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Abstract
The interval Kalman filter is a variant of the traditional Kalman filter for systems with bounded parametric uncertainty.
For such systems, modelled in terms of intervals, the interval Kalman filter provides estimates of the system state also in
the form of intervals, guaranteed to contain the Kalman filter estimates of all point-valued systems contained in the inter-
val model. However, for practical purposes, a single, point-valued estimate of the system state is often required. This
point value can be seen as a weighted average of the interval bounds provided by the interval Kalman filter. This article
proposes a methodology based on the application of artificial neural networks by which an adequate weight can be com-
puted at each time step, whereby the weighted average of the interval bounds approximates the optimal estimate or esti-
mate which would be obtained using a Kalman filter if no parametric uncertainty was present in the system model, even
when this is not the case. The practical applicability and robustness of the method are demonstrated through its applica-
tion to the navigation of an uninhabited surface vehicle.
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Introduction

In a recent study by Annamalai et al.,1 a system for
determining the heading of an uninhabited surface vehi-
cle (USV) based on an interval Kalman filter (IKF) was
explored. The IKF, designed upon imprecise knowledge
of the vehicle’s yaw dynamics, provided upper and
lower bounds to the statistically optimal estimate of its
heading angle at each time instant. However, the gui-
dance and control of the vehicle require a point-valued
estimate of its heading. Since the optimal estimate must
lie within the IKF interval estimate,2 it must correspond
to some weighted average of the interval boundaries.
The problem remains on how to infer the appropriate
weighting value and is the objective of this study. This
article proposes a method that provides a good approx-
imation to the optimal weight by using appropriately
simulated data and artificial neural networks (ANNs).

Problem formulation

Consider the following stochastic–deterministic state-
space model of a system’s dynamics

x(k+1)=Amx(k)+Bmu(k)+v(k) ð1Þ

y(k)=Cmx(k)+ n(k) ð2Þ

with

Am =
1:002 0

0 0:9945

� �
, Bm =

6:354

�4:699

� �
3 10�6,

Cm =
180

p
½ 34:13 15:11 �,v(k);N(0,Qm), n(k);N(0,Rm),

Qm = cov(v)= diagf1, 1g3 10�10,

Rm = var(n)=4, Ts =1 ð3Þ

where u(k) is the known input to the system, v(k) repre-
sents a random input disturbance, y(k) is the measured
output and n(k) represents a random measurement
noise. Assuming that the random processes follow
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zero-mean Gaussian distributions, then the classical
Kalman filter (KF) approach based on combining
model predictions with actual measurements may be
used to obtain statistically optimal estimates of the sys-
tem output. Let such a filter, based upon the above
model, be denoted as KF-1 (the KF equations are
detailed in Appendix 1).

Now, let it be supposed that the modeller is uncer-
tain of the precise values of the vector Bm and in fact
declares that

the values of B could not be ascertained with complete
exactitude, however, it is possible to warrant that they are
not further departed from these than by an amount equat-
ing to twenty five per cent of the same.

Upon this revelation, it is apparent that the filter
KF-1 will no longer supply an optimal estimate if the
actual values of the state equation’s input vector, B,
depart from those of Bm, and in particular, the differ-
ence between the measurements y(k) and the model’s
predicted output Cx(k) will no longer have a zero-mean
value.2 In order to try and account for imprecisely
modelled values while maintaining a KF-like structure,
Chen et al.3 proposed describing the system dynamics
using intervals. Consider the following interval model

xI(k+1)=AIx(k)+BIu(k)+v(k) ð4Þ
yI(k)=CIx(k)+ n(k) ð5Þ

with

AI =
½1:002, 1:002� ½0, 0�
½0, 0� ½0:9945, 0:9945�

� �
,

BI = Bm � 0:253 abs(Bm),Bm +0:253 abs(Bm)½ �

=
½0:753 6:354, 1:253 6:354�

1:253 (�4:699), 0:753 (� 4:699)½ �

� �
3 10�6,

CI =
180

p
½34:13, 34:13� 15:11, 15:11½ �½ �,

v(k);N(0,Q), n(k);N(0,R),

Q= cov(v)= diagf1, 1g3 10�10, R= var(n)=4,

Ts =1

ð6Þ

in which the components of AI, BI and CI, as well
as those of the system state vector xI and output y,
are now given by interval values rather than ordinary
point values. For simplicity but without loss of gener-
ality, the example illustrated here only contains inter-
val model coefficients with non-zero widths in the
vector BI, as it is assumed that all other coefficients
are modelled precisely. Based on this interval model,
an IKF, which provides interval-valued estimates, can
be designed.3

Let it also be supposed that the true dynamics of the
system, while not corresponding exactly to the values
given in equation (3), are contained within the interval
model (equations (4)–(6)) and are given by

x(k+1)=Ax(k)+Bu(k)+v(k) ð7Þ
y(k)=Cx(k)+ n(k) ð8Þ

with

A=Am =
1:002 0

0 0:9945

� �
,

B=Bm � 0:253Bm =
0:753 6:354

1:253 (� 4:699)

� �
3 10�6,

C=Cm =
180

p
½ 34:13 15:11 �,

v(k);N(0,Q), n(k);N(0,R),

Q=Qm = cov(v)= diagf1, 1g3 10�10,

R=Rm = var(n)=4, Ts =1 ð9Þ

Then, a KF based upon it would provide a statisti-
cally optimal estimate of the state vector and system
output. Let such a KF be denoted by KF-ideal.

Consider the following arbitrarily chosen sinusoidal
signal as input to the system (Figure 1(a))

u(k)=15 sin (0:01k) ð10Þ

where the notation u(k) implies u(kTs) and is used for
convenience. Then, based on simulated values of v(k)
and n(k) and the respective filter models, the estimates
of the output by the three filters can be calculated and
are shown in Figure 1(b) (the KF and IKF equations
are detailed in Appendix 1). It is to be noted that in all
cases, the measurements are simulated using the true
system’s dynamics (equations (7)–(9)) and not the

Figure 1. KF-ideal, IKF and KF-1 estimates of the output of the
system to the sinusoidal input u(k) = 15 sin(0:01k): (a) u(k) =
15 sin(0:01k) and (b) system output estimates.
KF: Kalman filter; IKF: interval Kalman filter.
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respective models since they represent the actual
measurements.

Several observations ensue. First, it can be seen that
the KF-1 estimate deviates from the KF-ideal estimate
due to the incorrect model assumed by the former.
However, both of these lie within the bounds of the
IKF interval estimate, as the latter must in principle
contain every single KF estimate arising from a model
contained within the interval model.3 Finally, it can
also be verified that the arithmetic average of the IKF
bounds approximately coincides with the KF-1
estimate.

Let yIKF(k) be the IKF estimate of the system out-
put. If a weight w 2 ½0, 1� is chosen at each time step,
then the weighted average of its bounds, henceforth the
weighted interval Kalman filter (wIKF) estimate, is
given by

ywIKF(k)= yIKF�(k)+w(k) yIKF+ (k)� yIKF�(k)
� �

with

yIKF+ (k)= max yIKF(k)
� �

and yIKF�(k)= min yIKF(k)
� �

ð11Þ

and lies within the boundaries of the IKF interval esti-
mate. In addition, based upon the previous observa-
tions, there exists a particular value of w for which the
wIKF estimate matches the KF-ideal estimate. (Note
also that the KF-1 estimate can be computed from
equation (11) with w(k)=0:5.)

Figure 2(a) depicts, at each time step, these desired
weights that produce a wIKF estimate coincident with
that of KF-ideal, easily calculated from equation (11)
when the KF-ideal estimate is known. The key question
is can these weights be calculated in practice without the
knowledge of the true system dynamics, and hence, with-
out the availability of the KF-ideal estimate? The answer,
fortunately, is yes, as is explained in what follows.

It is well established that under optimal conditions,
the innovations of the KF, or difference between a

priori prediction and measured output, should
comprise a white noise sequence.4 However, under
erroneous modelling assumptions, the optimality of
the KF estimate is lost,5 resulting in an innovation
sequence that ceases to correspond to white noise.
The innovation sequences of both the KF-ideal and
KF-1 estimates of Figure 1(b) are shown in
Figure 2(b).

It seems likely that there should exist a deterministic
relationship between the innovation sequence and the
desired weighting sequence, and as such, it should be
possible to model such a relationship. It is also well
established that ANNs are capable of replicating com-
plex cause–effect relationships, enabling one to predict
the output of such processes for new inputs.6

An ANN as the missing link

The recurrent multi-layer perceptron (RMLP)-type
ANN shown in Figure 3 was trained using as input the
innovation sequence of KF-1 and as target the desired
weights (Figure 2). Due to the fact that the relationship
between innovations and desired weights in most likeli-
hood depends not just on the instantaneous values but
on the trends of the innovations as well, these trends
were incorporated into the ANN model by considering
six consecutive values of the innovations for each
desired output, consisting of the present value as well
as the previous five values: inn(k), inn(k� 1), . . . ,
inn(k� 5). Although not apparently necessary, another
feature was added to the input of the network: the
width of the IKF interval, Dikf(k)= yIKF+ (k) �
yIKF�(k). The addition of this extra input was seen to
enhance the performance of the network, the reason
for which will be discussed in a later section.

It was also observed that the use of feedback from
the output also helped increase the network’s accuracy,
and so, five time-delayed values from the output were
fed back as inputs to the network. Thus, the combined
input to the network at time step k (not counting the
bias unit) can be described as

x(k)=

x1
x2
..
.

x6
x7
x8
..
.

x12

2
6666666666664

3
7777777777775
=

inn(k)
inn(k� 1)

..

.

inn(k� 5)
Dikf(k)
ŵ(k� 1)

..

.

ŵ(k� 5)

2
6666666666664

3
7777777777775

ð12Þ

where ŵ is the output of the network.
Details of the training process used are given in

Appendix 2. The training results are shown in Figure
4(b). The virtue of the fit is evaluated by calculating the
mean square error (MSE) between the predicted output
ŵ and the desired one wt and comparing it to the MSE

Figure 2. (a) Sequence of weights calculated so that the
weighted average of the IKF boundaries coincides with the KF-
ideal estimate and (b) innovation sequence of KF-ideal and KF-1.
IKF: Interval Kalman filter .
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between a constant weighting sequence of 0.5 (the
default weighting that would be used to select a nom-
inal value from the IKF estimate in the absence of any
specific criterion) and wt. In this case, the MSE
decreases from 0.061205 for the latter to 0.001762 for
the ANN prediction, a decrease of over 1.5 orders of
magnitude.

Figure 4 clearly shows that the trained ANN estab-
lishes a mapping between the inputs (innovation
sequence of KF-1 and IKF interval width) and the
desired weighting. However, it is crucial to investigate
whether this model generalises well to new data.

In order to test the trained ANN on new data,
two new data sets were generated from new input
signals applied to the dynamic system, from which the
KF and IKF estimates, desired IKF weighting and
KF innovation sequences were generated. These are
summarised in Figures 5 and 6. Figure 5(a) depicts a
superposition of sinusoidal waveforms of various fre-
quencies and amplitudes used as input to the dynamic
system, while Figure 5(b) and (c) show the data set
generated from it. Also in Figure 5(c) is the predicted
output of the previously trained ANN to the signals
shown in Figure 5(b). Similar graphs are shown in
Figure 6 for the case in which an input consisting of
a square waveform was applied to the dynamic
system (equations (7)–(9)). Table 1 summarises the test
performances of the trained ANN on these new test
sets.

Figure 3. RMLP used, consisting of 12 input units, 5 hidden units and a single output unit.
RMLP: recurrent multi-layer perceptron.

Figure 4. Comparison of desired weighting sequence and
output of trained ANN. The MSE between the desired weight
and ANN output is 0.001762, compared to 0.061205 between
the desired weight and a constant value of 0.5. (a) KF-1
innovation sequence and Dikf and (b) comparison of desired
weighting sequence and ANN output.
IKF: interval Kalman filter; ANN: artificial neural network; MSE: mean

square error.
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Test case 1.

Test case 2.

As can be observed, in both test cases, the MSE of
the trained ANN output is considerably lower than the
mean square difference between the target weighting
and the constant weight that represents the arithmetic
mean of the IKF boundaries.

Thus far so good; however, the attentive reader may
pose the following conundrum: in practice, the real sys-
tem dynamics may differ from that which was used to
generate the data on which the ANN was trained. In
fact, this is most likely to be the case, and one would
not know the precise values representative of the real
system dynamics, for if that were so, then there would
be no need for using an IKF in the first place.

Hence, let it now be supposed that the true dynamics
of the system are given by

x(k+1)=Ax(k)+Bu(k)+v(k) ð13Þ
y(k)=Cx(k)+ n(k) ð14Þ

with

A=Am =
1:002 0

0 0:9945

� �
,

B=
0:753 6:354

0:753 (�4:699)

� �
3 10�6,

C=Cm =
180

p
½ 34:13 15:11 �, v(k);N(0,Q), n(k);N(0,R),

Q=Qm = cov(v)= diagf1, 1g3 10�10,

R=Rm = var(n)=4, Ts =1 ð15Þ

rather than the values given in equation (9). One should
wonder whether the ANN trained under the previous
(initial) assumptions would still be able to correlate
innovations with desired weightings in this new context.
Let an input sequence given by equation (10) (Data 1)
now be applied to the system described by equations
(13)–(15) and the corresponding KF and IKF estimates
be calculated. Figures 7(a)–(c) show the input, the KF-
1 innovation sequence together with the IKF interval
widths, and a comparison of the desired weighting
sequence with the output of the trained ANN, respec-
tively. The MSE of the ANN prediction with respect to
the desired weighting is 0.007434, a 72.17% reduction
compared to the value of 0.026711 that results if a con-
stant sequence of 0.5 is used.

This ascertains that the ANN trained from data gen-
erated through simulation by using some assumed sys-
tem dynamics can still be applied successfully to the
prediction of the desired IKF weighting sequence even
when the true system dynamics differ from those
assumed for training, as long as both lie within the
intervals constitutive of the interval model.

A case study presenting how these concepts may be
used in practice is detailed in the following section.

An ANN-guided wIKF for the navigation
of a USV

In this section, the ideas described previously are
applied to the problem of estimating the heading angle

Figure 5. Performance of trained ANN on test set generated
from an input of superimposed sinusoids. (a) System input:
u(k) = 5 sin (0:25k) + 10 cos(0:15k) + 10 sin(0:08k)
� 8 sin(0:04k) + 5 cos(0:05k), (b) sequences used to generate
ANN input: KF-1 innovation sequence and Dikf and (c)
prediction performance: comparison of desired weighting
sequence and ANN output.
IKF: interval Kalman filter; ANN: artificial neural network; MSE: mean

square error.

Figure 6. Performance of trained ANN on test set generated
from a square wave input. (a) System input: u(k) = 10sign
( sin (0:02k)), (b) sequences used to generate ANN input: KF-1
innovation sequence and Dikf and (c) prediction performance:
comparison of desired weighting sequence and ANN output.
IKF: interval Kalman filter; ANN: artificial neural networks; MSE: mean

square error.
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of an Uninhabited Surface Vehicle (USV). The vehicle
in question consists of a twin-hull catamaran driven by
two propellers, the difference in speed of which enables
the vehicle to steer, and is controlled purposefully to this
end. Let nd represent the difference in revolutions per
minute (rpm) of the two propellers, such that the vehicle
steers to the left when nd is positive and to the right
when it is negative. In effect, from a control point of
view, the vehicle’s yaw dynamics has been modelled
using system identification (SI) techniques.7 The model
obtained is precisely that described by equations (1)–(3),
where u is the aforesaid differential speed of the propel-
lers in rpm, nd, and v models random input distur-
bances to the system to take into account randomly
varying surface effects. Additionally, the vehicle is
equipped with a magnetic compass unit that provides
the instantaneous heading with a random unbiased root

mean square (RMS) error of 2� and is given by y in
equation (2), where n represents the compass error.

In a simulation study, the vehicle is given the task of
completing a way-point following mission as shown in
Figure 8. The trajectory depicted is followed by the
vehicle operating under an autonomous guidance and
autopilot system based on line of sight (LOS) and pro-
portional–integral–derivative (PID) control, respec-
tively, under the constraint of maintaining a constant
forward speed of 3 knot or 1.54 m s21. Additionally,
the value of nd though calculated by the autopilot is
subsequently hard limited to within 6300 rpm, with a
maximum permitted variation from one time step to
the next of 620 rpm, reflecting the physical limitations
of the hardware. In this simulation, the vehicle’s actual
heading was assumed available to feed back to the gui-
dance and autopilot systems. Further details of this set-
up can be found in Annamalai et al.;1 as for the study
undertaken herein, only aspects relative to estimation
of the heading of the vehicle given a model of the same
and a specified control input are needed.

In order to estimate the heading of the vehicle from
the noisy measurements of the compass, a KF may be
used. However, as discussed previously, under incorrect
modelling assumptions, the KF estimate may become
biased. Let it be assumed that although the exact model
of the vehicle’s dynamics is not known, it is certain to
be contained within the interval model described by
equations (4)–(6). In this scenario, the technique

Figure 7. Performance of trained ANN on test set generated
from modified system (equations (13)–(15)). (a) System input:
u(k) = 15 sin(0:01k), (b) KF-1 innovation sequence and Dikf and
(c) prediction performance: comparison of desired weighting
sequence and ANN output.
IKF: interval Kalman filter; ANN: artificial neural network; MSE: mean

square error.

Figure 8. Way-point following mission showing the trajectory
followed by the USV.
USV: uninhabited surface vehicle.

Table 1. Test performances for the ANN trained on data set shown in Figure 4.

Test case 1 Test case 2

MSE_0.5 MSE_ANN Reduction MSE_0.5 MSE_ANN Reduction
0.044161 0.022765 48.45% 0.026177 0.009584 63.39%

MSE: mean square error; ANN: artificial neural network.
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described previously may be put into practice: a set of
dynamics contained within the interval model may be
assumed as the ‘true’ vehicle dynamics, and the esti-
mates of both a KF based on it and a KF based on the
nominal model (equations (1)–(3)) can be simulated,
together with the interval estimates from an IKF
founded on the interval model. The desired weighting
sequence can then be obtained as that which is neces-
sary for the wIKF values to match those of the KF esti-
mates that were obtained using the assumed ‘true’
dynamics. Finally, an ANN can be trained to obtain
these desired weights from the innovation sequence of
biased KF estimates (those obtained from the KF that
uses the nominal system model).

In order to train the ANN, rather than use the way-
point mission described earlier to generate the required
input and target data, a different mission was used.
This allows the mission described previously to be used
to test the method in order to evaluate its performance.
The training mission chosen consists of 14 way-points
which are shown in Figure 9(a). These way-points were

chosen to provide a variety of turning angle require-
ments assuming that the vehicle reaches the way-point
along the ideal trajectory. For instance, if the vehicle
reaches way-point 1 facing east, then it is initially
required to turn 20� towards the left to head towards
the following way-point. When way-point 2 is reached,
it is required to turn left an additional 40�, and so on
until 100� from way-point 5 to way-point 6, before
heading back towards the initial coordinates. It then
has to repeat the trajectory but this time in a clockwise
direction. This forces a large range of the vehicle’s
dynamics to be used for generating training data for
the ANN and thus should favour its capability of accu-
rate prediction for any standard trajectory.

Another point for consideration is what model to
choose from the interval model to represent the ‘true’
dynamics of the vehicle for simulation. Instead of
choosing a single model for the whole mission, different
sets of models were chosen during different time inter-
vals. The values of B for simulating the vehicle’s
dynamics during the course of the training mission

Figure 9. Way-point following mission for training the ANN. (a) Way-point specification and trajectory followed by the USV for
the training mission, (b) controller input: differential thrust calculated by the autopilot, (c) heading estimates, (d) KF-1 innovation
sequence and Dikf and (e) comparison of desired weighting sequence and trained ANN output.
USV: uninhabited surface vehicle; ANN: artificial neural network; KF: Kalman filter; IKF: interval Kalman filter; MSE: mean square error.
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were set to initially coincide with those of Bm up until
reaching the first way-point and subsequently to vary
as follows

B(1)=Bm(1)+0:25Bm(1)sign sin
2p

T1
k

� 	� �
, T1 =400 s

ð16Þ

B(2)=Bm(2)+0:25Bm(2)sign sin
2p

T2
k

� 	� �
, T2 =450 s

ð17Þ

The training data set will thus be generated from
multiple dynamic systems covering several combina-
tions of values selected from the extremes of the inter-
val model and provides a richer training set than would
be generated using a constant set of dynamics for simu-
lating the vehicle for the entire duration of the mission.

Based on these varying dynamics, Figure 9(a) shows
the actual path taken by the vehicle using LOS gui-
dance and a PID autopilot, while the PID-generated
differential propeller speed is shown in Figure 9(b). For
the trajectory followed, both guidance and control sys-
tems were given the actual heading of the vehicle.
Additionally, a KF was used to estimate the heading
based on simulated noisy compass measurements, using
the actual dynamics of the vehicle for prediction. The
estimates of this KF are labelled as KF-ideal in Figure
9(c). A second KF, one that used the nominal system
model instead, was used to generate the estimates
labelled as KF-1 in Figure 9(c). Finally, an IKF was
also implemented and the interval estimates therefrom
are plotted on the same figure.

Figure 9(d) shows the innovation sequence of the
biased KF along with the IKF interval widths, both
of which are used as inputs to the ANN. Finally,
Figure 9(e) shows the desired (target) weighting
sequence (calculated so that the wIKF estimate matches
the unbiased KF estimate (KF-ideal)). This input and
target data set were used to train the ANN of Figure 3.
The trained network’s output is plotted alongside the
target output in Figure 9(e). The training accuracy is
quantified by an MSE of 0.000430, in contrast to the
average mean difference of 0.019080 between the
desired weighting and a constant value of 0.5, some 1.5
orders of magnitude lower.

To test the trained ANN on the initial way-point
mission (Figure 8), three test sets were generated by
choosing different vehicle dynamics within the interval
model (equations (4)–(6)). In all three, the initial vehicle
dynamics coincides with that of the nominal model
(equations (1)–(3)), and the KF-ideal and KF-1

estimates coincide. From way-point 2 onwards, the val-
ues of B(1) and B(2) (of the ‘true’, or simulated, vehicle
dynamics) were chosen according to the values shown
in Table 2.

For each test case, the innovations of KF-1 and the
IKF widths were calculated, as well as the desired
weighting sequence (by imposing that the wIKF esti-
mate equals the KF-ideal estimate). The previously
trained ANN was then used to predict the desired
weight based on innovations and IKF widths. The
results for each test case are depicted in Figures
10(a)–(c), respectively, and Table 3 summarises for
each one the reduction in MSE with respect to the
desired weighting sequence.

The results show that the trained ANN can be
applied successfully to predict the desired weights
required for the wIKF estimate to approximate the
optimal (KF-ideal) estimate. It should also be noted
from the graphs that the majority of the error between
the predicted and desired weights occurs during the ini-
tial stages of the simulation, when the IKF intervals
are relatively small. (Although these are not shown for
the test cases, it can be observed to be so in Figure 9(d)
for the training data and is generally the case due to
the nature of IKF interval computations where the ini-
tially narrow intervals tend to grow.2) When the IKF
widths are small, errors in the weights become less sig-
nificant, as both IKF bounds are themselves already
close to the optimal estimate, and hence, so is any
weighted average of these (with weight between 0 and
1). Therefore, a performance measure that takes this
into account would flaunt even better numbers than
those presented in the table.

It should also be said that the ANN architecture
presented here (Figure 3), and its particular characteris-
tics (layer sizes, etc.), was found to provide a good bal-
ance between prediction accuracy and number of
neurons employed, but is by no means the only valid
architecture that can be used, and furthermore, for
each system, the most suited type and size of ANN
should be explored.

Discussion and conclusion

Although the KF has been used extensively and suc-
cessfully in numerous applications,5 when the model
used by the KF is deficient, then as demonstrated in the
preceding sections, the estimates tend to become biased.
For applications that increasingly require robust state
variable estimation at reduced costs, carrying out pre-
cise modelling of the system becomes prohibitive. Such

Table 2. Models for generating test data.

Test case 1 Test case 2 Test case 3

B(1) = Bm(1) + 0:25Bm(1) B(1) = Bm(1)� 0:25Bm(1) B(1) = Bm(1) + 0:25Bm(1)
B(2) = Bm(2)� 0:25Bm(2) B(2) = Bm(2) + 0:25Bm(2) B(2) = Bm(2) + 0:25Bm(2)
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is the case, for example, with low-cost USV systems
which have seen a recent surge in the number of appli-
cations, and for which ever-increasing levels of auton-
omy are desired at reduced costs.8 SI is a popular
modelling strategy to this end, but because it is based
on empirical data, the model values obtained must be
understood to be precise to within a certain tolerance.
Even if accurate models could be developed, tolerance
to changes in system dynamics is also a quality that is
increasingly required; for example, in the case of USVs,
varying mission objectives could mean being able to
operate under varying payload. For this reason, robust
navigation systems that can handle imprecisely mod-
elled or varying dynamics are needed.

The IKF was developed to extend the KF to systems
described in terms of intervals rather than precise

point-valued quantities. However, the main problem
with interval filtering is that due to the conservative
nature of interval computation, the estimates tend to be
over-conservative, limiting their practical usage.2 In
practice, a single estimate is often required, and several
studies have been aimed at inferring point-valued esti-
mates from the interval estimates of the IKF. Chui and
Chen9 suggested using a weighted average of the IKF
boundaries, and, in the absence of any weighting cri-
teria, to take the arithmetic average of the boundaries.
As demonstrated in this article, the wIKF methodology
developed provides estimates that are much improved
over taking the simple arithmetic average of the interval
bounds. Another method was proposed by Weng
et al.10 in which evolutionary programming is used as a
global search method to find the point estimate that
minimises the maximum estimation error covariance.
However, on the one hand, this method requires run-
ning an iterative search algorithm at each time step, and
on the other hand, it does not use actual measurement
data to infer the desired point-valued estimate, being
based on statistical principles alone. In the approach
used here, the training of the network is done offline, so
that it is only used for prediction during an actual mis-
sion. This only requires forward propagation of infor-
mation through the network, which can be computed
efficiently using a vectorised implementation.

Other robust filtering approaches have been pro-
posed which alter the basic hypotheses or structure of
the IKF algorithm,11,12 resulting in either loss of the
optimality quality of the IKF’s interval estimate or
rigour in the sense of guaranteeing to contain any opti-
mal estimate of a particular realisation of the interval
system. In the method presented here, the IKF original
estimate is maintained, while its boundaries are simply
used to infer a point-valued estimate for practical pur-
poses. Thus, while this latter estimate can be used, refer-
ring for example to the case study presented here, as
input to a guidance and control system, the IKF inter-
vals themselves can be used to compute guaranteed
bounds to the trajectory followed by the vehicle and to
trigger an alarm should these bounds permeate into an
undesired region.

A pending comment with regard to the particular
example used in this article to demonstrate the tech-
nique developed is the use of Dikf(k) as additional input
to the ANN. Its use was seen to increase the predictive
accuracy of the network, especially to correct the scal-
ing of the prediction. A heuristic explanation for this
phenomenon is the following. The IKF intervals them-
selves inevitably tend to widen over-conservatively as
mentioned earlier, and in fact, depending on the sharp-
ness of the interval computation, the width may vary
significantly. However, they all represent the same
‘optimal interval’ that would be obtained if interval
computation could be carried out with infinite sharp-
ness. In other words, the ANN developed here should
be immune to the exact width of the IKF interval and
sensitive only to the innovations of the biased KF

Figure 10. Comparison of desired weighting sequence and
trained ANN output for (a) test data 1, (b) test data 2 and
(c) test data 3.
ANN: artificial neural network; MSE: mean square error.
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estimate. It thus requires information of the former,
which should somehow be incorporated into the ANN
prediction process since its target output, the optimal
wIKF estimate, is computed from the IKF bounds
themselves.

To conclude, it has been demonstrated how an ANN
can be trained successfully to use residual KF data (the
innovation sequence) to infer advantageous weightings
for obtaining point-valued estimates from IKF bound-
aries, as compared to simply using, for example, the
arithmetic mean of the boundaries (which provides simi-
lar estimates to that of the KF that uses the incorrect
nominal model). The test results for the case study pre-
sented here (Table 3) show that the trained ANN is capa-
ble of generalising well to new situations. Depending on
the application, it is always possible to develop an ade-
quate training set that will enable effective prediction for
new missions within the scope of the application. This
required analysis, the training process and evaluation of
the trained network on a set of new missions can all be
done beforehand and via simulation alone, rending this
method cost-effective, reliable and practically realisable.
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Appendix 1

Consider the following linear interval stochastic–
deterministic system

xI(k+1)=AIx(k)+BIu(k)+v(k) ð18Þ

yI(k)=CIx(k)+ n(k) ð19Þ

where the components of AI, BI, CI, the state vector
xI(k) and the output vector yI(k) are interval values;
u(k) is the (deterministic) system input and v(k) and
n(k) are white noise sequences with zero-mean Gaussian
distributions with known covariances cov(v)=Q,
cov(n)=R, andE½v(l)nT(k)�=08l,k, E½xI(0)vT(k)�=0,
E½xI(0)nT(k)�=08k.

Then, given successive measurements of the output,
the IKF equations (equations (20)–(24)) provide an
interval enclosure of the statistically optimal (unbiased
and minimum error variance) estimates of the system
state vector, for every point-valued system contained in
the interval model. The state estimate at each time step
is obtained from the previous estimate and the new
observed measurement, y(k), assuming initial estimates
for xI(0) and the error covariance matrix PI+ (0). Note
that the measurement vector is a realisation of the
uncertain interval vector yI(k) and is an ordinary vector
(with point-valued elements).

Table 3. Test performances for the trained ANN.

Test case 1 Test case 2 Test case 3

MSE_0.5 MSE_ANN Reduction MSE_0.5 MSE_ANN Reduction MSE_0.5 MSE_ANN Reduction
0.032359 0.002638 91.85% 0.025314 0.004158 83.57% 0.012726 0.000795 93.75%

MSE: mean square error; ANN: artificial neural network.
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Prediction

x̂I�(k+1)=AIx̂I+ (k)+BIu(k) ð20Þ
PI�(k+1)=AIPI+ (k)AIT +Q ð21Þ

Kalman gain

KI(k)=PI�(k)CIT CIPI�(k)CIT +R
n o�1

ð22Þ

Correction

x̂I+ (k)= x̂I�(k)+KI(k) y(k)� CIx̂I�(k)
� �

ð23Þ
PI+ (k)= I� KI(k)CI

� �
PI�(k) ð24Þ

and the output estimate at time k is simply

yI
IKF

(k)=CIx̂I+ (k) ð25Þ

When the elements of equations (18) and (19) are all

point-valued so that AI, BI, CI, xI and yI can be
replaced by A, B, C, x and y, respectively, then the
recursive equations (20)–(25) describe the ordinary KF

algorithm by replacing AI, BI, CI, KI, x̂I�, x̂I+ , PI�,

PI+ and yI
IKF

with A, B, C, K, x̂�, x̂+ , P�, P+ and

yKF, respectively.

Appendix 2

The RMLP of Figure 3 has a hidden layer with five
units, all of which incorporate hyperbolic tangent acti-
vation functions. Information is propagated forward
through the network at each time step according to
equation (26).

Forward propagation

a(1) =
1
x

� �
; a(2) =

1
tanh (Θ(1)a(1))


 �� �
; ŵ= a(3) =Θ(2)a(2)

ð26Þ

where a(l) are the outputs of the nodes of layer (l), and
Θ(1) 2 R

53 13 and Θ(2) 2 R
13 6 are the matrices of para-

meters of the network such that Θ
(l)
ij represents the

strength of the connection between node a(l)j and a(l+1)
i

(Figure 3).
Training the network consists of finding the para-

meters Θ
(l)
ij that minimise the cost function

J=
1

m� 5

Xm
k=6

1

2
wt(k)� ŵ(k)ð Þ

2

ð27Þ

m being the number of training samples. This process
was carried out recursively via the gradient descent
(GD) algorithm: after assigning random initial values
to Θ

(l)
ij , the parameters are updated as

Θ
(l)
ij : =Θ

(l)
ij � a

∂J

∂Θ
(l)
ij

for allΘ
(l)
ij ð28Þ

until convergence is reached, where a is the learning
rate, chosen adequately based on trial and error. The
gradient of the cost function with respect to the net-
work’s parameters was computed using the back-
propagation (BP) method.6

BP. For each training pattern x(k) (equation (12)) and
target wt(k)

1. Compute ŵ (equation (26));
2. d(3) =wt � ŵ;

d
(2)
i = 1� tanh2

X
j

Θ
(1)
ij a

(1)
i

 !" #
Θ

(2)
i d(3); i=1, . . . , 5

D
(2)
i : =D

(2)
i � d(3)a

(2)
i ; i=0, . . . , 5

D
(1)
ij : =D

(1)
ij � d

(2)
i a

(1)
j ; i=1, . . . , 5; j=0, . . . , 12

ð29Þ

end

∂J

∂Θ
(l)
ij

=
1

m
D
(l)
ij ð30Þ

The GD process was applied in two stages, depend-
ing on how the gradient was calculated. During the
first set of iterations, the (delayed) target values wt

were used to construct x(k) for computation of ŵ in
the first step of the BP process, effectively training a
network without feedback. During a second stage,
(past) predictions of the network ŵ were used to con-
struct x(k) in accordance with the true feedback archi-
tecture of the network. Although the gradients
computed with the BP algorithm in this case are
approximations to the true gradients, the errors are
small as after the first set of iterations, the network is
sufficiently trained to output predictions close to the
target values.
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