation data.
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Two measures of reaction rate were calculated for the

experiment. Firstly, the instantaneous rate, l (%), was deter-

mined from the slope of the line between the origin and

accumulation after 30 min; this measure was also derived

after PGE results had been recalculated on a w/w basis; i.e. l

(mg g�1). Secondly, the time for 50% accumulation, t1/2, was

defined as the time required for the accumulation of 50% of

that taken up by the microalga by the end of the exposure

period; note that the end-point appears to represent equilib-

rium conditions for Rh and Pd, but not for Pt. Results of these

calculations, shown in Table 2, reveal that the instantaneous

reactivity of Pd is approximately double that of Rh and Pt, and

that the 50% accumulation period of both Rh and Pt is an order

of magnitude greater than that for Pd.

The kinetic experiment was also repeated in unamended

sea water (in the absence of added nutrient trace metals, vi-

tamins and the complexant, EDTA). Results, as both percent-

age of PGE accumulated and fraction of PGE internalised by the

microalga, were statistically indistinguishable from the cor-

responding results derived in the amended medium (p > 0.05

according a series of independent samples t-tests). For clarity,

the data are not shown in Fig. 4; however, the reaction rate

constants, derived from the kinetic profiles and shown in

Table 2, are very similar to those defining the reactions in

which the additional chemicals were present.

4. Discussion

This study is the first to examine the interactions of an

important group of emerging contaminants (PGE) withmarine

microalgae, and is one of a very limited number of studies to

investigate the accumulation of these contaminants by

aquatic algae (Cosden et al., 2003; Godlewska-Zyłkiewicz,

2003; Turner et al., 2007). As such, the results make an
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Fig. 4 e The percentage of PGE accumulated and the fraction internalised (right-hand panels) by C. stigmatophora (original

cell concentration w106 mLL1) as a function of time. Errors represent the standard deviation about the mean of three

independent measurements.

Table 2 e Instantaneous reaction rates and half-lives
defining the accumulation of PGE by C. stigmatophora.
Values in parentheses represent constants derived in
unamended sea water (in the absence of nutrient trace
metals, vitamins and EDTA).

PGE l, % l, mg g�1 t1/2, h

Rh 7.8 (7.1) 0.85 (0.75) 36 (39)

Pd 17.7 (26.2) 1.85 (2.64) 4 (2)

Pt 6.1 (5.8) 0.91 (0.84) 91 (91)
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important contribution to our understanding of the biogeo-

chemistry of PGE in coastal and oceanic waters. Many of the

observations also havemore general implications for both our

understanding of trace metal behaviour in the marine envi-

ronment and with regard to the practical implications and

limitations inherent in kinetic studies of metal-algal in-

teractions under laboratory conditions (e.g. Vasconcelos and

Leal, 2001b; Levy et al., 2008; Varma et al., 2013).

Because significant and variable fractions of added PGE are

lost to the container walls in this type of experiment, it is

critical that accumulation and kinetic constants defining

metal-algal interactions are derived from an analysis of both

the algae and the aqueous phase. Clearly, any study in which

PGE concentrations accumulated by algae that are computed

from the difference between the added concentration and the

quantity remaining in solution may be overestimated unless

such losses are quantitatively accounted for (Cosden et al.,

2003; Turner et al., 2007). Loss of PGE to the containers also

means that significant proportions of added metal would not

be available to the algal biomass in any toxicity studies.

An experimental and environmental variable that had a

significant impact on the accumulation of PGE by C. stigmato-

phora was the weight to volume concentration (or density) of

the algae. Thus, with decreasing algal density, an increase in

the weight-normalised AF was observed for Rh, Pd and Pt, an

effect that could not be quantitatively accounted for by the

relatively small degree of non-linearity in the accumulation

isotherms. Equivalent observations have been made in

adsorption studies of trace metals, including PGE, in sediment

and soil suspensions (Turner and Millward, 2002; Zhou et al.,

2003; Turner and Wu, 2007) but, to our knowledge, the rela-

tionship has not been previously documented for marine

microalgae.

With respect to sediment- or soil-water interactions, the

“particle concentration effect” has been attributed to a

reduction in particulate surface area (through aggregation)

with increasing particle concentration, or to the presence

(pre-existence or collisional generation) of a third, filterable

(colloidal) phase, acting as a sorbent or complexant andwhose

abundance co-varies with that of filter-retained particles.

While aggregation of living algae is unlikely and was not

supported by light microscope imaging of selected algal

samples in the present study, it is possible that a third,

filterable phase consists of complexing algal exudates

(Vasconcelos and Leal, 2001a; Levy et al., 2008; Strmecki et al.,

2010). Requirements for our observations, therefore, are that

these exudates are able to bind PGE and their abundance is

related to the abundance of C. stigmatophora. If this is indeed

the reason for the inverse dependence of AF on algal density,

the effect is likely to be neither specific to C. stigmatophora nor

to PGE. Accordingly, accumulation factors used for modelling

microalgal-metal interactions in sea water may not only be

specific to the metal and algal species but also to the precise

density of algae present (hence the stage of the plankton

bloom, time of day, season etc). Significantly, an increase in

the biomass is not necessarily associated with a proportional

reduction in the amount of metal remaining in sea water

because algae appear to be able to buffer the concentration of

metal that can be removed from the aqueous phase. Biogeo-

chemical scavenging or uptake models that rely on

accumulation factorsmay require revision or reconsideration,

and future studies involving metal-algal interactions should

incorporate biomass as a key variable in their protocols.

The accumulation isotherms are consistent with results of

other short-term experiments using a variety of biotic and

abiotic solids (e.g. Turner, 2007; Turner et al., 2007) in that the

net order of PGE accumulation by C. stigmatophora (or the

magnitude of AF or AFF) is Rh > Pd > Pt. That isotherms are

quasi-linear suggests available binding sites on the algal sur-

face do not approach saturation over the PGE concentration

range studied and constants defining accumulation (Table 1)

are likely to be applicable under environmentally realistic

conditions and PGE concentrations (on the order of pM in sea

water; Yang, 1989; Bertine et al., 1996). However, the differ-

ential aqueous reaction kinetics displayed by Rh, Pd and Pt

means that information on the rates of these interactions are

critical for a more complete biogeochemical understanding of

PGE in the marine environment. Thus, although the equilib-

rium chemistries and ionic radii of Pt(IV) and Pd(II) are very

similar, rearrangements in the coordination spheres of both

Pt(II) and Pt(IV) are extremely slow and Pt complexation is,

therefore, kinetically hindered (Cosden et al., 2003). Rhodium

forms relatively strong chloride complexes of the form:

[RhCl6�x(H2O)x]
x�3, where x ¼ 0e6; but first-order rate con-

stants for ligand replacement are highly variable and range

from a few minutes to a few months (Bertine et al., 1996).

Neglecting the relatively small confounding effects asso-

ciated with the increasing biomass in the containers, the re-

sults of the longer-term experiment are largely, and at least

qualitatively, consistent with the relative kinetics of forma-

tion and breakdown of complexes among the PGE. Moreover,

the kinetics of PGE-algal interactions appear to be unaffected

by the presence of competing (nutrient) metals and com-

plexants (EDTA) in the experimental medium. Thus, for Pt,

both the adsorption and internalisation by C. stigmatophora

proceed relatively slowly because complexation reactions

involving this metal, including those with surface functional

groups and intracellular molecules, are considerably con-

strained. In contrast, accumulation of Pd by C. stigmatophora

proceeds much more rapidly and attains equilibrium within a

few hours of exposure. However, a protracted period in which

the extent of internalisation diminishes suggests some rear-

rangement in the location of Pd with respect to this microalga.

Specifically, it appears that an efflux of intracellular Pd is

compensated by adsorption to the cell surface of an equiva-

lent quantity of Pd. Given the kinetic constraints on Pt reac-

tivity, it is likely that this rearrangement is the result of the

progressive competition with Pt for mutually accessible

intracellular sites. Because of this competition and, more

generally, their common equilibrium chemistries, Pd and Pt

exhibit similar degrees of adsorption and internalisation by

the end of the exposure (despite possible kinetic constraints

on the extraction of internally bound Pt by EDTA and on its

complexation with algal exudates). Results for Rh indicate

that interactions with C. stigmatophora are kinetically con-

strained, but at equilibrium (or after about 50 h), extents of

both accumulation and internalisation considerably exceed

those of either Pd or Pt.

The broader implications of our observations for the ma-

rine biogeochemical behaviour of PGE may be summarised as
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follows. Of the metals studied, and despite evidence that its

accumulation by C. stigmatophora is kinetically hindered, Rh is

predicted to be removed to the greatest extent by microalgae

and other biological surfaces in the marine environment,

presumably through interactions involving Rh3þ and cationic

chloride complexes. Thus, Rh is likely to exhibit greatest

involvement in biological transport mechanisms from surface

to deeper waters, an assertion supported by observations of

surface water depletion of aqueous Rh in the Pacific Ocean

(Bertine et al., 1996). Interactions with algae involving Pd and

Pt likely involve the free ion and, possibly, anionic chloride

complexes (Godlewska-Zyłkiewicz, 2003). Palladium is pre-

dicted to be involved in biological removal and transport

processes to a greater extent than Pt because of considerable

kinetic constraints on the biological reactivity of the latter,

and differential removal of Pd and Pt is likely to be greatest by

motile organisms and in transient algal blooms. Because of

the more rapid biological reactivity of Pd, it is predicted to

display greater nutrient-like behaviour in the coastal and

oceanic water column and ratios of dissolved Pt:Pd are ex-

pected to be higher in surface waters than in deeper waters.

5. Conclusions

This study represents the first investigation into the accu-

mulation of platinum group elements by marine microalgae.

Results of short-term (24-h) exposure experiments suggest

that the accumulation of Rh, Pd and Pt by Chlorella stigmato-

phora is determined by the reactivity of the algal surface, the

abundance of reactive forms of PGE and the nature and con-

centration of algal exudates that are able to bind metals in

solution. Given the similar equilibrium chemistries of Pd and

Pt, differences in their adsorption and internalisation are

attributed to differences in the kinetics of their interactions

with surface functional groups and intracellular molecules.

Results of a longer-term (156-h) exposure confirm that this is

the case and reveal evidence for the progressive competition

for external and internal sites between these metals. Overall,

both the adsorption and internalisation by C. stigmatophora are

greatest for Rh. Among the PGE, therefore, Rh is predicted to

participate in biological removal and transport processes in

the oceans to the greatest extent.
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