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[1] Transformation of large-amplitude internal solitary waves (ISW) propagating over
slope-shelf topography is studied theoretically and with the use of the experimental data
collected during the Coastal Ocean Probing Experiment (COPE). Taking into account a
very strong nonlinearity of observed waves (the ratio of isotherm displacement to their
initial depth reached a value of 5), two different approaches were employed for the
theoretical investigations of the wave evolution: numerical simulations in the framework
of a fully nonlinear nonhydrostatic system of equations and estimations based on a long-
wave equation derived for a two-layer fluid without any restrictions on the wave
amplitude. Special attention is paid to the adiabatic stage of the wave evolution over a
gently sloping bottom when the ISW conserves its energy in the course of propagation and
preserves the parameters close to a steady solitary wave corresponding to each local depth.
Strong ISWs vary adiabatically along the path of propagation until their vertical scale
(amplitude) becomes comparable with the total water depth. This adiabatic process
typically ends when a soliton reaches its limiting amplitude, after which the breaking
process occurs that leads to the generation of turbulence. For a sharp pycnocline,
simplified two-layer models are applicable for the study of the shoaling process roughly
within the same limits as for steady solitons over a flat bottom. Even for a relatively
smooth stratification, some soliton parameters, such as its velocity and the peak particle
velocity, can be satisfactorily evaluated from two-layer models.
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1. Introduction

[2] In situ measurements and remote sensing observations
demonstrate an ability of oceanic internal solitary waves
(ISW) to propagate for long distances (up to hundreds of
kilometers) from their source of generation. Some observa-
tional evidences of such long-range propagation can be
found, for instance, in [Osborne and Burch, 1980; Apel et
al., 1985; Liu, 1988; Brandt et al., 2002] and many other
publications. It is a confirmed fact now that in a number of
cases, the observed internal waves are strongly nonlinear.
Among the corresponding observations are those in the
Celtic Sea [Pingree and Mardell, 1985], in the central
Bay of Biscay [New and Pingree, 1990], on the Canadian
Shelf [Sandstrom and Oakey, 1995], on the Australian
northwest shelf [Holloway, 1987], and near the Oregon
coast [Stanton and Ostrovsky, 1998; Trevorrow, 1998].

[3] Most such measurements refer to one fixed point and
rarely permit following the evolution of in situ parameters
of a soliton train. For relatively weakly nonlinear solibores,
such a study was done in the Sulu Sea [Apel et al., 1985].
For strong solitons, the two-point recording of the same
train was made near the Oregon coast during September
1995 in the framework of the Coastal Ocean Probing
Experiment (COPE). The experimental data from this re-
gion were already discussed in detail, for instance, by
Stanton and Ostrovsky [1998], Trevorrow [1998], and
Kropfli et al. [1999]. Here we use some of their results
for the investigation of the dynamics of ISWs shoaling over
an inclined bottom topography.
[4] Detailed measurements of ISW characteristics during

COPE were performed at two points: (1) from a Floating
Instrument Platform (FLIP) located 25 km offshore at the
150 m isobath and (2) from a point that was 20 km closer to
the shore, at the 70 m isobath. Internal wave measurements
from these two sites provided the initial data on currents,
temperature, salinity, and density during the passage of
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packets of quasi-plane, strongly nonlinear internal solitary
waves (solibores) propagating from the deep part of the
ocean toward the shore (for more detailed information, we
refer the reader to the papers cited above).
[5] An example of an internal wave measurement

reported in the aforementioned papers is presented in
Figure 1 [see also Kropfli et al., 1999]. It displays, in
particular, a time series of the depth variations for the 14�
isotherm, which is close to the depth of the pycnocline.
Figure 1a shows isotherm displacements with amplitudes of
20 m and greater; such displacements were a common
feature of the observed waves. Taking into account also
the specific vertical water stratification in the tested region,
which is characterized by a very thin (only 5 m thick) upper
mixed layer and a very sharp interface at about 7 m depth
(this can be estimated from Figure 2), this suggests a very
strong nonlinearity of the observed waves. Indeed, the ratio
of the maximum isotherm displacement to their initial depth
for the strongest waves was in a range between 4 and 5.
Moreover, the water velocity at the soliton peaks (Figure 1b)
was only slightly smaller than the wave propagation
velocity [Kropfli et al., 1999].
[6] The experimental data on characteristics of highly

nonlinear internal waves observed during COPE were a
strong motivation for us to study the phenomenon and to
understand the behavior of a large-amplitude ISW when it
propagates over the inclined bottom topography, and which
parameters control its dynamics. This situation was rela-
tively well studied only for weakly nonlinear waves when
the wave amplitude is small as compared with vertical
scales such as the pycnocline depth or the total basin depth.
[7] Several analytical and semianalytical models have

been developed and applied to study the shoaling of weakly
nonlinear waves [Djordjevic and Redekopp, 1978; Helfrich
and Melville, 1986; Holloway et al., 1999]. For large-
amplitude ISWs the description of the wave transformation
is not so straightforward as it is for weak ones because of
the strong nonlinearity of the considered phenomenon. The

detailed numerical analysis of the dynamics of strongly
nonlinear waves has been performed in the framework of a
fully nonlinear nonhydrostatic model in several publica-
tions, most recently by Grue et al. [1999, 2000], Vlasenko
and Hutter [2001, 2002a, 2002b], and Lamb [2002, 2003].
This is the method that we follow below: we shall consider
the evolution of highly nonlinear solitary internal waves
over the inclined bottom topography in a situation when the
wave amplitudes are comparable with the pycnocline depth
or even total water depth.
[8] As distinct from, e.g., Lamb [2002, 2003], we do not

consider shoaling of ISWs with a trapped core. Evidence of
such waves in the atmosphere was reported, for instance, by
Doviak and Christie [1989]. First mode internal solitary
waves with recirculation cell were observed in the labora-
tory experiments by Grue et al. [2000]. There are also some
computations of large-amplitude solitary waves with
regions of recirculation [see, e.g., Tung et al., 1982; Derzho
and Grimshaw, 1997]. In our modeling we also observed
stable large-amplitude ISWs with a trapped core.
[9] Recent publications by Voronovich [2003] and Fructus

and Grue [2004] should also be mentioned in this connec-
tion. A semianalytical approach to the description of strong
ISWs was developed in these papers. In the former, steady
solitary waves were found in a long-wave limit for a two-
layer fluid with each layer having a constant buoyancy
frequency. A similar result was obtained for a three-layer
fluid by Fructus and Grue [2004] with the use of integral
equations and Fourier transform. In both cases a trapped core
was included into the solution. However, these analytical
approaches are valid only for steady state progressive waves
when motion in each layer is described by a linear equation.
[10] Note, however, that no observations of ISWs with

trapped core have been made in the ocean so far. Thus we
focus on the adiabatic behavior of ‘‘ordinary’’ ISWs taking
the parameters of incident waves, as well as the water

Figure 1. (a) Wave displacements of the 14� isotherm
versus time. (b) Horizontal onshore currents at 8.4 m depth
for the same wave packet. Arrows indicate the waves with
amplitudes of about 20 m used in Figure 8. The plots are
taken from Kropfli et al. [1999].

Figure 2. (a) Buoyancy frequency profiles and (b) the
appropriate profiles of the density anomaly. The solid line is
the curve obtained by smoothing the experimentally
measured profile [Trevorrow, 1998]. The dashed line is
the profile used in the numerical modeling. The dotted line
is the profile used for some estimations.
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stratification and the geometry of the calculation domain
close to those observed in the COPE region.
[11] For nonsteady strongly nonlinear waves, semianalyt-

ical methods were developed based on a long-wave approx-
imation in papers by Miyata [1988], Choi and Camassa
[1999], and Ostrovsky and Grue [2003]. For horizontally
homogeneous models such a long-wave theory gives in
many cases good agreement with numerical simulations and
with the data of laboratory experiments [Michallet and
Barthelemy, 1998] and oceanic observations [Ostrovsky
and Grue, 2003]. The long-wave approach to strong ISWs
in a horizontally inhomogeneous ocean was briefly consid-
ered by Tae-Chang and Choi [2002] for a sloping bottom
and by Craig et al. [2004] for a sloping pycnocline, both for
a two-layer model. However, except for one example given
in the former paper, no other solutions were presented and
no detailed analysis or comparison with direct computation
has been done.
[12] In this paper we study the ISW transformation over a

sloping bottom numerically and then apply a simplified
two-layer, long-wave model to approximate the same pro-
cess with the purpose of determining whether and when the
simplified approach can satisfactorily work for the realistic
example considered here. Observational data are also used
for comparison.
[13] The numerical approach that we follow here is

similar to that used by Vlasenko and Hutter [2002a,
2002b]. However, unlike these papers, here we do not
consider the phenomenon of wave breaking in any detail.
Instead, we shall focus on the evolutionary stage of highly
nonlinear waves with the aim of discovering how their
parameters depend on the shape of the bottom when the
internal waves are still far enough from breaking. Note that
interaction of strong internal waves with an underwater sill
was recently studied by Vlasenko and Hutter [2001, 2002b]
for laboratory and lake conditions. In the present study we
expand our interest to the oceanic scales and consider
shoaling of strong solitary waves in a slope-shelf area.
The results show that the adiabatic stage of soliton evolution
can last longer than for weakly nonlinear waves and that the
simplified two-layer model can describe this process suffi-
ciently well. Experimental data are also used for verifying
our calculations.

2. Formulation and Initialization of Numerical
Model

[14] A fully nonlinear nonhydrostatic numerical model for
continuous vertical fluid stratification is used here to study
the adiabatic behavior of ISWs over bottom topography. The
model was described in earlier papers [Vlasenko and Hutter,
2001, 2002a, 2002b], and here we outline only briefly the
basic features of its formulation and initialization.
[15] The two-dimensional system of equations in the

Boussinesq approximation, written in Cartesian x-z coordi-
nates in which the x axis coincides with the undisturbed free
surface and the z axis is vertical, opposite to the direction of
gravity, is used in the form

wt þ J w;yð Þ ¼ grx=rþ ahwxx;

rt þ J r;yð Þ ¼ khrxx;
w ¼ yxx þ yzz ð1Þ

for the stream function y(x, z, t) (u = yz, w = �yx, where u,
w are the horizontal and vertical velocity components) the
vorticity w(x, z, t) and the water density r(x, z, t). Here ah
and kh are, respectively, the coefficients of horizontal
viscosity and diffusion, J(a, b) = axbz � azbx is the Jacobian
operator and the subscripted indices x, z, t denote partial
derivatives with respect to the subscripted variable. The
system is written for constant coefficients of horizontal eddy
viscosity and diffusivity. The coefficients ah and kh were
taken to be as small as possible to keep dissipation as small
as possible, but still to guarantee stability of the numerical
scheme.
[16] We are only interested in baroclinic motions, and

thus use the ‘‘rigid lid’’ condition at z = 0:

y ¼ 0; w ¼ 0; rz ¼ 0: ð2Þ

The bottom, z = �H(x), is a streamline at which

y ¼ 0; w ¼ 0; rn ¼ 0; ð3Þ

where n is the unit normal vector to the inclined bottom
relief.
[17] The choice of y = 0 in (2) and (3) guarantees

vanishing of horizontal flux. The boundary conditions for
the vorticity are similar to those used for ideal fluid; in our
case they are valid with good accuracy, taking into account
a zero coefficient of vertical viscosity, av, and a very small
value used for ah (see below). In a more general case, when
av 6¼ 0, the no-slip conditions u = w = 0 (where u and v are
horizontal and vertical components of the velocity vector,
respectively) must be satisfied at the bottom. In such a case,
the value of the vorticity w = w0 at z = �H(x) is usually
calculated from the stream function obtained at the previous
temporal step. At the free surface, boundary conditions (2)
are valid also in a ‘‘viscous’’ case if no tangential stress is
applied at z = 0 (when wind forcing is not considered). For
the density we took ‘‘zero flux’’ boundary conditions using
the same reasoning.
[18] The problem (1)–(3) was solved numerically with

the use of the alternation direction implicit method
[Marchuk, 1974]. Before the finite difference implementa-
tion, a s transformation of the z coordinate (s = �z/H(x)) is
performed, which transforms the physical domain with
variable depth into a rectangular computational area. This
allowed us to use a rectangular grid in the development of a
numerical scheme.
[19] The vorticity transport equation is integrated in time

by splitting the temporal step into two semisteps. At the first
step, the z direction is made implicit, while the x direction is
kept explicit. At the subsequent step, the z direction is made
explicit, but the x direction is implicit. The spatial deriva-
tives are approximated by second-order central differences.
At each temporal semistep a linear system of equations with
a tridiagonal matrix is obtained that is solved using standard
techniques. The stream function is then computed from the
vorticity by solving the Poisson equation w = yxx + yzz,
previously transformed with the use of the s coordinate.
First, this equation is transformed to an equation of evolu-
tional type by adding the temporal derivative, then the
stationary solution is sought with the use of the optimal
series of the iteration parameters. Finally, the density r is
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computed by the same methodology as that used for the
vorticity transport equation. For more information we refer
the reader to the book by Vlasenko et al. [2005], where the
numerical scheme is described in greater details.
[20] Several numerical experiments were performed to

determine the values of the eddy viscosity and turbulent
diffusivity parameters ah and kh. It was found that by taking
Dt = 0.5 s, Dx = 2 m, Dz = 0.5 m (in the deep part of the
basin) and ah = kh = 10�4 m2 s�1, the numerical scheme was
stable. These values coincide with measurements and esti-
mates of the background viscosity and diffusivity given by
Sandstrom and Oakey [1995]. Such a low level of dissipa-
tion allows the internal waves to propagate over a long
distance (500 wavelengths and more) without significant
attenuation. This is in agreement with in situ observations
showing that ISWs can propagate several hundred kilo-
meters from their source of generation [see, e.g., Apel et al.,
1985; Brandt et al., 2002].
[21] In accordance with the observations, we assume that

a plane solitary internal wave of depression, or a packet of
ISWs, propagates from the deep part of the basin to a slope-
shelf region. The objective of our modeling efforts was to
investigate the process of evolution of strongly nonlinear
solitary internal waves over variable bottom topography.
[22] The model was initialized in a similar manner as was

done by Vlasenko and Hutter [2002a]. To obtain the initial
fields (at t = 0) for the incident wave, at the initial stage we
considered a basin with a constant depth of 150 m (the basin
depth at the FLIP location at the COPE site). The
corresponding density profile and its approximation used
here are shown in Figure 2. For initialization we used the
first-mode analytical solitary wave solution of the Korte-
weg–de Vries (K-dV) equation. Such an initial field repre-
sents a stationary solitary wave in a weakly nonlinear case.
This K-dV soliton does not satisfy the system (1) for a
large-amplitude solitary wave. Thus when being inserted in
the numerical scheme, the strong nonlinear wave will
evolve in a basin of constant depth until a new stationary
solitary wave is formed at the frontal side of the wave field
and the leading wave separates from the dispersive wave

tail. This wave is then used as an initial condition for the
problem of the interaction of intense ISWs with the bottom
topography.
[23] We should discuss the properties of such initial

solitary waves of finite amplitude and their differences from
the K-dV solitons. The structure of one such initial incom-
ing wave with amplitude 20 m is presented in Figures 3
and 4. Note that large waves differ in detail from the K-dV
solitons (we compare two waves, K-dV and numerical,
having the same maximum vertical excursion, although at
different depths, see Figure 4a). In particular, their vertical
structure does not coincide with the eigenfunctions of
the linear boundary value problem. In fact, as seen from
Figures 3a and 4a, the wave displacements near the surface
are considerably larger in the real wave, but at depth, below
the pycnocline, they are much smaller than those for the K-
dV case.
[24] Figures 3b and 3c show the horizontal velocity field

of the same waves depicted in Figure 3a. The form of the
locus of zero horizontal velocity in the numerical wave
(Figure 3b) differs remarkably from the horizontal straight
line that results from the K-dV model (Figure 3c). More-
over, the minimum horizontal velocity is not located at
the bottom, as in the K-dV solution (compare Figures 3b
and 3c). This indicates that large-amplitude oceanic internal
solitary waves are much more complicated phenomena than
that following from the weakly nonlinear theory. An addi-
tional distinction is that the real large-amplitude solitary
waves propagate more slowly than the corresponding K-dV
waves. Naturally, this discrepancy increases with amplitude
growth. For more details on the peculiarities of large-
amplitude solitary internal waves, we refer the reader to
the papers by Miyata [1985, 1988], Lamb and Yan [1996],
Michallet and Barthelemy [1998], Choi and Camassa
[1996, 1999], Vlasenko et al. [2000], and Ostrovsky and
Grue [2003].
[25] In the present study, the amplitudes am (maximum

displacements of the isopycnals) of the incident internal
waves were in a range between 5 and 20 m (typically
observed during COPE, see Figure 1). As mentioned above,

Figure 3. Fields of (a) density anomaly (kg m�3) and (b, c) horizontal velocity (sm s�1) of 20 m
amplitude internal solitary waves (ISW). Fields in Figures 3b and 3c hold for numerical and K-dV
solitary waves, respectively. Solid lines in Figure 3a represent the density field obtained numerically for
continuous fluid stratification depicted by the dashed line in Figure 2; the dashed lines show the
analogous field for the analytical K-dV solitary wave.
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waves with such amplitudes must be extremely nonlinear:
the ratio of the maximum vertical isopycnal displacement to
their initial depth varies from 1 to 5. Figure 5 confirms this
statement. The wavelength-amplitude relationship is plotted
here for different theoretical models and different density
stratifications. The wavelength is defined as follows:

l zð Þ ¼ 1

a zð Þ

Z 1

�1
x x; zð Þdx: ð4Þ

Here x(x, z) represents the displacement of the isopycnals of
which the undisturbed depth is �z, and a(z) represents its
value at the wave center [Miyata, 1988]. In the limit a ! 0,
this formula gives the wavelength l for the K-dV solitary
wave.
[26] Note that the numerical wavelength decreases first

with growing amplitude, as predicted by the K-dV model.
For relatively strong waves their width remains almost
independent of the amplitude over a wide range of values
[Ostrovsky and Grue, 2003], whereas at large amplitudes
the wavelength grows again when am approaches the
maximum amplitude. As seen from Figure 5, the fully
nonlinear model indeed reproduces the observed peculiarity
[Stanton and Ostrovsky, 1998]: the solitary wave profiles in
a range of 7–20 m wave amplitudes are almost identical to
each other. The horizontal scale of such waves can be
estimated as approximately 100–120 m. The relatively
small variation of the wavelength at am > 10 m implies
that the waves considered are strongly nonlinear.

3. Comparison With Observational Data

[27] Before considering the evolution of ISWs over
variable bottom topography, let us compare the model
results with the available experimental data. We perform
this analysis to ascertain that the numerical model correctly
reproduces the basic features of strong waves measured at
the COPE site.
[28] Figure 6 shows the vertical wave profiles that are

similar to those presented in Figure 4a but for the 70 m
isobath (the second observational point during the COPE).

As reported by Trevorrow [1998], the vertical structure of
two strong solitary waves with amplitudes of about 12.5 and
10.8 m were measured here (the details on the experimental
and processing technique can be found therein). The nor-
malized measured vertical displacement profiles are pre-
sented in Figure 6 by circles and squares. It is seen that the
model-predicted profile (dashed line) computed for ISWs
with an amplitude of 12 m fits the experimental wave
profiles much better than the analytical K-dV solution.

Figure 5. Relationship between wavelength and wave
amplitude of internal solitary waves as simulated by the
numerical model (dotted line) and as calculated by different
models for H = 150 m. Solid and dashed lines were
calculated by the first-order K-dV theory for two density
profiles presented in Figure 2b. The abscissa is also shown
as the ratio of the wave amplitude to the thickness of the
upper layer. Filled triangles are COPE observations
[Ostrovsky and Grue, 2003].

Figure 4. Vertical profiles of (a) isopycnal displacements and (b) horizontal velocity calculated at the
wave center for 20 m amplitude ISW. The numerical and K-dV profiles are given by dashed and solid
lines, respectively. (Vertical excursions of the K-dV and numerical waves are equal, although at different
depths.)
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[29] The next test is a comparative analysis of the two
time series, presented in Figure 1 with the model results. For
every strong depression presented there, we estimated the
wave amplitude as the vertical excursion of the 14� isotherm

shown in Figure 1a and its horizontal velocity at z =�8.4 m,
where the measuring device was located (Figure 1b). As a
result we could plot the experimental dependence of the
horizontal velocity at the soliton center on wave amplitude.
It is represented by crosses in Figure 7. The analogous
dependence, albeit obtained with the use of the fully
nonlinear numerical model, is shown in the same figure
by the solid line. One can conclude that this curve approx-
imates the cluster of the experimental points much better
than do the two other theoretical curves calculated with the
K-dV theory.
[30] Finally, we compared the shape of every individual

solitary wave depicted in Figure 1 with those obtained by
the numerical model. We choose for the analysis five
solitary waves with comparable amplitudes, and, as
expected, equally similar wavelengths l and close phase
speeds V. These waves are marked by arrows in Figure 1a,
and located within the circle in Figure 7. The result is
presented in Figure 8. The experimental points belonging to
different waves are represented by different symbols. The
theoretical curve for the solitary wave with an amplitude of
20 m is shown by a solid line. It was calculated from the
density field presented in Figure 3a: spatial profile of the
isopycne s(z) � s(0) = 2 kg m�3, situated just in the middle
of the pycnocline, was transformed into the temporal
dependence by its division by the wave speed V. According
to Kropfli et al. [1999], 14�C isotherm represented in
Figure 1a, also coincides with the middle of the pycnocline.
[31] The basic conclusion that can be drawn from our

comparison between the in situ data and the theoretical
analysis in general and the results of Figure 8 in particular,
is that the fully nonlinear model describes the strong waves
observed during COPE quite satisfactorily.
[32] Thus it is hoped that the model can also be used as a

tool in our study of the evolution stage of strong solitary
waves over the bottom topography, which is carried out
below.

4. Shoaling of Strong Internal Solitary Waves
(ISW)

[33] The bottom topography between the two observa-
tional points at the COPE site is characterized by a small

Figure 6. Normalized vertical profiles of isopycnal
displacements obtained for the K-dV soliton (solid line)
and calculated by means of the fully nonlinear model for a
solitary wave with amplitude am = 12 m (dashed line). Two
normalized experimental wave profiles measured at the
isobath of 70 m are depicted by the circles and squares
[Trevorrow, 1998].

Figure 7. Relationship between the horizontal velocity in
the soliton center at z = �8.4 m and the wave amplitude as
simulated by the numerical model (solid line) and as
obtained from in situ data (crosses). For comparison, similar
dependencies computed for the K-dV solitons are also
displayed by the dashed line (at z = 0) and the dotted line (at
z = �8.4 m). For the dashed circle, see discussion in main
text. Profile N(s) depicted by the dashed line in Figure 2 is
used in the continuously stratified model.

Figure 8. Fit between the normalized isotherm displace-
ments for five solitons marked by arrows in Figure 1. The
solid line represents the normalized wave profile obtained
from the numerical model for solitary waves with amplitude
am = 20 m.
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inclination angle of about 0.2�. The shoreward water depth
varies slowly from 150 m to 70 m over a distance of 20 km.
As a consequence, the horizontal scale of the bottom
variations in the observational area is much larger than
the wavelength of the incoming waves. In such a case one
can expect a very weak wave reflection from the bottom
slope. It is very likely that the propagating waves vary
adiabatically along the propagation path until their vertical
scale (amplitude) becomes comparable with the maximum
possible amplitude in a given point. This assumption must
be carefully checked, and this is done in what follows for
the COPE site. However, we formulate the problem in this
study somewhat more comprehensively than only to obtain
a simple explanation of wave dynamics in one observation
area. We will try to find the basic parameters that control the
adiabatic propagation of solitary waves in a more general
case. For this reason we consider not only the bottom
profiles inherent to the COPE site, but also profiles with
much steeper inclinations.
[34] The idea of the numerical runs is the following: we

consider the evolution of solitary internal waves with
amplitudes from 5 to 20 m propagating from the deep part
of a basin with a depth of 150 m to the shallow water zone,
where the basin depth Hshelf varies in the range from 40 to
110 m. The bottom profile between the deep and shallow
water zones is linear with an inclination angle g of 0.2�,
0.4�, 1.5�, 6� and 12�. Our goal is to find out how the
characteristics of the waves transmitted to the shallow water
zone depend on their amplitudes, on the bottom inclination
and water depth. Note that we deal with extremely strong
waves in which the nondimensional vertical excursion of

fluid particles, i.e., the ratio of the wave amplitude to the
initial depth of the undisturbed pycnocline, varies from 1 to
4. Thus some strongly nonlinear effects such as wave
breaking can take place during the wave shoaling; this
effect was already considered in detail in many papers.
The breaking criterion derived from the laboratory experi-
ments by Helfrich and Melville [1986], Helfrich [1992], and
Sveen et al. [2002], or from the numerical modeling by
Vlasenko and Hutter [2002a], embraces a wide range of
bottom inclinations. Here we are not going to particularly
study the breaking events; all such cases are deliberately
excluded from our analysis. Instead, we will focus on
changes of local wave characteristics with the aim of
understanding whether and when they obey the law of
adiabatic propagation.
[35] First we consider shoaling of an internal wave packet

as it was observed at the COPE site. With this example we
illustrate a typical situation occurring when the wave train
propagates over the bottom topography with relatively small
inclination. An example of the wave evolution is presented
in Figure 9. In this numerical experiment the initial distance
between two adjacent waves at t = 0 was about 800 m. The
incident wave train presented in the upper panel is arranged
by amplitude. As can be concluded from the analysis of the
two lower panels, none of the solitary waves propagating
over the inclined bottom is destroyed and neither do they
evolve into dispersive wave trains during propagation.
Instead, they adjust permanently to the changing ambient
conditions, preserving the shapes and structure inherent to
solitary waves. The single evident difference between the
wave patterns in the deep part of the basin at t = 0 and on

Figure 9. Evolution of six solitary internal waves with amplitudes of 20, 17.5, 15, 12, 9, and 5 m
penetrating from the deep water region with a depth of 150 m into the shallow water zone with a depth
of 70 m over the inclined linear bottom topography with inclination angle of 1.47�. The timescale is T =
107 s. The water stratification was close to that observed at the COPE site (dashed line in Figure 2).

C04006 VLASENKO ET AL.: BEHAVIOR OF INTERNAL SOLITARY WAVES

7 of 14

C04006



the shelf (at t = 160 T) is a substantial stretching of the wave
packet which is naturally explained by dispersion of soliton
velocity.
[36] In fact, there are two basic concurrent factors defin-

ing the wave dispersion in a basin of variable depth. The
first one is that the speed of the soliton, V, depends on its
amplitude, A (nonlinear dispersion; we designate the wave
amplitude by A in a two-layer model in contrast to am used
for continuous stratification). Larger solitons propagate
faster, which leads to the stretching of the wave packets.
On the other hand, the phase speed, V, of the shoaling wave
decreases when the soliton propagates upward over the
inclined bottom. This, in turn, could lead to the temporary
compression of the wave train at the stage when the leading
soliton has just passed the slope while the trailing one is still
approaching the slope. We made such an estimate using the
formula (7) given below for the soliton velocity, V, in the
two-layer model, for the case shown in Figure 9. As seen
from Figure 9, the soliton amplitudes do not significantly
vary on the slope (unlike the current velocity). For the last,
fifth soliton in the group having the amplitude A = 5 m and
remaining in the deep layer with a depth of 150 m, equation
(7) gives V 	 0.58 m s�1. For the leading pulse, with A =
20 m, even after arriving at shallow water of 70 m depth, the
same formula gives V 	 0.77 m s�1. The latter value still
exceeds the maximum velocity of the trailing pulse. Hence
nonlinear dispersion prevails, and the group must continue
expanding at all stages, which conforms with Figure 9. Note

that elongation of the group of COPE solitons upon its
onshore propagation is also seen from the comparison of the
data for a depth of 150 m and 70 m as done by Gorshkov et
al. [2004].
[37] In general, preservation of the wave form over

variable bottom topography in the family of solitary waves
demands permanent change of the quantitative character-
istics of the wave field to maintain the permanent balance
between the strong nonlinearity and dispersion. An example
of such a process is represented in Figure 10. It shows the
dependence of the maximum horizontal velocity located at
the free surface in the center of ISW upon the local
nondimensional coordinate for several bottom angles and
several values of the depth in the shallow water zone (as
mentioned, the velocity varies more strongly than the
soliton amplitude). Analysis of these curves allows the
following conclusions: First, the horizontal velocity
decreases substantially over the inclined bottom during
wave shoaling. Concurrently, the negative value of the
velocity, which is located near the bottom, increases (not
presented here). However, in the shelf zone, where the depth
does not change, the maximum horizontal velocity (and also
all other wave characteristics not shown here) is almost
constant over a distance of 150–250 wavelengths.
[38] This is an argument in favor of the adiabatic behavior

of propagating waves: they adjust permanently to the local
depth variations and do not change their characteristics if
the depth does not change. The minor decrease of the

Figure 10. (a) Dependencies of the maximum horizontal velocity (located in the central section of the
soliton at the free surface) on the soliton position during its propagation from the deeper part of the basin
to the shelf through the linear transition zone. Solid lines correspond to the gently sloping topography
with g = 1.47�; dashed and dotted lines have been constructed for edge steepness of g = 6� and g = 12�,
respectively. The water depth on the shelf is indicated in the upper panel for every curve. Only those lines
are shown for which the solitary wave was not destroyed. (b) Concept of the numerical experiments. The
amplitude of the incoming wave in all cases is 20 m.
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horizontal velocity in the shelf zone (less than 1% over a
distance of 150–250 wavelengths) can be explained by the
effect of dissipation which are very weak but still present in
the model.
[39] Another fact that confirms the adiabatic behavior of

strong ISWs over the inclined bottom is that, in a shelf zone,
the curves for different bottom inclinations coincide almost
perfectly. Thus we conclude that wave reflection from the
inclined bottom by backscattering in the range g < 12� is
almost negligible. However, it does not mean that the wave
evolution does not depend at all on the inclination angle g.
In fact, such a dependence becomes discernable when the
solitary wave amplitude becomes comparable with the total
water depth; more exactly, the amplitude approaches its
maximum value, which in a two-layer fluid is close to
(h2 � h1)/2. In such a case the wavelength and the time of
its adjustment to the varying bottom topography increases.
If the bottom inclination is relatively large and the wave
amplitude is close to its possible maximum, the propagating
wave does not have enough time for adjustment; as a
consequence, it is destroyed near its trailing edge. The
mechanism of wave breaking, along with the breaking
criterion, were discussed recently by Vlasenko and Hutter
[2002a] in detail. In particular, a dependence of the breaking
condition on the bottom inclination was found: propagating
ISWs are more effectively destroyed over steep bottom
features. From the present series of numerical runs it was
found that ISWs with an amplitude am = 20 m can penetrate
into a shelf with Hshelf = 40 m without breaking if g < 1.5�.
The corresponding value for Hshelf = 50 m equals 6�.
[40] Let us consider now how the other wave character-

istics change during wave shoaling. Figure 11 shows the
wavelength and wave amplitude dependencies upon the
nondimensional time for two waves with amplitudes am =
20 m (Figure 11a) and am = 5 m (Figure 11b). Evidently,
these dependencies are completely different for strong and
for weak waves. For strong waves the wavelength
increases with an increase of the wave amplitude starting
from the moment t/T of about 70 when the wave
amplitude begins to ‘‘feel’’ the bottom; this tendency is
the opposite for weak waves. Such a behavior is in
agreement with the function l = l(am) depicted in
Figure 5 by the dotted line: the wavelength decreases
rapidly with the growth of amplitude for relatively weak
waves (when am < 8 m), but it increases for strong waves
when am > 20 m. In the range of 8 m < am < 20 m, the
wavelength only weakly depends on the amplitude. This
is in qualitative agreement with the observational data
[Stanton and Ostrovsky, 1998].
[41] The sensitivity of the model results to the angle g of

the bottom slope is also seen from Figure 12. The functions
l(x) and am(x) are presented here for waves propagating
through the transitional area to the shallow water area with a
depth of Hshelf = 70 m. Three different values of the
inclination angle g were considered; all other conditions
were kept the same. The results also confirm the concept of
the adiabatic behavior of the propagating waves. Irrespec-
tive of the width of the transitional area (or bottom inclina-
tion), the solitary waves in the shallow water zone possess
the same characteristics (wavelength and amplitude). The
slow decrease of l and am during propagation can be
explained by wave dissipation; we are reminded that the

length of a strong soliton decreases with the decrease of the
amplitude.

5. Simplified Models for the Evolution of Strong
ISW: Comparison With Fully Nonlinear Model

[42] The results presented above were obtained with the
help of a fully nonlinear nonhydrostatic numerical model,
developed for a continuously stratified fluid. Its application
to concrete oceanic situations by applying a fine-resolution
grid (this is the usual requirement for the shoaling process)
encounters substantial computational difficulties. However,
instead of using a complicated fully nonlinear model, it is
often possible to use simpler models that are sufficiently
adequate for the analysis of in situ data. In this connection
we mention here Miyata [1985, 1988] and Choi and
Camassa [1996, 1999] for two-directional equations, and
Ostrovsky [1998] and Ostrovsky and Grue [2003] for one-
directional evolution equations. The long-wave models
developed in these papers without any restriction on the
wave amplitude have been written for a two-layer fluid.
Thus their validity for the analysis of real experimental data
collected in a continuously stratified ocean depends on the
stratification profile and in general it needs verification.
Ostrovsky and Grue [2003] used some data of experiments
made in the Celtic Sea [Pingree and Mardell, 1985] and

Figure 11. Dependencies of the wavelength (solid lines)
and wave amplitude (dashed lines) on the soliton position
during its propagation from the deeper part of the basin to
the shelf through the linear transition zone. Case of
(a) strong solitary waves (am = 20 m), (b) weak waves
(am = 5 m), and (c) a sketch of the geometry.
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during COPE (considered above) to show that in some cases
the agreement between the two-layer models and observa-
tions is rather good (especially regarding the soliton speed
and horizontal particle velocity); in other cases the two-
layer theory is apparently insufficient to describe correctly
soliton profiles. Below we compare the results from the two
approaches in the application to the COPE site by taking
into account both more realistic smooth stratification and
propagation over variable depth.
[43] We consider the adiabatic variations of a soliton

based on conservation of the total soliton energy, W, in a
nondissipative system and in the absence of reflections.
Here we shall use the expression for the energy density, E,
per unit length (i.e., integrated over depth) in a long wave,
in the form [Ostrovsky and Grue, 2003]

2E=r ¼ h1 þ hð Þu21 þ h2 � hð Þu22 þ g0 h2 þ h1h
� �

: ð5Þ

Here the subscripts 1 and 2 refer to the upper and lower
layer, respectively, h1 and h2 are unperturbed layer
thicknesses, u1 and u2 are particle velocities averaged over
each layer, and g0 = g(r2 � r1)/r1; it is supposed that the
density difference is small which is always the case for the
ocean. Note that the last term in (5) g0h1h, is unnecessary
here due to the independent mass conservation. In Ostrovsky
and Grue [2003], it was retained in order to consider an
evolution equation (e-model) in which the mass is not
exactly conserved. In any case this term does not affect the
result (approximate constancy of soliton amplitude).
[44] In Ostrovsky and Grue [2003] an energy-conserving

evolution equation (e-model) was suggested, and the rela-

tions between u1,2 and h were taken from the Riemann
invariants for a long (nondispersive) wave. Here, for sim-
plicity, we shall consider a single, locally steady solitary
wave when all variables are functions of one argument, z =
x � Vt. Then the relationships between the variables follow
directly from the mass conservation in the reference frame
moving at velocity V where no time dependence exists. For
a long wave, when the current in each layer is almost
horizontal, we approximately have (this is exact for the
peak of the soliton, h = A)

u1 ¼
Vh

h1 þ h
u2 ¼ � Vh

h2 � h
: ð6Þ

As shown by Ostrovsky and Grue [2003], the soliton
velocity in practically all long-wave models considered
there as well as from the fully nonlinear calculations, can be
represented by the formula

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0 h1 þ Að Þ h2 � Að Þ

H

r
; ð7Þ

where H = h1 + h2 is the total local depth on the sea (note
that it coincides with the velocity of a linear nondispersive
wave if the interface is shifted to the depth h1 + A). Thus,
the energy density (5) at the soliton peak is

Emax ¼ rg0 A2 þ h1A
� �

: ð8Þ

[45] Let us first compare the simple two-layer formulae
(6) and (7) with the above numerical results obtained for

Figure 12. (middle) Same dependencies as in Figure 11, but for different widths (or bottom
inclinations) of the transitional area. Designations of all curves are depicted in the figure. The water depth
in the shelf area is 70 m in all cases, and the amplitude of the incident waves is 20 m. (top) Changes of the
normalized function (9) across the shelf.
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smooth stratification. Here we take h1 = 5 m (the depth of
the buoyancy frequency peak in Figure 2). Figure 13 shows
the corresponding results for the maximum particle velocity
in the upper layer. It is seen that the expression (6) written
for the two-layer model and maximum of normalized
horizontal velocity Umax/V calculated from the continuously
stratified numerical models agree rather well in a wide range
of soliton amplitudes.
[46] Figure 14 gives a comparison of present numerical

results for soliton velocity at different depths with
formula (7) as well as with the corresponding K-dV models.
It is interesting to note that whereas the two-layer K-dV
model gives unrealistic results (as already mentioned by
Ostrovsky and Grue [2003]), the K-dV model for the real,
continuous stratification, can be closer to reality, especially
for a smaller total depth (Figure 14c). At the same time, the
two-layer expression (7) works well for a larger depth
(Figure 14a) and gives a larger discrepancy for a shallower
layer (Figure 14c). This is understandable; indeed, the
relative role of a stratified area existing below the pycno-
cline (Figure 1) should increase with the decrease of the
lower layer thickness. Still the discrepancy is moderate even
in Figure 14c (never exceeds 20%), so that we shall use (7)
in subsequent estimates.
[47] Consider now wave evolution over the variable

depth based on equation (8). In our case h1 = const but
h2 = h2(x), and the bottom slope is again supposedly
sufficiently small to be able to neglect wave reflections.
In this case the full soliton energy, W =

R1
�1Edx, where E is

given by (8), must be conserved. To avoid cumbersome
calculations, we introduce a characteristic soliton width, L,
defined at the level of half-amplitude, and estimate W as
Emax L (note that L is defined here differently from (4),
although these two values are close). To estimate the width
L of a soliton, we use the result of the calculation shown by
Ostrovsky and Grue [2003, Figure 7]. It shows that in the
range of ratios A/h1 between 1 and 4 which has been used
above for numerical calculations, the dependence L(A)/h1 is

practically the same for depths of 150 m to 70 m. Moreover,
as seen from Figure 4 of the cited paper, even for a non-
COPE example, when h2/h1 = 3.6, which in our case would
correspond to h2 = 18 m, the relative width at A/h1 = 1 is
about the same as in Figure 7, namely, L/h1 	 12–13. Note
that these curves strongly diverge only when A comes close
to its critical value, Acr = (h2 � h1)/2.

Figure 13. Numerically found dependence of maximum
velocity of fluid particles at the free surface in the soliton
center, Umax, normalized by the nonlinear phase speed V,
plotted against the wave amplitude (dashed line). The solid
line represents the function A/(A + h1) found from the mass
conservation in the two-layer model.

Figure 14. Phase speed of ISWs versus amplitude for
different models and different values of water depth at the
shelf: (a) 150 m; (b) 110 m; and (c) 70 m. Solid and dashed
lines correspond to the continuously stratified and two-layer
K-dV models, respectively; the dotted line is built according
to the two-layer, strongly nonlinear model. Filled circles
represent numerical results. Profile N(s) depicted by the
dashed line in Figure 2 is used for the continuously stratified
models.
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[48] Hence in the amplitude range considered here, L/h1 is
a function of A/h1 or, at a constant h1, just L = L(A), and this
is practically independent of h2. As a result we have

W Að Þ / A Aþ h1ð ÞL Að Þ ¼ const: ð9Þ

From here it follows that in the approximation considered,
the soliton amplitude remains constant upon propagation
over a sloping bottom. This result may not be precise
because the solitary solution is not exactly self-similar, and
the energy integral can depend on its specific profile. To
verify it, the value of soliton energy W was calculated with
the use of (9) where A was taken from the above smooth
stratification model; it is shown in the upper panel of Figure
12. From that, one can conclude that in the considered case,
the energy of propagating ISW is conserved, within 5%
accuracy, in the framework of the two-layer model.
[49] Also, Figure 12 confirms that even for smooth

stratification, the amplitudes of strong solitons vary only
slightly in the course of propagation, which confirms the
above result.
[50] At the same time, the magnitude of the particle

velocity varies significantly more strongly. Indeed, express-
ing the maximum particle velocity in the upper layer (see
(6)) in terms of the total variable depth, H(x) = h1 + h2(x) we
have

u1max ¼
VA

Aþ h1
¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0

H xð Þ � h1 � Að Þ
H xð Þ Aþ h1ð Þ

s
: ð10Þ

[51] As already mentioned, the first of these expressions,
(A/(A + h1)), agrees well with the normalized horizontal
velocity, Umax/V, calculated by the continuously stratified
numerical models (Figure 13). The last expression in (10)
represents the dependence of the maximum horizontal
velocity on the water depth in the two-layer model at
constant A. For a shelf with a slope of 1.47�, it is shown

in Figure 15 along with the corresponding numerical result
for continuous stratification. It can be concluded that
estimates with the two-layer formula (10) are quite satis-
factory.
[52] Thus the long-wave, two-layer approximation, albeit

having limited applicability, satisfactorily describes the
main characteristics of the real processes.
[53] A specific case of large ISW behavior occurs when at

some point the soliton approaches the critical amplitude,
Acr(x) = (h2 � h1)/2. As already mentioned, in this case the
conclusion that soliton length is independent of h2(x)
obviously fails. Different scenarios of soliton evolution
are in principle possible for ISW approaching the critical
amplitude. The first, realized at relatively steep bottom
slopes, is wave breaking with generation of turbulence, as
was described by Vlasenko and Hutter [2002a, 2002b].
Conditions of wave overturning are described by the break-
ing criterion in terms of the bottom inclination and wave
amplitude.
[54] The second scenario is an adiabatic transformation

when the soliton amplitude close to Acr(x), follows the depth
variation so that its length varies to conserve the total
energy. This scenario takes place at very low values of
the bottom inclination (of order 1 degree and less). Substi-
tuting the above expression for Acr into the total energy (9),
we see that the energy of a limiting soliton is proportional to

Wcr xð Þ / A2
cr þ h1Acr

� �
Lcr / Lcr h22 xð Þ � h21

� �
¼ const: ð11Þ

[55] The corresponding dependence of Lcr on the total
depth H, normalized by its value at H = 40 m is shown in
Figure 16. As expected, the soliton should expand upon
moving onshore (toward smaller depths). This agrees, at
least qualitatively, with the numerical results.
[56] Between these two extreme cases, wave breaking

and adiabatic adjustment, there also exists an intermediate
scenario of the ISW evolution, which can be called ‘‘dis-
persive.’’ In this regime a propagating solitary wave is not
destroyed (the wave is far from breaking conditions), but it
also does not exactly conserve the energy in the course of
propagation. If the breaking criterion is not satisfied but the
ISW does not have enough time for the complete adjust-
ment to the features of the relatively steep bottom, it
radiates a small portion of energy in the form of a dispersive
wave ‘‘tail,’’ as shown in Figure 17. Note that up to the time
moment t = t0 when the ISW reaches the isobath H = 55 m,

Figure 15. Numerically found dependence of maximum
velocity of fluid particles at the free surface at the soliton
centers, Umax, on water depth (dashed line). The solid line is
the function u1m(H) found from the two-layer model (see
equation (10).

Figure 16. Dependence of the critical amplitude of ISW
normalized by its value at H = 40 m on the water depth.
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it propagates adiabatically, adjusting its profile. Closer to
the shore, at H < 50 m, the ISW radiates a small secondary
wave packet. Note that this radiation does not significantly
change the soliton energy and does not prevent the forma-
tion of a critical soliton at the frontal side of the wave field.
The amplitude of the limiting ISW in the lower plot can be
estimated as 12.8 m, which is very close to the value Acr =
13.0 m, found from the two-layer model.

6. Conclusions

[57] 1. As demonstrated in this paper, strongly nonlinear
solitary waves can be adiabatically transformed when prop-
agating over a sloped bottom. In other words, a soliton
adjusts the parameters to those of a constant depth that it
locally experiences. This conclusion is valid for the majority
of realistic bottom inclinations considered in the present
paper. Moreover, strong solitons are somewhat more stable
in this respect than weakly nonlinear ones, because the
nonlinear steepening and dispersive broadening that are
balanced in a soliton are stronger factors when compared
with smooth bottom variations which, in this sense, turn to
be more significant for weak waves than for strong ones.
This adiabatic process typically ends after a soliton ampli-
tude approaches its limiting value, after which the adiabatic
evolution may not continue, and finally the breaking pro-
cess occurs that leads to the generation of turbulence.
[58] 2. Another problem considered here is whether the

simpler, long-wave, two-layer models can be applicable to
describe the adiabatic variations of solitons. In this connec-
tion, we derived the corresponding adiabatic formulas based
on soliton energy conservation, and compared them with

direct numerical simulation. The preliminary result is that
for a sharp pycnocline, these models are applicable roughly
within the same limits as for the steady solitons considered
earlier. Even for a relatively smooth stratification, soliton
parameters such as its propagation speed and the peak
particle velocity can be satisfactorily evaluated from the
simplified models.
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