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ABSTRACT 

THE RELATIONSHIP BETWEEN ACTIVE FAULTING AND FLUVIAL 

GEOMORPHOLOGY: A CASE STUDY IN THE GEDIZ GRABEN, TURKEY. 

 

                                    EMIKO JANE KENT 

 

Identifying tectonically active faults and quantifying rates of movement is 

a key challenge in the Earth Sciences, in addition to this the interactions 

between active faulting and the landscape, specifically involving the fluvial 

network, is a relatively new area of study. Previous work has highlighted the 

value of understanding how the fluvial network responds to active tectonics, 

showing that a comprehensive understanding of the dynamic relationship 

between fluvial geomorphology and active tectonics is an important next step in 

geological research.  

This study presents new information about the poorly constrained 

Quaternary tectonic history of the Gediz Graben, Turkey, providing the first 

quantification of rates of movement of the key fault array that presently 

controlling graben topography. The fluvial network has been investigated and 

the data has been used in order to add resolution to the tectonic history for the 

fault array, allowing for the quantification of post-linkage throw rates. The study 

then investigates the key controls on the behaviour of the fluvial network that 

cross the active topography building fault array in the Gediz Graben. 

This study shows that there has been a linkage event occurring between 

0.6 – 1 Ma, involving the three segments of the graben bounding fault array. 

The pre- and post-linkage throw rates are then extrapolated using data derived 

from the fluvial network, showing a faulting enhancement factor of 3 at the 

centre of the fault array, with the throw rate at the centre of the array predicted 
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to have increased from a pre-linkage rate of 0.6 ± 0.1 mm/yr to a rate of 2 ± 0.2 

mm/yr. This research provides evidence that the fluvial network can be used in 

conjunction with other types of evidence to provide a greater resolution tectonic 

history.  

Using both digital data and field studies this research presents an 

examination of the factors that influence the behaviour of bedrock rivers 

undergoing perturbation due to tectonics. Factors such as drainage area, 

tectonic throw rates and lithology have been investigated and the complicated 

interactions of these variables with the fluvial system have been quantified.  

This study shows that the bedrock rivers are a significant source of 

information about tectonics, but further work is needed to resolve quantitatively 

how various factors influence how rivers adjust to tectonic perturbation, in a 

variety of tectonic situations, in order to enable river to be used as a primary 

tool for deriving information about tectonics.  
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CHAPTER 1 

INTRODUCTION 

 

1.1: RATIONAL 

Bedrock rivers originate in high altitude areas and typically incise into the 

underlying bedrock, exerting a fundamental control on landscape evolution in 

mountain catchments. They can set hill slope gradients, erode the landscape, 

control mass-wasting and transport material away from areas of high elevation, 

all of which significantly impacts upon topographic relief (Howard and Kerby, 

1983; Howard et al., 1994; Tucker and Bras, 1998; Tucker and Whipple, 2002; 

Whittaker et al., 2007). Furthermore, bedrock rivers determine the distribution of 

mountain topographic relief and exhibit evidence of base level lowering through 

their longitudinal profiles (e.g. Tucker and Whipple, 2002). 

Technological advances mean that bedrock rivers have received 

significant attention during the last two decades (e.g. Howard and Kerby, 1983; 

Howard et al., 1994; Snyder et al., 2000; Tucker and Whipple, 2002; Finnegan 

et al., 2005; Whittaker et al., 2010; Attal et al., 2011; Whittaker, 2011). There 

has subsequently been a realisation that bedrock rivers respond to changes in 

tectonic boundary conditions, as well as lithological and climatic variations. 

Rivers can then propagate these changes in the boundary conditions to the 

surrounding landscape (Tucker and Whipple, 2002; Finnegan et al., 2005; 

Whittaker et al., 2007; Attal, 2008; Attal et al., 2011). For example, uplift of a 

mountain range by active normal faulting (or an increase in the uplift rate) can 

send a wave of incision up a bedrock river, due to an increase in the incision 

rate (Tucker and Whipple, 2002; Van Laningham et al., 2006; Harkins et al., 

2007; Whittaker et al., 2010; Whittaker, 2011).  
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Since the link between rivers and boundary conditions has been well 

constrained, work has focused on quantifying the impact of external factors 

(such as active faulting) upon rivers and the surrounding landscape, and 

consequently a number of landscape evolution models have been developed 

(Braun and Sambridge, 1997; Tucker et al., 2001; Willgoose et al., 1991; 

Hancock et al., 2002; Whipple and Tucker, 2002; Willgoose, 2005; Van De Wiel 

et al., 2007; Taylor-Perron and Fagherazzi, 2012). Fluvial-driven erosion 

features heavily in these models because a significant consideration of the 

models is to parameterise fluvial incision effectively. To achieve this goal it is 

necessary to be able to predict how channel slope, geometry and discharge 

control energy expenditure and shear stresses on the bed, and therefore 

modulate bedrock erosion in time and space (Lavé and Avouac 2001; Duvall et 

al. 2004; Whittaker et al., 2007b, Whittaker et al., 2008; Allan et al., 2012; 

Whittaker and Boulton, 2012; Mudd et al., 2014).  

Investigation of river incision can be approached through simplified fluvial 

erosion laws. These will ideally include a suitable treatment of channel 

geometry that impacts upon incisional capacity (Whittaker et al., 2007b, Attal et 

al., 2008). Stream power laws are the most frequently used type of fluvial 

erosion law and are integrated into landscape evolution models (see section 

3.5) and are commonly used to investigate river responses to tectonic 

perturbation (e.g. Duvall et al., 2004; Whipple, 2004; Finnegan et al., 2005). The 

detachment-limited (or bedrock) incision model (see Section 3.2.1) that is now 

often used to examine mountain rivers assumes that fluvial incision is 

proportional to stream power, which in turn is dependent upon the discharge 

and geometry of the river (Howard and Kerby, 1983; Seidl and Dietrich, 1992; 

Whittaker et al., 2007a; Attal et al., 2008; Attal et al., 2011). These studies 
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suggest that bedrock rivers can be adequately described by a stream power 

model in many circumstances.  

However, there have been studies where the results indicate that the 

modelling struggles to reproduce field measured river geometries. For example, 

Whittaker et al. (2007a) studied rivers within the Italian Apennines and found 

that traditionally accepted hydraulic scaling relationships used to predict 

channel width of bedrock rivers break down under tectonic perturbation. As a 

result actual stream power values were approximately four times higher than 

those predicted using accepted relationships.  

Furthermore, a number of studies have highlighted how bedrock lithology 

(e.g. Miller, 1991; Hancock et al., 1999; Stock and Montgomery, 1999; Crosby 

and Whipple, 2006; Cook et al., 2009; Whittaker and Boulton, 2012) and 

sediment flux in the river (Sklar and Dietrich, 1998; Sklar and Dietrich, 2001; 

Cook et al., 2014) may have an impact on how fast a river incises to counteract 

uplift. This effect could however be difficult to resolve as these factors are in 

practice bundled together in bedrock fluvial calculations of geometry and stream 

power (see Section 3.2.1).   

Therefore, this study addresses the issue of lithological impact on steam 

power.  As without a more complete understanding of how lithology affects 

fluvial modelling, it is unlikely that the modelling techniques will adequately 

predict values in areas where there is complex and varying lithology. This thesis 

aims to deal explicitly with the impact of the individual components of the 

bundled erodibility coefficient often used, and evaluate the potential impact on 

fluvial modelling of bedrock rivers of treating these variables in this way. This 

study has been made possible by the geology of the Gediz Graben located in 

the Western Anatolian Extensional Province (WAEP), Turkey. 
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The WAEP is an area of continental extension, much like the more 

studied Basin and Range Province of North America. Rates of extension across 

the graben systems in the WAEP have been estimated using GPS 

measurements (Barka and Reilinger, 1997; Aktuğ et al., 2009); however, 

historical and geological rates of fault motion are poorly constrained at best. 

Although the sedimentary sequence and history of graben evolution have been 

well documented (e.g. Çiftçi and Bozkurt, 2009; Oner and Dilek, 2011).  

The Gediz Graben was selected as the study area, over other well 

constrained locations, due to the range of bedrock lithologies exposed in the 

footwall block. The lithologic variation along the Gediz Graben means that the 

rivers that drain the Bozdağ Range incise through different lithologies and 

different amounts ‘hard’ to ‘soft’ lithologies along the range, from 100 – 4% 

harder lithologies. In most areas of the range it is usual for the rivers to incise 

though gneiss and schist in the upper reaches and clastic sediments further 

downstream. There is a significant difference in the hardness of these rock 

types, which is obvious upon cursory examination in the field. In some areas 

there are no clastic sediments in the catchment, and in some locations there is 

a far greater variation in the lithology, including travertine and quartzite. This 

provides an excellent opportunity to try examine the lesser-studied and more 

controversial aspects of incisional modelling such as lithological and sediment 

flux impacts on river geometry and stream powers.  

This study will make a significant contribution to the consideration of the 

ability of modelling to predict how bedrock rivers react to throw rate changes 

depending on additional influencing factors. It will then be possible to evaluate 

how well the current modelling allows for prediction of fluvial dynamics, which 

impact upon landscape development. This will be the first research to consider 
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fluvial responses to the active tectonics in the Gediz Graben, and will be one of 

a relatively small number of studies that examine predictions of river behaviour 

against field data. 

 

1.2: AIMS AND OBJECTIVES  

The contents of this thesis can be divided into four work packages that 

can be developed and written up for publication as individual papers, and 

additional discussions of the published theory. It is intended that the review of 

published literature will outline the state of research at this time, giving an 

overview of the data available for the Gediz Graben, and a generic 

understanding of fluvial networks in mountain ranges. Each of the subsequent 

chapters can stand alone but will also build progressively into a body of 

research examining the active of faulting of the Gediz Graben and how the 

knowledge of fluvial geomorphology can build upon existing tectonic knowledge.  

This study investigates how the Gediz rivers are responding to the 

tectonic activity, the role of additional factors such as lithology in the measured 

response of the rivers, and the implications of field data on the predictive 

methods commonly used in fluvial geomorphology. The research into the 

dynamic fluvial network is designed to initially add to the understanding of the 

active graben faulting and distribution of erosion throughout the graben-

bounding range. Then, significantly this study aims to further enhance the 

understanding and quantification of variables influencing river geometry, and 

evaluates the impact on the perceived ability of models to predict the behaviour 

of bedrock rivers.  

The overall objective of this study is to test the hypothesis that rivers 

respond to tectonic perturbation in more complex ways than standard fluvial 
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modelling can account for; and that these differences will be rooted in the 

dramatic simplification of the combined effects of climate, lithology and 

sediment flux, which are subsumed into one numerical parameter (K) in fluvial 

models of bedrock rivers. 

The aims of this thesis can therefore be broken down into five main 

areas:  

 

1. Quantify the rates of faulting in the Gediz Graben using published 

data geological and structural data. 

2.  Use knickpoint theory to add to the resolution of structurally derived 

information for the Gediz Graben.  

3. Consider how the rivers can be used to gather information about the 

faulting of the Gediz Graben when integrated with structural data. 

4. To investigate impact of faulting on the behaviour of the Gediz rivers 

using field study of 6 rivers.  

5. To consider the implications of not explicitly treating factors such as 

lithology and sediment flux on fluvial modelling of bedrock rivers using 

bedrock rivers within the Gediz Graben as an example.  

 

These overall aims will be met by the objectives set out for each of the research 

chapters.   

Chapters 2 and 3 provide overviews of existing data. Chapter 2 focuses on 

the geological history of the Gediz Graben, providing an overview of the timings 

and events that are key in the geological history of the western Turkish graben 

system. The chapter then goes on to review what is known about the present 
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day geology of the graben, giving a detailed description of faulting and lithology 

based on existing research.  

Chapter 3 reviews published research on fluvial networks and fluvial 

geomorphology, with a focus on bedrock rivers that incise through uplifting 

mountains. This chapter outlines what is known about how bedrock rivers incise 

through the landscape, particularly in response to tectonic perturbation.  It also 

examines how the behaviours of such rivers are modelled.  

Chapter 4 focuses on deriving long-term (2 myr) estimates of fault throw rate 

on the graben bounding fault array, as the tectonic history of the Gediz Graben 

margin is currently poorly constrained. Data on the sedimentary units that infill 

the graben, forming both syn- and post-tectonic sediment packages, have been 

combined with pre-existing structural mapping of the faulting in the graben 

margin and published seismic lines and boreholes to aid in the estimation of 

throw rates. These published studies are combined with topographic data 

derived from digital elevation models (DEM) to produce time averaged throw 

rates along the active graben bounding normal fault.  

 

Chapter 4 key objectives 

(i) Produce the first quantitative data for fault motion along the active 

graben bounding fault array in the form of time averaged throw rates.  

(ii) Make an assessment of the history of the active fault array 

determining whether or not the fault array has been linked. 

(iii) Evaluate seismic hazard for this region of Turkey.    

 

Chapter 5 presents a study of the terraces along the rivers and provides new 

optically stimulated luminescence dates (OSL) for a terrace level along three 
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rivers.  The data for the Gediz Graben terraces are used to quantify the rate of 

incision that can be compared to the time averaged throw rates in Chapter 4.  

 

Chapter 5 key objectives 

(i) Determine the timing of T4 terrace formation along the rivers of the Gediz 

Graben. 

(ii) Quantify incision rates on the rivers based upon OLS dating of terraces.  

 

Chapter 6 examines the behaviour of rivers crossing the active graben 

bounding fault array of the Gediz Graben using digital methods. This chapter 

examines to what extent the rivers can be used to reveal details about the 

active tectonics of the fault array. The long-profiles and morphology of the rivers 

are studied in order to identify knickpoints, which are used to analyse the 

linkage of the fault array and (by combing this information with throw rates from 

Chapter 4) provide a present day throw rate. The chapter then studies the rate 

of knickpoint retreat in terms of throw rate and drainage area and compares the 

Gediz data to other areas with similar published data.  

 

Chapter 6 key objectives 

(i) Extract river long-profiles from DEM data, identify explicitly whether the 

rivers are undergoing a transient response to active tectonics. 

(ii) Estimate the timing of the linkage event occurring on the graben 

bounding normal faults using river geomorphology. 

(iii) Quantify present day throw rates on the graben bounding normal fault 

using information from the rivers. 
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(iv) Evaluate to what extent the throw rates are affecting the migration of the 

knickpoints upstream.  

 

Chapter 7 presents a field investigation into six rivers draining into the Gediz 

Graben, focusing on the hydraulic geometry and stream powers within the 

studied rivers. This chapter examines whether the frequently used hydraulic 

scaling method can accurately predict the widths of the Gediz rivers and what 

effect this has on using accepted methods to predict stream powers for those 

rivers. The chapter then deals explicitly with the relative influences of lithology 

and sediment flux in relation to the variations between the rivers, considering 

the implications for not dealing with these variables independently when 

modelling of bedrock rivers. 

 

Chapter 7 key objectives 

(i) Quantify stream powers on rivers crossing the graben bounding fault 

using field data. 

(ii) Evaluate the predictive powers of models that calculate width and stream 

power downstream from digital elevation models using real (field) data. 

(iii) Evaluate the impact of lithology and sediment flux on the stream powers 

of the rivers, examine how important explicit treatment of these variables 

is to modelling and determine the accuracy of available prediction 

methods.  

 

Chapter 8 provides a synthesis of the data presented in the previous 

chapters, in order to address the overall project aims. The chapter will bring 
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together the different types of evidence to summarise what is now known about 

the geological evolution of the Gediz Graben. 

In addition, the chapter will evaluate the implications of the testing of 

common modelling practice on the ability of models to predict the behaviour of 

rivers and how this affects landscape modelling. The later parts of chapter 8 

suggest suitable directions for further work based upon the findings of this this 

thesis and presents overall conclusions. 
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CHAPTER 2 

GEOLOGICAL BACKGROUND OF THE GEDIZ GRABEN 

 

2.1: CHAPTER HIGHLIGHTS 

 The Gediz Graben was initiated as a half graben with a low-angle 

detachment in the south of the graben from16 Ma until 4 Ma. 

 Around 2.6-2 Ma the dominant style of faulting controlling graben 

topography switched to high-angle normal faulting, this type of faulting is 

still active.  

 The basement rocks of the Menderes Massive have been exhumed in 

the graben margins and in the southern margin are separated from syn-

tectonic graben fill by the low-angle detachment fault. 

 The high-angle normal faults displace the syn-tectonic sediments that are 

mainly conglomerates and sandstones of Miocene to Pleistocene age.  

2.2: INTRODUCTION 

 As documented in Chapter 1 this study into the dynamic relationship 

between tectonics and rivers uses the Gediz Graben as a natural laboratory. 

The Gediz Graben is located within the actively extending Western Anatolian 

Extensional Province (WAEP). This chapter serves to provide a background to 

the broad areas of interest when it comes to the expression of extensional 

tectonics. The chapter also includes a detailed geological synthesis of the 

structure and sedimentology of the Gediz Graben (the study location for this 

investigation) in order to document the pre-existing constraints on geological 

processes that make the Gediz Graben an ideal area to study the dynamic 
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landscape reaction to tectonics. This chapter reviews past studies and presents 

currently accepted ideas about the formation of the graben and its current 

stratigraphic and structural configuration.  

2.3: THE WESTERN ANATOLIAN EXTENSIONAL PROVINCE 

The WAEP is the location of the western Anatolian Graben systems 

important to this study. The landmass of Turkey is formed from several 

continental fragments detached from the African Plate during the Permo-

Triassic by rifting (Okay, 2008). These fragmented terrains were separated by 

the Tethys Ocean and Paratethys Sea during most of the Phanerozoic (Rögl, 

1999); relics of these oceans can be seen today as ophiolites and accretionary 

prisms scattered around the complex geology of Anatolia. The fragments were 

amalgamated and accreted onto the southern margin of the Eurasian Plate from 

the Late Cretaceous to the Neogene during the Alpine Orogeny (Yerli, 2005); 

resulting in suture zones in the Pontide and Tauride mountains (figure 2.1). 

 

Figure 2.1: A map showing the extent of the Alpine fold and thrust belt. Areas of 
Neogene extension are highlighted along with significant mountain ranges. The 
Western Anatolian Extensional Province (WAEP) is highlighted and the direction of 
crustal extrusion of western Turkey is highlighted. NAFZ – North Anatolian fault zone. 
EAFZ – East Anatolian fault zone. 
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The tensional tectonics in the WAEP results from the switching of the 

Late Cenozoic collisional phase, to an extensional tectonic regime (Livermore 

and Smith, 1985). As a result, since the early Neogene western Turkey has 

been experiencing significant tectonic stretching over the WAEP (Sengor & 

Yılmaz 1981; Bozkurt & Mittwede 2001; Okay et al. 2001; Dilek & Pavlides 

2006; Robertson & Mountrakis 2006; Ten Veen et al., 2009). The collisional 

forces led to anticlockwise extrusion of the Anatolian Plate to the west-south-

west along the North Anatolian Fault Zone (NAFZ, figure 2.2) at a rate of 

approximately 20 mm/yr (figure 2.1, Westaway, 1994). 

 

Figure 2.2: A map of the Aegean region showing the regional metamorphic massifs 
shaded in red. Sub-massifs of the Menders Massif: CSM – Central Menders Sub-
massif; NSM – Northern Menders Sub-massif; SSM – Southern Menders Sub-massif. 
Grabens: BMG –Büyük Menderes Graben; GG – Gediz Graben; KMG – Küçük 
Menderes Graben. Fault zones: IAS – Izmir-Ankara suture; NAFZ – North Anatolian 
fault zone. Adapted from (Bozkurt 2003; Ҫemen et al., 2006). 
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Figure 2.3: Tectonic data from the Gediz Graben A shows earthquakes above 
magnitude 5 occurring since 1950 in the Gediz Graben and surrounding area, three 
major earthquakes have occurred in the Gediz Graben (GG). Magnitude indicated by 
colour and size of dot. B shows the polygons used by Aktuğ et al. (2009), principle 
strain axes for each of the polygons are shown by arrows. 

 
The extension and associated active faulting is still ongoing in the region 

and has led to significant historic earthquakes (Guidoboni et al., 1994; 

Guidoboni and Comastri, 2005) (figure 2.3). In 17 AD the Lydia earthquake 

caused extensive damage to the region, the city of Sardis, within the Gediz 

a 

http://en.wikipedia.org/wiki/Sardis
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Graben, was the most affected and suffered damage from which it never truly 

recovered (Guidoboni et al., 1994; Guidoboni and Comastri, 2005). Available 

historical records document up to fifteen towns and cities within the WAEP that 

were destroyed or damaged by the 17 AD earthquake, indicating widespread 

risk associated with earthquakes.  The ancient city of Smyrna, near present day 

Izmir (figure 2.4), on the Aegean coast of Turkey was repeatedly destroyed by 

earthquakes (figure 2.3) including one in 2 AD and another in 178 AD 

(Guidoboni et al., 1994). Figure 2.5 shows the earthquakes above magnitude 5 

between 1990 and 2010, there is a significant cluster in the extending area in 

western Turkey. 

 

Figure 2.4: A map showing the regional geology of the extensional province in western 
Turkey. Grabens: BMG – Büyük Menderes Graben; GG – Gediz Graben; KMG – 
Küçük Menderes Graben. Locations mentioned in the text: A – Alaşehir; G – Gediz 
Village I – Izmir/Smyrna; S – Sardis. Adapted from Bozkurt, 2000; Bozkurt (2003); 
Ҫemen et al. (2006).  
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These recent and historical earthquakes illustrate that the WAEP is 

experiencing ongoing significant seismic activity (Bozkurt and Mittwede, 2005) 

(figure 2.5). As the region contains several towns and cities with populations 

between 50,000-150,000 this seismic hazard creates reasonable risk to the 

population centres as a result of active faulting.  

 

Figure 2.5: Earthquakes of above magnitude 5 from 1990 to 2010 in Turkey illustrating 
how the western Anatolian extensional province has a significant clustering of the 
earthquakes that have occurred. Adapted from imagery from the Turkey Ministry of 
Disaster and Emergency Management: earthquake department. 

 

A number of competing mechanisms have been proposed as the cause 

of multiple phases of regional metamorphism and extensional deformation in 

western Turkey. These are: (i) subduction rollback along the Aegean-Cyprian 

trench (Le Pichon and Angelier, 1979; Kissel and Laj, 1988; Meulenkamp et al., 

1988; Meulenkamp et al., 1994; Çiftçi and Bozkurt, 2009a); (ii) post orogenic 

collapse of over-thickened crust at the closure of the northern branch of the 

Neotethys (Dewey, 1988; Seyítoğlu and Scott, 1991; Seyítoğlu et al., 1992); (iii) 

westwards escape of the Anatolian micro-plate along the dextral North 

Study area 
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Anatolian fault zone and sinistral East Anatolian fault system (Dewey and 

Sengör, 1979), and (iv) difference in convergence rates along the Aegean-

Cyprian subduction zone (Doglioni et al., 2002; Çiftçi and Bozkurt, 2009a).  

Of these mechanisms subduction rollback is the most widely accepted 

cause of the extension that is occurring in the WAEP. The extension is therefore 

thought to be a result of the slab roll back (from the subduction zone) in the 

west and push (from the convergence in the east), which causes the Anatolian 

plate (on which western Turkey is situated) to move in a SW direction, bounded 

by significant strike-slip fault zones such as the North Anatolian fault zone 

(NAFZ) and the East Anatolian Fault Zone (EAFZ, figure 2.1) forming the 

northern and southern plate margins, respectively (Çiftçi and Bozkurt, 2009a). 

The extension is expressed over the western Turkish landscape as a series of 

generally E-W trending grabens that dissect the metamorphic Menderes Massif, 

a significant metamorphic core complex within the area, which has been 

exhumed by active normal faulting.  

Global Positioning System (GPS) studies yield insights into the rates of 

ongoing extension of the WAEP (e.g. Barka and Reilinger, 1997; Aktuğ et al., 

2009). For the WAEP, Barka and Reilinger (1997) estimated that Arabia is 

moving northwards with respect to the Eurasian Plate at 23 ± 1 mm/yr, 

10 mm/yr of which is taken up by shortening within the Caucasus Mountains. 

Mueller et al. (1997) provide a similar rate of 22 mm/yr for extension over 

Anatolia. Extension within Western Anatolia is taken up largely on E-W and 

WNW-ESE trending graben systems, including the Gediz Graben (McKenzie, 

1978) and the major normal faults that bound them.  

Aktuğ et al. (2009) have also produced a study of GPS measurements in 

westernmost Turkey by dividing the area into polygons of around 10 km2 and 
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calculating velocity gradients, assuming the gradient was constant within each 

polygon. Instead of providing one overall quantification (e.g. Barka and 

Reilinger, 1997) this method showed an increase in the rate of extension from 

east to west across the Anatolian Plateau and towards the Aegean coast, with 

the highest magnitude of extension occurring across the graben systems in 

western Turkey (Aktuğ et al., 2009). The available GPS data indicate 

10 ± 5 mm/yr of extension across the Gediz and Büyük Menderes grabens 

(Barka and Reilinger, 1997; Aktuğ et al., 2009), which is distributed between the 

two grabens. These data yield an opening rate of 6 mm/yr for the Büyük 

Menderes Graben and 4 mm/yr for the Gediz Graben (Aktuğ et al., 2009).  

 

2.3.1: THE MENDERES MASSIF 

The Menderes Massif (figure 2.2) is a major metamorphic core complex 

within the WAEP, which records evidence of multiple phases of regional 

metamorphism and deformation spanning the Precambrian to the Eocene 

(Şengör et al., 1984; Bozkurt and Oberhansli, 2001; Ҫemen et al., 2006; Okay, 

2008).  

 The Massif is bound by the Izmir-Ankara suture to the north, and by the 

Lycean Nappes (figure 2.4) to the south. The original studies of the 

metamorphic rocks within the WAEP divided them into cover and core 

sequences (e.g. Akkök, 1983). Subsequent studies have established however, 

that the Menderes Massif is composed of a core of Precambrian micaschists 

and gneiss intruded by metagranites in the latest Precambrian (Candan et al., 

2001), overlain by series of nappes that have undergone Palaeozoic to Lower 

Cenozoic metamorphism (Ҫemen et al., 2006; Oner and Dilek, 2011). From the 

lowest to the highest they are the Bayindir, the Bozdağ and Ҫine nappes.  
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In the early to middle Miocene, NNE-SSW-directed extension initiated 

two detachment faults with opposing dip directions; the Gediz detachment dips 

to the north, while the Büyük Menderes detachment dips to the south (figure 

2.3). It has been suggested that the faults which are now dipping at around 15° 

at the surface could have been higher angle, around 30°, when the faults were 

active (Busher et al. 2011). This arrangement of extensional faulting led to the 

formation of the east-west trending Neogene grabens subdividing the Menderes 

Massif into northern, central and southern sub-massifs (Iredale et al., 2013); 

these grabens are the Gediz Graben in the north, the central Küçük Menderes 

Graben and the Büyük Menderes Graben in the south (figures 2.2 and 2.4). 

Graben formation also generated accommodation space for the accumulation of 

sedimentary rock units of Neogene age to be deposited in the resulting basins, 

there are also significant areas of active deposition of Quaternary alluvium 

(Ҫiftҫi, 2007; Çiftçi and Bozkurt, 2009a; Oner and Dilek, 2011). 

The Northern Menderes sub-massif is located to the north east of the 

Gediz Graben, forming the northern bounding range of the graben. High grade 

metamorphic rocks have been dissected by NE-SW trending basins, the 

Gordes, Demirici, Selendi and Usak-Gure basins (Catlos and Ҫemen, 2005).  

The Central Menderes sub-massif (figures 2.2 and 2.4) is delineated by 

two grabens, the Gediz Graben forms its northern boundary and the Büyük 

Menderes Graben bounds it to the south (Hetzel et al., 1998). Both of these 

grabens have provided accommodation space for deposition of Neogene 

sediments and are the site of current deposition (Ҫiftҫi, 2007; Oner and Dilek, 

2011).  

The southern sub-massif of the Menderes basement rocks is bounded to 

the north by the Büyük Menderes Graben and associated Neogene to recent 
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sedimentation while in the south the Lycean nappes form the boundary with the 

high grade metamorphic rocks (figure 2.4) (Bozkurt and Satir, 2000; Iredale at 

al., 2013).  

The Gediz Graben, the location for this study, is situated in an area of 

active extensional tectonics and the faults bounding the graben are currently 

active (Ҫiftҫi, 2007; Oner and Dilek, 2011). Previous studies have mapped the 

area and so the geology of the graben has some significant constraints which 

allow the graben to be used to investigate the dynamic landscape reaction to 

tectonics (e.g Tahir, 1996; Koçyiğit et al., 1999 Lips et al., 2001; Ҫiftҫi, 2007; 

Çiftçi and Bozkurt, 2009; Oner and Dilek, 2011). In the sections below the 

characteristics of extensional tectonics that are exhibited within the Gediz 

Graben will be reviewed. Following this the faulting and stratigraphy within the 

graben will be documented as these details are of importance to the 

subsequent chapters.  

 

2.4: THE CHARACTERISTICS OF EXTENSIONAL TECTONICS 

Extensional tectonic regimes, such as that operating within the WAEP, 

result in significant normal faulting. As mentioned in section 2.3.1 with reference 

to the WAEP, the extensional tectonics can be expressed as a series of 

grabens bounded by normal faults, trending broadly parallel to the direction of 

the subduction zone, if the crust is strong enough taking into account 

weakening by heat flow associated with subduction (Holdsworth and Turner, 

2002). The basin and range topography expressed through normal faulting is 

typical of land based extensional tectonics (Twiss and Moores, 1992). 

 Within basin and range topographies faulting tends to occur commonly 

as moderate to high-angle normal faults although an increasing number of low 
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to very-low angle normal faults, some even approaching horizontal have been 

studied (Twiss and Moores, 1992). These faults serve to accommodate the 

extension occurring across the area (Collettini, 2011), emplacing younger rocks 

on top of older rocks leading to missing stratigraphy in vertical section. The low-

angle faults, also known as detachment faults tend to separate the relatively 

unfaulted uplifted footwall, which can be often formed from basement rocks, and 

the faulted hanging wall undergoing subsidence (Twiss and Moores, 1992). 

Within the hanging wall of the low-angle normal fault the often high-angle 

faulting can form sets of imbricated faults, roughly parallel to each other (Twiss 

and Moores, 1992).  

 

2.4.1: FOOTWALL UPLIFT AND HANGING WALL SUBSIDENCE 

ASSOCIATED WITH NORMAL FAULTING 

Research on footwall uplift and hanging wall subsidence associated with 

normal faults suggests that ratios of footwall uplift to hanging wall subsidence 

may vary significantly between areas (e.g. Papanikolaou et al., 2010). 

Papanikolaou et al., (2010) found a ratio of 1:3 footwall uplift to hanging wall 

subsidence in Lazio-Abruzzo, Italy, using differential SAR Interferometry and 

GPS recordings from nearby field GPS stations. The 1:3 ratio falls within the 

value range presented by Stein and Barientos (1985) who stated that footwall 

throw should be a ratio between 1:1 and 1:5 over both coseismic and longer-

term motions on a fault; in these ratios footwall uplift accounts for varying 

proportion of the total throw on the fault. Longer term motions in the Teton 

Range, North America (Byrd et al., 1994) and coseismic motions at the time of 

the Borah Peak earthquake (Stein et al., 1988) have yielded ratios of 1:2. On 
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the Xylokastro Fault in the Gulf of Corinth ratios of between 1:2.7 and 1:3.5 

have been determined using plate models by Armijo et al. (1996). 

 

2.4.2: PROPERTIES OF FAULTING WITHIN EXTENSIONAL TECTONIC 

REGIMES 

Evidence suggests that normal faults are often planar and have dips 

varying between 30-60° (Jackson, 1987; Jackson and White, 1989). Collettini 

(2011) states that frictional fault reactivation theory predicts that slip on low-

angle normal faults is unlikely, which is supported by the absence of moderate 

to large earthquakes of normal faults with dips of less than 30°. This view is 

supported by Twiss and Moores (1992) who state that there is no direct 

evidence for low-angle normal faulting in the brittle upper crust, although Crone 

and Harding (1984) show that in seismic profiles of Utah there are low-angle 

faults at depths of 2-3 km.  

Low-angle normal faults or detachments have been recognised around 

the world associated with the exposure of metamorphic core complexes and 

within graben settings (Wernicke et al., 1987). This presents a paradox, as 

there is a lack of modern day active low-angle normal faults but there is 

evidence for displacement along these features. This paradox might be 

addressed by the work of Jackson and White (1989), who suggest that normal 

faults and faulted block must rotate about a horizontal axis over time, or a large 

gravity anomaly would be produced and the Moho discontinuity depressed. The 

implications of this theory are that presently inactive low-angle detachment 

faults would have rotated to low-angles where slip is not possible from actively 

slipping geometries.  
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The Gulf of Corinth has been used to illustrate how it is possible for 

surface expressed high-angle normal faults to decrease in dip with depth, i.e. 

listric (Jackson, 1987). There are additional areas that support the ability of 

normal faults to become listric with depth, for example the Gediz Graben, where 

the 1969 Alaşehir and 1970 Gediz earthquake are thought to have originated on 

a low angle normal fault at depth and been expressed at the surface along 

moderate to high-angle normal faults (Eyidogan and Jackson, 1985). 

 

 

Figure 2.6: growth of an idealised fault array of N segments of equal length (L1) that 
link to form a total length. Segment boundaries are indicated by SB. (L2). A) The 
displacement profiles of the faults before and after interaction and linkage, d2 indicates 
the displacement after re-adjustment to interaction is complete. C shows the 
displacement as a function of time on the central fault in the array, time1 is the time 
prior to significant interaction, while time2 indicates the period of time over which slip 
rates vary along the array, linkage occurs during this time. Adapted from Cowie and 
Roberts (2001). 
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2.4.3: ALONG STRIKE TRENDS IN NORMAL FAULT ARRAYS 

Normal faults bounding uplifted graben margins tend to occur in 

segments that combine to form a fault array. The normal fault array does not 

usually form a straight line, but has an overall along strike curved or sinuous 

surface trace, formed by the segments that can be either relatively straight or 

curved  (Twiss and Moores, 1992). Normal fault segments have a distinctive 

pattern of throw value along strike as illustrated by work undertaken by Cowie 

and Roberts (2001). The typical distribution of throw along strike of a fault is that 

the greatest amount of slip and throw occur at the centre of the segment, with 

values decreasing to zero at the tips of the fault.  

Cowie and Roberts (2001) present data showing the scaling relationships 

of slip and throw along strike on faults, demonstrating that slip and throw rates 

and therefore total amounts of slip and throw tend to be higher on faults located 

centrally in an array (figure 2.6). The work of Cowie and Roberts (2001) is 

supported by Roberts and Michetti (2004) who undertook a study of the Lazio-

Abruzzo Apennines, Italy. Roberts and Michetti (2004) determined the location 

of non-linked faults by drawing a number of cross-sections across faults to 

determine where throw was reduced to zero. Their research shows that there 

can be two situations; the first, where a fault not interacting with other segments 

in an array gives a throw profile that is zero at the tips and reaches a maximum 

in the centre (figure 2.6). If, however the faults are interacting or linked the 

second situation occurs, where the greatest rate of throw, and accumulation of 

throw, shifts to the centre of the new linked length (figure 2.6). In this situation 

the previously existing, but now linked fault tips undergo an increase in throw 

rate to non-zero throw values.    
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2.4.4: INTERACTIONS OVER TIME IN NORMAL FAULT ARRAYS 

Peacock (2002) presents the possible stages of fault evolution and 

interaction over time as documented in many other studies (e.g. Peacock and 

Sanderson, 1994; Childs et al., 1995; Gawthorp et al., 1997; Nicol et al., 1997; 

Cowie, 1998; Young-Seog and Sanderson, 2005). Stage one (figure 2.7) is non-

interaction of fault strands even if they are overlapping. Stage two (figure 2.7) is 

the initiation of some degree of interaction between fault segments leading to 

tiled beds between the segments that form a relay ramp (Peacock and 

Sanderson, 1994). Stage three (figure 2.7) involves the breaking of the relay 

ramp as the faults increase interaction (Childs et al., 1995) after stage 3 the 

relay ramp is destroyed as the faults become linked. Peacock and Sanderson 

(1994) state that the fault at stage four should be irregular and have an along 

strike bend.  

 

 

  

Figure 2.7: Shows three stages of fault interaction and linkage between two segments 
A and B. The development of displacement along strike of the linked fault array is 
shown. From Young-Seog and Sanderson, (2005). 
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During the time of interaction and linkage development the displacement on the 

fault increases in order to readjust to the new length of the fault (figures 2.6 and 

2,7), During the period of interaction and linkage the whole fault zone re-adjusts 

displacement (d) to the rapid increase in length (L) until the scaling relationship 

d = γL is re-established. Normal faults therefore grow in a way that leads to 

significant variations in slip and throw along strike and through time. 

 

2.5: STYLES OF FAULTING WITHIN THE GEDIZ GRABEN 

The natural laboratory for this study is the WAEP, and specifically the 

Gediz Graben, a prominent expression of extensional tectonics within the 

WAEP. The topography of the Gediz Graben has been created by faulting that 

has been ongoing for about 16 Myr (Çiftçi, 2007; Buscher et al., 2013). Previous 

research has mapped the styles of faulting within the area so as to further 

understand the evolution of the graben and the present day situation in terms of 

seismic hazards.  

Previous studies suggest at least three (Paton, 1992; Çiftçi and Bozkurt, 

2009a, 2009b; Çiftçi and Bozkurt, 2010) and up to four styles (Oner and Dilek, 

2011) of faulting within the Gediz Graben (figure 2.8). All the faults documented 

by the studies were considered to have been active during the graben evolution 

including: (i) the main low-angle detachment (Çiftçi and Bozkurt, 2009a; 2009b; 

Oner and Dilek, 2011); (ii) high-angle normal faults (Çiftçi and Bozkurt, 2009a; 

2009b; Oner and Dilek, 2011); (iii) low-angle normal faults (Çiftçi and Bozkurt, 

2009a; 2009b; Oner and Dilek, 2011), and (iv) oblique-slip scissor faults (Oner 

and Dilek, 2011). 
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2.5.1: LOW-ANGLE FAULTING 

The Gediz Grabens southern margin is bounded by a low-angle normal 

fault with a dip of 15°-28° (figures 2.9), (Çiftçi, 2007; Oner and Dilek, 2011) that 

dips to the north and has a general E-W strike, although locally the fault varies 

in its strike (Çiftçi and Bozkurt, 2009a; Oner and Dilek, 2011). This normal fault 

has been variably named the Gediz detachment (Lips et al., 2001), the Karadut 

fault (Tahir, 1996) or the Ҫamköy detachment (Koçyiğit et al., 1999). This study 

will use the naming convention of Lips et al., (2001), calling the low-angle 

normal fault the Gediz Detachment.  

 The detachment fault separates the sedimentary graben fill and the 

metamorphic basement of the Menderes Massif, which is often exposed as a 

well-defined surface (figure 2.8) on the metamorphic rocks. The fault has been 

observed by Oner and Dilek (2011) to have a corrugated appearance over a 

lengthscale of 10’s of m, which they propose are the result of NNE-SSW 

trending fold structures within the Menderes Massif basement.  

 
Figure 2.8: A field photograph of the detachment surface that can be seen as a regular 
slope of approximately 15° which is pervasive across much of the higher elevations of 
the range in the central and eastern thirds. The syn-tectonic sedimentary rocks are 
faulted against the basement rocks of the Menders Massif by the shallow dipping 
detachment fault. 

 

Localised low-angle normal faults can be found in both the sedimentary 

graben fill and the metamorphic rocks of the Menderes Massif where they 

appear to have fairly similar dips and orientations to the detachment (Oner and 
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Dilek, 2011). These low-angle normal faults are best seen within the valleys of 

rivers flowing from south to north as this exposes cross sectional views and 

good exposures of the sedimentary units. The faults usually strike ENE-WSW 

with dips ranging from 10° to 25°; the faults are brittle, near surface structures 

with small amounts of offset (Cohen et al., 1995; Bozkurt and Sözbilir, 2004; 

Çiftçi and Bozkurt, 2009a; Oner and Dilek, 2011). These localised low-angle 

faults suggest that low-angle faulting did not occur solely on the regional-scale 

Gediz Detachment.  

 

Figure 2.9: Digital Elevation Model (DEM) imagery of the Bozdağ Range. The main 
regional faults have been mapped onto 30m ASTER imagery and the map shows the 
low-angle normal fault (Gediz Detachment) is shown as a black line while the high-
angle normal faults are shown in solid black lines. The Graben bounding normal fault is 
shown in a bold solid line while older high angle normal faults are shown as thinner 
lines. The graben bounding normal fault is segmented into three segments, the 
Turgultlu, Salihli and Alaşehir segments with their corresponding lengths stated. 

 

2.5.2: HIGH-ANGLE NORMAL FAULTING 

High-angle normal faults occur as major faults within the southern graben 

margin as well as the graben bounding normal fault (figure 2.4). Major high-

angle faults within the graben generally strike WNW-ESE (Çiftçi and Bozkurt, 

2009a) and have disturbed both the syn-tectonic sedimentary fill of the graben 
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and the metamorphic basement rocks of the Menderes Massif (Koçyiğit et al., 

1999). When the southern graben margin is observed in plan view (figure 2.9), 

the major high-angle normal faults appear to be curvilinear and segmented 

along strike (Çiftçi and Bozkurt, 2007; 2009a). The major regional high-angle 

normal faults are some of the most prominent structural features within the 

graben and bound the present topographic graben (figure 2.9). The major 

regional high angle normal faults (figure 2.9) are of particular interest to this 

study; the faults are laterally extensive, spanning the length of the whole margin 

in two parallel arrays and so form the major high-angle controls on graben 

topography. The outer high-angle normal fault (labelled OHANF in figure 2.8) 

array is furthest from the present topographic graben and predominantly 

separates the lower and middle Miocene strata from the Pliocene-Pleistocene 

formations (figures 2.10 and 2.11). 

 

Figure 2.10: A selection of field photographs that illustrate the distinct characteristics of 
the clastic sedimentary rock formations that fill the Gediz Graben. A, shows the 
sedimentary unit succession from Miocene Alaşehir and Caltılık Formations (purple 
and red coloured rocks) at high elevations to the Plio-Pleistocene Gediz and Kaletepe 
Formations (orange and yellow rocks) at lower elevations within the graben. The Plio-
Pleistocene sediments are faulted against the quaternary alluvium within the graben 
valley by the graben bounding fault. B shows the significant horizons within the  
Kaletepe Formation which is well exposed to the west of the graben. C shows the red 
colouring of the Caltılık Formation. D shows the Salihli Member of the Gediz Formation 
with the typical yellow to grey colouring and a darker organic rich layer typical of the 
formation. 

A 

B C D 
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The graben-bounding normal fault (GBNF, figure 2.4) array marks the boundary 

of the modern topographic graben, and juxtaposes the current topographic 

escarpment with the Quaternary alluvium in the graben axis (Koçyiğit et al., 

1999; Lips et al., 2001; Çiftçi and Bozkurt, 2009a, 2009b). The graben-bounding 

fault normal fault array separates the present Quaternary alluvium of the 

topographic graben from the Pliocene formations and marks the start of the 

topographic relief (figure 2.11). 

 
 
Figure 2.11: A generalised geological map of the Gediz Graben showing the lithologies 
that make up the Bozdağ Range and syn-tectonic sedimentary graben fill. The 
locations of the low-angle detachment and high-angle normal faults are also shown 
compiled from Şenel and Aydal, (2002); Çiftçi and Bozkurt, (2009a and 2009b); Oner 
and Dilek, (2011). 

 

The fault is segmented along its length (figure 2.9) and for the purposes 

of this study the individual segments have been given names related to the 

major towns in the area: the Turgutlu strand to the west (41 km long), the 

central Salihli Segment (43 km long) and the Alaşehir Segment in the east (36 

km in length). Oner and Dilek (2011) observed surface offset Quaternary alluvial 
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fans along the range front indicating that all three of the segments of the graben 

bounding fault have been active sub-recent times. This is supported by the 

seismic activity that is recorded on the faults, such as the 6.9 and 7.0 

magnitude earthquakes that occurred within the Gediz Graben in 1969 and 

1970 respectively (Arapat and Bingol, 1969; Mitchell, 1976). 

In addition, there are additional associated small-scale synthetic and 

antithetic faults (Çiftçi and Bozkurt, 2009a). These are localised normal faults, 

with moderate to high-angle northwards dip, and additional localised normal 

faults that dip southwards. The southwards dipping faults tend to dip at higher 

angles (65-75°) than the secondary synthetic normal faults, at 60°-65° (Oner 

and Dilek, 2011).  

Oner and Dilek (2011) in addition to the previous sets of faults also 

mapped oblique ‘scissor’, or hinge faults striking NNE-SSW and dipping around 

65°. They reported seeing them most readily within stream valleys striking 

parallel to the valley. The scissor faults are unreported by other researchers, 

and this study failed to find convincing evidence for these structures. However, 

Oner and Dilek (2011) claimed the scissor faults are best preserved and most 

observable within the crystalline rock of the detachment footwall.  

 

2.5.3: MODELS FOR THE DEVELOPMENT OF THE GEDIZ GRABEN 

THROUGH TIME AND THE RELATIONSHIP BETWEEN HIGH AND LOW-

ANGLE NORMAL FAULTING 

Previous work on the faulting within the Gediz graben has focused on the 

mapping and classification of the faults and how they interact with the 

sedimentology (e.g. Tahir, 1996; Koçyiğit et al., 1999; Çiftçi, 2007; Çiftçi and 

Bozkurt, 2009a, 2009b; Çiftçi and Bozkurt, 2010; Oner and Dilek, 2011). Until 
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recently attempts had not been made to quantify rates of movement on the 

faults so therefore little quantitative data such as slip rates and age constrains 

on faulting exists for the faulting with the Gediz Graben. However, qualitative 

studies have added to the knowledge of faulting by assessing cross-cutting 

relationships (Çiftçi and Bozkurt, 2009a, 2009b; Oner and Dilek, 2011).  

It is widely accepted that the development of the Gediz Graben took 

place in two phases (e.g.; Koҫyiğit et al., 1999; Oner and Dilek, 2011; Busher et 

al., 2013). Originally Koҫyiğit et al. (1999) proposed a two stage formation for 

the graben based upon the sedimentary evidence of two contrasting graben fill 

sediment packages, which they state show differences in levels of deformation 

and lithology. Furthermore, Koҫyiğit et al. (1999) document the age of the 

observed transition as Plio-Quaternary (around 2.6 Ma) from paleontological 

evidence. More recently Buscher et al. (2013) developed the model of graben 

formation dynamics based on structural evidence and differences in styles of 

faulting. Prior to 2.6 Ma, extension was accommodated on the low-angle 

detachment fault resulting in the exhumation of the high-grade metamorphic 

Menderes Massif (Buscher et al., 2013). Between 2.6 and 2 Ma significant high-

angle faulting developed along the length of the graben, and from 2 Ma high-

angle normal faulting becoming dominant resulting in the present day graben. 

Both the studies of Buscher et al. (2013) and Koҫyiğit et al. (1999) infer a similar 

age for the transition from sedimentary and structural evidence, so 2.6-2 Ma will 

be used as the timing of the transition from phase 1, low-angle normal faulting 

to phase 2, high-angle normal faulting.   

Buscher et al. (2013) used radiometric dating, in the form of He ages to 

constrain rates of rock exhumation for the Bozdağ Range and slip rates along 

the Gediz detachment fault. Their Apatite and zircon (U–Th)/He and fission-
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track ages produced exhumation rates of 0.6–2 km Ma−1 beneath the Gediz 

detachment. Slip rates for the shallow-dipping Gediz detachment fault were 

determined to be 4.3 (+3.0 -1.2) mm/yr using zircon (U–Th)/He ages of c. 4–2 

Ma in the footwall of the fault. The also produced 10Be-based catchment-wide 

erosion rates of 80-180 mm/kyr in nine catchments. Buscher et al. (2013) 

concluded that tectonic denudation caused by low-angle detachment faulting 

rather than erosion is the dominant process in rock exhumation in the area. 

They constrain the age of initiation of the low-angle normal fault as 16 Ma and 

determined that this structure was active until 2 Ma.  

The slip rates Buscher et al. (2013) produced is valid only the period of 

2 – 4 myr, and suggests that this shows that the low-angle detachment 

underwent an acceleration in slip before becoming inactive. Using this rate 

Buscher et al., (2013) were then able to quantify vertical exhumation of the 

Bozdağ block assuming that the dip of the fault has remained at the present day 

dip of 15°. The resulting exhumation rate was calculated as 1.1 km/myr, which 

they state is a minimum that may be increased if the angle of the detachment 

fault has been steeper in the past. 

The study by Buscher et al. (2013) also proposes that there was a 

transition in the style of faulting from extension taken up on the low-angle 

detachment fault into dominantly high-angle graben bounding normal faulting 

between 2.5 and 2 Ma. This in combination with the radiometric dating of 

Buscher et al. (2013)  gives a possible post early-Pleistocene age for the 

initiation of the current graben bounding high-angle normal fault as the newest 

units are uplifted and back tilted compared to their equivalent in the graben fill. 

This evidence suggests that initiation of the graben may have occurred during 
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the Miocene but the modern graben configuration and much of its development 

has occurred during the Quaternary.  

Eyidogan and Jackson (1985) proposed that the high-angle normal faults 

persist at depth until they link with the underlying low-angle detachment fault, 

forming a listric fault pattern (figure 2.12). The linking of the normal fault at 

depth has been suggested due to the 1969 Alaşehir earthquake which had a 

focal depth of 6 km and occurred on a fault plane that dips at approximately 32° 

to the NNE (Eydogan and Jackson, 1985). This places the focus of the 

earthquake on a deep, shallowly dipping fault, which is inferred to be the deeper 

extent of the detachment fault that now connects with the newer high-angle 

normal faults, which are actively uplifting the mountain rage in the footwalls. The 

research of Buscher et al. (2013) supports Eydogan and Jackson’s (1985) 

linkage model. In addition they argue that a segment of the low-angle normal 

fault which underlies the high-angle normal fault is still active, while the low- 

 

 

Figure 2.12: A schematic cross-section of the Gediz Graben that presents the  
hypothesis of  Eydogan and Jackson’s (1985) proposal that the high-angle normal 
faults persist at depth until they link with the underlying low-angle detachment fault 
forming a listric fault (figure adapted from Koçyigit et al., 1999 [faults shown in red]).  
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angle fault in the footwall of the high-angle normal faulting is inactive. Additional 

research has supported this arrangement of faulting, showing the high-angle 

normal faults in the graben margin linking at depth with the low-angle fault 

(Çiftçi and Bozkurt, 2010; Çiftçi, 2007). 

 

2.6: STRATIGRAPHY AND SEDIMENTOLOGY OF THE GEDIZ GRABEN 

The higher elevation areas of the Bozdağ Range are composed of the 

igneous and metamorphic rocks of the Menderes Massif while extension and 

high-angle normal faulting has been accompanied by sedimentation within the 

graben producing the current geology and configuration of the Gediz Graben 

(figure 2.12). The sedimentary history of the Gediz Graben (figure 2.13) has 

been studied over the past 30 years, resulting in an understanding of the 

depositional nature of both the syn- and post-tectonic sediment packages as 

well as facilitating age constraint of the stratigraphical units (e.g. İztan and 

Yazman, 1991; Cohen et al., 1995; Koçyiğit et al., 1999; Sarıca, 2000; Seyitoğlu 

et al., 2002; Purvis and Robertson, 2005; Ciftci, 2007; Ciftci and Bozkurt, 2009b; 

Oner and Dilek, 2011). This knowledge of the stratigraphy and sedimentology of 

the Gediz Graben (figure 2.13) is important because it provides a framework on 

which to base studies of both the active normal faulting and the rivers that incise 

into the sedimentary and metamorphic units. Palaeontological evidence 

provides the age constraints needed to work out the rates of movement on the 

faults cutting the sediments. Knowledge of the sedimentary character of the 

graben fill sediments is also useful in the study of the rivers draining the 

mountains. Lithology of the rocks that a rivers incises through can have an 
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impact upon how the river responds to changes in the active tectonics of an 

area (e.g. Miller, 1991).  

 

Figure 2.13: Unit descriptions and names for the syn- and post-tectonic sedimentary 
formations in the Gediz Graben.  
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Alluvial and fluvial sediments dominate the lithologies deposited within 

the Gediz Graben with units of Miocene and Plio-Pleistocene age forming the 

syn- and post-tectonic stratigraphy. The stratigraphic nomenclature for the 

graben fill sediments have varied in the literature, a stratigraphic correlation of 

the unit names used in past studies has been provided in figure 2.14. Previous 

researchers (İztan and Yazman, 1991; Cohen et al., 1995; Edinger, 1996; 

Seyitoğlu and Scott, 1996; Seyitoğlu and Benda, 1998; Koçyiğit et al., 1999; 

Sarıca, 2000; Seyitoğlu et al., 2002; Purvis and Robertson, 2005; Ciftci, 2007; 

Ciftci and Bozkurt, 2009; Oner and Dilek, 2011) have varied in their 

classification of sedimentary units, some particular units are referred to 

throughout the research as formations while other sedimentary units have been 

classified as both formations and formation members depending on the naming 

conventions used. Throughout this study the stratigraphic nomenclature of Ciftci 

and Bozkurt (2009b), Ciftci (2007) and Yilmaz et al. (2000) has been 

preferentially adopted as this has been most comprehensively mapped and 

described.  

The majority of evidence for the age of the sedimentary infill of the 

graben comes from the fossil content of specific rock units, in particular 

sporomorph associations. Sporomorphs are the fossilised evidence of pollen 

and spores from plants, which can give a good age indication, and associations 

of sporomorphs can be used to date rock units in which they are found as the 

collection of plants are specific to a particular area and time. Figure 2.14 

includes notes the paleontological and palynological evidence for the ages of 

the rock units found within the Gediz Graben compiled from a number of studies 

(e.g. Benda, 1971; Benda and Meulenkamp, 1979; Seyitoğlu and Benda, 1998;  
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Figure 2.14: A correlation of the naming conventions used for the syn- and post-

tectonic sedimentary units of the Gediz Graben. Numbers represent the type of age 

constrain used for a particular rock unit in a variety of studies. 
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Ediger et al., 1996; Tahir, 1996; Purvis and Robertson, 2005; Richardson 

Bunbury, 1996; Sarica, 2000;  Koҫyiğit et al., 1999). 

 

2.6.1: THE ALAŞEHIR FORMATION 

The sedimentary basin fill of the Gediz Graben begins with the Alaşehir 

Formation which lies directly upon the detachment surface and basement rocks 

in the higher elevations ([Ağırbaş, 2006] figure 2.13) and dips at between 50-

60°. It is separated into two members, the upper Zeytinҫayı and lower  Evrenli 

members (Çiftçi, 2007; Çiftçi and Bozkurt, 2009b).  

The Alaşehir Formation has been dated by Edinger et al. (1996) as early 

to middle Miocene in age after palynological investigation identified an Eskihisar 

sporomorph association (Benda, 1971). The Eskihirsar sporomorph found within 

the rocks of the formation, and isotopic dating, particularly Ar-Ar dating on 

volcanic rocks on the northern margin allowed researchers to constrain the age 

of the Alaşehir Formation to 20-14 Ma (Edinger, 1996; Benda et al., 1974; 

Benda and Meulenkamp, 1979; Seyitoğlu and Benda, 1998; Richardson-

Bunbury, 1996).  

 The Evrenli Member is older and is composed of red coloured shales, 

which alternate with a succession of conglomerates, sandstones and 

mudstones. These are overlain by the Zeytinҫayı Member, composed of 

limestones and clastic sediments (Seyitoğlu et al., 2002; Çiftçi, 2007). 

Observations of the oldest outcrops of the Evrenli Member in the Gediz 

Graben have described the formation as consisting of thick bedded, clast-

supported, conglomerates with pebble to cobble-sized clasts and finely 

laminated sandstones and shales that exhibit a characteristic grey to beige 

weathered colour in field observation (Çiftçi and Bozkurt, 2009b; Oner and 
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Dilek, 2011). Within the conglomerate are found sub-rounded to sub-angular 

clasts including marbles, quartzite, granite, granite-gneiss and mica schist 

derived from the footwall of the detachment fault (Çiftçi, 2007; Cohen et al., 

1995). The sandstones are observed to be well-sorted and well-bedded. 

Outcrop thickness of the Evrenli Member has been estimated as a maximum of 

~600 m, and outcrops only in the vicinity of Alaşehir (Oner and Dilek, 2011). 

The thickness of the Zeytinҫayı Member does not appear to be more 

than ~200 m. The Zeytinҫayı Member changes from greyish conglomerates in 

the lowermost layers to red-coloured conglomerates conformably above. The 

lower greyish conglomerates are formed from angular- to sub-angular clasts 

that sit conformably on top of the Evrenli Member. Overlying the lowermost 

conglomerate are fine-grained clayey limestones and red-coloured claystones. 

The uppermost Zeytinҫayı Member consists of red-coloured, well-sorted and 

well-bedded sandstones, which alternate with well-cemented, poorly-sorted 

conglomerates (Yazman and İztan, 1990; Çiftçi and Bozkurt, 2008; Oner and 

Dilek, 2011). 

The Evrenli and Zeytinҫayı members are interpreted as being derived 

from a lacustrine-fan delta depositional environment (Oner and Dilek, 2011). 

Oner and Dilek (2011) propose that the rocks of the Evrenli and Zeytinҫayı 

members were deposited in fault-bounded short lived playa lakes that were 

developed in the early stages of the supra-detachment basement evolution in 

the early Miocene.  

 

2.6.2: THE CALTILIK FORMATION 

The clastic Caltılık Formation generally conformably overlies the Alaşehir 

Formation (figure 2.13), although in isolated areas Oner and Dilek (2011) 
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observed the Acidere Formation lying directly on top of the low-angle 

detachment surface. Eskihisar sporomorph associations from the lower Caltılık 

Formation (figure 2.14) have yielded middle to late Miocene ages  of 11-14 Ma 

for the age of the Formation (Seyitoğlu and Scott, 1996), while palynological 

data have also yielded Middle Miocene ages for formation. 

 At its lowermost level the Caltılık Formation is a characteristically red-

coloured, medium to thickly-bedded and poorly-sorted conglomerate (Oner and 

Dilek, 2011; Oner, 2012). Clasts within the conglomerate are angular to sub-

angular, pebble to boulder-sized metamorphic rocks; these are interspersed 

with well-sorted layers of sandstone. The conglomerate beds alternate with 

sandstone layers that are well-bedded and medium-grained with a muddy 

matrix (Tahir, 1996; Çiftçi and Bozkurt, 2009b).  

Within the sandstone the clasts are principally quartzite, micaschists, 

gneiss, granites and some cataclastic rocks of coarse sand to coarse gravel 

grain size. Within the conglomerates of the Caltılık Formation sandstone and 

mudstone lenses can be observed, these contain visible bedding with cross-

bedding structures. Upper parts of the Acidere Formation are composed of well-

sorted, well-consolidated, clast-supported conglomerate with well-developed 

pebble imbrications and graded bedding (Tahir, 1996; Oner, 2012).  

The predominant direction of dip, which varies between moderate to 

steep (35°-55°), in the conglomeritic rocks is S-SW with occasional northerly dip 

direction (Purvis and Robertson, 2004). The thickness of the Caltılık Formation 

is around 500 m in the vicinity of the village of Degirmendere to the west of the 

graben and in the east of the graben it is about 400 m thick (Oner and Dilek, 

2011; Oner, 2012). 
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 The characteristics of the Caltılık Formation are broadly indicative of an 

alluvial and fluvial depositional system (Ingersoll and Busby, 1995). Within the 

overall alluvial and fluvial depositional architecture there is alternation of 

moderate- to well-sorted conglomerates with massive and thick-bedded pebble 

and boulder conglomerates, which suggests significant fluctuations in the 

energy level within the fluvial system that produced the sediments (Oner and 

Dilek, 2011; Oner, 2012). Oner and Dilek (2011) have interpreted the unsorted, 

coarse-grained conglomerate as debris flows resulting from major faulting 

events resulting in additional uplift of the Menderes Massif metamorphic 

basement rocks. 

 

2.6.3 THE GEDIZ FORMATION 

The Gediz Formation of Çiftçi and Bozkurt (2009b) has been separated 

into two members, the Salihli and Hamamdere Formation (figure 2.13). The 

Hamamdere Member lies conformably on top of, although occasionally locally 

has a faulted contact with, the Caltılık Formation. The Gediz Formation has 

been dated by Ediger et al. (1996) propose a middle Miocene or late Miocene 

age based on the Kızılhisar (11–5 Ma) sporomorph association (Kayseri et al. 

2008). In addition, the Gediz Formation has been dated using gastropod fauna 

including Gyraulus arminienis Jekelius, Melanosis (Melanopsis) decollate 

Stoliczka, Pyrgula dacica Jekelius, Pyrgula sp. and Pseudomnicola sp. (Tahir, 

1996; Purvis and Robertson, 2005), that yielded an age of late Miocene (ca. 11 

Ma) near the base of the formation.   

The Salihli Member of the Gediz Formation is considered to be Plio-

Pleistocene in age due to the documentation of plant fragments, pollen, 

gastropod and rare mammalian fossils within the middle stratigraphic sections 
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of the, these give an age of late Pliocene (~3 Ma) for the base of the Salihli 

Member (Sarica, 2000).  

The Hamamdere is dominantly composed of layers of light grey and light 

red conglomerates, which alternate throughout the section (Oner and Dilek, 

2011). At the base and in lower sections the Hamamdere Member is made up 

of conglomerate with cobble and pebble-sized clasts well-cemented in a fine 

sand to silt size, detrital muscovite rich matrix. Stratigraphically higher in the unit 

the conglomerate alternates with less resistant sandstone and sandstones with 

pebbles, which contain clasts of the underlying Caltılık Formation. The source 

rocks of the clasts within the Göbekli Member are in the majority metamorphic 

core complex with some granite and cataclastic rocks (Oner and Dilek, 2011). 

The Hamamdere Member generally has a moderate to shallow dip to the S, SW 

and SE but can be found to be dipping to the north in places (Oner and Dilek, 

2011).  

The Salihli Member is documented by Oner and Dilek as lying on top of 

the Göbekli Member of the Gediz Formation along the southern graben margin 

in all but the westernmost localities where it has a faulted contact with the lower 

to middle Miocene Caltılık Formation (Çiftçi and Bozkurt, 2009b; Oner and 

Dilek, 2011). This formation member is yellowish to brown in colour and 

consists mainly of poorly consolidated conglomerates, sandstones and 

mudstones. In the lower stratigraphic layers around the contact between the 

Hamamdere Member and the Salihli Member there are layers of mud, silt and 

sandstone that are interspersed with organic-rich layers such as bituminous 

coal and lignite and organic-rich muds (Oner and Dilek, 2011).  

The Salihli Member typically exhibits a coarsening upwards sequence 

that ends in a combination of sandstones with micaceous matrix and dominant 
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conglomerates at the contact with the overlying Kaletepe Formation (Çiftçi, 

2007). The source rocks of the clasts found in the Salihli Member vary a little 

from those of the older formations, mainly being derived from granite, quartzite, 

gneiss and schist, with significantly less cataclastic clasts than the lower 

formations of Miocene age (Oner and Dilek, 2011). Inclusion of clasts from older 

sedimentary formations can be seen most readily in the eastern part of the 

study area where red coloured, pebble-sized clasts of the Caltılık Formation and 

Hamamdere Member of the Salihli Formations can be seen within the Salihli 

Member of the Gediz Formation (Çiftçi and Bozkurt, 2009b). The maximum 

thickness of the Salihli Member is documented at 250 m by Oner and Dilek 

(2011). 

The Hamamdere Member has been interpreted as being fluvially derived 

due to the sedimentary features within the unit (Çiftçi, 2007; Oner and Dilek, 

2011;). The alternation between conglomerates and sandstones in the upper 

stratigraphic layers are indicative of alluvial fan formation.  The sedimentology 

of the Salihli Member is indicative of deposition in a fluviolacustrine setting. The 

coal and organic-rich layers in the lower stratigraphic levels suggest deposition 

in playa lake environments, inferred to have been of limited size as the lignite 

and clay-rich layers are laterally discontinuous along strike (Oner and Dilek, 

2011). 

2.6.4: THE KALETEPE FORMATION 

The Pleistocene Kaletepe Formation conformably lies over the Gediz 

Formation (figure 2.13), and is exposed extensively along southern range of the 

Gediz Graben (İztan and Yazman, 1990). Kaletepe Formation dips at around 

30-35° with occasional higher dipping areas.  
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It is composed of massive to poorly-bedded, clast-supported, and 

yellowish coloured conglomerate (Oner and Dilek, 2011). The conglomerate 

alternates with sand to siltstone layers. The Kaletepe Formation is 

predominantly a coarse-grained formation with fewer fine-grained rocks than in 

the Yenipazar Formation. The clasts found within the Kaletepe Formation are 

composed of granite, gneiss, schists (Oner and Dilek, 2011; Çiftçi and Bozkurt, 

2009b). The absolute thickness of the Kaletepe Formation is not known but the 

minimum thickness is considered to be around 500m (Oner and Dilek, 2011).  

The upwards coarsening of the Kaletepe Formation, as well as 

documented rapid changes in clast lithologies between stratigraphic layers, is 

indicative of an alluvial fan depositional environment (Oner and Dilek, 2011; 

İztan and Yazman, 1990). Oner and Dilek (2011) suggest that rapid loading of 

the coarse-grained fan and debris flow sediments of the Kaletepe Formation 

into the basin may have caused burial and subsequent alteration of material 

deposited in the pre-existing playa lakes resulting in the lignite horizons within 

the underlying Yenipazar Member of the Gediz Formation.  

 

2.6.5: BINTEPELER FORMATION 

The Pleistocene Bintepeler Formation (figure 2.13) is the youngest 

formation within the Gediz Graben and it unconformably overlies the older 

Kaletepe Formation (Oner and Dilek, 2011; Çiftçi and Bozkurt, 2009b). The 

formation dips at between 30-40°. Field observations of Cervus elapus (Red 

Deer) and Bos primigenius (an extinct type of cattle) teeth and jaw bones within 

the units overlying the Gediz Formation, may suggest an even younger Late 

Pleistocene age (ca. 900-800 Ka) for the upper Bintepeler Formation.  
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 The formation is composed of poorly lithified clasts of pebble to cobble 

size and is a light red colour. The Bintepeler Formation can be seen forming 

relict uplifted terraces and alluvial fans along the margins of the graben. Within 

the fine-grained layers of the Bintepeler Formation cross-bedding and graded-

bedding are observable. The Bintepeler Formation has an estimated thickness 

of around 350 m to the east of the graben and 250 m in the western extent of 

the graben (Oner and Dilek, 2011). These types of sediments are typical of 

alternating alluvial fan and fluvial systems. 

 

2.7: SUMMARY  

Overall the is a reasonably wide range of information known about the 

geology of the Gediz Graben. The locations of the fault have been studied in 

depth, although the work has not focused on constraining throw rates. 

Sedimentation within the Gediz Graben has been ongoing for around 20 Ma, 

depositing a number of sedimentary units which have been well studied but 

naming conventions have been varied through studies. The Alaşehir Formation 

has bracketing ages of 20-14 Ma, overlain by the Caltılık Formation of 14-11 

Ma. The Caltılık Formation is overlain by the Gediz Formation that may be 14-5 

Ma at it base and as young as 2 Ma at the top of the formation. These 

formations are in turn overlain by the Kaletepe Formation and Bintepeler 

Formation which have a Pliocene to Pleistocene age possibly ranging from 2.5-

0.7 Ma or possibly younger. 
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CHAPTER 3 

A REVIEW OF PAST RESEARCH INTO FLUVIAL GEOMORPHOLOGY AND 

TECTONICS 

 

3.1: INTRODUCTION 

There is a dynamic relationship between rivers and landscape evolution 

that has been a significant and developing area of tectonic and geomorphic 

research over the last twenty years (e.g. Seidl & Dietrich, 1992; Whipple and 

Tucker, 1999; Snyder et al., 2000; Burbank and Anderson, 2001; Tucker and 

Whipple, 2002; Whipple and Tucker 2002; Whipple, 2004; Wobus et al., 2006b; 

Crosby and Whipple, 2006; Attal et al., 2011; Whittaker and Boulton, 2012 and 

others). What is now known about the relationship between the landscape, and 

the rivers that interact with it, is that rivers do respond in recognised ways to a 

variety of external and boundary conditions; one such process is tectonic 

perturbation and changes in base level. In this chapter a review of the literature 

surrounding bedrock river incision and studies that link tectonics to knickpoint 

retreat is first introduced. Based on this review, a quantitative analysis of the 

tectonic geomorphology of river systems draining the southern margin of the 

tectonically active Gediz Graben is presented in Chapters 6 and 7, with the aim 

of using our growing understanding of river response to tectonics to explore the 

tectonic and geomorphic history of the Gediz Graben.  Specifically, how the 

landscape of this region has recorded the history of high-angle active faulting 

since the late Pliocene (2-2.6 Ma) will be investigated. 
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3.2: STUDIES OF FLUVIAL GEOMORPHOLOGY 

River channels are of particular significance in landscape evolution as 

rivers fundamentally control the shape of the landscape in areas that have not 

experienced significant glacial activity. Rivers intensely dissect the landscape, 

eroding significant valley systems into the pre-existing topography. By forming a 

fluvial network the rivers determine the location and frequency of landsliding 

and other gravitational transport processes (e.g. Howard and Kerby, 1983; 

Howard et al., 1994; Tucker and Bras, 1998; Snyder et al., 2000; Willet and 

Brandon 2002; Whipple and Tucker, 2002; Tucker and Whipple, 2002; Attal et 

al., 2011). Fluvial systems are also major agents of erosion and transportation, 

especially in upland areas where the rivers incise into the bedrock. In these 

upland areas the fluvial processes are directly coupled with the hill slope 

processes, acting as a primary influence on mass-wasting processes and 

hillslope gradients. All of this means that rivers act as primary redistributors of 

sediment through the landscape. Moreover, rivers are patently sensitive to both 

tectonic and climatic variables through their discharge and channel gradient. As 

a result of their sensitivity to tectonic and climatic signals, and their integration 

with hillslope processes, the fluvial system is able to transmit the effects of 

changes in these boundary conditions to the surrounding landscape (Lavé and 

Avouac, 2001; Burbank and Anderson, 2001; Whipple and Tucker, 2002; 

Tucker and Whipple, 2002; Whipple, 2004; Attal et al., 2011; Whittaker and 

Boulton, 2012). Moreover, rivers should reflect tectonically induced uplift, 

changes in denudation and dynamic erosional processes through their 

geometry.  

  Given that rivers do respond in known ways to changes in boundary 

conditions (Howard and Kerby, 1983; Seidl and Dietrich, 1992; Tucker and 
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Whipple, 2002; Whipple and Tucker, 2002; Whittaker et al., 2008) they can be 

considered an archive of past events (Wobus et al., 2006a). In this way rivers 

prove to be a valuable tool in the analysis of past events if the temporal 

evolution of river systems and the landscape can be established. Therefore, a 

key challenge in tectonic geomorphology is to determine how rapidly landscape 

responds to changes in tectonic boundary conditions, such as climate change, 

tectonic perturbation or sediment erosion and transport, because this would 

control how long fluvial landscapes might “record” tectonics over time (e.g. 

Crosby and Whipple, 2006; Whittaker and Boulton, 2012).  

To address these questions effectively, it is necessary to be able to 

quantify the rate of fluvial erosion over geologically meaningful timescales (i.e. 

105 or 106 years). Consequently over the last 30 years a number of fluvial 

erosion ‘laws’ have been formulated, (e.g. Howard and Kerby, 1983; Seidl and 

Dietrich, 1992;; Howard et al., 1994; Sklar and Dietrich, 1998; Tucker and 

Whipple, 2002; Whipple and Tucker, 2002; Attal et al., 2008). Despite their 

differences, they share a common goal of describing the long-term rate of 

channel erosion as a function of important variables such as catchment size 

and channel gradient. They are intentionally simplistic because it is not possible 

to know the detailed hydrodynamics of individual river channels over million 

year periods (Howard and Kerby, 1983; Willgoose et al., 1991; Sklar and 

Dietrich, 1998; Carretier and Lucazeau, 2005). A number of these fluvial erosion 

laws have subsequently been incorporated into landscape evolution models 

(e.g. Willgoose et al.,1991; Howard,1994; Tucker and Slingerland, 1994; Braun 

and Sambridge, 1997; Coulthard, 2001; Tucker and Bras, 2000; Carretier and 

Lucazeau, 2005), which may also include hillslope erosion laws and may take 

account of additional factors such as lithology and landsliding, and may be 
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driven by tectonic or climatic variables (Densmore et al., 1998; Lancaster et al., 

2001; Fletcher et al., 2006; Cohen et al., 2009). 

 

3.2.1: MODELLING LANDSCAPE EVOLUTION   

Geomorphology aims to explain the origins, diversity and terrain of the 

Earth’s surface and the ability to do this is based upon; 1) quantitative 

qualification of the terrain, 2) the improving theory describing the dynamic 

modification of topography and the variables that control it (Tucker and 

Hancock, 2010). The theories of landscape evolution have advanced in 

sophistication from the 1980’s to the present day (Tucker et al., 2001; Tucker 

and Hancock, 2010). Typically, the equations governing landscape evolution 

are complex and cannot often be solved using closed form and require a 

numerical solution method, resulting in the current understanding of a 

landscape evolution ‘model’ incorporating both the underlying theory and the 

computer programs that calculate solutions to the equations (Tucker and 

Hancock, 2010). Landscape evolution models contain a variety of components, 

these include; a statement of continuity of mass, geomorphic transport functions 

to describe the generation and movement of sediment and solutes on hillslopes, 

a representation of runoff generation and its routing across the landscape and 

geomorphic transport functions for erosion and transport by water and water-

sediment mixtures (Dietrich et al., 2003). They also contain numerical methods 

to iterate forward in time to obtain approximate solutions to the governing 

equations (Tucker and Hancock, 2010). These variables allow for consideration 

of the initial and boundary conditions on the system, which include climate 

forcing, base level (tectonic) controls and substrate (lithology). As these 
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landscape evolution models are partly dependent on fluvial processes it is vital 

to quantitatively understand these aspects of the models.  

Howard (1980; 1987; 1998) and Howard et al. (1994) defined five types 

of channels, with primary emphasis on bed morphology: (1) live bed sand 

alluvial; (2) live bed gravel alluvial; (3) threshold gravel alluvial; (4) mixed 

bedrock-alluvial; and (5) bedrock. These channel types are usually categorised 

into three dominant categories, which have specific fluvial erosion laws; 

transport-limited, detachment-limited and hybrid. The transport-limited (alluvial) 

channel model types (1 and 2), are characterised by a system in which the 

channel gradient is set principally by sediment flux.  In such rivers sediment flux 

is equal to, or greater than, the capacity of the river to transport it. Models 4 and 

5 are detachment-limited (bedrock); the incision into bedrock is modelled as a 

function of the shear stress on the bed (Howard and Kerby, 1983; Whipple and 

Tucker, 1999), total stream power (Seidl & Dietrich, 1992) or unit stream power 

(Whipple and Tucker, 2002). The intermediate category (3) is a hybrid of the 

two end members.  

Stream power (Ω) is defined as the rate of energy dissipation on the 

banks and bed of a river for a unit of downstream length. Specific stream power 

per unit area (ω), which is measured in W/m2 is particularly considered to 

influence fluvial processes such as erosion, transport and deposition (Sklar and 

Dietrich, 1998; Knighton, 1999). Stream power is determined by the power of 

water which is determined by the work of water (Ww) over a distance 

(ΔZ) (Knighton, 1998): 

 

WW = F∆Z = VρWg∆Z   (eq. 3.1) 

Where: F = force 



70 
 

  ΔZ = distance 

  ρw = density of water 

  g = gravitational acceleration (9.81 m/s2) 

  V = volume of water 

 

The power, Pw, exerted by the water, is the work done over a given time (Δt) 

 

PW = WW ∆t⁄ = VρWg∆Z ∆t⁄    (eq. 3.2) 

 

 

The discharge (Q) of a river is the volume of water over a given time, which can 

be substituted in the equation: 

 

 Pw = ρWgQ∆Z   (eq. 3.3) 

  

 Consequently, if we consider the power of water per length of channel 

(Δx), we obtain the total stream power Ω (e.g. Seidl and Dietrich, 1992): 

 

Ω = PW ∆x⁄ = ρW gQ∆Z ∆x⁄    (eq. 3.4) 

 

as a change in distance over length can be considered to be the channel slope 

(S): 

 

Ω = ρWgQS    (eq. 3.5) 
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Because channels of different geometrical size can have identical total stream 

powers, stream power per unit area, ω, is often thought to best model fluvial 

processes, such as erosion, transport and deposition (e.g. Whipple and Tucker, 

1999; Montgomery and Gran, 2001). Unit stream power can be considered the 

intensity of stream power over a unit area of the channel bed (Acb), a factor 

which can be related to the channel width (W) and unit length, ∆x  (Attal et al., 

2008): 

 

ω = PW Acb⁄ = ρWgQ∆Z W∆x⁄    (eq. 3.6) 

 

Again substituting in the slope component: 

 

ω = ρWg(Q W⁄ )S   (eq. 3.7) 

 

Consequently, the unit stream power exerted by a channel is directly 

proportional to its discharge and its gradient, but inversely proportional to the 

channel width.  

Equation 3.7 forms the basis for most detachment-limited “erosion laws”. 

(Howard and Kerby, 1983; Seidl & Dietrich, 1992; Whipple and Tucker, 2002; 

Whittaker et al., 2008). This standard model contains three main assumptions: 

1) The rate of long-term stream incision is linearly proportional to stream 

power per unit area, or the local streambed shear stress, which can be 

derived in an analogous way to the equations given above (Tucker and 

Whipple, 2002). 
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2) The ability of the river to detach parts of the river bed is a limiting factor 

and the sediment load carried in the channel can be neglected (Whipple, 

2004). 

3) Catchment drainage area, A, which is easy to calculate, can be used as 

a proxy for catchment discharge, which is often unknown.  In this case, A 

= dQy, where d is a constant that depends on climate, and y is an 

exponent that is often assumed to be 1 (Whipple and Tucker, 2002). 

4) Channel width, where unconstrained, can be considered a function of 

discharge or drainage area (i.e. W ~cQb, where c is constant that varies 

in different settings and b is approximately a half) (Whittaker et al., 

2007a). 

These assumptions and derivations have given rise to what is known as the 

“stream power” family of erosion laws. The erosion law (Whipple and Tucker, 

1999) can be expressed as a power law function of drainage area (A) and the 

slope of the channel (S):  

 

E = KAmSn   (eq. 3.8) 

 

In this case, m and n are parameters that are either empirically found, or are 

derived from theoretical considerations, and K (the dimensional coefficient of 

erosion) incorporates many variables such as climate, lithology, channel 

geometry and sediment supply (Hack, 1957; Seidl & Dietrich, 1992; Whipple 

and Tucker, 1999; Snyder et al., 2000; Tucker and Whipple, 2002). The values 

chosen to represent the constants m and n vary depending on the stream 

power law used to derive them. If the rate of incision is proportional to unit 

stream power, ω, and assumptions 2-4, above, are correct, then m = 0.5 and n 
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= 1 (e.g. Whipple and Tucker, 1999; Montgomery and Gran, 2001). If erosion is 

modelled as a power law function of total stream power (Ω) m = 1 and n = 1 

(Seidl and Dietrich, 1992), and using fluvial shear stress m = 1/3 and n = 2/3 

(Howard and Kerby, 1983). 

In contrast alluvial rivers possess channels that typically have channel 

beds and banks covered in a layer of transportable sediment. In alluvial 

systems incision rate is determined by the capacity of the river to transport 

sediment downstream (Tucker and Whipple, 2002). As the channel of alluvial 

rivers are covered in a layer of sediment it is hard for the river to erode into 

bedrock; bedrock erosion will occur when more sediment is transported 

downstream from the area in question than the sediment load from upstream, 

incision occurs and the gradient of the river is adjusted to optimise sediment 

transport (Tucker and Bras, 1998). Incision into bedrock can occur within 

transport-limited river channels but it is limited in extent; most incision will be 

into sediment not bedrock, and is controlled by the sediment carrying capacity 

of the river (Howard, 1998). A sediment transport law has been produced for 

transport-limited (alluvial) rivers (Willgoose et al., 1991; Whipple and Tucker, 

2002). In a transport-limited river the incision rate is proportional to the 

downstream divergence of the sediment flux, which in reality is represented by 

a 3D derivative of vectors. A transport-limited sediment transport law can be 

expressed in similar way to a stream power law and gives the rate of sediment 

transport (Qs) as a result of a given relationship between slope (S) and the peak 

discharge per unit width (q) and the sediment transport coefficient, Ks, and the 

empirically derived constants m and n with values greater than 0 (as in equation 

3.9).  
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The peak sediment discharge per unit area can be calculated using 

channel width (W) and discharge (Q) in the relationship q = Q/W (e.g. Willgoose 

et al., 1991; Montgomeray and Foufoula-Georgiou, 1993; Whipple and Tucker, 

2002): 

 

QS = KS(Q W⁄ )mSn = KSqmSn   (eq. 3.9) 

 

Hybrid rivers lie somewhere on the continuum from the alluvial to bedrock 

end member models. These rivers are generally characterised by a 

combination, or alternation between, the extreme of a pure bedrock channel 

and environments of alluvial sediment deposition. As this model contains 

influences from both end-members of the model continuum it takes into account 

both sediment transport capacity and resistance to detachment of the bedrock 

material. The hybrid model is representative of an entire continuum of 

characterised river channels, and could represent the transition from one 

extreme of the spectrum to the other (Sklar and Dietrich, 1998). In such hybrid 

models, the effects of sediment flux on erosion rates are typically incorporated 

into a traditional stream power erosion law by including a function, f(Qs),that 

depends on the precise sediment transport and erosional dynamics (equation 

3.10). (Sklar and Dietrich, 2004; Cowie et al., 2008): This can be expressed as: 

 

E = dz dt = f(Qs)KAmSn⁄    (eq. 3.10) 

 

When f(Qs) is approximately constant, this hybrid law behaves identically to a 

standard detachment-limited erosion law. 
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3.3: STEADY-STATE 

A steady-state landscape is an important concept in geomorphology with 

fundamental work done by Hack (1960). Hack (1960) discussed landscapes in 

dynamic equilibrium and established the idea that landscape morphology could 

remain fixed in space if the rate of rock uplift was equal to the rate of erosion. In 

short landscapes can erode at the same rate, but the interaction of uplift and 

erosion could then maintain a steady-state topography. One method for 

assessing landscape equilibrium is through the river long profile (figures 3.1 and 

3.2), which plots the distance downstream at points along the rivers path 

against the bed elevation at that point. This provides a visual method of 

determining features of interest in studies of river perturbation. In steady-state 

situations concave river profiles reflect a downstream decrease in slope that 

compensates for the increased discharge of rivers (Montgomery and Gran, 

2001). By contrast, in a transient landscape, uplift rate and erosion rate are not 

equal; for example, uplift rate could outpace erosion due to ongoing-movement 

on faults. 

Research in different field areas around the globe has shown  that  true 

steady-state conditions can be problematic to identify because of the transient 

nature of many geomorphic features that occur within the landscape due to 

conditions such as lithology or base level change (e.g., Snyder et al., 2000; 

Goldrick and Bishop, 2007; Whittaker et al., 2007). Consequently, some 

researchers have suggested that despite the theory of a steady state 

landscape, it may be practically unachievable due to the ability of conditions 

such as climate and tectonics to undergo rapid change (e.g. Snyder et al., 2000; 

Whipple, 2001; Whipple, 2004). Nethertheless, steady-state conditions have 

been clearly indicated in a few environments (Castillo-Rodríguez, 2011), being 



76 
 

documented in areas such as Taiwan (Whipple, 2001), and the Southern Alps in 

New Zealand (Crosby and Whipple, 2006). In other areas, whether the 

landscape is in steady state is subject to greater debate. For example 

Montgomery and Gran (2001) interpreted the Oregon Coastal Range, USA, as 

being in steady-state, yet Van Laningham et al., (2006) state that they have 

identified transient rivers, highlighting how methods can impact on conclusions 

when used differently or slightly varying criteria are used. In other areas such as 

Tibet it has been determined that the situation is nearly steady-state (e.g. 

Ouimet, 2007; Ouimet et al., 2009) but it cannot be concluded with conviction 

that steady state conditions have been reached. 

Rivers modulate landscape responses to transient conditions and 

determine the shape and tempo of landscape evolution (Whipple and Tucker, 

1999). The first studies into landscapes in steady state and rivers were carried 

out in alluvial rivers (e.g. Willgoose et al., 1991) with later research beginning to 

focus on bedrock rivers (e.g. Whipple and Tucker, 1999).  

 As there is a dynamic relationship between the fluvial erosion rate and 

the rate of uplift within tectonically active areas it is possible to define the rate of 

change of the river bed elevation (dz/dt) as the difference between the rate of 

uplift (U) and the rate of erosion (E): 

 

dz dt = U − E⁄     (eq. 3.11) 

 

Where uplift rate is equal to erosion rate the rate of change of the river 

bed elevation, which can be expressed in the form of any erosion model, is 

equal to 0 (dz/dt = 0). As a result of this under steady-state conditions the 
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different erosion models predict concave up river profiles (Whipple and Tucker, 

2002). 

As in tectonically active areas, uplift rate competes with erosion rate 

relative to a given base level so the rate of change in elevation of the river bed 

(dz/dt) can be expressed in the form of any erosion law (equations 3.11 and 

3.12), containing the variables drainage area (A) and the slope of the channel 

(S), in which m and n are two empirically derived constants and K is a 

dimensional coefficient of erosion: 

 

dz dt = U − KAm⁄ Sn   (eq. 3.12) 

 

Under steady-state conditions dz/dt = 0 so the uplift and the erosion rate are the 

same, and since erosion rate is hypothesised to be equal to stream power, the 

uplift rate should be equal to the stream power.  

 

U =  KAmSn    so   E = KAmSn     (eq. 3.13) 

 

If U and K are uniform along a channel, the exponent m and n control the 

concavity of the river, with m/n known as the concavity index (θ), which 

modulates the rate of change of a river channel gradient with increasing 

drainage area. If channel slope is expressed as a function of drainage area, as 

derived above, then the coefficient in equation. 3.14, (U/K)1/n, controls the 

steepness of the river channel and is known as the steepness index (ks). Both θ 

and ks can be extracted from DEMs by linear regression on a log-log slope-area 

graph (Sklar and Dietrich, 1998; Snyder et al., 2000; Kirby et al., 2003). Taking 

into account θ and ks slope can be expressed as:  
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U K =⁄ AmSn  

U K⁄ ∗ 1 Am⁄ = Sn 

Sn = U KAS⁄  

                   S = (U K⁄ )1 n⁄ A−m n⁄  

S = ksA−θ   (eq. 3.14) 

 

Typically values for θ lie between 0.4 and 0.7 but both larger and smaller 

values have been occasionally measured (e.g. Sklar and Dietrich, 1998; Snyder 

et al., 2000; Kirby et al., 2003; Boulton and Whittaker, 2009). A value of 0.5 for 

θ is considered to be reliable as values of around 0.5 seem to be typical in 

many locations (Hack, 1957; Sklar and Dietrich, 1998; Stock and Montgomery, 

1999; Snyder et al. 2000; Whittaker et al., 2007). For example Snyder et al. 

(2000) studied rivers under steady-state conditions in northern California, where 

θ was relatively uniform giving and average value of 0.43. Whittaker et al. 

(2007) show that concavities exert a fundamental control on the long profiles of 

rivers because channel elevation against distance downstream (L) is a power-

law function of drainage area (L≈Ka0.5 as shown by Hack [1957]). As a result of 

this most channels should produce a concave up profile in topographic steady-

state, on the condition that K is uniform through the catchment (Whittaker et al., 

2007). 

 Due to the uniformity of concave up profiles in steady-state conditions 

with unvarying K, research focuses on studying variation from the accepted 

standard concavity values and varying trends in steepness index, which 

equation 3.14 shows is related to uplift rate, U.  
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Figure 3.1: Figure showing a study of 21 river channels in the Mendocino triple 
junction area, California. Concavity and steepness index were compared to uplift rate, 
which is superimposed on the upper section of the graph as a grey line. Snyder et al. 
(2000) show that the steepness index is higher in areas of higher uplift rate, suggesting 
that steepness index is influenced significantly by the rate of uplift on faults that the 
rivers cross. From Snyder et al. (2000). 

 

Snyder et al. (2000) studied rivers under steady-state conditions located 

in northern California, where they have been influenced by the movements of 

the Mendocino triple junction (figure 3.1). In this area the uplift rate varies 

between 0.5 and 4 mm/yr and the steepness index varies in line with the 

changes in uplift rate. Kirby et al. (2003) also determined that the areas of 

highest uplift rate had higher steepness indices, while ruling out significant 

effects from sediment flux, precipitation and drainage area. This study also 
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ruled out significant effects from lithology, which is important because rock 

resistance to erosion is also subsumed into steepness index via the parameter 

K, leaving uplift as the isolated main influence on steepness index. These 

results show that it is clear that steepness index includes information on uplift. 

Kirby and Whipple (2001) also investigated how channels respond to variations 

in uplift rate, after theoretically predicting results. They suggested that when 

channels flow towards areas of increased uplift, the concavity should be 

reduced, which when flowing towards areas of reduced uplift the concavity 

should increase. They then sought to test their predictions in the Siwaliks Hills, 

Nepal. A suggested weakness of their predictions is that concavity values do 

not appear to vary significantly between areas of varying uplift rate and those 

with uniform uplift rates (Kirby et al., 2003), although steepness index does. 

Another approach to steepness index analysis is the use of a normalised 

steepness index (ksn) (Duvall et al., 2004; Wobus et al., 2006a; Whittaker et al., 

2007), which suggests that a reference concavity can be set, at around 0.5 

based upon the uniformity of measurements from case studies. This technique 

can be used to examine which normalised steepness index values are typical 

for a region, because otherwise concavity and (un-normalised) steepness index 

co-vary (e.g. Hurtrez at al., 1999; Snyder et al., 2000). This is illustrated by 

Wobus et al. (2006a), who recognised a linear relationship between the 

normalised steepness index and uplift rates in Nepal. However, normalised 

steepness indices are very sensitive to the value of the reference concavity 

chosen in the analysis (Whittaker et al., 2007). Additionally, the assumption that 

steepness index implicitly reveals trends in uplift rates relies on the assumption 

that the landscape is in topographic steady-state and this may well not be the 

case in tectonically active areas (Whittaker et al., 2007). 
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In fact much research has endeavoured to investigate river channels that 

are being perturbed by tectonics (e.g. Tucker and Whipple, 2002; Whipple and 

Tucker, 2002; Crosby and Whipple, 2006; Attal et al., 2008; Whittaker et al., 

2008; Boulton and Whittaker 2009; Whittaker and Boulton, 2012). A key result 

of these studies is to show that river channels in detachment-limited rivers can 

be expected to show variation from the ‘equilibrium’ concave-up profile when 

encountering an increase in uplift rate. In these circumstances the definition of 

equilibrium employed by tectonic geomorphologists applies; where a river 

crossing an area of increased uplift adjusts its ability to incise at all points so 

that it matches rock uplift (Willet and Brandon, 2002; Whittaker et al., 2007).     

 

3.4: TRANSIENT LANDSCAPES  

An important finding of research in the last 10 years is that while different 

erosion models predict similar steady-state fluvial landscapes (Whipple and 

Tucker, 2002), each model end-member is expected to respond differently to 

changes in boundary conditions, such as changes in the rate of movement 

along faults, uplift or base level fall (e.g. Whipple and Tucker, 2002; Tucker and 

Whipple, 2002 and others). Numerical models of fluvial landscapes 

incorporating both transport-limited and detachment-limited erosion behaviours 

suggest that in reaction to tectonic perturbation, the alluvial end member is 

expected to display a diffusive behaviour in response to changes in boundary 

conditions upstream from the location of localised perturbation, such as 

increased uplift as a result of faulting (Howard et al., 1994; Whipple, 2004). 

Profile adjustment is dispersed through the stream network as the channel 

responds to the perturbation, with the upper reaches of the stream able to react 

to the change in boundary conditions before full adjustment of lower reaches to 
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the increased rate of fault slip (Schumm et al., 2002). Under steady-state and 

transient conditions this reaction produces similar responses (Whipple and 

Tucker, 2002).  

By contrast, bedrock river channels are characterised by a break in 

slope, known as a knickpoint (e.g. Howard et al., 1994; Snyder et al., 2000; 

Whipple and Tucker, 2002; Tucker and Whipple, 2002; Whipple, 2004; 

Whittaker et al., 2008; Boulton and Whittaker, 2009; Whittaker and Boulton, 

2012). An increase in relative uplift rate, or a relative base level fall, will instigate 

a response of incision in bedrock rivers upstream of the fault that steepens the 

river channel, this response then passes up the river as a wave (Snyder et al., 

2000; Whipple and Tucker, 2002; Harkins et al., 2007; Whittaker et al., 2010). 

The knickpoint is defined as the area of the channel with the highest change in 

gradient between the steepened reach below and the yet-to-steepen channel 

above (Crosby and Whipple, 2006). In this way the detachment-limited river can 

be divided into the channel below the knickpoint, which is responding to the new 

rate of uplift, and the channel above the knickpoint that is yet to be perturbed. 

This knickpoint (and hence the area of the river channel responding to the new 

boundary conditions) moves upstream in a predictable way, resulting in the 

migration of the knickpoint, and landscape response to the new rate of uplift 

moving upstream, away from the origin of the perturbation (Whipple, 2004). The 

section of the river below the knickpoint is responding to the new base-level or 

relative uplift-rate conditions, through processes such as channel steepening,  

channel narrowing and associated increases in stream power (Snyder et al., 

2000; Whipple and Tucker, 2002; Crosby and Whipple, 2006), while the area 

above the knickpoint is in disequilibrium with the new conditions. 
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The differences between the processes of adjustment to transient 

conditions in alluvial and bedrock end members, outlined above, means that 

bedrock rivers are easier to identify when in a transient state (Whipple and 

Tucker, 2002); they display distinct breaks in slope in long-river profiles, and 

these can be measured in the field. The responses of the detachment- and 

transport-limited erosion laws to changes in base level fall or relative uplift rates 

suggests that only in the response of bedrock rivers to the changes in boundary 

condition will there be an abrupt change in channel morphology (Whipple and 

Tucker, 2002). 

The response of the fluvial system to perturbations should be seen 

through the fluvial network of the area and in a variety of different ways within 

the fluvial systems. For example, Whittaker et al. (2007) shows that 

predominantly bedrock rivers respond to increases in fault throw rates by 

developing: significant long-profile convexities; a loss of hydraulic scaling; 

channel aspect ratios that are a strong non-linear function of slope; narrow 

valley widths; elevated coarse fraction grain-sizes, and reduced downstream 

variability in channel planform geometry. 

The rate of this basin-wide transient response determines a number of 

things: the landscape response time to external forcing; the sediment delivery to 

depositional centres, and the dynamic relationship between tectonics, climate, 

and erosion - a coupling that is hypothesized to affect landscape evolution (e.g. 

Howard and Kerby, 1983; Howard et al., 1994; Seidl et al., 19940; Skylar and 

Dietrich, 1998; Tucker and Whipple, 2002; Whipple and Tucker, 2002; Attal et 

al., 2008). 

As explained above the transient response of bedrock rivers to base 

level changes can differentiate competing fluvial erosion models (Whipple and 
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Tucker, 2002; Tucker and Whipple 2002). Tucker and Whipple (2002) suggest 

that it seems unlikely that any of the erosion laws that have been proposed are 

universal. They go on to say that it is important to identify suitable test cases for 

erosion laws. This is illustrated by some of the recent studies into bedrock 

erosion. Some studies suggest that transient river long-profiles can 

characterized by a transport-limited erosion model (Loget et al., 2006; Cowie et 

al., 2008; Valla et al., 2010), while conversely, other researchers have 

suggested a detachment-limited model explains their field data (e.g., Stock and 

Montgomery,1999; Whipple et al., 2000; Kirby and Whipple, 2001; Attal et al., 

2011).  Attal et al. (2011) addressed these contrasting findings and suggest that 

the differences are due to the relative volume of sediment being transported 

through the fluvial system. In this study they tested the capability of transport 

and detachment fluvial erosion models to reproduce the already well-

documented evolution of three river catchments in the central Apennines, Italy, 

which have independently constrained increases in relative uplift rate. They 

found that the transport-limited model could not reproduce the catchment 

response to an increase in uplift rate, while a detachment-limited model could, 

consistent with the low sediment supply in the channels (Attal et al., 2011).  

What is clear from the previous works is that the study of transient responses of 

rivers to base level change requires additional case study sites that can provide 

a snapshot of a transient response to a quantified base level change. These 

areas should be used to place constraints on the dynamic response of fluvial 

systems (Tucker and Whipple, 2002). 
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3.5: KNICKPOINT THEORY 

Studies of the fluvial geomorphology in bedrock rivers have utilised the 

river long profile extensively to identify changes in slope along the river profile 

(e.g. Knighton, 1998; Burbank and Anderson, 2001; Crosby and Whipple, 2006; 

Whittaker et al., 2008) (figures 3.2 and 3.3). The long profile provides a visual 

method of determining features of interest in studies of river perturbation. As a 

consequence of a change in boundary conditions, such as a decrease in base 

level, the typical concave-up river profile will be perturbed if the river is 

detachment-limited or hybrid-type river, developing the distinct break in slope 

already referred to as a knickpoint (figure 3.2). As a result of this perturbation, 

areas of the channel develop a localised of steepening, a convexity, referred to 

as a knickzone (Tucker and Whipple, 2002; Whittaker and Boulton, 2012). The 

knickzone extends from the area of initial perturbation (i.e. a fault) to the 

knickpoint, which represents the point at which there is the greatest change in 

slope gradient (Tinker and Wohl, 1998).  

 

Figure 3.2: Representative examples of river long profiles. The blue profile exhibits the 
smooth concave up shape of a river presumably in equilibrium with its boundary 
conditions. The black profile exhibits a knickpoint (red circle) and a knickzone 
(indicated by the red arrow), indicating channel has been perturbed.  
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This knickzone is transferred up the river stepwise (figure 3.3), which can be 

explained by the influence of change in slope on stream power. When the slope 

is steepened the stream power is also elevated, this causes increased erosion 

of the bedrock and this process continues up the river towards its source. This 

suggests that as there is a link between stream power erosion laws and 

knickzone migration the stream power erosion laws can be useful tools in 

quantification of knickzone migration. This potential to quantify knickzone retreat 

in relation to the forcing mechanisms is a key consideration in tectonic 

geomorphology.  

 

Figure 3.3: A schematic graph showing the evolution of a detachment-limited channel 
in response to perturbation by movement of a normal fault. The channel evolves from 
the black line through the red and green lines to the dotted line over time with a 
knickpoint that migrates backwards up the channel. 

 
 

To quantify the relationship between the boundary conditions and river 

profile adjustment the average rate of knickzone retreat (V) can be calculated 

(eq.15) by dividing up-stream distance between the fault and the knickzone (Δx) 

by time since the initiation of faulting or increase in fault movement (Δt) (Crosby 

and Whipple, 2006; Whittaker and Boulton, 2012). 
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V = ∆x ∆t⁄    (eq. 3.15) 

 

This method may provide a first order quantitative measure but the 

situation in reality is more complex than this simple relationship, because 

lithology (Anthony and Granger, 2007) and catchment size (Bishop et al., 2005) 

have been illustrated to influence the rate of knickzone migration. It has been 

suggested that catchments in Italy and Turkey can be described by a unit 

stream power law which enables the rate of knickpoint retreat to be deduced  

(Whipple and Tucker, 2002; Whittaker et al. 2007, 2008; Boulton and Whittaker, 

2009). Expressing the erosion rate E and Slope, S in a stream power erosion 

law as partial differentials of elevation, z, time, t, and stream-wise distance, x, 

we can write: 

 

E = dz dt =⁄ KAm(dz dx⁄ )n 

 

Consequently as Sn = S x Sn-1, we obtain: 

 

dz dt =⁄  KAm(dz dx⁄ )(dz dx⁄ )n−1 

 

Re-arranging, this gives: 

(dz dt⁄ )(dx dz⁄ ) =  KAm(dz dx⁄ )n−1 

 

This can be simplified to: 

(dx dt⁄ ) =  KAmSn−1 
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and as dx/dt is a velocity, we predict that the knickpoint retreat rates should 

scale as: 

 

V~ΨAmSn−1   (eq. 3.16) 

 

The Ψ parameter serves to substitute for K and contains variables such as 

bedrock strength, climate, sediment flux, channel geometries and tectonics. 

This formula describes knickpoint retreat rates as being heavily influenced by 

drainage area to the power m, with larger drainage areas producing a faster 

retreat rate. Slope is also considered, but is eliminated when n=1, as obtained 

for a unit stream power model. Knickpoint retreat rates can be split into 

horizontal and vertical retreat rates, which is significant because the vertical 

retreat rate is dependent upon the difference between the uplift rate and vertical 

incision, while the equations 3.15 – 3.16 pertain to the horizontal knickpoint 

retreat rate, taking into account the drainage area of the river and to some 

extent the slope of the river channel. Whittaker and Boulton (2012) investigated 

the influences on knickpoint retreat rates in relation to equation 3.16 on rivers in 

southern Turkey (figure 3.4). They considered rivers with similar drainage areas 

and different fault slip rates and found that even while controlling for drainage 

area variations in this way there was still a six to seven fold difference in 

knickpoint retreat rates. This shows that that beyond the simple assumptions 

and maths in equation 3.16, the Ψ parameter varies also with fault slip rate.   

The vertical propagation of knickpoints is dependent upon the difference 

between uplift rate and vertical incision (Whittaker, 2012). Theory and numerical 

modelling of vertical knickpoint propagation has suggested that the vertical 

movement of the knickpoint through a landscape should be independent of the 
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discharge and therefore drainage area of a river. It should instead respond to a 

relative uplift rate perturbation, such as in the situation when a river crosses a 

fault which has undergone a change in its slip rate, or a reduction in the fluvial 

rate of erosion (Crosby and Whipple, 2006).  For example, Whittaker et al. 

(2008) show how the vertical elevation of long-profile convexities in transient 

channels in the Central Apennines, Italy, appear to scale with the magnitude of 

uplift rate increase both between different faults in the Apennines, with a 

 

Figure 3.4: (a) Shows a plot of drainage-area-normalized knickpoint migration rate 
parameter, ΨA, against fault throw rate, R, for catchments in Turkey (gray bars) and 
Italy (black bars). Bars span a range of ΨA values for fault acceleration at 0.7–1 Ma in 
Italy, and 1.2–1.6 Ma in Turkey. White bars show ΨA estimates for Italian catchments 
crossing active normal faults.  (b) Log ΨA against log R for maximum knickpoint 
migration rates for all channels. Line of best fit is a power law regression through the 
data, with the best fit equation shown. From Whittaker and Boulton (2012). 
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doubling of throw rate resulting in a factor of around two increase in knickpoint 

height. Further to that, Boulton and Whittaker (2009) produced study of 

knickpoints in southern Turkey which corroborated the findings that the height of 

the knickpoint above the active fault mirrors the local throw rates. Whittaker at 

al. (2008) concluded that there is a linear relationship between the throw rate, 

and the uplift rate increase, which is the difference in throw before and after the 

throw rate increase.  The response of the knickpoint height to the uplift rate 

increase is thought to be due to the steepening of the channel bed in response 

to the perceived uplift, which it turn increases the fluvial incision rate leading to 

upstream migration of the knickpoint (Whipple and Tucker, 2002; Whittaker et 

al., 2008). Overall, Whittaker et al. (2008) suggest that the size of the convexity 

within the channel is a function of both the magnitude of the perturbation and 

the speed at which the knickpoint moves upstream. The relative motion of the 

knickpoint upstream is therefore a result of the interplay between the horizontal 

component of movement and the vertical component of movement. This 

suggests that measurement of the height of knickpoints above the active fault is 

a useful tool in the determination of throw rates.  

 

3.5.1: KNICKPOINT RETREAT AND TECTONICS AND BASE-LEVEL 

CHANGE 

Knickpoints resulting from base level variations (e.g. tectonic uplift on a 

fault, and/or eustatic sea-level change) are believed to be the dominant 

mechanism by which the dynamic relationship between tectonics and climate is 

conveyed to the landscape (Whipple and Tucker, 1999; Bishop, 2007). When a 

fall in base-level occurs owing to fault movement, a knickpoint is formed at the 

fault location that propagates headwards (Whipple and Tucker, 1999). The 
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derivation of fault-influenced knickpoint retreat rates are complicated by factors 

such as lithology and climate, encapsulated within the K value, that are not yet 

fully understood. Despite this, on-going research has attempted to reproduce 

detachment-limited channel incision in response to a lowering of base level 

(e.g., Howard, 1998; Whipple and Tucker, 1999; Snyder et al., 2000). In what 

can now be considered pioneering work into river profiles within the Himalaya, 

Seeber and Gornitz (1983) proposed that anomalously high channel gradients 

represent locally high uplift rates. Since 1983 geodetic surveys have been 

carried out (Jackson and Bilham, 1994) that have supported this initial 

suggestion and in recent years work into the influence of tectonics on river 

profiles has intensified. Whittaker and Boulton (2012) compared river long 

profiles and boundary conditions of rivers in the Central Apennines of Italy, and 

in Southern Turkey in an attempt to evaluate the relative effects of fault 

movement on the profiles of detachment-limited rivers in both areas. They 

observed several notable trends in the data, concluding that the response times 

of landscapes are strongly linked to the tectonic perturbations occurring on 

faults cutting across the rivers. Specifically they refer to the magnitude of the 

tectonic perturbation, concluding that higher throw rate leads to a higher rate of 

knickpoint migration. Their data show that for rivers with similar drainage areas, 

an order of magnitude difference in fault throw rate can lead to a six to seven 

fold difference in the rate at which the knickpoint moves.  

 Thus rivers perturbed by a greater degree of fault movement will regain 

their steady state conditions more quickly than those rivers with a smaller rate 

of uplift on faults. The dependence of knickpoint retreat rate on fault slip rates 

can be explained by the effect of dynamic channel adjustment to the faulting 

(Attal et al., 2008; Whittaker and Boulton, 2012), because the Turkish and 
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Italian rivers documented by Whittaker and Boulton (2012) show narrower and 

steeper channels in the rivers that cross faster-moving faults.  

 

 

 

Figure 3.5: (a) Shows a plot of drainage area normalized channel slope, Sn =S√A 
against fault throw rate, R. Line shows best fit power law dependence of Sn on R. (b) 
Mean knickzone channel width, Wn, normalized for drainage area at the fault, against 
fault throw rate, R, for Italy (points) and Turkey (box shows data range). Line shows 
best fit power law dependence of Wn on R. From Whittaker and Boulton (2012). 
 
 

3.6: EFFECTS OF CLIMATE ON RIVER GEOMORPHOLOGY 

Climate has proven to be a difficult variable to examine in terms of rivers 

and landscape evolution. Climate can play a significant role in the amount and 

variability of run off and erosion thresholds, also in the growth or absence of 

anchoring vegetation that can in turn affect landscape evolution both by varying 

the rate at which landscapes are modified and by altering the pattern landscape 

changes (Whipple, 2004; Kent, 2011; Whittaker, 2012). Climate change can 

also create major eustatic change which would in turn affect sea level and so 

base levels in some areas. 

Wobus et al. (2010) present an argument for differing characteristics for 

climatically driven and tectonically influenced changes in landscape evolution. 
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They propose that tectonically driven perturbation travels upstream in a wave 

from the site of the initial change in conditions while a climatically induced 

change in incision would produce a downstream wave of incision. This climatic 

effect is driven by an increase in the amount of water delivered to a river 

system, resulting in the downstream migrating wave of incision and a relaxing of 

the channel gradient.   

Whittaker and Boulton (2012) concluded that climate can have a 

significant influence on the rate of knickpoint movement using data from the 

rivers they studied in Turkey and Italy, which have different climatic settings. 

Notably, there is a factor of two difference in the aridity in the two study areas 

with the Hatay region of Turkey being significantly more arid. For the Italian 

rivers studied, the drainage-area-normalised knickzone migration rate was 

found to be twice as fast as the rate for the more arid Turkish rivers. Whittaker 

and Boulton (2012) put forward the explanation that climate plays a major role 

in driving this difference. When the unit stream power model is adjusted to take 

into account precipitation and groundwater influences, a doubling in these 

factors would indeed be expected to lead to a four-fold increase in the speed of 

knickpoint migration. 

 

3.7: EFFECTS OF LITHOLOGY AND SEDIMENT FLUX ON RIVER 

GEOMORPHOLOGY 

A potentially important but often neglected influence in determining the 

rate and style of bedrock river response to a change in relative base level is 

bedrock lithology (Stock and Montgommery, 1999; Reneau, 2000; Anthony and 

Granger, 2001; Bishop et al, 2005; Brocard et al., 2006). A more resistant 

lithology in a river channel should theoretically require a higher stream power to 
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keep pace with tectonic uplift on a fault than an identical river incising across a 

weaker lithology. As such, the nature of the control exerted on knickpoint retreat 

and bedrock incision by lithology is an outstanding issue (Castillo-Rodríguez, 

2011, Crosby and Whipple, 2006; Anthony and Granger, 2007; Haviv et al., 

2010; Whittaker and Boulton, 2012). Lithology is often identified by researchers 

as being of particular significance in modulating bedrock river response to 

tectonics because it affects K in any stream power erosion law (Goldrock and 

Bishop, 1995; Anthony and Granger, 2007; Cook et al., 2009; Allen et al., 2013; 

Ferrier et al., 2013; Croissant and Braun, 2014).  However, there is currently 

little consensus as to the magnitude of this effect nor is there currently an easy 

way to link measurements of bedrock type or strength directly to the K value 

used in either numerical models or empirical field studies. Consequently, while 

acknowledged as a complicating factor, it is often ignored in many geomorphic 

studies (Castillo-Rodríguez, 2011, Crosby and Whipple, 2006; Anthony and 

Granger, 2007). 

Nevertheless, a few studies have tackled this question, with mixed 

results: Stock and Montgomery (1999) investigated rivers from Kauai (Hawaii), 

Australia, California and Japan and they found varying relationships between 

lithology and knickpoint retreat when using a stream-power-derived equation. 

They found that taking into account the lithologies of the areas mentioned, 

volcaniclasic rocks, granitoids and metasediments the value for K can vary over 

5 orders of magnitude. Anthony and Granger (2007) proposed that progress of 

the knickpoint upstream in the tributaries of the Upper Cumberland River, USA 

was significantly influenced by lithology. Major differences in knickpoint retreat 

rates, which vary from 4000 mm/yr to 100 mm/yr, were observed in river 

between karstic lithology and other rock types. The authors suggest the 



95 
 

standard models for fluvial erosion laws are not sufficiently descriptive for 

karstic environments. They propose this insufficiency could in part be due to the 

substitution of the drainage area for the discharge because in this situation as 

the drainage area and discharge are not, in this case, linearly related. The 

important issue identified in the study by Antony and Granger, (2007) is that that 

certain lithologies may affect knickpoint migration in an obvious way associated 

explicitly with the lithology.  

Others (e.g. Cook et al. 2009) have found that, in general, the properties 

of the lithology in addition to hardness may be important in determine the 

influence of lithology on erosivity. Cook et al. (2009) show that the orientation of 

the lithological layers may also provide a significant cause for knickzones and 

influence the speed at which they move. Cook et al. (2009) studied the 

Colorado River around Lee’s Ferry, the location of a significant knickpoint 

(Wolkowinsky and Granger, 2004; Karlstrom, 2008). The authors modelled river 

profiles and incision rates using cosmogenic dating methods and propose that a 

recent pulse of incision is the result of headward propagation of incision in 

combination with the influence of an upstream dipping lithological boundary. 

They conclude that the combination of these effects is causing a complex 

pattern of adjustment in the Colorado River. However, recently Whittaker and 

Boulton (2012) found no significant influence of rock hardness on knickpoint 

retreat rate using Schmidt hammer measurements and the Selby rock mass 

strength measurement technique for transient catchments in both the Hatay 

Graben of Turkey and the Italian Apennines. This is despite the fact that rock 

hardness is often suggested as a factor exerting high influence on the velocity 

of knickpoint retreat by studies (Miller, 1991; Hancock et al., 1999; Stock and 

Montgomery, 1999; Crosby and Whipple, 2006). An additional problem is that 
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climate effects can also be subsumed into the value of K, with limited work (e.g. 

Whittaker and Boulton, 2012) having addressed this outstanding challenge 

Another way in which lithology can influence the ability of a river to incise 

into the bedrock is sediment availability in the channel. Two effects have been 

documented by which sediment supply could influence fluvial erosion (Gilbert, 

1877; Sklar and Dietrich, 1998; Sklar and Dietrich, 2001). If the sediment flux 

coming from upstream is low, incision rates are likely to be limited, due to the 

presence of few clasts in transport. These impact and abrade the channel bed 

and consequently increased sediment flux in the river leads to higher erosion 

rates, because more ‘tools’ are supplied from upstream to erode the channel 

bed. However, when sediment flux is too high the opposite becomes the case 

and large amounts of sediment can cover the bedrock channel and shield the 

bed from impact and abrasion wear. This ‘cover effect’ protects the channel 

base from erosion and any subsequent increases in sediment supply would 

serve to reduce erosion rates further still (Sklar & Dietrich, 1998; Sklar & 

Dietrich, 2001).  

The ability of the ‘tool effect’ to increase abrasion at intermediate 

sediment supplies has been illustrated through experimental techniques using 

abrasion mills (Sklar & Dietrich, 2001; Cowie et al., 2008; Turowski and 

Rickermann, 2009;  Meshkova, 2012). Sklar and Dietrich (2001) also state that 

the rock erosion rate declines rapidly with decreasing grain size in their 

experiments. This suggests that suggests that finer sediments carried within the 

water are inefficient tools eroding bedrock river channel, compared to the 

coarser sediments that are transported as bed load. Jansen et al. (2011) 

studied knickpoint retreat rates in rivers in western Scotland and found that 

knickpoint retreat rates have decreased by two orders of magnitude since the 
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early to mid- Holocene. They inferred that this slowing in postglacial knickpoint 

retreat was due to the depletion of paraglacial sediment supply over the 

Holocene, which lead to a deficiency of “tools” for bedrock erosion. The models 

for bedrock incision that do not take into consideration the tools effect can 

therefore over-predict incision rate for low sediment supply rates (Sklar and 

Dietrich, 2006).  

To derive the effect of lithology and sediment supply on channel 

response to active tectonics, and important next step is to establish case 

studies in where the nature of both the tectonic forcing and the transient 

response of the river to this forcing are temporally and spatially well-

constrained. Such case studies would allow for (i) the observation and 

modelling of hydraulic scaling adjustments to tectonic forcing; (ii) the 

comparison of river response to active faulting where lithological variation can 

be compared explicitly and (iii) where the differences between modelled, 

predicted and ‘real’ erosivities can be contrasted effectively. 

 

3.8: WHERE ARE WE NOW? 

Much progress has been made into understanding the dynamic 

relationship between rivers and landscape over the last fifteen to twenty years 

(Howard, 1998; Whipple and Tucker, 1999; Snyder et al., 2000; Tucker and 

Whipple, 2002; Whipple and Tucker, 2002; Crosby and Whipple, 2006; Attal et 

al., 2008; Whittaker et al., 2008; Boulton and Whittaker, 2009; Whittaker and 

Boulton, 2012 and others).  

In order to understand the landscape response to external forcing 

mechanisms such as tectonics and climate ‘landscape evolution models’ have 

been produced.  A key breakthrough of these models, such as CHILD (Tucker 
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et al., 2001), is that they allow the modelling through time of the evolution of a 

topographic surface by fluvial and hillslope erosion and sediment transport. 

Since the development of the landscape evolution models, work has begun to 

focus on how to best parameterise the upland river systems in terms of the 

behaviours, geometry and erosive processes that operate within the river 

systems, as fluvial erosion is a significant component of landscape evolution 

models. Being able to select an appropriate fluvial erosion model (detachment-

limited, transport-limited and hybrid) is key, given that at topographic steady 

state the landscape evolution models can produce similar results for the three 

erosion models. As the assumption of steady state proved ineffective for this 

problem, a major breakthrough was made with the realisation that studying 

rivers undergoing transient responses to tectonics could yield more promising 

results (e.g. Howard et al., 1994; Snyder et al., 2000; Whipple and Tucker, 

2002; Tucker and Whipple 2002; Whipple, 2004; Whittaker et al,, 2008; Boulton 

and Whittaker, 2009; Whittaker and Boulton, 2012). Under transient conditions 

alluvial rivers should respond diffusively while detachment-limited rivers should 

develop long-profile convexities (Whipple and Tucker, 2002). It has only 

recently been shown that rivers are responding unambiguously to tectonic 

perturbation and since been established that bedrock rivers do respond in a 

transient way to tectonic perturbation (Whittaker et al., 2008). This has been a 

key breakthrough, in fact it is now widely accepted that the response of 

detachment-limited rivers respond to tectonics can be understood to first order 

by the use of the stream power family of incision models (Kirkby and Whipple, 

2012).  

For example, it is now possible to exploit the measured vertical heights of 

knickpoints to investigate tectonics as it has been shown that knickpoint heights 
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scale with relative uplift (e.g. Boulton and Whittaker, 2009). It is also possible to 

predict how far a knickpoint will travel upstream, based upon the size of the 

rivers drainage area. The progress made on the links between drainage area 

and knickpoint celerity mean that knickpoint data, when combined with drainage 

area information, can provide useful constraints on causes and timing of 

knickpoint initiations when studying multiple rivers. 

Consequently, it is now possible to focus on using well-constrained field 

sites to answer detailed questions such as the major influences on knickpoint 

celerity, such as climate and lithology which are currently subsumed into the K 

parameter in erosion laws. Identifying detachment-limited rivers, in areas with 

well constrained geological variables is therefore a key endeavour.  

Another current key question within earth sciences is to what extent is it 

possible to gather tectonics information directly from the fluvial system. As 

discussed above, there have been a number of studies that have attempted to 

collect tectonic information from fluvial networks, and they have had some 

success in analysing systematic information about river systems and extracting 

from it patterns of active deformation in the study area (e.g. Seeber and Gornitz, 

1983; Merrits and Vincent, 1989; Lavé and Avouac, 2001). The limits on this 

research are currently set by a lack of calibration of the model parameters 

(Duvall et al., 2004). It is therefore necessary to consider real geological 

constraints; for example it is vital to have a well quantified tectonic signal, such 

as throw rate, when undertaking studies into how bedrock rivers respond to 

changes in climate and tectonics.  

As such, the ability to extract tectonic information from the fluvial system 

requires an understanding and quantification of the relationship between such 

factors as channel gradients, lithology, and uplift rates.  What is now needed is 
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the identification of case study sites that can provide a snapshot of a transient 

response to a quantified base level change. These areas must allow for 

independently quantified uplift rates, and well constrained lithology, combined 

with in-depth field and computational measurement of fluvial morphology. This 

will enable the analysis and quantification of the nature of the transient 

responses occurring within perturbed bedrock river systems.   
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CHAPTER 4 

TIME AVERAGED, LONG-TERM, RATES OF FAULT MOTION FOR THE 

GEDIZ GRABEN 

 

 

4.1: CHAPTER HIGHLIGHTS 

 The faulting within the Gediz Graben has been two phase: Low-angle 

normal faulting dominated the formation of graben topography between 

16 – 2.6 myr, high-angle normal faulting has been dominant since 2 myr.  

 This study quantifies the rate at which throw has been occurring over the 

last 2 myr, with rates varying between 0.4 mm/yr and 1.5 mm/yr along 

strike. 

 The distribution of different rates along strike of the graben bounding 

fault array suggests that the fault segments have become linked during 

the last 2 myr. 

 The further study of the graben bounding fault arrays suggest that an 

earthquake occurring along the fault array could have a predicted Mw of 

6.3 to 7.9, depending upon how much of the array ruptures.   

 

4.2: INTRODUCTION 

This chapter discusses the ways in which previous researchers have 

quantified the rates of active faulting, discussing aspects of the method such as 

the time periods over which specific methods can be used and what pre-existing 

features are needed to make the method useful in a given area. The 
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advantages and disadvantages of the techniques will be discussed in order to 

determine the best method to use in the Gediz Graben.   

The chapter then reviews what is known about the active tectonics of the 

Gediz Graben and highlights the gaps in the current knowledge of the active 

tectonics of the region. In order to address the highlighted issues and 

knowledge gaps, this study then presents new throw rates on the high-angle 

normal faults using a combination of established and novel methodologies. The 

Gediz Graben was chosen for this study as the rates of throw on the active 

normal faults that control the topographic evolution of the area are unknown but 

there is a well constrained structural and stratigraphic framework as well as 

seismic and borehole data. This study will take into account the implications of 

these novel throw rates on the hazards to the surrounding area produced by the 

new data set.  

 

4.2.1: FAULTING AND SEISMICITY WITHIN THE GEDIZ GRABEN  

The Gediz Graben has been inhabited, with significant built 

infrastructure, since at least 472 BC (Hanfmann et al., 1983).  The ancient town 

of Sardis, which can still be seen near the modern town of Sart, was the capital 

of the ancient kingdom of Lydia and one of the most important cities in the 

Persian Empire. In 17 AD the Lydia earthquake caused extensive damage to 

the region including the city of Sardis, sustaining damage from which it never 

truly recovered (Ambraseys, 2009).  The damage can still be seen in the ruins of 

the city today.  

 

http://en.wikipedia.org/wiki/Sardis
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Figure 4.1: A map of the southern Gediz Graben showing the high elevation area 
(grey) and the valley areas (white); the black line represents the limit of the topographic 
elevations and the approximate location of the graben bounding faults. The river and 
road networks are marked on with the rivers (blue) illustrating the streams draining out 
of the mountains and into the Gediz valley. Significant population centres are marked 
with a hatched pattern and additional settlements are marked with black dots 
dependent on size. The larger towns and villages are in a position very close to the 
graben bounding fault array and there are a significant number of smaller villages 
within the mountains.  
 
 

The Gediz Graben has been continually inhabited since the time that 

Sardis was a significant seat of power, and the modern graben is now the 

location of several towns with significant populations of around 50-150,000 

people (figure 4.1 [http://www.turkstat.gov.tr/]), notably, Turgutlu (122,383 urban 

population of 2012), Salihli (98,618 urban population of 2012) and Alaşehir 

(48,147 urban population of 2012). There are also many villages of populations 

of over 1000 people situated between the major population centres and many 

others situated along the river valleys and around the locations of significant 

regional high-angle normal faults within the graben margin (figure 4.1). These 

villages persist up to the higher altitudes, some being situated on the 

detachment surface. A common feature of all of these settlements irrespective 

of size is their proximity to active faulting, is that many of the major towns and 

villages are built on or next to active faults, that bound the Bozdağ Range. 
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The risk to these settlements is illustrated by the recent earthquakes that 

have occurred the Gediz Graben and surrounding region; including three 

earthquakes of over Mw 5.0 in the last twenty five years (Eiodogan and Jackson, 

1985; Buscher et al., 2013). A significant earthquake of magnitude 6.9 occurred 

in 1969, creating a surface rupture of around 30 km (Arpat and Bingol, 1969). 

Another earthquake occurred within the Gediz Graben in March 1970, this 7.2 

magnitude earthquake left thousands homeless and over 1000 people dead; it 

led to the total relocation of the village of Gediz (Mitchell, 1976). Additional 

large-magnitude earthquakes occurred in 1866 and 1944 (Ambraseys and 

Jackson 1998). Outside of the graben, the 2011 Kütahya earthquake, of 5.8 Mw, 

caused shaking of buildings in the Gediz Graben (Yılmaz and Avşar, 2013). 

This evidence of destructive earthquakes shows both that there are 

ongoing active tectonics within the Gediz Graben, and that population centres 

are at risk from the active faulting. In the Gediz Graben, it would be 

advantageous to have quantified fault movement rates of the graben bounding 

normal faults as there are currently no estimates for fault slip along the 120 km 

extent of the high-angle normal faults on, or near, which the large settlements in 

the graben are built (figure 4.1). 

 

4.2.2: FAULTING AND THE LANDSCAPE 

Faults show significant variations in their properties such as length, dip 

and depth to which they propagate (e.g. Twiss and Moores, 1992); this variation 

in properties leads to differences the earthquake potential of the fault as well as 

in the development of the seismic landscape (e.g. Koons and Kirby, 2007; 

Hovius and Von Blanckenburg, 2007; Wobus et al., 2006a). Due to these 

variations, and the ability of faults to fundamentally control landscapes, it is 

http://en.wikipedia.org/wiki/K%C3%BCtahya
http://link.springer.com/search?facet-author=%22Nazan+Y%C4%B1lmaz%22
http://link.springer.com/search?facet-author=%22%C3%96zg%C3%BCr+Av%C5%9Far%22
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useful to know as much about faults as possible, especially when they coincide 

with populated areas. 

The current understanding of landscape response to external forcing 

indicates that the rate of erosion resulting from changing boundary conditions is 

controlled by a variety of factors including annual rainfall, bedrock lithology, 

base-level drop, rate of rock uplift, and fluvial and hill slope processes (e.g., 

Howard et al., 1994; Sklar and Dietrich, 1998, 2004; Whipple and Tucker, 1999; 

Whipple et al., 2000; Simpson and Schlunegger, 2003; Densmore et al., 2003; 

Dorsey and Roering, 2006). Therefore, faults are an important factor in 

landscape evolution because they allow for uplift of rock units, thereby 

impacting on hillslope processes. Uplift of rock units within the footwall of the 

normal faults, for example forms significant topography in landscapes, creating 

areas of high escarpments and ranges juxtaposed with low valleys. 

 In this way, normal faults can significantly impact the erosion, transport 

and deposition of sediment in the area by creating hillslopes and allowing for 

the formation of significant river networks that drain the high-elevation areas 

and generally flow into a principle river within the valley. Topography like this 

can be found in many mountainous with significant regional normal faulting. 

 

4.2.3: FAULTING AND SEISMIC HAZARD 

Gaining greater insight into the activity of the faults within the Gediz 

Graben is important because factors such as fault geometry and movement 

rates are of use in the consideration or seismic hazard (Wesnousky, 1986; 

Bilham et al., 2001; Sutherland et al., 2013). Determining whether or not faults 

are active is important for planning and seismic hazard mitigation, for example 

in California it is not permitted to construct new building on or near faults that 
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have been actively moving within the last 11,000 years (Hart and Bryant, 1997). 

Building regulations such as those used in California are of less use when 

settlements already exist such as in the Gediz Graben. In these situations 

possessing a greater amount of information about the faults in the area is 

necessary if seismic hazard is to be considered, and if strategies for dealing 

with risks to settlements caused by tectonic hazards are to be assessed. 

An understanding of the manner in which a major fault is segmented into 

an array of fault strands is considered an important aspect in understanding the 

hazard posed by a fault. Observations have shown that long faults do not 

usually rupture along their whole length during seismic events (Geophysics 

Study Committee, 1986; Schwartz and Coppersmith, 1986). Key questions that 

arise from the understanding that faults tend to rupture only along part their 

length are: 1) to what degree is the location of rupture random, or does it reflect 

segmentation? 2) Can these segments be identified using geologic, seismologic 

or geophysical data? Surface geology and changes in fault geometry commonly 

appear to have a one-to-one correlation as a result of rupture processes 

occurring at seismogenic depths (Schwartz and Coppersmith, 1984). Because 

of this it should be possible to use geologic and geophysical data to define 

segments.  

Quantifying rates of movement on faults is an important consideration in 

the analysis of seismic hazard because the rates can be used to compare the 

relative activity of faults. Schwartz and Coppersmith (1986), however, caution 

against the use of fault movement rates these do not necessarily correspond to 

earthquake potential in a direct way. Faults with high rates of motion can 

produce large earthquakes, but it is also possible for faults with lower rates to 

produce large earthquake events too.  
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Despite the ambiguity between slip rates and the size of the associated  

earthquakes  it is recognised that although the slip does not correspond with the 

magnitude of the earthquake, faults that are moving faster will produce more 

frequent earthquakes than slower moving faults (Cowie and Roberts, 2001; 

Roberts et al., 2004) . 

 

4.3: PREVIOUS WORK CALCULATING FAULT MOVEMENT RATES AND 

THE METHODS USED 

There are many different ways that researchers have addressed the 

question of rates of fault displacement, which are applicable over different time 

scales and have varying degrees or reliability. Methods for analysing fault 

movement generally fall into four categories; 1) Geomorphic methods, which 

use topography and surface features; 2) Stratigraphic, which use the offset of 

geological strata; 3) remote sensing methods, which utilise analysis of digital 

imagery such as DEM’s and LIDAR; 4) Geophysical methods, which use tools 

such as exploration surveys (e.g. seismic reflection) to observe the 

arrangement of rock units in the subsurface (McCalpin, 2009). 

Several aspects of fault movement can be calculated; many studies 

quantify fault slip, or displacement on the fault plane (e.g. Peacock and 

Sanderson, 1994; Michetti et al., 1996; Willemse et al., 1996; Monaco et al., 

1997; Piccardi et al., 1999) represented by the relative displacement of piercing 

points. However, caution must be used when studying oblique-slip faults, as 

separation (i.e. the offset of a fault) could be erroneously identified as 

displacement. The throw and heave can also be measured; these correspond to 

the vertical and horizontal components of movement along the fault plane (e.g. 
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Monaco et al., 1997; Cowie and Roberts, 2001). Throw is useful for examining 

the amount of uplift occurring within mountainous areas.  

These quantifications have been used to provide estimates of the 

hazards posed by active faulting. That said, there are currently few areas where 

movement rates are known with enough certainty to allow for explicit evaluation 

of seismic hazard, which is particularly hampered by a scarcity of data and the 

ambiguity of data derived using different methods. 

The issue of determining fault movement rates is complicated by the 

recognition that the amounts of slip and throw vary over the length of a fault 

segment (figure 4.2), with higher amounts of movement at the centre of the fault 

segment, and also that displacement can be modulated by adjacent active fault 

segments (Harris and Day, 1993; Gupta and Scholz, 2000; Nicol et al., 2002). 

This highlights the need for high-resolution displacement data along fault 

arrays, rather than single estimates, to aid in the comprehensive understanding 

of faulting and seismic hazard within a given area.  

All of the methods used to quantify rates of fault movement include 

inherent sources of error specific to the process in question that add varying 

degrees of uncertainty to the estimate. Indeed, different methods to quantify slip 

rates have been shown to produce different results for the same fault. Possibly 

because they address slip rate quantifications over different time scales (Cowie 

and Roberts, 2001). For example, in the Italian Apennines geomorphic 

evidence, such as triangular facets and scarps along range fronts (Piccardi et 

al., 1999) and trenching and radiometric dating of fault scarps (Michetti et al., 

1996; Galadini et al., 1997) yield differing results. 
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Figure 4.2: Cowie and Roberts (2001) presented throw rate data from a fault array in 
the Italian Apennines that shows how throw rates vary along strike, with the highest 
rates in the centre of the fault segment. 

 

Despite the variations in movement rates produced by different methods, 

the ability to work out the rate of movement of faults over different time scales 

can be useful in analysing the past activity of a fault system. Independent 

methods offer evidence from a variety of sources, and so allow for quantification 

of fault movement rates in a wider range of areas. The following sections (4.3.1 

to 4.3.6) outline the methods commonly used to determine rates of fault 

movement and summarise their applicability within the Gediz Graben.  

 

4.3.1: USING GEOMORPHOLOGY TO QUANTIFY RATES OF MOVEMENT 

ON NORMAL FAULTS 

 Offset geomorphic features are increasingly being used to assess rates 

of fault movement beacuse the methods to extract dates from them have 

become more accurate. Prior to the 1990s the methods to date landforms were 

centred on relative dating, such as degree of soil development, rock varnish and 

lichenometry (e.g. Harden and Matti, 1989, Rockwell et al., 1990). These 
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methods have a significant weakness in that they are based upon surface 

alteration so there are many variables that can affect the speed of the alteration, 

such as rainfall, temperature and lithology (McCalpin, 2009). 

Despite the ambiguity provided by surface alteration, progress has been 

made with the use of cosmogenically produced isotopes found within rock 

surfaces, Isotopes such as 36Cl, 10Be and 26Al have been used to date surface 

stabilisation and have allowed for more accurate and precise age estimates 

(Rockwell et al., 1990; Ritz et al., 1995; Brown et al., 1998; Gosse and Phillips, 

2001; Daëron et al., 2004; Van Der Woerd et al., 2006). In addition, methods 

such as palaeomagnetism can be used to constrain the age of faulted volcanic 

features such as offset lava flows (Walker and Jackson, 2002). 

A variety of landscape features can be useful for quantifying vertical 

movement and slip rates. The most commonly used are offset alluvial fans and 

steams, uplifted river terraces and past glacial features. Offset alluvial fans have 

been successfully used to quantify rates of movement on normal fault systems 

using a range of methods. For example a study of the Altai Mountains of 

western Mongolia (Nissen et al., 2000) estimated late Quaternary slip rates by 

measuring scarp heights and dating alluvial fans with Optically Stimulated 

Luminescence (OSL). Difficulties encountered were the uncertainty in 

measurements of fault dip due to lack of scarp exposure, and the inherent 

situational inaccuracies of the OSL dating method. Offset landslides (McGill et 

al., 2010) and offset stream channels within fan surfaces can also be used to 

restore landforms (Walker and Jackson, 2002) so as to measure offsets, 

alongside quantified ages to yield rates. 

River terraces lend themselves to the study of rates of fault movement in 

areas with vertical movement, with both depositional cut and fill terraces and 
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erosional strath terraces used. OSL dating of terraces uplifted above the current 

river level by active faulting has become common as the dating methods have 

improved (e.g. Rockwell et al., 1984; Zuchiewicz et al., 2004; Shyu et al., 2006). 

The increasing use of OSL for dating river terrace sediments means that the 

maximum time limits of slip rate estimates are around 300 ky years, which 

corresponds to the typical maximum range of OSL dating. Radiocarbon dating 

can also be used but the limitations constrain the usefulness of this method to 

anything likely to be 40 ky or younger (Taylor, 1997). 

Glacial features have also been used to assess rates of fault 

displacement, notably within the Apennines of Italy, where landforms dating 

back to the last glacial maximum, 20,000 years ago, are readily preserved 

(Roberts and Michetti, 2004; Giraudi and Frezzotti, 1997; Giraudi, 1995; 

Blumetti et al., 1993). These studies have looked for offsets in moraines and 

fluvioglacial fans associated with glacial retreat that have good time constraints. 

During glacial maximum and glacial retreat stages sedimentation and erosion 

rates are high relative to the fault slip rates, but in postglacial periods the rate of 

erosion and sedimentation can be reduced (Roberts and Michetti, 2004). 

Reduced sedimentation causes fault scarps to be preserved, which results in 

offsets in the smoother glacial surfaces cut during earlier, more erosive times. 

The fan surfaces and bedrock slopes are often covered in a datable post-glacial 

organic-rich soil, which contains abundant palaeo-vegetation and volcanic ash. 

The methods for investigating offset glacial features such as moraines 

and channels are similar to those for assessing fault displacement of alluvial fan 

surfaces and other drainage features. Dates are acquired for the displaced 

feature and the offset distance is measured allowing for calculation of rates (e.g. 
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Roberts and Michetti, 2004; Giraudi and Frezzotti, 1997; Giraudi, 1995; Blumetti 

et al., 1993). 

To summarise, the use of geomorphic features in the quantification of 

throw and slip rates is dependent upon the availability of appropriate landforms 

and features that can be identified and measured in the field. It is also 

necessary for the features to contain datable material, or to have existing 

reliable time constrains in order to utilise the features for rate analysis. 

Therefore, a limitation of this method for quantifying throw and slip rates is that 

while the method is useful over shorter time scales of around 100 yr - 300 ky, 

the dating methods that can be used in each situation are limited by materials at 

the site of investigation that can be dated, and then in turn, the age range of the 

dating method.  

 

4.3.2: USING STRATIGRAPHY TO QUANTIFY RATES OF MOVEMENT ON 

NORMAL FAULTS 

 Geological cross-sections based upon lithological and structural maps 

can be used to analyse fault slip rates and also allow for isolation of vertical 

throw and horizontal heave displacement components. The amount of slip, 

throw or heave can be estimated from sediment thickness of graben infilling 

sedimentary rock units in combination with the orientation of tilted strata (e.g. 

McLeod et al., 2000; Nicol et al., 1997). Cross-sections provide estimates of 

fault slip rates over time scales of >105-107 years. The cross-sections appear to 

produce more stable estimates of fault movement rates, compared to methods 

that derive movement rates over shorter (~200 kyr) time scales, which appear to 

have greater variability (Nicol et al., 1997). By constructing cross-sections using 

available data, such as maps, sedimentary logs and geophysical surveys a 
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reliable model can be created. Piercing points identified on the cross-section 

can then provide dependable estimates of fault displacement rates, if the age of 

the relevant rock unit is known and the mapping reliable. This method has been 

used by Cowie and Roberts (2001) to estimate total throw in Abruzzo, (Italy) 

and the Gulf of Corinth, (Greece). According to this study cross-section 

construction may be the best way to resolve long-term fault slip rates and 

seismic hazard, although such data are sparse and often of insufficient quality 

in many actively deforming regions (Cowie and Roberts, 2001).  

 The reliability of cross-sections in the quantification of movement rates is 

dependent upon the veracity of the data from which they are constructed. An 

accurate cross-section requires constraints on the location and dips of faults, 

and if possible, information about the subsurface dip of the faults, as they may 

not remain planar. To quantify the rates from the cross-section it is also 

necessary to have access to reliable age data for stratigraphic units. The use of 

cross-sections to quantify throw rates is therefore limited by the availability of a 

combination of pre-existing structural, stratigraphic and geophysical data, or the 

ability to acquire these data before constructing the cross-section.  One way of 

acquiring a cross-sectional view of the evidence for faulting is trenching. 

 Trenching (figure 4.3) has been widely used to quantify fault slip rates 

(e.g. Schwartz and Coppersmith, 1984; Michetti, et al., 1996; Sébrier et al., 

1997; Litchfield et al., 2006;) and involves excavation of a trench across active 

faults in order to study (pre-)historic earthquakes (figure 4.3). Whilst surficial 

features might provide evidence of only the latest earthquake through the 

currently exposed fault scarp, a fault trench can reveal evidence of older fault 

movement. The trenching method falls foul of the limitations on methods used 
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to assign dates, and additionally the type of material used for dating can have 

implications for the age derived from analysis (Niemi and Hall, 1992). 

However, trenches are fairly versatile, and can be used to gather data on 

either palaeoearthquake recurrence or palaeoearthquake displacement and the 

type of information required from trenching influences the location of the trench 

(e.g. Swan et al., 1980; Sieh, 1981; Schwartz and Coppersmith, 1984). In terms 

of fault displacements trenches dug perpendicular to the active fault to provide 

information about the vertical movement of the fault and parallel to the fault to 

provide data on the horizontal motion component (McCalpin, 2009). 

 The location of the trench is dependent upon two main factors; the 

location of the fault must be known accurately, to within a few metres and 

ideally precisely. The second consideration should be the setting of the site to 

be trenched as the location should be one that favours sedimentation on both 

sides of the fault, in order to preserve a record of tectonic activity (McCalpin, 

2009). A significant problem with trenching is that trench penetration may not be 

great enough to expose the larger vertical scarps, although this problem can be 

partly addressed by digging of larger, tiered and supported trenches (Olig et al., 

2005). 

Özkaymak et al., (2011) quantified the slip rate along the Manastır Fault 

in the Manissa fault zone (Turkey) by examining the cumulative displacement 

across the fault. Assuming a maximum time interval of 5 Ma for the deformation, 

a minimum slip rate of 0.3 mm/yr was quantified for the Manastır Fault.  

Another example of where trenching has been used to quantify 

displacements on a normal faults is the Wasatch Fault, Utah (figure  4.3), which 

has been the site of several studies (e.g. Swan et al., 1980; Schwartz and 

Coppersmith, 1984; McCalpin et al., 1994; Olig et al., 2005). For example, 
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Figure 4.3: Figures to illustrate the trenching method of fault analysis. A) The Mapleton 
‘mega trench’, a large benched trench across a 23 m normal fault scarp in the Wasatch 
fault (Buddensiek, 2004). B) A trench wall showing the delineated reference net used 
for logging the trench sides (Pantosti et al. 1993). C) The trenching method is use on 
the Rogers Creek strike slip fault, California. The fault runs across the image, indicated 
by black arrows, showing how multiple trenches in different orientations can provide 
information on both vertical and horizontal movement (Pantosti et al. 1993).   

 

Schwartz and Coppersmith (1984) dug trenches on the Wasatch Fault and 

measured  displacement per event has been from 1.6 to 2.6 m with an of 

average of around 2 m. Swan et al., (1980) also trenched the Wasatch fault, 

north of Salt Lake City, and measured 10 to 11 m of cumulative net vertical 

tectonic displacement since the middle Holocene. They determined that 

displacement for individual faulting events ranged from 1.7 to 3.7 m. These 
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studies have highlighted that trenching can be a very valuable in quantification 

of slip and throw values although there are a few significant caveats.  

Firstly, trenching requires the locations of the fault that is to be trenched 

to be known with high degree of accuracy,  the past work has shown that trench 

location is critical and that often success or failure of an investigation is 

determined by location of the trench (McCalpin, 2009). Secondly, if a suitable 

site is found there must then be appropriate materials for dating offset units 

within the trench in order to provide age constraints for the measured offset. If 

these limitations are overcome trenching can yield a high resolution fault 

movement data.    

 

4.3.3: THE ROLE OF DIGITAL IMAGE ANALYSIS IN THE QUANTIFICATION 

OF RATES OF MOVEMENT ON NORMAL FAULTS 

 Use of digital aerial imagery can enable quantification of fault slip and 

throw rates (McCalpin, 2009). Aerial photography was a commonly used 

method for identifying faults up until the 1990s. For example, 298 

measurements of vertical throw were made on the Wasatch fault zone by 

Nelson and Personius (1993) and Nelson et al. (2006). The measurements 

were made from 35 year old black and white photographs using an analytical 

stereoplotter. For the Wasatch Fault studies measurement of throw from aerial 

imagery was a very efficient method of measuring fault movement; the 

measurement of vertical throw took far less time than measuring from areal 

imagery than it would have to measure them all in the field (McCalpin, 2009).  

 The disadvantage of aerial photography is that a lot of the photographs 

are unrectified and within unrectified images the vertical scale is not constant 
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within the image. Also the analysis of aerial photographs in highly vegetated 

areas is difficult as the vegetation obscures surface features (McCalpin, 2009).  

 

Figure 4.4: The use of digital elevation imagery to reconstruct movement on faults 
illustrated by using the Gowk Fault, Iran. Offset stream channels in old fan surfaces 
were reconstructed and the displacement measured, this was combined with age 
contains on the fan surfaces to quantify slip rate. A) shows the imagery of the fan 
surfaces and B)  shows the specific channels used to reconstruct the fans (Walker and 
Jackson, 2002). 

 

Digital elevation models (e.g. figure 4.4) which are a representation of a 

terrain's surface created from terrain elevation data, are gradually surpassing 

the number of studies using photographs. This is due to the wider availability 

and benefits of digital image data, such as the data contained within them and 

the variety of information they can yield through analysis (e.g. Walker and 

Jackson, 2002; Frankel et al., 2007). Using DEMs has increased significantly in 

the last decade and many studies are now being conducted in areas of low slip 

rates and increasingly subtle surface expressions of deformation. DEMs allow 

users to recognise these subtle features using image analysis and manipulation 

such as exaggeration of topography and draping satellite images.  
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Digital elevation data can be obtained for the majority of the Earth’s 

surface, at several resolutions. The GTOPO30 global dataset has a 1 km 

resolution. Shuttle Radar Topography Mission (STRM) data has nearly global 

coverage at a resolution of 90 m. Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) elevation data are now available globally at 30 

m resolution. Higher resolution data, which is generally available in the USA 

and some other regions, are important if small-scale features are being 

examined. The digital elevation data are usually available for free, and are 

downloadable from the internet. Due to the inexpensive nature of digital 

elevation data the use of such imagery in investigations is highly common; 

generally used in conjunction with another method such as a dating technique 

to quantify rates of fault movement. Addition imagery is frequently used in the 

planning of other methods such as trenching.  

In the analysis of fault movement DEMs have proven to be very useful in 

the examination of offset features on strike slip faults. Walker and Jackson 

(2002) studied the Gowk Fault, (Iran) where they measured 12 km of cumulative 

offset on stream channels in old fan surfaces. This combined with age contains 

on the fan surfaces using K-Ar dating of offset basalts enabled them to quantify 

a slip rate of 1.5 –2.4 mm/yr.  

Given that DEM imagery can be readily acquired (free or for a fee) and 

easily manipulated it is a valuable tool in fault analysis. However, a limitation of 

using imagery for quantifying rates is that if movement rates are required 

additional information must be known about the stratigraphy, a time constraint is 

vital in the calculation of rates. This may be an easy issue to overcome if the 

area has been extensively mapped, but if mapping is patchy or non-existent it 
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would require original mapping and most likely a form of dating to establish the 

ages of the stratigraphy units studied in the imagery.   

4.3.4: USING SEISMIC INVESTIGATION TO QUANTIFY RATES OF 

MOVEMENT ON NORMAL FAULTS 

Seismic investigation methods have become progressively more widely 

used as the equipment and expertise have improved. Increasingly, researchers 

are seeing geophysical exploration as a worthwhile expense; for example, 

employing geophysical methods before trenching will allow a more 

advantageous location for the trench (McCalpin 2009). 

Seismic methods are useful for quantifying slip and throw rates in 

terrestrial environments as it allows for imaging of faults in the subsurface, 

yielding a greater amount of information that surface mapping alone. Thus a 

reliable extension of known fault dips at the surface to any depth below the 

surface can be achieved (McCalpin 2009). Then two methods used to 

characterise subsurface strata and define piercing points for slip and throw 

measurements are seismic reflection and refraction surveys.  

In seismic reflection the waves travel downward initially and are reflected 

at some point back to the surface, the overall path of the waves is essentially 

vertical. Whereas, in seismic refraction the principal portion of the wave-path 

travels along the interface between layers and is approximately horizontal. 

Seismic reflection is useful for calculating the rates of vertically 

movement on faults in areas such as grabens due to its ability to image 

horizontal and dipping reflectors (McCalpin 2009). In general seismic refraction 

does not have as high resolution as reflection surveys and as a consequence it 

can be limiting, yielding information about larger scale features. For example 
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Pelton et al. (1985) used seismic refraction on the surface rupture of the 1983 

Borah Peak earthquake but were only able to identify the larger faulted units. 

Since the 1990s high resolution seismic reflection techniques have been 

employed to greater success than seismic refraction techniques (Miller et al., 

1990; McCalpin et al., 1994; Sheley et al., 2003; Mattson, 2004; Buddensiek et 

al., 2008). Where both methods can be used seismic reflection generally has 

better vertical resolution and can more easily be used to target a greater array 

of features such as dipping contrasts. Comparisons of high resolution seismic 

reflection surveys which have been compared to trench logs show that most 

details within the trench can be imaged with reflection surveys (Zilberman et al., 

2005; McCalpin, 2009). 

Seismic surveying methods require a large input of expertise, finance 

and equipment, each of which could be a limiting factor for the applicability of 

the method to fault analysis. An estimate of the financial output required for a 

seismic reflection or refraction survey can be up into hundreds of pound per day 

depending upon the site. In addition to this the ability to quantify rates from 

geophysical data is controlled by the access to reliable data on the age of strata 

to be imaged in the surveys.    

 

4.3.5: USING GLOBAL POSITIONING SYSTEM (GPS) AND 

COMPUTATIONAL METHODS TO QUANTIFY RATES OF MOVEMENT ON 

NORMAL FAULTS 

GPS has been used to determine contemporary strain accumulation 

rates of the Wasatch fault, Utah, and have the results have been used to 

provide key data for evaluating normal fault behaviour and related earthquake 

hazard assessment (Chang et al., 2006). The GPS network spans the 300-km 
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long and 200-km wide area of the Wasatch fault zone and includes 8 permanent 

GPS stations that have been operating continuously 1997. Measurements 

indicate a principal horizontal extension rate of 24 ± 6 nstrain/yr with the 

direction nearly perpendicular to the fault (Chang et al., 2006), the strain rate 

corresponds to a horizontal displacement rate of 1.6 ± 0.4 mm/yr. GPS has also 

been used to analyse rates of strain accumulation in the area affected by the 

1908 Messina earthquake, southern Italy (Serpelloni et al., 2010). Modelling of 

the GPS velocities was used to infer slip-rates of 3. 5 mm/yr  + 2.0 − 1.3 and 1.6 

mm/yr + 0.3 − 0.2 mm/yr for the dip–slip and strike–slip components of the fault 

zone respectively. 

GPS studies have become routinely used to assess regional strain rates 

over a decadal time scale (Aktuğ et al., 2009; Barka and Reilinger, 1997; Clarke 

et al., 1997), which can be useful when studying ongoing tectonic activity. The 

geographic range of the strain rate estimates can vary based upon the density 

of the GPS monitoring sites, and as a consequence may be broadly useful over 

wider areas (Clarke et al., 1997). However, GPS may struggle to provide 

accurate estimates of fault movement over specific faults systems, unless GPS 

stations are specifically aimed at measuring movement on that particular fault 

system.  

In terms of quantifying rates of fault motion, GPS measurement could be 

useful if GPS stations were specifically placed to analyse movement over 

certain faults; in this case the availability and positioning of GPS stations is a 

limitation of the method. As GPS monitoring works in real time the estimates of 

fault slip and throw rates could be accurate for a very short amount of time but 

would not give representative long-term movement rates. 
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As a result of this inaccuracy caused by scale and resolution of study 

geodetic measurements of strain rates often appear to overestimate the rates of 

movement seen on specific faults in areas of extension (Cowie and Roberts, 

2001). Additionally this method measures strain and not the movement of 

features due to localised fault movement so the results are converted to 

estimates of closure rates over a fault or fault array.   

 

4.3.6: METHOD APPLICABILITY WITHIN THE GEDIZ GRABEN IN 

RELATION TO THE DESIRED OUTCOMES OF THE INVESTIGATION:  

 Many of the methods examined in sections 4.3.1 to 4.3.5 provide very 

localised results, specific to a certain area of the fault such as cross-section 

analysis and reconstruction methods. The aim of this chapter is to produce a 

high-resolution, data set on fault throw rates to aid in analysis of the landscape 

development of the Gediz Graben. The requirements of the method or methods 

used to quantify throw rates in the Gediz Graben are:  

1. It will yield a high resolution data set; providing multiple throw rate 

estimates along the fault, at last one per every 10 km. 

2. It requires little financial input; a low-cost method has the potential to be 

useful in many areas around the world where funds are not plentiful for 

fault investigations. 

3. It must fit within the expertise of the research involved in this project, 

which are within the stratigraphic, structural and geomorphologic areas.  

4. It must be accomplished in a reasonable amount of time. 

5. It must provide estimates of rates over the last 2 Myr. 
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Ideally the methodology used should take into account the pre-existing data 

available for the Gediz Graben. As documented in chapter 2 there has been 

high-resolution mapping of most of the graben, which contains the surface 

locations and dips of the different stratigraphic units. The stratigraphic units 

have good age constraint based mainly on paleontological data. Along with the 

stratigraphic knowledge, the locations of the faults have been documented to a 

reasonable degree of accuracy, and dips of the faults at the surface have been 

recorded (refer to section 2.5 for more detail). In addition to the mapping that 

has been carried out in the Gediz Graben, there is 270 km of 2D seismic 

reflection survey data and three accompanying borehole logs available for a 

portion of the graben of around 40 km in the extreme east near Alaşehir due to 

hydrocarbon exploration (Çiftçi, 2007). These have provided resolution of the 

sub-surface stratigraphy within the topographic graben. 

 Although the locations of the faults are known, more details on their precise 

location and the ability to locate significant fault scarps would be needed to 

allow trenching to be an applicable method. In the Gediz Graben the 

sedimentary rocks within the footwall are very soft and reasonably 

unconsolidated. As a result of the footwall lithology the fault planes are poorly 

exposed, although their locations can be determined. In addition to the 

structural limitations within the Gediz Graben trenching in time intensive and 

can be fairly expensive to carry out and so can be ruled out for use in the Gediz 

Graben. GPS measurements are also impractical within the Gediz Graben as 

GPS stations in the area are very sparse. Additionally the time scales that GPS 

measurements are utilised over are very short and this chapter aims to quantify 

faulting over the last 2 Myr.  
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Uplifted river terraces are present along the rivers draining the Bozdağ 

Range, but it is unlikely that these would yield throw rates over the 2 Myr period 

required. The terraces will therefore be documented in chapter 5 to provide time 

constraints on incision and possibly more recent rates of throw.  

 

 

 

 

Figure 4.5: The geological map produced by Oner and Dilek (2011) showing surface 
mapping of the stratigraphy of the Gediz Graben. This maping was was in the 
construction of cross-sections (figure 4.11).  Strike and dip information is also mapped 
onto the outcropping units.  
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 A key combination of structural and stratigraphic mapping (Oner and 

Dilek, 2011 [figure 4.5]) and borehole and seismic survey data (Çiftçi, 2007 

[figure 4.6]) makes cross-section analysis a useful desirable to this study; cross-

sections can be constructed with little expense and low time requirements, they 

are also flexible in terms of location, and can be constructed as many times as 

needed along the range where data allows.  

 

Figure 4.6: An example of one of the seismic reflection surveys and correlating bore 

hole for the Gediz Graben (from Çiftçi, 2007). 

 
Figure 4.7: A topographic map showing the main styles faults within the Gediz Graben. 
The map displays the low-angle detachment fault and the significant high-angle normal 
faults on the southern Bozdağ Mountains. The youngest faults that bound the present 
day graben are shown with bold lines.  
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As the ASTER data (NASA https://wist.echo.nasa.gov/api/) is free and has 30 m 

resolution within the Gediz Graben, in areas not covered by the three 

complimentary data sets digital image analysis will be used to explore throw 

rates.   

 

4.4: FAULTING WITHIN THE GEDIZ GRABEN 

As documented within chapter 2 (section 2.5) the Gediz Graben exhibits 

two dominant styles of faulting. A major low-angle normal fault (the Gediz 

Detachment). The hangingwall of which is composed of syn-tectonic 

sedimentary packages, described in section 2.6. The low-angle normal fault 

was active between 16 myr and 2 myr (Buscher et al., 2013). Buscher et al. 

(2013) produced estimates of slip rate for the low angle fault between a period 

of 4 – 2 Myr, after which they propose that the low angle fault became inactive, 

a view also supported by other studies into the two-stage evolution of the 

graben (Koҫyiğit et al., 1999; Bozkurt and Sözbilir, 2004). 

Additionally there is an array of high-angle normal faults bounding the 

modern topographic graben valley. This faulting has been active since 2.6 – 2 

Ma. (e.g. Koҫyiğit et al., 1999; Bozkurt and Sözbilir, 2004; Çiftçi and Bozkurt, 

2009a; Çiftçi and Bozkurt, 2009b; Çiftçi and Bozkurt, 2010; Oner and Dilek, 

2011; Busher et al., 2013).  The major faulting in the area is accompanied by 

minor faults in the same styles (Çiftçi and Bozkurt, 2010; Oner and Dilek, 201).  

The principle concern in this study is the high-angle normal faults (figure 

4.7), which occur along the whole 120 km length of the graben and crop out at 

lower elevations than the low-angle Gediz Detachment. Of particular interest to 

this chapter are the three laterally extensive fault segments that form a high-
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angle graben-bounding normal fault array (GBNF, figure 2.6, refer back to this 

figure for a review the terminology used to describe the major high-angle normal 

fault arrays) that separates syn-tectonic sediments from the Quaternary fill of 

the Gediz Graben valley. Also considered is an outer high-angle normal fault 

array (OHANF, figure 2.6), striking parallel to the syn-tectonic sediments, 

running parallel to the outer normal fault array. The GBNF array is curvilinear 

and visually segmented into three strands (Çiftçi and Bozkurt, 2007; 2009a): the 

Turgutlu strand to the west (41 km long), the central Salihli Strand (43 km long) 

and the Alaşehir segments in the east (36 km) (Oner and Dilek 2011). 

The commonly accepted model of graben formation in western Turkey is 

two stage (Koҫyiğit et al., 1999; Bozkurt and Sözbilir, 2004; Busher et al., 2013), 

and in the Gediz graben this is supported by sedimentological evidence of 

unconformity separating the Miocene-Pliocene and Pliocene-Quaternary 

sediments.  

Figure 4.8: Schematic cross-section of the Bozdağ range from the drainage divide to 
the valley of the Gediz Graben. This image shows the two options for relief 
measurements using swath analysis. A large relief value can be obtained by taking the 
relief of the whole mountain range up to the exposed basement rocks in the peaks 
including the low-angle (phase 1) faulting. A smaller value can be derived by looking at 
the high-angle normal faults (phase 2 faulting) causing uplift of the sedimentary rocks.    
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For the period of dominant high-angle normal faulting of around 2 myr to 

present day, from here on referred to as phase 2 faulting (figure 4.8), there has 

been no work undertaken to quantify the rates of throw (or slip) on the faults of 

the Gediz Graben. The period of low-angle faulting occurring between 16 myr 

and 2 myr will be referred to as a phase 1 faulting in accordance with previous 

work (Koҫyiğit et al., 1999; Bozkurt and Sözbilir, 2004; Buscher et al., 2013). 

 

4.5: WHY CALCULATE THROW RATE OVER THE LAST 2 MYR? 

This research derives values for vertical throw rates on the active graben 

bounding high-angle normal faults on the southern and most actively deforming 

margin of the Gediz Graben. This study specifically seeks to initially quantify the 

vertical throw component of fault movement rather than total slip displacement 

on the fault plane. That is because the throw component of fault movement is 

the significant influencing factor on knickpoint migration and will enable the 

comparison of fault movement to landscape evolution through river systems 

(see section 3.4 and 3.5 for a review of the literature), and throw fundamentally 

builds relief and topography. In order to compare the rates of fault movement in 

the Gediz Graben with other high-angle normal fault arrays where there only 

slip rates have been produced the quantified throw rates have also been 

converted to slip rates. 

The time phase 2 high-angle faulting (2 – 0 myr) in the Gediz Graben, 

dominated by high-angle normal faulting is likely to have resulted in a higher 

rate of topography building over a 2 myr time scale compared to the preceding 

low-angle phase. High-angle normal faults result in a much larger uplift 

component of movement than low-angle normal-faults and so can have a 
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greater impact of the landscape over similar and even shorter time scales than 

low-angle faults even at slower slip rates.   

There are significant differences in the field measurements of the dip of 

the two fault types, dip is approximately 15° for the low-angle faults and around 

40-60° for the high-angle faults in the Gediz Graben (Koҫyiğit et al., 1999; Çiftçi 

and Bozkurt, 2009a; Oner and Dilek, 2011; Buscher et al., 2013). Despite the 

differences in length of activity for the high- and low-angle faults, around 2 myr 

and 14 myr respectively, it is likely that the phase of high-angle normal faulting 

has created significant topography within the graben. It is also likely that the 

activity of the high-angle normal faults is responsible in large part for the 

present day form of the graben.  

The present day activity on the main graben boundary fault is less well 

constrained than the episode of low-angle faulting. There has been some work 

that has attempted to provide some constraint, including the structural and 

sedimentological studies of Oner and Dilek (2011) and the radiometric dating of 

Buscher et al. (2013). The spatial distribution of early continental deposits in the 

hanging wall of the low-angle detachment indicates that high-angle normal 

faulting has shifted progressively northwards, giving a possible post early-

Pleistocene (~700 Ka) age for development MGBF.  

As there is uncertainty over the period of activity for the MGBF and the 

OHANF (see figure 2.6), and limited means by which throw can be estimated in 

all locations along the entire fault array the method used (see following 

sections) will need to be pragmatic and take an overall value of relief on the 

range in order to gauge throw rates. This means that the rate will need to 

encompass all activity on high-angle normal faulting over the last 2 Myr, as 

without constraints on the timing of both arrays it will not be possible to 
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determine the proportion of relief build by movement on the MGBF and the 

OHANF. This will by necessity create rates over the whole 2 myr history of high-

angle normal faulting.  

The last 2 myr is an appropriate time over which to evaluate fault 

movement when comparing to rivers currently responding to faulting. 1 – 3 myr 

is time it thought to be the time taken for bedrock rivers to fully respond to 

faulting through the whole river system (Miller et al., 2009; Whittaker and 

Boulton, 2012).   

4.6: METHODS 

As the amount of data available for the calculation of throw rates varies 

along strike, the pragmatic method used to calculate throw rates take 

advantage of various pieces of information at different stages. A flow diagram 

(figure 4.9) has been created to summarise the steps of the method.    

4.6.1: CROSS-SECTIONS 

Initially the geophysical survey information (Ҫiftҫi, 2007 [figure 4.6]) was used in 

conjunction with structural and field verified published geological mapping 

(Ediger et al., 1996; Seyitoğlu and Scott, 1996; Şan, 1998; Çiftçi and Bozkurt, 

2009a; Çiftçi and Bozkurt, 2010; Oner and Dilek, 2011 [figure 4.5]) to construct 

cross-sections in the eastern areas where all three sets of information were 

available. The lithologies were mapped onto the topography using the structural 

and geological maps of the Gediz Graben (Ҫiftҫi, 2007; Çiftçi and Bozkurt, 

2009a; Oner and Dilek, 2011 [figures 4.5) and the dips (figure 4.5) and unit 

thicknesses (Ҫiftҫi, 2007; Oner and Dilek, 2011 [see section 2.6]) were used to 

propagate the units into the subsurface. Six cross-sections of the southern 
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bounding margin of the Gediz Graben were constructed (figure 4.9 step 2)  in 

the east of the graben (figure 4.10 and 4.11).  

  

Figure 4.9: A flow diagram that summarises the methods used to calculate the time 
averaged throw rates along strike. The flow diagram distinguishes between areas 
when geophysical and bore hole data is supported by detailed mapping, and areas 
when DEM data and low-resolution mapping is available. The black box 
summarises the method and the red box details the product of that step. The joining 
lines show what type of data and which portion of the along strike is used step.  
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Figure 4.10: A map showing the cross-sections and swath analysis locations. This map 
shows the six cross-sections (A-F) created from structural, stratigraphic and 
geophysical evidence. It also shows the 5 km wide areas used for swath analysis, the 
red box shows the area of DEM that was used in the swath analysis for each section 
(1-20). 
 

Using stratigraphic piercing points on the cross-sections within the 

sedimentary units of the syn-tectonic sediments, the amount of throw on the 

Turgutlu, Salihli and Alaşehir strands of the fault array within the southern 

graben margin have been calculated (figure 4.9 step 3). Throw was measured 

on the MGBF and the OHANF using piercing points. The method is illustrated 

on cross-sections B and F (figure 4.11). The piercing points for the vertical 

measurements were the base of sedimentary formations which were the most 

confidently mapped. The values provide a pragmatic quantification of 

cumulative footwall uplift on phase 2 high-angle normal faults over the last 2 

myr. 
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Figure 4.11: Cross-sections A – F constructed using published and field-checked 
structural information from; (Çiftçi and Bozkurt, 2009a; Çiftçi and Bozkurt, 2009b; 
Oner and Dilek, 2011) and sub-surface seismic from Çiftçi (2007). Stars indicate 
the piercing points used to determine throw and displacement on the outer and 
main graben boundary faults.  The location of each cross-section is shown in figure 
4.10. The yellow lithology is the Quaternary graben fill. Black stars show 
measurement on GBNF and white stars show the measurement on the OHANF. 
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4.6.2: THROW RATES ALONG THE ENTIRE LENGTH OF THE GRABEN 

BOUNDING FAULTS  

 To provide a high resolution throw rate data set over the whole of the 

graben bounding range, the available DEM imagery and structural and 

stratigraphic mapping data was used in conjunction with the measurements of 

throw gained from cross-section analysis (table 4.1) to expand the data set to 

areas without geophysical data. The total throw values were compared to 

values of footwall uplift derived from measurements of topographic relief 

obtained by swath analysis.  

A 30 m ASTER DEM of the southern bounding range of the Gediz 

Graben was divided up into a series of twenty north-south oriented swaths of 5 

km width (figure 4.10). The maximum elevation of the syn-tectonic sedimentary 

rocks formations was then extracted along each swath profile to produce the 

relief (the elevation difference between the graben floor and the summit 

elevation) for each of the twenty swath sections (figure 4.9 step 4). 

A swath analysis allows for extraction of the relief of a mountain range 

and this study uses relief to gain information footwall uplift. Footwall uplift is a 

component of total throw on the normal faults, which is made up of a 

combination of footwall uplift and hanging wall subsidence. Subsequently the 

value of relief cannot be used as a direct proxy for total throw on the normal 

faults, but can be used as a proxy for footwall uplift. One caveat of this 

pragmatic method is that conventionally footwall uplift and hanging wall 

subsidence are defined relative to a non-moving datum. In this study such a 

datum is not practical and so graben valley floor level is used. This will level will 

naturally adjust through time due to deposition in the hanging wall, producing 

small variation over time and through space through the times used. But as this 
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is a pragmatic method an awareness of this possibility is required but it does not 

negate the potential usefulness of the method.   

It is a realistic assumption to suggest that any elevation above the 

regional valley level is due to uplift processes and it is reasonable in a location 

of active uplift to estimate this value using the relief above the valley floor. This 

method of quantifying footwall uplift has a possible source of error in that it does 

not account for denudational processes within the range, although this should 

not cause large inaccuracies as the erosion within the bounding range is 

concentrated within the river valleys rather than the highest areas of elevation 

(Willgoose et al., 1991). A river with increased stream power leads to greater 

erosion within the river channel, and within the relatively unstable over 

steepened hillslopes caused by the downward incision (Willgoose et al., 1991). 

The high elevation areas that do not become included in the river induced 

hillslope remain relatively stable undergoing slower erosion and denudation, 

remaining at higher elevations.  

The most significant decision that had to be made was, given there is a 

two stage history of graben formation, what is what the most appropriate relief 

to extract via the swath is for this investigation? One option was to extract the 

total relief of the Bozdağ Range (the bounding range), to the highest 

topography. The alternative was to divide the graben margin into two areas 

based upon whether low- or high-angle faulting was dominant in creating the 

present topography(figure 4.8). The total range relief represents a combination 

of vertical movement caused by the low- and high-angle faulting. The 

alternative, which will be used in this study is to consider the hangingwall of the 

low-angle normal fault, the location of the significant high-angle faulting and 
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syn-tectonic sediment accumulation. The relief of the uplifted sediments will be 

the best option to isolate the uplift on the high-angle faults (figure 4.8).  

As the aim of this study is to quantify rates of phase 2 high-angle normal 

faulting over the last 2 myr this study uses the relief of the sediment packages 

uplifted by the high-angle normal faults; taking the relief from the metamorphic 

rocks in the higher elevations would yield an overestimate of footwall uplift as it 

incorporates the additional uplift caused by the slip of the low-angle detachment 

over a longer period of time.  

The total throw values derived for the six cross-sections were then 

analysed with the footwall uplift values for the swath sections in which the 

cross-section lie (figure 4.9 step 5). Assuming that relief is a good proxy for 

footwall uplift over this time period, the ratio of footwall uplift to hangingwall 

subsidence, and the ratio of footwall uplift to total throw can then be calculated 

for each cross-section and swath analysis pair (c.f. Whittaker and Walker, 

2015). Previous research suggests that ratios of footwall uplift to hangingwall 

subsidence may vary between areas (e.g. Papanikolaou et al., 2010). For 

example, Papanikolaou et al. (2010) found a 1:3 footwall uplift to hanging wall 

subsidence ratio in Lazio-Abruzzo, Italy, using differential SAR Interferometry 

and GPS recordings from nearby field GPS stations. On the Xylokastro Fault in 

the Gulf of Corinth ratios of between 1:3 and 1:4 have been determined using 

plate models by Armijo et al. (1996).  Similar values of 1:3 were found for faults 

in the Sperchios Graben in central Greece (Whittaker and Walker, 2015). 

The average ratio for the Gediz Graben was 1:4 as derived from the 6 

cross-sections, which falls within the range of previous estimates. Additionally, if 

footwall relief were largely controlled by denudational processes, it would 

expected that the ratio of throw would vary considerably along strike, with very 
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high values obtained where cumulative throw is large but topography 

erosionally-limited (c.f. Densmore et al., 2004). The data do not show this, we 

therefore concluded that footwall relief in the Alaşehir fault segment is recording 

the variation in fault throw along strike with an acceptable degree of fidelity, and 

therefore this averaged ratio is used to estimate total throw along the MGBF 

along strike from the cross-section data. 

 The ratios for all six pairs were then averaged (figure 4.9 step 6) and 

using the footwall uplift to total throw ratio it was possible to work out the total 

throw from only the footwall component of vertical movement. 

 The cross-section method for analysing fault throw rates is considered 

one of the most accurate techniques for quantifying displacement rates over 

several million years when based upon precise and accurate data (Cowie and 

Roberts, 2001). Therefore the results from the analysis of the six cross-sections 

in the eastern Gediz Graben and the ratio calculated from them in combination 

with footwall data derived from imagery analysis can be considered a useful 

numerical device to access fault throw rates in the areas of the graben without 

2D seismic reflection surveys.  

 

4.6.3: EXTRACTING DATA FROM AREAS WITHOUT 2-D SEISMIC SURVEY 

DATA 

 The derived footwall uplift-total throw ratio was then used in conjunction 

with the footwall uplift component to derive the hangingwall subsidence and 

therefore the total throw on the normal faults for all twenty swath sections along 

the southern bounding range (figure 4.9 step 7). By using the ratio and the 

footwall component it was possible to calculate a value for the hanging wall 

subsidence using the swath extracted footwall uplift, to get total throw value for 
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each swath location. After throw values were derived for each swath location 

the throw rate was calculated using a time span of 2 myr. 

To then facilitate comparison to other areas where only a slip rate data is 

available rather than the vertical throw the derived throw values for the Gediz 

Graben were converted to give the slip and slip rate values on the faults in 

those swath locations (table 4.1). Slip rate data was measured for the six cross-

section locations but a method was required that would give values in each of 

the 20 locations calculated in a uniform way. The method used was 

documented in Nicol et al. (1997) where they state that throw on a fault is on 

average 75% of the slip on the same fault.  

 

 
outer 
fault 

error MGBF 
throw 

(m) 

error total 
throw 

(m) 

error footwall 
from 

swath 

FW:TOTAL THROW RATIO FW : HW RATIO 

- + - + - + 
 

min max 
 

min max 

a 950 200 150 700 50 75 1650 250 225 541 3.0 2.6 3.5 2.0 1.6 2.5 

b 1400 75 100 1250 50 80 2650 125 180 618 4.3 4.1 4.6 3.3 3.1 3.6 

c 1800 100 75 1650 25 50 3450 125 125 472 4.8 4.6 4.9 3.8 3.6 3.9 

d 1250 200 100 1200 50 75 2450 250 175 290 3.8 3.4 4.1 2.8 2.4 3.1 

e 1000 150 50 800 50 50 1800 200 100 618 3.7 3.3 3.9 2.7 2.3 2.9 

f 1800 50 150 1500 50 100 3300 100 250 487 4.8 4.6 5.1 3.8 3.6 4.1 

          
average 4.1 3.8 4.3 3.1 2.8 3.3 

 

Table 4.1: Throw data derived from the analysis of cross-sections A - F. All data is 

provided in meters. 

4.7: RESULTS AND DISCUSSION 

4.7.1: THROW ON THE HIGH-ANGLE NORMAL FAULTS 

Using the cross-section method (outlined in section 3.6.1) the total throw 

on the high-angle normal faults that have been active over the last 2 myr was 

quantified in six locations in the east of the graben. The method used piercing 

points for the vertical measurements defined by the base of sedimentary units 
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available in the footwall and hangingwall of the faults. Table 4.1 shows throw 

values and subsequently derived throw rates for the total high-angle normal 

fault throw in the Bozdağ range at each cross-section location over 2 myr. Total 

throw measured on the cross-sections ranges between 2000 m and 3900 m. Of 

this total the outer high-angle normal fault in each cross-section has 

accumulated the largest throw value.  

The errors on the throw values (Table 4.1) were quantified by measuring 

the possible vertical differences of distance between piercing points caused by 

slight dip variation and unit thickness variations, based on the unit thicknesses 

as described in the literature (e.g. İztan and Yazman, 1990; Ediger et al., 1996; 

Tahir, 1996; Seyitoğlu and Scott, 1996; Koçyiğit et al., 1999; Çiftçi and Bozkurt, 

2009b; Sen and Seyitoğlu, 2009; Oner and Dilek, 2011). This gives vertical 

errors of between + 425 -175 m and – 250 m -100 m on the total throw 

amounts.  

 

4.7.2: FOOTWALL UPLIFT VALUES ALONG STRIKE 

The swath analysis method outlined in section 4.6.2 was used in 

conjunction with constraints calculated from the cross-sections to quantify 

footwall uplift in 20 locations along the high-angle normal faults in the graben 

(figure 4.10). Relief of the uplifted syn-tectonic sedimentary units within the 

graben margin varies from 217 m to 724 m with two distinct sections to the 

range, the western third of the range contains the majority of the lower relief 

areas with higher relief to the east. 

The eastern 80 km of the range has swath profile reliefs that vary 

between 420 m and 697 m while the western 45 km has a relief values ranging 

from 244 m to 420 m at the westernmost extent. Figure 4.10 shows that the 
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relief and therefore footwall uplift generally increases from west to east, with 

higher uplift values in the central area of the range and continuing towards the 

eastern extent, then decreases further to the east. When the three active 

graben-bounding normal fault segments are displayed with footwall uplift values 

(figure 4.12 and Table 4.1) there is an overall trend to higher footwall uplift 

values in the centre of the range within the Salihli Segment with the lowest 

values on the Turgutlu fault segment. Uplift values fall to lower values at the 

edges of the fault segments, although they do not fall to zero, this is particularly 

notable where the Salihli fault segment ends and the Alaşehir segment begins, 

at 80 km along strike of the range.  

 

 

Figure 4.12: Graph showing the relief of the Bozdağ Range. This graph shows the 
range relief as a proxy for the footwall uplift component of total vertical throw. 
Superimposed onto the graph by vertical lines are the three mapped fault segments. 
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4.7.3: TOTAL THROW VALUES ALONG STRIKE 

Using the values of footwall uplift and the total throw value derived from 

the cross-sections a footwall uplift to hanging wall subsidence ratio of 1:3 (+/-0.3) 

was produced. Previous research, discussed in chapter 2 (section 2.4.1) 

suggests that ratios footwall uplift to hangingwall subsidence may vary 

significantly between areas (e.g. Papanikolaou et al., 2010) but the ratio for the 

Gediz Graben falls within previous estimates. In addition to the footwall uplift to 

hangingwall subsidence ratio it was also possible to calculate an average 

footwall uplift to total throw ratio of 1:4 (+/-0.3) using the cross-sections.  

Fault 
seg. 

Swath 
no. 

Cross-
sect. 

Distance 
along 
strike 
 (km) 

Footwall 
relief 
(m) 

Total 
 throw 
using  
1:4.1 
ratio 

Throw 
Rate 

mm/yr 
using 

2.6myr 

Throw 
Rate 

mm/yr 
using 
2myr 

Displacement 
(m) 

Slip 
rate 

(over 
2ma) 

 
1 

 
3.4 295 1209.5 0.47 0.60 1612.7 0.81 

 
2 

 
8.7 342 1402.2 0.54 0.70 1869.6 0.93 

 
3 

 
14.5 290 1189 0.46 0.59 1585.3 0.79 

T 4 
 

19.7 398 1631.8 0.63 0.82 2175.7 1.09 

 
5 

 
24.7 348 1426.8 0.55 0.71 1902.4 0.95 

 
6 

 
29.8 437 1791.7 0.69 0.90 2388.9 1.19 

 
7 

 
35.3 217 889.7 0.34 0.44 1186.3 0.59 

 
8 

 
40.4 354 1451.4 0.56 0.73 1935.2 0.97 

 
9 

 
45.7 424 1738.4 0.67 0.87 2317.9 1.16 

 
10 

 
50.3 483 1980.3 0.76 0.99 2640.4 1.32 

 
11 

 
55.6 625 2562.5 0.99 1.28 3416.7 1.71 

S 12 
 

60.3 694 2845.4 1.09 1.42 3793.9 1.90 

 
13 

 
65.3 646 2648.6 1.02 1.32 3531.5 1.77 

 
14 

 
70.3 724 2968.4 1.14 1.48 3957.9 1.98 

 
15 E 75.4 618 2533.8 0.97 1.27 3378.4 1.69 

 
16 F 81.2 487 1996.7 0.77 1.00 2662.3 1.33 

 
17 C 86.3 472 1935.2 0.74 0.97 2580.3 1.29 

A 18 B 91.9 618 2533.8 0.97 1.27 3378.4 1.69 

 
19 A 100 541 2218.1 0.85 1.11 2957.5 1.48 

 
20 D 110 290 1189 0.46 0.59 1585.3 0.79 

 

Table 4.2: Throw and slip rate data for the 20 along strike swath sections of the 
Bozdağ Range, Gediz Graben. The Fault segments (fault seg.) labelled are Turgutlu 
(T), Salihli (S) and Alaşehir (A). Slip calculated from throw values using the  Nicol et al. 
(2007) assumption of throw being 75% of slip on the same fault. 
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After derivation of the average 1:4 ratio the footwall uplift values for all 20 

swath sections were converted to total throw values (Table 4.2). The total throw 

values share the same along strike trends as the footwall uplift; the maximum 

throw value at the centre of the Salihli fault segment is 2968 m, with values 

decreasing to zero at the eastern and western extremes of the range, but not at 

the locations of fault tips internal to the whole fault array. 

 

Figure 4.13: Throw rates for the high-angle normal faulting in the southern graben 
margin. The throw rates in mm/yr have been divided according to fault strands mapped 
from the 30m ASTER imagery. The errors are based upon a maximum of 10% variation 
in total throw over 2 myr. 

 
 

 The throw values have three peaks, located at approximately the centre 

of each fault segment with an overall peak within the centre of the fault array. 

The largest throw value of 2968 m is found within the Salihli fault segment 

around 70 km along the Bozdağ Range, additional segment peaks of 1790 m 

for the Turgutlu Segment and 2533 m for the Alaşehir Segment have been 

identified at around mid-way along each segment. It is notable that the peaks 



144 
 

within the Turgutlu and Alaşehir segments tend to lie off centre of the strand 

towards the direction of the Salihli segment in the centre of the array.  

Throw rates calculated over 2 myr using the derived total throw rate vary 

between 0.4 ± 0.04  and 1.5 ± 0.15 mm/yr (figure 4.13) at the 20 locations along 

strike. The throw rates are at a minimum towards the edge of the range with 

rates lying within the 0.4 – 0.6 mm/yr range. The swath sections in a more 

central location along the mountain range have higher values and can reach 

values around three times those in the more peripheral swath sections with 

central swath sections lying on the Salihli fault segment yielding throw rates 

ranging from 0.7± to 1.5 ± 0.15 mm/yr. There is a maximum throw rate value 

within each fault segment of 0.9 ± 0.17 mm/yr for the Turgutlu Segment, 1.5 ± 

0.15 mm/yr for the Salihli Segment and 1.3 ± 0.12 mm/yr for the Alaşehir 

Segment.  

 

4.7.4 SLIP VALUES CALCULATED FROM THE DERIVED THROW DATA 

 Slip values calculated using the Nicol et al. (1997) method range 

between 1186 m and 3957 m along strike. The values for each of the 20 

locations are documented in table 4.2 along with calculated slip rates which 

range from 0.6 mm/yr to 2.0 mm/yr. Overall the slip rates are less in the western 

extent of the graben margin and higher from the centre to the east, the Turgutlu 

Segment has an average slip rate of 0.9 mm/yr, the Salihli Segment has an 

average slip rate of 1.5 mm/yr and the Alaşehir Segment was calculated to slip 

at an average rate of 1.3 mm/yr.  
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4.7.5: THE RATES OF THROW AND SLIP AND HOW THEY COMPARE TO 

RATES OF MOVEMENT ON OTHER FAULT ARRAYS 

The throw rates of between 0.4 and 1.5 mm/yr for the whole of the Gediz 

Graben southern margin when calculated over each of the three fault strands 

give average throw rates for the Turgutlu Salihli and Alaşehir fault segments of 

0.7 mm/yr, 1.2 mm/yr and 1.0 mm/yr respectively. When these values are 

compared to measurement of throw rate on faults from Italy and Greece they fit 

well within the range of throw rates other studies. Normal faults within the Lazio-

Abruzzo Apennines in Italy yield calculated throw rates in the range of 0.4 – 2 

mm/yr (Roberts and Michetti, 2004) while Papanikolaou et al. (2007) produced 

throw rates of 0.4 – 3 mm/yr for the same area.  

Throw rates of 0.1 – 0.28 mm/yr were calculated for the area between 

the Xilokastro and South Alkyonides Fault Segments in the Gulf of Corinth over 

the last 126 kyr as constrained by raised-beach-shoreface sediments 

(Morewood and Roberts, 1997). Fault slip rates from the centre of fault 

segments in the Gulf of Corinth range from 1 mm/yr (Pantosti et al., 1996) to 8 

mm/yr (Armijo et al.,1996). Morewood and Roberts (1997) have suggested that 

the higher rates of slip derived in the Gulf of Corinth are an over estimations 

due to the effects of localised warping of the surrounding rock being included in 

the rate quantification. 

Throw rate data has been quantified in other Turkish graben systems, 

within the Hatay Graben, eastern Turkey the normal faults have a present-day 

maximum throw rate of 0.4 – 0.5 mm/yr (Boulton et al., 2006; Boulton and 

Whittaker, 2009). The values for time averaged normal fault throw within the 

Gediz Graben therefore fall within the expected range of rates for vertical throw, 

they also appear to be 2.5 times higher than those in the Hatay Graben.  
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Nicol et al. (1997) have stated that up until around 1990s quantification of throw 

and slip rates on faults was mainly concentrated on neotectonic faults with rates 

averaged over time scales of 200 kyr or less (Wallace, 1984; McCalpin, 1985; 

Coppersmith and Youngs, 1989; Nicol et al., 1997). McCalpin (1985) calculated 

the rate of slip rate on normal faults and the results of the studies on faults over 

200 kyr lie between 0.01-1.61 mm/yr (McCalpin, 1985). The results of a variety 

of slip and throw rate studies that calculated the rate over approximately 200 kyr 

time periods are variable and was assumed that this would be true of results for 

older time averages as well (Nicol et al., 1997). Nicol et al. (1997) go on to 

conclude that over time scales of 1 - 40 myr the long-term normal fault throw 

and slip rates are markedly more stable than those of the short-term estimates. 

This has implications for the new data presented in this study as the new throw 

rate data should be a reliable source from which seismic hazard can be 

assessed.  

 

Figure 4.14: A graph showing the relationships between, time elapsed, displacement 
and slip rate for a variety of fault arrays taken from Nicol et al. (1997). The values for 
the Turgutlu, Salihli and Alaşehir fault segment of the Gediz Graben have been added. 
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Nicol et al. (1997) have published data that shows the elapsed time 

plotted against maximum slip for 86 faults from six regions on a log–log plot 

(figure 4.14), slip rates on the fault surfaces vary according to the location of the 

fault and with fault size. Slip rates for individual faults in their study is ~ 0.004 -      

1.2 mm/yr. The values for slip rate that were calculated from the throw rate data 

for each of the Turgutlu, Salihli and Alaşehir fault segments have been added to 

the data set (figure 4.14) with slip rate values of 0.9, 1.5 and 1.3 mm/yr 

respectively the fault segments fall towards the higher slip rate values for the 

Aegean region data points with a horizontal linear trend. The data for the Gediz 

Graben does appear to be similar, if a little higher than the data from the Basin 

and Range Province, which is a comparable tectonic setting. According to Nicol 

et al. (1997) data distributed along a line parallel to the displacement axis 

(horizontal) indicates a direct relation between fault size and slip rate. This 

relationship appears to hold true for the Gediz Graben and general Aegean 

region showing that in general larger faults with greater slip values tend to have 

a higher slip rates than smaller faults.  

In addition to the direct comparison of slip and throw rates the 

relationships between maximum displacement (D) and fault length (L) can also 

be evaluated. For the Turgutlu segment the D/L ratio is 0.033, for the Salihli 

Segment is it 0.084, and for the Alaşehir Segment the D/L is 0.080. These 

values lie firmly within the range of D/L expected from normal faults (e.g. Yin 

and Groshong 2006). This suggests that the pragmatic methods used to 

quantify throw rates have been reasonably successful in accomplishing that aim. 
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4.7.6: ALONG STRIKE TRENDS IN THE GEDIZ GRABEN  

The Gediz fault array is 124 km long with the longest fault segment being 

the central Salihli segment, at 47 km in length, the Alaşehir segment has a 

length of 42 km, and the shortest segment is the Turgultu segment at 35 km in 

length. As has been previously discussed (section 2.4.3) the highest values of 

throw should be found near the centre of the fault while the throw should reduce 

to zero at the fault tips (e.g. Barnett et al., 1987; Cowie and Roberts, 2001; Kim 

and Sanderson, 2005).  

The Salihli segment exhibits the largest throw values of any of the fault 

segments with the largest towards the central region reaching throw values of 

2284 - 2968 m centrally and to the east of centre along the segment. The 

smallest values for throw on the Salihli Segment are located at the fault tips but 

do not reduce to zero.  

Within the Alaşehir Segment of the fault there is a peak in the throw rate 

in the central third of the fault segment and similarly to the Salihli Segment the 

minimum values are at the end of the fault segment. There is reduction of throw 

to zero to the eastern fault tip but the western end of the fault has a non-zero 

value. The Turgutlu Segment shows broadly the same trends but with more 

variation on the throw values along the segment length. There are a series of 

peaks to the data with a maximum value of 0.69 mm/yr lies off-centre, closer 

towards the Salihli segment of the fault array. There is a zero value for throw at 

the western fault tip and a non-zero value for throw at the eastern end of the 

fault strand near to the western extent of the Salihli segment.  

This distribution of throw value magnitudes along strike of the fault 

segments is in agreement with the research on fault length and throw scaling, 
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(section 2.4.3) although there is an absence of zero throw values at the ends of 

segments where the fault lies next to another segment. 

It is well documented that in areas of extension, large faults form through 

the linkage of smaller faults in an array (e.g. Walsh and Watterson, 1988; Nicol 

et al., 1997; Hancock, 1994; Gawthorp et al., 1997; Cowie, 1998; Gupta and 

Scholz, 2000; Roberts and Michetti 2004) and research has suggested that 

linked faults towards the centre of the array should have higher throw rates than 

those peripheral in the fault array (e.g. Roberts and Michetti, 2004). The trend in 

the data for the Gediz Graben across the whole 124 km fault array is that the 

highest values for throw rate are found towards the centre of the fault array at 

around 60-75 km along strike; the highest value of 1.48 mm/yr is found 72 km 

along strike, within the centre third of the fault array. Linkage of the fault strands 

is supported by the non-zero throw and throw rate values at both tips of the 

central Salihli segment (figure 4.13 and table 4.2) suggesting the all three fault 

segments are linked, causing the Gediz high-angle normal fault array to have 

grown in steps caused by the linkage events. A relay ramp has been observed 

in the locations of suggested linkage between the Turgutlu and Salihli fault 

segments (Ҫiftҫi, 2007). The fault array also has an along strike bend of 

approximately 40° from east to west, which adds additional support for the 

linkage of the fault segments which bound the modern topographic graben as 

curvature would result from the linkage of two faults that were not completely 

parallel (Fossen, 2010) .  
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Figure 4.15: Fault growth models illustrated by the relationship between length and 
displacement on faults over time: (a) Constant length to maximum displacement ratio. 
(b) Increasing length to maximum displacement ratio. (c) Constant length model. (d) 
Fault linkage model, which is the likeliest mode of growth for the Gediz Graben fault 
array. Models adapted from Kim and Sanderson (2005); Walsh et al. (2002); Kim et al. 
(2000); Cartwight et al. (1995); and Peacock and Sanderson (1991). 
 

 

If the faults in the Gediz Graben are linked it appears that they may not 

have been linked for long as the fault segments still maintain individual peaks 

while having the central and most significant array throw peak. Research 

suggests that as faults undergo linkage the maximum rates of throw on the 

previous independent faults shift towards the new centre of the soft linked fault 

array (Cowie, 1998; Roberts and Michetti 2004; Kim and Sanderson, 2005 

[figure 4.15]). As faults link there would be a gradual complete convergence of 

the maximum throw rate to the centre of the new longer fault (Kim and 

Sanderson, 2005) erasing the evidence of segment peaks over time. 

 These data from the Gediz Graben suggests that the fault segments 

acted independently before a linkage event that occurred at a time between 2 

myr to present. The data shows the typical pattern of fault linkage, the overall 

central peak in throw and throw rate.  

 



151 
 

4.7.7: IMPLICATIONS FOR SEISMIC HAZARD ANALYSIS IN THE GEDIZ 

GRABEN  

The observations of the Gediz Graben area indicate that faulting is still 

active with the well-developed modern topographic graben abruptly meeting 

significant uplift of the graben margin, with recent alluvial fan formation and 

faceted spurs (Çiftçi, 2007; Oner and Dilek, 2011). The calculated slip rates also 

suggest that the high-angle normal faulting has been ongoing at a fairly high 

rate for active normal faulting for the last 2 myr. The occurrence of large 

earthquakes such as the 6.9 magnitude Alaşehir earthquake in 1969 indicates 

that large earthquakes occur. Seismic hazards associated with active normal 

faulting are commonly mapped using instrumental and historic records of 

seismicity (Robets and Michetti, 2004). Several researchers have suggested 

that this method may not be an accurate indicator of present or future seismic 

hazard. Clarke et al. (1997) state that relative or complete seismic quiescence 

is not a reliable indicator for future activity in an area and Roberts and Michetti, 

(2004) support this view giving the reason that the historical and instrumental 

record fails to take into account the fundamental determinant of seismic hazard. 

Cowie and Roberts (2001) have specified that earthquake recurrence intervals 

tend to decrease as slip rate increases, this means that significant information 

useful to analysis of seismic hazard comes from a high resolution record of the 

rates of fault movement. Cowie and Roberts (2001) go further to say that 

seismic hazard can vary along the length of a fault array based upon the 

magnitude of fault throw along strike. The implications of this are that in order to 

provide a useful assessment of seismic hazard complete with spatial variation, 

a high resolution record of throw rates in a number of locations along strike of 

the fault array is needed (Roberts and Michetti, 2004). This study therefore 
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provides a higher resolution indication of seismic hazard than has previously 

been published for the Gediz Graben. 

Construction of a detailed seismic hazard map for the Gediz Graben is 

beyond the scope of this thesis but the Republic of Turkey Disaster and 

Emergency Management Presidency have prepared an earthquake zoning 

hazard map of Turkey (figure 4.16). It is possible to calculate the maximum 

magnitude of an earthquake in the Gediz Graben to compare to their mapping. 

The maximum magnitude for a fault can be calculated using surface rupture 

length. Between one half and one third of the total length of the fault is thought 

to rupture in a seismic event  (Mark, 1977).  

 

 

Figure 4.16: The earthquake zoning map of Turkey produced by the Republic of 
Turkey Disaster and Emergency Management Presidency (AFAD). 

 

Following Wells and Coppersmith (1994), the moment magnitude (Mw) 

this can be expressed, for a normal fault, as  

 

http://www.sciencedirect.com/science/article/pii/S0169555X08004054#bib38
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Mw=4.86+1.32logL    (eq. 4.1) 

 

where L is fault rupture length (in km). 

The fault array that bounds the Gediz Graben is linked in two areas along 

strike with three segments of around 40 km in length, giving a total length of 120 

km. A rupture that occurs along the whole of one of the 40 km segments would 

produce an earthquake of predicted magnitude 6.9. If the rupture was to occur 

over one half to one third of the segment this would produce an earthquake with 

predicted Mw of 6.3 to 6.5. As the fault segments have linked it is possible that 

the fault array could act as one longer fault of 120 km. If the whole of the array 

were to rupture the predicted Mw is 7.6. A rupture of one half of the array, 60 

km, would produce a predicted Mw of 7.2.  A rupture of on third of the array (40 

km) would be expected to produce an earthquake with Mw of 6.9. It is also 

possible that because the sedimentary units of the Gediz Graben are fairly 

unconsolidated the effects of an earthquake would be increased in these areas. 

The Gediz Graben and surrounding region have experienced some large 

earthquakes over Mw 5.0 in the last twenty five years (Eiodogan and Jackson, 

1985; Buscher et al., 2013), including a destructive earthquake of magnitude 

6.9 in 1969, (Arpat and Bingol, 1969). Another earthquake occurred within the 

Gediz Graben in March 1970, this earthquake had a magnitude of 7.2 and left 

thousands homeless and over 1000 people dead, it lead to the total relocation 

of the village of Gediz (Mitchell, 1976). The historical evidence supports the 

magnitude prediction with documented earthquakes ranging from 5 – 7.2 Mw. 

The calculated possible magnitude for earthquakes within the Gediz Graben 

does suggest significantly that an even larger earthquake could occur if enough 

of the fault length ruptured.  
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4.8: CONCLUSIONS 

These new data show that in the Gediz Graben the throw rates vary from 0.4 

to 1.2 mm/yr along the fault array as this is mirrored by the relief. The graben 

bounding faults have undergone a two stage history with a change in the throw 

rate at a period of fault linkage at two locations around 40 and 65 km along 

strike of the fault, which has increased the rate of movement in locations along 

on the high angle normal faults.  

These results are important as they not only provide novel quantification of 

throw rates of the bounding faults of the southern margin of the Gediz Graben, 

providing greater insight into the active tectonics of the area, but it also 

highlights the potential impact to studies of past tectonics of the use of 

geomorphic data alongside the traditionally used geological data. The key point 

arising from this study is that currently available geological data on its own does 

not give much information about the graben tectonics and how they change 

through time. By combining geologic data with the geomorphic data from 

topographic studies more data about the active faulting within the Gediz Graben 

has been produced and quantified.  
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CHAPTER 5 

OSL DATING OF MAPPED RIVER TERRACES TO EXTRACT MODERN DAY 

INCISION AND THROW RATES 

 

5.1: CHAPTER HIGHLIGHTS 

 Fluvial terraces were examined along three rivers draining the southern 

margin of the Gediz Graben; within these river valleys, terraces were 

found at 6 elevations (T1 – T6 terrace levels) above the present channel. 

 OSL sampling reveals that aggradation of the terraces in the T4 Gediz 

Graben likely started around 84 kyr T4 terrace, with OSL dates yielding 

ages of between 83.79 ± 7.19 – 7.06 ± 0.59 kyr. 

 These data produce incision rates of between 0.24 – 3.96 mm/yr, 

although the 0.24 ±0.02 mmy/yr rate is likely to be the most 

representative incision rate and the use of the other ages is likely to 

overestimate the incision rates.   

 

5.2: INTRODUCTION 

This chapter studies the fluvial terraces within the southern margin of the 

Gediz Graben. The terraces documented along the rivers within the Bozdağ 

Range appear in flights of different elevations above the current elevation of the 

river channel, this suggests that the river may be responding to tectonic activity, 

as well as climatic variables. This chapter assigns ages to the some of the 

terraces observed along three different rivers draining the range using optically 

stimulated luminescence (OSL) dating and provides relevant river terrace 

mapping. These age data are then combined with measurements made in the 
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field relating to terrace heights, combining these variables enables rates of 

incision to be quantified. Incision rates have been used to estimate recent, 

short-term, uplift rates associated with graben bounding high-angle normal fault 

in those locations valid over 15 Kyr.      

 

5.3: BACKGROUND INFORMATION ON RIVER TERRACE STUDIES  

River systems are among the most important geomorphic agents in the 

landscape (Vandenberghe and Maddy, 2001), as they preserve records of 

environmental changes, geology, geomorphology, climate, hydrology, 

vegetation and tectonics (Schumm, 1977; Blum and Törnqvist, 2000; Rittenour, 

2008). The fluvial deposits of these rivers therefore act as potential archives for 

changes in climate and tectonics (Wallinga, 2002a; Rittenour, 2008). As rivers 

are such important agents of change in the landscape, and produce archival 

deposits, it is unsurprising that fluvial sediments receive a lot of attention from 

geologists, sedimentologists, geomorphologists and geographers (Wallinga, 

2002a).  

 

5.3.1: RIVER TERRACES 

Fluvial terraces (figure 5.1) are common landforms found around the 

world, located on the flanks of river valleys in a wide range of tectonic and 

climatic settings (Bull, 1991; Westaway et al., 2009; Stokes et al., 2012). 

Terraces are a key observable feature for studies into fluvial processes, active 

tectonics, and paleoclimatology. Analysis can provide ages and the terraces 

can be used as geodetic markers to analyse tectonic and climatic process rates 

(e.g. Törnqvist et al., 2000; Cheong et al., 2003, Chen et al., 2003; Zuchiewicz 

et al., 2004; Rittenour et al., 2005; Mahan, 2006; Mason et al., 2006; Rodnight 
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et al., 2006; Amos et al., 2007; Mukul et al., 2007; Tooth et al., 2007). Terraces 

record the unsteadiness in the rate of vertical incision of a channel 

predominantly caused by fluxes in sediment and the amount of vegetation 

showing geomorphic, and hydrologic responses to climate.  

 

 

Figure 5.1: An example of river terraces from the Wind River, Wyoming. A flight of 
three terraces can be seen above the current flood plain, labelled WR-1, WR-3 and 
WR-7. Photo from Hancock and Anderson, (2002). 

 

Fluvial terraces form as either strath (figure 5.2C) or fill terraces (figure 

5.2D). Fill terraces are formed when a significant amount of sediment enters the 

fluvial system, and subsequently the amount of sediment within the river is far 

greater than the amount of sediment the river is capable transporting through 

the system (Pederson et al., 2006). This causes the river channel to aggrade, 

depositing the sediment on, and raising the level of, the floodplain. When the 

amount of sediment within the river system declines the river has an elevated 

floodplain (Gibbard and Lewin, 2009; Westaway et al., 2009; Stokes et al., 
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2012). Strath terraces are formed when the river channel incises laterally into 

bedrock. This occurs when the sediment being transported by the river is less 

than the amount the river is capable of moving (Fairbridge, 1968). The sediment 

in the channel acts as tools to move the channel laterally, the resulting 

floodplain is the strath terrace. 

 

5.3.2: THE RELATIONSHIPS BETWEEN CLIMATE AND TECTONICS AND 

RIVER TERRACES 

Fluvial terraces can occur in flights up the valley sides of a river (figures 

5.1 and 5.2) and the flight can span time scales of several tens to hundreds of 

thousands of years (Bridgland and Westaway, 2008a; Gibbard and Lewin, 

2009; Westaway et al., 2009; Stokes et al., 2012). This gives terraces great 

potential as a widely available resource for investigating aspects of geology and 

geomorphology such as climate change, tectonic uplift and base level changes 

over both recent timescales and over hundreds of thousands of years. 

The controls on river terrace formation by climate have been studied in 

great detail in terms of the aggradational and incisional processes needed for 

terrace formation in a variety of climatic settings (e.g. Bull, 1991; Gibbard and 

Lewin, 2002). Sediment aggradation occurs when valley slopes are relatively 

unstable and a limited amount of vegetation allows for the erosion and transport 

of sediment to the valley floor. Incision occurs when the valley sides are stable 

due to the effects of more sediment anchoring vegetation, and hence there is 

reduced sediment transported to the valley floor (Stokes et al., 2012). In the 

Quaternary this generally means that aggradation occurs during glacial times 

and incision in interglacial periods (Vandenberghe, 2008). However, there have 

been studies (Van den Berg, 1996; Van den Berg and Van Hoof, 2001; 
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Bridgland and Westaway, 2008b; Pazzaglia, 2013) that suggest that the 

designation of aggradation in glacial periods, and incision in interglacial periods 

is an over simplification, and that timing of incision and aggradation compared  

 
Figure 5.2: A cartoon and photograph representation of the relationships between 
terraces, terrace deposits and incision–aggradation history from the study of Romagna 
and Marche Apennines Italy (Wegmann and Pazzaglia, 2009). 5.2A Shows a 
schematic diagram illustrating the relationships between terraces  t1, t2, straths, 
floodplain, and valley bottom in the study.  5.2B Shows a hypothetical cross-section 
showing geometry of the strath and fill terraces and an idealized complex sequences of 
fill (aggradational) and fill-cut (degradational) terraces (Strath surfaces are labelled A–
D). Strath surfaces (e.g. 5.2C) are can be used to measure the amount and rate of 
fluvial incision. With strath terraces it is generally assumed that the overlying sediment 
is intimately associated with the bevelling of the strath surface and the age of the 
overlying sediments can be used as a proxy for the age of the strath surface itself.  For 
fill terraces (e.g. 5.D), the age of the overlying sediments may be much younger than 
the underlying strath. For fill terraces, a minimum strath age can be determined from 
the oldest radiometric age obtained from basal fill deposits.  

 

to climatic events varies depending on latitude. Rivers within Mediterranean and 

arid/semi-arid climates become loaded with sediment during the transition from 

glacial to interglacial conditions, rather than at peak glacial conditions (Bull, 

1991; Blum and Valastro, 1994; Ritter et al., 2000) as there tends to be more 

vegetation during the (wetter) glacial times. The vegetation can be quickly 

removed as the climate warms, liberating sediment (Pazzaglia, 2013). Climate 
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change has therefore been established as an important control on terrace 

formation, providing sediments for aggradation. 

Climate is an important factor in river terrace creation but it cannot 

explain the formation of terrace flights (staircases). The mechanism for the 

formation of terrace flights must invoke a base-level lowering trend such as sea-

level change or tectonic movements (Bridgland, 2000; Bridgeland and 

Westaway, 2008a; Bridgeland and Westaway, 2008b; Gibbard and Lewin, 2009; 

Stokes et al., 2012).  

On a river that crosses an active fault, where uplift occurs upstream, the 

terraces that line the river valley can provide information about the localised 

tectonics as the height of the terraces should broadly correlate with the 

magnitude of displacement (Burbank and Anderson, 2001). A long-term terrace 

flight should allow quantification of the long-term displacement history of a fault 

with higher terraces recording tens to hundreds of metres of vertical movement 

(Burbank and Anderson, 2001).  

Despite the evident usefulness of fluvial terraces in geological studies it 

is apparent that the interplay of climatic and tectonic processes needs to be 

carefully considered if accurate information is to be extracted from the terrace 

record. Active tectonics provides a compelling mechanism for the formation of 

multiple terraces levels, but the variations between incision and deposition of 

sediment provided by influences such as climate provide some uncertainty in 

the analysis of terrace formation (Stokes et al., 2012). In addition, climate can 

impact further on the availability of materials for dating in terrace deposits, for 

example, in glaciated areas it is common to form terraces (Pazzaglia, 2013) but 

it is also common for glacial advances to remove evidence of older terraces 

through erosion (Stokes et al., 2012). Disruption of the sedimentary record held 
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in terraces can be a problem for analysis and can affect the reliability of results, 

for example bioturbation by organisms and Anthropogenic influences can 

disturb or modify the landforms. Fluvial transport of sediments deposited in 

terraces also requires considerations which are mentioned in more detail in 

section 5.6.2. Overall though, fluvial terraces have been provided a wealth of 

information for studies of fluvial response to sea-level change (e.g. Maddy et al., 

1998; Törnqvist, 1998; Blum and Törnqvist, 2000; Rittenour et al., 2007), 

climate change (e.g. Leigh et al., 2004; Schokker et al., 2005; Brook et al., 

2006; Sohn et al., 2007) and palaeoseismic reconstruction (e.g. Personius, 

1995; Pazzaglia and Brandon, 2001; Chen et al., 2003; Cheong et al., 2003; 

Zuchiewicz et al., 2004; Mahan, 2006; Amos et al., 2007; Mason et al., 2007; 

Mukul et al., 2007). 

 

5.3.3: MEASURING UPLIFT AND INCISION RATES USING RIVER 

TERRACES 

Despite the important information that fluvial sediments can contain, the 

dating of these deposits can be problematic. Radiocarbon dating has been 

traditionally the most widely used method in geochronology, but it is not always 

appropriate for fluvial sediments (Wallinga , 2002a; Rittenour, 2008). In many 

cases there is a lack of available material to enable the use of radiocarbon 

dating, particularly as radiocarbon dating can date materials with a maximum 

age of ~35 kyr. There can also be problems with the reworking of old carbon 

within many fluvial sediments (Blong and Gillespie, 1978; Gillespie et al., 1992; 

Sowers et al., 2000). 

 Other radiometric methods used to date fluvial materials, include 

Uranium series or Potassium-Argon dating. Both these methods however, are 
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limited in their applicability to fluvial deposits (Wallinga, 2002a), but in certain 

situations they can provide ages for sediment deposition or landform 

abandonment (Gosse and Phillips, 2001). Uranium Series Dating requires 

uranium bearing deposits within closed systems in which the radiometric 

material is neither gained nor lost after deposition. This method has been used 

effectively on speleothems and other calcareous precipitates (e.g. Fouke et al., 

2002; Sharp et al., 2003; Sierralta et al., 2010), and is therefore well suited to 

dating travertines but cannot be used for other types of fluvial deposits. 

Potassium-Argon dating is widely applied to date igneous rocks (Richards and 

Smart, 1991). This method requires fluvial sediments to be intercalated with 

tephras or lava flows to constrain the ages of fluvial sequences (e.g. Gansecki 

et al., 1996; Karner and Renne, 1998; Westaway et al., 2004; Westaway et al., 

2006a) 

Optically stimulated luminescence (OSL) is useful for dating inorganic 

sediments, such as those from fluvial or aeolian environments, where suitable 

materials for dating by methods such as radiocarbon are not found (Blong and 

Gillespie 1978, Stanley and Hait, 2000). This method has the benefit of 

providing direct dating of the time of sediment deposition and as a result has 

enabled greater use of dating in geological studies (e.g. Stokes, 1999). Despite 

OSL dating having its own specific caveats (documented in section 5.6.1 – 

5.6.2) many researchers have successfully applied OSL to the dating of river 

terrace deposits (e.g. Törnqvist et al., 2000; Cheong et al., 2003, Chen et al., 

2003; Zuchiewicz et al., 2004; Rittenour et al., 2005; Mahan, 2006; Mason et 

al., 2006; Rodnight et al., 2006; Amos et al., 2007; Mukul et al., 2007; Tooth et 

al., 2007). 
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As a river terrace is an elevated abandoned flood plain of the active river 

that has responded to changing conditions by incising, it is possible to estimate 

the rate of incision over the time since terrace formation by utilizing the height of 

the terrace above the modern river level assuming negligible surface erosion 

(Burbank and Anderson, 2001; Stokes et al., 2012). There have been many 

examples of these type of studies as the methods for allowing accurate dating 

of the terrace have been developed (e.g. Berryman et al., 2000; Maddy et al., 

2000; Hsieh and Knuepfer, 2001; Mathew et al., 2006; Cunha et al., 2008; 

Gibbard and Lewin, 2009; Martins et al., 2009). The studies have utilised a 

variety of different dating methods to quantify incision but OSL is particularly 

common, for example Martins et al. (2009) used OSL dating to constrain the 

ages of 4 terrace levels along the Tejo River, in an actively uplifting area of 

Portugal. Incision rates of 0.13 m/kyr to 0.53 m/kyr were calculated using the 

terrace ages and the height of the terrace. Cunha et al. (2008) also utilized OSL 

to estimate incision using the same method in the Rodão Graben section of the 

Tejo River, providing a rates of between 1 mm/yr and 0.1 mm/yr depending on 

the period of time over which the estimate was time averaged.   

It has been proposed  that tectonic uplift rates can be calculated from the 

relative heights of terraces with respect to the modern river flood plain by the 

use of fluvial incision rates as a proxy for rock uplift (e.g. Personius, 1995; 

Burbank et al., 1996; Maddy 1997;  Pazzaglia and Brandon, 2001; Mathew et 

al., 2006; Srivastra and Misra, 2008). Tectonic controls on terrace formation 

have been widely reported, particularly in Europe (e.g. Brunnacker and 

Boenigk, 1983; Van den Berg et al., 1996; Maddy, 1997; Bridgland, 2000; 

Maddy et al., 2001). Maddy (1997) suggests that attributing the vertical 

difference between the terrace and the present flood plain is a valid method for 
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evaluating rates of uplift, if the study basin is situated far enough inland to 

negate the effects of base level fall. Maddy (1997) tested this method on 

terraces in the Upper Thames Valley (England) where a rate of uplift of 7 cm/Ka 

was calculated, which is in good agreement with previous estimates based on 

raised beach deposits (Preece et a., 1990), aminostratigraphy (Bowen, 1995) 

and magnetostratigraphy (Rose et al., 1999), which produce age estimates of 

around 1.8 Ma for the deposits.  

Westaway et al. (2006b) used fluvial terraces from the Solent River to 

reconstruct the uplift history of central southern England. They made the 

assumption that fluvial incision was in direct response to surface uplift, they also 

conclude that climatic forcing controls the precise timing of terrace formation. 

Therefore, the height of the terrace gravels above the modern river is a result of 

uplift since deposition. The archaeological record was used to constrain the 

dates of the terraces, specifically the first appearances of bout coupé hand 

axes, as markers for marine isotope stages (MIS). Westaway et al. (2006b) 

show that most of the Solent region has uplifted by 70 m since the late Early 

Pleistocene and by 150 m since the Middle Pliocene.   

The caveats of assuming that the height of the terrace above the river is 

a purely a function of uplift are highlighted by Maddy (1997) and others (e.g. 

Hsieh and Knuepfer, 2001; Wegmann and Pazzaglia, 2002; Litchfield and 

Berryman, 2006), for example the uplift rates produced cannot be attributed to 

steady rates of uplift and the final uplift rate could hide any changes in uplift 

rate. Therefore using fluvial incision rates as a proxy for uplift rates might lead 

to inaccurate uplift rate quantification, and the lack of independently quantified 

uplift rates might hinder the evaluation of such a problem (Litchfield and 

Berryman, 2006). Furthermore, fluvial incision rates can vary significantly 
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through time due to changes in external variables such as climate and tectonics 

and human influence that cause changes in the steepness of the stream 

gradient, the amount of sediment contained in the river, and the total amount of 

water flowing through the system (Bull, 1991; Hsieh and Knuepfer, 2001; 

Wegmann and Pazzaglia, 2002).  

Litchfield and Berryman (2006) set out to test the validity of the incision 

rate proxy using the Hikurangi Margin (New Zealand). By examining terraces, 

deriving incision rates and comparing them to uplift rates they found that the 

calculated post-glacial incision rates are 1.5 times greater than the Quaternary 

uplift rate and 5 times greater than the long-term uplift rate (which could be 

partially accounted for by periods of tectonic quiescence).  

Therefore, it is evident that fluvial incision rates have potential as proxies 

for uplift rates, but these data must be interpreted with caution and be regarded 

as an approximation of averaged uplift rates. 

 

5.3.4: OSL STUDIES IN TURKEY 

The study of fluvial terraces, and specifically the use of OSL to date 

fluvial deposits, has proliferated in the last 15 years due to advancements in the 

methodological techniques (Stokes, 1999; Wallinga, 2002a; Rittenour, 2008). 

Despite this there have been relatively few studies that use OSL to date fluvial 

terrace deposits carried out in Turkey, and fewer still that use incision rates 

gained from analysis of river terraces to analyse uplift rates. In addition, there is 

a complete absence of studies that examine the rate of uplift in the study area 

through incision and fluvial terrace studies. The majority of the studies carried 

out on river terraces within Turkey are based in the south-east, for example, a 

synthesis of terrace deposits along the Euphrates River encompassing some of 
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south-eastern Turkey to elucidate uplift rates (Demir et al., 2007). Additionally, 

Bridgland et al. (2007) have worked on the terraces on the River Tigris, also in 

south-eastern Turkey.  

A number of studies have focused on the upper reaches of the Gediz 

River, near to the town of Kula (Westaway et al., 2004; Maddy et al., 2005; 

Westaway et al., 2009). This area is in northern bounding mountain range of the 

Gediz Graben (the site of this study is the southern range). The land surface 

here has uplifted by ~400 m since the Middle Pliocene in the upper reaches of 

the Gediz River. It was possible to derive the uplift rate because the river 

terraces are capped by basalt flows that have been K–Ar and Ar–Ar dated. The 

basalt flows allow for time constraints of up to ~1264 kyr to be examined in five 

areas with known net incision. This allowed Westaway et al. (2009) to suggest 

that the local uplift rate in the Kula area is ~0.2 mm/yr. 

  

5.4: CONSTRAINTS ON REGIONAL AND TURKISH CLIMATE 

Climate is a central consideration in studies of fluvial terraces, as climate 

is the primary control on the periodic availability of sediment loads within rivers 

enabling and constraining incision and aggradation episodes. Rivers are able to 

aggrade when they cannot transport the sediment load within them, such as 

when the ratio of sediment load to discharge is high (Maddy et al., 2001). Rivers 

also aggrade when vegetation growth is inhibited, this allows more sediment to 

be transported into the river system and melt water and/or precipitation allow 

the sediment load to be carried in the rivers (Maddy et al., 2001; Westaway et 

al., 2003). These conditions are expected to occur at transitions to and from 

glacial conditions (Maddy et al., 2001; Westaway et al., 2003).  
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 In order to examine the relationship between the terrace deposits in the 

Gediz Graben and the overall climate of the Mediterranean the following section 

give details of climatic studies that have focused on Late Pleistocene to 

Holocene climates; the focus on this age range of data is due to the ~150 kyr 

limit for the use of OSL, the method utilised in this study.  

U-Pb dating of speleothems form the Negev Desert has given an insight 

into humidity around the Mediterranean over the last ~ 3 Ma (Vaks et al., 2013). 

The record shows that the Mediterranean was humid around 3.1 Ma and this 

was followed by a general trend towards aridity over the last 3 myr. The 

increased aridity was punctuated by periods of increase humidity starting from 

around 1.7 Ma and occurring intermittently at 980 Ka, 959 Ka, 693 Ka, 621 Ka, 

600 Ka, and 79 Ka. 

In addition, Schulte et al. (2002, 2008) have studied the River Aguas 

basin in southeastern Spain (figure 5.3), producing a record of fluvial archives 

and travertine and slope deposits over the last 170 kyr. They have utilised U/Th 

and OSL dating indicate a dominant aggradational regime from 169 to 26 kyr. 

They show that this has been punctuated by at least four incision events 

between 167 – 148 kyr, 148 – 110 kyr, around 95 kyr and at 71 kyr. 

There are a variety of high-resolution ice-core records from Greenland 

(Dansgaard et al., 1993; Grootes & Stuiver, 1997) that suggest the climate into 

and during the Holocene was characterised by a marked stability in the northern 

hemisphere. The records seem to show that the post-glacial interval was 

relatively stable, with a single global and rapid climate change event 8.2 Ka ago 

(Alley et al. 1997; Alley & Agustsdottir, 2005; Nicoll and Küçükuysal, 2013). 

However, there are an increasing number of studies based on ocean core 

records from the North Atlantic Ocean and Mediterranean Sea that demonstrate  
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Figure 5.3: A correlation between the River Aguas sequences and regional proxies, 
showing periods of dominant aggradation and incision From Schulte et al. (1998). 
 

that there was significant variation in Holocene climate (e.g., Ariztegui et al., 

2000; Sbaffi et al,. 2004, Kotthoff et al., 2008a; Kotthoff et al., 2008b; Peyron et 

al., 2011; Schmiedl et al., 2010; Nicoll and Küçükuysal., 2013). The cooling at 

8.2 Ka is the strongest short-term climate anomaly within the Holocene and 

produced rapid terrestrial ecosystem turnover as far south as the 

Mediterranean, shown by Pross et al. (2009), who studied pollen data from 

northeastern Greece.  
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Combourieu-Nebout et al., (2013) produced a high-resolution, multiproxy 

study of the Adriatic marine core MD 90-917, which provides a review of the 

vegetation and climate in the Southcentral Mediterranean (figure 5.4). The 

reconstruction shows the Preboreal oscillation around  11.3 – 11.2 Ka, is linked 

to increasing river inputs from Adriatic rivers recorded by increase in clay 

mineral contribution to marine sediments. Temperature, inferred from pollen, 

declines during the early–mid Holocene and then then increases during the 

mid–late Holocene.  Several short vegetation and climatic events are shown in 

the record. The study also reconstructed summer precipitation and shows a 

regional maximum between 8.0 and 7.0 Ka. Two important changes in 

vegetation are shown at 7.7 Ka and 7.5 – 7.0 Ka that Combourieu-Nebout et al., 

(2013) correlate with  increased river inputs around the Adriatic. During the mid-

Holocene a homogenous precipitation regime was initiated by year-round 

moisture and after 6000 Ka summer precipitation decreases towards present-

day values while winter precipitation rises.  

Lake studies in regional E-W transect from Greece to Iran, from the 

Ioannina, Abant, Golhisar, Eski Acigol, Van, Zeribar, and Mirabad lakes 

(Roberts et al. 2011). Around 7.9 Ka  δ18O values indicate that the hydro-

climatic conditions were wetter than the present day (Roberts et al., 2011; Nicoll 

and Küçükuysal, 2013). A trend towards aridity was noticed in some of the lakes 

by around 6.6 Ka, indicated by a shift to more positive δ18O values which are 

indicative of high evaporation, and more arid climates (Eastwood et al., 2007). 

Between 6.0 and 3.0 Ka, the lake isotope data indicate wet-to-dry oscillations, 

accompanied by a general trend towards regional dryness (Roberts et al., 

2011). Enhanced drought is indicated by the lake records during the periods 5.3 

Ka to 5.0 Ka, 4.5 Ka to 4.0 Ka and 3.0 Ka to 2.8 Ka, with the dry episodes  
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Figure 5.4 A comparison of the data from the  multiproxy study of the Adriatic marine 
core MD 90-917. From bottom to top: lake level highstands in western Europe; sea 
surface salinity, Local river discharge, Po River discharge and precipitation data. From 
Combourieu-Nebout et al., (2013). 

 

punctuated by short periods of elevated moisture availability. A significant 

period of increased moisture availability is the period from 4.0 Ka to 3.3 Ka, 
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which was a significant wet phase within the overall trend towards drier and 

cooler conditions since the mid-Holocene (Roberts et al. 2011; Küçükuysal, 

2013).  

 

5.5: FIELD DATA COLLECTION METHODS  

Terrace maps were made for three rivers within the southern bounding 

margin of the Gediz Graben (figure 5.5), the river valleys were examined for 

preserved, undisturbed, uplifted terraces along their length (figure 5.6). In order  

 

Figure 5.5: A map of the Kabazlı, Kaviklidere and Yeniköy rivers where the terrace 
levels were mapped and the five OSL samples were taken. The blue stars show the 
locations of the samples along each river.  

 

to create a terrace map a contour base map was made from the ASTER 

imagery in ArcMap. An initial observation of possible terraces was made using 

the slope analysis tool in Arc Map to isolate areas where the slope was fairly 

low and constant over a reasonable area. Due to the 30 m resolution of the 

ASTER imagery only the larger terrace areas could be identified in this way so it 

was necessary to complete the remaining mapping of terraces in the field.  
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Figure 5.6: Field photographs from the study rivers. A) The T2 and T3 terrace levels as 

seen from a distance on the Kabazlı River. B) the T4 terrace that was sample on the 

Yeniköy River. C) A close up of the terrace deposits samples from the T4 terrace on 

the Kavikladere River, with the Gamma Spectrometer in use. C) A close up of the 

terrace deposits samples from the T4 terrace on the Yeniköy River, with the Gamma 

Spectrometer in use. 

 

 
Figure 5.7: Slope maps of the study rivers showing the T4 terrace sampled. A) Kabazlı 
Kabazlı River, B) Kaviklidere River, C) Yeniköy River. Contours represent 10 m of 
elevation change.  
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Terraces were mapped within the sedimentary units along the river and 

within the lower elevations of the metamorphic rocks further upstream. Where 

areas of low, uniform slope were identified further features were identified which 

indicate the presence of a terrace including the presence of typical terrace 

sediments such as channel deposits and fine and medium-grained sands. The 

height of the terraces above the current elevation of the river level was 

measured and attention was paid to possible terraces at the same elevation 

across the river in order to identify the presence of paired and single terraces.  

The elevation of the terraces was recorded in the field using a TruPulse 

laser rangefinder. The laser range finder emits infrared energy pulses and 

determines the distance of an object by measuring the time it takes for each 

pulse to travel from the rangefinder to the target, and then back again. The 

TruPulse is sufficiently sensitive to detect distances using both reflective and 

non-reflective targets. When shooting distance measurements to a non-

reflective target, the maximum measurement distance is approximately 1,000 

meters. There are a number of factors that will affect the value of the error on 

the distance measurements. To provide the most accurate measurements using 

the laser rangefinder the following should be considered with respect to the 

target and environment: 1) colour of the target; 2) target finish; 3) angle of 

shooting, and 4) lighting conditions. A bright, matt target and shooting 

perpendicular to a target in overcast conditions will both maximise the maximum 

possible distance measurement and the accuracy of the distance measurement. 

Errors range from 0.1 m for a very good target and conditions to 1 m for a very 

bad target in bad conditions.   

Terrace deposits were found along three rivers (figures 5.5, 5.7 and 5.8), 

In total 6 terrace elevations relative to modern day river level, were mapped 
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Figure 5.8: Terrace maps for the Kabazlı (top), Kavikladere (middle) and Yeniköy 
(bottom) rivers. In each location six terrace levels were mapped, T1-T6. An inset in the 
terrace maps shows which of the terrace levels were present in each side of the river 
valley. 
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along the Kabazlı, Kavaklıdere and Yeniköy rivers (figure 5.7). The terrace 

heights are 52 m – 56 m (T1), 45 m (T2), 35 m (T3), 23 m – 27 m (T4) 15 m - 17 

m (T5) and 6 m (T6) with not all terrace heights being present along all three 

rivers (figure 5.8). The presence of terrace staircases on the rivers indicates 

that the rivers have been experiencing uplift throughout the time since the 

formation of the highest terrace (Maddy et al., 2000). 

 

 

 

Figure 5.9: Stratigraphic logs of the T4 terrace locations on the (A) Kabazlı, (B) 

Kavikladere and (C) Yeniköy river valleys where the OSL samples were taken. The 

locations of the OSL samples are marked on and sediment packages interpreted to 

have originated by similar events around similar times have been correlated with 

dashed lines and result in three sediment packages (SP1-SP3).  

 

 

When suitable terraces and sample locations were identified stratigraphic 

were drawn up (figure 5.9), samples were then taken. The sampling strategy 

was to source samples from one terrace level, in order to make comparisons 

A

  A 

B

  A 

C

  A 
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between rivers. Due to this the T4 terrace was picked as on all three rivers as 

this terrace level provided the most accessible and appropriate material in the 

valley of all three rivers. Ideally samples would be taken from the top and 

bottom of the terrace deposits to allow for the dating of the whole terrace 

sequence, but in reality the sampling of the top of the terrace was restricted by 

the height at which samples could be taken. It was necessary to sample from 

lithologies that were dominantly medium to coarse sand with as few large clasts 

as possible as they would hinder the sampling process. In selecting these 

lithologies from the specific locations within the sedimentary sequence the aim 

was to sample specific lithology breaks. 

In total five OSL samples were collected from the logged terraces using 

metal pipes, which were sealed to prevent light contamination. In-situ 

radioactivity measurements were then made using a gamma mass 

spectrometer, to aid in the calculation of ages from OSL dating. 

 

5.6: OSL DATING 

OSL is part of a family of dating methods that relate to radioactive decay, 

measuring the relocation of electrons at defects with crystalline materials 

(Stokes, 1999). OSL dating specifically uses the optical properties of quartz and 

feldspar (Rittenour, 2008) found in sediments such as sand and silt, in order to 

enable calculation of the date that this sediment was last exposed to sunlight 

(e.g. Aitken, 1985; Aitken, 1992; Aitken, 1998; Wagner, 1998; Stokes, 1999; 

Wallinga, 2002a; Bøtter-Jensen et al., 2003), and therefore provides a 

deposition or burial date. The OSL dating method (figure 5.10) is based upon 

the premise that as the minerals are transported to the site of deposition the  
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Figure 5.10: A schematic diagram showing the main features of optically stimulated 
luminesce dating (OSL). Step 1, how the grains are bleached during transport; step 2, 
how ionising energy is stored in the crystal lattice during burial; step 4, the taking of a 
sample in the field; step 4 the processing of the sample in the lab; step 5, the 
determination of the background radiation conditions for inclusion in calculations. Step 
6 shows how sample age is calculated using the determined equivalent dose.  Taken 
from Mallinson, D. (2008). 

 

 

luminescence stored within the mineral is reduced to zero, so that any 

luminescence revealed by dating is a function of the time since burial.   

To determine the age of the sediment/last exposure to sunlight the 

following equation (Wallinga, 2002a) is used which combines the equivalent 

dose with the irradiation dose rate.  A radiation dose, called the palaeodose, is 

accumulated during burial 
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Age =
Equivalent dose

Dose rate
=

PGy

D
Gy a−1

      (eq: 5.1) 

 

The equivalent dose (measured in grays: PGY) is the laboratory beta dose 

that induces the same amount of luminescence as low levels of ionising 

radiation (Aitken, 1985, 1998) from Uranium, Thorium and Potassium (K40) 

within the surrounding sediment (e.g. Aitken, 1985, 1998; Wagner, 1998; 

Stokes, 1999; Wallinga, 2002a; Bøtter-Jensen et al., 2003) and a small amount 

of background radiation from cosmic rays (Stokes, 1999) that the mineral 

acquires since burial (the palaeodose).  

The samples were taken using metal tubes to extract sediment from 

medium-grained sands forming the terraces; the tubes containing the samples 

were then immediately sealed to avoid light contamination. Once the sediment 

sample was removed a gamma mass spectrometer was used to determine the 

external gamma dose rate (units DGya-
1) from the concentrations of K, Th and U. 

The OSL samples were processed at the University of Oxford 

Luminescence Dating Laboratory, enabled by the receipt of the Quaternary 

Research Association- Research Laboratory for Archaeology and the History of 

Art Luminescence Dating Award. The results were based on luminescence 

measurements of sand-sized quartz (180-255µm) extracted from the five 

provided samples using standard preparation techniques including, wet sieving, 

HCl (10%) treatment to remove carbonates, HF treatment (48%) to dissolve 

feldspathic minerals and etch the quartz grains and heavy mineral separation 

with sodium polytungstate to remove any additional unwanted minerals. The 

samples were measured in automated Risø luminescence readers (Bøtter-

Jensen, 1988, 1997; Bøtter-Jensen et al., 2000) or a Lexsyg Research device 

using a SAR post-IR blue OSL measurement protocol (Murray and Wintle, 
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2000; Banerjee et al., 2001; Wintle and Murray, 2006). Beta dose rate 

calculations were carried out and were based on the concentration of 

radioactive elements (potassium, thorium and uranium) within the samples and 

were derived from elemental analysis by Inductively Coupled Plasma Mass 

Spectrometry/Atomic emission spectroscopy  (ICP-MS/AES) using a fusion 

sample preparation technique.  

The external gamma dose rate was determined from the concentrations 

of K, Th and U obtained from in-situ radioactivity measurements using a gamma 

mass spectrometer. The final OSL age estimates were produced to include an 

additional 2% systematic error to account for possible uncertainties in source 

calibration. The dose rate calculations are based on Aitken (1985) and 

incorporated beta attenuation factors (Mejdahl 1979), dose rate conversion 

factors (Adamiec and Aitken 1998) and an absorption coefficient for the water 

content (Zimmerman 1971). The contribution of cosmic radiation to the total 

dose rate was calculated as a function of latitude, altitude, burial depth and 

average over-burden density based on data by Prescott and Hutton (1994). 

 

 

5.6.1: METHODOLOGICAL CONSIDERATIONS WHEN USING OSL DATING 

OSL is useful for dating inorganic sediments, such as those from fluvial 

or aeolian environments, where suitable material for dating, by methods such as 

radiocarbon, is not found (Blong and Gillespie 1978, Stanley and Hait, 2000). 

As a result it has opened up wider areas to dating, but the method does not 

come without caveats of its own. The age range of OSL dating is from around a 

few years to 150 ky for quartz and 1 Myr for feldspar. The time limits of the OSL 

dating technique are determined by a number of factors: 1) the capability of the 
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dosimeter material (e.g. quartz or feldspar) to take up charge; 2) the rate at 

which trapped electrons are created within the lattice of the dated material, this 

has a direct link to the levels of radiation acquired from external sources; 3) the 

stability of the trapped electrons within the material (Stokes, 1999). At the lower 

end of the dating range the method is limited by the possibilities of incomplete 

resetting or zeroing of the sample before it is deposited (Wallinga, 2002a). At 

the upper end of the OSL dating range the limits are based upon the saturation 

of traps for free charge carrying electrons, which means that no more can be 

built up, effectively stopping the clock (Wallinga, 2002a). 

Therefore, ‘saturation' of the signal is when the crystal lattice becomes 

'full up', at which point the sample cannot acquire a greater luminescence 

signal.  The point at which a sample becomes saturated depends on the dose 

rate of the sample. Samples subjected to a high dose rate will become 

saturated more quickly, and fully saturated samples will not record the full 

duration of their burial history. In these cases only a minimum age can be 

determined. A typical amount of absorbed radiation for sand dominated 

environments is 1-2 Gy kyr-1, in environments with such levels of radiation dates 

of up to 150 Kyr have been achieved (Stokes et al., 1994). Owing to the limiting 

factor of saturation of available traps when levels of background radiation are 

lower, older dated ages can be measured (Huntley et. al., 1993). 

The accuracy of OSL ages can be affected by a number of factors 

including: 1) mixing and bioturbation of the sediments, which can redistribute 

sediment causing mixing of older and younger sediments (Johnson et al., 

2014). The mix of ages can result in a distribution of equivalent dose 

measurements and therefore significant uncertainty in the dating (Rodrigues, 

2013); 2) β -dose heterogeneity, where the beta dose is not be received 
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uniformly by all grains within a sample. When some grains receive more β -dose 

than others this will contribute to spread into the equivalent dose distribution 

(Mayya et al., 2006; Morthekai and Reddy, 2012); 3) partial bleaching (partial 

resetting) of the luminescence signal can also cause inaccuracies in the derived 

age of the sediment. Partial bleaching occurs if the grains are not exposed to 

enough sunlight to cause total bleaching before they are buried (Rittenour, 

2008). Partial bleaching can be a particular problem where the environment 

from which the sample can contains significant water, such as fluvial or glacial 

environments (Olley et al., 1998); 4) if the OSL signal is not fully reset before 

deposition and covering, an age overestimation can occur as there is additional 

luminescence signal included in the natural luminescence from before the 

sediment was buried.  

 

5.6.2: USING OSL DATING IN FLUVIAL ENVIRONMENTS 

When used within fluvial environments luminescence dating can be more 

prone to producing inaccurate ages for sediment burial. All techniques for OSL 

dating and the production of accurate ages rely on the assumption that any 

luminescence signal acquired before burial is removed by exposure to light prior 

to burial (Wallinga, 2002a; Rittenour, 2008). When OSL is utilised in fluvial 

environments incomplete bleaching can be a problem, this was more of a 

problem when using thermoluminescence, but the OSL signal now commonly 

used is more sensitive than the thermal signal (Duller, 1996; Aitken, 1998; 

Wallinga, 2002a), although it does not remove the issue completely. 

 Under full sunlight conditions the trapped charge within potential OSL 

samples is reduced by a factor of 10 in seconds (Godfrey et al., 1988; Wallinga, 

2002a), the rate at which beaching is achieved is reduced significantly when the 
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sample is carried within or lies under water, the spectrum of light the sample 

receives is also restricted (Berger and Luternauer, 1987). Additionally, the 

suspended load of the river can increase this effect by shielding the sediment 

(Berger and Luternauer, 1987). The inclusion in the sample of partially beached 

gains can lead to an overestimate of ages due to large scatter on the dose 

distribution of the equivalent dose (Duller, 1994; Jacobs et al., 2003; Rittenour, 

2008) and therefore scatter, and associated large errors on the equivalent dose 

distribution are a clear indication of incomplete bleaching (Wallinga, 2002b). 

 When considering using OSL dating in fluvial settings it is also important 

to consider the speed at which bleaching can occur.  For example, Hansen et 

al. (1999) document ages from feldspars that were a factor of 2 greater than 

those from quartz for Holocene glaciofluvial environments. Additionally Wallinga 

et al. (2001) compared quartz and feldspar OSL ages from sub-modern fluvial 

sediments and the quartz grains yielded more accurate results. Overall the 

evidence suggests that carrying out OSL analysis on quartz will provide the 

most accurate results within fluvial settings (Wallinga, 2002b).  

 

5.7: RESULTS 

OSL samples were taken from the T4 terrace between 23 m – 28 m on all three 

rivers (figure 5.7 and 5.8). The samples were analysed at the labs in Oxford 

University (table 5.1) and provide constraining ages on the T4 terrace along the 

three rivers. Samples OSL1 and OSL2 were taken from T4 fill terrace deposits 

within the valley sides of the Kabazlı River (figures 5.8 and 5.9A). The 

stratigraphic log (figure 5.9A) shows that at the bottom of the terrace there is 

around 1 m of medium to coarse-grained sands with some pebbles and 

cobbles. Above this is approximately 1.5 m of clast-supported conglomerate 
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Sample  

 
Burial depth 

(cm) 
 

 
Water 

content 
(%) 

 

 
Palaeodose 

(Gy) 
 

 
Dose rate 

(Gy/ka) 
 

 
OSL age 
estimate 

(ka) 
 

 
OSL1 

 
400 

 
0.8 [0-60] 

 
249.77 ± 15.16 

 
2.98 ± 0.17 

 
83.79 ± 7.19 

 
OSL2 250 1.4 [0-6] 39.18 ± 6.06 4.18 ± 0.25 9.37 ± 1.56 

 
OSL3 200 0.3 [0-6] 28.42± 2.96 2.39 ± 0.14 11.90 ± 1.43 

 
OSL4 300 3.5 [0-6] 20.68 ± 4.67 2.76 ± 0.16 7. 48 ± 1.75 

 
OSL5 150 4.2 [1-7] 21.42 ± 1.20 3.03 ± 0.18 7.06 ± 0.59 

 

 

Table 5.1: The results of the OSL dating of samples from the Kabazlı, Kavaklıdere and 
Yeniköy rivers. 

 

with sub-rounded pebble to boulder sized clasts and a course sand to pebble 

matrix. There are imbricated pebble and boulder clasts within the conglomerate. 

On top of the conglomerate is just over three meters, medium to sub angular, 

coarse-grained sands with scattered pebbles and boulders. The sands are 

distinctly bedded with beds ranging from ~ 2 – 20 cm. Within this sand 

sequence are scattered ~5 cm layers of coarser sand and pebbles. The terrace 

is 6 m in height, the top is ~28 m above the current river level.  

OSL1 was taken from the fine to medium-grained sand units at the 

bottom of the terrace. The height of sample OSL1 above the current river 

channel is 22 m, and the burial age is 83.78 ± 7.19 Ka (table 5.2). OSL2 was 

taken from within the well bedded sands above the conglomerate. The elevation 

of OSL2 above the modern level of the river is 24.3 m and the age of the 

sample is 9.37 ± 1.56 Ka (table 5.2). 
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Sample 
Age 
(kyr) 

± 

(kyr) 

Sample 
elevation 

above river 
(m) 

Incision 
rate 

mm/yr 

+ error on 
incision 

rate 
(mm/yr) 

- error on 
incision 

rate 
(mm/yr) 

Time 
averaged 

throw rate on 
fault (mm/yr) 

OSL1 83.78 7.19 22 0.26 0.02 0.02   

OSL2 9.37 1.56 24.3 2.59 0.52 0.37 1.33 

OSL3 11.9 1.43 25 2.10 0.29 0.23   

OSL4 7.48 1.75 25.5 3.41 1.04 0.65 0.99 

OSL5 7.06 0.59 28 3.97 0.36 0.31 0.96 

 

Table 5.2: Calculated incision/uplift rate for each of the OSL samples and the throw 
rate measured on the active fault averaged over 2myr. 

 

Two samples, OSL3 and OSL4 were taken from a T4 fill terrace 

sequence in the valley of the Kavaklıdere River (figures 5.8 and 5.9B). The 

stratigraphic log (figure 5.9B) is similar to that of the Kabazlı River with a total 

T4 terrace height of around 6 m. At the bottom of the terrace is approximately 1 

m of medium to coarse-grained sands with pebble and cobble clasts. This 

lithology appears to be bedded although the beds are not particularly obvious. 

On top of this there is around 1.5 m of clast-supported conglomerate with 

rounded to sub-rounded clasts of pebble to boulder size, and a coarse-sand to 

pebble matrix. On top of the conglomerate is three meters of poorly-sorted, 

indistinctly-bedded, medium to sub-angular, coarse-grained sands. Within the 

sands there are occasional scattered pebbles and boulders and thin (1 – 2 cm) 

horizons of finer sand and silt. There are also discontinuous layers of imbricated 

pebbles. 

Both samples were taken from above the conglomerate unit, from within 

dominantly medium to coarse-grained, poorly-sorted, sands. OSL3 was taken at 

a height of 25 m above the river and has an age of 11.90 ± 1.43 Ka. OSL4 was 

taken 25.5 m above the river and has an age of 7.48 ± 1.75 Ka, the samples are 
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separated by an imbricated sub-rounded to rounded pebble horizon (table 5.2). 

A further 2.5 m of sand are above total terrace height of 6 m. 

An additional sample, OSL5 was taken from a T4 fill terrace in the valley 

of the Yeniköy River (figures 5.8 and 5.9C). The stratigraphic log (figure 5.9C) 

of the T4 terrace shows 0.4 m of fine sands at the bottom of the terrace. On top 

of this there is a ~10 cm horizon of matrix-supported pebble conglomerate. 

Above this is a is a 0.5 m unit of coarse sands with a lot of pebble-sized clasts, 

within this unit imbrication of the pebble clasts was observed. Above this is 

another conglomerate unit around 0.4 m thick. It clast-supported with rounded 

to sub-rounded clasts of  pebble to boulder-size and a sub-rounded course 

sand to pebble matrix. On top of the conglomerate is a 1.6 m unit of  bedded, 

medium to sub-angular, coarse-grained sands. OSL 5 was taken from this unit 

form just above the conglomerate. Within the sands there are laterally-

discontinuous imbricated pebble horizons. At the top of the terrace there is a 

bedded, dominantly medium-grained sand with disseminated larger clasts.   

The height of OSL5 above the present river channel is 28 m and the age 

of the sample is 7.06 ± 0.59 Ka (table 5.2). In total the T4 terrace height on the 

Yeniköy River  5 m, giving the top of the terrace a height of around 31 above 

the river.  

An error of ± 0.7 m has been assigned to all of the height measurements 

as the terraces are of medium to dark colour and matt finish and the conditions 

on the day of measurement were slightly cloudy skies and the angle of 

measurement with the laser range finder was not more than 45°. 

 

5.8: DISCUSSION 

5.8.1: AGGRADATION OF THE T4 TERRACE IN THE GEDIZ RIVERS 
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The stratigraphy (figure 5.9) can be used in combination with the ages 

acquired through OSL dating of samples (tables 5.1 and 5.2) to interpret 

aggradational and incisional episodes on the rivers. Stratigraphy is similar in the 

T4 terrace along each of the rivers, suggesting similar processes are depositing 

the sediment. These are divided into distinct lithological sediment packages, 

each of which are assigned a number for ease of reference in the discussion of 

the possible conditions of deposition (figure 5.9). 

 The sands overlying the conglomerate layer in each river are referred to 

as sediment package 1. The conglomerate unit has been designated as 

sediment package 2 and the sand below the conglomerate in each terrace is 

package 3.  

Sediment package 1 (figure 5.9) shows significant similarities between all 

three rivers so these have been correlated. In each river package 1 is 

dominated by medium to coarse-grained sands with pebble clasts. Within the 

sands in each river are thin, laterally discontinuous layers of pebble sized 

material. Sediment package 3 has been dated in each of the three rivers with 

samples OSL2, OSL3 and OSL5 taken from just above the top of the 

conglomerates of package 2. The dates obtained from the base of package 

three are 9.37 ± 0.56 Ka, 11.90 ± 1.43, Ka 7.06 ± 0.59 Ka. An additional 

sample, OSL4 was taken from further up the terrace in the Kaviklidere River 

and provides a date of 7.48 ± 1.75 Ka.  

From the sedimentology and morphology of the outcrop specific to 

package 1 it is likely that it represents hill slope deposits. There appears to have 

been a regional trend towards the deposition of hill slope material at a time of 

around 11- 7 Ka. The trend is evidenced by the very similar deposits found in 
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each of the rivers, in terms of sedimentology and morphology of the deposits 

and ages derived using OSL dating.  

Sediment package 2 is present in all three rivers, with 1.5 – 2 m 

continuous packages found in the Kavaklıdere and Kabazlı rivers. In the 

Yeniköy River the conglomerate is smaller and is broken by coarse sand with 

plenty of pebble clasts. Despite this difference the conglomerates share many 

properties such as imbrication and clast-support as well as dominant large sub-

rounded clast sizes. It is therefore reasonable to assume the same environment 

of deposition with some local scale differences. The base of sediment package 

3 (figure 5.9) is constrained to around 84 Ka by OSL1 which was taken from the 

top of the underlying sediment package. While it is possible the younger dates 

for package 1 constrain the younger extent of the conglomerates to ~12 Ka, the 

hill slope processes responsible for the deposition of package 1 could have 

occurred at a significantly more recent time. The conglomerates therefore could 

account for up to ~72 Ka of aggradation between the ages of 84 – 12 Ka, 

although as previously stated the duration of aggradation could be less. 

Accordingly, the duration of aggradation could subsume into it both the last 

glacial, the last glacial maximum and the Younger Dryas (last glacial stade). 

The stratigraphy of this sediment package and the apparent suppression in 

deposition generally fit with the type of change in deposition that would be 

expected for a terrace deposit, and so sediment package 2 is determined to be 

the T4 terrace deposit with a thickness of approximately 1.5 m. A base date of 

84 Ka also correlates with a period of aggradation in the Aguas River, Spain 

(Schulte et al., 2002). 

Sediment package 3 (figure 5.9) is formed predominantly of sand with 

some larger clasts, and has been dated in the Kabazlı River as 83.78 ± 7.19 Ka. 
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The Kavaklıdere and Yenikӧy rivers have similar lithologies to the Kabazlı at the 

base of their respective terraces. These similarities make it reasonable to 

assume that if their sediment packages were dated, a comparable date would 

be produced. This assumption is necessary as their higher large clast content 

precluded sampling. The grain size in sediment package 1 is relatively small 

with larger clasts and an age of 83.78 ± 7.19 Ka and so could be a relatively low 

energy deposits that occurred before the onset of significant terrace 

aggradation.  

Overall it appears that climate could be influencing terrace formation, as 

the deposition of the T4 terrace conglomerates could be associated with the last 

glacial or younger Dryas. Although greater resolution of dating and better 

constraints on the T4 terrace would be needed to resolve the climatic influence. 

In addition the 83.78 ± 7.19 Ka date for T4 allows time for the formation of the 

younger T5 and T6 terraces found at elevations closer the modern day river 

level.  

 

5.8.2: HOW DO THE AGGRADATIONAL TERRACE DATES FOR THE GEDIZ 

GRABEN COMPARE TO OTHER REGIONAL TERRACE SEQUENCES? 

The studies of terrace sequences in Turkey has been fewer in number 

than those based in western Europe, but have increased in number recently 

(e.g. Demir et al., 2004; Westaway et al., 2004; Maddy et al., 2005; Westaway 

et al., 2006; Bridgland et al., 2007; Maddy et al., 2008; Seyrek et al., 2008; 

Bridgland et al., 2012). South-eastern Turkey has been the location for the 

majority of the recent studies on the Euphrates, Tigris and Orontes (e.g. 

Bridgland et al., 2003; Demir et al., 2007;  Demir et al., 2008; Bridgland et al., 

2012). There have been few terrace studies based in western Turkey, although 
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a notable study site is the upper Gediz River catchment around Kula, of which 

the studies by Westaway et al. (2004) and Maddy et al. (2005, 2008) are  

significant examples. Many of the terrace flights studied in Turkey are of 

Miocene to Pliocene age, and so cannot be correlated with the Pleistocene to 

Holocene sequences observed and measured in the Gediz Graben fluvial 

system. For example Seyrek et al. (2008) date up to seven terrace levels along 

the rivers of the Amanos Mountains, southern Turkey where the youngest dated 

terrace was 15 Kyr and the older terraces were dated to 140 Kyr to 640 Kyr.  

The Ebro River in Mediterranean Spain has been the location of a 

number of studies that have dated fluvial terraces (Sancho et al., 2004; Sancho, 

2003; Santisteban and Schulte, 2007). These studies have identified a Qt6 

terrace level that has an age of 96 ± 16 Ka. The Qt6 Ebro River terrace 

therefore correlates broadly with the age of the T4 terrace on the Gediz rivers.   

Furthermore, the timing of aggradation in the Gediz rivers correspond to 

the timings of aggradation within the Aguas River (Schulte, 2008). Figure 5.3 

shows that between 90 – 60 Kyr the Aguas River had an aggradational regime 

which fits well with the age constraint on the aggradational terrace unit in the 

Gediz Rivers at 83.78 ± 7.19 Ka. 

 

 

5.8.3: CALCULATED INCISION AND UPLIFT RATES 

 OSL1 has a burial age of 83.79±7.19 kyr, whilst the sample OSL2, from 

2.3 m higher in the stratigraphy has a burial age of 9.37±1.56 kyr. As discussed 

in section 5.8.1 the age constraints in the overlying sediment package 1 are 

could produce a significant underestimate of the age of the top of the T4 terrace 

deposits of package 2. When the height above the river and the age of the 
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sample are considered, OSL2 provides an incision rate for the Kabazlı River of 

2.5 +0.52 -0.37 mm/yr (table 5.2), which is therefore likely to be a fairly 

significant over estimate of incision. When the age defining the base of 

aggradation of sediment package 2 is used (83.78 ± 7.19 Ka from OSL1), and a 

height above the modern river of 22 m is factored in, the incision rate is lower, 

at 0.24 ± 0.02 mm/yr (table 5.2). 

On the Kavaklıdere and Yeniköy Rivers the only available dates are from 

the hill slope deposits of package 1. These give incision rates that are of similar 

magnitude to that derived using the package 1 date from the Kabazlı River,   

3.41 +1.04 -0.65 to 3.96 mm/yr +0.36 -0.31 mm/yr respectively (table 5.2).  

As sediment package 2 has been determined to represent the T4 terrace 

deposits along the Gediz rivers the age constraints on this package will provide 

the most pertinent incision rate data. Therefore the incision rate of  0.24 ± 0.02 

mm/yr is taken as a representative value for the three rivers studied. If sediment 

package 3 was dated in the Kavaklıdere and Yeniköy Rivers it would likely yield 

a similar result given the similarity of the stratigraphy. Overall the incision rates 

similar to the rates of 0.1 mm/yr – 1 mm/yr for the Tejo River in Portugal (Cunha 

et al., 2008; Martins et al., 2009).  

As the dated terraces are part of terrace staircase sequences on each of 

the rivers, it follows that the footwall of the high angle normal faults that bound 

the topographic graben must be actively uplifting (see chapter 4 for more 

details).  

The derived representative rate of river incision (table 5.1 and preceding 

parts of this section) can be used as a proxy for a Gediz generalised uplift rate 

(Personius, 1995; Burbank et al., 1996; Maddy 1997; Pazzaglia and Brandon, 

2001; Mathew et al., 2006; Srivastra and Misra, 2008). Because the 
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determination of tectonic uplift requires some estimate of the geometry of the 

riverbed at the time the terrace was deposited (Lavé and  Avouac,  2000). It 

may simply be assumed that the river has maintained a constant profile during 

deformation, with river incision counterbalancing tectonic uplift. Accordingly, 

tectonic uplift since terrace abandonment would then be equal to incision, and 

the difference of elevation between the abandoned terrace and the present river 

will give an uplift rate (Lavé and  Avouac,  2000; Litchfield et al., 2007). 

However, this may not be an accurate way to represent uplift, and the uplift rate 

produced using incision rate as a proxy should considered a maximum.  

It is possible to compare the uplift rate to the time average throw rates 

calculated in chapter 4. The calculated most representative incision rate of 0.24 

± 0.02 mm/yr can be compared to the average throw rate of the fault for the 

three rivers which is 1.1 mm/yr and to the rate on the throw rate of 1.33 mm/yr 

near the Kabazlı River (see chapter 4). The incision rate seems to under 

estimate the throw rates and it is therefore unclear how closely the incision 

rates represent the uplift rate in the Gediz Graben.  

 

5.8.4: COMPARISION TO CATHMENT WIDER EROSION RATES 

The terrace data can also be compared to spatially averaged erosion 

rates for river catchments that have been determined from the 10Be 

concentration in sand samples taken from active streams (e.g. Granger et al., 

1996; Norton et al., 2007). If a landscape approaches steady state, where 

hillslope erosion and rock uplift rates are relatively steady and locally similar, 

then it should be possible to quantify rock uplift rates from hillslope erosion 

rates (Cyr et al., 2010). To quantify spatially integrated catchment wide erosion 

rates in the Bozdağ block, Buscher at al. (2013) took stream sediment samples 
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at the outlets of nine catchments (figure 5.11) for which the erosion rates were 

calculated using 10Be over the time period needed to remove an approximately 

60 cm thick layer from the surface (103-105 years). The sand samples were 

taken from active streams at the boundary of the metamorphic basement rocks 

and the clastic sediments within the catchment of the river. Four of these 

samples were collected from the northern side of the Bozdağ Rage (from rivers 

flowing into the Gediz Graben). The samples were taken so that they contained 

only metamorphic rocks and cataclasites and not the Neogene sediments. 

Buscher et al. (2013) calculated that catchments draining into the Gediz Graben 

generally had catchment-wide erosion rates of between 0.08 and 0.181 mm/yr.  

One of the catchment erosion rates derived for the Gediz Graben by 

Buscher et al. (2013) corresponds to the Kabazlı River from which samples 

OSL1 and OSL2 were taken. The T4 terrace yields an incision rate of 0.24 ±  

0.02 mm/yr. The corresponding catchment wide erosion rate from Buscher et al. 

(2013) is 0.085 mm/yr. Clearly, their catchment wide erosion rate is much 

smaller than the terrace derived incision rates of the Kabazlı River. The 

disparity between the results provided by the two methods can be explained by 

investigating the geology and geomorphology of the river catchment (figure 

5.12). The Kabazlı River contains a tectonic knickpoint that has incised into the 

metamorphic basement  and the catchment wider erosion rate calculated by 

Buscher et al., (2013) does not take this into account. The distance from the 

downstream point at which the river starts to incise into the metamorphic rocks 

to the source of the river is 8.7 km with a drainage area of 19.6 km2 of the total 

river catchment. The knickpoint has incised up from the point at which Buscher 

et al. (2013) sampled by 4.4 km, with a distance of 4.3 km remaining upstream 
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Figure 5.11: A map showing the catchment wide erosion rates (blue text) produced by 
Buscher et al. (2013). The red line indicates the location of the drainage divide and the 
blue dots show the location of the sand sample dated using 10Be. The units for the 
catchment wide erosion rates are mm/ka. The river catchment  for the Kabazlı River 
where the T4 terrace levels were dated using OSL in this study is labelled K (map 
adapted from Buscher et al. (2013). 

 

and an upstream drainage area of 9.8 km2. The knickpoint is associated with 

higher incision rates downstream, affecting 51.8% of the river channel distance 

and 50% of the catchment area, and lower erosion rates upstream.  

Therefore, the catchment wide erosion rate is capturing an average of 

the catchment erosion above and below the knickpoint. In addition to not taking 

into account this differential erosion, the sample was also taken upstream of the 

highly erodible sedimentary rocks that make up the remaining 3.2 km of the 

river channel upstream of the active graben bounding fault. The rocks in this 
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Figure 5.12: A schematic illustrating the different erosion and incision rates quantified 
for the Kabazlı River (catchment wide erosion rate from Buscher et al., 2013).The 
schematic shows the presence of a knickpoint in the river (black dot) which has a low 
erosion rate upstream (light grey shaded area) and a higher erosion rate down stream 
of the knickpoint (dark grey). The figure also shows an area of very high erosion (white) 
that is not taken into account in the catchment wider erosion rate (sample take from the 
black star) but is considered in the incision rate from the T4 terrace downstream.   

 

part of the river valley are weak and have visibly undergone large amounts of 

incision. The field and OSL evidence shows that there has to have been 

significant incision occurring in this catchment during the Holocene especially 

within the downstream sediments; this is evidenced by the presence of the 

terrace and the incision rate of 0.24 ± 0.02 mm/yr. The catchment wide erosion 

rate of Buscher et al (2013), therefore must be a significant underestimate of 

the incision occurring in the total length of the Kabazlı River to the active fault.    

 

5.9: CONCLUSIONS 

A terrace flight preserved along three rivers draining the southern margin 

of the Gediz Graben indicates that there has been ongoing uplift along the 

graben bounding fault over at least the last 85 kyr. The OSL dating of the T4 

sediment associated with the T4 terrace yielded ages of between 83.79 ± 7.19 –  
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7.06 ± 0.59 Ka. The sedimentology and stratigraphy indicates that the sediment 

package 2, which is dominantly conglomeritic is the T4  terrace sediment.  The 

terrace is overlain by hill slope deposits, which have similar morphology and 

ages in each of the rivers. The climate record shows that  the T4 terrace could 

be correlated with the last glacial stade and cooler Younger Dryas although 

additional investigation and dating would be required to clarify this issue. The 

maximum incision rates in the three studied rivers calculated for the OSL 

samples vary between 3.96 – 2.59 mm/yr although this study concludes that 

0.24 ± 0.02 mm/yr is a more representative incision rate using the older OSL 

date. These rates are similar to other Mediterranean incision rates from terraces 

but low compared to similar rates in tectonically active areas of Asia. If the 

incision rate of 0.24 ± 0.02 mm/yr is considered a proxy for uplift in the Gediz 

Graben, the rate appears to underestimates the time average throw rates 

derived in Chapter 4 by around 0.75 mm/yr.  

 

 

 

 

 

 

 

 

 

 

 

 



196 
 

 

 

 

 

 

 



197 
 

CHAPTER 6 

THE INTERACTION OF ACTIVE TECTONICS AND RIVER 

GEOMORPHOLOGY WITHIN THE GEDIZ GRABEN 

 

6.1: CHAPTER HIGHLIGHTS 

 The rivers within the Gediz Graben all contain a single knickpoint initiated 

by an increase in throw rate on the basin-bounding fault. 

 This increase in throw rate was caused by linkage of the three main fault 

segments of the high-angle graben bounding normal fault array at some 

time between 0.6 Ma and 1 Ma.  

 The faulting enhancement factor has been calculated to be 3 at the 

centre of the fault array, with the throw rate predicted to have increased 

to 2 mm/yr.  

 Drainage area variations and throw rate differences cannot explain the 

entirely of the variation of in knickpoint retreat rate within the Gediz 

Graben or in contrasting the data to other areas.  

 Climate has been ruled out as an additional source of the variation in 

retreat rates, as has a dependence of Ψ on slope, but the differences 

may be caused by lithology, sediment flux or channel width relationships.  

 

6.2: INTRODUCTION 

It is now widely accepted that fluvial geomorphology can give qualitative and 

quantitative insights into tectonics. In steady state landscapes, channel 

steepness indices have been directly linked to surface uplift rates (Snyder et al., 

2000; Whipple, 2001; Kirby et al., 2003; Oiumet et al., 2009). While in transient 
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landscapes responding to a tectonic perturbation, a considerable body of 

literature has addressed the way in which the fluvial system records changes in 

relative uplift rate in time and space (e.g. Whipple and Tucker, 2002; Whittaker 

et al., 2008; Whittaker and Boulton, 2012). In bedrock fluvial systems a 

knickpoint can be initiated following a change of boundary conditions, such as 

an increase in fault slip rate (Snyder et al., 2000; Whipple and Tucker, 2002; 

Crosby and Whipple, 2006; Whittaker et al., 2008; Whittaker and Boulton, 

2012). The increase in channel steepness, caused by faster throw rates leads 

to an increase local river incision. Consequently, the knickpoint migrates 

upstream, and so the effects of the new tectonic boundary conditions are 

propagated throughout the catchment (section 3.5; Crosby and Whipple, 2006; 

Gasparini et al., 2006; Whittaker et al., 2008). The migration of knickpoints 

upstream can be split into a horizontal and vertical component. The progress of 

the knickpoints upstream in plan view is influenced by several factors such as 

drainage area and lithology (Whipple, 2004; Wobus et al., 2006a, 2000b; 

Whittaker et al., 2007, 2008; Attal et al., 2008), and can yield information about 

landscape response times; a primary control is known to be drainage area 

because this predictably influences the speed of knickpoint retreat, and this can 

be predicted analytically using the stream power erosion law (Seidl and Dietrich, 

1992; Whipple and Tucker, 1999; Montgomery and Gran, 2001; Whipple and 

Tucker, 2002; Whittaker et al., 2008; section 3.5). Lithology is identified by 

some researchers as being of significance in determining the rate of knickpoint 

retreat because it should affect bedrock erodibility, hence K in any form of the 

classical stream power erosion law (section 3.5, Goldrick and Bishop, 1995; 

Anthony and Granger, 2007; Cook et al., 2009). Nevertheless a number of 

studies in recent years (e.g. Stock and Montgomery, 1999; Whittaker and 
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Boulton, 2012) have concluded that lithology seemingly has little relative 

influence on knickpoint retreat rates relative to other factors. Climate can also 

play a significant role in the amount and variability of run off and erosion 

thresholds, also in the growth or absence of anchoring vegetation, which can in 

turn affect landscape evolution both by varying the rate at which landscapes are 

modified and by altering the pattern landscape changes (Whipple, 2004; Kent, 

2011; Whittaker, 2012). Recently, Whittaker et al., (2008) studied the plan-view 

migration of knickpoints in rivers in the Italian Apennines and their relation to 

active tectonics. This study quantified the drainage-area normalised knickpoint 

migration parameter (Ψ) upstream of faults that had increased their slip rate at 

the same time.  Consequently, Ψ was expected to be similar for all rivers as 

lithology and climate were similar between study sites. However, it was found 

that Ψ was correlated with fault slip rates, suggesting that transient landscape 

responses were potentially controlled by rates of fault motion. Whittaker and 

Boulton (2012) noted the same relationships in both Italian and Turkish rivers. 

They observed the same links between the drainage area normalised knickpoint 

retreat parameter and the fault throw rates that they attributed to higher fault slip 

rates leading to channel narrowing, generating knickpoints that migrate faster 

upstream. 

Furthermore, the vertical rate of knickpoint propagation upstream in a 

catchment is theoretically independent of drainage area, but dependent on the 

relative magnitude of tectonic perturbation generating the knickpoint (Wobus et 

al., 2006b; Crosby et al., 2006; Whittaker and Boulton, 2012).  Consequently, if 

knickpoints are measured according to their vertical height above the source of 

tectonic perturbation (i.e. the active fault), their heights should scale with the 

throw rate on the active fault and should not be affected by the drainage area of 
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the river. Several studies have linked the heights of the knickpoints upstream to 

the rate of fault movement and have verified these general principles (Harkins 

et al., 2007; Boulton and Whittaker, 2009; Whittaker et al., 2008; Whittaker and 

Boulton, 2012). For instance, this latter study determined that the along strike 

trends in the height of knickpoints above active faults closely mirrors the fault 

throw rate along strike.  

The time span over which rivers respond to these changes in tectonics, 

and pass these effects to the surrounding landscape is fundamentally 

determined by knickpoint migration rates (Whipple and Tucker, 1999; Whipple 

et al., 2000; Whipple, 2004; Wobus et al., 2006a).  A number of studies have 

suggested that this process can take several million years (Merritts and Bull, 

1989; Whipple, 2001; Snyder et al., 2000; Whittaker and Boulton, 2012). 

Consequently, this makes rivers ideal natural laboratories for evaluation of the 

landscape response to active faulting over Pliocene to Recent timescales.  

Therefore this chapter addresses the evolution of the fluvial system of 

the southern margin the Gediz Graben from the late Pliocene to recent  to 

examine the interaction between active faulting and landscape evolution in this 

tectonically-active area. In particular, this chapter exploits quantitative 

techniques from fluvial geomorphology to: 1) evaluate the differences in the 

longitudinal profiles of the rivers crossing the active high-angle graben-bounding 

normal faults; 2) identify knickpoints initiated by tectonic processes, and identify 

landscape transience; 3) determine to what extent drainage area and fault throw 

controls the progress of knickpoints upstream; 4) relate knickpoints heights to 

fault slip-rates and 5) determine the effects of differing boundary conditions (e.g. 

tectonics, climate, lithology) on landscape response times.   
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6.3: GEOLOGICAL AND TECTONIC BACKGROUND  

The Gediz Graben in western Turkey lies within the Western Anatolian 

Extensional Province, an area of active extensional tectonics (Sengor & Yılmaz, 

1981; Bozkurt & Mittwede 2001; Okay et al., 2001; Dilek & Pavlides 2006; 

Robertson & Mountrakis 2006; Ten Veen et al., 2009). GPS data shows that 

extension is still occurring in the Western Anatolian Extensional Province 

(WAEP) (e.g. Barka and Reilinger, 1997; Aktung et al., 2009). For the WAEP 

Barka and Reilinger (1997) estimated that Anatolia is moving northwards with 

respect to the Eurasian Plate at 23±1, 10 mm/yr. Mueller et al. (1997) provide a 

similar rate of 22 mm/yr for extension over Anatolia. The Available GPS data 

indicate 10±5 mm/yr of extension the Gediz and Büyük Menderes grabens 

(Barka and Reilinger, 1997; Aktung et al., 2009), which is distributed between 

the two grabens. These data yield an opening rate of 6 mm/yr for the Büyük 

Menderes Graben and 4 mm/yr for the Gediz Graben (Aktung et al., 2009). 

Further detail relating to the location and nature of the Gediz Graben and 

surrounding areas can be found in chapter 2 (figures 2.4, 2.8 and 2.10).  

 The basin is one of a series of grabens within western Turkey resulting 

from extensional tectonics in this area (Paton, 1992; Barka and Reilinger, 1997; 

Çiftçi and Bozkurt, 2009a; Çiftçi and Bozkurt, 2009b; Aktung et al., 2009 Çiftçi 

and Bozkurt, 2010). The modern topographic graben is 120 km long with a 

roughly E-W oriented graben axis. The geology of the southern margin, the 

Bozdağ Range, is dominated by the metamorphic central Menderes sub-massif 

and syn-tectonic sedimentary units (figure 6.1). These lithologies together form 

a mountain range that trends in a roughly W-E direction and reaches elevations 

of 2159 m at its highest peak, Bozdağ, in the centre of the range. The 

extensional tectonic regime of western Turkey has led to significant historic 
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earthquakes in the region (Guidoboni and Comastri, 2005; Guidoboni et al., 

1994) (figure 2.3). An earthquake in 17 AD caused extensive damage to the 

region and the city of Sardis (located within the Gediz Graben) suffered damage 

from which it never truly recovered (Bauer, 2013). The ancient city of Smyrna, in 

present day Izmir (figure 2.4) on the Aegean coast of Turkey was repeatedly 

destroyed by earthquakes including one in 2 AD and another in 178 AD 

(Guidoboni et al., 1994). A significant earthquake of magnitude 6.9 occurred in 

1969, creating a surface rupture of around 30 km (Arapat and Bingol, 1969) 

within the Gediz Graben. Another earthquake occurred in March 1970; this 7.2 

magnitude earthquake left thousands homeless and over 1000 people dead 

(Mitchell, 1976). Additional large magnitude earthquakes occurred in 1866 and 

  

Figure 6.1: A simplified geological map showing the main lithologies in the Gediz 
Graben and the significant regional faults, a low angle detachment and an array of 
high-angle normal faults that bound the modern topographic graben. The tectonic 
knickpoints for each of the studied rivers are marked onto the rivers.  

 

http://en.wikipedia.org/wiki/Sardis
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 1944 (Ambraseys and Jackson 1998), these regional earthquakes illustrate 

how seismicity related to extension is affecting areas such as the Gediz 

Graben, creating significant seismic hazard.  

 The formation of the modern topographic Gediz Graben occurred as a 

two-stage process, which was initiated at 16 Ma with uplift and subsidence 

occurring primarily along a laterally continuous low-angle detachment fault in 

the southern graben margin (e.g. Buscher et al., 2013; Koҫyiğit et al., 1999). 

Between 2.6 – 2 Ma the dominant style of faulting switched to high-angle 

normal faulting in both the northern and southern graben margins (Buscher et 

al., 2013; see chapter 2 for a review of the geology of the Gediz Graben). In the 

southern margin the high-angle normal faulting occurs on three segments that 

form the 120 km long array. The longest fault segment is the central Salihli 

segment at 47 km in length, the eastern Alaşehir segment has a length of 42 km 

and the shortest segment is the western Turgultu segment at approximately 35 

km in length (figure 2.8). Although the existence and location of active faults are 

generally agreed, the rate, and relative magnitude of the faulting in along the 

graben margin has, until now, remained unconstrained. Chapter 4 presented 

stratigraphic and structural measurements to address some of these key 

questions. In particular, structural cross-sections, piercing point data and 

topographic swath profiles were used to constrain the geologic throw along the 

strike of the faults, and to quantify how this scaled with the variation in footwall 

relief along the basin margin (figure 6.2). Time-averaged throw rate data were 

calculated for the high-angle normal faults bounding the present day 

topographic graben, assuming these normal faults have been active from 2 – 

2.6 Ma to the present day (Koҫyiğit et al., 1999; Buscher et al., 2013). Time-

averaged throw rates lie between 0.44 and 1.27 mm/yr along the fault array for 
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the whole of the Gediz Graben southern margin. When the average throw rate 

is calculated over each of the three fault strands rates for the Turgutlu Salihli 

and Alaşehir fault segments are 0.7 mm/yr, 1.2 mm/yr and 1.0 mm/yr 

respectively for the last 2.6 My (figure 4.11). The data presented in chapter 4 

showed that the trend in the throw rate data for the Gediz Graben across the 

whole 124 km fault system was for the highest values of throw rate to be found 

towards the centre of the fault array. The highest time-averaged rate of 1.48 

mm/yr is found at 72 km along strike and the lowest values are at the ends of 

the whole fault array (figure 4.11). 

 

 
 
 

Figure 6.2: Total throw and footwall relief along strike. The errors on the values are 
10%, as within 5km of the measurement site the value did not vary by more than 10% 
of the measured value. 
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However, the data presented in chapter 4 also suggest that at least one 

fault linkage event has occurred between the fault segments at some stage 

since fault initiation. It has been well documented that on a fault segment the 

highest values of throw should be found near the centre of the fault while the 

throw should reduce to zero at the fault tips (e.g. Kim and Sanderson, 2005; 

Cowie and Roberts, 2001; Barnett et al., 1987). However, where the mapped 

extent of the eastern and western segments meet the central fault segment, 

there are non-zero values for the fault throw. Moreover, the existence of three 

fault strands can be clearly seen in measures of footwall relief (section 4.7). 

Additionally, seismic data supports the existence of three depo-centres, where 

during the Late Pliocene-Early Pleistocene sediment was deposited within the 

hanging wall of the high-angle fault array (Oner and Dilek, 2011; Çiftçi and 

Bozkurt, 2009). However, from the late Pleistocene to the present day the 

graben acts as a single depo-centre (Çiftçi and Bozkurt, 2009). Linkage of the 

fault strands in the Gediz Graben is therefore supported by the non-zero throw 

values at the mapped areas of the central Salihli segment furthest from the 

centre and the overall trends in throw rate along strike suggesting the all three 

of the fault segments are linked (see chapter 4 for detailed information).  

 

6.4: METHODS 

The analysis conducted in this chapter centres on data extracted using 

Digital Elevation Models (DEMs). These data were analysed using ArcGIS (Arc 

Map) and RiverTools software. Topographic data were acquired from the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

DEM data, with a 30 x 30 m resolution (NASA https://wist.echo.nasa.gov/api/). 

https://wist.echo.nasa.gov/api/
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Vertical errors on ASTER data are stated at 7 – 14 m in terms of standard 

deviation (ASTER GDEM Validation Team, 2009).  

 

6.4.1: EXTRACTION OF RIVER PROFILES AND CATCHMENT 

INFORMATION FROM ASTER IMAGERY 

The Bozdağ Range that bounds the Gediz Graben contains a well-

developed drainage network of rivers that have their source at the drainage 

divide and incise through the mountains, into the Gediz Graben, all joining the 

trunk Gediz River, which drains the graben. The drainage network and 

catchment areas of the Gediz Graben were analysed using the DEM data. 

Rivers were selected that originate at the divide and become the main trunk 

river of the catchment. This was important as the aim of this study is to evaluate 

how the impact of active tectonics is transferred through a bedrock river system 

to the entire catchment. To address these aims, 24 catchments (figure 6.3) 

 

 

Figure 6.3: A topographic map of the southern margin of the Gediz Graben (the 
Bozdağ Range). The rivers and catchments extracted for this study are mapped onto 
the image. All the extracted rivers flow into the main Gediz trunk river, flowing through 
the Gediz Graben in a westerly direction. The black stars show the location along the 
channels of the identified tectonic knickpoints. The grey lines show the location of the 
active graben-bounding normal fault array. 
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 containing 29 rivers (figure 6.4), including some significant tributaries of trunk 

rivers that cross the active normal fault, were identified and extracted using the 

Arc hydrology tool box and the RiverTools software suite. 

DEMs typically have isolated sinks that need to be filled to create a 

hydrologically consistent surface. This process is done using the spatial 

analysis hydrology ‘fill’ tool in the Arc Toolbox. The flow directions on the DEM 

were then analysed using the ‘Flow direction’ hydrology tool which utilises a D8 

algorithm. A D8 flow grid (Jenson and Dominque, 1988) is a grid of flow 

directions defined for each cell as the direction of the one of its eight adjacent or 

diagonal neighbours with the steepest downward slope. Flow direction is 

reported as ‘no data’ for grid cells adjacent to the edge of the DEM. In flat 

areas, flow directions are assigned away from higher ground and towards lower 

ground using the method of Garbrecht and Martz (1997). 

 Once the flow directions have been analysed it is possible to calculate 

the flow accumulation using the ‘Flow Accumulation’ hydrology tool. This 

calculates the drainage accumulated to a specific cell in the flow path. Using the 

flow accumulation grid, the stream network was defined by identifying pixels 

that have a large number of other pixels draining into them, using the Spatial 

Analyst tool Conditional option and ‘Con’ command. Within this command, it is 

possible to stipulate the amount of pixels that need to be draining into a 

subsequent pixel to create a stream network.  A threshold value of 300 pixels 

gives a stream-forming drainage area threshold of 270000 m2 (0.27 km2), which 

is a realistic value that we confirmed against “blue-lined” streams on 

conventional topographic maps. The raster output from the ‘Con’ command kept 

only the cells which had a flow accumulation greater than 300 with all other 

pixels being assigned a null value.  
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 To create a properly-defined stream network, the raster above was used 

in conjunction with the flow direction raster using the ‘Stream order’ hydrology 

tool. Strahler ordering was used in this step (Strahler, 1952). Streams of the first 

order have no tributaries and stream order increases downstream, only when 

streams of the same order intersect. The stream ordering raster was finally 

converted into vector data using the flow direction raster to provide line based 

coverage; this was done using the ‘Stream to feature’ command in Arc Toolbox.  

 To extract, at the basin-bounding fault, the watershed boundaries for 

each catchment draining the Bozdağ Range a point shapefile was used to 

represent the ‘pour point’, which is the outflow of the catchment and is found by 

selecting a pixel along the river at the selected outlet of the catchment. All the 

major outflow valleys, picked at the bounding fault were analysed in this way. 

The watershed for each valley (using the specified ‘pour point’) was extracted 

from the flow direction raster using the ‘Watershed’ tool in the hydrology toolbox 

(figure 6.3). 

River profile data for each of the main streams draining the Bozdağ 

Range and crossing the active fault were extracted using RiverTools software.  

The 30 m ASTER tiles were imported and then mosaicked using the Patch RTG 

DEMs option to create a RiverTools Information (RTI) file. To extract the river 

profile data, several key steps are followed in RiverTools; in most respects 

these steps are analogous to the creation of a stream network in ArcGIS 

described above. The initial step is the construction of the D8 flow grid, which 

requires the pits and flats in the DEM to be resolved; a depressionless DEM is 

created from the mosaicked DEM using the ‘fill all depressions’ option within the 

FlowGrid (D8) from the extract menu. The D8 flow grid is then created through 

the option of ‘iterative linking’.  
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RiverTools was then prompted to extract a vector formatted tree file from 

the constructed flow grid using the ‘Extract RT Treefile’ function. RiverTools 

then create a ‘drainage tree’ based on the previously extracted flow grid 

directions to the edge of the DEM. This step created a RiverTools Vector (RTV) 

file containing the topology of the river network from the existing raster data. 

The final step was the extraction of the river network using the ‘Extract River 

Network’ which distinguishes between flow vectors on hill slopes and channels 

in a river network. The flow vectors on the hill slopes were pruned using the 

Horton–Strahler method (Horton, 1945; Strahler, 1952; Strahler, 1957) as in 

ArcGIS hydrology toolbox, and the resulting stream channel vector data is 

extracted from this. This process creates and stores a suite of files containing  

information such as upstream end pixel ID, downstream end pixel ID, Strahler 

order, straight line slope, along channel slope, total length of all channels 

upstream, relief, absolute sinuosity, drainage density, number of links per 

stream, and number of tributaries of various orders. RiverTools can extract a 

longitudinal profile from any point on the drainage network that the user defines. 

For our purposes, it was therefore important to identify the point furthest 

upstream on the extracted drainage network. The extracted data files contain 

data taken every 0.02 km to 0.03 km along the channel, and at each location 

the latitude, longitude, elevation, downstream distance and upstream drainage 

area were recorded.  

6.4.2: LONGITUDINAL PROFILES AND CHANNEL GRADIENTS  

 The long profiles of each river (figure 6.4), and their channel slopes, S, 

and drainage areas, A, as a function of downstream distance, L were derived 

from the RiverTools data output. Reach-average channel gradients were 

calculated using elevation differences of 15 m. Linear regression was 
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Figure 6.4: Long profiles for the 29 rivers extracted that drain the Bozdağ Range and 
cross the active high-angle normal fault array. The catchment locations for each of the 
rivers are shown in figure 6.3. The location where the river intersects the active normal 
fault is shown with a dash and the position of the tectonic knickpoint for each river is 
marked with a star, any lithology knickpoints are marked with a grey star.   
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 undertaken on log-log slope-drainage area plots for each river in order to 

calculate normalised channel steepness index, ksn where, 

 

S = ksn A
-θ     (eq. 6.1) 

 

and θ is the channel concavity. A standard concavity of 0.45 was used to derive 

the normalised steepness index (c.f. Wobus et al., 2006) to enable comparison 

between different rivers in the graben that vary in terms of their absolute 

concavity.  Where knickpoints were present in the long profile (section 6.4.3), 

normalised steepness indices were derived for (i) upstream of the fault and 

downstream of the knickpoints and (ii) upstream of the knickpoint and 

downstream of the drainage divide.   

 
 

6.4.3: KNICKPOINT IDENTIFICATION 

A knickzone can be defined as a large-scale convexity in a river 

longitudinal profile, and a knickpoint as the precise profile break where the rate 

of change of the channel gradient is greatest in the river profile (Kirby et al., 

2003; Crosby and Whipple, 2006; Wobus et al., 2006; Pederson and Tresler, 

2012; Whittaker and Boulton, 2012). The presence or absence of knickpoints in 

the river long profiles upstream of the active faults was noted for each river.  

The knickzones identified here, and consequent convexities in the river profiles 

extracted, are large in scale (hundreds to thousands of metres), and thus 

influence significant portion of each catchment by length. It is stressed that this 

study is not concerned with small-scale or localised waterfall-type gradient 

changes in the river channels. Two methods were used to isolate and confirm 

the location of knickpoints along the river profile. The initial method was a visual 
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inspection of the longitudinal profile of each river. Any large-scale knickzones, 

clearly apparent from a visual inspection of the profile, were marked (e.g. 

Pederson and Tresler, 2012; Whittaker and Boulton, 2012). However, in many 

cases the precise downstream position of the knickpoint is not always easy to 

see within a convex-upward long profile. To avoid ambiguity in the location of 

the knickpoints, the reach-averaged slope data were plotted against 

downstream distance for each profile and the river profile overlaid. These 

graphs were used to derive robust knickpoint locations in each of the study 

rivers. Having constrained knickpoint locations in each river, the knickpoint data 

was extracted from the DEMs, including the vertical height of the knickpoint 

above the active fault, the upstream drainage area at the knickpoint, the 

downstream distance of the knickpoint, the total length and drainage area of the 

river and the along-strike position, relative to the graben margin, where the river 

flows across the active fault. 

 

Figure 6.5: An example of a slope-drainage area plot in log-log space, using river 7. 
The morphology of the data that indicates both tectonics and lithology induced 
knickpoints is annotated. Slope-drainage area graphs for all other rivers are available in 
appendix 1. 
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It is accepted that lithology can cause knickpoints to form through 

differences in erodibility (e.g., Snyder et al., 2000; Baldwin et al., 2003; Duvall et 

al., 2004; Goldrick and Bishop, 2007; Anthony and Granger, 2007; Whittaker et 

al., 2007). Consequently, it was necessary to identify any lithology-instigated 

knickpoints so that they could be excluded from the analysis of knickpoints 

reacting to fault movement. Knickpoints initiated by lithology were identified 

through the use of a log-log plot of drainage area against slope (e.g. Haviv et 

al., 2010; Pederson and Tresler, 2012) and verified by determining where the 

rivers cross boundaries between different lithologies using geologic maps (Çiftçi 

and Bozkurt, 2009; Oner and Dilek, 2011). When knickpoints are present in a 

channel, they are necessarily indicated by break in the trend of the data in a 

log-slope log-drainage area plot. The morphology of the data break in this log 

space is important as it potentially yields information about the cause of the 

observed knickpoint (Wobus et al., 2006a). A “slope-break” knickpoint can be 

identified by an offset scaling relationship in the drainage area-slope 

plot. Consequently, two linear regressions with different intercepts (steepness 

indices) can be fitted to the data upstream and downstream of the knickpoint 

(Wobus et al., 2006a). As the steepness index is theoretically related to uplift 

rate (Sklar and Dietrich, 1998; Snyder et al., 2000; Kirby et al., 2003 and see 

section 3.2.3) and an increased steepness index is indicative of increased uplift 

rates, knickpoints associated with ksn differences are good candidates for 

having a tectonic origin (figure 6.5). However, there are also ‘vertical-step’ 

knickpoints which appear on the drainage area-gradient plots as peaks or 

spikes in the data (Goldrick and Bishop, 2007). The intercept of the regression 

line on the slope axis in this case does not increase between the regressions, 

so ksn does not change. Typically, vertical-step knickpoints are caused by 



215 
 

differences in the strength of rock at the channel bed. All the river profiles were 

plotted as log-log slope-area plots and the knickpoints were classified as either 

tectonically induced or caused by lithology, based on the process outlined 

above. The knickpoints classed as lithology-induced were cross-referenced 

against geological maps to verify if any of these corresponded with a lithological 

change. Any verified lithological knickpoints were excluded from consideration 

in this study. The reasonable assumption was made that the knickpoint (the top 

of the convex reach) upstream of the active normal faults in each long profile is 

the distance upstream that the wave-like response to tectonic perturbation has 

travelled (Crosby and Whipple, 2006; Whittaker et al., 2007b, 2008; Berlin and 

Anderson, 2009; Attal et al., 2011).  

 

6.5: RESULTS 

All the extracted rivers drain in a broadly northern direction into the Gediz 

River that runs along the axis of the Gediz Graben. The length of the rivers vary 

between 7.8 km and 24.1 km, with the longest rivers lying within the centre of 

the range, and shorter rivers occurring at the range margins. There is a 

corresponding variation in the size of the catchment area for each river from 7.7 

km2 to 119.1 km2 (table 6.1).  

The Bozdağ Range displays a marked topographic asymmetry with the 

shallow dipping Gediz Detachment to the north creating a wide, gently sloping 

range up to the drainage divide in the Gediz Graben and steep topography 

forming the southern part of the range bounding the adjacent Küçük Menderes 

Graben. The drainage divide throughout most of the mountain range is situated 

close to the Küçük Menderes Graben, although it is more central in the eastern 

part of the mountains. The catchments within the Gediz Graben are elongate  
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with their long axis parallel to the regional extension in a NNE-SSW direction 

(figure 6.3). Within the higher elevations of the range, near to the drainage 

divide, small sedimentary basins have formed that are drained by the elongate 

northward flowing rivers. 

  It is significant that all rivers draining the Bozdağ Range and 

crossing the margin-bounding fault of the graben all have convex long profiles. 

Associated knickpoints, defined using the methodologies discussed above are 

identified in each of the rivers studied (figure 6.4 and table 6.1). All rivers 

contain at least one non-lithologic knickpoint, identified from slope-area 

analysis.  However, additional knickpoints, such as those found in rivers 6, 7, 

17, 18 and 29 were not associated with substantial offset in steepness index 

using slope-area analysis.  In each of the cases the location of these 

knickpoints was verified against geologic maps of the area; these lithology-

associated knickpoints are often pinned to a contact between the sedimentary 

graben fill and the metamorphic basement or the boundary between 

metamorphic lithologies of differing hardness (figure 6.6).  Consequently, these 

knickpoints are excluded from the subsequent analysis.  

The existence of non-lithological knickpoints upstream of the active faults 

is clearly suggestive of a transient response of the fluvial network to active 

faulting in the Gediz Graben. For these tectonic knickpoints the resulting 

convexity starts directly upstream of the fault, and we make the reasonable 

deduction that these knickpoints have been generated from the fault, either 

when the fault started moving, or due to a later slip-rate increase.    
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Figure 6.6: The long profiles of the river that contain lithological knickpoints. The 
lithologies that the channel incises through are displayed under the profile, and both 
the lithology and tectonics knickpoints are marked on. 

 

  



219 
 

 

Figure 6.7: Graph showing the distance of the knickpoint upstream plotted against 
drainage area of the river catchment. The rivers with greater areas have knickpoints 
that have retreated further upstream. The relationship between the knickpoint upstream 
distance and the drainage area of L~A0.41 is similar to the L~A0.5

. This suggests that 
knickpoints formed simultaneously as in rivers with greater the drainage areas the 
knickpoints can move upstream proportionally quicker than those with smaller areas.  

 
 

The plan-view distance upstream that the tectonic knickpoint in each 

river has migrated varies along strike of the mountain range. However, when 

the distance of each knickpoint upstream of the fault is plotted against the 

drainage area, A, of each river catchment (figure 6.7), it is evident that the 

knickpoints within the channels with the largest catchments can be seen to have 

travelled further upstream from the fault.  For example, river 10 has a catchment 

drainage area of 105.2 km2 and the knickpoint has travelled 16.58 km upstream, 

while river 4, which has a drainage area of 18.26 km2, has a knickpoint that has 

travelled only 5.5 km upstream. Studies of knickpoint behaviour in detachment-

limited bedrock systems (e.g. Howard and Kerby, 1983; Seidl et al., 1994; 

Snyder et al., 2000; Tucker and Whipple, 2002; Whipple and Tucker, 2002; 

Anthony and Granger, 2007; Sklar and Dietrich, 2008; Boulton and Whittaker, 
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2009; Jansen et al., 2011; Whittaker and Boulton, 2012) suggest that all other 

factors being equal, the rate of knickpoint retreat upstream should scale with 

drainage area in a predictable way, being proportional to A0.5 for a simple unit 

stream power model.  (Tucker and Whipple, 2002; Bishop et al., 2005; Crosby 

and Whipple, 2006; Whittaker et al., 2008; see section 3.2). A line of best fit 

through this data reveals that the distance upstream that the knickpoint has 

travelled, L, scales as A0.41. Figure 6.7 therefore shows that simple variations in 

drainage area do explain, to first order, the distance upstream the knickpoints 

have retreated. Importantly, such a relationship would be expected if the 

knickpoints in all of the rivers were initiated at the same time (Bishop et al., 

2005; Castillo et al., 2013). Additional factors, such as lithological differences in 

bedrock erodibility, and differing distributions of drainage area with upstream 

channel distance from the fault may explain some of the residual. 

The vertical heights of knickpoints, measured relative to the location and 

elevation of the basin bounding fault in each catchment vary systematically 

along the strike of the Gediz Graben (figure 6.8). The greatest knickpoint height 

is 1029 m above the fault occurring in river 16, at 65.4 km along strike of the 

range front, and approximately half-way along the length of the fault. The 

smallest knickpoint heights are found at the western end of the range where the 

knickpoints are found at heights of 346 m to 550 m above the fault. At the 

eastern end of the range the knickpoint heights are greater, and lie in the range 

of 427 m to 800 m (figure 6.7; table 6.1). The height of the knickpoints above 

the fault correlates well with the relative values of footwall relief and total throw 

on the active high-angle normal faults, which were derived in sections 4.72 and 

4.73 of this thesis. The total throw increases towards the centre of the fault 

array by a factor of 3 compared to the extent of the mapped normal fault array 
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(figure 6.7) as does the height of the knickpoint above the active fault in the 

centre of the range compared with the margins. Significantly, although the three 

fault segments are clearly expressed in the footwall relief profile along strike of 

the fault, and are marked by throw minima at 38 km and 85 km along strike 

respectively, these segment boundaries have knickpoints with vertical heights of 

several hundred metres. The knickpoints documented here at segment 

boundaries are therefore likely to be related to the growth and interaction of the 

basin bounding faults, as opposed to the initiation of faulting. 

 

 

 
 
Figure 6.8: The heights of the knickpoints above the active fault plotted along strike, 
with the total throw and footwall relief superimposed. An error of 10% has been 
assigned to the knickpoint data to account of the variations in knickpoint placement 
between methods. The data shows that the heights of the knickpoints mirror the trends 
in the total throw and footwall relief. 
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Figure 6.9: Plots of knickpoint height above the fault against (A) the extracted relief of 
the footwall and (B) the calculated total throw on the active normal faults. The red lines 
represent a linear regression. There is a trend towards greater height of the knickpoint 
above the fault with higher topography. 

 
 

To test the relationship between knickpoints heights and the magnitude 

of the active normal faulting, knickpoint heights above the fault are plotted 

against the high-angle normal fault footwall relief and the derived total throw 

(figure 6.9). These data show that knickpoints height can be related to both 

relief and total throw with a linear relationship (r2 = 0.52). The data suggest that 

both increases in relief and total throw due to movement of the high-angle 
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normal faults produce an increase in the knickpoint height. The equation of the 

linear best fit line for the plot of knickpoint height above the fault-footwall relief 

has a gradient of ~1, and therefore knickpoints heights are generally similar in 

magnitude to the footwall relief (figure 6.9a). However knickpoints heights are 

only a small fraction of the total geological throw (35% on average). The data in 

figure 6.9 illustrate how the knickpoints record both footwall uplift and total throw 

variations with a reasonable degree of fidelity, and suggest that they are 

recording variations in the magnitude of faulting along the strike of the basin-

bounding structure. 

 
 
 

Figure 6.10: Along strike plots of concavity normalised steepness index (Ksn). The 
reference concavity used was 0.45. A) shows the Ksn values above the knickpoint (blue 
data points) on each river and the corresponding Ksn below the knickpoint (red data 
points). B) shows the ratios of Ksn above and below the knickpoint plotted along strike 
with black data points.  
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Channel steepness indices (ksn) for each study river were also derived 

for channel reaches upstream and downstream of each of the knickpoints 

(figure 6.10a); these show significant variations between each data set. 

Upstream of the knickpoints, the ksn values for each river range between 17.8 

m0.9 and 95.3 m0.9 (blue points, figure 6.10a). However, there is little systematic 

variation in ksn along the strike of the fault. In contrast, the values of ksn 

downstream of the knickpoints, but upstream of the fault are consistently higher 

than the upstream value for the respective river; the average ksn value upstream 

of the knickpoints is 55.5 m0.9 while downstream of the knickpoints it is 124.2 

m0.9. However, there appears to be a general trend in the downstream ksn data 

of significantly higher ksn values in the centre of the fault array, with ksn values 

reaching > 300 m0.9 at 70 km along strike. In contrast, noticeably lower values of 

channel steepness in the downstream reaches of the rivers are consistently 

recorded towards the mapped extent of the fault array. 

The disparities in channel steepness index upstream and downstream of 

the knickpoints on the channels can be effectively explored by the considering 

the ratio of the ksn values along the strike of fault (figure 6.10b). This ratio 

increases to higher values in the centre of the fault array meaning that the ksn 

values downstream of the knickpoint within rivers crossing the active normal 

fault the centre are larger than the upstream values by a greater amount. The 

ratio values in the centre of the fault array range from 2.5 – 3.89, while at the 

mapped extent of the fault array values of 1.1 – 2 are typical. As ksn is 

commonly taken to scale with uplift rate (Kirby and Whipple, 2001; Kirby et al., 

2003; Wobus et al., 2006), these data indicate that the relative uplift rate 

change responsible for creating the knickpoints must lie in this range and may 

have had a greater magnitude near the centre of the fault. 
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6.6:  DISCUSSION 

 

6.6.1: LANDSCAPE RESPONSE TO ACTIVE NORMAL FAULTING 

 

A key aim of this study is to determine whether fluvial geomorphology 

can add to the resolution of structural data and a key part of this is to determine 

whether the fluvial system draining the Bozdağ Range are responding in a 

transient way to active faulting,  and if so, to determine how this is recorded in 

the landscape. Chapter 4 presented evidence for ongoing faulting on high-angle 

normal faults bounding the Gediz Graben, and reported on a high resolution 

data set for along strike trends in throw.  

The results presented in this chapter show that rivers within the Bozdağ 

Range all contain one tectonic knickpoint upstream of the active graben 

bounding faults, including in areas upstream of the fault segment boundaries 

(figure 6.8). The knickpoints in the Gediz Graben cannot be due to lithology as 

the dominant lithology changes along strike have been mapped (figure 6.1), and 

any lithology-related knickpoints identified (figure 6.6) were deliberately 

excluded from the subsequent analysis; the remaining knickpoints do not sit at 

lithological boundaries. There has also not been a regional base level fall or 

incision of sediment out of the graben valley that could account for the formation 

of knickpoints. Climate is not the cause of the knickpoints or their documented 

height variation along strike, as precipitation rates do not vary significantly along 

the Bozdağ Range (Sensoy et al., 2008). Consequently, active faulting is the 

most likely mechanism for the creation of the knickpoints observed in the rivers, 

and the fact that they are still observable in the landscape suggests that the 

rivers draining the Bozdağ graben are indeed recording a transient response to 
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tectonics. Figure 6.7 shows that the drainage area of each river is a key 

determinant of how far the knickpoints have moved up stream. In rivers with 

greatest drainage area the incisional wave associated with the knickpoint has 

reached greater distances upstream from the fault. The relationship between 

the upstream channel distance that the knickpoints have migrated, and their 

catchment drainage area (L ~ A0.41) is very similar to the theoretical predictions 

from simple stream power models if the knickpoints had all started at the same 

time (L ~ A0.5) (Whittaker and Boulton, 2012). Therefore, the simplest 

explanation for this relationship is that these knickpoints were generated by the 

same tectonic event.  

Two potential tectonic events that could explain the formation of the 

knickpoints are therefore either; (i) the initiation of active faulting in the Pliocene, 

or (ii) a subsequent fault slip rate increase along the fault array, due to the 

interaction and linkage of previously isolated fault segments (e.g. Densmore et 

al., 2007; Boulton and Whittaker, 2009). The existence of fault linkage is 

discussed in chapter 4, and is clearly evidenced by the pattern of throw along 

strike of the fault, with non-zero values of throw at the fault segment boundaries 

where zero throw would be expected if the faults were acting independently. 

The existence of knickpoints in the channels upstream of segment boundaries 

also suggests that these knickpoints formed due to the linkage. Additionally, it 

would be expected that there would be two sets of knickpoints in each channel 

if fault initiation was being recorded, in addition to a later linkage event. 

The heights of knickpoints along the strike of the fault array mirrors the 

pattern in throw and footwall relief measurements (figure 6.8) with maximum 

values of both throw and knickpoint height in the centre of the fault. Whittaker et 

al. (2008) proposed that the magnitude of the difference in throw rate before 
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and after fault linkage was the root cause of a similar relationship documented 

for knickpoints upstream of active faults in the central Italian Apennines. An 

increase in throw rate in the Gediz Graben is one result of fault interaction and 

linkage, as the centrally-located areas where fault segments meet that were 

experiencing very low to zero throw rates would suddenly (in geological terms) 

increase as they now be situated within a longer fault structure (Cowie, 1998; 

Cowie and Roberts, 2001). 

This interpretation is also consistent with our estimates of normalised 

channel steepness index, which should reflect variations in relative uplift rate 

along the strike of the fault (Duvall et al., 2004; Wobus et al., 2006a; Whittaker 

et al., 2007; Boulton and Whittaker, 208; Whittaker and Boulton, 2012). As a 

channel is perturbed by increased slip on the basin-bounding fault, the river 

attempts to keep pace with the new rate of throw, leading to the steepening of 

the channel and the migration of a knickpoint upstream. A greater rate of throw 

should therefore increase the ksn value below the knickpoint by a greater 

amount than a lesser throw rate increase, and this is reflected in the data from 

the Gediz Graben when considered along strike (figure 6.8). Assuming that 

uplift rates are linearly proportional to ksn, and channel steepness upstream and 

downstream of knickpoints is recording the erosional response to an uplift rate 

change (Wobus et al., 2006a; Whittaker et al., 2012; Kirby and Whipple, 2012) 

the ratio of ksn upstream and downstream of the knickpoints suggest a 

maximum relative uplift rate difference of 3 – 4 in the centre of the fault. 

The ratio of ksn values above and below the knickpoint vary along the 

fault array from 2.5 – 3.89, at the centre, while values of 1.1 – 2 at the mapped 

extent of the fault array are typical. This may reflect the differences in uplift rate 

given that the areas with the highest ratio are also the areas with the highest 
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time averaged total throw as calculated from the total throw rates. As the ksn 

ratio is linked to an increased uplift rate, this data strongly suggests that the 

differences in the ksn ratios along strike are linked to the throw rates and how 

they vary along strike. The ksn ratio data for rivers in the Gediz Graben suggest 

that there has been an enhancement of the amount of throw occurring on the 

faults since the linkage event.  

 

6.6.2:  CONSTRAINING FAULT THROW RATES  

A caveat of using the derived geological throw to produce throw rate 

estimates along strike of the basin-bounding fault, as presented in chapter 4, is 

that the rate produced is necessarily time averaged over a timescale of 2 Myr. 

However, fault arrays that have undergone linkage tend to preferentially 

accumulate throw at the centre of the new longer fault array with minimal 

changes in throw rates at the tips of the faults. Consequently, the time-averaged 

throw rate values for the centre of the Gediz fault array are likely to under-

estimate the present day throw rate as the time-averaged rates incorporate both 

the pre- and post-linkage rates. In contrast, the eastern and western extent of 

the fault array should have throw rates broadly similar to those that were 

produced using the time averaged method given that they are close to the tips 

of the fault array. Moreover, as knickpoints are transient features created due to 

a relative change in uplift rate or base level, their generation is linked to post-

linkage throw rate, not the time averaged value. The steepness index data 

(figure 6.10) clearly show that the value of ksn is higher below the knickpoints 

and above, and that the ‘downstream’ ksn data are the greatest at the centre of 

the fault. More importantly, the use of time averaged rates may lead to the 

under-estimation of seismic hazard.  



229 
 

 To overcome this problem it is possible to: (i) calculate the range of times 

for which fault acceleration could have occurred, given geological estimates of 

footwall relief and fault throw (figure 6.8); and (ii) estimate the throw rate 

enhancement factor likely associated with the documented fault linkage event 

along the array.  

To solve this issue, we use estimates of  when high-angle active faulting 

first occurred in the Gediz Graben and the footwall relief accumulated since that 

time to iteratively calculate all possibilities for throw rates before and after 

linkage. These values can then be compared with the times and throw rates 

required to grow knickpoints of the size found in the Gediz Graben. Overall, this 

will provide an estimate of both present day throw-rates and the timing of fault 

linkage and interaction (Whittaker et al., 2007; Boulton and Whittaker, 2008; 

Whittaker and Walker, 2015).  

Chapter 4 presented the key constraints for this. In brief, between 2.6 

and 2 Myr significant high-angle faulting developed along the length of the 

graben, and from 2 Myr high-angle normal faulting becoming dominant resulting 

in the present day graben. Both the studies of Buscher et al. (2013) and 

Koҫyiğit et al. (1999) infer a similar age for the transition from sedimentary and 

structural evidence, so 2.6-2 Myr will be used as the timing of the transition from 

phase 1, low-angle normal faulting to phase 2, high-angle normal faulting.   

The increase in throw on the faults can be examined using a fault 

enhancement factor, which quantifies how much enhancement of fault 

displacement there is at the centre of the fault array following fault linkage. This 

is reflected in the ksn ratio data for rivers in the Gediz Graben and can also be 

quantified using fault interaction theory (Cowie and Roberts, 2001). This theory 

assumes that the displacement profile of the fault array is triangular in shape, 
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with a maximum value at the centre decreasing linearly to zero at the tips. The 

validity of the triangular approximation has been tested by Cowie and Roberts 

(2001) who showed that the greatest inaccuracies are at the tips of the fault 

array. Additionally, throw rate enhancement factor at the centre of the array is 

more important for our purposes, as we wish to estimate the maximum throw 

rate on the fault. Equation 6.2 shows how the fault enhancement factor, E 

(Boulton and Whittaker, 2008), for the centre of the Gediz fault array can be 

calculated by considering the length of the fault segment (Li) and the distance 

between the mid-point of the segment to the mapped extent of the post-linkage 

array (Ri): 

 

E = 2 × (Ri Li⁄ )     (eq.6.2) 

 

The lengths of the three fault segments in the Gediz Graben are 41 km, 43 km, 

36 km from west to east with a total array length of 120 km. For the Gediz 

Graben this equation yields a throw enhancement factor of ~3 at the centre of 

the array as a result of fault interaction and linkage, using our inference that the 

fault strands linked at the same time. This value is very similar to the 

enhancement factor of 3 – 4 deduced from ksn ratios at the centre of the fault 

system in section 6.5.  

The evidence presented so far supports the interaction and linkage of the 

high-angle normal faults at some point since their initiation at ~ 2.6 Ma. The 

analysis presented here points to this happening in one event, as there is only 

one tectonic knickpoint on each channel, and the distances the knickpoints 

have moved upstream are consistent with their being initiated at the same time 

(figure 6.7). Consequently, to estimate the timing of linkage (D), given 
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geological estimates of 2800 m of fault throw at the centre of the fault, all the 

possible solutions for the following equation are initially found, which equates 

the total throw (T) to the time and slip rates pre and post linkage: 

 

T = (r1 × t1) + (r2 × t2)     (eq. 6.3) 

 

In this case, r1 and r2 are the original and post linkage throw rates respectively 

and t1 is the time between fault initiation and fault linkage, and t2 is the time 

taken after the throw rate increase, the combination of which led to formation of 

the present day topography.  t1 + t2 is therefore equal to 2.6 Myr.  Additionally, 

we know that 

 

r2 = Er1    (eq. 6.4) 

 

where E is again the throw rate enhancement factor. For the Gediz Graben we 

use a throw enhancement factor of 3 in the centre of the fault, consistent with 

both fault interaction theory and ratios of channel steepness index presented 

above. Using these equations and the estimate of total throw, the range of all 

possible slip rates before and after linkage were calculated, each of which is 

associated with a specific linkage time. 

Figure 6.11 plots all the throw rates on the normal faults both pre- (blue 

diamonds) and post-linkage (red squares) for any time since linkage (t2) that 

can satisfy the required accumulated 2800 m of throw at the centre of the fault 

over a time frame of 2.6 Myr. This allows for a throw rate difference to be 

worked out and plotted (black line) for the calculated pre- and corresponding 
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post-linkage throw rates difference, as knickpoints grow in in response to a 

differential throw rate. 

 

 
 

Figure 6.11:  Calculation of possible throw rates for the centre of the active normal 
fault array in the Gediz Graben before and after linkage as predicted by equation 6.3.  
Given a displacement of T = 2800 m,  all the combinations of the pre- and post-linkage 
throw rates that could account for the 2800m of displacement have been plotted. The 
blue diamonds show the required throw rate before linkage (r1), and red diamonds 
show the paired throw rate after linkage (r2), as a function of time since the throw rate 
increase (t2). The green triangles show the throw rate needed to generate a 1019 m 
high knickzone since linkage time (rknickzone). The black solid line shows difference 
between pre- and post-linkage throw rates, which is what the knickpoints respond to. 
As there has been deposition of graben fill sediments in the hanging wall a grey 
shaded area has been added to account for a reduction in perceived throw rate 
difference due to ~1 km of sediment deposition. This analysis yields a range of times 
for fault linkage of around 600 Kyr to 1 Ma.    

 

However, the time and magnitude of the throw rate should also be 

consistent with the time taken to grow the knickpoints measured in the rivers 

(e.g. Boulton and Whittaker, 2009; Whittaker and Walker, 2015). Whittaker et al. 

(2008) showed through modelling and theoretical studies that the vertical height 
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of knickpoints should scale directly with the throw rate difference since the 

causal perturbation. This means that 

 

H =  t2(r2 − r1)    (eq. 6.5) 

 

The locus of points satisfying this relation is shown in green in figure 

6.11, for one of the knickpoints in the centre of the fault array, which has a 

height of 1019 m.  As the rate and hence time to grow the knickpoint should be 

consistent with a predicted differential throw rate pre- and post- linkage, it is 

therefore possible to estimate both the timing of this event, and the present day 

throw rate (c.f. Boulton and Whittaker, 2009; Whittaker and Walker, 2015). Our 

best estimate for the time of linkage is derived from the point at which the 

knickpoint data set (green triangles) crosses the throw rate difference data set 

(black line). A simple analysis therefore suggests that a linkage event at ~600 

Ka explains the data well. However, as the knickpoints grow in response to a 

relative base level change, consideration needs to be given to the amount of 

graben fill in the subsiding hanging wall of the normal faults as this can reduce 

the differential throw rate increase “perceived” by the river. The sedimentation 

rate in the hangingwall of the fault is not precisely known, but this can be taken 

into account by considering up to 0.5 mm/yr of sediment accumulation to 

account for the presence of > 1000 m of sediment filling the graben depo-centre 

(Çiftçi, 2007). This will effectively reduce the throw rate experienced by the 

rivers. This has been represented on figure 5.11 as a grey bounding zone rather 

than a line; taking the lower bound for this, a maximum time for the linkage 

event is ~ 1 Ma.      
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Figure 6.11 can also provide an estimate of the rates of fault throw both 

pre- and post-linkage. The throw rate values yielded by the calculations are 

representative of the centre of the fault and therefore are range-maximum 

values. In accordance with the behaviour expected in normal faults the throw 

rates will decrease from the centre towards the fault tips with minimum throw 

rates will occurring at the fault tips. The calculations presented here therefore 

provide a present (post-linkage) throw rate of 2 ± 0.2 mm/yr and a pre-linkage 

rate of 0.6 ± 0.1 mm/yr at the centre of the fault array. The method undertaken 

provides a good quantification of throw rates at the centre of the fault array, but 

does not provide direct quantification other throw rates along strike. The values 

for throw rate for the areas along strike between the centre and the mapped 

extent of the normal faults, where throw rate is small compared to the centre, 

could be quantified by extrapolating along a straight line that joins the peak and 

minimum values for throw rate, where the distribution of throw rates along strike 

is modelled as a triangle (c.f. Cowie and Roberts, 2001) with its peak at the 

centre of the fault array.  

 The calculated post-linkage throw rate different to the throw rates 

gathered from time-averaged geological data (for detailed methods and results 

see chapter 4). Throw rates averaged over 2 myr and derived from cross-

sections, seismic reflection surveys and geomorphic analysis give a maximum 

time-averaged throw rate of 1.4 mm/yr at the centre of the fault array. This 

results in an underestimation of present day throw rate by 0.6 mm/yr based on 

the post-linkage 2 mm/yr value estimated here using the time average value. 

This is expected if fault linkage has taken place, because underestimation at the 

centre of the fault is inherent in the time-averaged method.  
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 6.6.3: CONSTRAINING KNICKPOINT RETREAT RATES 

Having determined that there has been a tectonic perturbation due to 

fault linkage in the Gediz Graben, a significant question to consider is how fast 

the fluvially-sculpted landscape is responding to the interaction and linkage of 

the faults.   

 

Figure 6.12: Time average retreat rates (calculated using plan-view knickpoint retreat) 
for knickpoints in the Gediz Graben plotted along strike. The range of the values is 
determined by the calculated range of time for fault linage induced knickpoint initiation 
of 1 to 0.6 myr. 
 

 

As knickpoints retreat upstream, they transmit the effect of a relative 

base-level or uplift rate change to the catchment as a whole (Tucker and 

Whipple, 2002; Harkins et al., 2007; Whittaker et al., 2010; Whittaker and 

Boulton, 2012). Consequently, knickpoint retreat rates play a fundamental role 

in determining landscape response times in non-glaciated terrain (Whittaker and 

Boulton, 2012).  Knickpoint retreat rates can be calculated by dividing the plan 

view upstream distance the knickpoint has moved from the fault by the time 
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since the linkage event (e.g. Bishop et al., 2005; Berlin and Anderson, 2007; 

Jansen et al., 2011; Whittaker and Boulton, 2012). A widely-used measure of 

landscape response time is the time taken for knickpoints to reach the 

headwaters of their catchments (e.g. Crosby et al., 2006; Harkins et al., 2007; 

Whittaker and Boulton, 2012). In the Gediz Graben the knickpoint retreat rates 

vary along strike significantly (figure 6.12). The lowest average retreat rates are 

found in the Turgutlu and Alaşehir Segments, with minimum values at each end 

occurring within the half of the segment nearest to the edge of the fault array. 

The minimum value within the Turgutlu Segment is 7.6 mm/yr with linkage at 

600 Ka and 4.3 mm/yr with linkage at 1 Ma, while the minimum for Alaşehir with 

linkage at 600 Ka is 4.5 mm/yr and with linkage at 1 Ma is 2.7 mm/yr. The 

maximum average knickpoint retreat rates are found within the Salihli Segment 

and are 27.6 mm/yr and 16.6 mm/yr for linkage at 600 Ka and 1 Ma 

respectively. These knickpoint migration rates are comparable to those quoted 

in other studies over the same time periods.  For example Jansen et al., (2010) 

calculated knickpoint retreat rates in response to galciostatic rebound of 20 

mm/yr to 200 mm/yr in study sites in France. Hayakawa and Matsukara (2003) 

calculated retreat rates of 1.3 mm/yr to 270 mm/yr for Japanese rivers 

responding to ongoing tectonic uplift. The knickpoint retreat rates can also be 

compared to retreat rates derived for knickpoints that formed in response to an 

increase in normal fault throw rate for catchments located in areas of well-

constrained active normal faulting in the Hatay Graben, Turkey and the central 

Apennines of Italy (Whittaker and Boulton, 2012). In the Gediz graben 

knickpoints are retreating at time-averaged rates of 2.7 mm/yr to 27.6 mm/yr. In 

contrast, the Hatay Graben knickpoints are retreating at rates between 0.3 

mm/yr to 2.7 mm/yr.  While in the Central Apennines, the knickpoints are known 
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to be retreating at between 1.4 and 10.7 mm/yr since a fault interaction event at 

~0.8 Ma (Whittaker and Boulton, 2012). This shows that the knickpoints within 

the Gediz graben are moving up to 2.5 times as fast as those in the Central 

Apennines and 10 times as fast as those in the Hatay Graben. 

However, these values may reflect differences in catchment size 

amongst other variables. It has been well established that the form of any 

stream power law (section 3.2) is a nonlinear kinematic wave with a wave 

celerity that can be used to represent the knickpoint retreat rate (Tucker and 

Whipple 2002; Whipple and Tucker, 2002; Wobus et al., 2006a, 2006b; 

Whittaker et al., 2008; Whittaker and Boulton, 2012). The Celerity (CE) can be 

represented as 

 

CE = ΨAmSn−1     (eq. 6.6) 

 

Where Ψ is a parameter that represents all of the other controls on the 

knickpoint retreat velocity, including K, which embeds lithology and width 

narrowing that is not described by traditional hydraulic scaling assumptions 

(Attal et al., 2011). The dimensions of Ψ are dependent on the power exponents 

m and n (Tucker and Whipple, 2002, Whittaker et al., 2008; Whittaker and 

Boulton, 2012). When the erosion rate is dependent upon the rate of energy 

expenditure per unit width, (unit stream power [section 3.2] ) and hydraulic width 

scaling is subsumed into the exponent on A, m = 0.5 and n =1, CE should then 

be a function of the square root of the drainage area (Tucker and Whipple, 

2002; Whittaker and Boulton, 2012). Consequently, rivers with greater drainage 

areas and hence discharges have knickpoints which retreat faster in a 

predictable way (e.g. Tucker and Whipple, 2002; Whitaker et al., 2008; 
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Whittaker and Boulton, 2012). As the Italian catchments are generally smaller 

than those in the Gediz Graben it would be expected that the Gediz Knickpoints 

could retreat more quickly.  

If A is the dominant control on knickpoint retreat rate, the value of Ψ, 

which can be thought of as a drainage-area normalised knickpoint retreat 

parameter should be the same for all the rivers if lithology and other factors are 

equal.   

Using the data derived from DEM analysis, the Ψ value for all the rivers 

in the Gediz Graben were calculated iteratively (table 6.1) by solving the 

following relation for the upstream position of the knickpoint, Lknick: 

 

Lknick = Lfault −
(Ψ√Af(L))

𝑡
      (eq.6.7) 

 

 

Here Lfault is the distance downstream of the fault and t is the time since throw 

rate increase. A key factor of this equation is that it allows for the slowing of 

knickpoint retreat as a result of progressively declining drainage area upstream 

(Whittaker et al., 2008).  Note that for similar rivers of different catchment sizes 

the time taken for knickpoints to reach the headwaters of a catchment should 

actually be the same if they all have the same Ψ. This is because bigger 

catchments should have faster-retreating knickpoints, but they also have 

proportionally longer trunk rivers, providing they follow the same L ~ √A 

catchment geometry scaling proposed by Hack (1957). 
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Figure 6.13: The knickpoint retreat parameters for knickpoints in the Gediz Graben 
plotted along strike, showing a bar range based on an oldest and youngest age for 
linkage at 1 to 0.6 Myr. The fill of the bars is determined by the lithologies that the 
knickpoints in the rivers have retreated through, up to the current position of the 
knickpoint in the channel.  
 
 

In figure 6.13 the knickpoint retreat parameter for all the rivers is presented with 

the range for each river defined by the possible fault initiation timing of 1 Ma to 

600 Ka. The Ψ values along strike vary by around a factor of 6, between 

9.24x10-7 yr-1 at a linkage time of 1 Ma to 4.34x10-06 yr-1 when scaled for 

drainage area (figure 6.13). Consequently, although drainage area does explain 

some of the absolute differences in knickpoint retreat rate, the 6 fold variation in 

Ψ in the Gediz Graben shows that drainage area is not the only influence on the 

knickpoint retreat rate. The Ψ values for the rivers can be used to calculate 

typical landscape response times for the rivers in the Gediz Graben using a 

theoretical catchment with a 50 km2 drainage area (an average value 

appropriate for the Gediz Graben rivers). Assuming that such a catchment 

obeys hacks scaling law (Hack, 1957) and assuming fault linkage at between 1 

Myr and 600 Kyr the calculated landscape response time in the Gediz Graben 
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would be between 1.6 Myr and 2.7 Ma to propagate the knickpoint to within 1 

km of the headwaters. 

Other parameters that may influence these rates include channel 

gradient, if n > 1 in the stream power erosion law, lithology (i.e. bedrock 

erodibility) (Hack, 1973; Hack 1975; Goldrick and Bishop, 1995; Stock and 

Montgomery, 1999; Antony and Granger, 2001; Cook et al., 2009), sediment 

flux (Jansen et al., 2011) and dynamic channel narrowing effects (Attal et al., 

2011).  

Local climate differences can be ruled out immediately as a cause of the 

variation we see here, because there is no difference in precipitation rates 

across this small study area. However, Whittaker and Boulton (2012) suggested 

that knickpoint retreat rates may be sensitive to fault throw rates, even when 

drainage area differences have been taken into account, either because faster 

fault throw rates steepen the channels more effectively, and if n > 1, this would 

make any knickpoints migrate more rapidly, or because fault-driven channel 

steepening leads to dynamic channel narrowing which has a similar effect on 

knickpoints migration rate, even if n = 1. To assess whether Ψ scales with 

channel slope it is necessary to test the validity of the n=1 assumption in the 

celerity equation (e.g. 6.6). If n = 1 the speed of knickpoint retreat (V) is given 

by eq. 3.16. (Whipple and Tucker, 2002; Whittaker et al., 2007, 2008; Boulton 

and Whittaker, 2009) and is independent of slope. However we must now 

consider the validity of this assumption as for example, if n is 1 + f, where f is a 

positive number, it would be expected that V = k A0.5 Sf. The calculated Ψ 

values would not include this potential additional Sf factor. However, the 

drainage areas of the Gediz rivers vary between 8 km2 and 119 km2 and it is 

known that the slope of a channel is strongly controlled by drainage area as 
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slope decreases predictably as the drainage area gets larger as S ~A-0.5 

(Willgoose et al., 1991; Howard et al., 1994; Schorghofer and Rothman, 2002). 

Therefore, in order to examine for a relationship of Ψ ~Sf the effect of drainage 

area on channel gradients near the fault must be taken into account. Obtaining 

these channel slopes from the channel longitudinal profiles, and correcting them 

as S√𝐴, we find that Ψ does not change significantly as drainage-area-

normalised-slope increases. Consequently, we conclude that channel gradient 

S is not controlling Ψ, and that our assumption that n = 1 is valid (figure 6.14).   

 

 

Figure 6.14: A graph showing a plot of Ψ against drainage-area-normalised-slope on a 
log-log plot. The graph shows that for the rivers in the Gediz Graben Ψ ~ (S√A) 0.05, 
with n = 1.05 for Sn-1. This relationship doesn't fit the data well. We can therefore 
confidently conclude that slope is not controlling Ψ, and the assumption that n = 1 is 
valid.   

 
 
 

Additionally, figure 6.15 presents the Ψ data from the Gediz Graben as a 

function of modern (post-linkage) throw rates. Unlike the drainage area 

normalised slope data, it can be seen that there is a weak trend towards higher 

values for Ψ at higher throw rates. At calculated post linkage throw rates under 

1 mm/yr for linkage at 600 Kyr the average Ψ is 2.95x10-06 yr-1, and with a 
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linkage time of 1 m/yr the average Ψ value is 1.77x10-06 yr-1. For higher post 

linkage throw rates from 1 mm/yr to the maximum of 2 mm/yr average Ψ values 

are 3.27x10-06 yr-1 for linkage at 600 Kyr and 1.96x10-06 yr-1 for linkage at 1 myr.  

This relationship was explained by Whittaker et al. (2008) as being related to 

channel narrowing effects which were driven by throw rate, and we propose the 

same effects may apply here. 

 

Figure 6.15: The knickpoint retreat parameter for the Gediz graben plotted against 
throw rate with maximum and minimum values based on linkage between 1 and 0.6 
myr. The data for The Italian Apennines and Hatay Graben, Turkey, are included as 
black and grey bars. Additional data from Whittaker et al. (2008) and Whittaker and 
Boulton (2012). 
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It possible that the unexplained cause of the trends in knickpoint retreat 

rate and Ψ is a lithology effect. The Turgutlu segment and the Alaşehir Segment 

have retreat rates which seem to be higher than the calculated throw rates 

would suggest if throw rate was the main control.  

In the Turgutlu segment the rivers incise through clastic sediments and 

gneiss (figures 6.1 and 6.13). In figure 6.13 a line has been fitted at 3.5x10-06 yr-

1 to highlight the rivers that have a particularly high Ψ value. River 5 (figure 

6.13) within the Turgutlu segment lies over this line. In river 5 the knickpoint has 

retreated through a channel that, by length, is around 2/3 clastic sediments and 

1/3 gneiss. The distribution of gneiss and sediments in the rest of the rivers in 

the Turgutlu segment is similar in proportion (averaging around 45% gneiss) 

and location along the river and so the rock type does not appear to provide an 

indication of the cause of the higher Ψ value in this case. Within the Salihli 

Segment three rivers cross the line indicating higher values of Ψ (figure 6.13). 

Rivers 13 and 14 have knickpoints that have retreated through almost 2/3 

gneiss and around 1/3 sediments. River 21 has a knickpoint that has retreated 

through 1/3 each of sediments, gneiss and schist. The lithologies in the river 

channels of the Salihli Segment do not seem to give an indication of why rivers 

13, 14 and15 have higher Ψ values than the other rivers in the segments as the 

lithologies and amounts of particular lithologies do not differ from those in the 

rivers with smaller Ψ values. In the Alaşehir segment, rivers 23, 25 and 26 have 

Ψ values higher than 3.5x10-06 (figure 6.13). Each of these rivers has a 

knickpoint that has retreated through around 1/3 quartzite with various 

proportions of clastic sediments and schist, and in one river about 1/4 granite.  

As in the Salihli segment the rivers with higher Ψ values do not seem to have 
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different lithologies of amounts of lithologies than the rivers with smaller Ψ 

values. 

Given that there few differences in the lithologies that the rivers incise 

through along strike between the rivers with Ψ values higher than 3.5x10-06 and 

the other rivers it is not clear that lithologies could be the cause of the 

differences in knickpoint retreat rates along strike. This does not explicitly rule 

out lithology as a cause of the variation; although it does mean that the 

differences cannot be attributed to lithologies determined from regional 

mapping. It is possible however, that the existing mapping of the geology does 

not accurately represent the lithologies found within the channels of the rivers. 

Additionally it could be that the lithology is not a good predictor of intrinsic rock 

hardness which accounts for other factors such as foliation and jointing. These 

differences can be highlighted in the field using measurements such as rock 

mass strength (Selby, 1980).  

 

6.6.4: REGIONAL COMPARISON AND LANDSCAPE RESPONSE TIMES 

These  drainage area normalised knickpoints retreat (Ψ) values can be 

compared to existing studies both in the  Hatay Graben of Turkey and in the 

Central Apennines of Italy (Whittaker et al., 2008; Whittaker and Boulton, 2012)   

(figure 6.15), both of which have rivers that incise through dominantly limestone 

lithologies. The most significant observation is that Ψ is much greater and 

therefore landscape response times are faster in the Gediz Graben than in the 

other two study areas. It can be seen that Ψ values for the Gediz Graben are at 

least a factor of two larger than those published for the Italian Apennines. The 

lowest Ψ values for the Gediz Graben rivers are as large as the highest values 

for the Italian Apennines. All the Ψ values for the Gediz Graben are significantly 
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greater than those from the Hatay Graben with a typical difference of a factor of 

7. 

 Another significant observation is the relationship between throw rate 

and Ψ. The throw rates in the Hatay graben are all significantly less than those 

of the Gediz Graben, but the Gediz Graben rates are comparable to some of 

the rates within the Apennines. The average throw rate on the faults within the 

Gediz Graben is 1.4 mm/yr, while in the central Apennines and Hatay Graben 

the average throw rates are 0.7 mm/yr and 0.3 mm/yr, respectively. The 

average throw rate in the Gediz Graben is therefore double that of the Central 

Apennines and four times that of the Hatay graben. Ψ can be compared for 

rivers crossing faults with similar throw rates in the Gediz Graben and the Italian 

Apennines. For the Apennines the maximum Ψ of a river crossing a fault with a 

throw rate of 1.8 mm/yr is 1.41x10-6, for a Gediz Graben river crossing a fault 

with a throw rate of 1.7 mm/yr the maximum Ψ is 2.79x10-6. For a river crossing 

a fault with a throw rate of 1 mm/yr in the Apennines the maximum Ψ is 

1.17x10-6, in the Gediz Graben for a throw rate of 1.1 mm/yr the maximum Ψ is 

3.12x10-6. This shows that Ψ values in the Gediz Graben are around 2 – 2.5 

times those for the same throw rates in the Apennines.  

The data does appear to show that higher throw rates in the Gediz 

Graben leads to higher knickpoint retreat rates, but there is an important 

difference between the Hatay Graben and central Apennines data and the 

Gediz Graben data (figure 6.15). In the Hatay Graben and Central Apennines 

the throw rate variation can lead to a 7 fold difference in the knickpoint retreat 

parameter (Whittaker and Boulton, 2012), whereas in the Gediz, the throw rate 

variation of 0.4 mm/yr to 1.27 mm.yr gives around a maximum of a 4 fold 

variation.   
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 Nevertheless, given that knickpoints crossing faults with a similar throw 

rate in each of the three study areas have quite different drainage area 

normalised retreat rates, at least one additional factor is therefore necessary to 

yield the variations in Ψ between the regions. One additional factor affecting 

knickpoint migration rate between the study areas is climate. Knickpoint celerity 

is scales, in reality, with discharge (for which drainage area is commonly used 

as a proxy). Discharge (Q) encompasses drainage area (A) and precipitation 

rate(p) 

 

Q = pA     (eq. 6.8) 

 

   If knickpoint celerity (CE) is then considered in terms of discharge, 

where k is constant, similar to Ψ, we can write:  

 

CE = k√(pAf)     (eq. 6.9) 

 

Consequently, as our Ψ is normalised for drainage area only, it implicitly 

includes precipitation variations which could cause differences in the Ψ values 

between the different areas.  An inspection of equation 6.9, reveals that as the 

Ce scales with √p, so a factor of four difference in precipitation would be 

needed to produce the higher (doubled) Ψ values of the Gediz Graben 

compared to the Hatay Graben and Central Apennines. 

The climate along the Bozdağ range today is uniform and fairly arid with 

modern precipitation rates varying from 500 mm/yr to 1000 mm/yr in the highest 

parts of the range (Turkish State Meteorological Service, 2014), while in the 

Apennines the precipitation varies between 750 mm/yr in L’Aquilla to up to 1500 
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mm/yr in the high Apennines (Whittaker and Boulton, 2012). In the Hatay 

Graben annual precipitation varies between 500 mm/yr to 1500 mm/yr 

(Whittaker and Boulton, 2012). The present day precipitation data clearly cannot 

explain the differences in Ψ between the areas; the Hatay Graben rainfall is not 

dissimilar to the Gediz Graben while the factor of 1.5 times in the precipitation 

rate between the Central Apennines and Gediz Graben would generate a 

knickpoint retreat rate 1.2 times quicker than that in the Gediz Graben, which 

the data shows is far from the reality.  

In the past the Hatay Graben was twice as dry as it is in the present 

while Central Apennines was 2 – 4 times wetter than present day, and this 

accounted for the two fold differences drainage area normalised knickpoint 

retreat rate documented by Whittaker and Boulton (2012). So in order to 

account for the difference between the Gediz Graben and Apennines data 

(which has larger Ψ values than the Hatay Graben) we would require very 

significant increases in precipitation in the past in the Gediz Graben. Data 

suggests that a 4 fold increase in precipitation level within the Gediz Graben is 

the maximum possible difference that could have occurred in the last 5 Myr 

(Eronen et al., 2012). This gives a maximum past annual precipitation of around 

3000 mm/yr for the Gediz Graben. The minimum estimate of precipitation an 

increase of 2 times present day precipitation in the past for the high Apennines 

gives past precipitation levels of around 3000 mm/yr. Given that a factor of 4 

increase in precipitation is required to achieve the 2 fold difference in Ψ, it is not 

possible to precipitation to account for the total differences in Ψ.  

Other possible sources of the inter-area variation include lithology and 

sediment flux variations (Cowie et al., 2008). The geology of the Hatay Graben 

and the Apennines is dominated by limestone. In contrast the Gediz Graben 
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has greater variation in the lithologies that form the Bozdağ Range. All but two 

of the 29 rivers studied have upwards of 1.5 km of continental clastic sediments 

directly upstream of the fault. Test of uniaxial compressive strength have shown 

the clastic sediments are consistently very soft (and presumably easily erodible) 

when compared to the metamorphic rocks found in the catchments. This 

significant erodibility is juxtaposed against the hardness of the lithologies that 

form the higher elevations of the Bozdağ Range and the majority of the river 

channels upstream of the fault array. These harder lithologies are dominated by 

schists and gneisses with additional granite, phyllite and quartzite. Although all 

rock types are significantly harder than the sediments they have different 

properties such as fractures and foliation which could theoretically lead to large 

differences in the intrinsic hardness and erodibility of the rocks. The following 

chapter will address this in more detail using field studies of rivers from the 

Gediz Graben to examine more specifically what might be causing the high 

retreat rates of the knickpoints compared to areas with similar throw rates. 

 

6.7:  CONCLUSIONS 

The rivers within the Gediz Graben all contain a single knickpoint, which 

this study concludes were generated by active normal faulting and specifically, 

an increase in fault throw rates during the Pleistocene. This increase in throw 

rate is interpreted to have been caused by linkage of the three main fault 

segments of high-angle graben bounding normal fault array at some time 

between 600 kyr and 1 myr. The linkage event produced a faulting 

enhancement factor of 3 at the centre of the fault array, and the present day 

throw rate at the centre of the array is now estimated to be approximately 2 

mm/yr. The Gediz graben has experienced significant historical earthquakes, a 
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notable example of which destroyed the ancient city of Sardis, and some 

notable earthquakes in the Alaşehir area in the 1960s. Within this study there 

has been an increase in throw rate at the centre of the fault to 2 ± 0.2 mm/yr 

from a pre-linkage rate of 0.6 ± 0.1 mm/yr. This represents around a tripling of 

throw rate, which should increase the frequency of seismic activity in the area. 

Given that chapter 4 proposes that earthquakes of up to Mw 7.6 could be 

expected (see 4.7.7 for details), the linkage of the faults likely increased the 

frequency and magnitude of significant seismic activity in the Graben.  

This chapter shows that when the dependence of knickpoint retreat rate 

is normalised for drainage area effects there are still significant differences in 

the knickpoint retreat parameter along strike. Within the Gediz Graben there is a 

trend towards higher retreat rates with higher throw rates, although the 

significant increase in throw rate cannot account of all of the variations along 

strike in the Gediz data. The typical landscape response time implied for these 

rivers is between 1.6 Ma and 2.7 Ma. 

 When drainage-area-corrected knickpoint retreat data for the Gediz 

Graben are compared to other regional data from the Hatay Graben (western 

Turkey) and the Apennines (Italy) it is clear that the knickpoints in the Gediz 

Graben are retreating twice as fast on average than data published for the 

Central Apennines of Italy (Whittaker et al., 2008) and up to 7 times as fast as 

knickpoints in the Hatay Graben (Boulton and Whittaker, 2009; Whittaker and 

Boulton, 2012). While climate is relatively similar between the study areas, a 

possible source of the differences between the two areas is lithology. In the 

Hatay Graben and the Apennines the dominant lithology is limestone, while in 

the Gediz Graben lithologies are dominated by schists and gneisses. The 

following chapter will address this further uncertainty using field studies of rivers 
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from the Gediz Graben to examine more specifically what might be causing the 

high retreat rates of the knickpoints compared to areas with similar throw rates. 
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CHAPTER 7 

TECTONIC AND LITHOLOGICAL CONTROLS ON FLUVIAL RESPONSE TO 

ACTIVE FAULTING, GEDIZ GRABEN 

 

 

7.1: CHAPTER HIGHLIGHTS 

 The rivers in the Gediz graben are responding transiently to the active 

uplift on the graben bounding fault, but the absence of fault scarps in the 

channel show that the incision in the rivers is keeping pace with uplift. 

 Traditional hydraulic scaling models for channel width prediction, and 

alternative width prediction methods that include a channel gradient, fail 

to predict geometry of channels responding transiently to active faulting 

in the Gediz Graben. 

 Peak measured stream powers within the metamorphic lithologies within 

the river channel in general scale predictably with throw rate. 

 The clastic lithologies directly upstream of the active fault are, on 

average, 2.5 times weaker than the metamorphic rocks. 

 Lithology has a significant effect on the stream powers measured at the 

fault when rivers incise through sedimentary rocks, reducing the stream 

power needed to keep pace with uplift by a factor 1.5 to 3. 

 The Yeniköy River, which has abundant sediment in transport, has much 

lower stream power than the other rivers, even when corrected for fault 

throw rate and the increased erodibility of the clastic units.  As the river is 

nonetheless incising rapidly in the Holocene (3.96 mm/yr +0.36 -0.31 

mm/yr , Chapter 5), and there is no fault scarp developed in the channel, 
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this is interpreted as a product of sediment-flux dependent incision (a 

‘tools’ effect sensu Sklar and Dietrich, 2004).  

 

7.2 INTRODUCTION  

In order to consider the impact of external factors, such as active faulting, 

upon bedrock rivers and their surrounding landscape, a number of landscape 

evolution models have been developed (Braun and Sambridge, 1997; Tucker et 

al., 2001; Willgoose et al., 1991; Hancock et al., 2002; Whipple and Tucker, 

2002; Willgoose, 2005; Van De Wiel et al., 2007; Taylor-Perron and Fagherazzi, 

2012). Due to the importance of rivers in driving erosion in these models, it is 

vital to be able to parameterise fluvial incision effectively. To do this, it is 

necessary to be able to predict accurately how channel slope, geometry and 

discharge and additional factors such as lithology and climate control energy 

expenditure and shear stresses on the bed, and thus modulate bedrock erosion 

in time and space (Lavé and Avouac 2001; Duvall et al. 2004; Whittaker et al., 

2007b, Whittaker et al., 2008; Allan et al., 2012; Whittaker and Boulton, 2012; 

Mudd et al., 2014).  

The detachment-limited (or bedrock) incision model (see section 3.2.1 for 

more information), which is usually used to model rivers incising into bedrock in 

mountainous regions assumes in its simplest form that fluvial incision is 

proportional to stream power, which in turn is dependent upon the discharge 

and geometry of the river. The detachment-limited model has gained support 

through field and modelling studies (e.g. Howard and Kerby, 1983; Seidl and 

Dietrich, 1992; Whittaker et al., 2007a; Attal et al., 2008; Attal et al., 2011) have 

suggested that bedrock rivers can be adequately described by a stream power 

model in many circumstances. 
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It is widely agreed that both hydraulic geometry and stream power are 

fundamental to how a river reacts to external forcing (Finnegan et al., 2005; Alto 

et al., 2006; Attal et al., 2008;  Turowski et al., 2008; Allan et a., 2013; Ferrier et 

al., 2013; Cyr, 2014). Although “real” channel geometry has often been 

neglected in favour of empirical scaling relationships, this has led to a vigorous 

debate over how to best consider downstream river channel morphology within 

mountainous areas (e.g. Duvall et al., 2004; Tucker, 2004; Wohl, 2004; Wohl et 

al., 2004; Finnegan et al., 2005; Whittaker et al., 2007a; Attal et al., 2011; 

Ferrier et al., 2013; Cyr et al., 2014). 

In detachment-limited settings, the rate of stream incision, ε, is generally 

modelled as being dependent only on stream power per unit area of the bed, ω,  

 

ε ~ω ~ ρgQS/W (Eq. 7.1) 

 

where ρ is the water density (kgm-3), Q is the discharge (m3s-1), S is the channel 

slope, and W is the channel width (m) (Howard et al., 1994; Whipple and 

Tucker, 1999; Whittaker et al., 2007a). Often, river incision laws are analysed 

with respect to hydraulic scaling relationships used to define downstream river 

morphology (e.g. Leopold and Maddock, 1953). Therefore channel geometry 

(e.g. W) is modelled using power-law functions of drainage area, A, which is 

typically used as a direct proxy for discharge, Q (Whipple and Tucker, 1999; 

Montgomery and Gran, 2001). Consequently, one can write 

         

W =k1A
b     (Eq. 7.2) 
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where b is an exponent that controls the rate of widening with drainage area 

and k1 is coefficient whose units depend on b. Substituting this relationship into 

equation. 7.1, and assuming that Q is linearly proportional to A implies that 

stream power scales as KA0.5S, where K is an erodibility co-efficient that 

subsumes all other relevant parameters. 

 In landscape models this results in the assumption that slope, S, is the 

main variable that will respond to tectonic forcing (Willgoose et al., 1991; 

Hancock et al., 2002; Whipple and Tucker, 2002; Willgoose, 2005; Van De Wiel 

et al., 2007; Taylor-Perron and Fagherazzi, 2012). Although this model has 

achieved some success, it evidently neglects the role of channel width in 

governing fluvial erosivity, which is an important component of the response of 

rivers to tectonic forcing (Duvall et al., 2004; Finnegan et al., 2005; Whittaker et 

al., 2007b; Whittaker and Boulton, 2012), 

However, Studies suggest that in reality, under the effects of tectonic 

perturbation, bedrock-river hydraulic geometry, in particular channel widths, can 

be strongly decoupled from the discharge of the river (Finnegan et al., 2005, 

Attal et al., 2011). In order to evaluate this possible source of error in landscape 

modelling this chapter will investigate the theoretical modelling of width 

evolution in bedrock rivers by comparing measures field values to predicted 

data of the sort often used in theoretical studies. One study that has contributed 

to this uncertainty of the prediction value of hydraulic scaling prediction of width 

in bedrock rivers is Whittaker et al. (2007a). They studied rivers within the 

Italian Apennines and found that there was a breakdown of traditionally 

accepted hydraulic scaling relationships where W ~ A0.5, and subsequently the 

rivers had unit-stream power values around 4 times higher than those predicted 

using the scaling A0.5S.  These results show that modelling stream power based 



255 

on hydraulic scaling assumptions for steady-state rivers may under-predict ‘real’ 

fluvial erosivity in transient settings. This study aims to investigate the 

concequences of models that fix W ~ A0.5, allowing only S to drive incision, in 

the Gediz Graben. They pothesis to be tested is that hydraulic scaling may not 

be able to capture the real response of rivers to tectonic perturbation. This is a 

significant concern as an increasing number of studies show that within areas of 

active tectonics bedrock river geometry can narrow significantly (e.g. Harbor, 

1998; Lavé and Avouac 2001; Duvall et al. 2004; Whittaker et al., 2007b, 

Whittaker et al., 2008; Allan et al., 2012; Whittaker and Boulton, 2012; Fischer 

et al., 2013; Mudd et al., 2014). Consequently, constraining the circumstances 

in which dynamic width narrowing modulates landscape response to active 

tectonics remains and outstanding challenge.   

An additional and important but neglected area of study is the role of 

bedrock lithology in determining the rate and style of bedrock river response to 

a change in relative base level (Stock and Montgommery, 1999; Reneau, 2000; 

Anthony and Granger, 2001; Bishop et al, 2005; Brocard et al., 2006). For 

instance, a more resistant lithology in a river channel should theoretically 

require a higher stream power to keep pace with tectonic uplift on a fault than 

the case where an identical river incises across a weaker lithology. As such, the 

nature of the control exerted on knickpoint retreat and bedrock incision by 

lithology is an outstanding issue (Castillo-Rodríguez, 2011, Crosby and 

Whipple, 2006; Anthony and Granger, 2007; Haviv et al., 2010; Whittaker and 

Boulton, 2012). Lithology is often identified by researchers as being of particular 

significance in modulating bedrock river response to tectonics because it affects 

K in any stream power erosion law ([see section 3.7 for more information] 

Goldrock and Bishop, 1995; Anthony and Granger, 2007; Cook et al., 2009; 
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Allen et al., 2013; Ferrier et al., 2013; Croissant and Braun, 2014).  However, 

there is currently little consensus as to the magnitude of this effect nor is there 

currently an easy way to link measurements of bedrock type or strength directly 

to the K value used in either numerical models or empirical field studies. 

Consequently, while acknowledged as a complicating factor, it is often ignored 

in many geomorphic studies (Castillo-Rodríguez, 2011, Crosby and Whipple, 

2006; Anthony and Granger, 2007). 

The difficulty in analysing the effect of lithology on river channel 

geometry lies in determining the relative scale of the influence of lithology from 

all other possible influences in the parameter K, as currently lithology is bundled 

in to the K parameter along with several other variables. Another related issue 

is that the fluvial erosion laws may not adequately treat lithology in order to 

quantify incision accurately. The implication is that there can be a significant 

difference in the influence of the hardness of the lithology and the influence of 

overall rock strength, which also takes into account the presence of features 

such as fractures, joints and ground water flow. Consequently there is debate 

about which lithological parameters are most important for determining 

resistance to erosion. (Howard, 1998; Stock and Montgomery,1999; Whipple et 

al., 2000b; Sklar and Dietrich, 2001; Von Blankenburg, 2005; Jansen, 2006;  

Whittaker et al., 2007a; Allen et al., 2013). This study will contribute to this 

debate by testing they hypothesis that the softer rocks within the Gediz Graben 

impact significantly on the bedrock rivers by reducing the stream powers 

developed in rivers in response to active uplift in a way that modelling does not 

explicitly allow for prediction of. The variety of lithologies in the Gediz Graben 

make it a great place to compare and contrast between lithologies of differing 

hardness.  
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Another way in which lithology can influence the ability of a river to incise 

into the bedrock is sediment availability in the channel ([see section 3.7] Gilbert, 

1877; Sklar and Dietrich, 1998; Sklar and Dietrich, 2001; Cook et al, 2014). If 

sediment flux coming from upstream is low, incision rates are limited, as there is 

little sediment to act as tools on the bed of the river. However, when sediment 

flux is too high large amounts of sediment can cover the bedrock channel and 

shield the bed abrasion (Sklar & Dietrich, 1998; Sklar & Dietrich, 2001).  

The ‘tool effect’ has been illustrated through experimental techniques 

using abrasion mills (Sklar & Dietrich, 2001; Cowie et al., 2008; Turowski and 

Rickermann, 2009;  Meshkova, 2012) and Sklar and Dietrich (2001) state that 

the rock erosion rate declines with smaller grain size in experimental situations.  

With this in mind deriving the effect of lithology and sediment supply on 

channel response to active tectonics, and analysing how well this effect is 

accounted for in modelling is important. It is therefore vital to establish case 

studies in where the nature of both the tectonic forcing and the transient 

response of the river to this forcing are temporally and spatially well-

constrained. Such case studies would allow for (i) the observation and 

modelling of hydraulic scaling adjustments to tectonic forcing; (ii) the 

comparison of river response to active faulting where lithological variation can 

be compared explicitly and (iii) where the differences between modelled, 

predicted and ‘real’ erosivities can be contrasted effectively. 

This chapter addresses this challenge by presenting data on the 

hydraulic geometry, stream powers and substrate lithologies of six rivers 

draining the Bozdağ Range gathered through field study. The tectonic boundary 

conditions faced by these rivers have been comprehensively quantified in 

Chapters 4, 5 and 6 of this thesis. 
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In this chapter, empirical predictions of hydraulic scaling are compared to 

channel geometries measured in the field, and the transient response of rivers 

draining into Gediz Graben across active normal faults is evaluated. This will 

allow for comparison of the rate of uplift on the normal faults with both predicted 

and actual channel planforms. The predicted and measured stream power for 

each of the six rivers crossing the active fault will also be investigated, to 

evaluate how appropriate erosion-rate predictions based on hydraulic scaling 

relationships are to rivers responding transiently to active tectonics. This will 

yield detailed insights as to how the rivers in the Gediz Graben are adjusting to 

compensate for the increased rate of relative uplift since the mid Pleistocene. 

Significantly, to develop further the work in Chapter 6, the role of lithology in 

modulating the erosional response of rivers in the Gediz Graben will be 

examined, as a low-resolution evaluation of the lithology did not highlight an 

impact on knickpoint retreat rates, but field studies have allowed for much 

higher-resolution lithology mapping around the river channels. This will allow for 

quantification of the effect of erodibility differences between bedrock lithotypes, 

and the differences will be explicitly evaluated.   

 

7.3: STUDY AREA AND TECTONIC BOUNDARY CONDITIONS 

The Gediz Graben is an ideal natural laboratory to study the fluvial 

response of the landscape to active faulting, as the geological and tectonic 

influences on the system are well-constrained (see Chapters 2-6).  

The Bozdağ Range forms the southern bounding range of the Gediz 

Graben, uplifted from the topographic graben floor by an active high-angle 

normal fault array, and previously (before 2 Ma) a low-angle detachment fault. 

To the south of the drainage divide of the Bozdağ Range the range slopes 
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steeply into the Küçük Menderes Graben, also bound by an active normal fault 

array. The range is steeper on the southern side, with the drainage divide in 

places offset towards the Küçük Menderes Graben, giving the range a slightly 

asymmetric profile (figure 7.1). The Küçük Menderes Graben experiences 

similar sizes of earthquakes to the Gediz Graben, the last significant earthquake 

in the Küçük Menderes Graben was the Torbalı earthquake, in 1928, which had 

a magnitude of 6.5 (Papoulia and Gülkan, 2001). Pertinent to the stream power 

studies is that to the presence of active faulting on both the north and south 

margins of the range the Bozdağ Range is a horst and the tectonic uplift across 

the block can be modelled to first order as being approximately uniform. 

 

 

Figure 7.1: A map of the graben systems in southern Turkey. The stippled area 

between the Gediz Graben (GZG) and the Küçük Menders Graben (KMG) is the 

Bozdağ Range. The two inset profiles follow transects A-a and B-b, showing a profile of 

the Bozdağ Range at those points. The active normal faults on each side of the range 

are shown as black lines. Gördes Graben (GG), Demır Graben (DG), Selendİ Graben, 

Simay Graben (SYG), Bergama Graben (BG), Büyük Menders Graben (BMG). 

 

To document river adjustment to the tectonic boundary conditions, six 

rivers have been selected for study (figure 7.2). The rivers were chosen to 

represent a variety of boundary conditions in terms of their throw rate and 

lithologies, and were also selected based on the level of accessibility, as field 

data with good spatial resolution is needed to test hydraulic scaling predictions. 
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The selected rivers have a three-fold spread of quantified post-linkage throw 

rates on the 6 rivers, ranging from ca. 0.7 mm/yr to 2 mm/yr (figure 7.3 and 

table 7.1).  

 

Figure 7.2: A generalised geological map of the Gediz Graben showing the location of 

the 6 river catchments (outlined in black) studied in the field. Black stars represent the 

knickpoints initiated by enhanced throw rate on the graben bounding normal fault due 

to fault linkage. 

 

 

Table 7.1: A table of the boundary condition for each of the river studied in the field. 

 

The highest throw rates are found in the middle section of the basin-

bounding fault, around 60 km along strike, while the lowest throw rates are 

found towards the fault array tips. The rivers selected are a good representation 

of the varying distribution of throw rate in the footwall; a rate of 0.7 mm/yr is 
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found on the Badınca River, this is representative of a relatively distal position 

on the array, (figure 7.2).  A throw rate of 2 mm/yr is found at the Bozdağ River, 

which represent the highest throw rates at the centre of the array. The other 4 

rivers represent a sample of the throw rates between these extremes; the 

Akcipinar River crosses the fault with a throw rate of 1.5 mm/yr. The throw rate 

is 1.8 mm/yr for the Sart River; 1.7 mm/yr at the Kabazlı River; 1.4 mm/yr at the 

Yeniköy River and (figure 7.3).   

 

Figure 7.3: Slope maps of the catchments of the six rivers studies in the field. The 
maps show the location of the studied river and the position of the knickpoint in the 
channel. River shown along strike from west to east: A) Akcipinar River, B) Sart River, 
C) Bozdağ River D) Kabazlı River, E) Yeniköy River, F) Badınca River 
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Figure 7.4: Graphs showing the river long profile for each of the river studied in the 

field. The area beneath the profile is shaded to represent the lithology that the river 

incises through. The knickpoint is marked on as a black circle and the fault is a black 

dashed line. A) Akcipinar River, B) Sart River, C) Bozdağ River D) Kabazlı River, E) 

Yeniköy River, F) Badınca River.   

 

There are a range of lithologies along the six river channels (figures 7.2 

and 7.3), including gneisses, granites, schists and clastic sediments (Ciftci, 
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2007; Oner and Dilek 2011). The distribution of these lithologies has also been 

mapped downstream for each channel based on these published maps (figure 

7.3). There is considerable variety of lithologies between the channels: for 

instance, the Akcipinar River incises only through the metamorphic basement 

rocks upstream of the fault (figure 7.4), while all five of the remaining rivers 

incise through varying amounts of clastic sediments (figure 7.4). Some of the 

rivers are dominated by schist and gneiss while the Badınca River incises 

through quartzite in areas of the channel (figure 7.4). 

 

7.4: METHODS 

 

7.4.1: EXTRACTION OF CATCHMENTS AND RIVERS  

Digital Elevation Model (DEM) data, was analysed using ArcGIS (Arc 

Map) and Rivertools software to extract key information about the selected 

study catchments. Topographic data was acquired from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM data, 

with a resolution 30 x 30 metres (NASA https://wist.echo.nasa.gov/api/). Vertical 

errors on ASTER data are stated at 7 – 14 m in terms of standard deviation 

(ASTER GDEM Validation Team, 2009). Standard computational methods for 

extracting river long profiles, watersheds, and knickpoints locations were 

implemented (see chapter 6) and these were used to guide field data 

acquisition. In both Rivertools and Arc Map a stream network for the Bozdağ 

Range was created from the DEM using constructed flow directions and flow 

accumulation. This allowed for the selection, using RiverTools, of specific rivers 

that drain the flanks of the Bozdağ Range and flow into the Gediz Graben. 

Longitudinal profiles for the 6 study rivers were extracted from the drainage 

https://wist.echo.nasa.gov/api/
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network along the stream profile, allowing the latitude, longitude, elevation, 

downstream distance and upstream drainage area of study sites to be cross-

referenced with DEM output.   

 

7.4.2: FIELD MEASUREMENTS  

The selected rivers were traversed in the field from the source to an elevation 

where the river crosses the active graben-bounding fault, entering the modern 

day topographic graben. Detailed channel measurements (found in appendix 2) 

were taken every 200 – 500 m downstream; study locations were mapped using 

a hand-held GPS with a spatial precision of ± 5m. In the field the following 

variables were measured (see appendix 2 for full data tables): 

1) bankfull channel width (Wb), 

2) maximum channel depth  (H), 

3) local channel slope (S), 

4) valley width (Wv), 

5) Percentage of the channel covered in sediment.  

Hydraulic geometry (1 – 4) was measured using a TruPulse laser range-

finder. The main source errors associated with the use of the laser range-finer 

to measure Wb and H are associated with selection of the surface used to 

measure (Whittaker et al., 2007a).  The width and height of the channel were 

measured at bankfull stage (Leopold and Maddock, 1953; Knighton, 1998). The 

widths and depths measured for bankfull conditions were estimated from 

channel features such as the limits of active abrasion, vegetation boundaries, 

the highest levels of bleaching on boulders and water-washed surfaces, and the 

remains of high stage flood debris, following the methodologies of previous 

workers (e.g. Montgomery and Gran, 2001; Snyder et al., 2003; Whittaker et al.,  
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Figure 7.5: A graph showing the hardness of the rock as measured in the field (hollow 

circles) and hardness averaged over 2 km adjusted to lithological boundaries (black full 

circles). The error bars on the average measurements are 1 standard deviation. The 

coloured bar over the graphs shows the lithology the river incises through at that point 

in the channel. Also shown are the location of the tectonic knickpoint (solid black line) 

and the downstream distance of the active fault (dotted line). An orange line has been 

added to each set of river data to represent the average hardness for the metamorphic 

rocks, while a green line represents the average hardness of the sedimentary 

lithologies. Overall throughout the region the metamorphic rocks are ~2 times harder 

than the sedimentary rocks. A) Akcipinar River, B) Sart River, C) Bozdağ River D) 

Kabazlı River, E) Yeniköy River, F) Badınca River.   
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Figure 7.6: A graph showing the Selby Rock Mass Strength (SRMS) of the rock as 

measured in the field (hollow circles) and SRMS averaged over 2 km adjusted to 

lithological boundaries (black full circles). The error bars on the average measurements 

are 1 standard deviation. The coloured bar over the graphs shows the lithology the 

river incises through at that point in the channel. Also shown are the location of the 

tectonic knickpoint (solid black line) and the downstream distance of the active fault 

(dotted line). An orange line has been added to each set of river data to represent the 

average SRMS for the metamorphic rocks, while a green line represents the average 

SRMS of the sedimentary lithologies. A) Akcipinar River, B) Sart River, C) Bozdağ 

River D) Kabazlı River, E) Yeniköy River, F) Badınca River.   
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2007a). Based on these precedents, it is assumed such measurements reflect 

active conditions in the channel. Valley widths were measured at a standard 

height of 2 – 2.5 m above the bankfull depth of the river. The channel slope 

measurements were taken using a TruPulse laser range-finder. The 

measurement is representative of 10 – 30 m as appropriate for the location in 

which they were taken. Variation associated with hitting the target downstream 

with the laser range-finder gives an error of ± 0.2°; these reach level 

measurements were subsequently complemented with channel gradient data 

extracted from the DEM. 

In each location where exposure allowed, the type of exposed bedrock is 

documented and the rock mass strength (hardness) is measured (figure 7.5). 

Intact rock strength was determined using a Schmidt hammer, which essentially 

measures the uniaxial compressive strength of the rock and can be taken as a 

measure of rock hardness (Selby, 1980). From this the Selby rock mass 

strength index (figure 7.6 [SRMS]) was also calculated (Selby, 1980). The 

Schmidt hammer rebound readings were made 22 times at each location and 

after the highest and lowest value were removed as outliers, the mean value 

was calculated from the remaining 20 measurements. This was subsequently 

corrected for the inclination of the hammer during use. The Selby index 

represents a semi-quantitative assessment of rock mass strength based not just 

on rock strength but also the degree of weathering and ground water saturation, 

and the orientation and size of joints and bedding. Values for the Selby index 

can range from 0 – 100 with soils and unconsolidated rock having values of 

values under 25 (Sklar and Dietrich, 2001; Whittaker, 2007). The Schmidt 

hammer does not easily or readily differentiate between lithologies of hardness 

from 0 – 20 and therefore 20 is the minimum reading recorded in this study, 
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representing soft and reasonably unconsolidated rocks.  Because it highlights 

relative differences in intact rock strength and hardness (Sklar and Dietrich, 

2001), it therefore gives an indication of the bedrocks resistance to erosion. 

This is important because intact rock strength may be a poor indicator of 

erodibility in heavily jointed lithologies (Whipple et al., 2000a). 

 

 

7.4.3: CHANNEL WIDTH PREDICTION 

In order to test how well channel width estimates predict the measured 

channel widths of the Gediz rivers the widths measured in the field are directly 

compared to the widths predicted using three different width scaling prediction 

methods. The three sets of predicted channel widths are based on power-law 

scaling relationships between catchment area and/or slope. Firstly, as many 

landscape evolution models and field studies assume W ~ A0.5 (c.f. Leopold and 

Maddock, 1953), channel width was predicted using the hydraulic scaling 

introduced in section 7.1 (eq. 7.2). 

Secondly, channel width was predicted using a scaling relationship 

proposed by Finnegan et al. (2005), which allows channels to narrow in areas of 

high slope:   

 

Wf=k2(A
0.38S-0.19)     (eq. 7.3) 

 

Finally, the empirical width scaling relationship derived for rivers eroding 

carbonate and crossing active faults in the Central Apennines of Italy, initially, 

proposed by Whittaker et al. (2007a) was used to predict the width of the Gediz 

Graben rivers:  
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Ww=k3(A
0.38S-0.44)      (eq. 7.4) 

 

In this latter case, channel slope is modelled to be as important as 

drainage area in setting channel width. Each scaling relationship was used to 

calculate the downstream evolution of width that would be predicted for the 

channel using the drainage area of the river at that point in the channel and the 

local slope. The values of the prefactors (k1 – k3) for each scaling relationship 

were determined by selecting a k value that best fitted the downstream 

evolution of width as measured from field data.  

 

 

7.4.4: HYDRAULIC SCALING AND UNIT STREAM POWER CALCULATIONS 

Unit Stream power, ω (eq 7.1), the rate of energy dissipation against the 

bed and banks of a river or stream per unit downstream channel width is 

commonly used as an incision rate proxy for detachment-limited channels and 

has been used to track variations in erosivity in both quiescent and tectonically 

active areas (Dadson et al., 2003, Duvall et al., 2004; Whittaker et al., 2008). 

The width data measured in the field to calculate unit stream power for each of 

the six rivers measured in the field was used. Manning's equation (Manning, 

1891 [eq. 7.5]) was applied to channel cross-sections measured near the fault 

in order to calculate fluid velocity (V) and therefore a discharge for the river at 

the fault.  

 

V =
(Rh

2
3 ⁄ ×S0.5)

M
        (eq. 7.5) 
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Where S is the slope of the channel or the linear hydraulic head loss, which is 

the same as the channel slope when the water depth is constant, M is the 

Manning coefficient, which is an empirical roughness coefficient. A standard 

roughness value of 0.03 was used for all rivers (e.g. Limerinos, J1970; 

Khayyun, 2008; Azamathulla and Jarrett, 2013). Rh is the hydraulic radius, 

which was calculated from the cross sectional area (Acs) and the wetted 

perimeter (P), i.e. 

 

Rh = Acs P⁄     (eq. 7.6) 

The resulting velocity estimate was multiplied by the cross-sectional area 

at that point to derive a discharge estimate. Because estimates of Q using this 

method are obviously sensitive to measurements of local channel slope and 

cross-sectional area, discharge variations upstream from the fault were derived 

by using the river drainage area to scale the predictions of Q elsewhere in the 

catchment. This method is more robust than applying Manning’s equation 

independently to every study locality as discharge should vary predictably with 

down-system distance. The scaling of A for Q assumes that A is proportional to 

Q, which is reasonable for catchments of the size of those within the Gediz 

Graben (Sólyom and Tucker, 2004).  

 In order to compare the differences in stream power evolution between 

the six study rivers, the effect of varying ratios of discharge to drainage area for 

each river needs to be removed. To mitigate these intra-catchment variations in 

stream power (which imply differing effective precipitation rates), a regional 

median Q:A ratio from each of the six rivers was used to calculate stream 

powers for each channel in this study. This approach is reasonable, as rainfall 

rates do not vary greatly along the Bozdağ Range (Sensöy et al., 2008). This 
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method allowed us to calculate variations in realistic stream power between 

each of the rivers which were not conflating variations in implied Q:A scaling 

and were therefore directly comparable. The channel slopes used for the unit 

stream power calculations were taken from the DEM extracted data. The y/x 

change of the river channel over approximately 100m above and 100m below 

the filed measurement site were used in order to smooth out artefacts in the 

DEM. The unit stream powers were averaged over every 2 km of the channel, 

taking into account lithological boundaries in order to attain averages that are 

more representative of the variables along the channel.  

 

7.5: RESULTS 

All 6 of the rivers studied drain the uplifted Bozdağ Range horst block 

between bounding faults of the Gediz and Küçük Menderes Grabens (figure 

7.1), and they enter the main Gediz River that runs roughly east-west through 

the Gediz Graben. Within each river a tectonically induced knickpoint has been 

identified; chapter 6 presented the evidence for the tectonic initiation and 

associated the knickpoint initiation with the linkage of the fault array. Figure 7.4 

shows that the knickpoints do not correlated with lithological boundaries.   

The 15 km long Akcipinar River is the trunk stream of a 47 km2 

catchment. The tectonic knickpoint is located approximately 5 km downstream 

(figure 7.4a). The river incises across the Gediz Graben bounding fault at a 

distance of 35.5 km along strike of the mapped extent of the fault, near to the 

town of Akcipinar. At this location the modern day throw rate after a linkage 

event between 0.6 – 1 Ma has been estimated at 1.5 mm/yr (figure 7.3a). The 

Akcipinar River incises through only metamorphic rocks exposed in the Bozdağ 

Range (figure 7.4a, 7.5a and 7.6a), which alternate between schist and gneiss 
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throughout the catchment. Schmidt hammer re-bound readings of intact rock 

hardness (figure 7.5a) the hardness of the metamorphic rocks varies from 

around 40 – 70, with somewhat weaker metamorphic rocks being found in the 

mid part of the stream. The Selby rock mass strength (SRMS) data (figure 

7.6a), however indicate that there are limited differences in rock strength 

downstream for this river, with averaged values of between 60 – 70 for every 2 

km adjusted to the rock type.  

The Sart River is the 18 km long trunk stream of a 73 km2 catchment. 

The river crosses the graben bounding fault 53.5 km from the western mapped 

extent of the fault, near the village of Sart and the ancient city of Sardis when 

the a modern day throw rate of ~ 1.85 mm/yr has been estimated. The linkage 

that has occurred on the fault array has resulted in a knickpoint at around 6 km 

downstream (figure 7.4). The Sart River incises through a combination of clastic 

Neogene and Quaternary sedimentary rocks which form the footwall of the fault 

and schist and gneiss at higher elevations within the catchment (figures 7.4b, 

7.5b and 7.6b). The sediments form around 18% of the river catchment by area, 

while the river incises through sediments for 11% of its channel length to the 

fault (table 7.1). Schmidt hammer readings (figure 7.5b) indicate that the 

metamorphic rocks are 2 – 3 times harder than the sediments (green colours) 

and the Selby rock mass strength index (SRMS) of the metamorphic rocks is 

1.2 times that of the sediments (figure 7.6b).  

The Bozdağ River, 60 km along strike, is the 21 km long trunk stream of 

a 71 km2 catchment, the source of the river is found near the village of Bozdağ. 

A knickpoint is located around 11 km downstream and the river crosses the 

graben bounding fault to the west of Salihli when the modern day throw rate is 2 

mm/yr (table 7.1). The Bozdağ River incises through a combination clastic 
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sedimentary rocks for 5 % of the channel length (9% of the catchment) which lie 

close to the active bounding fault in the footwall and alternating schist and 

gneiss further up the catchment (figures 7.4c). Similarly to the Sart River the 

metamorphic rocks are on average 2.2 times harder than the sediments (figures 

7.5c), while the average SRMS of the metamorphic lithologies is 1.3 times that 

of the sedimentary lithologies in the catchment (figures 7.6c). 

The Kabazlı River is the 12 km trunk stream of a 27 km2 catchment 

crossing the graben bounding fault near to the village of Kabazlı, 69 km along 

strike, where the modern day throw rate is 1.74 mm/yr (figure 7.3d). The 

tectonic knickpoint is located around 4 km downstream. The Kabazlı River 

incises through a combination of the softer clastic sedimentary rocks, for 22% of 

the catchment and 26% of the channel length (table 7.1), and significantly 

harder metamorphic rock which consist mostly of gneiss (figures 7.4). The 

metamorphic rocks are approximately 2.5 times harder than the sediments 

(figures 7.5d) while the average SRMS of the metamorphic lithologies is 1.4 

times that of the sedimentary lithologies in the catchment (figures 7.6d). 

The Yeniköy River, 85 km along strike, is the 9 km trunk stream of a 15 

km2 catchment, the source of the river is found near the village of Yeniköy. The 

knickpoint is about 5.5 km downstream and the river crosses the graben 

bounding fault near to Yeniköy village when the throw rate is 1.37 mm/yr and 

incises through a combination clastic sedimentary rocks which lie close to the 

active bounding fault in the footwall and alternating schist and gneiss (figure 

7.3e). Similarly to the Kabazlı River the clastic sedimentary rocks and 

metamorphic rock which consist mostly of gneiss, in the case of the Yeniköy 

River the sediments make up around 30% of the catchment area and 44 % of 

the channel length (table 7.1). The metamorphic lithologies are approximately 
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2.5 times harder than the sedimentary rocks (figures 7.5e) and the average 

SRMS for the metamorphic rocks is 1.3 times greater (figures 7.6e)  

The Badınca River, 105 km along strike, is the 14 km trunk stream of a 

29 km2 catchment. The river crosses the graben bounding fault to the east of 

the graben near to the village of Badınca, when the modern day throw rate is 

0.72 mm/yr. The linkage event caused a knickpoint which is around 4 km 

downstream. The Badınca River catchment has the most complex geology and 

the river incises through occasional clastic sediments, gneiss, schist, granite, 

travertine and quartzite (figures 7.4f, 7.5f and 7.6f). Approximately 4 % of the 

catchment area is formed of the clastic sediments, which account for around 

10% of the channel by length (table 7.1). The lithology is highly changeable in 

this catchment which leads to a variety of rock harness a  values downstream 

between 20 – 50 (figure 7.5f). Overall the rocks appear to be a little softer than 

in some of the other rivers although the average SMRS values are comparable 

to the other catchments in the clastic sediments near the fault (figure 7.6f).    

 

7.5.1: RIVER CHANNEL AND VALLEY WIDTHS DOWNSTREAM  

A three point moving average is applied to the raw channel width data in 

Figure 7.7. In general, channel widths are highly variable downstream. In all 

rivers the averaged widths at the source of the river are significantly less than 

the width where the river crosses the active fault. The widths in the first 2 km of 

the rivers range from 0.5 m 3 m, while towards the fault in all rivers the channel 

width has climbed to at least 6 m. The smallest channel widths at the fault are 

found within the Akcipinar (figure 7.7a), Sart (figure 7.7b) and Badınca (figure 

7.7f) rivers, which have an average width around the fault of 6 to 8 m. In the 

Bozdağ (figure 7.7c), Kabazlı (figure 7.7d) and Yeniköy (figure 7.7e) rivers, the  
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Figure 7.7: Bankfull channel widths (hollow diamond data points) measured in the filed 

with a laser rangefinder, and channel widths with a 3 point moving average applied 

(grey data points with black line) for the six studied rivers.  River shown along strike 

from west to east: A) Akcipinar River, B) Sart River, C) Bozdağ River D) Kabazlı River, 

E) Yeniköy River, F) Badınca River. 

 

channel widths at the fault range from 10 to 25 m. In general there is a lot of 

variation in channel width down system, but in all rivers there is a gradual climb 

in the river channel widths up to the knickpoint and then a significant narrowing 

directly around and downstream of the knickpoint, and within the knickzone 

upstream of the fault. The channel width plots then show a variable range of 
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narrow channel widths, but which subsequently increase towards the fault. The 

increase in channel widths within the knickzone from the initial suppression at 

the knickpoint coincides with the river incising through soft sedimentary 

lithologies lower in the catchment (figure 7.3). 

The rivers within the Gediz Graben also exhibit a narrowing of valley 

width that varies by 10’s of meters over distances of 200 – 400 m along the 

channel. Significantly, at the knickpoint the valley widths are low in all rivers 

(figure 7.8). The valleys widen through the knickzone as the sample locations 

approach the active fault in all rivers except the Akcipinar River, where the 

valley width widens significantly at the fault rather than in the approaching 2 – 4 

km. This difference is likely to be due to the Akcipinar incising only through the 

hard metamorphic rocks, the other rivers having significant amounts of soft 

clastic sediments in the channel leading up to the fault. This is likely to be the 

reason the other river valleys widen over a greater distance, particularly the 

Yeniköy River, where around 30% of the catchment at lower elevations is made 

of sedimentary lithologies and where the channel widens predictably 

downstream towards the fault. 

In summary these results show that there is a suppression of both 

channel width and valley with within the knickzone, where the values are lower 

than just above the knickpoint and gradually increase through the knickzone, 

widening significantly towards the fault. This can be seen by examining the 

widths in relation to the shades grey area that represents the knickzone in 

figures 7.7 and 7.8. The narrowing is most marked at the knickpoint and 

downstream. The widening in both channel and valley width coincides with the 

river incising into soft clastic sediments, which contrast in their hardness to the 

metamorphic basement rocks in the upper catchment (figure 7.5). 
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Figure 7.8: The valley widths measured in the field with a laser rangefinder (hollow 
diamond data points) and valley widths with a 3 point moving average applied (grey 
data points with black line) for the six studied rivers.  River shown along strike from 
west to east: A) Akcipinar River, B) Sart River, C) Bozdağ River D) Kabazlı River, E) 
Yeniköy River, F) Badınca River. 

 

7.5.2: DOWNSTREAM EVOLUTION IN STREAM POWER 

The downstream evolution of unit stream power in each channel system 

gives a measure of how effectively each channel is keeping pace with the fault. 

For the Akcipinar River the stream power at the fault is 464 W/m2 and the 

average stream power for around 2 km upstream of the fault is approximately 

385 W/m2 (figure 7.9a, table 7.2). The stream power grows progressively from  
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Figure 7.9: Graphs showing unit stream power calculated at all measurement 

locations along the rivers (black diamonds) and the unit stream powers averaged over 
2 km adjusted for lithological boundaries (red diamonds). Stream power has been 
calculated using a regional median Q:A ratio. The average values have errors of one 
standard deviation.  The stream powers have been superimposed over the river profile 
with a display of the lithologies that the river is incising though along the channel. The 
knickpoint is marked on as a black circle and the fault is a black dashed line. A) 
Akcipinar River, B) Sart River, C) Bozdağ River D) Kabazlı River, E) Yeniköy River, F) 
Badınca River.   
 

minimum values of less than around 20 Wm2 in the head waters to a maximum 

2km average of 901 W/m2 11 km downstream, and 5 km from the active fault. 

Clearly an obvious result of these stream power calculations is that channel  
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Table 7.2: The measured stream powers (SP), at the fault, averaged over 2 km 
upstream of the fault, and 2 km averaged peak values within the metamorphic channel 
for the 6 rivers. The rest of the table shows the calculations performed for throw rate, 
lithology and sediment flux analysis. 
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erosivity increases towards the fault and drops significantly at the active fault. 

However, it is notable that stream powers are much lower upstream of the 

knickpoint, and only start to increase significantly downstream of the knickpoint, 

rising by a factor of ~9 between 5 and 12 km downstream. 

The Sart River shows a similar evolution of stream power downstream to 

the Akcipinar. The stream power at the fault is 86.6W/m2 and when averaged 

over 2 km upstream of the fault the stream power is 135 W/m2 (figure 7.9b, 

table 7.2). Minimum values of around 20 W/m2 are found in the head waters, 

upstream of the knickpoints but stream power increases significantly 

downstream of the knickpoint, progressively increasing to >900 W/m2 at 

approximately 5 km downstream of the knickpoint, and 5 km upstream from the 

active fault. The values decrease after the peak towards the fault, 

corresponding to the river channel eroding through sediments (figure 7.9b). As 

the sediments have lower hardness and SRMS values than the metamorphic 

rocks in the Bozdağ Range this could be having a significant effect on the 

stream powers produced. 

The Bozdağ River again shows a similar increase in stream power 

downstream with the peak values occurring around 15 km downstream and 

then declining with increasing proximity to the fault (figure 7.9c, table 7.2). The 

stream powers in the head waters are low where average stream power is 58 

W/m2, the values then generally increase towards and below the knickpoint. 

The maximum stream power values of 1030 W/m2 are reach around 7 km 

upstream of the fault, Stream power is reduced to 115 W/m2 at the fault and 144 

W/m2 over a distance of 2 km upstream of the fault. The sudden decrease in 

stream powers coincides with the incision through sediments (figure 7.9c), in a 

similar way to the Sart River.   
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For the Kabazlı River the stream power at the fault is 49.4 W/m2 at the 

fault and 115.6 W/m2 when average over the 2 km upstream of the fault (figure 

7.9d, table 7.2).  The stream powers are an average of 48 W/m2 in the head 

waters and the values tend to increase downstream from around the knickpoint 

with a peak average for 2 km of the channel of 1198 W/m2. The peak values 

occurs around 4-5 km upstream of the active fault. The stream powers decline 

from this point onwards, in a similar way to the other rivers with sediments in the 

channel, declining significantly at the boundary between the sediments and the 

metamorphic rocks.   

The Yeniköy River has a stream power of 78 W/m2 at the fault and 41 

W/m2 when averaged over a distance of 2 km upstream from the active fault 

(figure 7.9e, table 7.2). The stream powers in the head waters of the Yeniköy 

River are around the same than those near the fault with a 2 km average of 45 

W/m2 Yeniköy River. An increase in stream power occurs gradually from the 

headwaters with the peak value of 125 W/m2 averaged over 2 km, occurring 

downstream of the knickpoint, after which the stream powers reduce 

significantly. The reduction in stream power occurs in the channel as it incises 

through sediments. However, it is noted that the magnitude of the stream 

powers developed in the Yeniköy River are considerably lower than for the 

other catchments in this study, despite the fact that the drainage area and 

bedrock lithologies are broadly comparable, this issue is returned to in the 

discussion  

The Badınca River has a unit stream power at the fault 157 W/m2 and the 

2 km average upstream of the fault yields a stream power of 132 W/m2 (figure 

7.9f, table 7.2). The lowest stream powers are found in the head waters where 

there is an average unit stream power of 107 – 129 W/m2. There is an overall 
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increase in the stream powers downstream, and significantly downstream of the 

knickpoint as shown by the 2 km average values in (figure 7.9f). The peak 

stream power of 517 W/m2 over 2 km is at around 8 – 10 km downstream, and 6 

km downstream of the knickpoint. In the 4 km immediately upstream of the 

active fault there is a reduction in stream power. 

A noticeable trend in the stream powers for all the rivers is that they 

show significant increases downstream of the knickpoint, and then they decline 

rapidly at or towards the fault if and when soft sediments are encountered 

(figure 7.9). This is important when the trend is compared to the uplift field of the 

Bozdağ. The throw rate, and therefore uplift in the footwall of the active fault is 

best modelled as uniform as the Bozdağ Range can be considered to be 

undergoing horst block uplift due to the presence of active high angle faulting on 

the other side of the range, in the adjacent graben. The rivers have low stream 

powers upstream of the knickpoint within the channel and then elevated stream 

powers downstream of the knickpoint, and it is evident that the rivers are 

keeping pace with fault uplift due to the absence of fault scarp in the channel. 

Therefore, the distribution of stream power in the rivers relative to the uplift field 

indicate that the rivers are undergoing a transient response to tectonics. 

A significant observation from the combination of data presented above 

that may complicate the interpretation of the stream power distribution is that 

the downstream development of stream power may be significantly influenced 

by lithology of the catchments and river channel. If the Akcipinar River is 

compared to the other rivers there is a measureable difference between the 

stream powers at the fault (table 7.2). In the Akcipinar the 2 km averaged 

stream power upstream of the fault is approximately 385 W/m2, this is markedly 

higher than the other rivers, for example the Sart River, 135 W/m2 and the 
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Bozdağ River, 115.6 W/m2 have stream powers that are less than half that of 

the Akcipinar, as do the Kabazlı, Yeniköy and Badınca rivers (table 7.2). When 

mapped in the field it is apparent that there are dfferences between the 

distribution and amounts of lithologies in the rivers that are not clear from 

regional mapping. In particular there is a significant contrast between the 

lithologies of the Akcipinar and the other rivers, the Akcipinar incises through 

predominantly schist and a little gneiss along its whole length while the other 

rivers incises through weak clast sediments in varying proportions of catchment 

area and channel length. This raises an important question, to what extent does 

the high-resolution lithology of the catchment modulate the stream powers of 

the Gediz rivers given? 

 

7.6: DISCUSSION 

 

7.6.1 LANDSCAPE TRANSIENCE? 

In rivers responding transiently to tectonics it is expected that hydraulic 

geometry will show some noticeably deviation from a downstream evolution for 

steady-state “equilibrium” rivers, such as valley and channel widths becoming 

narrower upstream of the fault and downstream of the knickpoint. Section 7.5.1 

showed that both the channel and valley widths are lower below the knickpoint 

that would be expected given the values above the knickpoint, this suppression 

of width extends downstream towards the fault, with increases occurring rapidly 

in the few km above the fault.  

Additionally, it has also been established that bedrock rivers respond 

transiently to changes in tectonic boundary conditions in a number observable 

and quantifiable ways (Keller and Pinter, 1996; Whipple, 2004; Whittaker et al., 



284 

2007a; Attal et al., 2011; Whittaker, 2012; Kirby and Whipple, 2012; Castillo et 

al., 2013; Finnegan et al., 2014). Spikes in unit-stream power much shorter than 

the wavelength of the imposed uplift field are typically found in rivers responding 

transiently to tectonics. The Bozdağ Range forms a host block between the 

normal fault bounded Gediz Graben, and Küçük Menderes Graben, where both 

bounding normal fault arrays are currently active (figure 7.1). Due to the nature 

of the horst block, the uplift across the range can be modelled to first order as 

uniform uplift with a relatively constant throw. The stream power distribution 

downstream for the 6 rivers studied here show how the steam power increases 

from the drainage divide and peaks within the metamorphic rocks up to 7 km 

from the active fault. The stream powers only significantly increase downstream 

of the tectonically induced knickpoint in each of the rivers, and are consistently 

high downstream, throughout the knickzone. This is a spike in unit stream 

power that is shorter than the uplift field and implies that the rivers in the Gediz 

Graben are responding transiently to the active tectonics creating graben 

topography.  

These traits of the graben rivers have enabled the bedrock rivers to 

adjust their ability to erode in order to keep pace with active uplift on the graben 

bounding fault (Wohl, 2004; Finnegan et al., 2005; Duvall et al., 2006; Whittaker 

et al., 2007a; Attal et al., 2008). This is evidenced by the lack of a fault scarp in 

the river channel at the fault. This ability to increase erosion in pace with 

increased uplift allows rivers to continue on their existing path without being 

curtailed or re-routed. As it is widely agreed that both hydraulic geometry and 

stream power are fundamental to how a river reacts to external forcing the rest 

of the discussion will investigate these factors.  



285 

The lack of a fault scarp in any of the 6 rivers implies that the rivers have 

responded to the change in the rate of throw and uplift initiated by the linkage of 

the faults 0.6 – 1 Ma. The above observations and measurements suggest that 

the rivers are still responding transiently to the change in uplift, as evidenced by 

the suppression of channel and valley widths and the stream power trends 

which do not fit the tectonic uplift field.  

 

7.6.2: TESTING METHODS OF PREDICTING CHANNEL WIDTH 

DOWNSTREAM  

A measure of channel width is required to predict stream power 

downstream in a river channel. In most landscape evolution models hydraulic 

scaling is used constrain the channel widths (Leopold & Maddock, 1953), 

usually with a scaling exponent of 0.5. There have been some studies that have 

tested the hydraulic scaling approach to estimating channel widths by 

comparing the estimated width to real measured data and have found that, 

particularly within areas of active uplift the exponent is different to the 

theoretical 0.5 (e.g. Duvall et al., 2004; Finnegan et al., 2005; Whittaker et al, 

2007a). An additional issue that these past studies have raised is whether it is 

appropriate at all to assume that channel width can be modelled with reference 

only to drainage area.  

In order to assess the validity of the W = A0.5 hydraulic scaling 

relationship to the measured data the channel width data was plotted against 

the upstream drainage area for each field measurement location (figure 7.10) a 

power-law relationship of for each river was plotted in the form of (Eq. 7.2).  The 

derived drainage area scaling relationships are shown in Fig. 7.10 and are: a) 

Akcipinar River, Wb ~ A0.14, r2 0.18; b) Sart River Wb ~ A0.15, r2 0.12; c) Bozdağ  
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Figure 7.10: Log-log plots of the drainage area and width of the rivers at multiple 
points along the channel. The graphs show that the hydraulic scaling w = A0.5  does 
not adequately reproduce the downstream channel widths in the Gediz Graben. A) 
Akcipinar River, B) Sart River, C) Bozdağ River D) Kabali River, E) Yeniköy River, F) 
Badınca River. 

 

River, Wb ~ A0.25, r2 0.26; d) Kabazlı River, Wb ~ A0.3, r2 0.32; e) Yeniköy River 

Wb ~ A1.1, r2 0.66; and f) Badınca River Wb ~ A0.32, r2 0.52. The r2 values for the 

river are low and vary between 0.12 and 0.66 which shows that for the Gediz 

rivers a simple the discharge-based hydraulic scaling relationship is not a good 

way of modelling the width data for the Gediz Graben. The exponent varies 

significantly from the desired 0.5, the Badınca River with A0.32 (figure 7.10f)  is 
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the closest to 0.5, and in all cases but the Yeniköy River with  A1.1  (figure 7.10e) 

the exponent is smaller than 0.5. 

As traditional hydraulic scaling is obviously a poor predictor of channel 

widths within the Gediz Graben, and subsequently would produce erroneous 

estimates the erosive power of the Gediz Rivers alternative methods of width 

prediction have been evaluated. The measured channel width from all six 

studied rivers have been compared to the widths predicted by two additional 

width scaling methods proposed and previously assessed by Finnegan et al. 

(2005) and Whittaker et al. (2007a). The additional width scaling relationships 

by Finnegan et al. (2005) and Whittaker et al. (2007a) are introduced in section 

7.4.3 and use a modified form of the hydraulic scaling relationship that allows 

for inclusion of slope in the width predictions, allowing channel narrowing in 

areas of high slope.  

The actual channel widths were compared to these two models by 

plotting the measured widths from field data against the best-fit predicted widths 

using the equations in section 7.4.3 (figure 7.11). If the width prediction 

methods accurately reproduce the measured widths of the river the line of best 

fit would have a gradient of 1 and an r2 value approaching 1. The value of the k 

prefactor was changed to fit the line of best fit as close to a gradient of 1 as 

possible. In the case of the Whittaker method the r2 values for all the rivers apart 

from the Yeniköy are negative and between -1.40 and 0.24. The r2 value for the 

Yeniköy River was 0.6. For the Finnegan method the Yeniköy River again 

produces the best the r2 value, 0.75, while the values for the other rivers are 

much lower, between -0.71 and 0.24. Overall it seems that all these width 

scaling methods are very poor predictors of river channel widths for the Gediz 
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Graben rivers, which are not only undergoing a transient response to tectonics 

but which also erode variable lithologies. 

 

Figure 7.11: Channel widths measured in the field plotted against predicted widths 
using the Whittaker and Finnegan equations. The Line of best fit is set to a gradient of 
1 and passes through the origin. The r2 value of the fit of the two data sets indicates 
how well the prediction methods match the actual data. The data shows that the 
methods are poor predictors of actual channel width, due to generally very low to 
negative r2 values. 

 

 

These results suggest that the use of hydraulic scaling and/or other width 

prediction techniques in landscape modelling are likely to lead to inaccurate 
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results when propagated through landscape models, and that existing 

modifications to hydraulic scaling laws do not translate well to other field areas.  

These data suggest that channel width measurements, derived from either field 

data and/or remote sensing methodologies must be made to properly model 

channel erosivity in areas of active faulting where footwall rocks are highly 

variable.  

 

7.6.3: THE INFLUENCE OF THROW RATE ON THE STREAM POWERS OF 

THE GEDIZ GRABEN RIVERS 

Fault scarps were not observed within any channels so it is clear that 

incision in the rivers is able to keep pace with tectonic uplift near the active 

graben-bounding fault. As it is clear that all the rivers studies are keeping pace 

with the uplift it is then possible to compare stream powers developed at the 

fault to evaluate the extent to which along-strike variations in throw rate can 

explain the differences in stream power. If the stream powers are not 

proportional to the throw values on the fault in the location of the river there 

must be other factors at play that modulate the response of the river on top of 

tectonics.  In order to avoid very local peaks and troughs in stream power, and 

to gain a more representative view of the processes occurring with the rivers, 2 

km averaged bins of unit stream power will be used for this analysis.  

From observations in the field and measurements using a Schmidt 

hammer it is obvious that the clastic sediments within the catchment are much 

softer, and therefore more easily eroded. As seen in the plots of stream power 

downstream for each of the rivers (figure 7.9) in the rivers where there are 

sedimentary lithologies upstream of the active fault there is a significant 

reduction in the stream power, and this is returned to below. However, to 
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compare the effect of tectonic throw rate on the stream powers the peak 2 km 

average value will be examined as this lies within the harder metamorphic 

lithology in all cases. Data will be compared with respect to the Akcipinar river, 

where the catchment and channel bed comprises 100% metamorphic lithologies 

and therefore provides a good calibration point. In this analysis, the Bozdağ 

Range is assumed to be uplifted as a horst block (figure 7.1) and uplift rate is 

taken to be uniform across the horst block. Consequently, the rate experienced 

by the river in the area of peak stream power should be representative of the 

magnitude of the throw rate at the fault. 

If the tectonic uplift occurring in the Gediz Graben is the only factor 

determining the stream power of the rivers (and hence their incision can be 

described a simple ‘detachment-limited’ erosion model) it would be expected 

that the stream powers would be proportional to the uplift rate estimated for the 

active normal faults. The present day throw rates determined in chapter 6 (table 

7.1) show an approximately 3 fold difference in the throw rates between the 

rivers, so if throw rate is the only factor influencing stream powers in the rivers, 

it should be possible to observe a similar scaling in the stream powers. 

Assuming block horst uplift, the 100% metamorphic Akcipinar River’s stream 

power can be scaled by the throw rate experienced by the other catchment to 

investigate this quantitatively.   

In the Akcipinar River peak stream power is 901 W/m2 for a throw rate of 

1.4 mm/y (figure 7.12 and table 7.2). When the peak stream power value for the 

Akcipinar River is scaled to the throw rates on each of the other rivers, a 

predicted stream power that should be developed for each river within the 

metamorphic lithologies is obtained (table 7.2 and figure 7.12). A peak stream 
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power of 1278 W/m2 would be expected for the Bozdağ River to account for the 

higher 2 mm/yr throw rate at the centre of the fault array (figure 7.12).  

 

Figure 7.12: A graph showing the predicted stream power scaled to the fault throw 

plotted against the throw rate based upon using the 100 % metamorphic Akcipinar 

River peak steam power as a control (blue squares). Also plotted are the actual peak 

stream powers for each river, averaged over 2 km (hollow circles with a 1 standard 

deviation error). The peak stream power was used as this is the maximum stream 

power value, found within the metamorphic lithologies in each catchment, which makes 

the values comparable without the added influence of the rock hardness of different 

lithologies affecting the stream powers. A line of best fit has been plotted through the 

actual peak stream power data for all rivers excluding Yenikӧy (indicated with a Y), as 

the Yenikӧy River is a significant outlier to the data with another significant moderating 

factor in addition to tectonics.    

 

 Additionally for the lowest throw rate on the studied rivers, for the 

Badınca River a peak stream power of 460 W/m2 would be expected due to the 

lower throw rate of 0.7 mm/yr (figure 7.12). When the Akcipinar River is used for 

as a guide for the expected stream power dependent on throw rate there is 

between a 0.89 and 7.03 fold difference between the predicted stream power 

values and the actual stream powers measured in the rivers near the fault 

(figure 7.12). For the Sart, Bozdağ and Kabazlı Rivers the peak stream powers 

scale well with throw rate, there is a 1.3, 1.2 and 0.9 factor difference between 
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the predicted and actual results respectively (figure 7.12). The Badınca River is 

has a 0.9 factor difference with a slightly higher peak stream power than would 

be expected, although in this river, there is a far more complex upstream 

geology than in the Sart, Bozdağ and Kabazlı Rivers that are formed only of 

gneiss and schist, this could explain the variation. In all cases, taking into 

account the spread in stream powers within the 2 km averaging interval, a linear 

dependency of stream power on throw rate is a good descriptor of the data. For 

a zero throw rate, a stream power of 259 W/mw is predicted, which would 

represent the ‘background’ stream power developed in rivers of this size, 

incising the same lithology, but which are not being perturbed by active 

tectonics. 

The same type of analysis can be undertaken to examine the possible 

impact of sedimentary (clastic) bedrock on the stream powers of the rivers, 

assuming again that they are incising at a rate equal to the fault throw rate. For 

ease of scaling, the river with the slowest throw rate, the Badınca River (0.7 

mm/yr) is used to conduct this analysis. If throw rate is a primary control on the 

stream power in the sediments the stream powers for other rivers incising 

through sedimentary lithologies would be expected to be higher in order to 

counteract the higher throw rates in the other rivers. Figure 7.13 shows the 

stream powers scaled to throw rate (blue squares) in a similar way to figure 

7.12, but this time using the Badınca River stream power scaled to throw rate 

and the stream powers in the sedimentary rocks 2 km upstream of the fault 

(hollow circles). The Akcipinar River is included for comparison but is excluded 

from this aspect of the analysis as it has no sedimentary lithologies with its 

catchment. 
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 The stream powers within 2 km of the fault in rivers incising through 

sediments do not appear to increase with throw rate in the way that the peak 

stream powers in the metamorphic rock do. All of the measured stream powers 

in rivers with sediments are lower than the stream power in the Badınca River, 

and within the errors on the values they actually do not scale with throw rate at 

all. This shows that the stream powers in the downstream areas of the 

catchment are not scaling to a factor of three difference in the throw rate as they 

do within the metamorphic rocks. 

 

 

Figure 7.13: A graph comparing stream powers as a function of throw rate in 

the sedimentary rocks  averaged over the 2 km upstream of the fault (hollow 

circles).  The Badınca River has been used to create predictions of what the stream 

powers be in the other catchments dominated by sedimentary rocks at the fault (blue 

squares).  The stream power in the Akcipinar catchment at the fault is also shown for 

comparison (A) and the Yeniköy River is marked Y.  This graph shows that unlike in the 

metamorphic dominated upstream areas, stream powers in the downstream part of the 

catchment in the clastic sediments are not sensitive to a factor of 3 variation in throw 

rate. 

 

Overall it is clear that the throw rates exert a first order control over the 

stream power within the metamorphic lithology present upstream in all rivers. 



294 

Figure 7.13 also shows that this primary modulation of stream power by throw 

rate breaks down when stream powers in the 5 rivers containing sedimentary 

rocks is considered. The lack of a fault scarp in the river channel shows that the 

rivers are incising at a rate that keeps pace with uplift, this means that tectonics 

exerts a significant influence over the stream powers developed in the rivers as 

the river have developed a stream power level that counteracts the uplift. But, 

that the sedimentary lithologies have a very significant impact of the stream 

powers of the rivers, overriding the effect of throw rate magnitude when they 

exist in the catchment.  

The Yeniköy River is an outlier to the tectonic first order control over 

stream power development in the peak stream powers. There is a 7 fold 

difference between the predicted stream powers corrected for throw and 

calculated peak stream power values. The actual peak stream power developed 

is a lot smaller than would be expected (figure 7.12 and table 7.2) if throw rate 

was a primary control over the stream power in the Yeniköy River. However, as 

it is clear that the lower stream power still keeps pace with the uplift as there is 

no fault scarp in the Yeniköy River, there must be another factor at play that 

allows the Yeniköy River to keep pace with the uplift. There is a significant 

amount of clastic sediment in this river, around 30 % by catchment area and 

44% by channel length within the catchment that vary significantly in their 

hardness form the metamorphic. The Akcipinar by contrast has a catchment 

and channel that is 100% metamorphic (figure 7.4 and 7.5). As all rivers but the 

Akcipinar have clastic sediment upstream of the fault is possible to investigate 

the effect that sediment is having on stream powers further in section 7.6.4.   
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7.6.4: THE INFLUENCE OF LITHOLOGY ON THE STREAM POWERS OF 

THE GEDIZ GRABEN RIVERS 

Bedrock lithology is an important a factor in determining the rate and 

style of bedrock river response to a change in relative base level (Stock and 

Montgommery, 1999; Reneau, 2000; Bishop et al., 2005; Brocard et al., 2006; 

Anthony and Granger, 2007; Cook et al., 2009). The more resistant the lithology 

in the river channel the higher the stream power required to keep pace with the 

uplift on the fault. The precise nature of the control exerted on river response to 

tectonic perturbation is an outstanding issue that clearly requires additional 

work (Castillo-Rodríguez, 2011, Crosby and Whipple, 2006; Anthony and 

Granger, 2007; Haviv et al., 2010; Whittaker and Boulton, 2012). One of the 

most significant issues with this appears to be deciding on the relative scale of 

the influence of lithology, as currently lithology is bundled in to the K erodibility 

parameter, along with several other variables. Therefore the stream powers for 

the Gediz rivers can also be studied in light of the metamorphic and clastic 

lithologies that have been documented in the river channels to address how 

lithology can modulate stream powers in the study area (figure 7.14).  

When the SRMS data for the metamorphic lithologies are examined 

there is little difference between the overall strength rating of the gneiss and the 

schist (figure 7.6). When only the Schmidt hammer reading for rock hardness 

are considered the measured hardness of the rocks vary significantly (figure 

7.5), especially between the metamorphics and the sediments. Overall the 

gneiss and schist are of similar hardness although the schist appears to vary 

more, being slightly weaker than the gneiss in some areas, as illustrated by the 

averages and the lithology in figure 7.5. The areas of the channel more proximal 

to the active fault tend to incise through clastic sediments which have lower  
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Figure 7.14: A graph plotting stream power averaged over 2km upstream of the fault 

against rock hardness measured, with a Schmidt hammer, and the SMRS index 

average for the 2 km channel length upstream of the fault. The graph shows that a 

factor of 2 reduction in rock hardness leads to an approximate 2.5 reduction in stream 

power, as the Akcipinar river (stream power of around 400) has an average hardness 

of around 40, compared to the majority of the rest of the rivers that have stream powers 

of around 150 and hardnesses of around 20. This indicates that indicating that the 

clastic sediments (present in all rivers apart from the Akcipinar) are at least 2.5x more 

erodible than the metamorphic rocks in the catchments.   

 

SRMS ratings, 40 – 60, than the metamorphic SRMS values of 50 – 80 (figure 

7.6). However the sediments vary significantly in hardness from the 

metamorphic basement rocks when measured with the Schmidt hammer (figure 

7.5). Often they are too soft for the rebound hammer to register a meaningful 

reading, and in these cases are assigned a minimum 20 value, and they always 

have a lower hardness than 30. The metamorphic lithologies, which often have 

an average hardness measure of around 60 are on average 2 – 2.5 times 

harder than the sediments (figure 7.5).  

Figure 7.14 quantifies the impact of rock hardness and SRMS on the 

stream powers of the rivers by plotting stream power at the fault against SRMS 

and Schmidt hammer rebound number. The results are not normalised by throw 
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rate as the figure 7.13 shows that stream powers at the fault in sedimentary 

catchments are not very sensitive to throw rate. There is at least a factor of two 

difference in the Schmidt hammer rebound hardness of the rocks from around  

an average of 40 in the metamorphic rocks of the Akcipinar river catchment to 

values of around 20 in the other river catchments in the sedimentary rocks. For 

this reduction in hardness, the data shows an approx. 2.5 reduction in stream 

power between the harder and softer lithologies. A similar result is found using 

the calculated SRMS index although with the SRMS data shows a little more 

scatter. Therefore it appear that a 2 fold difference in rock hardness is 

responsible for at least a 2.5x reduction in stream power between the rivers. 

This means K in a stream power law is varying by > 2.5 accounting for the 

differences between the metamorphic and sedimentary rock types. From this it 

seems evident that rock hardness might influence K in a non-linear way, with 

the halved rock hardness having a greater than 2x effect on increased 

erodibility. 

The impact of lithology on the magnitude of K in this study is less than 

the ‘orders of magnitude difference’ in K that some authors have suggested. For 

example Stock and Montgomery (1999) have studied the effect of lithology on 

the K parameter in a simple unit stream power law where E = KAmSn. They 

noted that K parameter varies over 5 orders of magnitude between mudstones 

and volcaniclastic rocks from Japan and California (10-2 to10-5 m2/yr) and 

granitoids and metasediments in Australia (10-6 to10-7 m2/yr), but do state that 

the K variation due to climate is unresolved. They go on to conclude that that 

magnitude of variations in K would require the transient rate of denudation and 

time constants for landscape evolution to vary greatly with lithology. When this 

is compared to the data from this study the difference in erodibility between the 
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metamorphic rocks and the sediments is generally a factor of 2 – 3, and in the 

Yeniköy the difference is much larger, at around a factor of 7. Climate can be 

excluded from consideration in this study as the climate in the study area is 

uniform along strike and into the mountain range.  

A caveat to this is that the Schmidt hammer may not be very accurate at 

measuring the appropriate hardness of rocks at the weaker end of the 

spectrum. The Schmidt hammer does not effectively take reading of rock 

hardness in rocks with a less than 20 reading, so hardnesses from 0 – 20 are all 

read as 20. This may partially explain why differences in throw rate in the 

sedimentary rocks cannot be differentiated, as the Schmidt hammer cannot 

elucidate differences in hardness less than 20.  

An interesting feature of the data is that the Yeniköy River has similar 

rock strengths to the other rivers with sediments in the area near the fault, but it 

exhibits anomalously low stream powers, with actual stream power 

measurements at the fault at least three times lower than one would expect 

even if you corrected for the fact that bedrock lithology reduces stream powers 

by a factor of 2.5 . As the rock strength data is similar to the other rivers this is 

not likely to be an effect of the lithologies the river is incising through. So in all 

rivers lithology and erodibility contrasts can approximately explain the difference 

in stream powers developed in the metamorphic versus clastic rocks, but it does 

not explain differences in stream powers between catchments with differing 

throw rates eroding similar sediments near the fault. 

 

7.6.5: THE POTENTIAL ROLE OF RELATIVE SEDIMENT SUPPLY 

The substantially lower stream powers in the Yeniköy River, even taking 

into account the more erodible bedrock at the fault and adjusting for the fault 
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slip rate are surprising. One explanation for this is that the incisional capacity of 

this river can only be understood if sediment flux effects are taken into account 

(c.f. Cowie et al., 2008). In this case, there is a need to model sediment in 

transport directly influencing bedrock incision (E) through either enhanced 

erosion of exposed bedrock, via impact abrasion and plucking (a tools effect), or 

via inhibiting erosion by limiting the amount of bedrock exposed, a cover effect. 

This is known as the tools versus cover effect, where incision is a result of the 

dynamic interplay between tools and cover in the channel (e.g. Sklar and 

Dietrich, 2004).  

It might be that the sediment flux and subsequent and tools verses cover 

effect is operating within the Gediz rivers to different extents. The Yeniköy River 

catchment may be supplying more tools than the rest of the rivers and is 

therefore more efficiently eroding the bedrock without having to steepen its 

channel slope leading to elevated stream power in order to incise at a rate that 

keeps pace with uplift (Cowie et al., 2008). 

To test this idea, a stream power incision capacity enhancement factor 

f(Qs) has been calculated for each river, by dividing predicted stream powers, 

scaled to the tectonics (ωpredicted) by actual 2 stream powers for each river, i.e. 

 

f(Qs) = ωpredicted/ωmeasured      (eq. 7.7) 

 

Two sets of f(Qs) values have been calculated. For the first the ratios of 

predicted to actual peak stream powers in the metamorphic units (the values of 

which were presented in figure 7.12) are compared. In the second, a 

comparison of ratios of actual stream powers in the 2km upstream of the fault to 
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the predicted stream powers in the sedimentary units (as presented in figure 

7.13) is made.   

Sklar and Dietrich (2004) model sediment-flux-dependent incision as 

being dependent on the ratio long term average sediment supply (Qs) to the 

channel’s transport capacity (Qc). While this can be measured relatively well in 

a flume setting and can be estimated for an individual flow (Sklar & Dietrich, 

1998; Sklar & Dietrich, 2001), this ratio evidently varies in time and space.  

Indeed it is probably unknowable over a geologic timescale (c.f. Cowie et al., 

2008). Consequently proxies need to be used for the sediment supply rate in 

the catchments. Two proxies are adopted. For the ratios of stream powers 

developed in the clastic sedimentary rocks, the proxy for Qs/Qc is the 

percentage of clastic sediments making up the catchment of the respective 

river. This is because our field observations show that much locally-derived 

sediment lying in the bed near the fault is clearly reworked from these Pliocene 

to Recent clastic rocks.  For the ratios of stream powers developed in the 

metamorphic rocks, the estimated percentage of bedrock exposed (and thus 

percentage of bedrock covered by sediment) at each field measurement station 

is used. The average sediment cover on the bed upstream of the peak stream 

power is used as a proxy for the relative sediment supply.  

The sediment flux controlled incisional enhancement capacity f(Qs) for 

the Sart, Bozdağ, Kabazlı and Badinca Rivers is between 1 and 2.7 (green 

squares in figure 7.14a), with the value of 1 relating to the Badınca river, which 

was used for calibration. This means that the Sart, Bozdağ and Kabazlı rivers 

are experiencing enhancement of incisional ability due to sediment supply of a 

factor of 2.5, 2.5 and 2.7 respectively. For the Yeniköy River, which has as 

significantly higher percentage of clastic sedimentary in the catchment the f(Qs) 
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is 6.1 (figure 7.15a). In this data series it can be seen that compared to the 

Badınca River, for the catchments with around 10-20% clastic rocks in the  

 

Figure 7.15: A) shows the incisional enhancement factor within the sediments (grey 
squares) plotted against the percentage of the catchment composed of soft clastic 
sediments. Plotted for all rivers where there are sedimentary lithologies within the 
catchment (so excluding the Akcipinar River) B) shows the incisional enhancement 
capacity in the metamorphic rocks (black squares) against the  percentage of the 
channel upstream of the peak stream power that is covered in sediment. 
 

 

catchment, the rivers are around two to three times as erosive as they would be 

if the detachment limited end-member stream power model is assumed. This 

increases to around a factor of 7 when the catchment is made up by more than 
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30% by area of clastic rocks. Figure 7.15a suggests that supply of clastic 

sediment from downstream from the metamorphic catchment area is boosting 

the erosive power of the rivers.   

In the metamorphic rocks, the sediment flux enhancement factor, f(Qs) is 

around 1 for the five rivers which have a percentage upstream channel covered 

by sediment of 40 – 70 %. An f(Qs) of 1 means that sediment is not having a 

role in influencing bedrock incision rate, which fits directly with the fact that unit 

stream powers appear to scale with throw rate in these channels. Significantly, 

however, in the Yeniköy River the channel upstream of the peak in stream 

power is 100% blanketed in sediment, which is 25% more channel coverage 

than the highest value in the other rivers. The origin of the sediment may be 

isolated areas of sediment in the higher altitude of the range within the 

catchment of the Yeniköy River. This 25 % greater channel sediment coverage 

corresponds to around a 7 times increase in incision capacity f(Qs) in the upper 

catchment of the Yeniköy River compared to the other channels studied (figure 

7.15b). 

The rivers in the Gediz Graben are therefore consistent with being on the 

rising limb of the 'tools' effect mapped out by Sklar and Dietrich (2004). They 

plotted peak erosional efficiency for a dimensionless incision capacity 

enhancement factor around 7, which is similar to the value for the Yeniköy 

River, implying that the tool effect is at an extreme in the Yeniköy river (figure 

7.16). This essentially means that the river can erode efficiently without 

steeping its long profile or narrowing significantly, allowing it to incise with less 

effective stream power than in the other rivers where the incision capacity 

enhancement factor is around 1 – 3. This accounts for the lower stream powers 

in the Yeniköy River than would be expected given the similarity in boundary 
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conditions to the other rivers. Sediment flux effects for the other rivers cannot 

be resolved where they incise metamorphic lithologies, but are potentially 

responsible for a 2 – 3 fold increase in incision capacity near the fault where all 

rivers except for the Akcipinar incision clastic sedimentary rocks. This may 

explain why there is not a simple dependence of stream power on throw rate 

near the fault for these channels. 

 

 

Figure 7.16: Material transported by a river influences incision rate, either through 
enhanced erosion bedrock, via impact abrasion and plucking by ‘tools’, or by inhibiting 
erosion by limiting the amount of bedrock exposed, known as the cover effect (e.g., 
Sklar and Dietrich, 2004). This effect can be modelled via the function f(Qs), where Qs 
is the volumetric rate of sediment supply if both tools and coverage effects are 
important, f(Qs) is expected to follow a parabolic-like function of Qs/Qc, where Qc is 
transport capacity. The data for the Gediz Rivers has been added to the parabolic 
tools-cover curve, which shows erosional efficiency increasing with increasing relative 
sediment supply but decreasing past a relative sediment supply that begins to shield 
the river bed. The grey squares labelled with the names of the rivers (in italic font) 
show the f(Qs) in the sedimentary stretches of the river bed for rivers with sedimentary 
bedrock in the channel (Akcipinar is excluded as the whole channel is metamorphic), 
the black hollow squares labelled with the appropriate river show the f(Qs) in the 
metamorphic stretches of the river. This shows that in the sedimentary stretches of 
channels there is an elevated ‘tools’ effect, which is particularly obvious in the Yeniköy 
River. In the Metamorphic channel stretches only the Yeniköy River shows significant 
impact of the tools effect, at the peak erosional efficiency proposed by Sklar and 
Dietrich, (2004). Adapted from Cowie et al., (2008). 
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Stock and Montgomery (1999 noted that K parameter varies over 5 

orders of magnitude between mudstones and volcaniclastic rocks from Japan 

and California. In this study there is a difference in erodibility between the 

metamorphic rocks and the sediments of a factor of 2 – 3. In the Yeniköy the 

difference is much larger, at around a factor of 7, which has been attributed to 

sediment flux effects. An important result of this study is that in the Gediz Rivers 

it is possible to separate out forensically the differing effects of lithology and 

sediment flux in modulating incision capacity, both of which are typically 

subsumed into a K parameter in studies using simple stream power erosion 

laws (Hack, 1957; Seidl & Dietrich, 1992; Whipple and Tucker, 1999; Snyder et 

al., 2000; Tucker and Whipple, 2002). 

 

7.7: CONCLUSIONS 

A Field study of 6 rivers draining the Gediz Graben show that the 

channels are responding transiently to tectonic perturbation by changing their 

channel geometry and planform up and downstream of knickpoints in the rivers. 

The river channel and valley widths are generally supressed at and downstream 

of the knickzone, although they increase towards the active basin-bounding 

fault, in areas of the catchment with soft clastic sediments.  

This chapter has shown that traditional hydraulic scaling relationships fail 

to predict the widths of the Gediz Graben rivers. An attempt to evaluate 

additional width prediction methods two other models were tested, which each 

give slope a varying importance in determining channel width (c.f. Finnegan et 

al., 2005; Whittaker et al., 2007) were tested and these also fail to predict river 

widths in all cases but for the Yeniköy River. Over all these results show that 

extreme care must be taken when predicting stream powers using widths 
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produced by hydraulic scaling algorithms, as the failure to predict width will 

propagate directly into estimates of river erosivity. 

The unit stream powers of the field studied 6 rivers were calculated and 

evolve downstream in similar ways. In the head waters the stream powers are 

low, they stay reasonably low (under 150 W/m2) until the knickpoint. 

Downstream of the knickpoint the stream powers rise significantly to peak 

values found within the metamorphic bedrock. When the channel enters the 

clastic sediments downstream towards the active fault the stream powers drop 

off. This study has determined that predominantly the rivers exhibit peak stream 

powers in the metamorphic rocks that scale with throw rate, suggesting that in 

detachment-limited models of erosion do an adequate job of predicting bedrock 

incision rate in this case. 

The influence of lithology on modulating the river response to tectonic 

was then investigated. It was found that a 2 fold difference in Selby rock mass is 

responsible for at least a 2.5x reduction in stream power between the rivers. 

Meaning that K in a stream power law is varying by a factor of 2.5, showing that 

differences in rock hardness between metamorphic and sedimentary rocks 

affects erodibility in a non-linear way.  

 In the Yeniköy the difference between the erodibility caused by 

metamorphic and sedimentary lithologies is much larger, around a factor of 7, 

which has been attributed to sediment flux effects. A significant result of this 

study is the separation of the differing effects of lithology and sediment flux, 

which are typically subsumed into a K parameter in studies using simple stream 

power erosion laws. 
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CHAPTER 8: SYNOPSIS 

 

8.1: OVERVIEW OF THE AIMS, METHODS AND SIGNIFICANT FINDIINGS 

OF THIS THESIS 

The aims of this project were: 

1. Quantify the rates of faulting in the Gediz Graben using published 

data geological and structural data. 

2. Use knickpoint theory to and to the resolution of structurally derived 

information for the Gediz Graben.  

3. Consider how the rivers can be used to gather information about the 

tectonics of the Gediz Graben when integrated with structural data. 

4. To investigate impact of tectonics on the behaviour of the Gediz rivers 

using field study of 6 rivers.  

5. To consider the implications of not explicitly treating factors such as 

lithology and sediment flux on fluvial modelling of bedrock rivers using 

bedrock rivers within the Gediz Graben as an example.  

 

First, a synthesis of existing data such as geological mapping, geophysical 

surveys and topographic information (e.g. Çiftçi, 2007; Çiftçi and Bozkurt, 

2009a; Çiftçi and Bozkurt, 2009b; Çiftçi and Bozkurt, 2010; Oner and Dilek, 

2011; Busher et al., 2013) were used in a novel, pragmatic way to quantify rates 

of throw on the MGBF array of the Gediz Graben (Chapter 4). The chapter 

constrained the throw rates in the Gediz Graben to between 0.4 and 1.5 mm/y 

along strike, time averaged over 2 myr (figure 4.11). The throw rate distribution 

indicates that at some point during the history of the graben bounding fault array 
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the individual fault strands had undergone a linkage event. The linkage is 

suggested by the non-zero throw and throw-rate values at both tips of the 

central of the three segments of the graben-bounding fault array. The presence 

of an along-strike bend of approximately 40° from east to west, adds additional 

support for the linkage of the fault segments (Fossen, 2010).  

Subsequently, rivers that incise across the active fault were studied, and 

this thesis presents evidence that they are undergoing a transient response to 

active faulting, demonstrated by the existence of tectonically-induced 

knickpoints within the river channels. These knickpoints were considered in line 

with existing knowledge on knickpoint theory and theoretical understanding of 

how rivers respond to tectonics (e.g. Howard and Kerby, 1983; Seidl & Dietrich, 

1992; Whipple and Tucker, 1999; Whipple and Tucker, 2002; Whittaker et al., 

2007a; Whittaker, 2012).  There are knickpoints in the rivers that cross the fault 

at the ends of the main fault segments, where a zero throw magnitude would 

also be expected if these were unlinked fault tips. Therefore, the knickpoints 

identified in the river channels were caused by the linkage event on the graben 

bounding fault, causing an increase in throw rate. The knickpoints are not 

caused by fault initiation, as their elevations relative to the fault do not fit with 

this model.  

The knickpoint parameters (e.g. elevation, upstream distance) provided 

data for calculations based on knickpoint and fault interaction theory that placed 

the timing of linkage at between 0.6 – 1 Ma, shedding new light on the evolution 

of this important fault system.  Additionally, pre- and post-linkage throw rates at 

the centre of the fault could also be calculated. A post- linkage rate of 2 mm/yr 

and the pre-linkage rate of 0.6 mm/yr were determined for the centre of the 
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array. By contrast time averaged throw rates in the same location are 0.6 – 0.7 

mm/yr (figure 8.1).  

Chapter 7 then went on to document a detailed field study of six of the 

rivers from the Gediz Graben.  

The chapter analysed the effectiveness and real life applicability of 

several aspects of predictive modelling of bedrock river using the Gediz Graben 

as a testing site. One aspect of modelling that was examined is whether 

prediction of channel width using the widely accepted hydraulic scaling methods 

produces results that replicate real life situations, or to what extent there is a 

disparity between the prediction and actual measurements. The results of the 

field study showed that the standard techniques of channel width predication 

are very poor predictors of the evolution of channel geometry downstream in 

tectonically perturbed bedrock rivers. The logical conclusion from this is that any 

unit stream power prediction made for the rivers using these hydraulically 

scaled channel is likely to be, and in the case of the Gediz Graben, does 

produce very inaccurate representations of the downstream evolution of stream 

powers.  

That the predictions produce poor representations of real measurements 

of both channel width and stream powers in the Gediz Rivers was an important 

realisation and had implications for the rest of Chapter 7.  The next part of the 

chapter went on to document the effects of local lithology on the stream powers 

developed in the rivers in response to tectonic uplift. Use of the predicted 

stream powers would, in the Gediz River have produced erroneous conclusions, 

as the predicted stream powers fail to exhibit any influence of the local channel 

lithology as the equations do not represent the real situation.  Consequently the 
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stream powers calculated from the channel geometries measured in the field 

were compared to the local lithology at the point of measurement.   

This type of study is not commonly done as the study of bedrock rivers in 

the field is often very time consuming and difficult. However, this part of the 

study produced some important results. In Chapter 6 the lithologies from 

mapping of the area by previous studies were compared to the river profiles, 

lithology apparently has a very minor impact on the river geometry and 

specifically the movement of knickpoints. However, chapter 7 studied the 

lithology at a far higher resolution and observed a direct and significant 

relationship between how easy it was to erode the bedrock lithology and the 

stream power developed in the river at that point. Specifically, a two fold 

difference in the hardness of the lithology measured with a Schmidt Hammer 

produces a difference of around 2.5 times in stream power developed. This 

shows explicitly that lithology can play a large role in the magnitude of stream 

power, and most likely in a non-linear way.   

 

8.2: THE IMPLICATIONS OF THIS STUDY 

This study has provided new data to constrain the tectonic evolution of 

the Gediz Graben. This is significant as this study has produced the first 

quantification of throw rates on the currently-active graben bounding fault array, 

which exceed 2 mm/yr in some places along the fault. Given that there are 

numerous settlements of 25-50,000 inhabitants situated near to, or on top of the 

active fault this information is very relevant and potentially useful in terms of 

preparedness for tectonic events.  
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The combination and analysis of the different data sets in this study shows that 

the graben has a two stage tectonic history with a transition from low to high-

angle normal faulting around at between 2.6 – 2 myr. Between 2 – 1 myr the 

MGBF was initiated as a series of fault segments, creating a second parallel 

high-angle normal fault array, stepping out into the topographic graben. At some 

point between 1 – 0.6 myr a significant linkage event on the current graben-

bounding normal fault occurred. These data show that the MGBF fault array is 

controlling the expression of topography in the Bozdağ Range, and is likely to 

have been the main control over at least the last 1 myr. This has impacted on 

graben topography, creating the present day topographic variations along strike 

and elevated the throw rates on the array. The increase in accumulated throw 

on the fault from this time could be what the previous research (e.g. Oner and 

Dilek, 2011; Buscher et al., 2013) labelled fault initiation.  

The newly derived rates have also allowed for an estimation of the 

potential magnitude of earthquakes using the method of Wells and Coppersmith 

(1994). Earthquakes of magnitude of 6.9 – 7.6 Mw could be expected 

depending on how much of the fault array ruptures from 40 km segment, to the 

whole array (section 4.7.7). The Gediz Graben and surrounding region have 

experienced some large earthquakes over Mw 5.0 in the last twenty five years 

(Eiodogan and Jackson, 1985; Buscher et al., 2013), including a destructive 

earthquake of magnitude 6.9 in 1969 (Arpat and Bingol, 1969). Another 

earthquake occurred within the Gediz Graben in March 1970, this earthquake 

had a magnitude of 7.2 and left thousands homeless and over 1000 people 

dead, it lead to the total relocation of the village of Gediz (Mitchell, 1976). The 

historical evidence supports the magnitude prediction with documented 

earthquakes ranging from 5 – 7.2 Mw. The calculated possible magnitude for 
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earthquakes within the Gediz Graben suggest that an even larger earthquake 

could occur if enough of the fault length ruptured.  

In addition to the increase in the knowledge of the active tectonics of the 

area this study has identification of rivers in the Gediz Graben that are 

responding in measured transient ways to tectonics perturbation and in the 

comparison of standardised models and theory relation to real life values. This 

has allowed several distinct and noteworthy contributions to be made in terms 

of furthering the information that can be gathered from a landscape and how it 

is used, and evaluation of the current methods of modelling fluvial 

geomorphology.  Three of the most significant contributions of this thesis are 

detailed in the following sections (Sections 8.2.1 – 8.2.3). 

 

8.2.1: INTEGRATING FAULT LINKAGE THEORY AND KNICKPOINT 

THEORY  

Typically when information is required about historic or present day fault 

activity, studies utilise a well-known tool box of techniques from cross-sections 

to trenching and studies of imagery and dated surfaces (outlined in the 

introductory parts of Chapter 4). These methods can provide a large variety of 

information over different time scales (Cowie and Roberts 2001), and so are 

valuable tools which have allowed for the quantification of throw rates and the 

examination of pattern in the magnitude of throw along strike (Schwartz and 

Coppersmith, 1984; McAlpin et al., 1994; Nicol et al., 1997; Cowie and Roberts, 

2001; Litchfield et al. 2006; Özkaymak et al., 2011). However, this study set out 

to test how a sophisticated understanding of geomorphology and transient 

landscape response could be integrated with fault interaction theory and 
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structural data, to improve constraints on fault slip rates where geological or 

geodetic data are sparse. It has been proposed widely that fluvial 

geomorphology can give qualitative and quantitative insights into tectonics, but 

this is one of the first studies to derive fault slip rates quantitatively from 

geomorphic analysis and this thesis shows that knickpoints are now a potential 

tool for examining tectonics (Snyder et al., 2000; Whipple, 2001; Kirby et al., 

2003; Oiumet et al., 2009). Previously, studies have used this process in 

reverse, where they have taken a known tectonic template and then examined 

the landscape response to the tectonic rates (e.g. Howard et al., 1994; Snyder 

et al., 2000; Whipple and Tucker, 2002; Tucker and Whipple, 2002; Whipple, 

2004; Whittaker et al., 2008; Boulton and Whittaker, 2009; Whittaker and 

Boulton, 2012).  This study has reversed this process. Fault interaction theory 

has been combined with the sophisticated knowledge of geomorphology in the 

form of knickpoint theory to provide a detailed picture of the ongoing tectonic 

regime in the Gediz Graben. As a result in Chapter 6 the transient responses of 

the bedrock rivers have explicitly described and characterised. The knickpoint 

data was key in the dating of the linkage event evident from throw values to 0.6 

– 1 Ma (figure 6.4), this also allowed for resolution of pre- and post-linkage rates 

at the centre of the array of 2 mm/yr and 0.6 mm/yr respectively. Without the in 

depth knowledge of geomorphology this information would have been 

inaccessible. 

This is a significant step forward in both the study of faulting and fluvial 

geomorphology. Knickpoint theory has been the subject of an increased amount 

of attention and subsequent development with researchers documenting how 

rivers and in particular knickpoints respond to known throw rates (e.g. Howard 

et al., 1994; Snyder et al., 2000; Whipple and Tucker, 2002; Tucker and 
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Whipple, 2002; Whipple, 2004; Whittaker et al., 2008; Boulton and Whittaker, 

2009; Whittaker and Boulton, 2012). In isolating the tectonic knickpoints in the 

rivers and combining the data with the available geological and structural, this 

study has pushed the applicability of geomorphology into a potentially very 

useful relationship with fault linkage theory. Without the integration of the 

methods it would not have been possible to derive details of the tectonic history 

in such high resolution, including throw rates pre- and post-linkage and 

assigning a timing of linkage. 

  This study highlights the usefulness the fluvial network in in constraining 

the fault evolution without the need for  time-consuming effort and expensive 

trenching data and lab work. Much of the data is easily available by extraction 

from DEMs, and increasingly high resolution digital data could therefore be an 

efficient way to examine tectonics if the general relationships between rivers 

and tectonics are well understood and quantified.  

It is obviously desirable to have as much information about fault 

movement in as high a resolution as possible, particularly in populated areas. It 

is possible, given the general state of knowledge on both knickpoint and fault 

linkage theories that knickpoint data could be used as the starting point for 

studies of tectonics from a surveying perspective. Figure 6.8 provides a plot of 

range relief and total throw along strike in the Gediz Graben, it also plots the 

data of vertical knickpoint height above the active fault. This study has shown 

that the knickpoint heights reflected both the range relief and the throw values 

along strike. If the general location of faults in known then this study suggests 

that it would be possible to extract knickpoint data at a very low cost and 

compare it to the known location of faults arrays and segments. This could, as 

figure 6.8 shows, provide significant information on the best places to study 
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increased rates of throw, and provide a very valuable source of data for very 

little cost.  

 

8.2.2: CALIBRATING THE EFFECT OF LITHOLOGY ON TRANSIENT 

LANDSCAPE RESPONSE TIMES  

Chapter 7 of this thesis presented a detailed field study of the geometry 

and erosivity of six rivers upstream of faults in the Gediz Graben for which well-

constrained throw rates had been derived. The unit stream powers were 

compared between rivers with varying channel lithologies and importantly the 

results showed that lithology has a significant modulating influence on the 

response of the rivers keeping pace with uplift on the active fault. For example, 

a 2 fold reduction in rock hardness, measured in situ by multiple Schimidt 

hammer rebound tests, causes at least a 2.5x reduction in stream power 

between the rivers required to cut across the fault. This is interpreted as 

meaning that the K parameter in the widely-used stream power law also varies 

by a factor of 2.5. This result is important as it is often stated that lithology 

should have an influence on river responses to tectonic perturbation but there 

have been hardly any studies that set out to use comprehensive field data to 

quantify this explicitly. This study shows unequivocally that lithology can have a 

significant impact on modulating transient landscapes, and hence landscape 

response times.   

The results suggest that even though tectonics is a primary influence on 

the response of the landscape through river incision, lithology must be seriously 

considered in field or numerical modelling studies, or predicted stream power 

predictions will be non-representative of the actual response of the landscape.  
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The implications of this for landscape modelling are clear. Lithology and 

sediment flux are currently subsumed into the K parameter in erosion laws. This 

study indicates that the treatment of the K parameter in these erosion laws must 

be carefully considered. Therefore this study suggests that to be able to 

accurately predict river geometries and stream powers, and therefore landscape 

evolution, the variables within the K parameter need to be explicitly defined. In 

Chapter 7 it is shown that both lithology and sediment flux can significantly alter 

the geometries and stream powers within rivers and neglecting this in models 

would significantly over or under predict stream powers at the fault. The 

Yeniköy River in the Gediz Graben is good example of this problem, where in 

reality much lower stream powers were required than would have been 

predicted to keep up with uplift, due to significant sediment flux effects. 

This study has also highlighted the need to address how the lithological 

influence should be measured. In this study the rock hardness was measured 

using a Schmidt hammer, which takes reading of the uniaxial compressive 

strength of the rock. These readings were also combined with other lithological 

details such as joint spacing, orientation and dip of the rocks to produce the 

widely-used Selby Rock Mass Strength Index (SRMS [Selby, 1980]). The 

relative SRMS index ratings of the clastic sediments and metamorphic 

basement rocks did not always reliably record the visually very obvious 

differences in the erodibility of the two general rock types. However, the 

hardness measure using the Schmidt hammer produced a more reliable 

quantitative estimate of erodibility based upon the obvious field evidence of 

different amounts of incision between the sedimentary and metamorphic rocks.  

This thesis therefore suggests that different methods for assessing 

hardness or rocks and rock erodibility may explain the equivocal results that 
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other workers have obtained when considering the influence of lithology on 

bedrock river erosion. This then raises the question of whether or not we have 

the right tools to really assess the impact of lithology.   

The SRMS index is a good example of varying appropriateness of 

measurements. As already stated the SRMS index did not correlate well with 

the visible differences in incision in the field, and in addition, did not explain the 

differences in stream powers produced in response to and mitigating relative 

rates of active uplift along the fault array. In the SRMS the hardness is 

combined with other information such as the degree of weathering and ground 

water saturation, and the orientation and size of joints and bedding. The 

disparity between the representative ability of the hardness and the SRMS 

suggest that within the current method the level of weighting given to each 

variable may not be ideal for studying the erodibility of rocks.  A suggestion to 

improve this is that future work should address the levels of weighting given to 

the properties of the lithology within the SRMS index calculations. The data 

presented in this thesis suggests that the hardness of the lithology should have 

a higher weighing in the calculation 

Additionally, this study highlighted the problems of using a Schmidt 

hammer to measure poorly consolidated and very soft lithologies. In this study 

anything softer then a 20 reading on the Schmidt hammer was read as 20 as 

the sensitivity of the hammer below 20 is very poor. This could hinder the study 

of softer lithologies and produces poor resolution of the data for the softer rocks.  

 

8.3: FURTHER WORK  

This thesis has made a significant contribution to constraining the 

tectonic history of the Gediz Graben using a variety of methodologies. 
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Importantly it has combined an in depth knowledge of geomorphology with fault 

interaction theory to quantify rates of throw and the timing of linkage. The 

results of this study suggest that the extraction of knickpoints and knowledge of 

knickpoint theory can be used to quantify rates of fault throw and determine 

whether fault linkage has occurred, and provide possible dates for the event.   

One suggestion for a further study would be to apply this method to other 

tectonically active areas with a range of fault slip rates and footwall lithologies. 

The strategy for the ongoing work could be to select two or three additional 

areas in which to replicate this study. The initial additional study areas should 

have a similar tectonic regime to the Gediz Graben, to allow for comparison of 

results from similar situations. The study areas would therefor need to have 

active normal faulting and graben-type topography. This study could therefore 

be conducted in a variety of areas, but could initially aim to concentrate the 

other grabens parallel to the Gediz, the Büyük Menderes and Küçük Menderes 

Grabens, as these study areas are very similar in their history and timings of 

formation as well as the general geology such as style of faulting and lithologies 

present.  After the initial stage of the investigation depending on the results the 

study areas could become more diverse, the Basin and Range could be used 

for this study as the tectonic situation is still similar but there will be more 

variations in the other factors such as rates of fault movement and general 

geology of the area. This would allow for progressive testing of the hypothesis 

in a variety of more varied areas.  

This would be important as it could lead to support for the proposed 

method of studying faulting put forward in this chapter. In this way there is then 

the possibility of conducting a study that looks at the easily extractable fluvial 

information and then uses the information to produce quantification of throw 
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rates. This geomorphology derived information could then be compared to 

information from other methods. 

More specifically this study would aim to combine previous mapping for 

fault traces with knickpoint data extracted from DEMs. The data would consist 

of an extracted fluvial network with selected rivers extracted using available 

software. The river long profiles would then be studied both visually and with 

log-log slope-area plots to determine the locations and therefore heights of 

tectonic knickpoints. The knickpoint height data could then be compared to the 

mapped fault traces and data extracted from the DEM such as range relief , and 

used in conjunction with estimates of fault initiation to provide a quantification of 

pre- and post-linkage throw rates, and timing of linkage for areas where linkage 

has occurred.   

 Another suggestion for a further study is the issue of the influence of 

lithology on river response to active tectonics. In particular this thesis has 

highlighted that there needs to be more studies that use field derived data to 

analyse the influence of lithology. A particular aspect of this that needs work is 

the way that the erodibility of the lithologies around the river channel is 

quantified. In light of this a prosed study would identify an appropriate area 

where the lithology varies significantly both between rivers and also along the 

length of the studied rivers, in a similar way to the Gediz Graben. Obvious 

choices for the initial study are the Büyük Menderes and Küçük Menderes 

Grabens as they would allow that would allow for direct comparisons with data 

from the Gediz Graben, and show the same variations in comparable 

lithologies. The study would need to extract information about particular rivers 

using appropriate software and then a field study would need to be undertaken.  
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A minimum of five or six rivers should be walked in the field, measuring the river 

channel geometry. In addition to this, at each location of geometry 

measurements a suite of lithology data should be documented including 

Schmidt hammer hardness measurements and the additional characteristics of 

the rocks that contribute towards the SRMS index.  

 In addition to the data for the SRMS index additional methods of 

quantifying rock hardness would be tested. It is possible to estimate uniaxial 

compressive strength of rocks and relating grade assigned by Brown (1981) to 

particular ranges of compressive strengths (R6 = 250 MPa; R5 = 100- 250 MPa; 

R4 = 50-100 MPa; R3 = 25-50 MPa; R2 = 5-25 MPa; R1 = 1-5 MPa; R0 = 0.25-

1 MPa). This can be done in the field using tables of rock properties that relate 

to given strength of rock. These properties relate to how easy it is to break the 

rock with either a hammer, pocket knife or finger nail. At each location that 

SRMS data is collected the Brown Grade should be assigned to the lithology 

using the required tool.  

 One additional reading of rock strength can be taken at each location 

using and Equotip reader. The Equotip uses the Leeb hardness principle, which 

is a rebound hardness measure typically used for testing metal in engendering 

context, although it is being used experimentally in the field for testing rock 

hardness (Viles et al., 2010). Viles et al. (2010) have tested the reading of a 

Schmidt hammer and Equotip and found that the readings are not necessarily 

comparable, although when the data is combined it can yield extra information.  

The results of this study would allow for stream powers to be calculated 

in a similar way to this study, at multiple locations along the river channel. The 

study should then involve an analysis of the lithological data derived using 

Schmidt hammer, SRMS index, Brown grade and Equotip readings with respect 



321 
 

to the known stream powers. Advancing from this thesis the specific aim would 

be to analyse how different methods of measuring hardness or rebound 

strength of the lithology reflect the erodibility as determined through stream 

power analysis.  

A thorough consideration of the individual hardness measures should be 

completed and as well as considering a combination of hardness measures and 

also alternative weighting within the components of the SRMS index. This 

should produce results that make it easier for future studies to accurately study 

the effect of lithology strength and erodibility on stream power, enabling the 

issues with current modelling documented within this thesis to be evaluated. 

 

 

8.4: SIGNIFICANT CONCLUSIONS OF THESIS 

 Geomorphic techniques can be used in conjunction with fault interaction 

theory to produced high resolution constraints on the rates of faulting and 

timings of linkage events on the active fault array in the Gediz Graben.    

 The fluvial network of the Gediz Graben is unequivocally undergoing a 

transient response to the linkage event. Each river that was studied in 

chapter 6 shows a knickpoint interpreted to be due to the increase in 

throw rate caused by the linkage event. A transient response is also 

indicated by the supressed channel and valley width downstream of the 

knickpoint, and the short-wavelength of elevated stream powers 

upstream of the basin bounding faults.  

 The typical landscape response time implied for these rivers is between 

1.63 Ma and 2.73 Ma. Fluvial geomorphology therefore records tectonics 

over long time periods. 
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 Current channel width scaling methods used in extrapolative landscape 

modelling are poor predictors of actual channel widths as measured in 

the field as evidenced by data from the Gediz Graben. The implications 

of this result to landscape modelling is an issue that needs to be 

addressed in future research.  

 In the Gediz Graben the steam powers in the rivers scale well with throw 

rates when they are measured within the relatively uniform, hard 

metamorphic basement rocks in the upper 2/3 of the catchments. 

  The tectonic scaling breaks down when the stream powers in the lower 

catchments dominated by soft clastic sediments are considered.  

 In the Gediz rivers it is possible to separate the differing effects of 

lithology and sediment flux in modulating incision capacity, both of which 

are typically subsumed into a generic K parameter in simple stream 

power erosion laws.  

 A significant implication of this thesis is that the current treatment of a 

collection of variables within the K parameter is inappropriate for 

accurate landscape modelling. Variables such as lithology and sediment 

flux need to be treated individually and with more attention.   
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APPENDIX 1:  

slope areas graphs used in chapter 6 
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The Graph used to extrapolate present day throw rate  

 

 

River # 

Distance 
along 
strike 
(km) 

Present 
throw rate 

extrapolated 
from timing 

data 
(mm/yr) 

River 
# 

Distance 
along 
strike 
(km) 

Present 
throw rate 

extrapolated 
from timing 

data 
(mm/yr) 

1 5.6 0.7 16 65.4 1.86 

2 12.8 0.87 17 69 1.74 

3 15.3 0.92 18 73.7 1.58 

4 17.7 0.99 19 79.2 1.44 

5 22.7 1.1 20 79.8 1.44 

6 22.7 1.1 21 79.8 1.44 

7 22.7 1.1 22 82.8 1.39 

8 32.9 1.35 23 85 1.37 

9 35.4 1.41 24 90 1.35 

10 44.6 1.65 25 91.5 1.3 

11 53.4 1.84 26 97.2 1.28 

12 53.4 1.84 27 100.9 1.16 

13 56.3 1.91 28 105.1 0.72 

14 56.3 1.91 29 110 0.6 

15 60.3 2       

16 65.4 1.86       
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APPENDIX 2: ADDITIONAL DATA                 Akcipinar River: Field data  

 

 

Down 

stream 

distance 

(km)

Field 

location
Lat Long

elevati

on (m)

Upstream 

area (km2)

Bankfull 

channel 

width 

(m)

Bankfull 

depth (m)

Valley width 

(m)

Slope 

measured 

with range 

finder (°)

DEM y/x
%  bedrock 

in channel

Sediment %  

coarse

Sediment %  

med.

Sediment %  

fine

0.94 14 38.403 27.885 863 0.83 0.9 0.5 55 2 0.100 0 10 40 50

1.16 15 38.403 27.884 855 1.11 4.1 0.3 15.4 6.4 0.094 40 0 5 95

1.49 1 38.403 27.880 819 1.71 3.8 0.3 14.7 1.2 0.114 40 10 40 60

1.7 2 38.405 27.878 799 1.87 5.3 0.7 25 3.1 0.188 30 30 10 60

1.86 3 38.404 27.878 788 1.92 2.7 0.3 25 2.6 0.065 40 10 40 50

2.12 4 38.405 27.875 734 2.39 5.1 0.85 13.5 8 0.025 100 0 0 0

2.44 5 38.405 27.872 732 2.53 3.4 0.7 13.2 1.7 0.031 10 20 40 40

2.76 6 38.404 27.869 720 2.63 3.1 0.85 19 2.1 0.010 20 20 50 30

3.26 7 38.403 27.865 707 2.752 6.2 0.8 64 2.1 0.024 60 10 60 30

3.55 8 38.404 27.866 703 7.67 4.6 0.9 72 0.9 0.056 10 30 40 30

3.73 9 38.406 27.861 703 7.79 6.7 0.8 45 1.8 0.010 25 30 50 20

4.04 10 38.408 27.863 688 9.98 6.7 1.6 10.9 2.5 0.012 70 60 20 20

4.3 11 38.410 27.865 681 10.114 5.4 1.7 11.8 2 0.010 80 20 50 30

4.6 12 38.411 27.867 676 10.35 5.5 1.6 10.5 2.7 0.033 50 30 40 30

4.9 31 38.414 27.868 673 11.64 5.9 1.4 12.1 2.5 0.023 90 40 40 10

5.21 32 38.416 27.869 659 12.48 3.5 0.9 28 5.1 0.026 80 50 40 10

5.67 33 38.420 27.869 624 12.72 3.7 1.6 32 3 0.071 80 60 30 10

6.05 44 38.423 27.869 595 13.37 3.1 1.6 67 2.4 0.023 70 40 40 20

6.61 43 38.428 27.868 547 13.81 4.1 1.2 46 2.7 0.044 50 10 40 50

7.15 42 38.431 27.865 511 22.53 4.5 0.8 44 3.1 0.034 40 20 50 30

7.68 41 38.434 497 23.15 3.8 1.1 50 3.2 0.057 100 0 0 0

8.24 40 38.435 27.856 451 23.57 2.9 1.5 64 4.2 0.063 80 40 40 10

8.59 39 38.436 27.853 425 26.81 4.1 0.6 42 3.7 0.043 60 30 50 20

9.01 38 38.439 27.852 390 26.47 5.7 0.5 51 2.8 0.008 70 40 40 20

10.34 37 38.449 27.852 333 33.37 6.4 0.6 47 6.1 0.025 20 40 50 10

10.58 36 38.451 27.852 319 34.37 6.1 0.9 20 5.6 0.032 90 60 30 10

10.83 27 38.452 27.852 299 34.52 3.2 1.2 15 4.1 0.053 50 20 60 20

11.02 26 38.454 27.852 280 34.67 3.7 0.9 26 3.9 0.100 60 10 40 50

11.29 25 38.456 27.852 276 35.67 4.1 0.6 32 1.9 0.020 60 40 40 20

11.54 24 38.4584 27.85 264 35.28 3.7 0.8 26 3 0.070 90 0 70 30

11.74 23 38.46 27.9 258 35.54 4.1 0.7 30 2.7 0.038 10 30 60 10

12.03 22 38.462 27.9 240 35.83 3.2 0.6 21 3.1 0.043 20 10 70 20

12.26 21 38.464 27.9 220 35.98 3.6 0.6 23 2.7 0.085 100 0 0 0

12.52 20 38.466 27.9 215 41.76 9 0.4 29 4.8 0.019 0 80 10 10

12.83 19 38.468 27.9 188 42.01 4.3 0.9 74 3 0.025 90 70 20 10

13.03 18 38.468 27.9 167 42.71 4.9 0.9 27 5.4 0.048 50 20 50 30

13.32 28 38.47 27.8 164 42.95 5.2 0.8 34 4.7 0.013 60 30 40 30

13.77 16 38.474 27.8 157 43.52 5.6 0.5 35 4.1 0.017 10 20 50 30

14.12 17 38.476 27.8 149 43.71 5.6 0.6 43 3 0.010 0 40 50 10

14.6 30 38.48 27.8 131 44.38 4.8 0.5 62 3.2 0.013 100 0 0 0

14.98 29 38.483 27.8 123 46.5 8 1 78 1.4 0.067 0 0 10 90

15.04 13 38.485 27.8 121 46.6 6 3 78 0.1 0.013 0 40 40 20

15.35 34 38.487 27.8 116 46.7 7.6 0.9 82 2.1 0.036 50 40 40 20

15.49 35 38.488 27.8 110 46.71 8.9 0.6 202 0.4 0.000 75 50 40 10
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Akcipinar River: stream power calculations part 1 

 

0.8 0.35 0.85 2

Finnegan 

prefactor

whittaker 

prefactor
prefactor prefactor

Down 

stream 

distance 

(km)

Predicted 

width 

Finnegan 

(m)

Predicted 

width 

Whittaker 

(m)

Predicted 

width: 

hydraulic 

scaling fitted 

to 

downstream 

of kp (m)

Predicted 

width: 

hydraulic 

scaling 

fitted to 

upstream 

of kp (m)

Velocity 

(m/s)

Cross-

sectional 

area

Discharge 

(m3/s)

Discharge

: Area 

(Q:A) ratio

Discharge 

scaled to 

drainage 

area (m3/s)

discharge 

scaled to 

regional Q:A 

ratio

Actual unit 

stream 

power 

(W/sqm)

Average 

actual 

stream 

power 

over ~2 

km

error 1 

standard 

deviation

0.94 1.41 1.43 0.77 1.82 0.52 0.225 0.12 7.11 0.12 0.18 194.78

1.16 1.26 0.95 0.90 2.11 0.33 0.615 0.21 5.39 0.16 0.24 53.71

1.49 2.04 2.35 1.11 2.62 0.14 0.57 0.08 20.73 0.25 0.37 108.62

1.7 1.77 1.60 1.16 2.73 1.27 1.855 2.35 0.80 0.27 0.40 139.73

1.86 1.84 1.75 1.18 2.77 0.21 0.405 0.09 22.25 0.28 0.41 98.20 119.01 26.19

2.12 1.62 1.16 1.31 3.09 3.01 2.1675 6.52 0.37 0.35 0.52 24.74

2.44 2.22 2.34 1.35 3.18 0.94 1.19 1.12 2.27 0.37 0.55 49.11

2.76 2.16 2.16 1.38 3.24 1.54 1.3175 2.03 1.30 0.38 0.57 17.92

3.26 2.20 2.20 1.41 3.32 1.36 2.48 3.38 0.81 0.40 0.59 22.63

3.55 3.82 4.72 2.35 5.54 1.13 2.07 2.34 3.28 1.12 1.65 195.65

3.73 3.37 3.50 2.37 5.58 1.26 2.68 3.38 2.31 1.14 1.68 23.76 55.64 34.73

4.04 3.48 3.33 2.69 6.32 5.94 5.36 31.86 0.31 1.46 2.15 36.30

4.3 3.65 3.69 2.70 6.36 6.00 4.59 27.54 0.37 1.48 2.18 39.56

4.6 3.47 3.26 2.73 6.43 6.18 4.4 27.18 0.38 1.51 2.23 132.48

4.9 3.69 3.53 2.90 6.82 4.55 4.13 18.79 0.62 1.70 2.51 94.09

5.21 3.30 2.64 3.00 7.07 2.69 1.575 4.23 2.95 1.82 2.69 196.46

5.67 3.68 3.37 3.03 7.13 6.51 2.96 19.27 0.66 1.86 2.74 515.91 169.13 90.11

6.05 3.92 3.79 3.11 7.31 5.82 2.48 14.44 0.93 1.95 2.88 211.46

6.61 3.88 3.64 3.16 7.43 3.47 2.46 8.55 1.62 2.02 2.98 316.18

7.15 4.55 4.12 4.03 9.49 1.65 1.8 2.98 7.56 3.29 4.86 359.13

7.68 4.57 4.11 4.09 9.62 3.18 2.09 6.64 3.48 3.38 4.99 735.25 405.51 114.21

8.24 4.37 3.67 4.13 9.71 6.77 2.175 14.74 1.60 3.44 5.08 1079.01

8.59 4.70 4.07 4.40 10.36 1.02 1.23 1.25 21.43 3.92 5.78 591.89

9.01 4.93 4.59 4.37 10.29 0.61 1.425 0.88 30.24 3.87 5.70 73.75 581.55 251.36

10.34 4.64 3.55 4.91 11.55 1.31 1.92 2.51 13.29 4.87 7.19 275.31

10.58 4.77 3.73 4.98 11.73 2.82 2.745 7.74 4.44 5.02 7.41 380.81

10.83 5.07 4.29 4.99 11.75 4.28 1.92 8.22 4.20 5.04 7.44 1199.15

11.02 5.13 4.39 5.00 11.78 2.35 1.665 3.91 8.86 5.06 7.47 1979.07

11.29 5.94 6.09 5.08 11.94 0.73 1.23 0.90 39.81 5.21 7.69 367.50

11.54 5.43 4.96 5.05 11.88 1.63 1.48 2.41 14.64 5.15 7.60 1409.72

11.74 5.55 5.21 5.07 11.92 1.18 1.435 1.70 20.95 5.19 7.66 694.44 900.86 322.70

12.03 5.42 4.92 5.09 11.97 0.93 0.96 0.89 40.09 5.23 7.72 1028.20

12.26 5.58 5.24 5.10 12.00 0.87 1.08 0.94 38.35 5.26 7.75 1786.14

12.52 5.29 4.30 5.49 12.92 0.52 1.8 0.93 45.03 6.10 9.00 189.68

12.83 5.80 5.30 5.51 12.96 2.06 1.935 3.99 10.54 6.14 9.05 515.86

13.03 5.22 4.12 5.55 13.07 2.77 2.205 6.10 7.00 6.24 9.20 888.73

13.32 5.37 4.39 5.57 13.11 2.04 2.08 4.24 10.13 6.27 9.26 232.60

13.77 5.54 4.68 5.61 13.19 0.74 1.4 1.04 41.80 6.36 9.38 281.38 703.23 289.47

14.12 5.89 5.38 5.62 13.22 0.92 1.68 1.54 28.41 6.38 9.42 171.72

14.6 5.85 5.26 5.66 13.32 0.66 1.2 0.79 56.31 6.48 9.56 256.95

14.98 6.97 7.71 5.80 13.64 1.74 4 6.95 6.69 6.79 10.02 818.43

15.04 11.51 24.64 5.80 13.65 4.18 9 37.60 1.24 6.81 10.04 211.66

15.35 6.46 6.46 5.81 13.67 1.72 3.42 5.89 7.92 6.82 10.06 463.50 384.45 133.69

15.49 8.85 13.40 5.81 13.67 0.33 2.67 0.89 52.34 6.82 10.07 102.24 320.26 143.10

6.846264
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Akcipinar River: stream power calculations part 2, stream powers calculated 

using different width prediction methods 

 

Down 

stream 

distance 

(km)

(Finnegan) 

predicted Unit 

stream power 

(W/m2)

(Whittaker) 

predicted Unit 

stream power 

(W/m2)

(Hydraulic 

scaling, 

upstream of 

KP) predicted 

Unit stream 

power (W/m2)

(Hydraulic 

scaling, 

downstream of 

KP) predicted 

Unit stream 

power (W/m2)

0.94 230.32 366.02 55.79 23.71

1.16 817.63 1279.25 193.55 82.26

1.49 968.54 1591.47 209.73 89.14

1.7 811.92 1509.91 158.32 67.29

1.86 2040.97 2916.70 484.65 205.97

2.12 58.60 65.86 16.27 6.92

2.44 380.03 451.56 100.45 42.69

2.76 217.36 194.25 71.01 30.18

3.26 140.21 156.19 38.53 16.38

3.55 0.00 0.00 0.00 0.00

3.73 788.15 698.60 227.43 96.66

4.04 528.72 489.72 143.23 60.87

4.3 321.17 287.02 89.26 37.94

4.6 245.72 296.72 54.18 23.03

4.9 1108.40 1214.27 259.48 110.28

5.21 2004.07 2276.17 452.66 192.38

5.67 2460.51 3590.10 458.37 194.81

6.05 2304.50 2542.15 527.80 224.32

6.61 2068.92 2684.62 417.21 177.32

7.15 1055.07 1280.02 211.15 89.74

7.68 3683.35 5089.43 665.58 282.87

8.24 3429.93 4853.54 607.35 258.12

8.59 3875.04 4982.73 726.64 308.82

9.01 1420.46 1182.09 371.32 157.81

10.34 2804.37 3151.42 567.48 241.18

10.58 3598.60 3617.00 789.83 335.68

10.83 5543.40 7308.59 989.44 420.51

11.02 962.04 1556.46 146.90 62.43

11.29 2305.12 2449.84 482.78 205.18

11.54 1815.46 2639.04 300.08 127.53

11.74 3358.59 4188.82 623.14 264.84

12.03 4853.29 6263.10 876.55 372.54

12.26 1221.23 1861.43 194.26 82.56

12.52 4583.45 4831.43 947.84 402.83

12.83 5822.45 6542.99 1146.09 487.09

13.03 656.73 869.98 113.85 48.39

13.32 776.05 745.26 171.68 72.96

13.77 1205.91 1233.16 253.93 107.92

14.12 1804.63 1629.32 417.52 177.45

14.6 1069.15 1023.34 236.19 100.38

14.98 2474.48 3757.29 382.79 162.69

15.04 646.37 435.33 185.42 78.80

15.35 2000.16 1643.30 493.21 209.62
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Akcipinar River: stream power calculations part 3, 2 km averages of stream 

powers calculated using different width prediction methods 

 

Down 

stream 

distance 

(km)

Average 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to 

downstream 

of KP

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to upstream 

of KP

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

Finnegan 

width scaling

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

Whittaker 

width scaling

error 1 

standard 

deviation

0.94

1.16

1.49

1.7

1.86 231.23 59.71 98.27 25.38 144.21 40.39 154.99 46.27

2.12

2.44

2.76

3.26

3.55

3.73 91.36 42.23 38.83 17.95 59.35 25.44 57.16 20.03

4.04

4.3

4.6

4.9

5.21

5.67 167.87 68.27 71.35 29.01 137.29 56.87 151.22 63.16

6.05

6.61

7.15

7.68 288.89 65.85 122.78 27.99 248.92 62.17 271.32 71.04

8.24

8.59

9.01 317.59 114.79 134.97 48.79 297.91 109.36 347.91 131.20

10.34

10.58

10.83

11.02

11.29

11.54

11.74 479.09 141.78 203.61 60.26 462.76 137.09 462.76 158.84

12.03

12.26

12.52

12.83

13.03

13.32

13.77 377.92 126.15 160.62 53.61 368.86 116.01 368.86 127.77

14.12

14.6

14.98

15.04

15.35

15.49 264.63 140.02 112.47 59.51 222.43 119.13 209.99 110.60
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Akcipinar River: Field Schmidt hammer readings 

 

 

Downstream 

distance 

(km)

Location

0.94 14 62 62 64 54 64 50 56 64 61 60 57 52 50 56 61 61 52 61

1.16 15 48 32 38 63 41 44 46 37 49 46 46 38 40 41 38 32 43 45

1.49 1 no data/ river/bed rock not accessible

1.7 2 69 60 67 68 68 68 70 66 68 68 71 65 67 69 66 68 65 69

1.86 3 60 59 57 66 58 52 60 65 59 68 63 66 63 63 62 50 65 65

2.12 4 57 61 60 54 58 57 60 60 60 58 58 60 56 51 61 59 59 58

2.44 5 no data/ river/bed rock not accessible

2.76 6 69 68 70 58 66 66 69 69 64 72 68 70 67 69 69 69 67 69

3.26 7 69 68 65 58 66 66 69 67 60 72 68 68 67 69 69 69 63 66

3.55 8 54 41 42 51 52 50 44 57 49 54 45 53 42 49 42 49 49 53

3.73 9 56 54 62 62 56 62 63 63 61 64 59 58 60 62 58 61 60 60

4.04 10 50 50 53 50 51 50 51 48 50 42 50 52 51 50 50 51 52 51

4.3 11 58 54 42 60 51 58 59 59 55 62 45 49 63 61 50 58 59 58

4.6 12 66 65 67 66 60 64 63 64 58 62 65 63 64 60 64 61 63 64

4.9 31 no data/ river/bed rock not accessible

5.21 32 40 37 45 35 46 42 31 42 49 39 49 46 33 46 33 46 39 36

5.67 33 57 56 51 54 58 60 62 60 59 64 64 59 56 61 61 52 61 52

6.05 44 no data/ river/bed rock not accessible

6.61 43 46 37 35 31 38 42 42 40 39 30 36 35 38 40 39 36 35 45

7.15 42 41 32 41 52 46 46 37 38 39 40 45 32 39 39 39 42 42 36

7.68 41 32 25 41 38 40 37 50 33 37 41 46 34 25 40 36 45 39 42

8.24 40 52 36 38 40 41 32 47 49 46 40 41 52 42 47 42 54 37 32

8.59 39 49 39 42 42 32 41 30 37 37 30 43 33 32 31 32 37 32 40

9.01 38 42 37 35 51 38 37 32 31 27 41 31 40 30 26 46 39 37 38

10.34 37 49 35 36 30 42 26 37 35 42 42 46 41 31 39 47 37 44 42

10.58 36 32 27 41 32 40 46 48 34 41 4 47 32 38 37 46 41 42 40

10.83 27 66 60 60 62 62 64 64 62 62 66 60 62 70 62 64 54 56 68

11.02 26 56 57 62 60 59 64 64 59 60 60 59 58 54 60 62 62 56 49

11.29 25 66 66 64 59 64 60 65 61 59 62 62 64 63 64 65 65 60 61

11.54 24 61 62 60 60 60 54 61 61 64 60 62 60 63 66 66 64 60 61

11.74 23 51 49 56 56 51 53 49 57 56 51 54 58 60 60 57 61 54 56

12.03 22 51 56 51 51 51 54 54 52 57 55 56 54 52 49 51 56 56 52

12.26 21 no data/ river/bed rock not accessible

12.52 20 48 52 52 49 56 46 45 51 56 61 49 60 59 54 52 54 60 60

12.83 19 65 62 67 68 66 64 67 64 56 63 60 66 66 62 60 62 58 63

13.03 18 41 38 46 51 46 47 56 49 48 42 52 45 56 47 38 39 44 42

13.32 28 60 62 58 63 67 60 62 67 68 66 64 67 60 62 62 64 64 62

13.77 16 35 34 42 21 32 40 35 37 35 51 52 37 42 40 40 31 43 35

14.12 17 30 37 42 28 38 40 35 35 31 38 28 42 30 37 32 38 22 42

14.6 30 41 38 37 37 36 38 40 45 31 34 34 40 42 32 34 37 42 37

14.98 29 31 36 36 35 39 30 40 36 41 37 41 36 38 31 42 40 33 36

15.04 13 38 34 24 36 38 38 32 24 34 58 38 32 32 24 26 37 41 36

15.35 34 no data/ river/bed rock not accessible

15.49 35 20 26 59 24 24 28 30 28 25 28 30 25 25 25 30 32 22 30

Schmidt hammer readings 
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Akcipinar River: Selby Rock Mass Strength Index calculation 

 

 

Downstream 

distance 

(km)

Location 

#

Schmidt 

hammer 

average

Hardness 

selby 

index 

number

Weathering 

selby index 

number

Joint 

spacing 

selby 

index 

number

Joint 

width 

selby 

index 

number

Joint 

orientation 

selby 

index 

number

Ground 

water 

selby 

index 

number

continuity 

of joints 

selby 

index 

numbers

Lithology

Selby 

rock 

mass 

strength 

rating

0.94 14 58 18 7 15 5 14 6 5 gneiss 70

1.16 15 43 14 5 8 5 20 6 5 schist 63

1.49 1

1.7 2 67 20 9 8 6 18 6 5 mica schist 72

1.86 3 61 20 9 8 4 18 6 5 schist 70

2.12 4 58 18 9 8 5 18 6 5 schist 69

2.44 5

2.76 6 68 20 9 8 5 18 6 5 schist 71

3.26 7 67 20 9 8 5 18 6 5 schist 71

3.55 8 49 14 9 8 4 18 6 5 schist 64

3.73 9 60 20 7 8 6 18 6 5 gneiss 70

4.04 10 50 18 7 8 4 18 6 5 schist 66

4.3 11 56 18 7 8 5 18 6 5 schist 67

4.6 12 63 20 8 8 2 18 6 6 schist 68

4.9 31

5.21 32 41 14 9 8 5 18 6 6 schist 66

5.67 33 58 18 7 8 6 18 6 5 schist 68

6.05 44

6.61 43 38 10 7 8 5 9 6 6 schist 51

7.15 42 40 14 9 15 4 20 6 5 schist 73

7.68 41 38 10 7 8 5 18 6 6 schist 60

8.24 40 42 14 9 8 5 18 6 5 gniess 65

8.59 39 37 10 7 15 5 20 6 5 schist 68

9.01 38 37 7 8 5 18 6 5 schist 49

10.34 37 39 10 7 8 6 20 6 6 schist 63

10.58 36 38 10 7 8 5 18 6 5 schist 59

10.83 27 63 20 9 15 6 18 6 5 gneiss 79

11.02 26 59 18 7 21 6 18 6 5 gneiss 81

11.29 25 62 20 9 21 6 18 6 5 gneiss 85

11.54 24 61 20 9 15 6 18 6 5 gneiss 79

11.74 23 54 18 7 15 6 18 6 5 gneiss 75

12.03 22 53 18 7 15 6 18 6 5 gneiss 75

12.26 21

12.52 20 54 18 7 15 6 18 6 5 gneiss 75

12.83 19 64 20 7 8 6 18 6 5 gneiss 70

13.03 18 46 10 5 8 6 18 6 5 schist 58

13.32 28 64 20 9 8 6 18 6 5 gneiss 72

13.77 16 37 10 7 8 5 20 6 6 schist 62

14.12 17 35 10 5 15 5 18 6 6 schist 65

14.6 30 37 10 5 21 5 18 6 5 schist 70

14.98 29 36 10 5 8 6 18 6 5 schist 58

15.04 13 34 5 5 21 5 20 6 5 schist 67

15.35 34

15.49 35 32 5 5 8 2 18 6 5  schists 49
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Sart River: Field data  

 

 

Down 

stream 

distance 

(km)

Field 

location
Lat Long

elevation 

(m)

Upstream 

area 

(km2)

Bankfull 

channel 

width 

(m)

Bankfull 

depth 

(m)

Valley 

width 

(m)

Slope 

measured 

with range 

finder (°)

DEM y/x

%  

bedrock 

in 

channel

Sediment 

%  coarse

Sediment 

%  med.

Sediment 

%  fine

0.44 8 38.375 27.971 959 1.79 6 0.5 181 2.7 0.007 0 0 0 0

0.90 9 38.378 27.969 957 2.22 1.1 0.3 236 1.2 0.065 0 20 60 20

0.96 10 38.379 27.969 957 2.23 1.7 0.5 240 2.5 0.037 0 30 40 30

1.26 11 38.382 27.970 953 2.79 1.5 0.5 35 1.7 0.028 90 0 0 100

1.62 12 38.384 27.971 941 3.41 2.2 0.6 47 1.4 0.006 10 10 70 20

2.12 13 38.388 27.972 936 3.72 2.7 0.5 33 2 0.007 80 60 20 20

2.56 14 38.391 27.972 912 4.03 5.5 0.9 56 4.2 0.017 0 40 40 20

2.97 15 38.394 27.971 911 4.32 3.7 0.5 22 1.4 0.010 0 40 20 40

3.29 16 38.397 27.972 909 5.31 5.6 0.85 72 1.7 0.020 50 20 30 50

3.68 17 38.400 27.973 899 5.51 6.2 0.5 32 1.2 0.016 5 40 20 20

4.06 18 38.403 27.974 886 5.79 3.2 0.45 29 1.1 0.018 0 10 70 20

4.43 19 38.406 27.974 880 6.98 1.7 1.5 16 1.4 0.034 20 20 30 50

4.67 20 38.408 27.974 870 7.15 6 0.5 39 1.8 0.005 20 10 70 20

5.04 21 38.411 27.973 886 7.67 5.2 0.9 12 3.4 0.018 25 30 40 20

5.42 22 38.413 27.970 838 8.05 7.1 0.4 22 1.9 0.016 5 10 60 30

5.91 29 38.416 27.967 825 8.51 4.5 0.7 70 1.9 0.021 100 0 0 0

6.49 30 38.420 27.964 800 8.81 3.6 1 72 0.9 0.019 40 10 70 20

7.02 31 38.424 27.962 770 11.31 3.9 1.9 64 1.9 0.018 30 20 40 40

7.63 32 38.429 27.962 739 11.96 4.8 0.6 36 1.6 0.008 0 40 30 30

8.11 33 38.433 27.965 711 12.31 5.2 0.7 61 2.9 0.034 60 10 60 30

8.80 34 38.438 27.968 657 13.19 5 0.6 41 6.7 0.076 20 30 60 10

9.32 35 38.442 27.971 594 15.20 6.2 0.5 36 3.2 0.026 0 10 70 20

9.74 36 38.445 27.973 558 15.38 3.2 1.8 54 4.4 0.038 0 30 50 20

10.24 37 38.449 27.975 526 17.11 4.8 1.6 52 3.6 0.011 70 20 60 20

11.99 41 38.459 27.987 402  20.45 3.7 1.7 48 2.1 0.078 0 30 40 30

12.22 40 38.466 27.988 363 21.69 2.1 1.3 10.2 1.8 0.043 100 0 0 0

12.74 39 38.463 27.991 320 21.88 1.9 2.6 12 2.5 0.039 100 0 0 0

13.25 38 38.465 27.996 256 22.60 2.6 1.8 69 3.6 0.046 90 0 100 0

13.95 23 38.466 28.002 210 29.48 1.8 2.4 21 4.2 0.053 100 0 0 0

14.40 24 38.467 28.006 182 32.34 3.5 0.9 52 3.3 0.017 70 50 40 10

14.87 25 38.468 28.010 172 33.53 3.9 2.5 84 1.3 0.006 0 25 60 15

15.37 26 38.470 28.015 161 35.45 5.9 1.4 109 1.1 0.006 0 10 60 30

15.72 27 38.470 28.018 154 35.92 4.9 1.4 119 1 0.010 0 5 70 25

16.22 6 38.471 28.022 146 67.38 4.8 1.4 162 0.7 0.011 0 20 40 40

16.58 5 38.473 28.025 138 69.41 4.6 1.3 158 0.6 0.006 0 20 20 60

16.92 4 38.476 28.027 135 70.58 4.8 1.4 258 1.2 0.006 0 30 30 40

17.28 3 38.478 28.029 133 71.70 5.3 1.25 342 0.4 0.005 0 20 20 60

17.67 2 38.481 28.030 127 72.63 5.6 1.4 332 0.5 0.003 0 15 20 65

18.00 1 38.483 28.032 121 72.98 5.9 1.5 307 0.4 0.003 0 10 30 60

18.30 28 38.487 28.034 114 73.20 5.9 1.5 540 0.2 0.010 0 10 60 30



 
 
 
 

335 
 

Sart River: stream power calculations part 1 

 

0.8 0.35 0.85 2

Finnegan 

prefactor

whittaker 

prefactor
prefactor prefactor

0.52 0.14 0.6 1.35

Down 

stream 

distance 

(km)

Predicted 

width 

Finnegan 

(m)

Predicted 

width 

Whittaker 

(m)

Predicted 

width: 

hydraulic 

scaling fitted 

to 

downstream 

of kp (m)

Predicted 

width: 

hydraulic 

scaling fitted 

to upstream 

of kp (m)

Velocity 

(m/s)

Cross-

sectional 

area

Discharge 

(m3/s)

Discharge: 

Area (Q:A) 

ratio

Discharge 

scaled to 

drainage 

area 

(m3/s)

discharge 

scaled to 

regional 

Q:A ratio

Actual unit 

stream 

power 

(W/sqm)

Average 

actual 

stream 

power 

over ~2 

km

error 1 

standard 

deviation

0.44 1.69 1.60 0.80 1.81 0.60 1.5 0.90 1.98 0.27 0.39 4.11

0.90 1.18 0.63 0.89 2.01 0.14 0.165 0.02 92.87 0.34 0.48 276.21

0.96 1.32 0.81 0.90 2.01 0.58 0.425 0.25 9.02 0.34 0.48 103.33

1.26 1.52 1.00 1.00 2.26 0.48 0.375 0.18 15.57 0.43 0.60 109.35

1.62 2.19 2.11 1.11 2.49 0.63 0.66 0.41 8.25 0.52 0.73 19.70

2.12 2.22 2.08 1.16 2.60 0.52 0.675 0.35 10.61 0.57 0.80 19.58 88.71 51.23

2.56 1.92 1.43 1.21 2.71 2.44 2.475 6.04 0.67 0.62 0.87 26.32

2.97 2.19 1.88 1.25 2.80 0.43 0.925 0.40 10.74 0.66 0.93 23.75

3.29 2.06 1.47 1.38 3.11 1.38 2.38 3.29 1.61 0.81 1.14 40.23

3.68 2.18 1.65 1.41 3.17 0.40 1.55 0.62 8.83 0.84 1.19 30.18

4.06 2.16 1.58 1.44 3.25 0.31 0.72 0.22 25.81 0.89 1.25 70.75 38.25 9.61

4.43 2.06 1.29 1.58 3.57 3.91 1.275 4.98 1.40 1.07 1.50 298.10

4.67 2.96 2.95 1.60 3.61 0.49 1.5 0.74 9.68 1.09 1.54 13.50

5.04 2.41 1.76 1.66 3.74 2.19 2.34 5.13 1.49 1.17 1.65 57.52

5.42 2.51 1.89 1.70 3.83 0.32 1.42 0.46 17.51 1.23 1.73 39.22

5.91 2.45 1.74 1.75 3.94 0.99 1.575 1.56 5.45 1.30 1.83 82.37 98.14 57.29

6.49 2.53 1.84 1.78 4.01 1.39 1.8 2.51 3.51 1.35 1.90 96.50

7.02 2.80 2.05 2.02 4.54 7.31 3.705 27.07 0.42 1.73 2.44 111.32

7.63 3.32 2.97 2.07 4.67 0.67 1.44 0.96 12.42 1.83 2.58 43.42

8.11 2.57 1.62 2.11 4.74 1.23 1.82 2.23 5.52 1.88 2.65 167.51 104.69 25.51

8.80 2.26 1.16 2.18 4.90 1.37 1.5 2.06 6.41 2.02 2.84 422.23

9.32 2.93 1.96 2.34 5.26 0.66 1.55 1.02 14.93 2.32 3.27 134.58

9.74 2.74 1.67 2.35 5.29 9.99 2.88 28.76 0.53 2.35 3.31 385.21

10.24 3.58 2.95 2.48 5.58 7.13 3.84 27.40 0.62 2.62 3.69 85.84 256.96 85.64

11.99 2.66 1.35 2.71 6.11 6.15 3.145 19.34 1.06 3.13 4.41 915.19

12.22 3.05 1.81 2.79 6.29 3.33 1.365 4.54 4.77 3.32 4.68 927.84

12.74 3.11 1.89 2.81 6.31 15.69 2.47 38.77 0.56 3.35 4.72 947.38

13.25 3.06 1.78 2.85 6.42 9.03 2.34 21.13 1.07 3.46 4.87 840.36 907.69 23.40

13.95 3.28 1.84 3.26 7.33 17.34 2.16 37.46 0.79 4.51 6.35 1844.86

14.40 4.23 3.16 3.41 7.68 2.16 1.575 3.40 9.50 4.95 6.97 330.75

14.87 5.22 5.05 3.47 7.82 10.46 4.875 51.00 0.66 5.13 7.23 109.11

15.37 5.39 5.28 3.57 8.04 3.02 4.13 12.46 2.84 5.42 7.64 72.34

15.72 4.85 4.11 3.60 8.09 2.88 3.43 9.87 3.64 5.49 7.74 157.11

16.22 6.06 5.02 4.93 11.08 2.41 3.36 8.09 8.33 10.30 14.52 329.00 473.86 340.27

16.58 6.93 6.77 5.00 11.25 1.92 2.99 5.75 12.08 10.61 14.96 184.49

16.92 7.04 6.94 5.04 11.34 3.15 3.36 10.59 6.66 10.79 15.21 171.91

17.28 7.16 7.17 5.08 11.43 1.45 3.3125 4.81 14.92 10.96 15.45 149.25

17.67 7.98 9.16 5.11 11.51 2.03 3.92 7.97 9.11 11.11 15.65 82.89

18.00 7.86 8.81 5.13 11.53 2.09 4.425 9.24 7.90 11.16 15.73 86.60 135.03 23.81

18.30 6.38 5.43 5.13 11.55 1.48 4.425 6.54 11.20 11.19 15.78 262.04 156.20 33.55

6.54
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Sart River: stream power calculations part 2, stream powers calculated using 

different width prediction methods  

 

Down 

stream 

distance 

(km)

(Finnegan) 

predicted 

Unit stream 

power 

(W/m2)

(Whittaker) 

predicted 

Unit stream 

power 

(W/m2)

(Hydraulic 

scaling, 

upstream of 

KP) 

predicted 

Unit stream 

power 

(W/m2)

(Hydraulic 

scaling, 

downstream 

of KP) 

predicted 

Unit stream 

power 

(W/m2)

0.44 10.37 10.95 30.74 13.66

0.90 182.14 341.42 340.03 151.12

0.96 94.71 154.68 196.25 87.22

1.26 76.69 116.31 163.57 72.70

1.62 14.05 14.54 39.14 17.39

2.12 16.93 18.02 45.69 20.31

2.56 53.60 71.88 120.13 53.39

2.97 28.48 33.15 70.51 31.34

3.29 77.60 108.52 162.99 72.44

3.68 60.94 80.62 132.93 59.08

4.06 74.24 101.69 156.75 69.66

4.43 174.21 278.64 319.75 142.11

4.67 19.38 19.48 50.49 22.44

5.04 88.13 120.66 179.99 80.00

5.42 78.75 104.63 163.58 72.70

5.91 107.22 150.92 211.77 94.12

6.49 97.35 133.68 195.12 86.72

7.02 110.03 150.05 215.13 95.61

7.63 44.51 49.83 100.44 44.64

8.11 240.13 381.58 413.76 183.89

8.80 662.02 1290.10 968.76 430.56

9.32 202.35 301.79 356.74 158.55

9.74 319.76 524.22 523.89 232.84

10.24 81.69 99.15 166.04 73.80

11.99 904.65 1777.93 1247.89 554.62

12.22 453.19 764.40 697.22 309.88

12.74 410.41 677.21 641.36 285.05

13.25 507.43 871.80 766.04 340.46

13.95 717.65 1280.97 1019.36 453.05

14.40 194.24 260.32 339.27 150.78

14.87 57.83 59.80 122.47 54.43

15.37 56.23 57.39 119.48 53.10

15.72 112.60 132.74 214.08 95.15

16.22 184.98 223.00 320.64 142.51

16.58 86.86 89.00 169.77 75.46

16.92 83.21 84.30 163.70 72.75

17.28 78.43 78.31 155.70 69.20

17.67 41.28 35.96 90.78 40.35

18.00 46.15 41.13 99.68 44.30

18.30 172.05 202.09 301.17 133.85
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Sart River: stream power calculations part 3, 2 km averages of stream powers 

calculated using different width prediction methods 

 

 

Down 

stream 

distance 

(km)

Averages 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to 

downstream 

of KP

error 1 

standard 

deviation

Averages 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to upstream 

of KP

error 1 

standard 

deviation

Averages 

unit stream 

power using 

widths from 

Finnegan 

width scaling

error 1 

standard 

deviation

Averages 

unit stream 

power using 

widths from 

Whittaker 

width scaling

error 1 

standard 

deviation

0.44

0.90

0.96

1.26

1.62

2.12 135.90 61.09 68.42 61.09 65.82 33.64 109.32 64.41

2.56

2.97

3.29

3.68

4.06 128.66 18.44 57.18 8.19 58.97 9.82 79.17 14.88

4.43

4.67

5.04

5.42

5.91 185.11 48.38 82.27 21.50 93.54 27.89 134.87 47.01

6.49

7.02

7.63

8.11 231.11 65.82 102.72 29.25 123.01 41.54 178.78 71.07

8.80

9.32

9.74

10.24 503.86 171.34 223.94 76.15 316.45 125.02 553.82 260.32

11.99

12.22

12.74

13.25 1022.83 138.95 372.50 61.75 568.92 113.66 1022.83 254.82

13.95

14.40

14.87

15.37

15.72

16.22 355.88 169.14 158.17 75.18 220.59 125.34 335.70 125.34

16.58

16.92

17.28

17.67

18.00

18.30 163.47 37.69 72.65 16.75 84.67 23.50 88.47 23.50
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Sart River: Field Schmidt hammer readings 

 

 

 

 

Downstream 

distance 

(km)

Location

0.44 8

0.90 9

0.96 10

1.26 11

1.62 12 53 46 48 52 51 48 48 53 49 47 40 46 52 42 45 49 55 50 49 49

2.12 13 52 48 48 45 51 51 50 46 50 48 55 53 50 49 55 48 48 42 51 43

2.56 14 20 20 17 27 28 20 22 25 20 26 16 20 13 20 20 20 16 17 22 16

2.97 15

3.29 16 34 46 40 20 42 20 47 48 45 44 20 30 47 39 28 36 46 45 40 42

3.68 17 38 35 30 48 47 30 34 38 42 37 26 32 38 31 50 47 38 40 53 58

4.06 18 30 38 42 46 40 39 41 42 47 41 35 40 39 37 37 45 44 41 40 36

4.43 19

4.67 20 34 25 43 50 20 42 49 51 25 41 46 54 35 41 40 48 27 30 46 42

5.04 21 51 58 50 55 48 53 47 53 56 56 50 53 63 57 54 49 60 52 59 49

5.42 22

5.91 29 30 32 36 32 34 32 31 44 26 30 40 30 40 33 30 36 30 20 26 39

6.49 30 41 41 40 36 30 31 36 35 34 40 37 42 45 39 46 41 43 43 37 42

7.02 31 38 34 24 36 38 38 32 26 28 34 28 38 32 24 32 30 26 36 30 32

7.63 32 36 46 41 47 41 40 41 41 40 37 44 46 44 51 36 37 41 44 42 45

8.11 33 44 30 41 37 46 42 41 39 36 41 42 51 32 41 46 47 43 43 46 45

8.80 34 41 43 46 51 49 50 48 48 46 50 51 52 55 40 55 47 43 42 28 41

9.32 35

9.74 36 41 46 44 37 34 37 46 41 41 38 44 31 34 48 49 39 45 42 41 46

10.24 37

11.99 41

12.22 40

12.74 39 70 64 65 60 61 66 69 65 72 64 65 60 62 63 59 67 70 64 66 58

13.25 38 64 62 57 62 58 54 60 59 64 66 62 63 54 58 64 64 60 61 59 66

13.95 23 66 66 68 64 69 72 58 59 62 62 66 64 66 58 59 66 60 71 65 62

14.40 24 55 62 64 54 60 64 52 61 62 52 62 58 51 62 49 59 64 61 51 48

14.87 25 75 65 65 69 71 71 72 70 69 71 68 72 72 65 68 70 62 66 64 66

15.37 26 32 36 32 34 32 31 44 37 26 32 38 31 50 47 38 40 40 39 37 37

15.72 27 35 42 35 37 37 30 42 35 41 38 40 54 36 49 32 31 44 40 36 31

16.22 6 36 24 39 46 41 20 39 41 36 30 33 42 36 41 41 37 45 30 34 32

16.58 5

16.92 4

17.28 3

17.67 2

18.00 1

18.30 28

Schmidt hammer readings 
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Sart River: Selby Rock Mass Strength Index calculation 

 

 

Down 

stream 

distance 

(km)

Location 

#

Schmidt 

hammer 

average

Hardness 

selby 

index 

number

Weathering 

selby 

index 

number

Joint 

spacing 

selby 

index 

number

Joint 

width 

selby 

index 

number

Joint 

orientation 

selby 

index 

number

Ground 

water 

selby 

index 

number

continuity 

of joints 

selby 

index 

numbers

Lithology

Selby 

rock 

mass 

strength 

rating

0.44 8 20 5 7 8 5 18 6 5 sediments 54

0.90 9 20 5 7 8 5 18 6 5 sediments 54

0.96 10 20 5 5 8 4 18 6 5 mica schists 51

1.26 11 49 14 7 8 5 18 6 5 schist 63

1.62 12 49 14 7 8 5 18 6 5 mica schist 63

2.12 13 20 5 5 15 5 18 6 5 mica schist 59

2.56 14

2.97 15 38 10 5 8 4 18 6 5 schist 56

3.29 16 40 10 9 8 5 18 6 5  schist 61

3.68 17 40 14 7 8 5 9 6 5 schist 54

4.06 18

4.43 19 39 10 7 8 5 9 6 5 schist 50

4.67 20 54 18 9 8 5 9 6 5 schit 60

5.04 21 20 5 5 8 5 18 6 5 schist 52

5.42 22 33 5 7 8 4 18 6 5 schist 53

5.91 29 39 10 7 8 5 18 6 5 schist 59

6.49 30 32 5 7 8 5 18 6 5 schist 54

7.02 31 42 14 5 8 5 9 6 5 schist 52

7.63 32 42 14 7 8 5 18 6 5 schist 63

8.11 33 46 14 7 8 5 18 6 5 schist 63

8.80 34 schist

9.32 35 41 14 5 8 5 18 6 5 schist 61

9.74 36

10.24 37

11.99 41 gneiss

12.22 40 65 20 9 15 6 9 6 5 gneiss 70

12.74 39 61 20 9 21 6 9 6 5 gneiss 76

13.25 38 64 20 7 8 6 9 6 5 gneiss 61

13.95 23 58 18 7 15 5 9 6 5 gneiss 65

14.40 24 69 20 9 15 6 9 6 5 schist 70

14.87 25 37 10 7 15 6 9 6 5 schist 58

15.37 26 38 10 7 15 5 18 6 5 schist 66

15.72 27 36 10 7 8 4 9 6 5 sediments 49

16.22 6 20 5 5 8 5 18 6 5 sediments 52

16.58 5 20 5 5 8 5 18 6 5 sediments 52

16.92 4 20 5 5 8 5 18 6 5 sediments 52

17.28 3 20 5 5 8 5 18 6 5 sediments 52

17.67 2 20 5 5 8 5 18 6 5 sediments 52

18.00 1 20 5 5 8 5 18 6 5 sediments 52

18.30 28 20 5 5 8 5 18 6 5 sediments 52
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Bozdağ River: Field data  

 

 

Down 

stream 

distance 

(km)

Field 

location
Lat Long

elevation 

(m)

Upstream 

area 

(km2)

Bankfull 

channel 

width (m)

Bankfull 

depth 

(m)

Valley 

width 

(m)

Slope 

measured 

with range 

finder (°)

DEM 

y/x

%  

bedrock 

in 

channel

Sediment 

%  

coarse

Sediment 

%  med.

Sediment 

%  fine

1.04 1 38.327 28.069 1259 0.98 1 0.2 35.1 3.9 0.056 0 25 70 5

1.38 2 38.330 28.069 1245 1.52 3.1 1.2 22.1 2.3 0.046 0 20 50 30

1.66 3 38.332 28.069 1214 1.56 3.8 0.98 45.2 4.6 0.057 90 20 60 20

2.08 4 38.335 28.071 1178 2.48 6.3 0.53 160 2.2 0.021 0 85 55 10

2.95 5 38.342 28.074 1129 3.79 3.3 1.5 350 2 0.010 0 5 55 40

3.56 6 38.348 28.075 1120 7.27 3.6 1.3 650 0.9 0.013 0 15 70 15

3.64 7 38.357 28.075 1108 10.64 5.1 1.4 633 0.6 0.001 0 5 50 50

4.92 8 38.367 28.077 1100 10.63 7.2 1 460 0.3 0.008 0 5 50 45

6.16 9 38.372 28.079 1090 24.98 12 1.1 420 1.2 0.001 0 20 70 10

7.57 11 38.384 28.079 1073 30.28 18.4 0.7 23 2 0.006 0 25 50 25

8.19 12 38.390 28.078 1057 31.02 4.6 1.1 4.8 6.5 0.005 50 25 50 25

8.96 13 38.393 28.080 1037 34.06 9.2 0.9 19.3 3.2 0.035 10 40 40 20

9.33 27 38.393 28.079 1016 34.36 3.2 2.3 21 3.2 0.020 80 40 20 20

9.78 28 38.396 28.080 1000 35.67 5.6 0.9 16 2.8 0.056 60 40 40 20

9.94 10 38.383 28.079 998 27.68 6.9 1.25 11 2.1 0.020 0 40 20 40

10.09 29 38.399 28.081 996 35.87 5.8 1.4 18 2.6 0.032 0 30 40 50

10.46 30 38.399 28.081 969 36.53 4.8 1.9 17 4.6 0.044 60 50 30 20

10.91 31 38.406 28.083 936 37.46 4.1 1.6 20 5.2 0.017 50 30 40 30

11.57 32 38.411 28.087 875 37.89 6.2 0.3 16 2.4 0.049 0 30 40 30

12.56 33 38.417 28.091 686 39.6 18.7 0.6 32 2.5 0.039 100

13.58 26 38.426 28.095 510 51.27 3.9 1.8 19 8 0.072 80 80 20 0

14.19 25 38.437 28.063 403 52.12 3.6 1.4 31 10.7 0.030 0 90 10 0

14.76 24 38.434 28.100 361 57.16 3.5 1.5 22 4.1 0.011 20 70 25 5

15.13 23 38.437 28.101 343 57.51 3.5 1.8 74 3 0.029 60 80 20 0

15.41 22 38.488 28.104 330 27.68 4.3 1.8 85 5 0.025 20 50 40 10

15.96 20 38.440 28.108 297 57.98 7.5 1.2 56 8.2 0.017 10 10 20 70

16.48 21 38.444 28.111 269 64.11 6.7 0.9 86 4.7 0.010 0 20 50 30

17.21 19 38.440 28.106 226 64.96 5.8 1.5 25 10 0.023 0 20 70 10

18.01 18 38.448 28.115 204 67.68 10.5 0.5 160 1.3 0.012 0 35 35 10

18.51 17 38.446 28.114 180 68.35 9.4 1 29 0.5 0.014 0 30 60 10

19.07 16 38.459 28.114 166 69.35 8 1.7 25 0.4 0.007 0 35 35 5

19.92 15 38.463 28.111 150 70.5 7.7 1.3 107 0.2 0.006 0 15 85 0

20.44 14 38.469 28.107 134 70.75 18.1 0.55 181 0.5 0.014 0 5 90 5
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Bozdağ River: stream power calculations part 1 

 

 

 

0.8 0.23 0.85 1.7

Finnegan 

prefactor

whittaker 

prefactor
prefactor prefactor

Down 

stream 

distance 

(km)

Predicted 

width 

Finnegan 

(m)

Predicted 

width 

Whittaker 

(m)

Predicted 

width: 

hydraulic 

scaling 

fitted to 

downstrea

m of kp (m)

Predicted 

width: 

hydraulic 

scaling 

fitted to 

upstream 

of kp (m)

Velocity 

(m/s)

Cross-

sectional 

area

Discharge 

(m3/s)

Discharge

: Area 

(Q:A) 

ratio

Discharge 

scaled to 

drainage 

area 

(m3/s)

discharge 

scaled to 

regional 

Q:A ratio

Actual 

unit 

stream 

power 

(W/sqm)

Average 

actual 

stream 

power 

over ~2 

km

error 1 

standard 

deviation

1.04 1.37 0.81 0.84 1.68 0.09 0.1 0.01 108.66 0.31 0.21 115.67

1.38 1.68 1.04 1.05 2.10 5.32 1.86 9.90 0.15 0.47 0.33 48.08

1.66 1.63 0.96 1.06 2.12 3.12 1.862 5.82 0.27 0.49 0.34 49.55

2.08 2.36 1.79 1.34 2.68 0.74 1.6695 1.24 2.01 0.77 0.53 17.20 57.62 20.73

2.95 3.19 2.92 1.65 3.31 3.04 2.475 7.52 0.50 1.18 0.82 23.86

3.56 3.91 3.36 2.29 4.58 7.27 2.34 17.02 0.43 2.27 1.57 53.32

3.64 7.65 13.16 2.77 5.55 1.72 3.57 6.15 1.73 3.32 2.29 3.44 26.87 12.54

4.92 4.91 4.71 2.77 5.54 1.00 3.6 3.59 2.96 3.32 2.29 25.15

6.16 9.45 14.00 4.25 8.50 1.48 6.6 9.74 2.56 7.80 5.38 6.24

7.57 7.62 7.73 4.68 9.35 0.87 6.44 5.63 5.38 9.46 6.53 22.42

8.19 8.02 8.58 4.73 9.47 2.17 2.53 5.48 5.66 9.69 6.69 73.99 31.95 14.62

8.96 5.78 3.84 4.96 9.92 2.14 4.14 8.88 3.84 10.64 7.34 274.73

9.33 6.45 4.93 4.98 9.96 11.08 3.68 40.79 0.84 10.73 7.41 453.57

9.78 5.38 3.17 5.08 10.15 1.01 2.52 2.54 14.07 11.14 7.69 756.74

9.94 5.94 4.54 4.47 8.94 2.00 4.3125 8.65 3.20 8.65 5.97 169.46

10.09 5.98 4.05 5.09 10.18 5.88 4.06 23.88 1.50 11.20 7.73 423.63 415.62 111.33

10.46 5.67 3.55 5.14 10.27 10.86 4.56 49.53 0.74 11.41 7.87 714.39

10.91 6.90 5.52 5.20 10.40 8.65 3.28 28.36 1.32 11.70 8.07 321.62

11.57 5.64 3.44 5.23 10.46 0.44 0.93 0.41 93.25 11.83 8.17 638.85 558.29 104.21

12.56 5.99 3.87 5.35 10.70 1.66 5.61 9.32 4.25 12.37 8.53 175.40

13.58 5.89 3.27 6.09 12.17 15.08 3.51 52.92 0.97 16.01 11.05 2002.76

14.19 7.00 4.85 6.14 12.27 5.91 2.52 14.90 3.50 16.28 11.23 911.98 1030.05 459.69

14.76 8.80 7.84 6.43 12.85 5.51 2.625 14.47 3.95 17.85 12.32 372.90

15.13 7.33 5.13 6.45 12.89 7.76 3.15 24.43 2.35 17.96 12.39 991.55

15.41 5.68 4.09 4.47 8.94 8.82 3.87 34.13 0.81 8.65 5.97 346.08

15.96 8.09 6.41 6.47 12.94 3.71 4.5 16.71 3.47 18.11 12.50 282.59 498.28 165.51

16.48 9.40 8.64 6.81 13.61 2.18 3.015 6.59 9.73 20.02 13.82 193.79

17.21 8.03 5.96 6.85 13.70 4.15 4.35 18.03 3.60 20.29 14.00 532.24

18.01 9.20 7.99 6.99 13.99 0.61 2.625 1.60 42.37 21.14 14.59 163.37 296.47 102.38

18.51 8.93 7.43 7.03 14.05 1.76 4.7 8.26 8.28 21.35 14.73 219.39

19.07 10.27 10.18 7.08 14.16 4.41 6.8 29.96 2.31 21.66 14.95 129.24

19.92 10.73 11.20 7.14 14.27 3.29 5.005 16.49 4.28 22.02 15.19 111.56

20.44 9.10 7.62 7.15 14.30 0.25 4.9775 1.25 56.74 22.10 15.25 114.66 143.71 25.52

3.20
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Bozdağ River: stream power calculations part 2, stream powers calculated 

using different width prediction methods 

 

 

Down 

stream 

distance 

(km)

(Finnegan) 

predicted 

Unit stream 

power 

(W/m2)

(Whittaker) 

predicted 

Unit stream 

power 

(W/m2)

(Hydraulic 

scaling, 

upstream of 

KP) 

predicted 

Unit stream 

power 

(W/m2)

(Hydraulic 

scaling, 

downstream 

of KP) 

predicted 

Unit stream 

power 

(W/m2)

1.04 122.06 206.42 199.21 99.60

1.38 128.52 207.50 206.12 103.06

1.66 167.21 284.36 257.00 128.50

2.08 66.54 87.77 117.33 58.66

2.95 35.72 39.13 68.95 34.48

3.56 71.16 82.76 121.37 60.68

3.64 3.33 1.93 9.18 4.59

4.92 53.46 55.72 94.68 47.34

6.16 11.48 7.75 25.53 12.76

7.57 78.45 77.33 127.84 63.92

8.19 61.53 57.46 104.19 52.09

8.96 634.12 954.92 738.38 369.19

9.33 326.08 426.52 422.16 211.08

9.78 1142.40 1935.14 1209.74 604.87

9.94 285.18 373.02 378.90 189.45

10.09 595.31 878.72 699.46 349.73

10.46 875.97 1398.97 967.30 483.65

10.91 276.92 346.08 367.32 183.66

11.57 1018.49 1670.94 1097.08 548.54

12.56 793.48 1228.18 888.64 444.32

13.58 1923.21 3466.73 1859.82 929.91

14.19 679.25 981.83 775.34 387.67

14.76 215.00 241.14 294.32 147.16

15.13 686.03 981.05 780.23 390.11

15.41 379.97 527.90 482.24 241.12

15.96 379.74 479.08 474.56 237.28

16.48 200.15 217.85 276.47 138.24

17.21 556.78 750.05 653.01 326.51

18.01 270.31 311.18 355.49 177.75

18.51 334.67 402.44 425.29 212.65

19.07 145.94 147.14 211.68 105.84

19.92 115.97 111.17 174.43 87.22

20.44 330.64 394.80 420.68 210.34
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Bozdağ River: stream power calculations part 3, 2 km averages of stream 

powers calculated using different width prediction methods 

 

 

Down 

stream 

distance 

(km)

Average 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to 

downstream 

of KP

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to upstream 

of KP

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

Finnegan 

width scaling

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

Whittaker 

width scaling

error 1 

standard 

deviation

1.04

1.38

1.66

2.08 194.92 28.90 97.46 14.45 118.84 19.91 142.23 29.28

2.95

3.56

3.64 66.50 28.07 33.25 14.03 39.28 16.28 36.34 14.52

4.92

6.16

7.57

8.19 88.06 21.98 44.03 10.99 67.57 21.24 75.17 31.08

8.96

9.33

9.78

9.94

10.09 689.73 166.03 344.86 83.02 594.09 146.44 679.17 169.75

10.46

10.91

11.57 810.57 194.65 405.28 97.33 737.15 163.39 898.07 186.14

12.56

13.58

14.19 1174.60 298.06 587.30 149.03 1241.58 353.95 1785.02 570.59

14.76

15.13

15.41

15.96 507.84 100.64 253.92 50.32 500.30 90.40 650.83 109.45

16.48

17.21

18.01 428.33 99.28 214.16 49.64 448.46 141.35 619.54 260.93

18.51

19.07

19.92

20.44 308.02 66.82 154.01 33.41 202.00 49.03 144.79 39.66
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Bozdağ River: Field Schmidt hammer readings 

 

 

 

Down 

stream 

distance 

(km)

Location

1.04 1

1.38 2

1.66 3 34 41 60 42 42 38 65 52 33 39 47 40 36 60 36 48 39 63 46 47

2.08 4 32 34 33 33 39 38 28 30 32 27 32 30 27 34 31 32 33 31 29 32

2.95 5 54 60 49 59 59 56 62 57 59 46 61 48 59 54 66 53 54 61 55 55

3.56 6

3.64 7

4.92 8

6.16 9

7.57 11 56 56 58 63 54 58 54 58 54 64 63 65 50 50 44 54 64 64 63 57

8.19 12 30 41 40 42 32 40 37 40 43 36 26 38 36 22 46 42 47 39 34 35

8.96 13 41 37 37 33 41 38 35 34 38 36 32 30 39 38 37 39 32 36 39 37

9.33 27 33 34 48 40 53 48 48 50 52 51 46 48 50 52 49 50 52 51 46 54

9.78 28 40 38 46 42 41 39 39 41 42 46 38 38 42 43 45 42 43 45 41 43

9.94 10

10.09 29

10.46 30 41 42 48 49 36 36 37 40 42 39 39 45 40 37 42 41 37 42 45 32

10.91 31 41 48 37 37 34 50 43 49 42 40 43 48 42 37 47 45 46 46 51 43

11.57 32

12.56 33

13.58 26 61 56 52 48 60 54 50 60 55 57 53 49 48 57 53 61 49 48 61 64

14.19 25 46 48 48 51 48 52 48 50 50 49 46 50 52 43 46 49 49 50 47 51

14.76 24 48 56 48 49 52 44 59 51 49 47 52 46 51 50 53 46 50 43 49 49

15.13 23 52 43 48 50 43 48 44 50 41 46 44 48 52 52 49 51 50 47 43 50

15.41 22 56 57 48 48 50 52 54 43 50 42 48 49 56 54 43 48 47 43 47 51

15.96 20 32 34 28 28 44 28 30 28 23 40 24 46 24 24 32 52 56 30 28 28

16.48 21 42 45 46 40 38 42 52 56 48 52 52 48 49 41 47 51 50 42 38 59

17.21 19

18.01 18

18.51 17 44 55 30 34 47 38 44 46 47 39 58 60 41 44 56 50 59 59 56 54

19.07 16

19.92 15

20.44 14

Schmidt hammer readings 
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Bozdağ River: Selby Rock Mass Strength Index calculation 

 

 

 

 

Down 

stream 

distance 

(km)

Location 

#

Schmidt 

hammer 

average

Hardness 

selby 

index 

number

Weathering 

selby index 

number

Joint 

spacing 

selby 

index 

number

Joint 

width 

selby 

index 

number

Joint 

orientation 

selby 

index 

number

Ground 

water 

selby 

index 

number

continuity 

of joints 

selby 

index 

numbers

Lithology

Selby 

rock 

mass 

strength 

rating

1.04 1 20 5 5 8 6 14 6 6 sed 50

1.38 2 20 5 5 8 6 14 6 7 sed 51

1.66 3 45 14 7 21 6 9 6 5 gniess 68

2.08 4 32 5 7 15 4 18 6 5 gniess 60

2.95 5 56 18 9 21 5 18 6 5 gniess 82

3.56 6

3.64 7

4.92 8

6.16 9

7.57 11 57 18 9 21 5 18 6 5 gneiss 82

8.19 12 37 10 9 15 4 18 6 5 mica schist 67

8.96 13 36 10 9 15 5 18 6 5 mica schist 68

9.33 27 48 14 7 21 5 9 6 5 gniess 67

9.78 28 42 14 7 21 6 9 6 5 schist 68

9.94 10

10.09 29

10.46 30 41 14 7 8 5 18 6 5 schist 63

10.91 31 43 14 9 8 6 18 6 5 schist 66

11.57 32

12.56 33

13.58 26 55 18 9 15 6 9 6 5 gniess 68

14.19 25 49 14 9 15 6 9 6 5 gniess 64

14.76 24 50 14 7 21 5 9 6 5 gniess 67

15.13 23 48 14 7 21 6 9 6 5 gniess 68

15.41 22 49 14 7 21 5 9 6 5 gniess 67

15.96 20 33 5 7 21 4 9 6 5 gniess 57

16.48 21 47 14 9 15 5 9 6 5 gniess 63

17.21 19

18.01 18

18.51 17 48 14 7 15 5 18 6 5 gniess 70

19.07 16 20 5 5 8 5 18 6 6 sed 53

19.92 15 20 5 7 8 7 18 6 6 Breccia 57

20.44 14 20 5 5 15 7 18 6 6 sed 62
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Down 

stream 

distance 

(km)

Field 

location
Lat Long

elev 

(m)

Upstream 

area 

(km2)

Bankfull 

channel 

width (m)

Bank 

full 

depth 

(m)

Valley 

width 

(m)

Slope 

measured 

with range 

finder (°)

DEM 

y/x

%  

bedrock 

in 

channel

Sediment 

%  

coarse

Sediment 

%  med.

Sediment 

%  fine

0.1 18 E 38.6360 28.1819 1462 0.05 1.08 0.3 67 1.8 0.056 0 20 60 20

0.64 18 D 38.3686 28.1826 1453 2.05 2.8 0.4 62 1.3 0.014 0 10 50 40

1.36 18 C 38.3748 28.1844 1415 2.77 3.2 0.5 97 1.2 0.051 50 30 40 30

1.71 18 B 38.3773 28.1852 1395 3.01 1.8 0.4 58 0.8 0.021 0 20 60 20

2.68 18 A 38.3849 28.1904 1297 5.62 6.2 1.2 42 3.3 0.034 60 10 60 30

3.21 18 F 38.3885 28.1944 1211 7.52 6.5 0.7 57 4.2 0.030 40 30 40 30

4.07 18 G 38.3959 28.1973 1124 7.84 6.2 1.2 71 3.7 0.156 60 10 60 30

4.23 18_32 38.4069 28.2007 1027 9.843 3.9 1.2 52 4.2 0.018 80 20 60 20

4.63 18_31 38.4042 28.2018 636 10.286 3.6 1.2 16.4 3.7 0.130 20 10 60 30

4.9 18_30 38.4064 28.2021 886 10.365 4.6 1.4 13.9 6 0.154 10 60 30 10

5.14 18_29 38.4083 28.3202 826 10.435 3.2 1.7 12.6 4.9 0.100 80 10 80 10

5.46 18_28 38.4109 28.2014 755 12.694 3.2 1.8 10.5 3.2 0.124 50 40 50 10

5.75 18_27 38.4132 27.2031 701 12.404 2.8 2.2 11 2.7 0.110 90 60 40 0

6.094 18_25 38.4159 28.2039 631 14.46 3.5 1.2 12.9 5.6 0.301 90 80 10 10

6.1604 18_23 38.4166 28.2045 618 14.494 4.5 5 24 4 0.318 90 0 20 80

6.261 18_22 38.4177 28.2046 596 14.522 9.8 1.7 103 7 0.075 90 60 30 10

6.6219 18_02 38.4199 28.2058 568 15.48 7.3 1.4 22 3.1 0.375 10 10 40 40

6.7339 18_01 38.4206 28.2061 567 16.029 9.4 1.6 13.7 6.1 0.117 100 0 0 0

7.1187 18_03 38.4224 28.2080 515 16.265 9.8 1 14.7 2.7 0.079 100 0 0 0

7.6503 18_04 38.4265 28.2089 194 17.019 10.5 1.1 45 8.5 0.050 100 0 0 0

8.275 18_05 38.4313 28.2073 372 19.156 3.2 1.9 61 8.9 0.078 100 0 0 0

8.429 18_26 38.4327 28.3207 333 19.206 3 2.2 2.5 2.1 0.099 0 10 65 25

8.4994 18_06 38.4332 28.2070 325 19.289 6.5 1.3 33 4.3 0.035 60 60 30 10

9.2337 18_07 38.4389 28.2048 277 21.869 6.9 0.8 60 1.3 0.061 0 20 50 30

9.625 18_08 38.4417 28.2022 253 22.442 3.2 1 90 2.2 0.028 0 40 50 10

10.119 18_09 38.4447 28.1997 239 23.394 2.7 1 55 1.5 0.027 0 10 60 30

10.645 18_21 38.4635 28.2001 211 24.568 3 0.4 78 0.8 0.017 0 30 40 30

11.238 18_20 38.4525 28.1998 192 24.834 11.7 0.7 64 1.5 0.015 0 20 50 30

11.832 18_11 38.4568 28.1996 173 26.311 7.4 0.8 271 0.7 0.007 0 30 50 20

12.674 18_10 38.4484 28.2067 152 26.463 9.6 0.7 150 0.8 0.008 0 45 35 20

14.088 18_12 38.4719 28.1996 177 27.223 18.9 0.5 1000 0.6 0.016 0 0 40 60

Kabazlı River: field data 
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Kabazlı River: stream power calculations part 1 

 

1.17 0.45 1.1 1.75

Finnegan 

prefactor

whittaker 

prefactor
prefactor prefactor

Down 

stream 

distance 

(km)

Predicted 

width 

Finnegan 

(m)

Predicted 

width 

Whittaker 

(m)

Predicted 

width: 

hydraulic 

scaling 

fitted to 

downstrea

m of kp 

(m)

Predicted 

width: 

hydraulic 

scaling 

fitted to 

upstream 

of kp (m)

Velocity 

(m/s)

Cross-

sectional 

area

Discharge 

(m3/s)

Discharge

: Area 

(Q:A) ratio

Discharge 

scaled to 

drainage 

area 

(m3/s)

discharge 

scaled to 

regional 

Q:A ratio

Actual 

unit 

stream 

power 

(W/sqm)

Average 

actual 

stream 

power 

over ~2 

km

error 1 

standard 

deviation

0.10 0.65 0.51 0.25 0.39 0.18 0.16 0.03 1.74 0.04 0.01 5.43

0.64 3.46 3.88 1.57 2.51 0.27 0.56 0.15 13.67 1.75 0.44 21.48

1.36 3.03 2.45 1.83 2.91 0.40 0.80 0.32 8.61 2.37 0.60 94.02

1.71 3.72 3.77 1.91 3.04 0.21 0.36 0.08 39.80 2.57 0.65 72.82 48.44 20.91

2.68 4.29 3.84 2.61 4.15 3.84 3.72 14.29 0.39 4.80 1.21 65.02

3.21 4.90 4.52 3.02 4.80 1.48 2.28 3.36 2.24 6.43 1.62 73.87

4.07 3.64 2.23 3.08 4.90 4.07 3.72 15.14 0.52 6.70 1.69 417.30 185.40 100.44

4.23 6.02 6.36 3.45 5.49 4.34 2.34 10.15 0.97 8.41 2.12 93.28

4.63 4.18 2.68 3.53 5.61 4.07 2.16 8.79 1.17 8.79 2.22 782.27

4.90 4.06 2.49 3.54 5.63 7.06 3.22 22.73 0.46 8.86 2.23 733.69

5.14 4.42 3.02 3.55 5.65 9.40 2.72 25.57 0.41 8.92 2.25 688.73

5.46 4.57 2.96 3.92 6.24 8.51 2.88 24.52 0.52 10.85 2.74 1040.07

5.75 4.63 3.09 3.87 6.16 11.68 3.08 35.97 0.34 10.60 2.67 1033.56

6.09 4.06 2.11 4.18 6.65 5.01 2.10 10.52 1.37 12.35 3.12 2628.27 999.98 392.18

6.16 4.02 2.06 4.19 6.66 73.45 11.25 826.36 0.02 12.38 3.12 2163.89

6.26 5.29 3.89 4.19 6.67 11.25 8.33 93.73 0.15 12.41 3.13 234.15

6.62 3.99 1.96 4.33 6.89 5.07 5.11 25.90 0.60 13.23 3.34 1679.53

6.73 5.05 3.32 4.40 7.01 9.30 7.52 69.93 0.23 13.70 3.45 421.18

7.12 5.47 3.97 4.44 7.06 2.41 4.90 11.82 1.38 13.90 3.51 276.95

7.65 6.08 4.95 4.54 7.22 5.20 5.78 30.02 0.57 14.54 3.67 169.88 824.26 433.85

8.28 5.20 3.25 4.81 7.66 15.87 3.04 48.25 0.40 16.37 4.13 1050.88

8.43 5.03 3.01 4.82 7.67 10.30 3.30 33.98 0.57 16.41 4.14 1344.46 1197.67 103.80

8.50 6.80 6.03 4.83 7.69 5.15 4.23 21.75 0.89 16.48 4.16 221.92

9.23 6.42 4.96 5.14 8.18 1.07 2.76 2.96 7.40 18.69 4.71 410.57

9.63 7.51 7.04 5.21 8.29 2.18 1.60 3.48 6.44 19.17 4.84 419.78

10.12 7.72 7.35 5.32 8.46 1.80 1.35 2.43 9.64 19.99 5.04 487.07 384.84 440.72

10.65 8.58 9.16 5.45 8.67 0.21 0.60 0.13 194.91 20.99 5.29 291.68

11.24 8.79 9.64 5.48 8.72 0.88 4.10 3.61 6.88 21.22 5.35 67.92

11.83 10.37 13.73 5.64 8.98 0.79 2.96 2.33 11.31 22.48 5.67 53.51 137.70 66.77

12.67 10.05 12.74 5.66 9.00 0.64 3.36 2.16 12.24 22.61 5.70 49.41 115.63 58.82

14.09 8.96 9.62 5.74 9.13 0.28 4.73 1.34 20.27 23.26 5.87 50.15 49.78 0.26

1.17
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Kabazlı River: stream power calculations part 2, stream powers calculated 

using different width prediction methods 

 

 

 

Down 

stream 

distance 

(km)

(Finnegan) 

predicted Unit 

stream power 

(W/m2)

(Whittaker) 

predicted Unit 

stream power 

(W/m2)

(Hydraulic 

scaling, 

upstream of 

KP) predicted 

Unit stream 

power (W/m2)

(Hydraulic 

scaling, 

downstream 

of KP) 

predicted 

Unit stream 

power 

(W/m2)

0.1 35.83 45.23 94.56 59.44

0.64 68.83 61.43 151.37 95.15

1.36 393.89 487.70 651.55 409.54

1.71 139.76 137.70 272.30 171.16

2.68 372.76 416.06 612.87 385.23

3.21 388.80 421.52 631.08 396.68

4.07 2817.29 4605.31 3330.28 2093.32

4.23 239.70 226.67 417.93 262.70

4.63 2669.44 4164.56 3164.68 1989.23

4.9 3296.63 5370.83 3778.13 2374.83

5.14 1977.76 2891.66 2458.94 1545.62

5.46 2888.59 4457.96 3366.71 2116.22

5.75 2478.31 3714.80 2961.48 1861.50

6.094 8992.06 17320.00 8718.63 5480.28

6.1604 9609.10 18762.65 9218.25 5794.33

6.261 1718.69 2337.04 2170.16 1364.10

6.6219 12174.87 24771.11 11231.02 7059.50

6.7339 3109.17 4727.29 3563.96 2240.20

7.1187 1967.47 2712.04 2425.46 1524.57

7.6503 1163.48 1427.76 1558.33 979.52

8.275 4406.27 7043.20 4759.45 2991.65

8.429 5445.71 9097.66 5686.29 3574.24

8.4994 841.45 949.03 1183.74 744.07

9.2337 1748.91 2262.91 2183.32 1372.37

9.625 709.13 756.48 1021.96 642.38

10.119 675.26 709.14 979.93 615.96

10.645 404.39 378.89 636.26 399.93

11.238 358.41 326.94 574.75 361.27

11.832 151.38 114.36 278.23 174.89

12.674 187.04 147.60 332.32 208.89

14.088 419.43 390.75 654.67 411.50
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Kabazlı River: stream power calculations part 3, 2 km averages of stream 

powers calculated using different width prediction methods 

 

 

 

Down 

stream 

distance 

(km)

Average 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to 

downstream 

of KP

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to upstream 

of KP

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

Finnegan 

width scaling

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

Whittaker 

width scaling

error 1 

standard 

deviation

0.10

0.64

1.36

1.71 197.92 38.58 124.41 24.25 100.84 25.74 109.38 32.18

2.68

3.21

4.07 1317.24 125.91 827.98 79.14 914.42 133.91 1212.08 310.78

4.23

4.63

4.90

5.14

5.46

5.75

6.09 1947.87 291.55 1224.37 183.26 1652.39 352.30 1823.71 578.74

6.16

6.26

6.62

6.73

7.12

7.65 2768.01 639.60 1739.89 402.03 2368.53 423.17 3629.42 512.81

8.28

8.43

8.50

9.23

9.63

10.12 2018.56 839.27 1268.81 527.54 1676.85 800.24 2375.56 1339.37

10.65

11.24

11.83 665.74 142.39 418.47 89.51 404.61 94.90 358.28 94.24

12.67

14.09 481.36 46.27 302.57 29.08 287.11 14.59 245.56 1.91
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Kabazlı River: Field Schmidt hammer readings 

 

 

 

 

 

 

Down 

stream 

distance 

(km)

Location

0.10 18 E

0.64 18 D

1.36 18 C

1.71 18 B

2.68 18 A 42 56 52 50 50 51 56 47 51 48 56 55 57 61 49 49 60 62 56 52

3.21 18 F 56 41 47 57 64 57 51 48 62 57 59 68 55 57 52 47 57 64 57 60

4.07 18 G 54 62 57 57 64 61 52 56 61 65 50 52 49 51 60 51 47 49 58 55

4.23 18_32 61 52 49 51 56 56 42 51 61 46 47 50 53 49 49 51 56 49 51 60

4.63 18_31 48 52 49 56 48 49 56 49 56 48 52 51 48 54 55 60 57 50 56 48

4.90 18_30 48 47 52 49 56 61 49 49 52 47 53 56 58 41 49 45 45 51 46 51

5.14 18_29 52 43 51 56 56 58 57 56 49 48 53 56 54 56 61 49 60 60 57 54

5.46 18_28 48 56 61 58 47 52 53 44 56 51 52 61 50 59 58 60 51 51 56 52

5.75 18_27 58 58 55 61 65 60 60 65 60 60 62 62 60 66 58 62 65 62 60 66

6.09 18_25 51 56 56 42 51 65 51 60 45 57 58 51 56 56 63 61 55 54 53 59

6.16 18_23 61 50 52 40 46 55 46 44 57 59 46 41 50 46 47 38 54 55 55 51

6.26 18_22 57 61 61 68 59 67 64 64 60 68 66 57 61 59 60 62 61 57 64 59

6.62 18_02 36 26 36 48 45 49 48 32 33 39 44 34 28 47 44 35 50 55 51 46

6.73 18_01 50 55 56 55 51 54 48 61 54 53 61 56 52 60 55 63 53 63 61 64

7.12 18_03 31 50 48 58 47 43 42 45 45 46 46 56 46 39 42 29 52 49 53 48

7.65 18_04

8.28 18_05 42 43 48 48 32 30 33 47 46 48 48 35 48 35 30 46 49 54 30 40

8.43 18_26

8.50 18_06

9.23 18_07 22 24 19 19 17 22 15 19 21 24 17 19 20 25 21 18 15 17 20 19

9.63 18_08 25 29 25 29 26 35 31 29 32 33 30 34 33 27 30 33 30 26 27 33

10.12 18_09

10.65 18_21      

11.24 18_20

11.83 18_11

12.67 18_10

14.09 18_12

Schmidt hammer readings 
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Kabazlı River: Selby Rock Mass Strength Index calculation 

 

 

 

 

 

 

Down 

stream 

distance 

(km)

Location 

#

Schmidt 

hammer 

average

Hardness 

selby index 

number

Weathering 

selby index 

number

Joint 

spacing 

selby index 

number

Joint width 

selby index 

number

Joint 

orientation 

selby index 

number

Ground 

water selby 

index 

number

continuity of 

joints selby 

index 

numbers

Lithology

Selby rock 

mass 

strength 

rating

0.10 18 E 20 5 5 8 5 18 6 5 sediments 52

0.64 18 D 20 5 5 8 5 18 6 6 sediments 53

1.36 18 C 20 5 5 8 5 18 6 5 sediments 52

1.71 18 B 20 5 5 8 4 20 6 5 sediments 53

2.68 18 A 53 18 7 15 5 18 6 6 gneiss 75

3.21 18 F 56 18 7 8 5 18 6 6 gneiss 68

4.07 18 G 56 18 9 15 6 9 6 5 gneiss 68

4.23 18_32 52 18 9 8 6 18 6 5 gneiss 70

4.63 18_31 52 18 9 15 6 14 6 5 gneiss 73

4.90 18_30 50 18 7 15 6 14 6 6 gneiss 72

5.14 18_29 54 18 9 21 6 18 6 5 gneiss 83

5.46 18_28 54 18 9 15 5 14 6 5 gneiss 72

5.75 18_27 61 20 9 8 6 18 6 6 gneiss 73

6.09 18_25 55 14 9 21 6 14 6 5 gneiss 75

6.16 18_23 50 14 9 4 6 18 6 5 gneiss 62

6.26 18_22 62 20 9 4 6 18 6 5 gneiss 68

6.62 18_02 41 14 7 4 5 14 6 5 schist 55

6.73 18_01 56 18 9 8 5 14 6 5 schist 65

7.12 18_03 46 14 7 8 5 14 6 5 schist 59

7.65 18_04 schist

8.28 18_05 42 14 9 8 5 18 6 5 schist 65

8.43 18_26 20 5 5 8 6 9 6 5 sediments 44

8.50 18_06 schist

9.23 18_07 20 5 5 8 5 9 6 5 sediments 43

9.63 18_08 30 5 5 8 5 9 6 5 sediments 43

10.12 18_09 20 5 5 8 4 9 6 6 conglomerate 43

10.65 18_21 sediments

11.24 18_20 sediments

11.83 18_11 20 5 5 8 5 9 6 6 sediments 44

12.67 18_10 20 5 5 8 4 14 6 5  conglomerate 47

14.09 18_12 20 5 5 8 5 14 6 6 sediments 49
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Yeniköy River: Field data 

 

 

 

 

 

 

 

 

 

 

Down 

stream 

distance 

(km)

Field 

location
Lat Long

elevation 

(m)

Upstream 

area 

(km2)

Bankfull 

channel 

width 

(m)

Bankfull 

depth 

(m)

Valley 

width 

(m)

Slope 

measured 

with range 

finder (°)

DEM 

y/x

%  

bedrock 

in 

channel

Sediment 

%  

coarse

Sediment 

%  med.

Sediment 

%  fine

0 12_14 38.345 28.350 892 0.01 1 0.2 21 11.7 0.011

0.28 12_15 38.348 28.351 839 0.21 1.2 0.2 14 9.7 0.050 vegetated

0.52 12_16 38.349 28.352 785 0.39 1.3 0.4 15 12.2 0.083

0.81 12_17 38.352 28.352 744 0.60 1.5 0.4 17 9.7 0.070

1.112 12_01 38.355 28.353 660 0.75 2 0.5 14 10.2 0.085 0 40 40 20

1.489 12_02 38.357 28.355 613 1.24 3.2 1.2 15.2 11 0.086 0 60 20 20

1.78 12_03 38.359 28.356 568 1.89 7 1.2 33 6.7 0.077 10 60 20 20

2.13 12_04 38.362 28.356 479 2.07 3.7 0.6 75 4.9 0.070 70 20 60 20

2.59 12_05 38.366 28.358 431 2.76 2.1 0.7 250 5.5 0.036 100 0 0 0

3.337 12_06 38.372 28.360 374 4.11 1.2 0.7 204 6.8 0.041 0 40 10 50

3.92 12_07 38.376 28.362 348 7.12 6.5 0.75 197 2.5 0.008 10 60 20 20

5.195 12_09 38.387 28.361 292 11.14 14 0.4 317 0.8 0.032 0 10 30 60

5.51 12_08 38.381 28.361 301 9.76 12.3 0.6 230 1.7 0.072 0 10 10 80

5.719 12_10 38.390 28.363 272 12.18 13.2 0.5 310 0.6 0.015 0 20 30 50

6.33 12_11 38.396 28.136 254 13.54 14 0.5 352 0.6 0.012 0 20 5 75

6.847 12_12 38.400 28.365 239 14.08 12.6 0.6 315 0.7 0.009 0 20 10 70

7.841 12_13 38.406 28.368 211 14.54 12.7 0.5 347 0.6 0.032 0 30 10 60
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Yeniköy River: stream power calculations part 1 

 

 

 

 

 

 

2 0.7 3.7 1.95

Finnegan 

prefactor

whittaker 

prefactor
prefactor prefactor

Down 

stream 

distance 

(km)

Predicted 

width 

Finnegan 

(m)

Predicted 

width 

Whittaker 

(m)

Predicted 

width: 

hydraulic 

scaling 

fitted to 

downstrea

m of kp (m)

Predicted 

width: 

hydraulic 

scaling 

fitted to 

upstream 

of kp (m)

Velocity 

(m/s)

Cross-

sectional 

area

Discharge 

(m3/s)

Discharge: 

Area 

(Q:A) ratio

Discharge 

scaled to 

drainage 

area 

(m3/s)

discharge 

scaled to 

regional 

Q:A ratio

Actual 

unit 

stream 

power 

(W/sqm)

Average 

actual 

stream 

power 

over ~2 

km

error 1 

standard 

deviation

0.00 0.36 0.19 0.26 0.14 0.20 0.1 0.02 0.25 0.00 0.00 0.11

0.28 1.96 1.45 1.70 0.90 0.18 0.12 0.02 9.61 0.08 0.05 18.66

0.52 2.25 1.47 2.32 1.22 0.83 0.26 0.21 1.82 0.14 0.08 52.71

0.81 2.74 1.87 2.88 1.52 0.74 0.3 0.22 2.74 0.22 0.13 59.14

1.11 2.87 1.86 3.21 1.69 1.18 0.5 0.59 1.27 0.27 0.16 67.32

1.49 3.46 2.24 4.12 2.17 7.05 1.92 13.54 0.09 0.45 0.27 70.37

1.78 4.14 2.75 5.09 2.68 5.48 4.2 23.03 0.08 0.69 0.41 43.99 44.61 13.09

2.13 4.37 2.98 5.32 2.80 1.17 1.11 1.30 1.59 0.75 0.45 82.08

2.59 5.53 4.44 6.15 3.24 1.69 0.735 1.24 2.22 1.01 0.59 100.33

3.34 6.27 4.87 7.50 3.95 1.88 0.42 0.79 5.20 1.50 0.89 297.65

3.92 10.59 12.46 9.87 5.20 1.31 2.4375 3.18 2.24 2.60 1.53 18.14 124.55 60.33

5.20 9.63 7.98 12.35 6.51 0.21 2.8 0.59 18.94 4.07 2.40 53.35

5.51 7.84 5.30 11.56 6.09 0.69 3.69 2.54 3.84 3.56 2.10 120.31

5.72 11.52 11.58 12.91 6.80 0.28 3.3 0.94 12.98 4.44 2.62 28.69 67.45 23.70

6.33 12.55 13.39 13.61 7.18 0.28 3.5 0.99 13.61 4.94 2.92 23.71

6.85 13.36 15.16 13.88 7.32 0.44 3.78 1.67 8.43 5.14 3.03 21.37

7.84 10.63 8.80 14.11 7.44 0.28 3.175 0.90 16.11 5.31 3.13 77.50 40.86 15.88

2.74



 
 
 
 

354 
 

Yeniköy River: stream power calculations part 2, stream powers calculated 

using different width prediction methods 

 

 

 

 

 

 

 

 

 

 

 

Down 

stream 

distance 

(km)

(Finnegan) 

predicted 

Unit stream 

power 

(W/m2)

(Whittaker) 

predicted 

Unit stream 

power 

(W/m2)

(Hydraulic 

scaling, 

upstream of 

KP) 

predicted 

Unit stream 

power 

(W/m2)

(Hydraulic 

scaling, 

downstream 

of KP) 

predicted 

Unit stream 

power 

(W/m2)

0.00 0.53 1.03 0.73 1.39

0.28 19.35 26.14 22.26 42.24

0.52 51.59 79.07 50.10 95.07

0.81 54.83 80.45 52.26 99.15

1.11 79.57 122.71 71.13 134.96

1.49 110.21 170.48 92.54 175.59

1.78 125.85 189.50 102.55 194.58

2.13 117.63 172.61 96.71 183.50

2.59 64.57 80.44 58.06 110.17

3.34 96.46 124.14 80.68 153.08

3.92 18.85 16.03 20.23 38.39

5.20 131.41 158.48 102.45 194.39

5.51 319.64 472.69 216.83 411.42

5.72 55.68 55.42 49.70 94.30

6.33 44.78 42.00 41.29 78.35

6.85 34.15 30.10 32.85 62.34

7.84 156.78 189.54 118.17 224.22
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Yeniköy River: stream power calculations part 3, 2 km averages of stream 

powers calculated using different width prediction methods 

 

 

 

 

 

 

 

 

 

Down 

stream 

distance 

(km)

Average 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to 

downstream 

of KP

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

hydraulic 

scaling fitted 

to upstream 

of KP

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

Finnegan 

width scaling

error 1 

standard 

deviation

Average 

unit stream 

power using 

widths from 

Whittaker 

width scaling

error 1 

standard 

deviation

0.00

0.28

0.52

0.81

1.11

1.49

1.78 55.94 18.23 106.14 34.58 63.13 22.78 95.63 35.02

2.13

2.59

3.34

3.92 63.92 16.58 121.28 31.46 74.38 21.48 98.30 33.26

5.20

5.51

5.72 122.99 42.72 233.37 81.06 168.91 12.43 228.87 108.68

6.33

6.85

7.84 64.11 23.51 121.64 44.60 78.57 33.97 87.21 44.41
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Yeniköy River: Field Schmidt hammer readings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Down 

stream 

distance 

(km)

Location

0.00 12_14 60 49 55 51 60 44 56 50 43 53 48 61 52 51 54 46 62 54 49 57

0.28 12_15 47 56 48 44 46 51 55 51 51 60 55 62 60 53 51 52 54 51 59 57

0.52 12_16 56 50 42 53 60 61 50 42 60 48 53 52 60 52 52 55 62 56 59 55

0.81 12_17 40 43 34 41 53 51 41 62 44 39 61 48 54 46 38 50 47 50 46 42

1.11 12_01 47 60 61 54 60 61 58 55 57 61 61 60 54 53 59 60 51 64 55

1.49 12_02 30 46 44 44 38 33 49 30 38 39 30 36 39 41 48 41 34 35 40 36

1.78 12_03 30 45 45 42 41 38 33 36 43 61 41 40 39 34 41 35 56 40 52 41

2.13 12_04 64 58 56 50 60 62 56 52 60 60 55 62 60 56 56 61 64 60 58 55

2.59 12_05 55 50 45 44 46 56 50 42 52 52 55 50 42 54 48 48 47 56 48 50

3.34 12_06

3.92 12_07 34 40 42 43 42 43 41 42 42 40 37 38 40 37 41 39 42 40 42 38

5.20 12_09

5.51 12_08

5.72 12_10

6.33 12_11

6.85 12_12

7.84 12_13

Schmidt hammer readings 
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Yeniköy River: Selby Rock Mass Strength Index calculation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Down 

stream 

distance 

(km)

Location #

Schmidt 

hammer 

average

Hardness 

selby index 

number

Weathering 

selby index 

number

Joint 

spacing 

selby index 

number

Joint width 

selby index 

number

Joint 

orientation 

selby index 

number

Ground 

water selby 

index 

number

continuity of 

joints selby 

index 

numbers

Lithology

Selby rock 

mass 

strength 

rating

0.00 12_14 53 5 9 15 5 18 6 5 gniess 63

0.28 12_15 53 18 7 8 6 9 6 5 gneiss 59

0.52 12_16 54 18 7 15 6 9 6 5 gneiss 66

0.81 12_17 47 18 7 21 6 9 6 5 gneiss 72

1.11 12_01 57 5 7 21 6 9 6 5 gniess 59

1.49 12_02 39 10 7 15 6 9 6 5 gneiss 58

1.78 12_03 42 10 7 15 6 9 6 5 gneiss 58

2.13 12_04 58 18 9 15 6 18 6 5 granite 77

2.59 12_05 50 14 9 8 5 9 6 5 gneiss 56

3.34 12_06

3.92 12_07 40 14 5 8 6 9 6 6 granite 54

5.20 12_09 20 5 5 8 6 9 6 6 sed 45

5.51 12_08 20 5 5 8 6 9 6 6 sed 45

5.72 12_10 20 5 5 8 6 9 6 6 sed 45

6.33 12_11 20 5 9 8 5 9 6 6 sed 48

6.85 12_12 20 5 7 15 5 18 6 5 sed 61

7.84 12_13 20 5 7 8 6 9 6 5 sed 46
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Badınca River: field measurements  

 

 

 

 

 

 

 

 

 

Down 

stream 

distance 

(km)

Field 

location
Latitude Longitude

Upstream 

area 

(km2)

Bankfull 

channel 

width (m)

Bankfull 

depth (m)

Valley 

width (m)

Slope 

measured 

with range 

finder (°)

DEM 

y/x

%  

bedrock 

in 

channel

Sediment 

%  

coarse

Sediment 

%  med.

Sediment 

%  fine

0.9 E30 38.252 28.495 0.4 1.1 0.3 104 1.4 0.044 0 20 50 30

1.6 E18 38.257 28.503 1.568 1.2 0.4 94 1.2 0.062 0 10 50 40

1.94 E19 38.259 28.498 1.894 1.4 0.4 89 1.8 0.067 0 20 50 30

2.39 E20 38.261 28.501 2.105 2.4 0.5 74 1.1 0.065 10 20 70 10

2.87 E21 38.265 28.504 2.492 3 0.5 84 2.4 0.059 20 20 60 20

3.41 E22 38.269 28.504 2.859 3.6 0.7 57 2.3 0.044 40 30 50 20

3.98 E17 38.274 28.503 4.523 3.8 0.8 46 4.6 0.028 40 20 60 20

4.51 E7 38.278 28.502 7.548 4.1 0.6 26 6.7 0.046 20 40 40 20

4.79 E8 38.280 28.500 7.946 4.1 0.8 79 2.5 0.019 10 20 30 50

5.22 E9 38.284 28.500 8.374 4.5 0.5 125 1.9 0.069 40 10 60 30

5.54 E10 38.286 28.498 8.624 6.7 0.7 162 2.7 0.014 0 60 20 20

5.96 E11 32.289 28.500 15.706 6.5 1 182 3.1 0.097 0 40 30 30

6.28 E12 38.291 28.502 15.919 3.2 1.9 16 5.2 0.122 40 60 30 10

6.46 E13 38.291 28.503 15.996 4.9 0.4 108 3.1 0.079 0 15 60 25

6.7 E14 38.292 28.505 16.874 3.2 0.6 97 2.4 0.047 10 10 50 40

7.04 E15 38.293 28.508 17.237 3.6 0.7 62 3.1 0.062 0 10 70 20

7.33 E16 28.295 28.510 17.832 4.2 0.6 32 4.6 0.013 30 30 40 30

7.88 E26 38.298 28.514 18.952 3.6 0.9 45 4.1 0.018

8.21 E1 38.300 28.516 19.331 3.2 1 19 6 0.040 100

8.56 E2 38.303 28.517 19.851 7.2 0.4 28 2.6 0.031 100

9.01 E3 38.305 28.520 20.89 3.7 1.3 45 4.3 0.042 80 10 70 20

9.37 E4 38.307 28.522 21.189 5.3 0.8 57 3.9 0.017 100

9.72 E5 38.310 28.523 21.546 2.4 1.2 52 3.1 0.063 30 40 50 10

9.99 E6 38.311 28.525 21.739 3.8 0.6 61 4.2 0.047 20 60 30 10

10.33 E23 38.313 28.527 22.129 5 0.7 43 2.4 0.043 10 40 30 30

10.7 E24 38.315 28.353 21.651 3.1 0.5 72 3.1 0.006 0 20 50 30

11.51 E25 38.317 28.528 25.126 4.1 0.8 82 3.9 0.005 10 30 40 30

12.62 E28 38.320 28.548 26.382 4.6 1.4 32 1 0.015 0 10 50 40

13.02 E29 38.319 28.551 26.506 8 1 124 0.8 0.008 0 20 60 20

14.03 E27 38.321 28.5614 28.782 6.9 0.7 206 1.2 0.018 0 20 40 40
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Badınca River: stream power calculations part 1 

 

 

 

 

 

Finnegan 

prefactor

whittaker 

prefactor
prefactor prefactor

0.8 0.35 0.9 1.35

Down 

stream 

distance 

(km)

Predicted 

width 

Finnegan 

(m)

Predicted 

width 

Whittaker 

(m)

Predicted 

width: 

hydraulic 

scaling fitted 

to 

downstream 

of kp (m)

Predicted 

width: 

hydraulic 

scaling 

fitted to 

upstream 

of kp (m)

Velocity 

(m/s)

Cross-

sectional 

area

Discharge 

(m3/s)

Discharge: 

Area (Q:A) 

ratio

Discharge 

scaled to 

drainage 

area (m3/s)

discharge 

scaled to 

regional Q:A 

ratio

Actual unit 

stream 

power 

(W/sqm)

Average 

actual 

stream 

power 

over ~2 

km

error 1 

standard 

deviation

0.9 1.14 1.26 0.57 0.85 0.16 0.165 0.03 15.51 0.06 0.086 34.01

1.6 1.98 2.28 1.13 1.69 0.26 0.24 0.06 25.39 0.22 0.338 170.46

1.94 1.97 2.04 1.24 1.86 0.32 0.28 0.09 21.46 0.27 0.408 190.49

2.39 2.25 2.64 1.31 1.96 0.38 0.6 0.23 9.11 0.30 0.454 119.64 128.65 34.89

2.87 2.07 2.00 1.42 2.13 0.57 0.75 0.43 5.84 0.35 0.537 103.97

3.41 2.20 2.15 1.52 2.28 1.09 1.26 1.37 2.08 0.41 0.616 73.57

3.98 2.29 1.88 1.91 2.87 2.02 1.52 3.07 1.48 0.64 0.975 71.15

4.51 2.59 1.94 2.47 3.71 1.37 1.23 1.69 4.48 1.07 1.627 180.53 107.30 25.52

4.79 3.19 3.05 2.54 3.81 1.49 1.64 2.44 3.26 1.13 1.713 76.15

5.22 3.43 3.51 2.60 3.91 0.51 1.125 0.57 14.71 1.19 1.805 270.21

5.54 3.24 3.04 2.64 3.96 1.18 2.345 2.77 3.11 1.22 1.859 38.84

5.96 3.96 3.60 3.57 5.35 2.59 3.25 8.40 1.87 2.23 3.385 494.39

6.28 3.61 2.88 3.59 5.39 12.10 3.04 36.79 0.43 2.26 3.431 1284.17 432.75 254.64

6.46 3.99 3.62 3.60 5.40 0.41 0.98 0.41 39.45 2.27 3.447 545.84

6.7 4.28 4.14 3.70 5.55 0.82 0.96 0.79 21.46 2.39 3.637 524.10

7.04 4.11 3.72 3.74 5.60 1.27 1.26 1.60 10.80 2.45 3.715 627.69

7.33 3.86 3.17 3.80 5.70 1.13 1.26 1.43 12.47 2.53 3.843 114.13

7.88 4.04 3.41 3.92 5.88 2.41 1.62 3.90 4.86 2.69 4.084 202.16

8.21 3.78 2.91 3.96 5.94 3.60 1.6 5.76 3.35 2.74 4.166 510.36 420.71 104.64

8.56 4.48 4.25 4.01 6.01 0.38 1.44 0.55 36.39 2.82 4.278 181.16

9.01 4.15 3.47 4.11 6.17 5.15 2.405 12.38 1.69 2.96 4.502 496.86

9.37 4.25 3.64 4.14 6.21 1.86 2.12 3.94 5.38 3.01 4.567 144.75

9.72 4.47 4.05 4.18 6.27 3.72 1.44 5.36 4.02 3.06 4.644 1193.85

9.99 4.23 3.56 4.20 6.29 1.08 1.14 1.24 17.59 3.08 4.685 568.60 517.04 211.03

10.33 4.74 4.58 4.23 6.35 1.11 1.75 1.95 11.34 3.14 4.769 404.22

10.7 4.48 4.06 4.19 6.28 0.65 0.775 0.50 43.22 3.07 4.666 91.06

11.51 4.54 3.88 4.51 6.77 1.86 1.64 3.05 8.25 3.57 5.415 69.96 188.41 93.60

12.62 5.99 7.21 4.62 6.93 2.88 3.22 9.26 2.85 3.74 5.686 181.70

13.02 6.26 7.96 4.63 6.95 1.31 4 5.25 5.05 3.76 5.713 55.43

14.03 5.98 6.87 4.83 7.24 0.79 2.415 1.90 15.12 4.08 6.203 157.32 131.48 33.49

7.05
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Badınca River: stream power calculations part 2, stream powers calculated 

using different width prediction methods 

 

 

 

Down stream 

distance (km)

(Finnegan) 

predicted Unit 

stream power 

(W/m2)

(Whittaker) 

predicted Unit 

stream power 

(W/m2)

(Hydraulic 

scaling, 

upstream of KP) 

predicted Unit 

stream power 

(W/m2)

(Hydraulic 

scaling, 

downstream of 

KP) predicted 

Unit stream 

power (W/m2)

0.9 25.73 35.41 65.73 43.82

1.6 89.18 133.37 181.50 121.00

1.94 109.79 167.37 215.31 143.54

2.39 112.88 170.71 219.89 146.60

2.87 113.13 167.46 219.53 146.35

3.41 86.11 118.22 174.04 116.02

3.98 67.95 83.61 141.25 94.17

4.51 168.22 234.26 299.34 199.56

4.79 58.49 64.81 123.07 82.05

5.22 286.24 439.71 466.88 311.25

5.54 44.94 46.61 98.45 65.63

5.96 635.78 1064.09 900.97 600.65

6.28 1126.37 2122.15 1456.50 971.00

6.46 505.71 804.75 743.04 495.36

6.7 281.49 393.32 453.64 302.43

7.04 396.53 593.77 604.74 403.16

7.33 61.45 61.92 126.12 84.08

7.88 97.56 107.47 185.75 123.83

8.21 210.09 271.21 353.76 235.84

8.56 206.54 264.75 348.53 232.35

9.01 438.53 654.10 655.47 436.98

9.37 78.46 81.38 154.32 102.88

9.72 803.23 1355.06 1089.30 726.20

9.99 404.11 589.44 611.45 407.63

10.33 392.73 568.10 596.73 397.82

10.7 29.30 24.64 67.40 44.94

11.51 27.43 22.32 63.59 42.39

12.62 95.26 100.01 180.81 120.54

13.02 44.68 39.99 95.70 63.80

14.03 123.73 135.69 224.82 149.88
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Badınca River stream power calculations part 3, 2 km averages of stream 

powers calculated using different width prediction methods 

 

 

 

 

 

 

 

Down stream distance (km)

Averages unit 

stream power using 

widths from 

hydraulic scaling 

fitted to downstream 

of KP

error 1 

standard 

deviation

Averages unit 

stream power 

using widths from 

hydraulic scaling 

fitted to upstream of 

KP

error 1 

standard 

deviation

Averages unit 

stream power 

using widths 

from Finnegan 

width scaling

error 1 

standard 

deviation

Averages unit 

stream power 

using widths 

from Whittaker 

width scaling

error 1 

standard 

deviation

0.9

1.6

1.94

2.39 170.61 35.99 113.74 23.99 65.72 15.40 59.01 14.26

2.87

3.41

3.98

4.51 208.54 34.26 139.03 22.84 111.13 26.13 132.56 39.97

4.79

5.22

5.54

5.96

6.28 546.75 233.12 364.50 155.41 326.81 152.86 376.17 190.96

6.46

6.7

7.04

7.33

7.88

8.21 421.00 118.51 280.67 79.01 257.71 69.12 293.79 140.65

8.56

9.01

9.37

9.72

9.99 431.63 84.89 287.75 63.21 272.00 59.64 311.01 68.30

10.33

10.7

11.51 202.79 118.90 135.19 79.27 121.26 69.02 128.21 70.17

12.62

13.02

14.03 167.11 32.82 111.41 21.88 86.05 18.40 72.33 16.92
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Badınca River: Field Schmidt hammer readings 

 

 

  

 

 

 

 

 

Down 

stream 

distance 

(km)

Location

0.9 E30

1.6 E18

1.94 E19 40 47 39 45 47 36 34 52 42 40 46 42 39 42 47 45 40 43 49 32

2.39 E20 46 51 57 46 46 42 42 32 34 36 42 39 47 59 50 42 40 35 31 40

2.87 E21 38 35 42 36 37 29 36 42 30 36 42 38 30 35 34 32 32 24 36 32

3.41 E22 48 46 42 42 38 45 32 26 44 32 35 42 36 37 35 38 30 32 29 31

3.98 E17

4.51 E7 36 34 30 32 32 34 29 36 39 40 36 43 44 30 41 37 44 30 43 47

4.79 E8 50 60 64 64 40 52 60 50 66 60 54 58 42 42 58 56 60 48 52 56

5.22 E9 50 44 38 40 56 46 50 40 34 50 42 42 36 42 52 47 50 56 43 42

5.54 E10 50 52 40 54 46 30 52 46 46 42 42 56 55 52 43 54 56 42 56 48

5.96 E11 52 44 45 55 59 60 42 40 54 42 40 53 37 46 53 42 32 58 48 38

6.28 E12 50 47 53 55 46 55 51 40 46 51 57 50 56 46 49 48 52 41 50 58

6.46 E13 37 42 47 38 34 34 46 49 38 46 35 35 47 37 40 32 39 35 31 40

6.7 E14 34 42 40 40 39 34 33 29 34 36 41 40 45 32 37 40 37 29 36 38

7.04 E15

7.33 E16 46 45 39 47 36 34 51 46 40 47 39 54 52 59 57 46 44 40 50 47

7.88 E26

8.21 E1 28 32 41 45 32 26 44 45 37 30 32 41 43 31 37 29 36 42 49 46

8.56 E2 43 42 36 31 42 49 30 29 42 37 36 34 33 32 42 47 30 41 39 45

9.01 E3 56 42 30 46 64 62 51 54 46 47 53 48 62 60 53 52 47 59 51 51

9.37 E4 51 46 60 43 48 49 65 52 40 52 52 42 60 52 47 49 49 51 62 42

9.72 E5 53 46 64 60 56 56 58 62 52 44 50 48 48 51 46 60 49 53 56 59

9.99 E6 48 46 42 42 37 43 51 49 46 43 49 51 38 41 47 46 37 39 42 46

10.33 E23 50 32 40 54 46 30 32 46 46 42 38 34 37 35 29 30 37 34 30 38

10.7 E24 38 42 34 38 39 40 42 34 30 46 38 42 47 30 29 36 34 34 37 36

11.51 E25 34 46 28 34 42 40 22 36 46 42 29 36 42 30 36 29 36 42 30 32

12.62 E28

13.02 E29

14.03 E27 25 23 29 24 26 27 24 22 22 26 30 27 24 26 22 24 21 26 28 28

Schmidt hammer readings 
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Badınca River: Selby Rock Mass Strength Index calculation 

 

Down 

stream 

distance 

(km)

Location #

Schmidt 

hammer 

average

Hardness 

selby 

index 

number

Weathering 

selby index 

number

Joint 

spacing 

selby 

index 

number

Joint 

width 

selby 

index 

number

Joint 

orientatio

n selby 

index 

number

Ground 

water 

selby 

index 

number

continuity 

of joints 

selby 

index 

numbers

Lithology

Selby 

rock 

mass 

strength 

rating

0.9 E30

1.6 E18 20 5 5 8 6 9 6 5 gneiss 44

1.94 E19 42 14 7 15 5 18 6 5 gneiss 70

2.39 E20 43 14 7 15 6 18 6 5 gneiss 71

2.87 E21 35 10 9 8 5 18 6 6 schist 62

3.41 E22 37 10 9 8 5 14 6 6 schist 58

3.98 E17 5 5 8 6 9 6 5 gneiss 44

4.51 E7 37 10 5 8 6 18 6 5 schist 58

4.79 E8 55 18 9 21 6 14 6 6 quartzite 80

5.22 E9 45 14 7 8 6 14 6 5 gneiss 60

5.54 E10 48 14 5 15 5 14 6 6 gneiss 65

5.96 E11 47 14 7 8 5 18 6 5 gneiss 63

6.28 E12 50 18 7 8 4 14 6 5 gneiss 62

6.46 E13 39 10 5 8 5 18 6 5 travertine 57

6.7 E14 37 10 7 15 5 18 6 6 travertine 67

7.04 E15 travertine

7.33 E16 46 14 5 21 6 18 6 5 gneiss 75

7.88 E26 20 5 5 8 5 14 6 5 sediments 48

8.21 E1 37 10 7 8 5 18 6 5 schist 59

8.56 E2 38 10 7 8 5 18 6 5 schist 59

9.01 E3 52 18 9 8 5 18 6 5 granite 69

9.37 E4 51 18 7 15 6 18 6 5 granite 75

9.72 E5 54 18 9 8 6 20 6 5 gneiss 72

9.99 E6 44 14 7 8 5 20 6 5 schist 65

10.33 E23 38 10 7 8 6 14 6 6 travertine 57

10.7 E24 37 10 7 15 6 18 6 5 travertine 67

11.51 E25 36 10 5 15 6 14 6 5 travertine 61

12.62 E28 20 5 5 8 5 18 6 5 sediments 52

13.02 E29 20 5 5 8 5 18 6 5 sediments 52

14.03 E27 25 5 5 8 5 18 6 5 sediments 52
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Down 

stream 

distance 

(km)

% 

bedrock 

in the 

channel
0.4 0
0.9 0
1.0 0
1.3 90
1.6 10
2.1 80
2.6 0
3.0 0
3.3 50
3.7 5
4.1 0
4.4 20
4.7 20
5.0 25
5.4 5
5.9 100
6.5 40
7.0 30
7.6 0
8.1 60
8.8 20
9.3 0
9.7 0
10.2 70
12.0 0
12.2 100
12.7 100
13.3 90
14.0 100
14.4 70
14.9 0
15.4 0
15.7 0
16.2 0
16.6 0
16.9 0
17.3 0
17.7 0
18.0 0
18.3 0

Sart
Down 

stream 

distance 

(km)

% 

bedrock 

in the 

channel

1.0 0

1.4 0
1.7 90
2.1 0
3.0 0
3.6 0
3.6 0
4.9 0
6.2 0
7.6 0
8.2 50
9.0 10
9.3 80
9.8 60
9.9 0
10.1 0
10.5 60
10.9 50
11.6 0
12.6 100
13.6 80
14.2 0
14.8 20
15.1 60
15.4 20
16.0 10
16.5 0
17.2 0
18.0 0
18.5 0
19.1 0
19.9 0
20.4 0

Bozdağ

Down 

stream 

distance 

(km)

% bedrock 

in the 

channel

0.9 0
1.2 40
1.5 40
1.7 30
1.9 40
2.1 100
2.4 10
2.8 20
3.3 60
3.6 10
3.7 25
4.0 70
4.3 80
4.6 50
4.9 90
5.2 80
5.7 80
6.1 70
6.6 50
7.2 40
7.7 100
8.2 80
8.6 60
9.0 70
10.3 20
10.6 90
10.8 50
11.0 60
11.3 60
11.5 90
11.7 10
12.0 20
12.3 100
12.5 0
12.8 90
13.0 50
13.3 60
13.8 10
14.1 0
14.6 100
15.0 0
15.0 0
15.4 50
15.5 75

Akcipinar

Percentage bedrock in the channel field data 
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Down 

stream 

distance 

(km)

% 

bedrock 

in the 

channel

0.1 0
0.6 0
1.4 50
1.7 0
2.7 60
3.2 40
4.1 60
4.2 80
4.6 20
4.9 10
5.1 80
5.5 50
5.8 90
6.1 90
6.2 90
6.3 90
6.6 10
6.7 100
7.1 100
7.7 100
8.3 100
8.4 0
8.5 60
9.2 0
9.6 0
10.1 0
10.6 0
11.2 0
11.8 0
12.7 0
14.1 0

Kabazlı

Down 

stream 

distance 

(km)

% bedrock 

in the 

channel

0.0 0

0.3 0

0.5 0

0.8 0

1.1 0

1.5 0

1.8 10

2.1 70

2.6 100

3.3 0

3.9 10

5.2 0

5.5 0

5.7 0

6.3 0

6.8 0

7.8 0

Yeniköy

Down 

stream 

distance 

(km)

% 

bedrock 

in the 

channel

0.9 0

1.6 0

1.9 0

2.4 10

2.9 20

3.4 40

4.0 60

4.5 20

4.8 10

5.2 40

5.5 20

6.0 0

6.3 60

6.5 0

6.7 10

7.0 50

7.3 30

7.9 0

8.2 100

8.6 100

9.0 80

9.4 100

9.7 30

10.0 20

10.3 10

10.7 0

11.5 10

12.6 0

13.0 0

14.0 0

Badınca
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