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Animals in a poor biological state face reduced life expectancy, and as a con-

sequence should make decisions that prioritize immediate survival and

reproduction over long-term benefits. We tested the prediction that if, as has

been suggested, developmental telomere attrition is a biomarker of state and

future life expectancy, then individuals who have undergone greater develop-

mental telomere attrition should display greater choice impulsivity as adults.

We measured impulsive decision-making in a cohort of European starlings

(Sturnus vulgaris) in which we had previously manipulated developmental tel-

omere attrition by cross-fostering sibling chicks into broods of different sizes.

We show that as predicted by state-dependent optimality models, individuals

who had sustained greater developmental telomere attrition and who had

shorter current telomeres made more impulsive foraging decisions as adults,

valuing smaller, sooner food rewards more highly than birds with less attrition

and longer telomeres. Our findings shed light on the biological embedding of

early adversity and support a functional explanation for its consequences that

could be applicable to other species, including humans.
1. Introduction
One of the most important insights to emerge from behavioural ecology is that

decisions should be state-dependent [1]. Animals in a poor biological state face

reduced life expectancy, and as a consequence should make decisions that

prioritize immediate survival and reproduction over long-term benefits [2].

Epidemiological studies in humans show that measures likely to be indicative

of poor state are associated with altered time preferences. For example,

low birth weight predicts both greater impulsivity [3,4] and accelerated re-

production [5,6]. However, attempts to demonstrate effects of state on time

preferences in experimental animal models have met with mixed results [7].

We speculate that part of the reason for this inconsistency is that state, as

defined by behavioural ecologists, is difficult to manipulate and measure. For

example, an acute manipulation of food availability produces alterations in gly-

cogen or fat reserves, but the effect that these changes have on probability of

survival (which is what matters for evolutionary models of state-dependent

decision-making) could be overshadowed by longer-term individual differ-

ences in anatomy, physiology and behaviour resulting from the quality of the

developmental environment [8]. Thus, to test state-dependent models properly,

we need a measure of state that integrates the effects of an animal’s lifetime

experience, and hence more accurately predicts life expectancy.

Telomeres are emerging as a plausible candidate to provide such a measure

of state [9]. Telomeres are DNA ‘caps’ found on eukaryotic chromosomes

that shorten with age. Telomere loss is accelerated by various forms of stress
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Figure 1. (a) Brood size manipulation. The diagram shows the creation of a
single family of four focal chicks. A total of eight such families were created, yield-
ing 32 focal chicks. (b) Inter-temporal choice task. The format of a single choice
trial is shown. All trials began with an amber initiation light. One coloured key
(here green) was assigned to the smaller sooner option (a 1 s delay to obtain
one 45 mg pellet), and the other colour (here red) was assigned to the larger
later option a longer, x s delay to obtain five 45 mg pellets). (Online version
in colour.)
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exposure, with early-life stress being particularly damaging

[10–12]. Furthermore, telomere length in humans and birds

measured from blood prospectively predicts survival and/

or health [13–18]. On the basis of these results, we hypo-

thesize that telomere attrition is an integrative biomarker

of biological state, and as such should be associated with

the adaptive changes in decision-making predicted by

state-dependent optimality models.

We tested this prediction in European starlings (Sturnus
vulgaris), a long-lived, non-domesticated passerine bird

species commonly used to test evolutionary and mechanistic

models of decision-making [19]. We used a cohort of birds in

which we had previously experimentally altered develop-

mental telomere attrition via a brood size manipulation

conducted on chicks in wild nests [20]. Briefly, pairs of

focal siblings matched for weight were cross-fostered into

nests where they faced either high or low competition for

12 days spanning the period during which most growth

occurred (post-hatching day 3 to day 15, subsequently

d3–d15; figure 1a), after which they were transferred to the

laboratory for hand-rearing under uniform conditions. As

we have shown elsewhere [20], this manipulation affected

the birds’ telomeres: the number of heavier competitors that

a chick had on d15 predicted erythrocyte telomere attrition

between d4 and d15. Furthermore, the effect was still evident

at d55, after the birds had been reared under uniform labora-

tory conditions for 40 days [20]. Working on the assumption

that developmental telomere attrition is a biomarker of state,

we predicted that adult birds with greater developmental

telomere attrition should be more impulsive, displaying a

stronger preference for sooner food rewards when faced with

a choice between ‘smaller sooner’ and ‘larger later’ rewards.
2. Material and methods
(a) Study animals and husbandry
Subjects were 32 wild European starlings (Sturnus vulgaris) from

a cohort of chicks hatched in the wild in May 2012 and subjected

to a brood size manipulation described in detail elsewhere before

being brought into the laboratory on d15 [20]. One chick failed to

thrive and died before reaching independence, reducing the

sample of birds available for behavioural testing to 31. Once

the fledglings became independent (approx. four weeks post-

hatch), they were transferred to two indoor aviaries (215 �
340 � 220 cm WDH; approx. 188C; 40% humidity; 13 L : 11 D

light cycle), provided with environmental enrichment and

clean drinking water, and were fed ad libitum on domestic

chick crumbs supplemented with dried insect food (Orlux

insect paté), live mealworms and fruit.

Measurements of choice impulsivity took place when the birds

were 6–14 months old and were fully grown. Replicates of eight

birds (each comprising two genetic families) were caught from

the aviary and moved to our operant laboratory (approx. 188C;

40% humidity; 13 L : 11 D). Birds were housed in individual

cages that served both for testing and as their home cages for the

duration of testing. The cages measured 100 � 45 � 45 cm

(WDH) and were identically furnished with two perches, a

water bath and two water bottles. Each cage was additionally

fitted with an operant panel permanently attached to one of the

end walls comprising three horizontally aligned 4 cm-diameter

pecking keys and one central food trough attached to a 45 mg

pellet dispenser (see [21] for a full description).

While in individual cages the birds were food deprived over-

night from 17.00 until testing began the following morning at
08.00. Water was always available ad libitum. Operant sessions

lasted for a maximum of 5 h per day, and at 13.00 each day gen-

eral husbandry was performed on the cages and the birds were

given ad libitum food until 17.00. Each replicate remained in

the operant laboratory for approximately six weeks, after which

they were returned to the aviary and were replaced with the

next two families. It took until the birds were approximately 14

months old (d428) to complete the testing of all eight families.

Birds were weighed on d55 and again when they were

caught for transfer to individual cages and on return to the

aviary. Tarsus length was measured on d55; the average of two

independent measurements of both the right and left tarsus

was used. As a measure of body condition, we derived residual

body weight using the best-fitting regression equation for weight

on d55 against tarsus length for all 31 birds (weight ¼ 1.717 �
tarsus þ 15.437).

Soon after the end of the impulsivity experiments, the birds

were permanently rehomed in a large outdoor aviary.

(b) Telomere length and attrition measurements
Telomere lengths on d4, d15 and d55 for the birds used in the

current paper were measured via quantitative PCR and have

been published previously [20]. We took an additional blood

sample at 14 months, after completion of the impulsivity exper-

iment, and measured telomere length using identical methods.

Owing to some failed assays, telomere length data were only

available for 23 of the 31 birds. In this paper, we estimated telo-

mere attrition over the developmental period (d4–d55) using the

adjusted measure D, which is the difference in telomere length

between d4 and d55, corrected for regression to the mean [22].

(c) Operant training
Measurements of choice impulsivity began when the birds were

6–12 months old and were fully grown. Operant training procedures

followed those outlined in [21]. First, the birds were auto-shaped to
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peck the centre amber key for a food reward. Once a bird started to

peck the key, it progressed to a variable number of days of operant

training. Each bird received daily sessions of 60 trials until it had

pecked on at least 80% of trials in three sessions. When a bird

had met this criterion it progressed to a generalization procedure

to ensure operant responding when presented with the green

and red key colours used in the impulsivity procedure (below).

On successful completion of the generalization sessions birds

progressed to the impulsivity procedure.
ing.org
Proc.R.Soc.B
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(d) Impulsivity procedure
We used a standard inter-temporal choice task in which the birds

made simultaneous choices between a smaller sooner food

reward and a larger later food reward, titrating the value of the

longer delay (x) at which individual birds became indifferent

between the two options (figure 1b). To estimate indifference,

we used an adjusting procedure [23]. Throughout the exper-

iment, one colour (either green or red) was assigned to the

smaller sooner (standard) option, and the other colour was

assigned to the larger later (adjusting) option (colour assignment

was constant within a bird but counterbalanced across birds and

brood size treatments). In the smaller sooner option, there was

always a 1 s delay to obtain one 45 mg pellet. In the larger later

option, the x s delay varied from block to block of the experiment

but the reward was always five 45 mg pellets delivered at a rate

of 1 pellet s21.

Each daily session comprised a maximum of 64 trials divided

into 16 blocks of four trials. Sessions ended after 5 h if a bird had

not completed 64 trials. Each block comprised two forced trials

followed by two choice trials. At the start of each trial, the

centre key was illuminated with amber light, and a single peck

to this key was required to initiate the trial. On forced trials, fol-

lowing a response to the amber key, the amber light extinguished

and either a red or green light appeared on the right or left key.

A single peck to this light initiated the start of the programmed

delay. Following the expiry of the programmed delay, a single

further peck was required to extinguish the key light and initiate

the delivery of reward. During reward delivery the hopper light

was illuminated. Following the final pellet delivery the inter-trial

interval (ITI) of 200 s began. Within each block, the two forced

trials were chosen pseudo-randomly such that there was

always one of each type (smaller sooner and larger later), with

one being presented on each side. Choice trials were identical

to forced trials with the exception that following the initiation

peck, both side keys were illuminated (one in red and one in

green). A single peck indicated the bird’s choice and resulted

in the non-chosen key being extinguished. In choice trials, the

side on which each colour appeared was randomly chosen.

At the start of the experiment, the adjusting delay, x, was set

to 1 s. At the end of each block, the x was updated according to

the following rule: if the bird chose the standard option on both

trials then the adjusting delay got 1 s shorter (x ¼ x 2 1); if the

bird chose the adjusting option on both trials then the adjusting

delay got 1 s longer (x ¼ x þ 1); and if the bird chose one of each

option no change was made. The value of x had a minimum of

1 s but no maximum. The value of x at the end of each day

was carried over to the start of the next day. Birds ran seven

days a week and completed between 346 and 480 blocks

(i.e. 1384–1920 trials).
(e) Estimation of impulsivity
To estimate the indifference point—the value of x for which the

two options were chosen equally often—we used the mean value

of the adjusting delay, x, between the first block when a bird

showed a preference for the larger later option and block 346

(the maximum block for which we had data from all birds;
equivalent to 1384 trials). Means were based on a minimum of

243 blocks (i.e. 972 trials) per bird.

We expressed impulsivity in terms of k, a parameter that

describes how rapidly the value of a given reward decreases as

the delay to obtain it increases, where larger values of k equate

to faster discounting of delayed rewards and hence greater

choice impulsivity [23]. At indifference,

k ¼ ALL � ASS

XLLASS � XSSALL
, (2:1)

where ASS and ALL are the amount of reward in the smaller

sooner and larger later options, respectively, and XSS and XLL

are the delays in the same two options. We calculated values

for k by substituting the following values in equation (2.1):

ALL ¼ 5, ASS ¼ 1 (i.e. the numbers of pellets in the larger later

and smaller sooner options, respectively), XSS ¼ 1 (i.e. the delay

to reward in the smaller sooner option), and XLL ¼ the mean of

the adjusting delay obtained from the adjusting procedure.

( f ) Statistics
Statistical analyses were conducted in R v. 3.0.1 using the pack-

age ‘nlme’. General linear mixed models (GLMMs) included

random intercepts for genetic family to control for non-indepen-

dence due to relatedness. The fixed effects included in each

model are listed in the relevant results section. For all models,

residuals were checked for normality and homogeneity of var-

iance; where dependent variables required transformation to

correct violation of assumptions, details are given in the results

section. We used maximum-likelihood estimation throughout.

Significance testing was carried out by the likelihood ratio test,

which compares the change in deviance when a term is excluded

from the model with the x2 distribution with 1 d.f.
3. Results
(a) Telomere dynamics
The analyses in this section are based on the subset of 20

birds for which we also had behavioural data (see below),

but the results are qualitatively the same for the full set of

23 birds for which we had telomere data (statistics not

shown); for completeness, the figures accompanying this

section show the data from all 23 birds.

Telomere length at d4 was positively correlated with the

difference in telomere length between d4 and d55 (Pearson

correlation: r18 ¼ 0.69, p , 0.001); birds that had longer telo-

meres at d4 suffered greater attrition. However, there was

no significant correlation between telomere length at d4

and telomere attrition as measured by D, the difference in tel-

omere length between d4 and d55 corrected for regression to

the mean (Pearson correlation: r18 ¼ 20.19, p ¼ 0.4114). This

pattern of results suggests that the former correlation could

arise from measurement error [22]. We therefore used D as

the measure of developmental telomere attrition in sub-

sequent analyses to correct for this effect and to remove the

need to control for telomere length at d4 in our models.

A more negative value of D indicates greater attrition.

To test whether developmental telomere attrition was pre-

dicted by our experimental manipulation, we fitted a model

with ln(D þ 2) as the dependent variable and the number

of heavier competitors that a chick had at d15 as a continuous

fixed predictor. The number of heavier competitors signifi-

cantly predicted D, with birds with more heavier

competitors experiencing greater telomere attrition (GLMM:

x2
(1) ¼ 7:07, p ¼ 0.0079; B+ s.e. ¼ 20.07+ 0.02; figure 2a).
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Figure 2. Telomere dynamics. (a) Having more, heavier competitors on d15 pre-
dicts greater developmental telomere attrition between d4 and d55. Telomere
attrition is measured by D [22]; positive values of D indicate telomere lengthening
over development and negative values indicate telomere loss. The solid black line is
the line of best fit from a simple linear regression model, with 95% CIs shaded in
grey. (b) Correlation between telomere length at d55 and telomere length at 14
months. The units of measurement are T/S ratios. The solid line shows the expec-
tation if there was no change in telomere length. (c) Greater developmental
telomere attrition (D) predicts shorter telomere length (T/S ratios) at 14 months.
The graphs show data from all 23 birds for which we had telomere length measure-
ments; the three birds lacking behavioural data are indicated with open circles.
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Although telomeres did not shorten significantly between

d55 and 14 months (paired t-test: t19 ¼ 20.60 , p ¼ 0.5554),

some changes occurred (figure 2b). To explore whether the

effects of the 12-day developmental manipulation lasted

into adulthood, spanning the period of our behavioural

measurements, we fitted a model with ln(telomere length

at 14 months) as the dependent variable and develop-

mental telomere attrition as a continuous fixed predictor.

Developmental telomere attrition (D) significantly predicted

telomere length at 14 months, with those birds with greater

developmental attrition retaining shorter telomeres at 14

months (GLMM: x2
(1) ¼ 4:37, p¼ 0.0365; B+ s.e.¼ 0.31+0.15;

figure 2c).

(b) Speed of discrimination learning
Three birds failed to complete the operant training for

the impulsivity experiment and were excluded: one (low-

competition treatment) developed diarrhoea and was removed

from the experiment, one (low-competition treatment) refused

to eat rodent pellets and one (high-competition treatment) was

phobic of lit keys. Thus, we obtained behavioural data for 28

birds, of which 20 also had telomere data.

Since at the start of the impulsivity procedure the delay to

reward in the two options was equal, we could use the point

at which the birds started to show a preference for the larger

later option as a measure of the speed at which they learnt

that this option was associated with a larger reward. This is

a cleaner measure of speed of learning than the number of

trials taken to acquire the initial key-pecking response,

because it is less likely to be confounded with neophobic

responses to illuminated pecking keys [21]. A bird was

defined as starting to show a preference for the larger later

option when it first chose this option on 9/10 successive

choice trials. We used the number of the first block in

which this criterion was met as a measure of speed of

learning. To test whether developmental telomere attrition

predicted speed of learning, we fitted a model with speed

of learning as the dependent variable and D as a continuous

predictor. There was no significant effect of developmental

telomere attrition (D) on the number of blocks taken to

acquire the initial discrimination between the small and

large options (GLMM: x2
(1) ¼ 0:679, p ¼ 0.4098; B+ s.e. ¼

10.48+13.28).

(c) Impulsivity
The starlings had a mean value of k ¼ 0.54 (s.d. ¼ 0.35; n ¼ 28),

falling somewhere between values previously obtained for rats

(less impulsive) and pigeons (more impulsive; figure 3). To

examine the amount of variation in k explained by genetic

family and by experimental replicate, we conducted a variance

components analysis using maximum-likelihood estimation.

The estimates of covariance parameters (+s.e.) were as

follows: residual ¼ 0.099 (+0.031), genetic family¼ 0.016

(+0.022), replicate ¼ 0. Therefore, approximately 13.9% of the

variance is explained by family and none by replicate. On

this basis, we retained genetic family in our GLMMs as a

random effect but ignored experimental replicate.

To test whether impulsivity was predicted by develop-

mental telomere attrition, we fitted a model with ln(k) as

the dependent variable, and developmental telomere attrition

(D), body condition at the start of the impulsivity experiment

and the interaction between these two factors as continuous
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greater impulsivity. In both panels, the data points represent the subset of
20 birds for which we obtained both developmental telomere lengths and
estimates of impulsivity. The solid black line is the line of best fit from a
simple linear regression model, with 95% CIs shaded in grey.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20142140

5

fixed predictors (developmental telomere attrition and

body condition were almost entirely uncorrelated: Pearson

correlation, r18 , 0.01, p ¼ 0.9980). Impulsivity (k) was sig-

nificantly predicted by developmental telomere attrition

(D), with greater impulsivity being associated with greater

developmental telomere loss (GLMM: x2
(1) ¼ 10:79, p¼ 0.0010;

B+ s.e. ¼ 20.29+0.08; figure 4a). Impulsivity was also

significantly predicted by body condition, with greater

impulsivity being associated with a bird being relatively

light for skeletal size at the start of the impulsivity measure-

ments (GLMM: x2
(1) ¼ 8:84, p¼ 0.0029; B+s.e.¼ 20.23+0.09;

figure 4b). The interaction between telomere attrition and

body condition explained no significant additional variation

in impulsivity (GLMM: x2
(1) ¼ 1:86, p ¼ 0.1728, B+ s.e. ¼

0.15+ 0.09). Note that if the raw differences in telomere

length between d4 and d55 were used in place of D in the

above model, the same pattern of results was obtained but,

as would be expected, the effects were smaller.

Since developmental telomere attrition (D) was strongly cor-

related with telomere length at d55 (Pearson correlation, r18 ¼

0.75, p ¼ 0.0001), considerations of collinearity precluded direct

comparison of these two potential predictors of impulsivity in

the same model. Re-running the above model with telomere

length at d55 in place of D as a predictor showed that impulsivity

(k) was also significantly predicted by telomere length at

d55 (GLMM: x2
(1) ¼ 8:52, p ¼ 0.0035; B + s.e.¼ 20.31+

0.11); body condition also remained significant (GLMM:

x2
(1) ¼ 13:10, p , 0.0003; B+ s.e.¼ 20.04+0.11) and the inter-

action between telomere length and condition not significant

(GLMM: x2
(1) ¼ 0:095, p ¼ 0.7583, B+ s.e. ¼ 20.02+0.09).

Comparison of model fits showed that the model with

telomere attrition had an Akaike information criterion (cor-

rected for small sample size) value 4.03 units lower than

the model with telomere length at d55. Calculation of the evi-

dence ratio [24] suggested that model with telomere attrition

is 7.52 times more likely to be the best-approximating model

than the model with telomere length at d55.
4. Discussion
Our aim was to test the hypothesis that developmental telo-

mere attrition is a measure of state, and hence should

predict state-dependent decisions such as the relative value

assigned to immediate versus delayed food rewards. Our

results show that, as predicted, both developmental telomere

attrition and absolute telomere length at independence

predicted the impulsivity of foraging decisions in adult

European starlings. Birds that had greater developmental tel-

omere attrition between days 4 and 55 post-hatch, and birds

that had shorter telomeres at day 55, had a stronger prefer-

ence for smaller but more immediate food rewards than

birds with less developmental attrition or longer telomeres.

Supporting some previous findings [25], we also found

that impulsivity was significantly predicted by current

body condition, with greater impulsivity being associated
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with a bird being relatively light for skeletal size at the start of

the impulsivity measurements. Developmental telomere attri-

tion and body condition were almost entirely uncorrelated,

indicating that these were two independent measures of

state. We suggest that telomere attrition is an integrative

measure of the impact of developmental stress on biological

state, whereas body condition is a more immediate measure

of a single aspect of state, namely current energetic reserves.

It might at first appear contradictory to our hypothesis that

current body condition and telomere attrition should both

independently predict impulsivity, because if telomere attri-

tion is an integrative measure of state, as proposed, then it

should embody current condition. However, since our telo-

mere attrition measures were made at day 55, and our

behavioural measures were in some cases made months

later, it is possible that current body condition captures

changes in state subsequent to the day 55 blood sample. In

future studies, it would be interesting to acquire telomere

length measures contemporaneously with behavioural

measures to investigate how well current telomere length pre-

dicts decision-making. In our dataset, the parameter estimates

(using both predictors scaled to make them comparable) indi-

cate that the effect of telomere attrition on impulsivity was

larger than the effect of current body condition (B+ s.e. ¼

20.29+ 0.08 and 20.23+0.09 respectively). This fits with

substantial evidence that what happens during development

can have profound and lasting effects on the adult behavioural

phenotype. The importance of the developmental period in

our birds is highlighted by the fact that developmental telo-

mere attrition still significantly predicted telomere length

over a year later at 14 months.

There is debate over whether telomere attrition or absol-

ute telomere length is likely to be the best predictor of

longevity [26], and whether loss or length is the best proxy

for state. In this study, we are concerned with relatively

young animals where the substantial cell senescence likely

to be associated with short telomere length is unlikely to be

a major factor in determining state. In our dataset, impulsiv-

ity is predicted better by developmental telomere attrition

than by absolute telomere length at day 55, in agreement

with what would be expected if telomere attrition is the

best measure of state at this life-history stage. However, it is

of considerable practical significance that telomere length

(at day 55) is still a significant predictor of impulsive behav-

iour, since it suggests that even where longitudinal telomere

measurements (and hence attrition values) are not available,

variation in current telomere length could be used a reason-

able proxy for variation in state.
Our results are consistent with the predictions of state-

dependent models of decision-making in showing that indi-

viduals that are likely to be in a worse biological state, and

hence with the lowest life expectancy, were also the most

impulsive. Thus, we suggest that the individual variation in

impulsivity that we have documented may represent adap-

tive responses of animals to their states. This is in contrast

to the standard biomedical view that high choice impulsivity

is pathological behaviour resulting from failure of top-down

cognitive control [27,28]. Although it is possible to see our

results as consistent with the biomedical view by arguing

that both telomere attrition and adult impulsivity are inde-

pendent measures of pathology, two pieces of evidence

suggest that the adaptive interpretation deserves consider-

ation. The first is that our brood size manipulation was

within the normal range experienced by wild starlings, mean-

ing that natural selection could reasonably have produced

plastic behavioural strategies that allow chicks to respond

adaptively to the impairment in state resulting from high

sibling competition. Second, while telomere attrition pre-

dicted individual differences in impulsivity, it did not

predict individual differences in speed of learning, which

is a commonly used marker of basic cognitive perfor-

mance [29]. This suggests that the birds were not generally

cognitively impaired.

Our finding that what happens to a starling in the first

two weeks of its life has a lasting effect on its telomeres,

and that telomere attrition in turn predicts adult decision-

making, raises questions about the biological embedding of

early-life adversity and its effects on adult behaviour in

other species. In humans, various kinds of adversity (includ-

ing low birth weight and poverty) are strongly associated

with impulsive decision-making [3,4,30], and it would be

interesting to explore whether individuals with the most

impulsive behaviour are also those with the shortest telomeres.
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