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ABSTRACT

Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-

of-field and focusing errors associatedwith standard lens-based imagingmethods.However, for the technique to

reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for

focusing, segmentation, sizing, and classification of particles. These computational challenges are the subject of

this paper, in which the authors draw upon data collected using a variety of holographic systems developed at

Plymouth University, United Kingdom, from a significant range of particle types, sizes, and shapes. A new

method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and

sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size

distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes

on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-

segmentation of particles. A simple unsupervised particle classification system is developed and is capable of

successfully differentiating sand grains, bubbles, and diatoms from within the surfzone. Avoiding miscounting

bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations and is

especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the

greatest potential for further development in the computational aspects of particle holography is in the area of

unsupervised particle classification. The simple method proposed here provides a foundation upon which fur-

ther development could lead to reliable identification of more complex particle populations, such as those

containing phytoplankton, zooplankton, flocculated cohesive sediments, and oil droplets.

1. Introduction

Characterizing particles suspended in seawater has

become a critical component in understanding the or-

ganic carbon cycle, ocean acidification, oceanic circula-

tion, and future climate predictions. Possessing a method

to accurately and automatically characterize these parti-

cles has therefore become important for many areas of

marine science and monitoring. For example, suspended

particles serve as passive tracers that aid the un-

derstanding of turbulent mixing of plankton, heat, and

salinity. The measurement and understanding of sus-

pended sediment flux is crucial for the prediction of

coastal and estuarine change, the operation of ports and

harbors, and the safe passage of shipping. Suspended

particles also play a key role in controlling radiative

transfer (therefore, the interpretation of satellite ocean

color imagery) and primary productivity. Particles also

scatter sound—a principle that enables acoustic mea-

surements of flow velocities, suspended mineral sedi-

ments, and bathymetric mapping. Information on the

type (organic, inorganic, photosynthesizing, non-

photosynthesizing), size, shape, and concentration of

particles in seawater provides the necessary insight re-

quired to advance understanding of these fundamental

processes within the marine environment.
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Many techniques for measuringmarine particles exist,

yet currently only laser diffraction and imaging are in

routine use to provide in situ estimates of concentration and

size distribution. Techniques based on single-frequency

acoustic backscatter are currently limited to concentra-

tion only (Thorne and Hanes 2002). Multifrequency

acoustics can theoretically provide both concentration

and size distribution estimates (Thorne and Buckingham

2004); however, development in this area is hampered by

the sensitivity of these estimates to particle shape and

density (Moate and Thorne 2012). Concentration and size

estimates based on laser diffraction are also affected by

particle shape (Agrawal et al. 2008;Grahamet al. 2012) and

composition (Andrews et al. 2010). These technologies that

rely on acoustical and optical scattering are affected by

aeration in surface waters. In contrast, imaging systems

resolve individual particles, enabling simple, calibration-

free measurements of particle shape, size, and concentra-

tion. Imaging is relatively insensitive to small concentrations

of bubbles (unless bubbles adhere to the optical win-

dows). In addition, imaging is currently the only method

that permits relatively easy individual particle classifi-

cation. For example, images can be used to distinguish

mineral particles from phytoplankton or zooplankton.

Conventional (lens based) imaging of suspended parti-

cles suffers from depth-of-field, particle occlusion and fo-

cusing issues. However, digital in-line holography promises

to overcomemany of these limitations (Owen andZozulya

2000; Sheng et al. 2006; Sun et al. 2008; Graham and

Nimmo-Smith 2010). With the recent introduction of

commercially available submersible holography systems

[to date, the Laser In Situ Scattering and Transmissivity

Holographic System (LISST-Holo), by Sequoia Scientific

Inc. under license from Plymouth University, and the

Submersible Microscope system made by 4Deep], specifi-

cally designed to image marine particles, the use of digital

in-line holography as a viable in situ method for particle

measurements in marine environments is anticipated to

rise (Stemmann and Boss 2012). Because of the number of

steps required to retrieve particle information from holo-

grams and the number of images recorded, manual particle

extraction becomes infeasible for most datasets, creating

a pressing need for automated processing that is compa-

rable in accuracy to that available for other sizing tech-

niques, such as laser diffraction. In complex particle

populations, there is a need to distinguish between, and

classify, multiple particle types (Davies et al. 2014; Zhang

et al. 2014). Examples include distinguishing between zoo-

and phytoplankton, or mineral or organic particles and

bubbles. This paper details the computational consider-

ations required to automatically focus and segment in-

dividual particles from a raw hologram, and then

automatically size and classify these particles.

Following a brief introduction to in-line holography,

we outline an improved method for holographic re-

construction that combines previously published methods

with new advances in noise removal within the recon-

struction process. The improved holographic processing is

then used to formulate a simple and effective method for

classifying particles by type. Finally, we discuss the con-

siderations required for successful automated processing,

the limitations of the current techniques, and provide

suggestions for future developments.

2. Principles of in-line holography

A digital hologram (Fig. 1) records the pattern of in-

terference between two beams: 1) a source beam of col-

limated laser light and 2) the source beam that has been

diffracted by scattering objects (such as particles) in its

path. The pattern recorded by a charge-coupled device

(CCD) or a similar sensor contains information on the

phase and amplitude of the diffracted wave that can be

used to size and position the object that caused the scat-

tering. For the case of scattering being caused by particles

suspended in seawater, this numerical reconstruction

procedure is the subject of section 4a, producing in-focus

images of every particle in the sample volume, eliminat-

ing the problems associated with depth of field and fo-

cusing that occur when using standard imaging methods

(Graham and Nimmo-Smith 2010).

The raw hologram, I(x, y), is an intensity image re-

corded by a CCD containing constructive and de-

structive interference between the beam created from

scattering by particles (E0) within a sample volume and

the incident collimated laser light (Er). TermsE0 andEr

are complex functions that describe the amplitude and

phase of the respective light fields. In the terminology of

holography, the complex field, E0, is called the object

wave, and Er is the reference wave. Term E0 is the light

field composed of the sum of all diffracted waves by all

scatterers in the sample volume. The recorded intensity

is described by

I(x, y)5 jE0(x, y, z)e
(ikz) 1Ere

(ikz)j2 , (1)

where x, y is a 2D position within the raw image; z is the

distance to the CCD of the camera from the object; i is

the imaginary unit (which carries the phase of the re-

spective light fields); e is the base of the natural loga-

rithm; and wavenumber k5 2p/l, which is the number

of times the light has the same phase per unit space,

where l is the wavelength of incident light. This says that

the recorded intensity is the square of the absolute value

of the total field (E0 1Er). This is because a CCD re-

sponds only to light intensity; hence, the phase information
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of the complex (amplitude and phase) wave field is lost.

The above-mentioned equation also implies that the

recorded intensity is linearly proportional to the expo-

sure, which is proportional to the intensity. Once I(x, y)

is obtained, the light field E0 can be retrieved numeri-

cally using the principles of Fourier optics, as described

in section 4a.

Three holographic camera configurations are used in

this article to demonstrate the applicability of the nu-

merical reconstruction method to multiple in-line ho-

lographic systems (Fig. 2). Each configuration (the

specific mounting of the laser and CCD) is specifically

adapted to suit a particular sampling strategy or marine

environment. The system in Fig. 2a is capable of high-

precision sample volume adjustments, and the sample

volume can be narrowed to millimeter-scale widths for

use in high concentrations (Graham and Nimmo-Smith

2010; Graham et al. 2012). The system shown in Fig. 2b

also allows adjustable sample volume widths, but with

a minimum width of about 1 cm, and is designed to

minimize flow disruption around the sample volume

during profiling (Graham et al. 2012; Cross et al. 2013,

2014). Finally, the system of Fig. 2c allows for the ad-

dition of alternative instrumentation for detailed com-

parisons of instrument responses (Davies et al. 2011).

The laser beam is expanded before passing through the

collimating optics. The collimation produces a beam

that is most intense in the center, and the decay in laser

intensity with distance from the center can be described

by a two-dimensional Gaussian distribution. If the beam

is collimated to a diameter much larger than the CCD

size, and so that the peak of the Gaussian intensity dis-

tribution is centered within the frame, this substantially

reduces the change in intensity over the radial cross

section of the image. This is implemented for the sys-

tems shown in Figs. 2a and 2b. For the system shown in

Fig. 2c, however, the beam is collimated to a diameter

that enables all the light to fall within the area of the

CCD, so that the same cross section is also recorded by

the LISST-100 component of the system.

3. Data

We draw upon data covering a range of particle types,

shapes, and sizes, collected using a variety of holo-

graphic systems (in the laboratory and in situ). For

verification that the automated holographic re-

construction can accurately resolve particle size distri-

butions, sieved basalt spheres were recorded using the

system described by Davies et al. (2011) and illustrated

in Fig. 2c.

Field data were used for the automated classification

of particles, collected within the surfzone of an energetic

macrotidal sand beach (Praa Sands in southwest Corn-

wall, United Kingdom). The streamlined in-line system,

as shown in Fig. 2b, with an 11-mm pathlength, has

a very low profile that makes it suitable for deployment

close to the bed. The system provided holographic im-

ages of near-bed suspended particles and bubbles in situ

for the first time within the surfzone, during a total of 15

semidiurnal tidal cycles, at 5Hz for 1-min ‘‘bursts’’ every

30min during mid- to high tide (Conley et al. 2012). The

FIG. 1. Illustration of the holographic sample volume geometry and interference patterns.
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dataset is composed of thousands of holograms from 17

bursts, encompassing the full spectrum of observed flow

conditions in order to maximize the variation in relative

abundances of sands, bubbles, and diatoms.

Montages of randomly selected particles from three

1-min bursts of field data (Fig. 3) illustrate the often

surprising variability of suspended particle composition.

Instantaneous concentrations of sand particles, bubbles,

and phytoplankton were highly variable in time. Ob-

served phytoplankton populations were overwhelmingly

composed of diatom chains. Flocculated particles and

zooplankton were absent in this very high-energy envi-

ronment. A means by which particles can be classified by

type was developed in order to avoid errors in calculated

sand concentrations that would otherwise result from the

variability in relative proportions of particle types. In this

specific situation, it quickly becomes apparent that if all

imaged particles were classified as sand when deriving

concentrations, estimates of total suspended sand would

have significant errors. These errors would not be sys-

tematic because the relative abundance of nonsand par-

ticles would depend on flow conditions.

Each hologram, representing a 1.7-mm3 sample vol-

ume, was digitally reconstructed at 1-mm depth intervals.

Each particle in every reconstructed hologram was

viewed on screen and classified by eye by a trained

operative. The outlines of each particle were digitized

by a trained operative who also classified each particle

into either ‘‘sand,’’ ‘‘bubble,’’ or ‘‘organic.’’ Particles

in a total of 5100 images were measured and classified

in this way. A variety of metrics was generated from

the digitized particle outlines. We felt confident in our

ability to manually classify particles into these three

visually distinct groupings, for example (with refer-

ence to Fig. 3), bubbles often contained concentric

rings; sand grains were almost always convex and more

angular than bubbles; diatom chains are nearly always

long and thin, and often the individual cells were vis-

ible. Operator errors are somewhat inevitable con-

sidering factors such as partial reconstruction or

blurring of some particles, very small particles (reso-

lution issues), and the large number of particles mea-

sured (human fatigue). However, mindful of these

sources of error, which are hard to reliably quantify,

these manual measurements and classifications were

nevertheless treated as the standard against which an

automated classification technique could be developed

and evaluated.

FIG. 2. Schematic illustrations of optical configurations of the holographic systems used in this study, with (a) nose-to-nose,

(b) streamlined/profiling, and (c) combined systems. For each setup, a collimated laser beam passes through the sample volume and is

recorded by the CCD of the camera, positioned on the far side of the volume. Scattering of light from within the beam interferes with the

incident light of the initial beam, creating an interference pattern on the CCD camera.
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4. Methods

a. Holographic reconstruction and particle
characterization

The workflow for automatic reconstruction of ho-

lograms, and the identification and sizing of particles

therein, is detailed in this section. These holographic

reconstruction routines have been improved from that

of Graham and Nimmo-Smith (2010) and Owen and

Zozulya (2000), and are available via a user commu-

nity website (www.marinephysics.org/holoproc) and

have been incorporated into software shipped with the

LISST-Holo.

The first processing stage is to correct for spatial vari-

ability in the background intensity of the raw images,

which reduces noise and removes stationary objects

that may be present on the optical components. This is

achieved by subtracting the background image of the 2D

intensity distribution from each raw hologram, either from

clear water or an average of a number of images (Fig. 4).

The number of images used to calculate a background

from averaging is dependent on the variability and

FIG. 3. Montages of randomly selected and positioned particles within three 1-min bursts of field data collected in the surfzone 10 cm

above the bed. Such montages provide a visual snapshot of the population of particles present. (top left) Burst A is characterized by sand

particles and similar size bubbles, and is typical of the dataset as a whole. (top right) Burst B contains a relatively high concentration of

bubbles. (bottom) Burst C contains an unusually high concentration of diatoms.
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concentration of particles present in the images, typi-

cally of the order of 50 images or more. Averagingmust

be performed over a sufficiently large set of images so

that the result is indistinguishable from that of a clean-

water image (i.e., all movable objects are removed).

Moving or binned averages may also be necessary in

situations involving long time series where biofouling is

significant, or where the instrument alignment changes

slightly with water depth.

The background-corrected raw image is numerically

reconstructed following Owen and Zozulya (2000), to

produce an array of real-value images, focused at differ-

ent positions (z) through the sample volume. Each par-

ticle within the reconstructed image stack is then focused

and binarized, resulting in a single, concatenated binary

image of all in-focus particles in the sample volume. Each

particle in the binarized image is analyzed independently

to return its geometrical properties, such as equivalent

spherical diameter, perimeter, and major axis length

(Graham and Nimmo-Smith 2010).

Owen and Zozulya (2000) demonstrate that the real

image can be retrieved at any point within the sample by

numerically propagating light back through the interference

pattern, I(x, y), using the routine summarized here.

Term I(x, y) is transformed into the Fourier domain

( f1, f2):

Ê( f1, f2)5
1

(2p)2

ðð
dx dy I(x, y)e(if1x2if

2
y) . (2)

The part of the beam that is not diffracted (dc com-

ponent) is then zeroed, and Ê( f1, f2) is shifted so that the

dc component is in the center of the image. Term Ê is

then multiplied by a phase factor that allows propaga-

tion back to a distance from the CCD corresponding to

the location of the real image (z):

Ê
0
( f1, f2, z)5 Ê( f1, f2)e

f2i[(p/P
s
)jf

1
1f

2
j]2z/2kg , (3)

where Ps is the width of each CCD pixel.

The real-value image at distance z is obtained by ap-

plying the inverse Fourier transform of Ê
0
:

E(x, y, z)5

���� 12p
ðð

df1 df2 Ê
0( f1, f2, z)e

(if
1
x1if

2
y)

����2 . (4)

An improvement to the routine presented by Graham

and Nimmo-Smith (2010) and Owen and Zozulya (2000)

is an additional step to reduce noise created by the re-

construction, which hampers the success of the sub-

sequent stages of binarization and particle identification.

Areas between the particles within the reconstructed

planes shown in Fig. 5 contain light gray pixels, which is

an example of the type of noise that is problematic. To

combat this, the lowest intensities of E(x, y, z) are re-

moved using a predetermined threshold (usually less than

2% of the maximum intensity of E). Noise removal

substantially increases the accuracy of locating particles

in the subsequent stages because particle edges become

sharper. However, if the predetermined percentage for

noise removal is too high (i.e., much greater than 2%),

then the likelihood of large particle segmentation and

loss of small particles will increase. Typically, a higher

percentage can be applied in situations where the parti-

cles are more opaque, and subsequently stand out more

from the background image noise. Populations of highly

transparent particles, on the other hand, may become

segmented more easily if this percentage exceeds about

0.5%. The reconstructed particles shown in Fig. 3 are

much sharper than similar previously published images

(e.g., Fig. 11 of Graham et al. 2012); this increase in

quality results from the noise removal step.

Following Graham and Nimmo-Smith (2010), a bi-

narization is performed on the histogram of standard

deviations, s(x, y), through the stack of real images:

s(x, y)5

�
1

n2 1

�
�
z51

[E(x, y, z)2E(x, y)]2 , (5)

FIG. 4. Example of (a) a raw hologram containing particles, (b) background image, and (c) corrected image following background

removal.

1246 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32



where n is the number of real images that have been

reconstructed at z distances, and E is the mean of

E(x, y, z) through all z planes:

E(x, y)5
1

n
�
z51

E(x, y, z) . (6)

Particles are located using an automatic global

threshold based on the method of Otsu (1979), which

minimizes the variance of pixel intensities between the

foreground (particles) and background (water). A pre-

determined minimum threshold condition (usually

within the range 0.05–0.2) is specified to reduce poten-

tial bias from unusually bright particles within a holo-

gram. Increasing this minimum threshold can reduce

small speckle noise, but it also has the potential to in-

crease the chance of falsely segmenting large particles

and/or missing small particles.

Each of the identified particles (p) at locations within

pixel ranges specified by xp (of length nx pixels) and yp
(of length ny pixels) may then be focused to a distance

(zF) at which the maximum total intensity ofE(xp, yp) is

found in the stack of real images (Fig. 5):

zF(p)5 argmax
z

�
n
x

j51
�
n
y

k51

E(xp( j), yp(k), z) . (7)

The accuracy of this focusing is improved by the noise

removal applied after Eq. (4) because the summing of

E(xp, yp, z) is not contaminated by background noise. A

binary image of each particle,EB(xp, yp), is then created

using a second, local binarization process that is per-

formed on the focused segment of the real image,

E[xp, yp, zF(p)], again using the method of Otsu (1979)

but without a fixed minimum threshold. The fixed

threshold is not required at this stage, as only one object

is expected within the region of interest, which creates

a more prominent bimodal histogram of pixel intensities

that is better suited to the Otsu method.

The method of binarizing E[xp, yp, zF(p)] into

EB(xp, yp) often results in particles that contain false

holes, especially in situations where the incident illu-

mination is nonuniform or the intraparticle texture is

highly variable. To reduce the potential for holes within

the encompassing perimeter of each identified particle,

a flood–fill operation is performed on each EB(xp, yp)

image. Following this, a montage of all EB images is

created, each positioned within the original x, y co-

ordinates of the raw image.

Particle areas are calculated from EB(xp, yp) images

using pixel counting. The equivalent circular diameter

(ECD) is used to represent particle size because it can be

calculated from pixel areas, and also for the purposes of

use in optical and acoustic scattering theories, which

often assume spherical particles (e.g., Mie theory).

For a perfect analog in-line hologram (i.e., no pixel

size artifacts), the smallest resolvable spherical particle

(of diameter ds) is governed entirely by the distance to

the particle from the CCD (z) and the wavelength of

incident light (l). Vikram (1992) shows that this can be

calculated as follows:

ds 5

ffiffiffiffiffiffiffiffi
zl

100

r
. (8)

Malkiel et al. (1999) demonstrate that this theoretical

determination of ds compares well to the minimum sizes

resolved, and that nonspherical particles can be resolved

at smaller sizes. However, given the highly variable

shape of naturally occurring marine particles, and po-

tential pixelation effects in digital holograms, we impose

a conservative minimum limit (Amin) to the area of

FIG. 5. Examples of segments of real images [E(x, y)] from the reconstructed hologram of Fig. 4c at three depths through the sample

volume.
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pixels (of width Ps) that make up each particle returned

by the binarization:

Amin5

&
1

P2
s

p

�
ds
2

�2
’
. (9)

Particles below this limit are ignored. The minimum

pixel area is applied to the farthest distance possible in

the sample volume and is rounded upward based on the

size of the CCD pixels (Ps). For example, with the

standard pathlength of the LISST-Holo (z5 50mm;

l5 658 nm; Ps 5 4:4mm), Amin is 14 square pixels.

In addition to discarding particleswith areas belowAmin,

any object that contains pixels within 64 pixels of the image

border after binarization is also discarded. While it is

possible to reconstruct an object using only a small portion

of its interference pattern, the detail of the smaller scales of

particle geometry are lost. The use of the 64-pixel-border

clearing is to ensure that a sufficient portion of the holo-

graphic interference is captured fromeachparticle in order

to avoid errors in size estimates that result from only

a portion of the particle falling within the field of view.

b. Particle classification

There are four steps to the automated classification

and measurement procedure, which are applied to the

final stages of the standard analysis routine described

above. The first stage is to perform an additional hole-

filling operation on the binary image (EB) (Fig. 6b).

The second stage is to link up long, thin objects (such

as diatom chains) that have only been partially recon-

structed. To do this the image is morphologically dilated

with a linear structural element of length two pixels and

rotated from 08 to 2758 orientations in increments of

22.58. This has the effect of linking long, thin objects of

arbitrary rotation. Once dilated, the reverse operation

(erosion) is applied using the same structural element

and the same rotations, which preserves the size of all

objects in the image.

The third stage uses an alpha shape, computed using

the Delaunay triangulation method of Edelsbrunner

and Mücke (1994), to digitize the area and perimeter of

each particle (Fig. 6c). Whereas the convex hull of an

object is the smallest convex shape that can contain the

FIG. 6. Example stages from the workflow of the automated particle classification routine: (a) input montage of

reconstructed particles from a single holographic image, (b) binarized image, (c) binarized image with the particle

outlines detected, and (d) particles from the montage segmented and classified (‘‘s’’ is sand, ‘‘b’’ is bubble, and ‘‘d’’

is diatom).
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object, the alpha shape is the bounding contour of an

object, so it can be convex or not, and therefore represents

the shape of nonconvex objects more accurately than

a convex hull. The circularity C of both the alpha shape

and convex hull are then computed for each particle:

C5
4pA

P2
r

, (10)

where A and Pr are area and perimeter, respectively. A

perfect circle has a circularity of 1 and a line is 0. We

denote the circularity of the alpha shape and convex hull

as Ca and Ch, respectively, and the area of the alpha

shape and convex hull as Aa and Ah, respectively.

The final stage is the classification, which is carried out

using the above-mentioned metrics. An object is classi-

fied as a bubble ifCa . 0:85 andCh . 0:85. If an object is

really a bubble, it will be very circular (but not neces-

sarily perfectly circular), and its alpha shape as well as its

convex hull will be very similar. An object is classified as

a diatom if Ca , 0:5 and Ah/Aa , 0:9. A diatom is not

very circular, and the difference between its alpha shape

and its convex hull will be large. All other objects are

classified as sand grains (Fig. 6d).

5. Results

a. Particle size

Figure 7 summarizes some example images of basalt

spherical standards, and their associated size distribu-

tions, which were analyzed automatically (red) and

manually (green) using the system shown in Fig. 2c.

Vertical black lines indicate the limits of the sieved ranges

of each sample for the following sizes: 902 106mm

(Figs. 7a–c), 1252 150mm (Figs. 7d–f), 1802 212mm

(Figs. 7g–i), and 2502 300mm (Figs. 7j–l).

Automated and manual analyses return volume dis-

tributions with modes within the limits of the sieved

ranges. The images of raw holograms superimposed with

the binarized particles (Figs. 7a and 7b) show that there

are a number of particles that are missed by both

methods, resulting in an underestimate of concentration.

This problem is emphasized by the weaker intensities

toward the edges of the beam, where particles do not

accurately binarize and are subsequently more easily

discarded by both the automated and manual methods.

The edge-of-beam issues are less problematic for stan-

dard systems such as those shown in Figs. 2a and 2b,

where the beam diameter is much larger than the CCD

size. Despite the configuration-specific concentration er-

rors, the size estimates agree well between the manual

and automated analyses, but with some additional small

particles returned by the automated processing.

A similar analysis of the same sample of sieved basalt

spheres was conducted by Davies et al. (2011) to com-

pare the responses of holography with the laser dif-

fraction (e.g., LISST-100x). Graham and Nimmo-Smith

(2010) also validated the holographic system shown in

Fig. 2a against a Malvern laser diffractometer. Both of

these studies showed that laser diffraction and holog-

raphy report very similar volume distributions for sim-

plistic particle shapes.

The data presented in Fig. 8 were obtained from the

combined holographic camera and LISST-100 system,

described by Davies et al. (2011). For this system, seg-

mentation occurs near the edges of the beam, where the

intensity of incident light is lower. The large particle in

Fig. 8a is broken up in the following frame (Fig. 8b) as it

moves out of the bright, middle part of the beam. The

effect of segmentation on the resulting volume distri-

bution is illustrated in Fig. 8c, with the solid line repre-

senting the equivalent circular diameter from Fig. 8a,

and the dashed line representing the distribution ob-

tained from Fig. 8b. The size distribution from frames

where there is no segmentation shows a strong peak in

volume concentration in the 331-mm size class and a low

concentration of small particles (502 100mm). The

distribution from Fig. 8b, where the largest particle has

become segmented, shows a reduction in particle size of

the large particle by about 100mm (right-hand peak in

Fig. 8c). The segmented distribution shows an increase

in the volume concentration of smaller particles be-

tween diameters of 50 and 100mm, which is the result of

smaller segments from the large particle. These changes

in volume distributions do not conserve the total volume

concentration in comparison to the nonsegmented

equivalent, because some area of the segmented particle

is lost through the introduction of gaps and holes. In this

illustration, a reduction in total volume concentration by

57% is observed between Figs. 8a and 8b. In a typical in

situ sampling situation, however, the reduction in total

concentration and shift in size distribution is likely to be

much less substantial because a much lower percentage

of the particles in the frame will be subjected to such

a harsh segmentation than that which is illustrated in

Fig. 8.

b. Particle classification

The ability to classify particles makes a substantial

difference to the accuracy of particle concentration

measurements. Volumetric concentrations were esti-

mated for each image in the field data described in

section 3: 1) including just sand particles, and 2) in-

cluding bubbles and organic particles as well. The mean

volumetric difference over a burst of images varies be-

tween 15% and 84%, with a typical per-burst difference
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of 46%. Given the relative densities of bubbles, sand,

and diatoms, the relative difference in mass concentra-

tions would be even higher.

The shape parameters used for automated particle

classification are shown in Fig. 9. The automatic separation

of diatoms (Ca , 0:5 andAh/Aa , 0:9), bubbles (Ca . 0:85

and Ch . 0:85), and sand (via elimination of diatoms and

bubbles) is compared with associated manual identifica-

tion, as indicated by the data-point shade. This style of data

visualization is a simple, effective means by which to

FIG. 7. Examples of volume distributions for sieved Basalt spheres that were analyzed automatically (red) and manually (green).

Vertical black lines indicate the limits of the sieved ranges of each sample for the following sizes: (a)–(c) 90–106mm, (d)–(f) 125–150mm,

(g)–(i) 180–212mm, and (j)–(l) 250–300mm.
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qualitatively assess the skill of the classification method

and for setting thresholds for the shape parameters used

to discriminate between particle types, for use with

other datasets from different environments.

The probability that the automated technique cor-

rectly classified a given particle is always over 0.6.

Evaluating this skill requires calculating the probabil-

ity that a given set of classifications on all particles, in

a given image within this tripartite classification

scheme, would arise by chance. This is conditional on

the relative abundances of each particle type and, given

it is a probability without replacement, also the se-

quence in which the particles are classified. This

probability is given by

P5
(!Nsand1 !Nbubbles1 !Ndiatoms)

(!Ntotal)
, (11)

where N denotes absolute number and Ntotal is the total

number of particles present. Therefore, no simple re-

lationship exists betweenP andNtotal because it depends

on the specific population of particles present, and

P/(!Ntotal) is an exponential function of Ntotal, meaning

that if the relative proportions stayed the same but the

total number of particles increased, then the odds of

a given classification by chance would lessen exponen-

tially. The classification probability is always at least an

order of magnitude greater than by chance. Therefore,

the automated routine performed well, especially given

the number of individual grains present in each image

ranged from O(1) to O(10).

Particle areas per particle type were summed for each

sample (collected at a frequency of 5Hz), and averaged

over 1 s. There is both bias and scatter present in com-

parisons, aggregated over all 17 bursts, between manual

FIG. 8. (a) Example region of a binary image showing a large, intact particle. (b) A large particle has settled into

an area of lower incident light intensity. (c) The ECD distributions from (a) and (b), with the dashed line repre-

senting the distribution from (a) and the solid line representing the distribution from (b).
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and automated metrics of total particle area for mineral

sands, bubbles, and diatoms (Figs. 10d–f). All estimates

fall within 100% of the true value for sand grains and

bubbles. For diatoms, around 60% of estimates fall

within 100% of the true value.

A similar analysis was conducted for mean (over

a sample) equivalent circular diameters (Figs. 10a–c).

All estimates fall within 100% of the true value for sand

grains and bubbles. For diatoms, around 90% of the

estimates fall within 100% of the true value. Estimates

of sand grain mean diameters are more homoscedastic,

with regression intercepts close to zero and slopes close

to 1. In contrast, estimates of bubble diameters show

very little scatter, but the regression slopes are largewith

systematic underestimation below a certain size. Esti-

mates of diatom diameters are surprisingly good con-

sidering the relative failings of the method for diatom

area estimates.

6. Discussion

Results from both estimations of particle size distri-

butions and automatic particle classification show that

holographic particle imaging provides an accurate and

flexible technique for a wide range of purposes. Below,

the results from automated sizing and classification are

discussed separately.

a. Particle size

Additional small particles may be counted into the

resultant particle size distributions (PSD; Fig. 7), either

due to incorrect binarization of noise or from artificial

segmentation of larger particles into multiple smaller

particles, caused by a threshold that is too high. The

relatively small particles that have been incorrectly bi-

narized (e.g., Figure 7g) have no identifiable in-

terference patterns surrounding them. Caution should

therefore be applied to the interpretation of the smallest

particles returned by the automated routine. However,

the effect of the smallest particles on the calculated

volume distributions will be minimal if appropriate

thresholds and noise removal are applied.

Segmentation errors usually occur when a large par-

ticle has a low signal response in the focused recon-

structed slice E(xp, yp). This causes the area covered by

a particle to become harder to isolate from the back-

ground noise in the image, making a single threshold for

binarization difficult to determine. With a threshold too

low, the binary particle will become dilated, resulting in

area overestimates. A threshold too high results in holes

appearing in the particle and segments of the particle

breaking up, leading to an underestimate of the particle

area and an increase in the apparent number of smaller

particles from the detached segments.

While it is possible to process images using settings

conducive to either systematically over- or under-

segmenting particles (producing a large bias in derived

particle statistics), it is likely that both under- and

oversegmenting occurs simultaneously within in situ

datasets. This tends to minimize bias in derived particle

sizes but can induce a significant degree of scatter. The

scatter depends specifically on the particle population

and the specific parameters used in processing. Un-

fortunately, it is hard to quantify the effect of segmen-

tation for in situ datasets because large particles are

rarely, if ever, present in consecutive frames due to the

FIG. 9. Automated parameters used for (a) diatom and (b) bubble classification of particles measured during bursts

A–C (Fig. 3), with data points colored according to manual classifications.
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higher flow speeds (if the instrument is in a fixed location)

or due to instrument movement (e.g., during profiling). In

short, particle size distributions containing oversegmented

particles, such as that illustrated in Fig. 8, results from

poor incident illumination and will cause overestimates

of small particles and underestimates of total volume

concentration.

b. Particle classification

Much previous work on particle holography has fo-

cused on one type of particle or organism (e.g., Malkiel

et al. 2004, 2006; Sheng et al. 2006, 2007; Katz and Sheng

2010). Where it is important to distinguish between

particle types, automated classification of particles in

holographic imagery offers unique challenges. Particles

often have irregular, fuzzy, or incomplete outlines, and

are oriented freely within the sample volume. Focused

silhouettes of bubbles, which are spherical or near spher-

ical, will often have nonsmooth outlines. Particles may

even be broken up, for example, long diatom chains, which

may only be partially present across multiple planes.

The image may be oversegmented, which causes a de-

crease in the number of large particles and an increase in

small particles from artificially broken segments of

a particle, or the image may be undersegmented if ad-

jacent grains (possibly overlapping) are not separated.

Here, we have outlined a simple approach to the specific

problem of differentiating between sand, diatoms, and

bubbles, but similar principles could be applied to a wide

variety of mixed particle populations. For these reasons,

previous studies have relied on manual (visual) dis-

crimination betweenmixed particle types in holographic

image reconstructions (Conley et al. 2012; Cross et al.

2013).

There are a number of particle metrics with which one

could evaluate the performance of an automated parti-

cle classification routine. Particle area and equivalent

circular diameter were chosen because of their relevance

to the intended research use of the data from the auto-

mated routine, which was to evaluate the performance

FIG. 10.Manual vs automated (a)–(c) total particle ECDand (d)–(f) area for (a),(d) sand, (b),(e) bubbles, and (c),(f) and diatoms using 1-s

averages. Solid red line is the 1:1 relationship, and lighter colored line is the linear least squares fit.
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of an acoustic backscatter sensor (predominantly sen-

sitive to the particle cross-sectional area) and is the

subject of a forthcoming paper. We argue that choosing

other metrics would be equally valid and the difference

in interpretation of the skill of the method largely

qualitative.

Incorrect classifications within this tripartite classifi-

cation scheme were found to be a random source of

error that tends to average out over one sample (all

particles in onemontage image) and further over several

consecutive samples. We decided that further compari-

sons would not be made on a particle-by-particle basis,

but rather on a sample basis. Given the nature of data

classified into discrete groups, summing or averaging on

a frame-by-frame basis makes the within-sample vari-

ances negligible and the between-sample variances

a more true reflection of the error of the method com-

pared to an independent measurement technique.

We suggest that the automated routine will be more

prone to misclassification errors than measurement er-

rors that are caused by over- or undersegmentation. The

errors caused by measurement tend to be random (i.e.,

oversegmentation is approximately as likely as under-

segmentation). In contrast, errors caused by mis-

classification are more likely to be systematic, causing

a slope in the regression line that departs from the 1:1

relationship. The scatter systematically reduces with

averaging period, indicative that the scatter is caused by

measurement errors. Sand and bubble areas tend to be

slightly underestimated by the automated routine, with

no strong tendency for this bias as a function of con-

centration. In contrast, diatom areas tend to be over-

estimated, and this overestimation is worsened in lower

concentrations. Systematic errors in one particle type

cause errors in the other two. In general, too many small

bubbles and sand grains are being misclassified as di-

atoms. The source of these errors is related to one set of

shape thresholds being used for all 17 bursts, in which

the reconstruction quality differed. It is unlikely that

sand grains and bubbles varied significantly in shape;

however, diatoms did vary in shape significantly, so it is

more difficult to automatically classify those particles

based on shape alone.

The simple rule-based approach to classification

based on object shape has the advantage that it is easy to

understand and implement, and in this case it reduces

the uncertainty in particle identification to an acceptable

level by improving estimates of sand transport. The

method suffers the disadvantage that in order to be

transferable to other populations of particles (such as

other phytoplankton, zooplankton, and mineral parti-

cles with shapes significantly different from sand grains),

the rules and thresholds may have to be modified. All

thresholds in the above-mentioned classification were

derived empirically from the set of manual observations

and are therefore likely to change if applied to a differ-

ent dataset. Performance could have been improved if

thresholds were adjusted to optimum levels per burst,

however, that partly defeats the purpose of an auto-

mated routine. Classifying particles based on shape is

found to be sufficient for the three particle types of in-

terest here. However, for differentiating more complex

shapes (such as plankton and cohesive sediments),

textural information might also be required for satis-

factory results. Improved, more objective, automated

particle classifications could be achieved by adapting

pattern recognition and machine-learning algorithms

designed for conventional photographic imagery (e.g.,

Culverhouse et al. 1996; Davis et al. 2004; Benfield et al.

2007; Gorsky et al. 2010; MacLeod et al. 2010) to ho-

lographic imagery.

7. Conclusions

The use of automatic holographic image processing

enables rapid and accurate analysis of large datasets.

The holographic image processing improvements de-

tailed here have substantially enhanced the quality of

reconstructed particle images and have enabled accu-

rate particle size distributions to be calculated without

the need for excessive manual supervision. We have

compared manual and automated particle size distri-

butions, which were in good agreement over diameters

from 90 to 500mm. In addition, we have validated par-

ticle classifications against manual equivalents, which

were also in generally good agreement, indicating that

the automatic holographic reconstruction routines used

were reliable for many applications of marine particle

analysis.

The accurate characterization of particle shape by

way of automatic holographic image processing has

allowed for an autonomous shape-based particle classi-

fication to be developed. To test this classification sys-

tem, holographic images of suspended sand, diatoms,

and entrained bubbles were obtained near the bed in an

energetic surfzone. The skill of the technique in cor-

rectly classifying a given particle, in a tripartite classifi-

cation compared to the manual classification of that

particle, is greater than 60% and is always greater than

a correct classification by chance. Root-mean-square

errors decreased upon averaging over successively

larger time scales, in a manner consistent with the non-

systematic nature of measurement errors. In contrast,

biases were observed between automated and manual

estimates due to some systematic misclassification of

diatoms. We suggest that this is due to the larger
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variability in phytoplankton shapes than that which is

accounted for by the simple classification.

Future particle classification methods may benefit

from a combination of shape and particle surface tex-

ture, which could be obtained from reconstructed ho-

lograms. We also recommend that future developments

of holographic reconstruction routines should be pri-

marily targeted at reducing oversegmentation of large

particles and utilizing methods to separate overlapping

particles.
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