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Abstract

In this thesis we consider three-dimensional dynamical systems in the neighbour-

hood of a singular point with rank-one and rank-two resonant eigenvalues.

We first introduce and generalize here a new technique extending previous

work which was described by Aziz and Christopher (2012), where a second first

integral of a 3D system can be found if the system has a Darboux-analytic first

integral and an inverse Jacobi multiplier. We use this new technique to find two

independent first integrals one of which contains logarithmic terms, allowing for

non-zero resonant terms in the formal normal form of vector field.

We also consider sufficient conditions for the existence of one analytic first

integral for three dimensional vector fields around a singularity. Starting from the

generalized Lotka-Volterra system with rank-one resonant eigenvalues, using the

normal form method, we find an inverse Jacobi multiplier of the system under

suitable conditions. Moreover, these conditions are sufficient conditions for the

existence of one analytic first integral of the system. We apply this to demonstrate

the sufficiency of the conditions in Aziz and Christopher (2014).

In the case of two-dimensional systems, Christopher et al. (2003) addressed the

question of orbital normalizability, integrability, normalizability and linearizability

of a complex differential system in the neighbourhood at a critical point. We here

address the question of normalizability, orbital normalizability, and integrability

of three-dimensional systems in the neighbourhood at the origin for rank-one
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resonance system.

We consider the case when the eigenvalues of three-dimensional systems have

rank-one resonance satisfying the condition λ+µ+ν = 0 as a typical example, and

we use a further change of coordinates to bring the formal normal form for three-

dimensional systems into a reduced normal form which contains a finite number

of resonant monomials. By using this technique, we can find two independent

first integrals formally. The first one of these first integrals is of Darboux-analytic

type, and other first integral contains logarithmic terms corresponding to non-zero

resonant monomials of the original system.

We introduce the monodromy map in three-dimensional vector fields by using

these two independent first integrals to study a relationship between normaliz-

ability and integrability of systems. In the case of rank-one resonant eigenvalues,

we get a monodromy map which is in normal form, and then in the same way as

the case of vector fields, we use a further change of coordinates to reduce this map

into a reduced map which contains only a finite number of resonant monomials.

This thesis also examines briefly the case of rank-two resonant eigenvalues

of three-dimensional systems. The normal form in this case contains an infinite

number of resonant monomials, we were not able to find a reduced normal form

with a finite number of resonant monomials. This situation is therefore much

more complex than the rank-one case. Thus, we simplify the investigation by

truncating the 3D system to a 3D homogeneous cubic system as a first step to

understanding the general case. Even though we can find two independent first

integrals, the second one involves the hypergeometric function, leading to some

interesting topics for further investigation.
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Chapter 1

Introduction

Normal forms have been applied to problems in many areas of mathematics in

order to simplify the underlying calculation. We shall consider here normal forms

of analytic vector fields and maps.

In this thesis, we shall develop the theory of normal forms for three-dimensional

dynamical systems (3DDS) in a neighbourhood of a singular point.

We first briefly review the theory of normal forms for vector fields and diffeo-

morphism.

In these cases, a normal form is a simpler form near a singular point obtained

by using a suitable change of coordinates. The aim of this is to display the local

dynamical properties better. In many cases these transformations are formal and

not analytic, but still provide valuable information about the dynamics of the

system.

There have been many of studies on the application of normal forms in two-

dimensional (2D) vector fields. However, the application of normal forms in three-

dimensional (3D) vector fields has been the subject of much less research, and in

particular little is known about their possible reduced normal forms. Our aim here

to investigate such reduced normal forms with application to the integrability of
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3D vector fields.

Among many historical references we note the following. Birkhoff (1966), in

the early stages of the theory, was interested in Hamiltonian systems, and the

normalizing transformations considered were canonical transformation. Bruno

(1989) obtained in detail the convergence and divergence criteria for the nor-

malizing transformations. Ashkenazi and Chow (1988) have presented the basic

theory of normal forms based on the classical ideas of Poincaré and Birkhof; they

also discuss the relationship between vector fields and diffeomorphisms by using

normal form methods. Basic references on normal forms and their applications

may be found in Chow and Hale (1982), Guckenheimer and Holmes (1983) and

Arnold (1988).

In this thesis, we shall examine the issue of orbital normalizability and inte-

grability in the neighbourhood of the origin for the 3D system,

ẋ = λx+
∞∑
n=2

Pn(x, y, z), ẏ = µ y +
∞∑
n=2

Qn(x, y, z), ż = ν z +
∞∑
n=2

Rn(x, y, z),

(1.1)

where λ, µ, ν 6= 0 and Pn, Qn, Rn are homogeneous polynomials in C[x, y, z] of

degree n.

We are interested if it is possible to perform a change of coordinates in the

neighbourhood of the origin to bring the system (1.1) to the system,

ẋ = x(λ+
∞∑
n=1

P̃n(x, y, z)),

ẏ = y(µ+
∞∑
n=1

Q̃n(x, y, z)),

ż = z(ν +
∞∑
n=1

R̃n(x, y, z)).

(1.2)

This system is known as generalized Lotka-Volterra (GLV) equations, and are
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also sometimes referred to as Kolmogorov equations. The system (1.2) is more

general than either predator-prey or the competitive Lotka-Volterra (LV) systems,

for more detail see Rand et al. (1994) and Hofbauer and Sigmund (1998).

From the system (1.2), when z = 0, we get the 2D generalized Lotka-Volterra

system,

ẋ = x(λ+
∞∑
n=1

P̃n(x, y)), ẏ = y(µ+
∞∑
n=1

Q̃n(x, y)). (1.3)

These systems have been considered by many authors especials in the case of poly-

nomial systems. Giné and Romanovski (2010) found the necessary and sufficient

conditions for a singular point to be integrable for planar quintic LV equations

with (1 : −1)-resonance. Żo la̧dek (1997) discussed some conditions for the ex-

istence of a local meromorphic first integral, H = xλ1y−λ2 + · · · , of the system

(1.3). Christopher et al. (2003) addressed the question of orbital normalizability,

integrability, normalizability and linearizability of a complex differential system in

the neighbourhood at a critical point for the system (1.3) with eigenvalues in the

ratio 1 : −λ with λ ∈ R+. There are other works relative to this topic, and one

can find many information in Christopher and Rousseau (2004) and Christopher

et al. (2004). Moreover, other investigations about the 2D-LV systems can be

found in Romanovski and Shafer (2008) and Wang and Liu (2008).

The qualitative properties of the system (1.2) when P̃n = Q̃n = R̃n = 0

for n > 1 has been widely investigated, and we only mention a few references.

Bobienski and Żo la̧dek (2005) considered the case when a centre does not lie on

any coordinate plane. The use of the Darboux method to show the integrability of

LV systems were investigated by several researcher, such as Christodoulides and

Damianou (2009), Llibre and Valls (2011), Aziz and Christopher (2012) and Hu

et al. (2013). Another question is to realize how many limit cycles can be obtained

when perturbing systems in the centre variety in the class of the 3D-LV systems.
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Salih (2015) used a new technique to prove that two and four limit cycles can be

bifurcated for the centre on a planar and a conic invariant surface, respectively,

of the LV systems.

In Chapter 2, we give some background material for this thesis. Then, in

Chapter 3 and 4, we consider the case when the eigenvalues for the system (1.2)

have rank-one resonance satisfying the condition λ + µ + ν = 0. In this case, a

normal form of the system (1.2) can be generated by exactly one resonant mono-

mial of the form u = xyz. This result is a powerful way to find two independent

first integrals under appropriate conditions on the resonant coefficients.

In Chapter 3, we are interested to find one analytic first integral for the system

(1.2). The integrability of non-Hamiltonian systems are, in general, very compli-

cated to detect. The Darbouxian theory of integrability can be used to find first

integrals of vector fields. This kind of integrability gives a link between the inte-

grability of vector fields and the number of invariant algebraic surfaces that they

have. If the system (1.2) is locally analytically completely integrable in C3, then

the system has two functionally independent analytic first integrals, see Zhang

(2008). This proves that the system can be brought to an orbitally linearizable

system by an invertible change of coordinates. Also, Zhang (2014) showed that

if an n-dimensional polynomial differential system has n − 1 functionally inde-

pendent Darboux Jacobian multiplier, then it has n− 1 functionally independent

Liouvillian first integrals. Llibre et al. (2015b) proved that in n-dimensional inte-

grable systems, any Jacobian multiplier is functional independent of these n − 1

independent first integrals such that the divergence of the system is not zero.

In our work, by using the normal form method, we find an inverse Jacobi

multiplier for the system (1.2) under appropriate conditions, and then we are able

to find the sufficient conditions for existence of one formal analytic first integral.

In this way, we can prove a sufficient condition for the existence of one first integral
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for some cases of the 3D-LV system. These cases have been left as conjectural in

Aziz and Christopher (2014), who gave a number of necessary conditions for one

first integral, but could not prove their sufficiency.

In Chapter 4, we consider reduced normal form systems (RNFS), by which we

mean that, by a further change of coordinates, a formal normal form of the system

(1.2) can be brought to a simpler form containing a finite number of resonant

monomials. In the case of 2D vector fields, Ilyashenko and Yakovenko (2008)

discuss in detail of the formal normal forms for 2D vector fields. Christopher

et al. (2003) considered a reduced normal form system for 2D vector fields in the

cases when the vector fields were normalizable and orbital normalizable. We are

interested in similarly looking for a further change of coordinates for which the

system (1.2) can be brought to a RNFS which only contains a finite number of

resonant monomials. We show that this RNFS has two independent first integrals.

The second one of these first integrals is found by a new technique. This technique

extends previous work which was described by Aziz and Christopher (2012). This

new technique is detailed in Theorem 6.

Another approach considered here is to use the monodromy map of the system

(1.2) to determine the type of the singular point. Applications of monodromy are

pervasive in mathematics, even playing an important role in arithmetic algebraic

geometry. Many topics associated with monodromy in differential equations will

be found in Żo la̧dek (2006). We apply a monodromy map in the neighbourhood of

one of the separatrices using the two independent first integrals near a non-trivial

loop surrounding the singular point to obtain a 2D monodromy map. The idea of

using monodromy to examine differential equations were first explained by Mat-

tei and Moussu (1980), see also Rousseau (2004) and Ilyashenko and Yakovenko

(2008). In the last few years, lots of researches have been concentrated on the

monodromy map for 2D vector fields. More details about monodromy can be
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found in the works of Arnold (1988), Zakeri (2001), Christopher et al. (2003), and

Christopher and Rousseau (2004).

Aziz (2013) considered the use of the monodromy techniques in 3D-LV systems.

In our work, we use a different method to understand the monodromy map of a

3D vector field. This is detailed in Section 4.3.

In the same way as the case of vector fields, we also apply a further trans-

formation to reduce the 2D monodromy map into a simpler map. The idea of a

reduced normal form for 2D map was investigated by Chen and Della Dora (1999),

Wang and Liu (2008) and Abate and Raissy (2013).

In Chapter 5, we consider the case when the eigenvalues of the system (1.2)

have rank-two resonance. In this case, a normal form of the system can be gen-

erated by two independent resonant monomials. However, the normal form still

contains an infinite number of resonant monomials even when reduced. This sit-

uation is much more complex than the rank-one case. Therefore, we simplify the

investigation by truncating the 3D system to a 3D homogeneous cubic system as

a first step to understand the general case.

Investigation of cubic centres for 2D systems is still a subject of current re-

search. Sibirskii (1965) showed that the cyclicity of a linear centre or focus per-

turbed by homogeneous polynomials of the third degree is at most five. Chavarriga

and Giné (1998) gave a simple characterisation for all integrable cases for 2D of

cubic systems with degenerate infinity in polar coordinates. Schlomiuk (1993)

investigated to make a distinction between a focus and a weak focus of a general

cubic system by using Poincaré-Lyapunov constant. See also, Chavarriga et al.

(1999), Romanovskii and Shcheglova (2000), Liu and Chen (2002), Llibre and

Vulpe (2006), Hu et al. (2008), Llibre et al. (2015a) and the references therein.

Here, we find two independent first integrals of the 3D homogeneous cubic sys-

tem by using the Darboux method with an inverse Jacobi multiplier. The second
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one of these first integrals involves the hypergeometric function and interesting

some things which have been unable solve in this thesis.
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Chapter 2

Background

In this chapter, we give some definitions, theorems and a brief explanation of

some of the methods we use, such as the Darboux method and normal forms as a

background to the thesis.

2.1 The basic definitions

We consider the three dimensional dynamical system (3DDS):

ẋ = λ1x+
∞∑
n=2

Pn(x, y, z),

ẏ = λ2y +
∞∑
n=2

Qn(x, y, z),

ż = λ3 z +
∞∑
n=2

Rn(x, y, z),

(2.1)

where Pn, Qn, Rn are homogeneous polynomials in C[x, y, z] of degree n. We let

λ = (λ1, λ2, λ3).

Definition 1. System (2.1) is said to have resonant eigenvalues at the origin if

8



2.1. The basic definitions

λi, i = 1, 2, 3, satisfy the following arithmetic condition

(λ, n)− λi = λ1n1 + λ2n2 + λ3n3 − λi = 0, for some i ∈ {1, 2, 3}, (2.2)

for some n = (n1, n2, n2) ∈ N 3 = (N ∪ {0})3.

The monomial Xn = xn1yn2zn3 in the system (2.1) with the order |n| ≥ 2 is

said to be a resonant monomial if n satisfies equation (2.2), where |n| = n1 +n2 +

n3. The coefficient of the monomial Xn in the system (2.1) is called a resonant

coefficient and the corresponding term is called a resonant term.

Note that if condition (2.2) does not hold, then the eigenvalues are called

nonresonant and then by a formal change of coordinates the system (2.1) can be

brought formally into its linear system, (more details can be found in Ilyashenko

and Yakovenko (2008)).

By normalizability of the system (2.1) in a neighbourhood of the origin, we

mean that there is a change of coordinates, transforming the system (2.1) into a

system in normal form (see section (2.4)) which is one in the following form

Ẋ = X(λ1 +
∞∑
n=1

P̃n(X, Y, Z)),

Ẏ = Y (λ2 +
∞∑
n=1

Q̃n(X, Y, Z)),

Ż = Z(λ3 +
∞∑
n=1

R̃n(X, Y, Z)),

(2.3)

where P̃ , Q̃, R̃ ∈ C[X, Y, Z] only containing the resonant terms.

Theorem 1 (Poincaré-Dulac theorem). A formal vector field is formally equiva-

lent to a vector field whose a linear part is in Jordan normal form and which has

only resonant monomials in the nonlinear part.
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2.1. The basic definitions

According to the above theorem, there is an invertible formal power series tan-

gent to identity (X, Y, Z) = ϕ(x, y, z) = (x+o(x, y, z), y+o(x, y, z), z+o(x, y, z)),

transforming the system (2.1) to the system (2.3). In this state, we denote

ϕ(x, y, z) transforms the system (2.1) to a normal form.

By χ we denote the corresponding vector field of system (2.1)

χ = P (x, y, z)
∂

∂x
+Q(x, y, z)

∂

∂x
+R(x, y, z)

∂

∂z
,

where P = λ1x +
∑∞

n=2 Pn(x, y, z), Q = λ2y +
∑∞

n=2Qn(x, y, z) and R = λ3z +∑∞
n=2 Rn(x, y, z).

Definition 2. A singular point (x0, y0, z0) of the system (2.1) is a point that

satisfies the equation P (x0, y0, z0) = Q(x0, y0, z0) = R(x0, y0, z0) = 0, otherwise is

called an ordinary point.

Definition 3. A continuously differentiable function ϕ(x, y, z) in a neighbourhood

of a singular point is said to be a first integral of the system (2.1) if ϕ(x, y, z) is

a constant on the trajectories of the system (2.1). That is

χ(ϕ) =
∂ϕ

∂x
P +

∂ϕ

∂y
Q+

∂ϕ

∂z
R = 0.

Definition 4. By a Darboux-analytic first integral, we mean that the first integral

is of the form

ϕ = xαyβzγ(k + o(x, y, z)),

where α, β, γ are constant and k 6= 0.

If we identify the vector field χ with the following the 2-form:

Ω = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy, (2.4)
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2.1. The basic definitions

where ∧ is the exterior product or wedge product of vectors. The function

ϕ(x, y, z) is a first integral, if it satisfies

dϕ ∧ Ω = 0, where dϕ =
∂ϕ

∂x
dx+

∂ϕ

∂y
dy +

∂ϕ

∂z
dz.

We are interested mainly in Darboux-analytic first integrals. Also, we say a term

in the first integral ϕ with order |n| = |n1 +n2 +n3| ≥ 1 is the resonant monomial

if the order of this monomial satisfies the following equation

(λ, n) = λ1n1 + λ2n2 + λ3n3 = 0, λ = (λ1, λ2, λ3), n = (n1, n2, n3) ∈ N 3

where N = N ∪ {0}.

The system (2.1) is partially integrable if it has only one first integral, or it

is completely integrable if it has two independent fist integrals (Cairo and Llibre,

2000). The concept of integrability for the system (2.1) is based on the existence of

first integrals. It is crucial to find conditions on the parameter values (usually the

coefficients of the monomials) for which the system (2.1) is partially or completely

integrable.

Definition 5. By the integrability of the system (2.1) at the origin, we mean that

there is an analytic change of coordinates around zero, transforming the system

(2.1) into the system:

Ẋ = λ1X ξ(X, Y, Z), Ẏ = λ2Y ξ(X, Y, Z), Ż = λ3Z ξ(X, Y, Z), (2.5)

where ξ(X, Y, Z) = 1 + o(X, Y, Z). If the change of coordinates can be chosen so

that ξ(X, Y, Z) = 1, then we say the system (2.1) is linearizable.
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2.1. The basic definitions

If the system (2.1) is integrable, then it has two first integrals

ϕ1 = X−λ2Y λ1 , ϕ2 = Y λ3Z−λ2 , (2.6)

which pulled back to original coordinates

ϕ̃1 = x−λ2yλ1(1 + o(x, y, z)), ϕ̃2 = yλ3z−λ2(1 + o(x, y, z)), (2.7)

given two independent first integrals of the system (2.1). Conversely, if we have

two first integrals of the form (2.7), then by an invertible change of coordinates, we

can bring the two first integral (2.7) into the form (2.6), and hence the transformed

system is of the form (2.5) for some ξ(X, Y, Z) = 1 +O(X, Y, Z).

Definition 6. A function M(x, y, z) : U ⊂ R3 → R is said to be an inverse Jacobi

multiplier (IJM) of 2-form Ω if it is not locally null and satisfied the equation

d(M) ∧ Ω = M d(Ω), (2.8)

where d(M) = ∂M
∂x
dx+ ∂M

∂y
dy+ ∂M

∂z
dz. According to the vector field χ, we can use

the partial differential equation below to find an inverse Jacobi multiplier

χ(M) = M div(χ),

where div(χ) stands for the divergence operator of the system (2.1), χ(M) =

∂M
∂x
P + ∂M

∂y
Q+ ∂M

∂z
R, and similar for Ω.

In the 3DDS, if there two independent first integrals ϕ(x, y, z) and ψ(x, y, z)

exist, then Ω = M(dϕ ∧ dψ), where Ω is the 2-form as in (2.4), and the function

M is an inverse Jacobi multiplier.
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2.2. Integrability and normalizability of systems

The foundation of material on the IJM used here can be found in Berrone and

Giacomini (2003).

2.2 Integrability and normalizability of systems

To understand the results are achieved in this thesis we need a basic background

of the normal form method for vector fields. We relate this to the concept of

integrable and normalizable systems for the system (2.1) with rank-one and rank-

two resonant eigenvalues at the origin (see Definition 7).

Let us start with a set

Rλ = {n = (n1, n2, n3) ∈ Z3
≥0 : (λ, n) = λi, i = 1, 2, 3, |n| ≥ 2}

where λi, i = 1, 2, 3, are the eigenvalues, |n| = |n1+n2+n3| and (λ, n) =
∑3

i=1 λini.

We call the rank of vectors in the set Rλ, by rλ, clearly if λ1, λ2, λ3 6= {0} then

rλ ≤ 2

Zhang (2008) proved that if the origin of the system (2.1) has no eigenvalues

equal to zero, (even at least one of the eigenvalues not equal to zero, (see Zhang

(2013))), then the system (2.1) has two locally independent analytic first integrals

if and only if rλ = 2, and by an analytic change of coordinates, the system (2.1)

is analytically equivalent to its normal form (2.3).

Definition 7. The eigenvalues λi, i = 1, 2, 3, are said to have rank-one resonance

if there is exactly one independent linear dependency, and rank-two resonance

if there is exactly two independent linear dependencies over Q of these three

eigenvalues.

Definition 8. Following Arnold (1988), the Poincaré domain in C3 is the collec-

tion of all tuples (λ1, λ2, λ3) such that the convex hull of the point set {λ1, λ2, λ3}

does not contain the origin inside or on the boundary.

13



2.2. Integrability and normalizability of systems

The Siegel domain is the complement of the Poincaré domain.

We are interested in the case where a singular point whose non-zero eigenvalues

lie in the Siegel domain with rank-one resonance. Now, if we fix the value of these

eigenvalues, then any resonant monomials in normal form of the system (2.1)

should satisfy the condition

aλ1 + bλ2 + cλ3 = 0, (2.9)

where (a, b, c) ∈ Z3 \ {0}. Moreover, zero lies inside a triangle formed by the

eigenvalues and can be written as a convex combination of these eigenvalues (take

a look at the triangle in Figure (2.1, a)

Now, we want to show that a, b, c ∈ Z≥0. Suppose, this does not hold. Firstly,

if all a, b, c < 0, then we can multiply by −1, we get all elements are positive.

So, all three are not positive the only remain options, are that, two elements of

a, b, c are positive and other element is negative, or one of them is positive and

other elements are negative. But if we choose the formal case, then by multiplying

the coefficients by −1, this brings us to the later case. Therefore, without loss of

generality, we can assume that b < 0 and a, c > 0. By definition of the convex

hull, we want to find the location of zero. We have

aλ1 + bλ2 + cλ3 = aλ1 + (−b)(−λ2) + cλ3 = 0, where a,−b, c ≥ 0,

by multiplying above equation by 1
a−b+c , we get

a

a− b+ c
λ1 +

−b
a− b+ c

(−λ2) +
c

a− b+ c
λ3 = a1λ1 + b1λ2 + c1λ3 = 0,

where a1, b1, c1 > 0, and a1 + b1 + c1 = 1, hence the zero is located inside of the

14



2.2. Integrability and normalizability of systems

point set {λ1,−λ2, λ3}. This implies that zero located in two different places,

which is impossible, hence we can choose all a, b, c in Z≥0, see Figure (2.1, b),

unless zero located on the boundary. If zero located on the boundary, we have

two possibilities,

i. If these three eigenvalues do not lie on the line, in which case zero lies be-

tween two eigenvalues, let zero between λ1 and λ3, and hence from equation

(2.9), we get b = 0 and the equation (2.9) becomes

aλ1 + cλ3 = 0, where (a, c) ∈ Z2 \ {0}.

In the same way to the above argument. If a, b < 0, we can multiply by −1,

we get a, b > 0. So, if a and c are not positive at the same time the only

remain option, is that, one of them is positive and other element is negative,

then we can assume that a > 0 and c < 0, thus we have

aλ1 + cλ3 = aλ1 + (−c)(−λ3) = 0, a,−c > 0,

multiplying by 1
a−c , yields

a

a− c
λ1 +

−c
a− c

(−λ3) = a1λ1 + c1(−λ3) = 0,

where a1, c1 > 0 and a1 +c1 = 1, hence the zero is located inside of the point

set {λ1,−λ3}. This implies that zero located in two different places, which

is impossible, hence we can choose all a, c in Z≥0.

ii. If these three eigenvalues lie on the line, in which case zero also lies between

two eigenvalues, in the same way as above, we can choose all a, b, c in Z≥0.

Also, we consider the case where the linear dependency involves all three eigen-
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2.2. Integrability and normalizability of systems

values. Therefore, all a, b and c are not equal to zero in the same time. If two

of these elements are zero, we get one zero eigenvalue, but we consider non-zero

eigenvalues of the system (2.1). The last case, if we can suppose that one of a, b, c

is zero (let c = 0), then from equation (2.9) we get

aλ1 + bλ2 = 0,

where (a, b) ∈ Z2 \ {0}. In the same way to Case (i). If a, b < 0, we can multiply

by −1, we get both are positive. So, the only remain option, is that, one element

of a, b is positive and other element is negative. By which in this case, we can

assume that a > 0 and b < 0, then we have

aλ1 + bλ2 = aλ1 − b(−λ2) = 0,

multiplying by 1
a−b , yields

a

a− b
λ1 +

−b
a− b

(−λ2) = a1λ1 + b1(−λ2) = 0,

where a1, b1 > 0. This implies that zero located in two different places, which is

also impossible, hence we can choose all a, b in Z≥0,

In order to find all the resonant monomials in the Poincaré-Dulac Theorem 1,

we should choose the vector A = (a, b, c) ∈ Z3
≥0, where XA = xaybzc is the reso-

nant monomial. Convex hull of the point set of eigenvalues In the next theorem,

resonant monomials can be easily described in normal forms. In which we mean

that the normal form can be generated by a finite number of resonant monomials

which depend on the ranks of eigenvalues.
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Figure 2.1: Convex hull of the point set of eigenvalues

Theorem 2. If the system (2.1) is normalizable at the origin with rank-one res-

onant eigenvalues C = (λ1, λ2, λ3), λi 6= 0, i = 1, 2, 3 and there is A = (a, b, c) ∈

Z3
≥0, such that A ·C = 0. Then the normal form (2.3) corresponding to the system

(2.1) can be generated by only one resonant monomial, u = XA = XaY bZc, that

is, the only terms in system (2.3) are uk, k ∈ Q.

Proof. We bring the system (2.1) to the normal form (2.3)

Ẋ = X(λ1 +
∞∑
n=1

P̃n(X, Y, Z)),

Ẏ = Y (λ2 +
∞∑
n=1

Q̃n(X, Y, Z)),

Ż = Z(λ3 +
∞∑
n=1

R̃n(X, Y, Z)),

where P̃ , Q̃, R̃ ∈ C[X, Y, Z] only containing the resonant terms.

Let A′ = (a′, b′, c′) be any non-zero vector in Z3 such that C · A′ = 0. Since,

by definition of the rank-one resonance, we have exactly one linear dependency,

therefore A must by multiple by A′, it means that, A = k A′, for some k ∈ Q. If we
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2.2. Integrability and normalizability of systems

start with uA = XaY bZc, we see by rewrite this term as the resonant monomials

of the form

uA = ukA
′
= (uA

′
)k,

hence, for each A′ there is k ∈ Q.

Now let us describe a connection between normalizable system and a system

is orbitally normalizable. When we want to investigate an orbital normalizability,

we work with analytic orbital equivalence. We say that two systems are orbitally

analytically equivalent if by an analytic change of coordinates one can be changed

to a multiple of the other. In particular, the system (2.1) is orbitally normalizable

with rank-one resonance if there is a change of coordinates in the neighbourhood

of the origin, transforming the system (2.1) into the following form

Ẋi = X1 (λ1 + h1(u))k(X, Y, Z),

Ẋ2 = X2 (λ2 + h2(u))k(X, Y, Z),

Ẋ3 = X3 (λ3 + h3(u))k(X, Y, Z),

where hi(u), i = 1, 2, 3, k(X, Y, Z) = 1 + o(X, Y, Z) are analytic functions, and

u = Xa
1X2

bX3
c is the resonant monomial.

Proposition 1. If it is possible to find an analytic change of coordinates, we can

bring the system (2.1) into the following form

ẋ = x(λ1 +
∑
n≥1

Pn(x, y, z)),

ẏ = y(λ2 +
∑
n≥1

Qn(x, y, z)),

ż = z(λ3 +
∑
n≥1

Rn(x, y, z)),

(2.10)

where Pn, Qn, Rn ∈ C[x, y, z]. Then the above system is orbitally normalizable at
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2.3. Darboux method in 3D

the origin with rank-one resonance if and only if the system obtained by dividing

by 1 + 1
λ1

∑
n≥1 Pn(x, y, z) is normalizable,

ẋ = λ1 x, ẏ = y
λ2 +

∑
n≥1Qn(x, y, z)

1 + 1
λ1

∑
n≥1 Pn(x, y, z)

, ż = z
λ3 +

∑
n≥1Rn(x, y, z)

1 + 1
λ1

∑
n≥1 Pn(x, y, z)

.

(2.11)

We prove this in Section 4.2.1. If (2.10) is orbitally normalizable with rank-

one resonance, then it has two independent first integrals. One of these first

integrals is of Darboux-analytic type and other first integral contains logarithm

terms allowing for non-zero resonant terms in the normal form. (see Chapter 3).

In addition, if the system (2.11) is normalizable then there is a change of

coordinates, transforming the system into a system in normal form which is one

of the following form

Ẋ = λ1X, Ẏ = Y (λ2 +
∑
n≥1

Q̃n(X, Y, Z)), Ż = Z(λ3 +
∑
n≥1

R̃n(X, Y, Z)).

(2.12)

where Q̃n, R̃n ∈ C[x, y, z] only containing the resonant monomials. We can start

with the system (2.11), if it is orbitally normalizable with rank-one resonance,

then by a change of coordinates (X, Y, Z) = (x, y + o1(x, y, z), z + o2(x, y, z)),

where oi(0, 0, 0) = 1, i = 1, 2, the system (2.11) can be transformed to the form

(2.12), where XaY bZc is the resonant monomial in the system. (In fact we can

choose X = x in such a transformation for (2.11)).

2.3 Darboux method in 3D

In this section we discuss the Darboux integrability. In 1878, a seminal work on

the integrability of polynomial differential equations in the plane was published by

Darboux. He showed how the integrability of a polynomial system can be obtained

from sufficient invariant algebraic curves. There are some application for the Dar-
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2.3. Darboux method in 3D

boux method in two-dimensional systems (Christopher and Llibre (1999, 2000),

Christopher et al. (2007)). This method also has been used for higher dimensional

systems, for instance (Moulin-Ollagnier (1997), Cairo and Llibre (2000).

We denote the corresponding vector field of (2.1) by χ,

χ = P
∂

∂x
+Q

∂

∂y
+R

∂

∂z
.

where P,Q,R ∈ C[x, y, z]. An invariant algebraic surface of the system (2.1)

is a surface in C3 given by the equation f(x, y, z) = 0, such that there exist

Kf (x, y, z) ∈ C[x, y, z] satisfying

χ(f) = f(x, y, z)Kf (x, y, z), where χ(f) =
∂f

∂x
P +

∂f

∂y
Q+

∂f

∂z
R, (2.13)

Kf (x, y, z) is called the cofactor of the invariant algebraic curve f(x, y, z) = 0.

Note that the degree of Kf less than and equal to the degree of the polynomial

vector field. If the invariant surface does not pass through a singular point, then

it has a cofactor which must vanish at this point.

For any point on the invariant algebraic surface f(x, y, z) = 0, the inner prod-

uct of the two vectors ∇f(x, y, z) and χ is zero, where ∇f(x, y, z) = (∂f
∂x
, ∂f
∂y
, ∂f
∂z

).

Then the vector field χ = (P,Q,R) is tangent to the plane f(x, y, z) = 0, hence

f = 0 is shaped by trajectories of the vector field χ. This explain the name ‘in-

variant’ which satisfies equation (2.13) for some cofactors, as it is invariant under

the flow which defined by χ.

The exponential factor has the same role as the invariant algebraic surfaces

when two surfaces merge together. When this happened, we will need an expo-

nential factor to calculate the integrability of systems. Let E = exp(f/g) where
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2.3. Darboux method in 3D

f, g ∈ C[x, y, z], then we call E an exponential factor if

E(χ) = KE E, where E(χ) =
∂E

∂x
P +

∂E

∂y
Q+

∂E

∂z
R,

for some polynomial KE ∈ C[x, y, z] of degree one less than the vector field and it

is called the cofactor of E. All exponential factors have cofactors vanishing at the

critical points not in the denominator of their exponent. An exponential factor in

some references is also referring to as degenerate algebraic curves. For example

(see Christopher (1994), Christopher and Llibre (1999, 2000))

The following propositions are generalized directly from Christopher (1994) or

see Aziz and Christopher (2012).

Proposition 2. If E = exp(g/f) is an exponential factor for a vector field χ,

then g satisfies the equation below with f = 0 is an invariant algebraic surface of

the vector field,

g(χ) = gKf + fKE,

where Kf , and KE are the cofactors of f and E, respectively.

Proposition 3. Assume that f1 and f2 are invariant algebraic surfaces with their

cofactors Kf1 and Kf2 , respectively. Then

i. f1f2 = 0, is an invariant algebraic surface with cofactor Kf1 +Kf2 .

ii. f r, r ∈ C, is an invariant algebraic surface with respect to the cofactor rKf .

iii. If the two cofactors Kf1 = Kf2 , then the ratio of f1 and f2, is a first integral.

Proposition 4. Assume that F (x) = f c11 · · · f crr ∈ C[x, y, z] such that each fi is

a irreducible factor over ∈ C[x, y, z]. Then, F = 0 is an invariant algebraic curve

with cofactor KF of a vector field χ if and only if fi, i = 1, 2, · · · , r are an invariant

algebraic curves with cofactors Kfi . Moreover Kfi = c1Kf1 + · · ·+ crKfr .
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2.4. Normal forms

Darboux’s idea, to find first integrals of the vector field χ, is to look for first

integrals F (x, y, z) of χ on regions U of C, which is of the form

F =
r∏
i=1

f cii E
c0

where fi are algebraic solutions of the equation (2.13), and E is exponential factor.

Such integrals called a Darboux first integral, or sometimes is said to be a Darboux

function, with cofactors satisfying

r∑
i=1

ciKfi + c0KE = 0.

where ci, and c0 are analytic functions. The function F is a non-trivial first

integral of the system if and only if the cofactors are linearly dependent

Given a Darboux function F , we can calculate

DF = F (
r∑
i=1

ci
Dfi
fi

+ c0
DE

E
) = F (

r∑
i=1

ciKfi + c0KE),

if div =
∑r

i=1 ciKfi + c0KE, then by definition F is an IJM of the vector field

χ, in this situation F is said to be a Darboux inverse Jacobi multiplier. The

role of the integrating factor is taken by the Jacobi Multiplier when the degree of

dimensions of a system more than two. In the context of the Darboux integrability,

we usually consider the corresponding reciprocals: inverse integrating factors, and

inverse Jacobi multipliers, (see Berrone and Giacomini (2003)).

2.4 Normal forms

We now shortly present a normal form method for a vector field and apply it in

some cases of the system (2.1).

The starting point is a holomorphic system of differential equations with a
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2.4. Normal forms

singular point taken to be the origin, expanded as a power series. In more detail,

we assume that system (2.1) is in the following form

ẋ = Ax + X(x) = Ax + P2(x) + P3(x) + · · · , (2.14)

where A is an n × n real or complex matrix, x = (x1, · · · , xn) ∈ Cn and X(x) ∈

C[[x1, · · · , xn]] is a vector power series over C in n variables which defines in the

following expression

X(x) = (P1(x), · · · , Pn(x)), Pk(x) =
∞∑
|n|=2

P
(n)
k xn, 1 ≤ k ≤ n, P

(n)
k ∈ C, (2.15)

where xn = xn1
1 · · ·xnnn , |n| = n1 + · · ·+ nn, and n = (n1, · · · , nn), ni ∈ Z≥0. And

each component Xk(x) = Pk(x) of X, 1 ≤ k ≤ n, is a formal or convergent power

series with complex coefficients.

If there exists a neighbourhood of the origin where all coordinate series are

(absolutely) convergent then we say that the series X(x) converges, if there is no

assertion of the convergence of a series then we say that X(x) is a formal series

(computing a formal power-series is explained by Bochner and Martin (1948) in

Chapter I).

We now describe a normal form, firstly we assume the linear term Ax to be

already in the required normal form, usually it is in Jordan normal form or a real

canonical form. We consider a change of coordinates to get a new variables y,

having the form

x = H(y) = y + hk(y), H(0) = 0, y ∈ N(y) ⊂ Cn, (2.16)

where N(y) is a neighbourhood of the origin of Cn, H(y) is a power series of n
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2.4. Normal forms

variables, and hk(y) ∈ Hn
k of degree k ≥ 2, where Hn

k is the space of homoge-

neous polynomials of degree k in n variables with coefficients in C. We assume

H(y) is tangent to identity. Our purpose is to transform the system (2.14), in a

neighbourhood of the origin, into a simpler form. To achieve this, brings out the

essential features of the flow near the singular point, in such a way that the Taylor

expansion of the transformed non-linear vector field contains a minimal number

of terms of every order. By substitution of (2.16) into (2.14), we get

ẏ = [Hy(y)]−1AH(y) + [Hy(y)]−1P (H(y)), y ∈ N(y), (2.17)

having the same general form as the original system, where Hy(y) denotes the

Jacobian matrix ∂H(y)/∂y. And then following Abate (2005)

Hy(y) = I + hky(y), wherehky(y) = ∂hk(y)/∂y, [Hy(y)]−1 = I − hky(y) +O(|y|)2k−2, y ∈ N(y),

(2.18)

and, therefore the system (2.17), becomes of the form

ẏ = Ay +Q(y) = Ay +Q2(y) + · · ·+Qk(y), y ∈ N(y), (2.19)

where Q(y) ∈ C[[y1, · · · , yn]], it is the same expression with (2.15) for y ∈ Cn,

and each component Qk(y) is a formal or convergent power series. To get the best

form, we should choose hj carefully, so that the Qj are “easier” in some sense than

the Pj.

By acting a sequence of the change of coordinates (2.16), some terms can be

removed of the original system. Therefore, the system (2.19) is equivalent to the

system (2.14) in a neighbourhood of the singular point. Then the normal form

will contain only the resonant terms, when these terms cannot be removed by the
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2.4. Normal forms

change of coordinates (2.16).

To see, to what extent Q(y) can be simplified. Expanding P (x) = P2(x) +

· · · , Pk(x) ∈ Hn
k , and substituting (2.16), (2.18), and (2.14) into (2.17), we get

ẏ = Ay + P2(y) + · · ·+ Pk−1 + [Pk(y)− {hky(y)Ay − Ahk(y)}] +O(|y|k+1).

(2.20)

This suggests introducing the Lie derivative operator which represent the part in

bracket

LkA : Hn
k → Hn

k , for each k ≥ 2,

which is a map of the vector space Hk
n into itself with respect the matrix A defined

by

(LkAh
k)(y) = hky(y)Ay − Ahky(y), for k ≥ 2, (2.21)

where hky(y) = ∂hk(y)/∂y.

Let Rk denote the range of LkA. The relation between the Pj, Qj and hj is

determined recursively by the homological equations

LAh
j = Kj −Qj, j = 2, 3, · · · ,

whereK2 = P2 andKj equals Pj plus a correction term computed from P2, · · · , Pj−1

and h2, · · · , hj−1.

Let Lk be any choice of a complementary subspace to the image of LA ∈ Hk
n,

then it is possible to choose the Qj so that each Qj ∈ Lj. (Let Qj = MjKj, where

Mj : Hj → Lj is the projection map, and note that the homological equation can

be solved, non-uniquely, for Qj). The choice of Lj is called a normal form style

producing the system (2.19) from (2.14) associated to matrix An×n up to order

j ≥ 2 (with respect to the map Mj), or an A-normal form of (2.14) up to order j.
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We note that the A-normal form equation is not unique for the fixed A. In fact,

it depends on the choice of the complementary subspaces Lj. Consequently, we

get the following decomposition:

Hk
n = Rk ⊕ Lk, for k ≥ 2. (2.22)

Theorem 3. Let X(x), DX(0) = A ∈ Cn×n in the system (2.14) and the decom-

position (2.22) be given with origin taken as a singular point. Then, by a change

of coordinates (2.16), we can bring the system (2.14) into the following form

ẏ = Ay +Q2(y) + · · ·+Qr(y) +O(|y|r+1), y ∈ N(y),

where Qk(y) ∈ Lk, for k = 2, 3, · · · , r.

Proof. Let begin with the system (2.20), when k = 2, we get

ẏ = Ay + (P2(y)− L2
Ah

2(y)) +O(|y|3), (2.23)

since P2 ∈ H2
n, then there is f 2(y) ∈ R2 and Q2(y) ∈ L2 such that P2(y) =

f 2(y) + Q2(y). Therefore, a suitable h2(y) can be found by L2
Ah

2(y) = f 2(y),

which gives

ẏ = Ay +Q2(y) +O(|y|2+1). (2.24)

Therewith, we perform by mathematical induction. Assume that the theorem is

true for degree 2 < k < s − 1 < r, this means that the system (2.24) can be

determined for degree k. That is, the system (2.14) is transformed to normal

form for degree k. We may assume that by a change of coordinates the system
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(2.14) becomes into the following form

ẋ = Ax+Q2(x) + · · ·+Qs−1(x) + Ps(x) +O(|x|s+1), x ∈ Ns−1,

where Qk ∈ Lk, for k = 2, · · · , s − 1, Ps ∈ Hn
s , and Ns−1 is a neighbourhood of

the origin.

Let now begin with a change of coordinates x = y+hs(y) which starts at degree

s ∈ N. By (2.20) and by choosing a suitable hs ∈ Hs
n. In a small neighbourhood

Ns ∈ Ns−1 of the origin, we have

ẏ = Ay +Q2(y) + · · ·+Qs−1 + [Ps(y)− LsA(hs(y))] +O(|y|s+1)

= Ay +Q2(y) + · · ·+Qs−1(y) +Qs(y) +O(|y|s+1), y ∈ Ns,

(2.25)

for some Qs ∈ Ls.

Given the decomposition (2.22), then the following truncation of the system

(2.25)

ẏ = Ay +Q2(y) + · · ·+Qr(y), where Qk(y) ∈ Lk, k = 2, · · · , r, y ∈ Nr,

is called an A-normal form up to order r, or a normal form with respect to matrix

A up to order r ≥ 2. In fact, the A-normal form obtained by this way is not

unique, it relies on the choice of the complement of the subspace Rk.

Now let us explain the convergence of normalizing transformations. We con-

sider the power series

X(x) =
∞∑
i=1

aix
i. (2.26)

Assume that the above series is convergent for some value of x = x0. The conver-

gence of
∑∞

i=1 aix
i
0 yields |aixi0| → 0 as i → ∞, and therefore |ai| < M |xi0|−1 for

27



2.4. Normal forms

some sufficiently large M . If |x| < |x0| then |aixi| ≤ M mi where m = | x
x0
| < 1.

Then, by comparison, the series (2.26) is absolutely convergent with M
∑∞

i=1m
i.

Therefore, any such power series has a radius of convergence R which is the

largest number r such that
∑∞

i=1 aix
i converges if |x| < r. Or r may be zero.

Otherwise, the series is divergent for any x with |x| > r.

Moreover, a complex function f(x) =
∑∞

i=0 aix
i can be represented by the

series (2.26) within the disk of radius R. Then the function f(x) is analytic for

|x| < R, and its derivative is obtained by term-by-term differentiation of the se-

ries: f ′(x) =
∑∞

i=0 i aix
i−1, which has the same radius of convergence with the

series for f(x).

We denote by C[[x]] = C[[x1, · · · , xx]] the set of formal power series in x1, · · · , xx

with coefficients in C, the coefficient of xα in X(x) will be denoted by X(α).

Definition 9. Given two power series X(x) =
∑∞

i X(i)xi, Y (x) =
∑∞

i A(i)xi in

C[x], we say that Y (x) majorizes the series X(x), and we write X(x) ≺ Y (x) if

|X(i)| ≤ A(i), i = 0, 1, 2, · · · . More generally, by a vector power series, we mean

an expression:

X(x) = (X1(x), · · · , Xn(x)), Xk(x) =
∞∑
|i|=2

X
(i)
k xi, (k = 1, · · · , n),

where xi = xi11 · · ·xinn and X
(i)
k ∈ C. Then, a series Y(x) majorizes the series X(x)

if Xi(x) ≺ Yi(x) for all i ∈ {1, 2, · · · , n}, we then write X(x) ≺ Y(x).

We notice that from the above definition, the coefficients of the majorizing

series are real and non-negative. In fact, if a convergent series Y (x) majorizes a

series X(x), then X(x) is convergent on some neighbourhood of zero.
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2.4. Normal forms

Definition 10. If the system (2.14) ẋ = Ax + P (x) and (2.19) ẏ = Ay + Q(y)

together with the change of coordinates x = H(y) in the normal forms method

are convergent, then we say that the systems (2.14) and (2.19) are analytically

equivalent.

According to the previous definition, it is enough if we can prove that the

change of coordinates x = H(y) is analytic when we consider that the original

system is analytic. To achieve this, we shall use the majorant series method.

An extensive study of this problem via the majorant series method was used by

Bibikov (1979).

Theorem 4 (Bibikov (1979)). Let λ = (λ1, · · · , λn), where λi are eigenvalues of

the diagonal matrix A in the system (2.14), and suppose that there are ε, s > 0

such that the following hold:

1. for all n = (n1, · · · , nn) ∈ Zn≥0, if (n, λ) − λi 6= 0 for some i ∈ N, then

|(n, λ)− λi| ≥ ε, where ε does not depend on n and λ

2. for all r = (r1, · · · , ri) in Zn≥0 for which 2 ≤ |r| ≤ |n| and r ≤ n+ ei, where

ei = (0, · · · , 0,
i

1, 0, · · · , 0), such that (n− r, λ) = 0, the following is valid

|
m∑
i=1

riQ
(n−r+ei)
i | ≤ s |(r, λ)|

m∑
i=1

|Q(n−r+ei)
i |, (2.27)

where s does not depend on n and λ, and Q
(n)
i is a resonant coefficient in

the distinguished normal form.

Then, if the series P (x) = P2 + · · · + Pk(x) + · · · in the system (2.14) is ana-

lytic if follows that the series x = H(y) is analytic in distinguished normalizing

transformation (2.16).
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2.5. Normal forms of maps near a fixed point

2.5 Normal forms of maps near a fixed point

As we have already said, normal forms provide a significant tool for the investi-

gating of dynamical systems (see for example Arnold (1988), Bryuno (1988)) as

they can be used to investigate an essential simplification of local dynamics. The

normal form theory also applies on the maps by using a change of variables near

identity to transform the original map into a simpler form. We call this simpler

form a normal form for map. Usually, the normal form is simpler than the orig-

inal map and sometimes (but not always) allows an explicit study of the local

dynamics. Classical normal forms are not always unique. In which case a further

reduction is possible. Further reduction of normal form of map has been investi-

gated by several methods in order to get a unique normal form, (see for examples,

Wang et al. (2008) gave some sufficient conditions for uniqueness of normal forms

of smooth maps, also they gave a recursive formula for the homogeneous terms

of the transformed map. Gelfreich and Gelfreikh (2009) used non-linear grad-

ing functions to construct a resonant normal form for an area-preserving map

near a generic resonant elliptic fixed point. Chen and Della Dora (1999) intro-

duced an important refinement of normal forms for differentiable maps near a

fixed point. Abate and Tovena (2005) described a method for constructing formal

normal forms of holomorphic maps with a hyper-surface of fixed points, and they

obtained a list of formal normal forms for 2D holomorphic maps tangential to a

curve of fixed points).

Now, let us consider a holomorphic map F : U ⊆ Cn → Cn, where n ≥ 1 and

U is an open neighbourhood of p. Here we always assume that the origin is a fixed

point, by which we mean that F (0) = 0. Also, we always assume that F 6= id

(identity) in U . Then, a formal analytic map F (x) at the origin can be written
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2.5. Normal forms of maps near a fixed point

as one of the following form

F (x) = Ax+ f2(x) + · · ·+ fr(x) + · · · , x ∈ Cn, (2.28)

where A = diag(λ1, · · · , λn) ∈ GL(n,C) and fk ∈ Hk
n, where Hk

n is the linear space

of n-dimensional vector valued homogeneous polynomials of degree 2 ≤ k ≤ n, in

n variables with coefficients in C.

The problem here is to seek a change of coordinates

x = H(y) = y + h2(y) + · · · ,

tangent to identity such that the transformed map

G(y) = H−1 ◦ F (x) ◦H(y),

is in a simpler form (◦ is composing of two maps), where this simpler form only

contains a monomials xkej satisfying the following condition

λk − λj = λk11 · · · λknn − λi = 0, λ = (λ1, · · · , λn), for some 1 ≤ i ≤ n, (2.29)

for some k = (k1, · · · , kn) ∈ Zn≥0, and |k| = k1 + · · · + kn ≥ 2. Equation (2.29) is

called a resonant condition for the matrix A. Moreover, the monomial xkej, |k| ≥

2 is said to be a resonant monomial if the condition (2.29) holds.

Definition 11. When n = 1, then the map (2.28) becomes of the following form

F (x) = λx+ a2x
2 + · · · ∈ C0{x},

the number λ = F ′(0) ∈ C is said to be the multiplier of F (x). If λ 6= 0, 1, then
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2.5. Normal forms of maps near a fixed point

we say that the fixed point 0 of F is hyperbolic.

When n = 1, there is a resonance if and only if the multiplier is a root of unity,

or zero. If n > 1 resonances may occur in the hyperbolic case too, see Abate et al.

(2010). In addition, when n > 1, the fixed point 0 is said to be hyperbolic if all

eigenvalues of F have modulus different from 1.

Resonances have an important role to obtain a simpler map in order to under-

stand the local dynamical properties as we showed in the previous section. The

resonances are the obstruction to formal linearization.

Definition 12. Let F1 : U1 → C2 and F2 : U2 → C2 be two maps at p1 ∈ C2 and

p2 ∈ C2 respectively. We say that F1, F2 ∈ C[x, y] are formally conjugated if there

is an invertible map ϕ ∈ C[x, y] such that

F1 = ϕ−1 ◦ F2 ◦ ϕ, in C[x, y].

In the following, we want to describe a normal form method for map.

At the beginning, by using if necessary an appropriate linear change of coor-

dinates, we can transform the matrix A into a Jordan canonical form.

The basic idea of normal forms is to choose a transformation tangent to identity

x = T (y) = y + h(y) = y + h2(y) + · · ·+ hk(y), (2.30)

where hk(y) ∈ Hk
n for 2 ≤ k ≤ n. The inverse transformation to (2.30) is

y = x− hk(x) +O(|x|2k), as ||x|| → 0, k ≥ 2,

which is a smooth diffeomorphism in a neighbourhood of the origin. Then, the
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2.5. Normal forms of maps near a fixed point

transformed map of (2.28) takes the following

G(y) = T−1 ◦ F ◦ T (y)

= Ay + f2(y) + · · ·+ fr−1(y) + [fr(y)− {hr(Ay)− Ahr(y)}] +O(|y|)r+1

(2.31)

where we want it to be as simple as possible for r ≥ 2, and G(y) is defined in a

neighbourhood U ′ ⊂ U of the origin. According to the bracket in (2.31), we can

suggest a linear map (the homological operator) LrA : Hr
n → Hr

n defined by

LrAh(x) = h(Ax)− Ah(x), h ∈ Hr
n, for r > 1.

Let Rr be the range of LrA in Hr
n. Similarly, as we have already shown that in the

previous section Rr has an complementary subspace, say Cr via inner product in

Hr
n, then we have the following decomposition

Hr = Rr ⊕ Cr, 2 ≤ r ≤ n. (2.32)

In our context, the following theorem is the groundwork of calculation of nor-

mal forms.

Theorem 5 (Ashkenazi and Chow (1988)). Given the decomposition (2.32), then

there is a formal series transformation (2.30) tangent to identity which transforms

the map (2.28) into

G(y) = T−1 ◦ F ◦ T (y) = Ay + g2(y) + · · ·+ gr(y) + · · · , y ∈ U ′ ⊆ U,

(2.33)

where gr ∈ Crn for 2 ≤ r, and U ′ is the neighbourhood of the origin.

To find an A-normal form up to order r, it is helpful to find a basis for Ck =

ker(LkA∗), k ≥ 2. And, it can be easily shown that LkA∗ = (LkA)∗, ∀k ≥ 2 via the
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2.5. Normal forms of maps near a fixed point

inner product < ., . >n of Hr
n, see Ashkenazi and Chow (1988).

Definition 13. (Abate et al. (2010)). The normal form G(y) is called a Poincaré-

Dulac normal form of the polynomial map F (x).

Definition 14. Given the decomposition (2.32), then the truncated form of the

map (2.33) from rth-jet is called an A-normal form map of (2.28) up to order r.

The methods and theorems related to the A-normal form map can be traced

back to the study ( Arnold (1988), Wang et al. (2008), Ashkenazi and Chow

(1988)).

Also, for other (formal or analytic) normal forms of diffeomorphisms, one can

refer to Martinet and Ramis (1982). In general, the classical normal forms are

not unique with respect to formal conjugacy.

In Takens (1973), the relationship between normal forms for diffeomorphisms

and vector fields is explained in R2. We applied a method on 3D vector field with

rank-one resonant eigenvalues to obtain a map in (C2, 0). Hopefully, this map

does not involve the quadratic terms and is not tangent to identity which is given

the details this in chapter (4). Therefore, this map is different from the maps

were investigated by Abate (2005), Abate and Raissy (2013). Basic references

on normal forms and their applications will be found in Arnold (1988), Briuno

(1979), Chow and Hale (1982).

Here we also apply a further transformation to reduce map into a simpler map.

The idea of reduced normal forms for maps can be obtained by the renormalizing

Poincaré-Dulac normal forms, where the renormalizing Poincaré-Dulac normal

forms is well-defined in the context of vector fields. Through this redaction, we will

see the relation between the concept of the orbital normalizability and integrability

on one side and reduced normal forms and normalizable maps on the other side.
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2.6. Monodromy map

To study a further reduction on normal forms for map, one can see in the

following. Chen and Della Dora (1999) gave a method to obtain further reduction

of classical normal forms. Abate and Raissy (2013) described a general reduced

method for germs of holomorphic (or formal) self-maps, also they provided a list

of normal forms for quadratic bi-dimensional super-attracting germs. Wang and

Liu (2008) used the recursive formula for further reduction of normal forms for

maps, also the concepts of normal forms up to order N and infinite-order normal

forms of smooth maps were developed.

2.6 Monodromy map

Before starting to define the monodromy map, it is convenient to describe how

two-dimensional vector fields give rise to a foliation in CP2. Firstly, we want

to start with the definition of CP2. We consider C3 \ {0} with the action C∗

defined by λ · (x1, x2, x3) = (λx1, λx2, λx3), the orbit of (x1, x2, x3) is denoted by

[x1, x2, x3]. The complete projective plane CP2 is the quotient space of C3 \ {0}

modulo the action C∗, with the natural projective π : C3 \ {0} → CP2, where

π(x1, x2, x3) = [x1 : x2 : x3].

On CP2, we have three affine charts which give a structure of a two-dimensional

compact complex manifold of the following way:

Ui = {[x1, x2, x3]}, i = 1, 2, 3,

and define homomorphisms φi : C2 → Ui by


φ1(x, y) = [1 : x : y], (x, y) ∈ C2,

φ2(u, v) = [u : 1 : v], (u, v) ∈ C2,

φ3(r, s) = [r : s : 1], (r, s) ∈ C2.

(2.34)
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2.6. Monodromy map

Observe that the change of coordinates φij = φ−1
j ◦ φi is given by


φ12 = φ−1

2 ◦ φ1(x, y) = ( 1
x
, y
x
), x 6= 0,

φ23 = φ−1
3 ◦ φ2(u, v) = ( 1

u
, v
u
), u 6= 0,

φ31 = φ−1
1 ◦ φ3(r, s) = ( s

r
, 1
r
), r 6= 0.

these maps are holomorphic. A unique complex structure on CP2 is determined

by the atlas {(Ui, φi)}, i = 1, 2, 3 such that φi are biholomorphic, and each

(Ui, φi), i = 1, 2, 3, is said to be an affine chart of CP2.

We can define lines Li = CP2 \ φi(C2), i = 1, 2, 3. Each line Li is called the

line at infinity (projective lines) associated to affine chart (Ui, φ
−1
i ).

The sets Li = CP2 \φi(C2) have the complex structure of the Riemann sphere

C. For instance, we can identify L1 = {[0, x, y] : (x, y) ∈ C2} with {[x, y] : (x, y) ∈

C2} w CP1 under the restriction to C2. Then, CP2 is a one-line compactification

of C2 (see Figure (2.2) for the corresponding location of these three lines).

z

¥=y

z

¥=y

]1,0,0[

1L
]0,0,1[

]0,1,0[

3L

2L

Figure 2.2: Geometry of projective space

In general, a projective line is the image under the map π of a plane in C3 which

passes through the origin. For example, the plane ax1 +bx2 +cx3 = 0 is sent under

36



2.6. Monodromy map

π to the projective line having as affine equations a+ bx+ cy = 0, au+ b+ cv = 0

and ar+ bs+ c = 0. The projective lines are the simplest algebraic curves in CP2.

More generally, suppose that P (x1, x2, x3) is a homogeneous polynomial of de-

gree k which defines the algebraic curve C = {[x1 : x2 : x3] ∈ CP2 : P (x1, x2, x3) =

0} under the action C∗, where P (x, y) =
∑
ai,jx

iyj is a homogeneous polynomial

of degree k on the chart (x, y). By using the change of coordinates, we write P in

two other affine charts as

P ◦ φ12 = P (
1

u
,
v

u
) = u−k

∑
aij u

k−i−jvj,

P ◦ φ23 = P (
s

r
,
1

r
) = r−k

∑
aij r

k−i−jsj.

The affine equations for C are P (x, y) = P (1, x, y) = 0, P ′(u, v) = P (u, 1, v) = 0

and P ′′(r, s) = P (r, s, 1) = 0. Therefore, the algebraic curve C in CP2 can be

defined as the compact set

φ1{(x, y) : P (x, y) = 0} ∪ φ2{(u, v) : P ′(u, v) = 0} ∪ φ3{(r, s) : P ′′(r, s) = 0},

where P (u, v) =
∑
ai,ju

k−i−jvj and P (r, s) =
∑
ai,jr

k−i−jsj.

In more detail, there is another way of viewing this curve is by introducing the

homogeneous polynomial P̃ (x1, x2, x3) in C3 of degree k which is of the following

P̃ (x1, x2, x3) = xk1P (
x2

x1

,
x3

x1

) =
∑

aij x
i
1x

j
2x

k−i−j
3 .

It is then easily verified that the algebraic curve C over P , under the map π, is

the curve

C = π{(x1, x2, x3)| P̃ (x1, x2, x3) = 0}. (2.35)

Then a projective line is an algebraic curve C for a polynomial P (x1, x2, x3) of
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degree one.

It turns out that the space CP2 is the natural ambient space to study the

1-form as

Ω = P (x, y) dy −Q(x, y) dx, (2.36)

where P, Q are polynomials.

Definition 15. A point x0 ∈ C2 is a singular point (singularity) of Ω, if P (x0) =

Q(x0) = 0. Otherwise the point is non-singular.

Indeed, a solution of the 1-form Ω = 0, which passes through a non-singular

point a ∈ C2 is a maximum curve La satisfying the condition that for any point

b ∈ La, there is a local parametrization of La and a holomorphic map h = (h1, h2) :

U → La such that P (h(t))h′1(t) + Q(h(t))h′2(t) = 0 for all t ∈ U . A solution La

always exists which passes through a non-singular point a ∈ C2. Additionally, if

a, b ∈ C2, either La ∩ Lb = ∅ or La ≡ Lb.

In regard to the geometrical view, we can define the foliation by using a com-

plex manifold; Let M be a complex n-manifold, a holomorphic foliation F of

co-dimension m on M is a partition of M into disjoint path-connected subsets by

F = {La} such that for any p ∈ M there is a chart (U,ϕ) around p and open

poly-disks A ⊂ Cn−m and B ⊂ Cm with maps ϕ : U → A × B which takes the

connected components of Fa ∩ U to the level sets A× {b}, b ∈ B. We call La the

leaves of the foliation.

Remark 1. The definition which follows is equivalent to the definition above of

the foliation.

A holomorphic foliation F of co-dimension m of M is an analytic maximal

atlas A = {(Ui, ϕi)} for M which satisfies the following

1. For each i, ϕi is a biholomorphism Ui → Ai×Bi, where Ai ⊂ Cn−m and Bi ⊂ Cm
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are open poly-disks.

2. If (Uϕ), (V, ψ) are in A with U ∩ V 6= ∅, then the maps ψ ◦ ϕ−1 : ϕ(U ∩ V )→

ψ(U ∩ U) has the form

(ψ ◦ ϕ−1)(z, w) = (h1(z, w), h2(w)), (2.37)

where (z, w) ∈ Cn−m × Cm, and h1, h2 are holomorphic mappings into Cn−m and

Cm, respectively.

A one-dimensional foliation F in the two-dimensional manifold can be ex-

plained in Figure (2.3).

Given any chart (Ui, ϕi) of a foliation F , then the plaques F in U are the set

z

¥=y

z

Corona

Õ=y

j
y

1-jyo

U
V

Figure 2.3: Charts defining a foliation

of the form ϕ−1
i (Ai × {c}), c ∈ Bi. Each a ∈ M lies in at least one plaques. Two

points a, b are called equivalent if there are a sequence α1, · · · , αn of plaque such

that a ∈ α1, b ∈ αn and αi ∩ αi+1 6= ∅, i = 1, · · · , n− 1.
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Now, we want to define a singular holomorphic foliation by curves on a complex

manifold M . Here, the foliation is allowed to have singularities. Firstly, we

consider a chart (U,ϕ), a subset E ⊂ M is called an analytic subvariety if each

p ∈M has a neighbourhood U on which there are holomorphic functions fi : U →

C, 1 ≤ i ≤ n such that E ∩ U = {x ∈ U : fi(x) = 0, 1 ≤ i ≤ n}. Then, a singular

holomorphic foliation by curves F (SHFC) on M is a holomorphic foliation by

curves on M \ E, where E is an analytic subvariety of M of co-dimension ≥ 2.

In fact, a foliation with singularity in CP2 can be induced by Ω = 0, see Zakeri

(2001).

To introduce the notion of a singular holomorphic foliation by curves on the

CP2, assume that the singular set has co-dimension ≥ 2. When the underlying

manifold is CP2, then the very special geometry of the space permits us to apply

some standard algebraic geometry to show that all such foliations are induced by

a polynomial vector field on CP2, see Zakeri (2001).

Now we want to extend the 1-form (2.36) on CP2. We consider the 1-form

(2.36) on C2 and its corresponding SHFC FΩ (by definition, the singular foliation

induced by Ω, FΩ : {Ω = 0}). Using the coordinate map (2.34), we can transfer

FΩ to U1 by φ23. To achieve this, first transfer FΩ to the affine chart (u, v) by φ2

of the following; In the coordinated (u, v) we can write Ω̃ = 0 by using a change

of coordinated x = 1
u
, y = v

u
in the following

Ω̃(u, v) = P (
1

u
,
v

u
) d(

v

u
)−Q(

1

u
,
v

u
) d(

1

u
)

= u−1P (
1

u
,
v

u
) dv − u−2[vP (

1

u
,
v

u
)−Q(

1

u
,
v

u
)] du.

(2.38)

Putting R(x, y) = yP (x, y)− xQ(x, y). Then

Ω̃(u, v) = u−1

(
P (

1

u
,
v

u
) dv −R(

1

u
,
v

u
)du

)
.
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Let k be the smallest positive integer such that Ω′ = uk+1Ω̃ is the 1-form on

(u, v) ∈ C2. Then, the foliations FΩ′ and FΩ̃ are identical on {(u, v) ∈ C2 : u 6= 0}.

Now transport FΩ′ to U2 by φ2. It is easily checked that on U1 ∩U2 the foliations

induced by (FΩ, φ1) and (FΩ′ , φ2) are coincide.

In the same way, FΩ could be transported to the affine chart (r, s) by φ31 to

get a foliation FΩ′′ induced by a 1-form Ω′′ on (r, s) ∈ C2. Therefore, FΩ′′ is

transported to U3 by φ3.

By F and repeatedly coincide FΩ, FΩ′ , FΩ′′ with their transported compan-

ions on CP2 we denote the extended foliation on CP2. Hence, the affine charts

(x, y), (u, v) and (r, s) are considered as subsets of CP2 by identifying them with

U1, U2, U3 respectively.

It follows from the above structure that in each affine chart, FΩ is given by

the solution of the following vector fields:

χ1 = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
, (x, y) ∈ U1,

χ2 = uk
(
P (

1

u
,
v

u
)
∂

∂u
+R(

1

u
,
v

u
)
∂

∂v

)
, (u, v) ∈ U2,

χ3 = −rl
(
Q(
s

r
,
1

r
)
∂

∂r
−R(

s

r
,
1

r
)
∂

∂s

)
, (r, s) ∈ U3,

(2.39)

where k and l are the least positive integers making the above into polynomial

vector fields.

Now, we can also define a singularity of foliation; A finite number of leaves

reduced to points are called the singularity of foliation, and the set of them is

denoted by sing(F). We have extended the foliation of Ω across the “line at

infinity” L1. In which we mean that we obtain a FΩ in CP2 with sing(F) from Ω

according to the process described above. On the other hand, we can say that FΩ

is an SHFC on CP2 with sing(FΩ) = CP ∩CQ ∩CR, where C are algebraic curve

which are defined in (2.35).
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2.6. Monodromy map

Now, we want to find conditions on a 1-form Ω which ensure that the line at

infinity L1 = CP2 \ U1 with singular points of foliation FΩ can be removed as a

leaf. Firstly, we consider an SHFC F which is induced by a 1-form Ω in the chart

(x, y) ∈ U1 of the following

Ω = (P (x, y) + xf(x, y)) dy − (Q(x, y) + yf(x, y)) dx, (2.40)

where P (x, y) =
∑n

k=1 Pk(x, y), Q(x, y) =
∑n

k=0Qk(x, y) with Pk, Qk are homo-

geneous polynomials of degree k, and either f(x, y) is a non-zero homogeneous

polynomial of degree n, or f(x, y) ≡ 0, but yP (x, y)− xQ(x, y) 6= 0.

Proposition 5 (Zakeri (2001)). We consider the 1-form (2.40), then the line at

infinity L1 with singular points of FΩ can be removed as a leaf of the foliation F

if and only if f(x, y) ≡ 0.

Proof. Firstly, we consider the affine chart (u, v) = ( 1
x
, y
x
) ∈ U2 in which L1 is

given by the line {v = 0}. Using this chart, we get

P̃n(u, v) = −un+1Pn(
1

u
,
v

u
), Q̃n(u, v) = −un[vPn(

1

u
,
v

u
)−Qn(

1

u
,
v

u
)].

We obtain a foliation which is described by 1-form Ω′ = P̃ (u, v) dv − Q̃(u, v) du,

where

P̃ (u, v) =
n∑
k=0

un+1−kPk(u, v)− f(1, v),

Q̃(u, v) =
n∑
k=0

un−k[vPk(u, v)−Qk(1, v)].

Indeed, L1 \ sing(F) is a leaf if and only if the line {u = 0} is a solution of Ω′ = 0.

This occurs if and only if f(1, v) ≡ 0. We suppose that f(x, y) is a homogeneous

polynomial, then the later condition is equivalent to f ≡ 0.

In general, the 1-form in (2.36) has an invariant line at infinity L1 \ sing(F),
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2.6. Monodromy map

and we denote L0 \ sing(F) by L∞. However, the 1-form in (2.40) hasn’t any

invariant L∞ if f(x, y) ≡ 0. For more information, one can refer to Zakeri (2001),

Camacho and Lins Neto (1985).

A tool to study so-called transverse dynamics of the foliation is required for de-

scribing a leaf. The concept of the monodromy of a leaf is the fundamental tool in

describing the transverse dynamics near the leaf. Now we reach the point to study

integrability properties of the system (2.1). We then consider a loop γ : [0, 1]→ C

moving around the singular point in order to obtain the information about the

vector field at the singular point via this loop. On the other hand, we will see

the relation between a holomorphic vector field and a map obtained by using the

monodromy transformation which is relative to the loop γ at neighbourhood of

one of the separatrices for the vector field.

Firstly, we need some definitions to understand the concept of monodromy.

Now, we should consider a given map

π : E → B,

of a space E called the total space into a space B called the base space.

A homotopy between two continuous functions f, g : X× [0, 1]→ B (where X

is a given space) is a family of continuous functions ht : X → E, for t ∈ [0, 1] such

that h0 = f and h1 = g, and the map (x, t)→ ht(x) is continuous from X × [0, 1]

to B.

Given a space X with a map f : X → B, and ft : X × [0, 1] → B be a given

homotopy of f . A map f̃ : X → E is said to be a cover f (relative π) if f = π ◦ f̃ .

The map π is said to have the covering homotopy property for the given

space X (one says that (X, π) has homotopy lifting property) if, for every map

f̃ : X → E and every homotopy ft : X×[0, 1]→ B, of the map f = π◦ f̃ : X → B
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2.6. Monodromy map

there is a homotopy f̃t : X × [0, 1] → E, of the map f̃ which lifts (covers) the

homotopy ft.

A map π : E → B is said to be a fibering if it has the lifting homotopy property

for every triangulable space X. In this situation, we say that the space E is the

fibre space over a base space B with respect the projection map π : E → B. For

each b ∈ B, the subspace π−1(b) in E is called the fibre over b.

Let B be an n-punctured sphere, and let x0 be a base point in B. We are

interested in the following set of continuous functions called loops with base point

x0.

{f : X × [0, 1] : f(0) = x0 = f(1)}.

Now, the fundamental group of Γ at x0 is the set modulo homotopy h

{f : [0, 1]×X : f(0) = x0 = f(1)}/h

equipped with the group multiplication defined by

(f ∗ g)(t) =


f(2t) 0 ≤ t ≤ 1

2

g(2t− 1) 1
2
≤ t ≤ 1.

With the above product, the set of all homotopy classes of loops with base point

x0 forms the fundamental group of X at x0 and is denoted by π1(X, x0).

Now we consider a non-trivial loop γ on the leaf in C passing through at some

point x0 (starting point) with a small transversal Σ which is a disk at x0 ∈ γ, and

then we look at the first point of intersection with Σ of the leaf passing through

another point in Σ near x0 ∈ γ which is obtained by going around over γ on the

leaf. Moreover, we consider a family of transversal Σi to a leaf at each point on

the loop γ(ti), where ti ∈ [0, 1]. Then for any point close-by the point on loopγ
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2.6. Monodromy map

we can define a leaf, and that leaf intersect all transversal at the unique point, so

one can travel over the loop γ[0, 1] at the neighbourhood of a singular point.

In this way, to each loop γ in the fundamental group of the leaf we obtain the

germ of biholomorphism of Σ which reflects the global behaviour of the trajectories

near γ.

We can consider a leaf L′ of the SHFC foliation F induced by the 1-form on

CP2 associated to the vector field with pi singular points of the foliation which lie

on L. Obviously, L = L′\pi is isomorphic to an n-punctured sphere. Then we can

choose a family of analytic transversal, Σx, passing each point x in L, and choose

a base point x0 ∈ L and an analytic parametrisation z (should be also a level set

of vector field at x0) of Σx0 with z = 0 corresponding to the point x0. Regarding

for each path γ : [0, 1] → L in π(L, x0) (we choose this loop at the x-axis, and

each point on the loop is a value of the leaf which gives a fibration over the loop),

a map M : Σx0 → Σx0 can be defined from the neighbourhood of x0, N(x0), by

lifting the path γ to L passing f(x0) ∈ Σx0 via the transversals Σx, x ∈ γ.

By using the parameter z and fixing z = 0, we can identify the map M with

the germ of a diffeomorphism from C to C. The set of all such diffeomorphisms

is denoted by Diff(C, 0).

In fact, the M : π(L, x0) → diff(C, 0) is a group homomorphism, the image

of this homomorphism is called the monodromy group. Under the map M, we

denote the image of the path γ by Mγ which depends only on the homotopy of

γ ⊂ L

If we choose one singular point pi (see Figure (2.4)), then the monodromy at

this singular point is Mγ, where γ is a loop going around the singular point pi

which does not contain any other singular point in its interior.

We note that, the germ of Mγ at x0 is determined by Σ and γ. For more

details one can see Christopher and Rousseau (2004).
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2.6. Monodromy map

y

),( 0xGÎpg

.

1z

),(: 0xM Gp

�
ip\

'G=G
0x

S0xS

.
ip� �

z

)(1 zz j=

]1,0[:

:;
00

g

j

thearoundgoingby

Nthefrommonodromy xx S

planecomplexinG

0x
�

z�

y

)0,(CDiff
0x

S

G

)( 0xN

Figure 2.4: The monodromy map about a singular point

In three-dimensional vector fields we use two independent first integrals in or-

der to obtain a monodromy map in (C2, 0). Monodromy determines the type of

the singular point. That is, we give a vector field and then using the parametriza-

tion of the loop xθ = eiθ, we will obtain a corresponding map. The correspondence

comes from the maps at the neighbourhood of one of these separatrices. For more

details one can refer to Mattei and Moussu (1980).

Now, we want to explain the application of monodromy in the 2D vector

field. Let us consider a singular foliation F defined in (C2, 0) by the meromorphic

differential equation with non-zero eigenvalues

ẋ = λ1x+ f(x, y), ẏ = λ2y + g(x, y),

this implies that

dy

dx
=
λy + g̃(x, y)

x+ f̃(x, y)
, (2.41)

where λ = λ2
λ1
∈ C \ {0}, and f̃ , g̃ ∈ C[x, y] without linear terms.
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2.6. Monodromy map

The following form will be taken by the system (2.41) which defines the folia-

tion F at the x, y-coordinates

dy

dx
=
y

x
(λ+ h(x, y)), <(λ) < 0, h(0, 0) = 0, (2.42)

where <(λ) is the real part. If necessary, the variables would be rescaled.

Indeed, parametrizing the arc as x = x0 exp(iθ), θ ∈ [0, 2π] yields

dx

dθ
= i exp(iθ) = ix,

we then conclude from (2.42) the following ordinary equation

dy

dθ
= iy(λ+ h(θ, y)), θ ∈ [0, 2π], h ∈ C[θ, y],

with the real time. A monodromy map of the above system together with the

initial condition c = y(0, c), is a map of the following form

c→ f(c), y(0; c)→ y(2π; c), where y(θ; c) =
∑
i≥0

ciαi(θ),

such that αi(0) = 0,∀i > 1 and α1(0) = 1.

However, we compare the above idea in 3D vector field χ, when χ has two

independent first integrals F1(x, y, z) = c1 and F2(x, y, z) = c2, where (c1, c2) ∈

R2. Then, the monodromy can be determined by intersecting these two first

integrals. Indeed, by parametrizing over the loop x = exp(iθ) of the 3DDS, we

get the following form

dx

dθ
= λ1 exp(iθ),

dy

dθ
= y(λ2 + q(θ, y, z)),

dz

dθ
= z (λ1 + r(θ, y, z)), (2.43)
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2.6. Monodromy map

where θ ∈ [0, 2π], with the initial conditions y(0; y0, z0) = y0 and z(0; y0, z0) = z0.

Then, the monodromy map in (C3, 0) is a map of the following

(y(0; y0, z0), z(0; y0, z0))→ (y(2π; y0, z0), z(2π; y0, z0)),

where y(θ; y0, z0) =
∑

i+j≥0 y
i
0z
j
0αi j(θ), see Figure (2.5).

Cx �

z

g
y

1=x

·

),( 21 cc

Figure 2.5: The monodromy map in 3D

For applying the monodromy map on the system (2.43) with the resonant

eigenvalues satisfying the condition λ+µ+ ν = 0. The following way can be used

at the neighbourhood of the x-separatrix.

Firstly, we will choose a starting point of the first integral F1(x, y, z) = c1 at

the chosen point (x0, y0, z0), we get the value of F1(x, y, z) = c1 at the transversal

to the x-separatrix. Then the path surrounding the origin can be chosen of the

form xθ = x0 e
2i π θ.

Secondly, By substituting yθ =
∑

i≥1 ci(θ)y
i
0 with the value of c1 as a constant

into the second first integral we get a formal map with respect to y0. Therefore,

by using Taylor expansion and simplify the result, we get a linear equation for

each order of y0 which depends on the coefficient ci in yθ. The monodromy map in
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2.6. Monodromy map

y-coordinate is then given by a map y1 which is already composed with a rotation

by the angle −2π λ2
λ1

.

Next, the monodromy map in z-coordinate is given by substituting the map

that was obtained in y-coordinate (previous step) and a power series zθ = e2π i kz0(1+

g(x0, y0, z0)) into the first integral. We get a monodromy map in z-coordinate

about x-separatrix which is given by a map z1 already composed with a rotation

by the angle −2π λ3
λ1

. Consequently, we get the 2D map in normal form corre-

sponding to the reduced normal form of the following

x1 = x0 e
2 iπ, y1 = y0 e

2 iπ
λ2
λ1 (1 + f(u0)), z1 = e

2 i π
λ3
λ1 z0(1 + g(u0)), (2.44)

where f and g are a formal power series in u0, and u0 = x0, y0, z0 is the resonant

monomial.

We can read off the terms of the reduced normal form with rank-one resonant

eigenvalues from the monodromy map (2.44).

In the same way of vector field, a reduction of the map (2.44) is also needed.

Then, by applying a change of coordinates, we can bring the map (2.44) into a

reduced normal form for map which only contains a finite number of resonant

monomials. For studying formal normal form for maps see Abate (2005), Abate

and Tovena (2005), Abate and Raissy (2013).
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Chapter 3

A Sufficient Condition for

Integrability of Polynomial

System with Rank-One Resonant

Singularities in Three-Dimensions

3.1 Introduction

In this chapter we consider the system (2.1) with rank-one resonant eigenvalues,

by which we mean that the eigenvalues of the system (2.1) have exactly one

independent linear dependency over Q.

There are several techniques to find first integrals of polynomial systems.

Basov and Romanovski (2010) considered some families of systems to find an

analytic first integral of the three-dimensional system in the case of one zero

eigenvalue and the other eigenvalues have negative real parts by using Darboux

integrability theory. Llibre and Zhang (2012) obtained several results on the Dar-

boux integrability of polynomial vector fields in Rn or Cn with n ≥ 2. Llibre et al.
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3.1. Introduction

(2012) investigated formal and analytic first integrals of local analytic systems

near a singular point by using the Poincaré-Dulac normal forms. They applied

this method on a system which has a three-dimensional centre, that is, if all the

trajectories near the singular point are stationary or closed, which is equivalent

to considering the case of linearization with one zero eigenvalue. Zhang (2014)

proved that if an n-dimensional polynomial differential system has n − 1 func-

tionally independent Darboux Jacobian multipliers, then it has n− 1 functionally

independent Liouvillian first integrals, and vice versa. Here, we generalize the

technique from Aziz and Christopher (2012) in order to find two independent first

integral of system (2.1).

This technique proves that if the system (2.1) has a Darboux-analytic first

integral and a Darboux-analytic inverse Jacobi multiplier, then the system has

another first integral. This contains logarithm terms if the original system has

resonant monomials, see Theorem 6.

We also prove a sufficient condition for the existence of one first integral for

some families of the three-dimensional Lotka-Volterra systems. These cases have

been left as conjectural in Aziz and Christopher (2014), who gave a number of

necessary conditions for one first integral but could not prove their sufficiency.

We give the details in Section 3.3.1.

We write the system (2.1) in the following form

ẋ = λx+
∑
n≥2

Pn(x, y, z), ẏ = µy +
∑
n≥2

Qn(x, y, z), ż = νz +
∑
n≥2

Rn(x, y, z),

(3.1)

where λ, µ, ν 6= 0. In this chapter, we only consider rank-one resonant eigenvalues

which satisfy the condition λ+µ+ν = 0. This assumption simplifies the exposition

and should be typical of the other cases.

This chapter is organised as follows. In Section 3.2, we describe the technique

51



3.1. Introduction

in order to find two independent first integrals for the system (3.1). Theorem 6

explains that how one can find another first integral of the system (3.1) if it has

a first integral ϕ = xαyβzγ(1 + o(x, y, z)) and an IJM, M = xryszt(1 + o(x, y, z)).

The second first integral is in the following form

ψ = log(X)N1

∑
Î∈E1

cÎ1 KÎX
hÎ δ + log(X)N2

∑
Î∈E1

cÎ2 KÎ X
hÎ δ +

∑
Ĩ∈E2

KĨX
1+Ĩ−θ,

where X = xyz(1 + o(x, y, z)).

In Section 3.3, we assume that the system (3.1) is normalizable. That is, by a

change of coordinates, we can bring the system (3.1) to a normal form

ẋ = x(λ +
∑
i≥1

aiu
i), ẏ = y(µ+

∑
i≥1

biu
i), ż = z(ν +

∑
i≥1

ciu
i), (3.2)

where u = xyz is the resonant monomial. By applying Theorem 6 we show that

the system (3.2) has two independent formal first integrals

ϕ = xyz, ψ =
∑
k≥1

ln(xbk ybk+ck)(xyz)k + ln(xµy−λ).

φ = xyz and ψ =
∑

k≥1 ln(xbk ybk+ck)(x y z)k+ln(xµy−λ) if and only if ak+bk+ck =

0, k ∈ N, which pulled back to the original coordinates give

ϕ1 = xyz(1 + o(x, y, z)),

ψ1 =
∑
k≥1

ln(xbk ybk+ck(1 + o(x, y, z)))(ϕ1)k + ln(xµy−λ(1 + o(x, y, z)).

as two independent first integrals of the system (3.1). We apply this to demon-

strate the (formal) sufficiency of the conditions in Aziz and Christopher (2014).
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3.2. Technique for integrability of 3D systems

3.2 Technique for integrability of 3D systems

We look for two independent first integrals of the system (3.1). We want to show

that if there is a Darboux-analytic first integral and a Darboux-inverse Jacobi

multiplier for the system, then a second first integral can be found (for these two

type of functions, see Definition 4 and Section 2.3).

Aziz and Christopher (2012) proved that there is a second first integral for

the system (3.1) at the origin if it has a first integral ϕδ = xαyβzγ(1 + o(x, y, z)),

δ = (α, β, γ) and an IJM, M θ = xryszt(1 + o(x, y, z)), θ = (r, s, t) such that the

δ× (θ−1− I) 6= 0, for any I = (i, j, k) ∈ Z3
≥0, where 1 = (1, 1, 1). This condition

forces the integrability of system.

We wish to find a second first integral in the case that there is I = (i, j, k) ∈

Z3
≥0 such that δ× (θ−1− I) = 0. In this case, there can still exist resonant terms

and the first integral will not be of Darboux-analytic type.

We first prove the following proposition which will be used in Theorem 6.

Proposition 6. The polynomial system (3.1) has a first integral of the form

φδ = xαyβzγ and an inverse Jacobi Multiplier M θ = xryszt, if and only if, it

satisfies the following

1. λα + µβ + νγ = 0,

2. αa0,j,k = 0, for k + j = n,

3. γci,j,0 = 0, for i+ j = n,

4. βbi,0,k = 0, for k + i = n,

5. αai,j,k + βbi−1,j+1,k + γci−1,j,k+1 = 0, for i > 0,

6. λ(r − 1) + µ(s− 1) + ν(t− 1) = 0,
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3.2. Technique for integrability of 3D systems

7. (r − (i+ 1))ai+1,j,k + (s− (j + 1))bi,j+1,k + (t− (k + 1))ci,j,k+1 = 0.

Proof. Without loss of generality, we assume that α 6= 0. Firstly, suppose that

the system (3.1) has a non-zero first integral φ = xαyβzγ, δ = (α, β, γ), then

χ(φ) =
∂φ

∂x
ẋ+

∂φ

∂y
ẏ +

∂φ

∂x
ż = (α

ẋ

x
+ β

ẏ

y
+ γ

ż

z
)φ = 0 ,

which gives

(αλ+ β µ+ γ ν + α
Pn(x, y, z)

x
+ β

Qn(x, y, z)

y
+ γ

Rn(x, y, z)

z
)φ = 0, (3.3)

we directly obtain the first condition αλ + β µ + γ ν = 0. Also, from equation

(3.3) we have

α
Pn
x

+ β
Qn

y
+ γ

Rn

z
=

1

xyz
(
∑

i+j+k=n
n≥2

α ai,j,k x
iyj+1zk+1 +

∑
i+j+k=n
n≥2

β bi,j,k x
i+1yjzk+1

+
∑

i+j+k=n
n≥2

γ ci,j,k x
i+1yj+1zk) = 0.

(3.4)

If i = 0, then equation (3.4) becomes

∑
j+k=n
n≥2

(α a0,j,k y
j+1zk+1 + β b0,j,kxy

jzk+1 + γ c0,j,k xy
j+1zk) = 0,

we see that the first term of the above equation does not contain any x, then

α a0,j,k = 0, for k+ j = n. In the same way, when j = 0 and k = 0, we obtain the

third and forth conditions, respectively.

When i, j, k > 0, we see that

∑
i>0

(α ai,j,kx
iyj+1zk+1 + β bi−1,j+1,kx

iyj+1zk+1 + γ ci−1,j,k+1x
iyj+1zk+1) = 0,
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3.2. Technique for integrability of 3D systems

and hence

αai,j,k + βbi−1,j+1,k + γci−1,j,k+1 = 0.

Secondly, if M = xryszt is an IJM, we have χ(M) = M div(χ) and write

div(χ) = λ+ µ+ ν + i
Pn(x, y, z)

x
+ j

Qn(x, y, z)

y
+ k

Rn(x, y, z)

z
,

we see that

M(χ) = (rλ+ sµ+ tν + r
Pn(x, y, z)

x
+ s

Qn(x, y, z)

y
+ t

Rn(x, y, z)

z
)M.

By subtracting the last two equations, we obtain

λ(r − 1) + µ(s− 1) + ν(t− 1) = 0, (r − i)Pn
x

+ (s− j)Qn

y
+ (t− k)

Rn

z
= 0,

and, hence the sixth condition is obtained form the first part of the above equation.

After equating the monomials in the second part, we obtain

(r − i)Pn
x

+ (s− j)Qn

y
+ (t− k)

Rn

z

=
∑
i>0

(r − i)ai,j,kxi−1yjzk +
∑
j>0

(s− j)bi,j,kxiyj−1zk +
∑
k>0

(t− k)ci,j,kx
iyjzk−1

=
∑
i≥0

(r − (i+ 1))ai+1,j,kx
iyjzk + (s− (j + 1))bi,j+1,kx

iyjzk

+ (t− (k + 1))ci,j,k+1x
iyjzk = 0,

which implies that

(r − (i+ 1))ai+1,j,k + (s− (j + 1))bi,j+1,k + (t− (k + 1))ci,j,k+1 = 0,

this is the last condition.
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3.2. Technique for integrability of 3D systems

If the system (3.1) satisfies all the conditions of the Proposition 6, then it takes

the following form

ẋ = x (λ+
∑

i+j+k=n
n≥2

ai+1,j,kx
iyjzk) = x (λ+ P̃ (x, y, z)),

ẏ = y (µ+
∑

i+j+k=n
n≥2

bi,j+1,kx
iyjzk) = y (µ+ Q̃(x, y, z)),

ż = z (ν +
∑

i+j+k=n
n≥2

ci,j,k+1x
iyjzk) = z (ν + R̃(x, y, z)).

(3.5)

We can identify the system (3.5) with the following 2-form

Ω = x(λ+
∑
I

CIxX
I) dy ∧ dz + y(µ+

∑
I

CIyX
I) dz ∧ dx

+ z(ν +
∑
I

CIzX
I) dx ∧ dy,

(3.6)

where
∑

I(CIx , CIy , CIz) =
∑

(ai+1,j,k, bi,j+1,kci,j,k+1).

Now, we are interesting to find another first integral of the above system. In

the following theorem, we can show that the system (3.1) has two independent

first integrals when the system has a Darboux-analytic first integral and an inverse

Jacobi multiplier.

To simplify the notation, the multi-index |I| = i + j + k and notation XI =

xiyjzk will be used. Let ∆1 = (dy∧dz
yz

, dz∧dx
zx

, dx∧dy
xy

) and ∆2 = (dx
x
, dy
y
, dz
z

).

Theorem 6. we assume the vector field

χ = x(λ+
∑
I

CIxX
I)∂x+ y(µ+

∑
I

CIyX
I)∂y + z(ν +

∑
I

CIzX
I) ∂z, (3.7)

has a first integral of the form φ1 = xαyβzγ(1 + o(x, y, z)) with at least one of

the parameters α, β and γ is not equal to zero and an inverse Jacobi multiplier
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3.2. Technique for integrability of 3D systems

M1 = xryszt(1 + o(x, y, z)). Then it has a second first integral of the following

form

ψ = log(XN1)
∑
Î∈E1

cÎ1 KÎX
hÎ δ + log(X)N2

∑
Î∈E1

cÎ2 KÎ X
hÎ δ +

∑
Ĩ∈E2

KĨX
1+Ĩ−θ,

where the set E1 contains all (i, j, k) ∈ Î such that (θ − Î − 1) × δ = 0, the set

E2 contains all (i, j, k) ∈ Ĩ such that (θ− Ĩ − 1)× δ 6= 0, N1 and N2 are constant

vectors and 1 = (1, 1, 1).

Proof. Assume, without loss of generality, that α 6= 0. After an invertible change

of coordinates in the form

(x, y, z) 7→ (x(1 + o(x, y, z))
1
α , y(1 + o(x, y, z))

1
β , z(1 + o(x, y, z))

1
γ ),

we can transform the function φ1 = xαyβzγ(1+o(x, y, z)) to φ = Xδ = xαyβzγ, δ =

(α, β, γ), which will not change the form of the vector field (3.7) or an IJM, M1.

Furthermore, by scaling the vector field, we can take in the factor (1 + o(x, y, z))

of M1 into χ in the following way

χ

M1

=
χ

xryszt(1 + o(x, y, z))
=

χ

1 + o(x, y, z)

1

xryszt
=

χ̃

M
,

where M = xryszt =: Xθ with θ = (r, s, t).

Now, we look for a second first integral. If for all I = (i, j, k), such that

(θ − I − 1) × δ 6= 0, then we directly obtain the second first integral described

by Aziz and Christopher (2012). That is, there is a second first integral in the

following form

ψ =
∑
I

KIX
I−θ+1, where CI = KI(θ − I − 1)× δ. (3.8)
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3.2. Technique for integrability of 3D systems

On the other hand, if there are some I = (i, j, k) such that (θ − I − 1) × δ = 0,

then we can define two subsets E1 and E2 in Z3
≥0 in the following

. E1 contains all Î = (i, j, k) such that (θ − Î − 1)× δ = 0.

. E2 contains all Ĩ = (i, j, k) such that (θ − Ĩ − 1)× δ 6= 0.

Since we have a first integral φ = Xδ = xαyβzγ, δ = (α, β, γ), then we obtain

δ · CI = 0, where CI = (CxI , CyI , CzI) (3.9)

Also, since we have an IJM, M = Xθ, then by using χ(M) = M div(χ) and

writing div(χ) =
∑

I=1(I + 1)CIX
I , where 1 = (1, 1, 1), we obtain

(θ − I − 1) · CI = 0 . (3.10)

For all Î ∈ E1, we have (θ− Î−1)×δ = 0, hence both vectors should be multiples

each other. This implies that, there is a constant hÎ such that hÎ δ = (θ− Î − 1).

Clearly, since δ 6= 0, if θ − Î − 1 = 0, then hÎ = 0.

From equation (3.9), we see that δ is orthogonal to all vectors CI , thus all CI

lie in the same plane. Therefore, for each CÎ there is an NÎ = (n1Î , n2Î , n3Î) which

is contained in the same plane with the vector CÎ such that

CÎ = KÎNÎ × δ. (3.11)

Furthermore, the NÎ can be expressed as a linear combination of two orthogonal

constant vectors which span the plane orthogonal to δ, hence there exist constant

vectors N1 and N2 (independent of Î) such that

NÎ = cÎ1N1 + cÎ2N2, (3.12)
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3.2. Technique for integrability of 3D systems

for some constants cÎ1 and cÎ2 . Now for all I, the 2-form (3.6) becomes

Ω =

(
(λ+

∑
I

CIx)
dy ∧ dz
yz

+ (µ+
∑
I

CIy)
dz ∧ dx
zx

+ (ν +
∑
I

CIz)
dx ∧ dy
xy

)
XI+1,

where CI includes CĨ and CÎ . After dividing both sides by M = Xθ, the following

2-form is obtained

Ω

M
=
∑
Î∈E1

CÎ ·∆1X
Î+1−θ +

∑
Ĩ∈E2

CĨ ·∆1X
Ĩ+1−θ.

By substituting the equations (3.11) and (3.8) into the above form

Ω

M
=
∑
Î

KÎ(NÎ × δ) · ∆1X
1−θ+Î +

∑
Ĩ

KĨ(θ − Ĩ − 1)× δ · ∆1X
1−θ+Ĩ

=

∑
Î

KÎ(NÎ · ∆2)X1−θ+Î +
∑
Ĩ

KĨ((θ − Ĩ − 1) · ∆2)X1−θ+Ĩ

 ∧ (δ · ∆2).

Since, we have hÎ δ = (θ − Î − 1), and φ = Xδ, then dφ
φ

= δ dX
X

= δ (dx
x
, dy
y
, dz
z

) =

δ∆2, also NÎ · ∆2 = d(log(X)NÎ ). This implies that

Ω

M
=

∑
Î

KÎ d(logXNÎ )XhÎ δ +
∑
Ĩ

KĨ d(X1−θ+Ĩ)

 ∧ dφ
φ
,

We substitute equation (3.12) to obtain

Ω

M
= (
∑
Î

KÎ d(logX
cÎ1

N1+cÎ2
N2)XhÎ δ +

∑
Ĩ

KĨ d(X1−θ+Ĩ)) ∧ dφ
φ
,

thus, we obtain a formal second first integral of the following form

ψ = log(XN1)
∑
Î

cÎ1 KÎ φ
hÎ + log(XN2)

∑
Î

cÎ2 KÎ φ
hÎ +

∑
Ĩ

KĨX
1+Ĩ−θ.
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3.2. Technique for integrability of 3D systems

Now, suppose that the system (3.6) is analytic, then we want to show that the

second first integral is also analytic.

In Aziz and Christopher (2012), the authors assumed that for any I the cross

product (θ − I − 1) and δ is bounded away from zero. Now, we suppose that for

all Ĩ in E2 the cross product (θ − Ĩ − 1) and δ is bounded away from zero.

When (θ − Ĩ − 1)× δ 6= 0, then we can take m > 0 such that for all Ĩ in E2

0 < m < |(θ − Ĩ − 1)× δ|.

Since, we have CĨ = KĨ((θ − Ĩ − 1)× δ), then we obtain

|KĨ |m < |CĨ |, for all Ĩ . (3.13)

Let the series
∑

Ĩ CĨX
Ĩ converges absolutely, then there is M such that

|CĨ | ≤M R−
˜|I|, for all |X| < R,

where R is the radius of convergence. From equation (3.13), we obtain

|KĨ |m ≤M R−|Ĩ|, for all Ĩ ,

this implies that

|KĨ | ≤
M

m
R−|Ĩ|, for all Ĩ ,

choose M
m

= 1, then |KĨ | is also bounded by R, so
∑

Ĩ KĨ X
Ĩ indeed is convergent.

When (θ − Î − 1) × δ = 0, for same Î, we have CÎ = KÎ(NÎ × δ), where

NÎ = cÎ1N1 + cÎ2N2, then

CÎ = KÎ cÎ1(N1 × δ) +KÎ cÎ2(N2 × δ) = KÎ1
V1 +KÎ2

V2, (3.14)
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3.2. Technique for integrability of 3D systems

where KÎ1
= KÎ cÎ1 , KÎ2

= KÎ cÎ2 and V1 = N1 × δ, V2 = N2 × δ. We see that

a non-zero vector CÎ is a linear combination of two constant vectors V1 and V2.

Without loss of generality, we can assume that V1 is the unit vector in the x-

direction and V2 is the unit vector in the y-direction. Let θ be the angle between

the vector CÎ and x-axis, hence we have the following relationship

KÎ1
V1 = cos(θ)CÎ ,

KÎ2
V2 = sin(θ)CÎ ,

since both |cos(θ)|, |sin(θ)| ≤ 1, we obtain

|KÎ1
V1| = |cos(θ)| |CÎ | ≤ |CÎ |,

|KÎ2
V2| = |sin(θ)| |CÎ | ≤ |CÎ |.

When the power series
∑

Î CÎX
Î converges absolutely, then the both power series∑

Î cÎ1 KÎX
hÎ δ and

∑
Î cÎ2 KÎ X

hÎ δ are absolutely convergent, hence the second

first integral indeed converges.

Theorem 6 will be applied to show the integrability of the system (3.1) in the

case when Pn = Qn = Rn = 0 for n > 2 with λ , ν > 0 and µ < 0, under the

conditions in Proposition 6. In this case, the system is in the following form

ẋ = λx+
λ c1,0,1

2 ν
x2 +

(λ− µ) c0,1,1

ν
xy +

(λ− ν) c0,0,2

ν
xz

+ a0,2,0y
2 + a0,1,1yz + a0,0,2z

2,

ẏ = µ y +
µ c1,0,1

ν
xy +

µ c0,1,1

ν
y2 +

µ c0,0,2

ν
yz,

ż = ν z + c1,0,1 xz + c0,1,1 yz + c0,0,2 z
2.

The above system has a first integral ϕ = z y−
ν
µ and an IJM M = y

−ν t+λ+ν+µ
µ zt.

Therefore, a second first integral can be found directly by using Theorem 6 which
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3.3. Integrability and normalizability of systems in 3D

gives the following results

. If λ 6= µ+ ν and λ 6= 2 ν, then A second first integral is of the following

ψ = y−
−ν t+λ+ν

µ z1−t(−x− c0,1,1

ν
xy − c1,0,1

2 ν
x2 − c0,0,2

ν
xz +

a0,1,1

ν − λ+ µ
yz

+
a0,2,0

2µ− λ
y2 +

a0,0,2

2 ν − λ
z2).

. If λ = µ+ ν, then a second first integral contains the logarithm term

ψ = y−
2µ+ν
µ

+1[
a0,1,1

µ− ν
ln(y z−1)yz − x− c0,1,1

ν
xy − c1,0,1

2ν
x2

− c0,0,2

ν
xz − a0,0,2

µ− ν
z2 +

a0,2,0

µ− ν
y2].

. If λ = 2 ν, then a second first integral also contains the logarithm term

ψ = y−2 ν
µ [
a0,0,2

µ− ν
ln(y z−1) z2 − x− c0,1,1

ν
xy − c1,0,1

2 ν
x2

− c0,0,2

ν
xz +

a0,1,1

µ− ν
yz +

a0,2,0

µ− ν
y2].

3.3 Integrability and normalizability of systems

in 3D

In this section, we use the relationship between the integrability and normaliz-

ability of the system (3.1) to demonstrate the sufficiency of the conditions in Aziz

and Christopher (2014).

Firstly,we assume that the system (3.1) is orbitally normalizable, then by

Theorem 2, the normal form (2.3) can be written in the following form

Ẋ = X(λ+ p(u)), Ẏ = Y (µ+ q(u)), Ż = Z(ν + r(u)), (3.15)
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3.3. Integrability and normalizability of systems in 3D

where p, q, r ∈ C[u], and u = Xn1Y n2Zn3 , (n1, n2, n3) ∈ Z3
≥0 is the resonant mono-

mial.

Since, we only consider the case λ+ µ+ ν = 0, then we must have u = XY Z.

This is because by the resonant condition equation (2.2), we have

(λ, µ, ν) · (n1, n2, n3) = λn1 + µn2 + νn3 = λ(n1 − n3) + µ(n2 − n3) = 0,

if (n1 − n3) 6= 0, this yields

λ

µ
=
n3 − n2

n1 − n3

∈ Q,

which contradicts λ
µ
/∈ Q. Then n1 − n3 = 0, and n3 − n2 = 0. Consequently,

n3 = n2 = n1 and all resonant monomials are generated by u = xyz. Therefore,

the system (3.15) becomes

Ẋ = X(λ+
∑
n≥1

anu
n), Ẏ = Y (µ+

∑
n≥1

bnu
n), Ż = Z(ν +

∑
n≥1

cnu
n),

(3.16)

where u = XY Z.

In the following theorem, we want to show that if we have a Darboux IJM,

M , of the form M = (xyz)r(1 + o(x, y, z)) with some conditions on resonant

coefficients then there is a formal first integral of the form ϕ = xyz(1 + o(x, y, z)).

Theorem 7. Let the system (3.1) be formally orbitally normalizable with rank-

one resonant eigenvalues which satisfies the condition λ + µ + ν = 0, then the

following statements are equivalent:

(i) The system (3.1) has formal IJM, M , of the form M = (xyz)r(1+o(x, y, z)),

for r /∈ {2, 3, · · · }.

(ii) The condition ak + bk + ck = 0 holds in the formal normal form (3.16).

63



3.3. Integrability and normalizability of systems in 3D

(iii) The system (3.1) has formal first integral of the form ϕ = xyz(1+o(x, y, z)).

Proof. Since (3.1) is orbitally normalizable, by an invertible change of coordinates

(X, Y, Z) = G(x, y, z) = (x+ o(x, y, z), y + o(x, y, z), z + o(x, y, z)),

we can bring (3.1) to the system (3.16) which we identify with the following vector

field

χ = X(λ+
∑
k≥1

aku
k)

∂

∂X
+ Y (µ+

∑
k≥1

bku
k)

∂

∂Y
+ Z(ν +

∑
k≥1

cku
k)

∂

∂Z
, (3.17)

where u = XY Z is the resonant monomial. Given M1 = xyz (1 + o(x, y, z)), by

Theorem 7 in Berrone and Giacomini (2003),

M(X, Y, Z) = (M1 ◦G−1)(X, Y, Z)|J(G−1(X, Y, Z))|,

is an IJM of the transformed system, where J is a Jacobi matrix and G is the

change of coordinates of the original system. In our case, J is equal to identity at

the origin corresponding to the change of coordinates G, and then an IJM of the

system (3.17) becomes of the following

M(X, Y, Z) = (XY Z)r(1 + o(X, Y, Z)). (3.18)

Furthermore, after scaling we can absorb the factor (1 + o(X, Y, Z)) of M into

the vector field, and hence we can suppose that M is of the form (XY Z)r, which

will not change the form of the vector field (3.17) nor the conditions in (ii). The

implication (i) ⇒ (ii) follows because we seek an IJM M of the form (XY Z)r.

And we write the divergence of the system as
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3.3. Integrability and normalizability of systems in 3D

div(χ) = λ+
∑
k≥1

(k + 1)aku
k + µ+

∑
k≥1

(k + 1)bku
k + ν +

∑
k≥1

(k + 1)cku
k

=
∑
k≥1

(k + 1)(ak + bk + ck)u
k.

The partial derivative of M associated to the system (3.16) is

χ(M) = (r(λ+
∑
k≥1

aku
k) + r(µ+

∑
k≥1

bku
k) + r(ν +

∑
k≥1

cku
k))M

= (r(λ+ µ+ ν) +
∑
k≥1

r(ak + bk + ck)u
k)M

=
∑
k≥1

r(ak + bk + ck)u
kM.

(3.19)

Then M is an IJM if χ(M)−M div = 0. To achieve this, we have

∑
k≥1

r(ak + bk + ck)u
k)M −

∑
k≥1

(k + 1)(ak + bk + ck)u
kM = 0,

this implies that

(ak + bk + ck)(r − k − 1) = 0, k = 1, 2, · · · ,

since r 6= 1 + k for all k, then we have only one solution which is ak + bk + ck = 0.

Hence M = (XY Z)r is an IJM, if ak + bk + ck = 0 for all k ∈ N. The implication

(ii)⇒ (i) follows because the divergence is equal to zero and from equation (3.19)

we directly obtain an IJM of the form M = (XY Z)r where r is an arbitrary. The

implication (iii)⇒ (ii) follows because by an invertible change of coordinates, we

can bring ϕ = xyz(1 + o(x, y, z)) into ϕ = XY Z(1 + o(X, Y, Z)). We can also

absorb the factor 1 + o(u) as exactly shown above for the IJM, and hence we can

suppose that the first integral is of the form ϕ = XY Z. This gives
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3.3. Integrability and normalizability of systems in 3D

χ(ϕ) =
∂ϕ

∂X
Ẋ +

∂ϕ

∂Y
Ẏ +

∂ϕ

∂Z
Ż

= XY Z(λ+
∑
k≥1

aku
k) +XY Z(µ+

∑
k≥1

bku
k) +XY Z(ν +

∑
k≥1

cku
k)

=
∑
k≥1

(ak + bk + ck)u
k+1,

hence, ϕ = XY Z is the first integral if ak + bk + ck = 0, for all k ∈ N. The

implication (ii)⇒ (iii), it is clear.

Now, by using Theorem 6, we want to find another first integral of the system.

Since, we have φδ = XY Z, δ = (1, 1, 1) and M θ = (XY Z)r, θ = (r, r, r), we see

that

δ × (θ − I − 1) = (0, 0, 0), ∀I = (i, i, i) ∈ Z3
≥0, i ∈ Z≥0,

then, there is hIi ∈ R such that hIi δ = θ − I − 1, where 1 = (1, 1, 1). There-

fore, for each I,
∑

I CI =
∑

I(aIx , bIy , cIz) with C0 = (λ, µ, ν) there is an NI =

(nI1 , nI2 , nI3), such that

CI = KIi(NI × δ), (3.20)

where KIi ∈ R. By solving the above equation, we obtain N0 = (µ,−λ, 0) and

for other value of I, we obtain NI = (bIx ,−aIy , 0) (for example N1 = (b1,−a1, 0)),

with KIi = 1 for all I.

Now for all I, the 2-form Ω corresponding to the field (3.6) becomes

Ω =
∑
I

CI ·∆ (XY Z)Ii+1.

where ∆ = (dY ∧dZ
Y Z

, dZ∧dX
ZX

, dX∧dY
XY

) and Ii = 1, 2, · · · . After dividing both sides by

M θ = (XY Z)r, we obtain

Ω

M
=
∑
I

CI ·∆ (XY Z)Ii+1−r,
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3.3. Integrability and normalizability of systems in 3D

we substitute equation (3.20) into the above form to obtain

Ω

M
=
∑
I

KIi(NI × δ) · ∆ (XY Z)Ii+1−r,

this implies that

Ω

M
=
∑
I

KIi(NI · ∆1)(XY Z)1−r+Ii ∧ δ · ∆1,

where ∆1 = (dX
X
, dY
Y
, dZ
Z

). Since, we have φ = XY Z, then

dφ

φ
= (

dX

X
,
dY

Y
,
dZ

Z
),

this gives
Ω

M
=
∑
I

KI log(X̃)NI (XY Z)hIi ∧ dφ
φ
,

where hIi = Ii + 1− r and X̃N0 = Xn0Y n0Zn0 = XµY −λ and for other value of

I, X̃NI = XbIiY −aIi . Since we have KIi = 1 and we can choose r = 1. Thus, we

obtain a formal second first integral of the following form

ψ =
∑
i=1

ln(Xbi Y −ai)(XY Z)i + ln(XµY −λ),

which pulled back to original coordinates gives

ψ =
∑
i=1

ln(xbi ybi+ci(1 + o(x, y, z)))(xyz(1 + o(x, y, z))i + ln(xµy−λ(1 + o(x, y, z)),

as the second first integral of the system (3.1).

In Theorem 7, we have given the proof in the formal case, in which we mean

that we only use the formal power series in the change of coordinates.
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3.3.1 The conjecture of Aziz and Christopher

In this section, we apply Theorem 7 to solve the sufficiency for the existence of

one first integral of the three-dimensional Lotka-Volterra system. This problem

have been left as conjectural in Aziz and Christopher (2014).

Consider the 3D Lotka-Volterra system

ẋ = x(λ+ by + cz), ẏ = y(µ+ dx+ ey + fz), ż = z(ν + gx+ hy). (3.21)

We seek conditions for one first integral of the system (3.21). Some necessary

conditions were found by Aziz and Christopher (2014). But they could not prove

sufficiency in every case and left the remaining cases as conjectural. Here we prove

the sufficiency of these conditions for the existence of one first integral.

The necessary conditions for the existence of one first integral were found

in Aziz and Christopher (2014) by looking for a first integral of the form φ1 =

xyz(1 + o(x, y, z)).

The following conditions are given by checking the resonant coefficients in

φ1 = xyz(1 + o(x, y, z)) which are the necessary conditions for the existence of

one first integral of the system (3.21). The three cases left as conjectural, where

1. f = d = 0,

2. e = 0,

3. f + c = g + d = 0.

These conditions relate to the numbers (4′), (5′) and (6′), respectively of Theorem

4 in Aziz and Christopher (2014).

Using Theorem 7, we search for an IJM of the form M = (xyz)r(1+o(x, y, z)).
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We write the divergence of the system (3.21) as

div = (d+ g)x+ (b+ e+ h)y + (c+ f)z.

Then, we have the following IJMs corresponding to the cases (1), (2) and (3)

respectively,

1. M = xyz
(

1 + ey
µ

)
, corresponding to the condition f = d = 0,

2. M = xyz, corresponding to the condition e = 0,

3. M = (xyz)
b+2e+h
b+e+h , corresponding to the condition f + c = g + d = 0, such

that e+ b+ h 6= 0 .

All these cases are directly consequences of Theorem 7. Hence, there is the formal

first integral of the system which is of the form φ = xyz(1 + o(x, y, z).
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Chapter 4

Normalizability, Integrability and

Monodromy Map of Rank-One

Resonant Singularities in 3D

4.1 Introduction

In this chapter, we continue the investigation of the system (3.1) with rank-one

resonant eigenvalues satisfying the condition λ+ µ+ ν = 0.

In Chapter 3, by using the formal normal form method, we found two inde-

pendent first integrals of the system (3.1) under some conditions on the resonant

coefficients. One of these first integrals is of Darboux-analytic type and the other

contains a logarithmic term allowing for non-zero resonant terms in the formal

normal form. Now, we look at the general case, by which we mean that we intend

to find two independent first integrals of the system (3.1) in the generic case. One

of these first integrals will still contain a logarithmic term. We give the proof in

the formal case. When results hold in the analytic case, this will be mentioned in

the text.
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4.1. Introduction

We write the system (3.1) in the following form

ẋ = λx+
∑
n≥2

Pn(x, y, z), ẏ = µy +
∑
n≥2

Qn(x, y, z), ż = νz +
∑
n≥2

Rn(x, y, z),

(4.1)

where λ+ µ+ ν = 0.

As we mentioned in the previous chapter, the system (4.1) can be brought

formally into the orbitally normalizable system (3.16) which we can write in the

following form

ẋ = x(λ+
∑
k≥1

aku
k), ẏ = y(µ+

∑
k≥1

bku
k), ż = z(ν +

∑
k≥1

cku
k), (4.2)

where u = xyz is the resonant monomial.

Since we work with orbitally normalizability, we can divide the system (4.2)

by 1 + 1
λ
(
∑

k aku
k) so that, without loss of generality, the system (4.2) can be

taken to be in the following form

ẋ = λx, ẏ = y(µ+
∑
k≥1

b̃ku
k), ż = z(ν +

∑
k≥1

c̃ku
k), (4.3)

where u = xyz is the resonant monomial. The sum of the resonant coefficients

becomes

b̃k + c̃k = ak + bk + ck, k = 1, 2, · · · ,

where b̃k + c̃k are the corresponding terms of the system (4.3) to ak + bk + ck in

(4.2).

For convenience, we write the system (4.3) as

ẋ = λx, ẏ = y(µ+Q(u)), ż = z(ν +R(u)), (4.4)
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where Q(u) and R(u) are formal power series in u: Q(u) = b1u + b2u
2 + · · · and

R(u) = c1u+ c2u
2 + · · · .

In 2D, it is known that when the two-dimensional system

ẋ = x, ẏ = − p
q
y + y h(x, y), where h(x, y) ∈ C[x, y],

is normalizable but not integrable, then the above system can be brought by an

analytic change of coordinates Y = y ϕ(x, y), ϕ(0) 6= 0, into the following form

ẋ = x, Ẏ = −p
q
Y (1 + ψ(u)), (4.5)

where ψ = uk − au2k + o(u3k) is an analytic function in u = xpY q.

In this chapter, we consider when we can further simplify the normal form

(4.4) by an analytic change of coordinates, in order to obtain a reduced normal

form (RNFS) (see (4.7)). In this way, two independent first integrals can be found

by using Theorem 6 for this RNFS which are of the following forms

H1 = xαyβzγ , H2 =
1

xyz
+ ε1 lnx+ ε2 ln y.

We give the details of this in Section 4.2.

In Section 4.3, we introduce the monodromy map of the reduced normal form

by using the above two independent first integrals, and relate this to the cor-

responding normal form for 2D maps. That is for 2D maps, we can also find

formal normal forms only containing resonant monomials, and in this case the

corresponding map has eigenvalues whose product is equal to unity based on the

condition λ+ µ+ ν = 0 of the system (4.4).

In a similar way to the case of vector fields, we can also find a change of

coordinates to reduce this map into a reduced map. By which we mean that we
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can also apply a further transformation to reduce the 2D map obtained by using

the monodromy into a reduced map containing only finite number of resonant

monomials (see Section 4.3.1).

4.2 Orbitally normalizable system

The aim of this section is to obtain a reduced normal form for the system (4.4)

containing only a finite number of resonant monomials.

In 3D, a suitable reduced normal form is not easy to find. We have tried out

and examined several different types of normal form seeing which is the best form

for the reduced normal form of the system (4.4).

In the 2D systems, it is known that a further change of coordinates will bring

the system (4.5) into the reduced normal form

Ẋ = X, Ẏ = −p
q
Y (1 +

Uk

1 + aUk
),

where U = XpY q. For more information one can refer to Christopher et al. (2003).

In analogy with 2D case, we seek an analytic change of coordinates

(x, Y, Z) = (x, y eϕ(u), z eψ(u)), (4.6)

to bring the system (4.4) into the reduced normal form

ẋ = λx, Ẏ = Y (µ+
bU

1 + aU
), Ż = Z (ν +

cU

1 + aU
), (4.7)

where U = xY Z, and ϕ(u) =
∑

j≥1 fju
j, ψ(u) =

∑
j≥1 gju

j.

The system (4.4) which arises form the system (4.2) has two independent first

integrals under some conditions (see Chapter 3). In the following theorem, we

want to show that system (4.4) can be reduced to the system (4.7) in order to
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4.2. Orbitally normalizable system

be able to find two independent first integrals of the reduced normal form of the

generic case. From the system (4.4), where u = xyz, we have

u̇ = u2(b1 + c1 + (b2 + c2)u+ · · · ) = (b1 + c1)u2(1 +
(b2 + c2)u

b1 + c1

+ · · · )

= â1u
2(1 +

â2u

â1

+
â3u

2

â1

+ · · · ) =: G(u),

(4.8)

where we define âk = bk + ck, k = 1, 2, · · · , and â1 6= 0.

We summarize all results in this section in the following theorem.

Theorem 8. Given an orbitally normalizable system (4.4) with rank-one resonant

eigenvalues satisfying the condition λ+ µ+ ν = 0.

� If bi+ci = 0, for i = 1, 2, · · · , k−1, and bk+ck 6= 0, ci, bi 6= 0 for i = 1, 2, · · · ,

then by an analytic change of coordinates (4.6), we can bring the system

(4.4) to a reduce normal form

ẋ = λx, Ẏ = Y (µ+
F (U) + b Uk

1 + aUk
), Ż = Z (ν +

−F (U) + c Uk

1 + aUk
),

for some a, b, c ∈ C, where F (U) = blU
l + hl+1U

l+1 + · · · + hk−1U
k−1, and

bl is the first non-zero term of bi, (if ci = bi = 0, i = 1, 2, · · · , k − 1, then

F (U) ≡ 0).

� If there are l, k ∈ N with bk, cl 6= 0 for k > l, and b1 = · · · = bk−1 = c1 =

· · · = cl−1 = 0, then by an analytic change of coordinates (4.6), we can bring

the system (4.4) to a reduce normal form

ẋ = λx, Ẏ = µY, Ż = Z (ν +
c U l

1 + aU l
),

for some a, c ∈ C.
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Now, we split the proof of Theorem 8 into several cases. Firstly, we want to

prove the case k = 1.

Theorem 9. Given an orbitally normalizable system (4.4) with rank-one resonant

eigenvalues satisfying the condition λ + µ + ν = 0. If b1, c1 6= 0 and c1 + b1 6= 0,

then by an analytic change of coordinates (4.6), we can bring the system (4.4) to

a reduce normal form (4.7) for some a, b, c ∈ C.

Proof. Firstly, we take the derivative of Y = yeϕ and Z = zeψ to obtain

Ẏ = ẏ eϕ + y eϕϕ′ u̇, Ż = ż eψ + z eψψ′ u̇, (4.9)

by substituting the system (4.7) into the first equation in (4.9) (Ẏ ), gives

Y (µ+
bU

1 + aU
) = ẏ eϕ + y eϕϕ′ u̇,

substituting the system (4.4) and (4.8), respectively, at each step, we obtain

y eϕ(µ+
bU

1 + aU
) = y(µ+Q(u)) eϕ + y eϕϕ′G(u),

dividing both sides by yeϕ, yields

b U

1 + aU
= Q(u) +G(u)ϕ′. (4.10)

In the same way, by using a change of coordinates Z = zeψ, and substituting the

systems (4.4), (4.7) and (4.8) into the second equation in (4.9) (Ż), respectively,

at each step, we directly obtain

c U

1 + aU
= R(u) +G(u)ψ′, (4.11)
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where ϕ′ =
∑

j≥1 j fju
j−1 and ψ′ =

∑
j≥1 j gju

j−1. Writing U = xY Z =

xyz eϕ(u)+ψ(u) = u eK(u), where K(u) = ϕ+ ψ =
∑

j≥1 ξju
j. Equation (4.10) gives

b u eK(u)(1 + aueK(u) + · · · ) = b1u+ b2u
2 + · · ·+ (â1u

2 + · · · )(f1 + 2f2u+ · · · )

= b1u+ b2u
2 + · · ·+ (f1â1u

2 + · · · ) = b1u(1 + · · · ),

yields

(b− b1)u+ ((−a+ ξ1) b− â1f1 − b2)u2 + (â2h− b3 (−2 aξ1 + ξ2) b− 2 f2â1

− â2f1 +
bξ2

1

2
)u3 + · · · = 0.

(4.12)

Hence, from the first and second terms in u, we obtain

b = b1, ξ1b1 − f1â1 = a b1 + b2. (4.13)

From (4.11), we have

c u eK(u)(1 + a eK(u) + · · · ) = c1u(1 +
c2 + â1g1

c1

u+ · · · ),

yields

(c− c1)u+ ((−a+ ξ1) c− â1g1 − c2)u2 + (â2c− c3 + (−2 aξ1 + ξ2) c− 2â1g2

− â2g1 +
cξ2

1

2
)u3 + · · · = 0,

(4.14)

which gives

c = c1, ξ1c1 − g1â1 = a c1 + c2. (4.15)

We sum the two equations (4.12) and (4.14), and substituting the values of b and
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4.2. Orbitally normalizable system

c, to obtain

ξ1(b1 + c1)− ξ1â1 = a (â1 + c1) + b2 + c2,

and hence a = − â2
â1

. To find f1 we can choose one of the equations (4.13) or

(4.15), to give

f1 = −a b1 + b2

c1

+
b1

c1

g1.

We can find further coefficients fi in ϕ(u). By substituting equation (4.13) with

a = − â2
â1

into (4.12), the coefficient of u3 term in equation (4.12) can be solved

with respect to f2 which gives

f2 =
c3 + b1g2

c1 + â1

+
b1c2

2

2c1
2 (c1 + â1)

− â2c2 + â1â3

â1 (c1 + â1)
+

â2
2

2â2
1

+
â1b1g1 (â1g1 + 2 c2)

2c1
2 (c1 + â1)

.

(4.16)

In the same way, we can continue to solve equation (4.12), and the coefficients

fi can be determined term by term. In more detail, we want to show that equa-

tion (4.12) is solvable for each individual term. We first need to find the power

series K(u) =
∑

i≥1 ξ1u
i. We can sum the two equations (4.12) and (4.14), and

considering the Taylor expansion with substituting the values of c and b to obtain

(â2â1 − â1ξ2 − â3 +
â1ξ

2
1

2
− ξ1 (2 a â1 + â2))u2 + (ξ3 +

â4

2 â1

+
â3

2

2â3
1

+
2ξ2â2

â1

+
(â2

1ξ2 − â3â1 + 3 â2
2) ξ1

−2â2
1

+
ξ2

1(â1ξ1 − 12â2)

−12 â1

)u3 + · · · = 0.

(4.17)

This gives from u2 and u3 terms, respectively,

â1ξ2 = â3 − â2â1 −
â1ξ

2
1

2
− ξ1 (2 a â1 + â2) ,

2 â1ξ3 = −â4 −
â3

2

â2
1

− 4 ξ2â2 +
(â2

1ξ2 − â3â1 + 3 â2
2) ξ1

â1

+
ξ2

1 (â1ξ1 − 12 â2)

6
.

To find for further terms, we continue to compare powers of u in equation (4.12)
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and (4.14) which are determined term by term. Now, we want to show that there

is an analytic K(u) in the change of coordinate U = ueK(u). Following Kostov

(1984), we want to show that the one-dimensional field G(u) d
du

has an analytic

change of coordinate, which brings the system (4.8) into

u̇ = â1u
2 (1 + ã u+ o(u2)), (4.18)

where ã = â2
â1

is a formal orbital invariant. Thus, we need to solve

dU

du
=

(c+ b)U2(1 + aU)−1

(b1 + c1)u2(1 + ã u+ o(u2))
.

Since we have b = b1 and c1 = c, then this gives

(1 + aU) dU

U2
=

du

u2(1 + ã u+ o(u2))
.

This implies that

(
1

U2
+
a

U
)dU = (

1− ã u
u2

+
ã2 + o(u)

1 + ã u+ o(u2)
)du.

By integrating, we obtain

−1

U
+ a lnU =

−1

u
− ã ln u+ o(u0),

and using U = ueK , gives

1

u
(1− e−K) + (a+ ã) ln(u) + aK − o(u0) = 0.

Since, we have a = − â2
â1

and ã = â2
â1

, and then multiplying by u, gives
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F (u,K(u)) = 1− e−K + auK − o(u1) = 0.

Solving the above equation is equivalent to solving F (u,K(u)) = 0, where K(u) =

eϕ(u)+ψ(u). Clearly, F (0, 0) = 0, and

∂F

∂K
= e−K + au,

which implies that ∂F
∂K

(0, 0) = 1, thus giving K = K(u) as an analytic solution to

F (u,K(u)) = 0 by the implicit function theorem.

Now, we want to show that each equations (4.12) and (4.14) has a solution for

each individual linear term with respect to the power series ψ(u) and ϕ(u) via the

change of coordinate U = ueK(u).

Since, from (4.10) we have

b eK(u)

1 + a ueK(u)
−Q(u) = G(u)ϕ′,

by integrating with respect to u, and considering the Taylor expansion, we obtain

ϕ =

∫ (
b eK(u)

1 + a ueK(u)
−Q(u)

)
G(u)−1 du =

∫
(
b1ξ1

â1

− b2

â1

− b1â2

â2
1

+ o(u)) du.

It is clear that the above integral exists and is analytic in giving the change of

coordinate Y = y eϕ(u). Consequently, the change of Z-coordinate also exists by

ψ(u) = K(u)− ϕ(u).

Therefore, by solving (4.12) and (4.14), respectively, we obtain power series

ϕ(u) = (
b1

c1

g1 +
c2b1 − b2c1

â1c1

)u+ (
â1 (â1 − c1) g1

2

2c1
2

+
c2 (â1 − c1) g1

c1
2

+
â3c1

3 + ((−2 â3 + c3) â1 + â2 (â2 − c2)) c1
2 − â1c1c2

2 + â2
1c2

2

2c1
2â2

1

)u2 + · · · ,
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ψ(u) = g1u+ (
c2g1

c1

+
â1g1

2

2c1

− â1c1c3 − â1c2
2 − â2c1c2 + c1

2â3

2c1â2
1

)u2 + · · · .

In the following theorem, if one of the conditions in Theorem 9 does not hold

(i.e., b1 = 0, c1 = 0 or b1 + c1 = 0), we can not use the RNFS (4.7) for the

reduction of the normal form (4.4). We then seek an another RNFS depending

on vanishing the resonant coefficients bi, ci and bi + ci in the normal form (4.4).

Thus, if the situation is not generic, we consider the following possibilities in

turn. In Theorem 10, we suppose b1 + c1 = 0, and b1, c1, b2 + c2 6= 0. In Theorem

11, we suppose bi + ci = 0, for i = 1, 2, · · · , k − 1, 1 < k ∈ N, and bk + ck 6= 0,

and bi, ci 6= 0 for all i ∈ N. In Theorem 12, we suppose b1 = 0 and c1, b2 6= 0. In

Theorem 13, we suppose bi = 0, i = 2, 3, · · · , k − 1 and c1, bk 6= 0. In Theorem

14, we suppose b1 = b2 = · · · = bk−1 = c1 = c2 = · · · = cl−10 and bk, cl 6= 0.

Theorem 10. Given an orbitally normalizable system (4.4) with rank-one res-

onant eigenvalues satisfying the condition λ + µ + ν = 0. Assume c1 + b1 = 0,

c2 + b2 6= 0 and c1, b1 6= 0, then by an analytic change of coordinates (4.6), we can

bring the system (4.4) to a reduce normal form

ẋ = λx, Ẏ = Y (µ+
bU + b̃ U2

1 + aU2
), Ż = Z (ν +

cU + c̃ U2

1 + aU2
), (4.19)

for some a, b, c ∈ C.

Proof. We suppose that b1 + c1 = 0, then b1 = −c1 and u̇ becomes

u̇ = â2u
3 (1 +

â3

â2

u+
â4

â2

u2 + · · · ) =: G(u). (4.20)

where âk = bk + ck for k = 2, 3, · · · , and â2 6= 0. By the same way that we

showed in Theorem 9, we can substitute the systems (4.4), (4.19) and (4.20) into
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the change of Y -coordinate, Ẏ = ẏ eϕ + y eϕϕ′ u̇, to obtain

b U + b̃ U2

1 + aU2
= Q(u) +G(u)ϕ′, (4.21)

where U = ueK(u) and K(u) = ϕ+ ψ =
∑

j≥1 ξju
j. Equation (4.21) gives

b ueϕ+ψ + b̃ u2e2(ϕ+ψ) − (1 + a u2e2(ϕ+ψ))(Q(u) +G(u)ϕ′) = 0. (4.22)

Moreover, using the Taylor expansion to simplify equation (4.21), we obtain

(b− b1)u+ (b̃− c1ξ1 − b2)u2 + ((
−ξ2

1

2
− ξ2)c1 + 2ξ1b̃+ ac1 − b3 − â2f1)u3

+ · · · = 0.

(4.23)

By solving the first and second terms in u, we obtain

b = b1 = −c1, b̃ = c1ξ1 + b2. (4.24)

Also, in the same way, we can substitute the systems (4.4), (4.19) and (4.20) into

the change of coordinate, Z = z eψ, to obtain

c U + c̃ U2

1 + aU2
= R(u) +G(u)ψ′, (4.25)

which yields,

c ueϕ+ψ + c̃ ue2(ϕ+ψ) − (1 + a u2e2(ϕ+ψ))(R(u) +G(u)ψ′) = 0. (4.26)

We consider the Taylor expansion and simplifying equation (4.26) to obtain

81



4.2. Orbitally normalizable system

(c− c1)u+ (c̃+ c1ξ1 − c2)u2 + ((
ξ2

1

2
+ ξ2)c1 + 2 c̃ξ1 − ac1 − g1â2 − c3)u3

+ · · · = 0.

(4.27)

From the first and second terms in u, gives

c = c1, c̃ = −c1ξ1 + c2. (4.28)

From sum of the equations (4.24) and (4.28) toobtainher, we obtain

c̃+ b̃ = c1ξ1 + c2 + b1ξ1 + b2 = c2 + b2 = â2 6= 0.

Now, we first need to find a. We sum the equations (4.23) and (4.27), considering

the Taylor expansion, and substituting the values of c, b, b̃ and c̃, to obtain

(c̃+ b̃− â2)u2 + (â2ξ1 − â3)u3 + (2 ξ2
1 â2 − a â2 − â3ξ1 + â4)u4 + · · · = 0. (4.29)

The terms in u3 and u4, respectively, give

ξ1 =
â3

â2

, a = 2ξ2
1 −

â3

â2

ξ1 −
â4

â2

, (4.30)

and hence,

a = (
â3

â2

)2 − â4

â2

.

Thus, it is necessary to find the value of a in the process before seeking for the

value of the each power series ϕ and ψ.

From equation (4.29), we have

f1 = −g1 +
â3

â2

. (4.31)
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Now, we want to find K(u) =
∑

i≥1 ξiu
i. We substitute the values of b, b̃, a into

(4.29) to obtain

(â2g1 − ξ2c1 − c3 +
4 â2â3c2 + 2 â2â4c1 − 5 â2

3c1

2â2
2

)u5 + · · · = 0. (4.32)

This gives

c1ξ2 = â2g1 − c3 +
4 â2â3c2 + 2 â2â4c1 − 5 â2

3c1

2â2
2

.

In the same way, from the u6 term, we obtain

â2ξ3 = 2 â3ξ2 − â5 − 3
â3â4

â2

+
8 â3

3

3â2
2

.

To find for further terms, we can continue to find the coefficients ξi from equation

(4.29) which is determined term by term. In more detail, we want to show that

there is an analytic K(u) in the change of coordinate U = ueK(u). Since, from the

system (4.8), we have

u̇ = â2u
3 (1 +

â3

â2

u+
â4

â2

u2 + o(u3)).

Thus, we need to solve

dU

du
=

(c̃+ b̃)U3(1 + aU2)−1

â2u3(1 + â3
â2
u+ â4

â2
u2 + o(u3))

.

Since we have b̃+ c̃ = b2 + c2 = â2, this gives

(1 + aU2) dU

U3
=

du

u3(1 + â3
â2
u+ â4

â2
u2 + o(u3))

,

which simplifies to
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(
1

U3
+
a

U
) dU =

(
1− â3

â2
u+ (( â3

â2
)2 − â4

â2
)u2

u3
+

− â3
â2

3
+ o(u2)

1 + â3
â2
u+ â4

â2
u2 + o(u3)

)
du.

Since we have a = ( â3
â2

)2− â4
â2

, and by integrating on the above equation we obtain

−2

U2
+ a lnU =

−2

u2
+
â3

â2

1

u
+ a ln u+ o(u0),

this implies that

2

u2
(1− e−2K) + a ln(u eK)− a lnu− â3

â2

1

u
− o(u0) = 0,

multiplying by u2, gives

F (u,K(u)) = 2(1− e−2K) + au2K(u)− ãu− o(u2) = 0.

Solving the above equation is equivalent to solving F (u,K(u)) = 0, where K(u) =

eϕ(u)+ψ(u). Clearly, F (0, 0) = 0, and

∂F

∂K
= 4e−2K + au2,

which implies that ∂F
∂K

(0, 0) = 4, thus giving K = K(u) as an analytic solution to

F (u,K(u)) = 0 by the implicit function theorem.

Also, we want to show that (by the same way shown in Theorem 9) each in-

dividual equations (4.22) and (4.26) has a solution with respect the power series

ϕ(u) and ψ(u), respectively. Since, from equation (4.22) we have

(
bueK(u) + b̃ u2e2K(u)

1 + a u2e2K(u)
−Q(u)

)
G(u)−1 = ϕ′,

by integrating with respect to u and considering the Taylor expansion, and sub-
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stituting the values of a, b, c, b̃, c̃ and f1 we obtain

ϕ =

∫
(
b1ue

K(u) + b̃ u2e2K(u)

(1 + a u2e2K(u))
−Q(u))G(u)−1 du

=

∫
(
−g1â2 + â3

â2

+ o(u)) du,

which is analytic in u and gives the change of coordinate Y = y eϕ(u). Conse-

quently, the change of Z-coordinate also exists by ψ(u) = K(u)− ϕ(u).

Therefore, by solving the equations (4.23) and (4.27), respectively, we obtain

the power series

ϕ(u) = − â2g1 − â3

â2

u+ (
2 â2c3 + c1c4 − 2 c2c3

2â2c1

− (4 â2c2 + c1c3) â3 + 4 â3c2
2

2â2
2c1

− (2 â2 − c2) â4 + â5c1

2â2
2

+
(5 â2 − 4 c2) â2

3

2â3
2

− 2â3c1 (â2â4 − â2
3)

â4
2

+
g1 (â2 − c2)

c1

)u2

+ · · · ,

ψ(u) = g1u+ (
c2â4â2 + â5c1â2 − 4 c2a3

2 − 4 â4c1â3

2â3
2

− â3
2c1c4 − 2 â3

2c2c3 − â2
2a3c1c3 + 4 â2

2â3c2
2 + 4 â3

3c1
2

2â4
2c1

+
c2g1

c1

)u2 + · · · ,

However, in the above case, from equation (4.24) (b̃ = c1ξ1 + b2), if we choose

that f1 = − b2
c1
− g1, this gives b̃ = 0. Then, by substituting f1 and b̃ = 0 into

(4.23), we obtain

(
(â2 − c2) (â2 + c2)

2c1

− c1 (â2â4 − â2
3)

â2
2

+ â2g1 − c1ξ2 − b3)u2 + (
â3 (â2 − c2)

c1

+
(â2 − c2)

(
â2

2 (â2 − c2)2 + 18 (â2â4 − v3
2) c1

2
)

6c1
2â2

2

− (â2 + c2)f2 + (â2 − c2)g2

− c1ξ3 − b4 + g1â3)u3 + · · · = 0,

(4.33)

solving the above equation with respect to fi, gives
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

f2 = −−â
4
2+2 â22â3c1+2 â2â4c12−2 â23c1

2

2c12â22
+ c3

c1
− c22

2c12
+ â2

c1
g1 − g2,

f3 = − 1
3c13â22

( â3
2c1c2g1 − 3 â2

2â3c1
2g1 + 3 â2

2c1c2c3 + 6 â2â4c1
2c2 + 3 g3c1

3â2
2

+3 â4
2c1g1 + 3 â3

2c1c3 − 6 â2
3c1

2c2 − 9 â2
2â4c1

2 + 12 â2â
2
3c1

2 − 6 â3
2â3c1

−3 c4c1
2â2

2 − 6 g2c1
2â3

2 − â2
2c2

3 − 3 â3
2c2

2 + 3 â4
2c2 + â5

2),

...

fn = · · · ,

substituting fi into equation (4.27), we obtain

(c̃− â2)u− (
â2

2 − â2c2 + c1â3

c1

)u2 + (
(2 â2

2 − 2 â2c2 − c1â3) (â2
2 − â2c2 + c1â3)

â2c1
2

)u3

+ · · · = 0.

(4.34)

We note that the second term in u does not contain gi, then we reach a point now

we can not solve equation (4.34) to find the power series ψ = g1u+ · · · , in which

we mean that we can not find the change of coordinates U = ueK(u) when b̃ = 0.

By which we mean that we do not have a freedom choice for chosen the value of

f1. Therefore, it is necessary to find the value of f1 in the end of process.

Theorem 11. Given an orbitally normalizable system (4.4) with rank-one reso-

nance satisfying the condition λ+ µ+ ν = 0. If bl + cl = 0 for i = 1, 2, · · · , k − 1

and bk + ck 6= 0. Then, by an analytic change of coordinates (4.6), we can bring

the system (4.4) to a reduce normal form

ẋ = λx, Ẏ = Y (µ+
F (U) + hkU

k

1 + aUk
), Ż = Z (ν +

−F (U) + wkU
k

1 + aUk
), (4.35)

where F (U) = blU
l + hl+1U

l+1 + · · · + hk−1U
k−1, and bl is first non-zero term of

bi.
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4.2. Orbitally normalizable system

Proof. Since bk−1 + ck−1 = 0, then bi = −ci for i = 1, 2, · · · , k− 1, and u̇ becomes

u̇ = u(Q(u) +R(u)) = âku
k+1(1 +

∑
j≥1

âk+j

âk
uj) =: G(u), i = 1, 2, · · · . (4.36)

where âk = bk + ck for k = 2, 3, · · · .

Firstly, By the same way that we showed in Theorem 9, we can substitute

the systems (4.4), (4.35) and (4.36) into the change of Y -coordinate and Z-

coordinates, respectively, to obtain

F (U) + hk U
k

1 + aUk
= Q(u) +G(u)ϕ′, (4.37)

and

−F (U) + wk U
k

1 + aUk
= R(u) +G(u)ψ′, (4.38)

where U = ueK(u), and K(u) = ϕ(u) + ψ(u) =
∑

j≥1(fj + gj)u
j =

∑
j≥1 ξju

j.

Now, we need to find the value of a. We sum (4.37) and (4.38) to obtain

(hk + wk)U
k

1 + aUk
= Q(u) +R(u) +G(u)K ′. (4.39)

Since, from the system (4.36), we have

u̇ = âku
k+1 (1 +

âk+1

âk
u+

âk+2

âk
u2 + o(uk+3)).

Thus, we need to solve

dU

du
=

(hk + wk)U
k+1(1 + aUk)−1

âkuk+1 (1 + âk+1

âk
u+ âk+2

âk
u2 + o(uk+3))

.

Since, we have hk + wk = bk + ck = âk, this gives
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4.2. Orbitally normalizable system

(1 + aUk) dU

Uk+1
=

du

uk+1(1 + âk+1

âk
u+ âk+2

âk
u2 + o(u3)

,

which simplifies to

(
1

Uk+1
+
a

U
)dU =

(
1 + â1 u+ · · ·+ âk−1u

k−1 + a uk

uk+1
+

( âk+1

âk
)k+1 + o(u)

1 + âk+1

âk+2
u+ o(u2)

)
du,

(4.40)

where



â1 = − âk+1

âk
,

â2 = −( âk+2

âk
+ â1

âk+1

âk
),

...

âj = −(
âk+j
âk

+ â1
âk+j−1

âk
+ · · ·+ âj−1

âk+1

âk
),

a = −(
âk+j+1

âk
+ â1

âk+j
âk

+ · · ·+ âj
âk+1

âk
),

j = 1, 2, · · · , k − 1, k > 2.

by determining the above, we can find the value of a. Now, by integrating on

equation (4.40), we obtain

−k
Uk

+ a lnU =
−k
uk

+

j∑
i≥1

âi
−k + i

u−k+i + a ln u+ o(u0),

this implies that

k

uk
(1− e−kK(u)) + a ln(ueK)− a lnu−

j∑
i≥1

âi
−k + i

u−k+i − o(u0) = 0,

multiplying by uk, gives

F (u,K(u)) = k(1− e−kK(u)) + aukK(u)−
j∑
i≥1

âi
−k + i

ui − o(uk) = 0.

Solving the above equation is equivalent to solving F (u,K(u)) = 0. However,
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4.2. Orbitally normalizable system

since F (0, 0) = k, and

∂F

∂K
= k2e−kK(u) + auk,

this implies that

∂F

∂K
(0, 0) = k2 6= 0,

which gives K(u) as an analytic solution to F (u,K(u)) = 0 by the implicit func-

tion theorem.

Also, each equation (4.37) and (4.38) is solvable with respect to power series

ϕ and ψ, respectively, by integrating with respect to u as shown in Theorem 9.

For example, when k = 3, we obtain the two power series ϕ = f1u + f2u
2 + · · ·

and ψ = g1u+ g2u
2 + · · · , given by

ϕ = (−g1 +
â5

4 â5

)u+ (−g2 +
â7

3 â5

− 17

96

â2
6

â2
5

)u2 + · · · ,

ψ(u) = g1u+ g2u
2 + g3u

3 +

(
1

â9
5c

3
1

(S1g1 + S2g2 + S3g3) + S4

)
u4 + · · · ,

where Si(c1, c2, c3, â5, â6, â7) for i = 1, 2, 3, 4 are polynomials.

In the above case, we do not have freedom choice for chosen the value of fi

for i = 1, 2, · · · , k − 1 in order to find the change of Y -coordinate, because from

equation (4.37) we have

F (U) + hkU
k − (1 + aUk) (Q(u) +G(u)ϕ′) = 0.

We use the Taylor expansion of the above equation until the term uk−1 to give

(c1ξ1 − c2 − h2)u2 + ((f2 + g2) c1 − h3 − c3 − 2h2ξ1 +
c1ξ

2
1

2
)u3 + (c1ξ2ξ1

+
c1ξ

3
1

6
− 2 (ξ2

1 + ξ2)h2 − 3 ξ1h3 + ξ3c1 − h4 − c4)4 + · · · = 0,
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4.2. Orbitally normalizable system

this implies that 

h2 = c1ξ1 − c2,

h3 =
c1ξ21

2
+ c1ξ2 − 2h2ξ1 − c3,

...

hk−1 = · · · ,

from the values h1 = c1ξ1 − c2, if we choose for example f1 = −g1 + c2
c1

, and then

substituting the value of f1 in equation (4.38). We obtain a term which does not

contain gi. Thus, later on we can not find the change of coordinates (it obtains

contradiction which was showed in Theorem 10). Again, we must find the value

of fi or gi in the end of the process.

However, if ck + bk = 0, ∀k, we obtain the following normal form

ẋ = λx, Ẏ = Y (µ+ F (U)), Ż = Z (ν − F (U)),

which is equivalent to the system (4.4) and then the condition bk + ck = 0,∀k cor-

responding to system (4.4) is equal to the condition âk+bk+ck = 0 corresponding

to the system (4.3). In fact, we have already given this type of normal form in

the previous chapter.

In the following case, we assume that bi = ci = 0, for i = 1, 2, · · · , k − 1 we

clearly have bi + ci = 0, in this case we have the following theorem

Corollary 1. Given an orbitally normalizable system (4.4) with rank-one reso-

nance satisfying the condition λ + µ + ν = 0. If bi, ci = 0 for i = 1, 2, · · · , k − 1

and bk, ck 6= 0. Then by an analytic change of coordinates (4.6), we can bring the

system (4.4) to a reduce normal form

ẋ = λx, Ẏ = Y (µ+
b Uk

1 + aUk
), Ż = Z (ν +

c Uk

1 + aUk
), (4.41)
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4.2. Orbitally normalizable system

Proof. Its proof is similar to Theorem 11, by putting only F (U) = 0.

The following case is not the general case, but will help in the understanding

of the general case.

Theorem 12. Given an orbitally normalizable system (4.4) with rank-one res-

onant eigenvalues satisfying the condition λ + µ + ν = 0. Assume b1 = 0 and

c1, b2 6= 0, then by an analytic change of coordinates (4.6), we can bring the

system (4.4) to a reduce normal form

ẋ = λx, Ẏ = µY, Ż = Z (ν +
c U

1 + aU
), (4.42)

for some a, c ∈ C.

Proof. We suppose c1 6= 0, then from (4.8) u̇ becomes

u̇ = c1u
2(1 +

â2

c1

u2 +
â3

c1

u3 + · · · ) =: G(u). (4.43)

By the same way that we showed in Theorem 9, we can substitute (4.4), (4.42)

and (4.43) into the change of Y -coordinate and Z-coordinates, respectively, to

obtain

Q(u) + ϕ′G(u) = (b2u+ · · ·+ (f1 + 2f2u+ · · · )(c1u
2 + âu3 + · · · ) = 0, (4.44)

and

cu eϕ(u)+ψ(u)

1 + aueϕ(u)+ψ(u)
= R(u) + ψ′G(u). (4.45)

We consider the Taylor expansion, and substituting f1 = − b2
c1

. The equations

(4.44) and (4.45) become

91



4.2. Orbitally normalizable system

(
â2b2

c1

− 2 c1f2 − b3

)
u3 +

(
−2 â2f2 +

â3b2

c1

− 3 c1f3 − b4

)
u4 + · · · = 0,

(4.46)

and

(c− c1)u+

(
−c b2

c1

− c a− c2

)
u2 + (

cb2
2

2c1
2

+
c(b2a2 − c2)a

c1

+ (ca+
cb2

c1

)a− c3 + cf2 +

(
−cb2

c1

− 2ca− â2

)
g1 + (c− 2c1) g2 +

cg1
2

2
)u3

+ · · · = 0.

(4.47)

We solve the first and second terms of equations (4.46) and (4.47) in u, respec-

tively, we obtain

c = c1, a = − â2

c1

, f2 =
â2

2 − â2c2 − â3c1 + c1c3

2c1
2

,

g2 =
â2c2 − â3c1 − c1c3 + c2

2

2c1
2

+
c2g1

c1

+
g1

2

2
.

And hence

ξ2 = f2 + g2 =
â2

2 − 2 â3c1 + c2
2

2c1
2

+
c2g1

c1

+
g1

2

2
.

To find for further terms, we can continue to compare powers of u in the equations

(4.46) and (4.47). We can find the coefficients ξi which is determined term by term.

In more detail, we want to show that K(u) in the change of coordinate U = ueK(u)

exists and is analytic. From the system (4.43), we see that

u̇ = c1u
2 (1 + ã u+ o(u2)),

where ã = â2
c1

is a formal orbital invariant. Since we have c = c1, thus we need to

solve

dU

du
=

c U2 (1 + aU)−1

c1u2(1 + ã u+ o(u2))
,
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which simplifies to

(
1

U2
+
a

U

)
dU =

(
1− ã u
u2

+
ã2 + o(u)

1 + ã u+ o(u2)

)
du,

Since we have a = −â2
c1

= −ã, and by integrating, we obtain

−1

U
− ã ln U =

−1

u
− ã ln u+ o(u0),

and using U = ueK(u), gives

1

u
(1− e−K)− ã K − (u0) = 0,

multiplying by u, gives

F (u,K(u)) = 1− e−K − ã uK − o(u) = 0.

Solving the above equation is equivalent to solving F (u,K(u)) = 0. Clearly

F (0, 0) = 0, and

∂F

∂K
= e−K − ãu,

this implies that ∂F
∂K

(0, 0) = 1, thus giving K(u) as an analytic solution to

F (u,K(u)) = 0 by the implicit function theorem.

Also, we want to show that (by the same way shown in Theorem 9) each in-

dividual equations (4.46) and (4.47) has solution for each individual term with

respect to ϕ and ψ, respectively. From equation (4.45), we see that

ψ′ =

(
c ueK(u)

1 + a ueK(u))2
−R(u)

)
G(u)−1,

by integrating with respect to u and considering the Taylor expansion, and sub-
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stituting the values of c and a, we obtain

ψ =

∫
(
c1g1 + b2

c1

+ o (u)) du =

∫
(g1 + o (u)) du,

which is analytic in u and gives the change of coordinate Z = y eϕ(u). Conse-

quently, the change of Z-coordinate also exists by ϕ(u) = K(u)− ψ(u).

In the following, we want to prove the case when k and l, have different values.

We have already considered k = 2, l = 1, and know adapt this for k > 3 and l = 1,

before talking the general case. This is because this case contain some different

features than the case in Theorem 12.

Theorem 13. Given an orbitally normalizable system (4.4) with rank-one res-

onant eigenvalues satisfying the condition λ + µ + ν = 0. Assume bi = 0 for

i = 1, 2, · · · , k − 1 for k ≥ 2 and c1, bk 6= 0, then by an analytic change of coordi-

nates (4.6), we can bring the system (4.4) to a reduce normal form

ẋ = λx, Ẏ = µY, Ż = Z (ν +
c U

1 + aU
), (4.48)

for some a, c ∈ C.

Proof. For k = 2, is the same as Theorem 12. Let k = 3, then u̇ becomes

u̇ = u (Q(u) +R(u)) = c1u
2 + · · ·+ ck−1u

k−1 + âku
k + · · · =: G(u). (4.49)

After substituting (4.4), (4.48) and (4.49) into the change of Y -coordinate and

Z-coordinates, respectively, we obtain

Q(u) + ϕ′G(u) = 0, (4.50)
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and

c u eϕ(u)+ψ(u)

(1 + aueϕ(u)+ψ(u))
= R(u) + ψ′G(u). (4.51)

where U = ueK(u), and K(u) = ϕ(u) + ψ(u) =
∑

j≥1(fj + gj)u
j =

∑
j≥1 ξju

j.

We want to show that these equations can be solved for same values a and c.

Now, we need to find the value of c. We sum (4.57) and (4.58) to obtain

c U

1 + aU
= Q(u) +R(u) +G(u)K ′. (4.52)

Let G̃(u) = Q(u) +R(u), this gives

G̃(u) =
G(u)

u
= u (1 +

c2

c1

u+ · · ·+ ck−1

c1

uk−1 +
âk
c1

uk + · · · ),

and using U = u eK(u), equation (4.52) gives

c U (1 + aU)−1 = G̃(u)(1 + uK ′)

c ueK(u) (1 + a u eK(u))−1 = c1 u (1 +
c2

c1

u+ · · ·+ ck−1

c1

uk−1 +
âk
c1

uk + · · · )(1 + uK ′),

and hence c = cl.

We consider the Taylor expansion. Equations (4.50) and (4.51) become

− c2u
3f1 + (−2 c2f2 − c3f1 − b4)u4 + (−â4f1 − 3 c2f3 − 2 c3f2 − b5)u5

+ · · · = 0,

(4.53)

and

((−a+ f1)c1 − c2)u2 + ((
g1

2

2
+ (f1 − 2 a)g1 − g2 +

f1
2

2
+

a2 + f2 − 2 tf1)c1 − c2g1 − c3)u3 + · · · = 0.

(4.54)

Solving the terms in u of the equations (4.53) and (4.54) in u, respectively, we
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obtain

a = −c2

c1

, f1 = 0, f2 = 0, f3 =
c4 − â4

3 c1

,

g1 =
−c2 +

√
2 c1

2g2 + 2 c1c3 − c2
2

c1

.

In more detail, we want to show that K(u) =
∑

i≥1 ξiu
i in the change of coordinate

U = ueK(u) exists and is analytic. From the system (4.49), we see that

u̇ = c1u
2 (1 + ã u+

â3

c1

u2 + o(u2)),

where ã = c2
c1

is a formal orbital invariant. Since we have c = c1, then we need to

solve
dU

du
=

c U2 (1 + aU)−1

c1u2(1 + c2
c1
u+ · · ·+ o(u2))

.

This gives
(1 + aU) dU

U2
=

du

u2(1 + c2
cl
u+ o(u2))

.

which simplifies to

(
1

U2
+
a

U
) dU =

(
1− c2

c1
u

u2
−

c2
c1

+ o(u)

1 + c2
c1
u+ o(u2)

)
du.

Since we have a = − c2
c1

, and by integrating gives

−1

U
+ a lnU =

−1

u
− c2

c1

ln u+ o(u0),

and using U = ueK(u), gives

1

u
(1− e−K) + aK − o(u0) = 0,

multiplying by u, gives
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F (u,K(u)) = 1− e−K + auK + o(u) = 0.

Solving the above equation is equivalent to solving F (u,K(u)) = 0, where K(u) =

ϕ+ ψ. Clearly, F (0, 0) = 0, and

∂F

∂K
= e−K + au,

this implies that

∂F

∂K
(0, 0) = 1,

thus giving K = K(u) as an analytic solution to F (u,K(u)) = 0 by the implicit

function theorem.

Also, we want to show that each equations (4.50) and (4.51) has solution for

each individual term with respect to ϕ and ψ, respectively. From equation (4.51),

we see that

ψ′ =

(
c ueK(u)

(1 + a ueK(u))
−R(u)

)
G(u)−1,

by integrating with respect to u and considering the Taylor expansion with sub-

stituting c = c1 and a = − c2
2 c1

, we obtain

ψ(u) =

∫ (
−c2 (c1t− c1f1 − g1c1 + c2)

c1
2

+ o(u)

)
du.

It is clear that the above integral exists and is analytic in giving the change of

coordinate Z = y eϕ(u). Consequently, the change of Y -coordinate also exists by

ψ(u) = K(u)− ϕ(u).

For i = k− 1, by which we mean that b1, · · · , bk−1 = 0 and c1, bk, · · · 6= 0, such

that k > 3. To prove this case, we only need the power series ϕ(u) =
∑

j≥k−1 fju
j,

and the rest is the same as the above prove, where in this case fk−1 = − bk
(k−1)c1

.
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Theorem 14. Given an orbitally normalizable system (4.4) with rank-one reso-

nance satisfying the condition λ + µ + ν = 0. If there are l, k ∈ N for k > l with

bk, cl 6= 0 and c1 = c2 = · · · = cl−1 = b1 = b2 = · · · = ck−1 = 0. Then, by an

analytic change of coordinates (4.6), we can bring the system (4.4) to a reduce

normal form

ẋ = λx, Ẏ = µY, Ż = Z (ν +
c U l

1 + aU l
), (4.55)

Proof. Since k > l, then there is i ∈ N such that k = l + i. Here u̇ becomes

u̇ = u(Q(u) +R(u)) = clu
l+1(1 +

cl+1

cl
u+ · · ·+ âk

cl
uk−l−1 +

âk+1

cl
uk−l + · · · )

= cl u
l+1 (1 +

l+i−1∑
l

cl+1 u
l

cl
+
∑
k

âk u
k

cl
) =: G(u).

(4.56)

where âk = bk + ck for k = 3, 4, · · · , and Q(u) +R(u) = G(u)
u

=: G̃(u)

By the same way that we showed in Theorem 9, we can substitute the sys-

tems (4.4), (4.55) and (4.56) into the change of Y -coordinate and Z-coordinates,

respectively, to obtain

Q(u) +G(u)ϕ′ = 0, (4.57)

and

c U l

1 + aU l
= R(u) +G(u)ψ′, (4.58)

where U = ueK(u), and K(u) = ϕ(u) + ψ(u) =
∑

j≥1(fj + gj)u
j =

∑
j≥1 ξju

j. We

want to show that these equations can be solved for same values a and c.

Now, we need to find the value of c. We sum (4.57) and (4.58) to obtain

c U l

1 + aU l
= Q(u) +R(u) +G(u)K ′, (4.59)

and using U = u eK(u), this gives
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4.2. Orbitally normalizable system

c U l (1 + aU l)−1 = G̃(u)(1 + uK ′)

c ulel K(u) (1 + a ul el K(u))−1 = cl u
l (1 +

l+i−1∑
l

cl+1 u
l

cl
+
∑
k

âk u
k

cl
)(1 + uK ′),

and hence c = cl.

To find the value of a, we need to solve the

dU

du
=

c U l+1(1 + aU l)−1

clul+1(1 + cl+1

cl
u+ · · ·+ âk

cl
uk−l−1 + o(uk−l))

.

This gives
1 + aU l dU

U l+1
=

du

ul+1(1 + cl+1

cl
u+ o(u2))

.

which simplifies to

(
1

U l+1
+
a

U
) dU = (

1 +
∑l

i≥1 âiu
i

ul+1
+

ak + o(u)

1 + cl+1

cl
ul + o(u2)

)du. (4.60)

where âi are polynomials of the variables cl+1

cl
, cl+2

cl
, · · · , âk

cl
as follows â1 = − cl+1

cl
, â2 =

−cl+2 â1
cl
− cl+1

cl
, and â3 = −cl+1 â2

cl
− cl+2 â1

cl
− ci+3

cl
. In particular, we must have a = al.

Using U = u eK , equation (4.60) becomes

l

ul
(1− e−l K(u)) + (a− al) ln(ueK)−

j∑
i≥1

ai u
−l−1+i

−l + i− 1
− o(u0) = 0,

multiplying by ul, gives

F (u,K(u)) = l(1− e−l K(u))−
j∑

igeq1

ai u
−1+i

−l + i− 1
− o(ul) = 0.

Solving the above equation is equivalent to solving F (u,K(u)) = 0. However,

since F (0, 0) = 0, and

∂F

∂K
= l2e−l K(u),
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4.2. Orbitally normalizable system

this implies that ∂F
∂K

(0, 0) = l2 6= 0, which gives K(u) as an analytic solution to

F (u,K(u)) = 0 by the implicit function theorem.

Also, each equation (4.57) and (4.58) is solvable with respect to power series

ϕ and ψ, respectively. From equation (4.58) and (4.56) we have

ϕ′ =
c ulel K(u)(1 + a ui el K(u))−1 − clul(1 + cl+1u

1

cl
+ · · · )

cl ul+1(1 + cl+1 u

cl
+ · · · )

,

this gives

ϕ′ =
el K(u)(1 + a u eK(u))−1 − (1 + cl+1u

1

cl
+ · · · )

u (1 + cl+1 u

cl
+ · · · )

,

We consider the Taylor expansion, and simplifying to remove the first term for

the above equation which gives

ϕ′ = P (a, c, fi, gi) + o(u), (4.61)

where P is a polynomial for parameters a, c and fl, gl, where fl, gl are coefficients

in ϕ, ψ. By integrating with respect to u on (4.61), we obtain

ϕ =

∫
(P (a, c, fi, gi) + o(u)) du.

It is clear that the above integral exists and is analytic in giving the change of

coordinate Y = y eϕ(u). Consequently, the change of Z-coordinate also exists by

ϕ(u) = K(u)− ψ(u).

Now, we want to show that the system (4.7) with conditions b1, c1 6= 0 and

b1 + c1 6= 0 has two independent first integrals. Firstly, by multiplying the system

100



4.2. Orbitally normalizable system

(4.7) by 1 + aU , we obtain the following system

ẋ = x(λ+ λaU),

Ẏ = Y (µ+ (µa+ b)U),

Ż = Z(ν + (νa+ c)U),

(4.62)

which are analytically equivalent. The above system corresponds to putting the

2-form into reduced normal form.

Corollary 2. Assume b1, c1, b1 + c1 6= 0, then the system (4.62) with rank-one

eigenvalues has one Darboux-analytic first integral and one explicit first integral

given in terms of logarithm function.

Proof. System (4.62) had the following Darboux factors and cofactors:

G1(x, Y, Z) = x, K1(x, Y, Z) = (aλU + λ) ,

G2(x, Y, Z) = Y, K2(x, Y, Z) = (µ+ (µ a+ b)U) ,

G3(x, Y, Z) = Z, K3(x, Y, Z) = (ν + (ν a+ c)U) ,

by the Darboux method, we have the following first integral

H1(x, Y, Z) = xαY βZ,

where α = cµ−b ν
bλ

and β = − c
b

. We write the divergence of the system (4.62) as

div = 2 (b+ c)U,

and seek for an IJM, M = xrY sZt. Then, we want to solve the equation

χ(M) = M div(χ).
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4.2. Orbitally normalizable system

This gives

(rλ+ sµ+ tν + (rλa+ sµa+ sb+ tνa+ tc)U)M = 2M (b+ c)U,

which gives

rλ+ sµ+ tν = 0,

and

(rλ+ sµ+ tν)a+ (s− 2)b+ (t− 2)c = 0,

we can choose r = s = t = 2. Hence, M = U2. By using Theorem 6, the system

has another first integral which is of the following

H2 =
1

U
+ ε1 lnx+ ε2 lnY,

where ε1 = (aµ+b)(b+c)
b λ

and ε2 = −a(b+c)
b

.

The more general cases in Theorem 8 also have explicit first integrals, but we

do not obtain a first integral of Darboux-analytic type. So, here we have only

mentioned the above generic case.

4.2.1 Normalizability and orbital normalizability of criti-

cal points

In this section, we want to try to identify normalizability of the 3D system from

its first integrals, we give the details for this in Theorem 15. Also we want to

find different criteria for bringing an orbital normalizable system to normalizable

system see Theorem 16.

At the first, we give some results on orbitally normalizable systems in the form

(4.1). We consider only the generic case b1, c1, b1 + c1 6= 0, and we look at the
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4.2. Orbitally normalizable system

relationship between orbitally normalizable and normalizability for the system

(4.1) under these conditions.

After multiplying the system (4.7) by 1 +au, and consider the case b1, c1, b1 +

c1 6= 0. Then, by Theorem 9 via an analytic change of coordinates, an orbitally

normalizable system (4.1) can be brought into the following form

ẋ = x(λ+ λ a u)h(x, y, z),

ẏ = y(µ+ (µ a+ b)u)h(x, y, z),

ż = z (ν + (ν a+ c)u)h(x, y, z),

(4.63)

where h(x, y, z) is an analytic and h(0, 0, 0) = 1. Furthermore, the system (4.63)

has two independent first integral of the form

H1 = xαyβz, H2 =
1

xyz
+ ε1 lnx+ ε2 ln y, (4.64)

where α = cµ−b ν
bλ

, β = −c
b
, ε1 = (aµ+b)(b+c)

b λ
and ε2 = −a(b+c)

b
.

To prove the existence of these first integrals, we note that the system (4.63)

has the following Darboux factors and cofactors,

G1(x, y, z) = x, K1(x, y, z) = (aλ u+ λ) h(x, y, z),

G2(x, y, z) = y, K2(x, y, z) = (µ+ (µ a+ b)u) h(x, y, z),

G3(x, y, z) = z, K3(x, y, z) = (ν + (ν a+ c)u) h(x, y, z).

By the Darboux method, we have the following first integral

H1(x, y, z) = xαyβzγ,

where α = cµ−b ν
bλ

, β = − c
b

and γ = 1. We write the divergence of the system
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4.2. Orbitally normalizable system

(4.63) as

div = 2 (b+ c)uh(x, y, z),

then taking M = xryszt, and using χ(M) = M div(χ), we see that

(rλ+ sµ+ tν + (rλa+ sµa+ sb+ tνa+ tc)u)M h(x, y, z) = 2M (b+ c)uh(x, y, z).

which gives

rλ+ sµ+ tν = 0, and (rλ+ sµ+ tν)a+ (s− 2)b+ (t− 2)c = 0.

Taking r = s = t = 2, we obtain M = u2. Then, by using Theorem 6, we can find

a second first integral which is of the following form

H2 =
1

u
+ ε1 lnx+ ε2 ln y,

where ε1 = (aµ+b)(b+c)
b λ

and ε2 = −a(b+c)
b

.

The second first integral will here be more convenient to work in the form 1
H2

which is of the form:

H2 =
u

1 + ε1 u lnx+ ε2 u ln y
.

Theorem 15. Assume that α, β, ε1, ε2 6= 0. If the system (4.1) with rank-one

resonant eigenvalues satisfying the condition λ + µ + ν = 0 has two independent

first integrals of the following form

H1(x, y, x) = xαyβz h(x, y, z),

H2(x, y, z) =
u

F (x, y, z) + ε1 u lnx+ ε2 u ln y
,

(4.65)

where u = xyz and F (0), h(0) = 1 are analytic functions, then the system (4.1)
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4.2. Orbitally normalizable system

is orbitally normalizable.

Proof. We assume that b1, c1, b1 + c1 6= 0, then we consider an analytic trans-

formation (x, Y, Z) = (x, y e
ϕ
β , z eψ) to bring (4.65) into the first integrals (4.64),

respectively. The first one becomes

H̃1(x, Y, Z) = xαY βZ h̃(x, Y, Z) e
−ϕ
β
−ψ = xαY βZ h̃(x, Y, Z) eK(x,Y,Z). (4.66)

h̃(x, Y, Z) = 1 + o(x, Y, Z) and K = −ϕ(x,Y,Z)
β
−ψ(x, Y, Z). Now we want to show

that h̃(x, Y, Z) eK(x,Y,Z) = 1.

Firstly, we want to prove that there is an analytic K(x, Y, Z) in the change of

coordinates. That is, we want to solve

G(x, Y, Z,K) = h(x, Y, Z)eK − 1 = 0.

Clearly,

G(0) = h(0)eK(0) − 1 = 1− 1 = 0,

and

∂G

∂K
= h eK ,

this implies that

∂G

∂K
(0) = 1,

thus giving K as the analytic solution to G(x, Y, Z,K) = 0 by the implicit function

theorem.

By using the same change of coordinates u = xyz = U eK , where U = xY Z,

the second first integral becomes

H̃2 =
UeK

F (x, Y, Z) + ε1 U eK ln(x) + ε2 U eK ln(Y e−
ϕ
α )
,
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4.2. Orbitally normalizable system

which simplifies to

H̃2 =
U

F (x, Y, Z) e−K − ε2 U ϕ
α

+ ε1 U ln(x) + ε2 U ln(Y )
.

To bring up the above form into the second first integral (4.64), we can bring it

to the following form

H̃2 =
U

1 + ε1 U ln(x) + ε2 U ln(Y )
. (4.67)

Since, we have an analytic power series K = −ϕ(x,Y,Z)
β
− ψ(x, Y, Z), we only need

to solve the following equation

G1(x, Y, Z, ϕ, ψ) = F (x, Y, Z) e−
ϕ
β
−ψ − ε2 U

ϕ

β
− 1 = 0.

Clearly,

G1(0) = F (0)eK(0) − 0− 1 = 0,

and

∂G1

∂ϕ
=
−1

β
F e−

ϕ
β
−ψ − ε2

β
U,

this implies that

∂G1

∂ϕ
(0) =

−1

β
6= 0,

thus giving ϕ as the analytic solution to G1(x, Y, Z, ϕ, ψ) = 0 by the implicit

function theorem. Therefore, the change of Y -coordinate exists and is analytic.

Consequently, the change of Z-coordinate also exists by ψ = −(K + ϕ
β

).

Therefore, if we have the two first integrals (4.67) and (4.66), we should have

a system like (4.64).

In the case of 2D system, it is known that an orbitally normalizable system
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4.2. Orbitally normalizable system

can be brought to the following form

ẋ = x(1 + auk)h(x, y),

ẏ = −p
q
y(1 + (a− 1)uk)h(x, y).

Christopher et al. (2003) considered that an orbital normalizable system is nor-

malizable to the resonant model

Ẋ = X(1 + aUk),

Ẏ = −p
q
Y (1 + (a− 1)Uk),

where U = XpY q is the resonant monomial. The solving of this problem, it was

given by relative exactness in 1-form

Ω =
p

q
y(1 + (a− 1)uk) dx+ x(1 + a uk) dy.

Here, we generalize the result in Theorem 9 to normalizable system, in which

we mean that the conditions b, c, b + c 6= 0 hold in the system (4.63). More

precisely, we study when the orbitally normalizable system (4.1) is normalizable

to the reduced normal form

Ẋ = X(λ+ λ aU), Ẏ = Y (µ+ (µ a+ b)U), Ż = Z (ν + (ν a+ c)U).

(4.68)

By Theorem 15, we can start with the orbitally normalizable system (4.63) which

has two independent first integrals H1,2 with an IJM, M ,

H1(x, y, z) = xαyβz, H2(x, y, z) = xε1 yε2 e
1
u , M = (xyz)2, (4.69)

where α = cµ−b ν
bλ

, β = c
b
, ε1 = (aµ+b)(b+c)

b λ
and ε2 = −a(b+c)

b
such that b+ c 6= 0 and
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4.2. Orbitally normalizable system

b, c 6= 0. We seek when (4.63) can be put to the normal form (4.68) such that

both have the same formal invariant a, b, c and b + c 6= 0. Here u = xyz and

U = XY Z.

We identify the system (4.63) with the following the 2-form

Ω = x(λ+ λ a u) dy ∧ dz + y(µ+ (µ a+ b)u) dz ∧ dx+ z (ν + (ν a+ c)u) dx ∧ dy,

(4.70)

which gives

dt =
dx

x(λ+ λ a u)h(x, y, z)
, dtnorm =

dx

x(λ+ λ a u)
, (4.71)

we see that

η = dt− dtnorm =
dx

x(λ+ λ a u)

1− h(x, y, z)

h(x, y, z)
=
o(x, y, z) dx

λx
,

and hence

η ∧ Ω =
1− h
h

dx ∧ dy ∧ dz. (4.72)

Theorem 16. Assume b + c 6= 0, the system (4.68) is formally normalizable to

the system (4.63) if and only if there is a germ of formal power series g(x, y, z)

vanishing at the origin, such that

((b+ c)η − dg) ∧ Ω = 0. (4.73)

(If b + c = 0, we need an another reduced normal form instead of (4.68) which

was described in previous section)

Proof. Firstly, we assume that the system (4.68) is formally normalizable. A

change of coordinates preserving the orbital normal form preserves the invariant
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4.2. Orbitally normalizable system

coordinate axes, so should be in the following form

X = xm(x, y, z), Y = y s(x, y, z), Z = z r(x, y, z), (4.74)

where m, s, r ∈ R[[x, y, z]] and m(0), r(0), s(0) = 1. We require that the two first

integrals H1 and H2 in (4.69) must be preserved, that is the following relations

must hold

H1(x, y, z) = H̃1(X(x, y, z), Y (x, y, z), Z(x, y, z)),

H2(x, y, z) = H̃2(X(x, y, z), Y (x, y, z), Z(x, y, z)).

(4.75)

In fact, the above two functions in X, Y, Z-coordinates are also first integrals of

the system (4.68), so the quotient of the two first integrals

H̃1(X(x, y, z), Y (x, y, z), Z(x, y, z))

H1(x, y, z)
=
Xα Y β Z

xαyβz
= K1(x, y, z),

H̃2(X(x, y, z), Y (x, y, z), Z(x, y, z))

H2(x, y, z)
=
Xε1 Y ε2

xε1yε2
e

1
U
− 1
u = K2(x, y, z)e

1
U
− 1
u ,

(4.76)

are also two independent first integrals of (4.63).

Since, we have the change of coordinates X = x eϕ and Y = y eψ, then Xα =

xα eαϕ, Y β = yβ eβψ. Therefore, H̃1

H1
= eαϕ+βψ is analytic. Hence, K1 should be

analytic, and it is of the following form

K1 = mαsβr = 1 + o(x, y, z). (4.77)

Also, we see that

Xε1 Y ε2

xε1yε2
= eε1ϕ+ε2ψ,

then K2 is analytic as well, and it is of the following form

K2 = mε1sε2 = 1 + o(x, y, z). (4.78)
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Putting

g(x, y, z) = − 1

U
+

1

u
=

1

u

(msr − 1)

msr
=

1

u
(1 + õ(x, y, z)), (4.79)

where 1 + õ(x, y, z) = msr−1
msr

= (1+o(x,y,z)−1)
1+o(x,y,z)

.

If g(x, y, z) is analytic, then K2e
g(x,y,z) is analytic. Therefore, by taking the

logarithm of H2 in (4.76), we obtain a meromorphic first integral of the system

(4.63). However, the system (4.63) is non-integrable because of existence of reso-

nant term. This implies that any meromorphic first integral of (4.63) is trivial.

Moreover, by taking logarithm of H̃2

H2
, we give

ε1 logm+ ε2 log s+
1

u
(

1

ms r
− 1) =

1

u

(
u(ε1 logm+ ε2 log s) +

1

ms r
− 1

)
=
h̃(x, y, z)

u
,

where h̃(0) = 0. This implies that h̃(x,y,z)
u

is also a first integral of the system. We

assume that there is a term in h̃(x, y, z) which is not divisible by u. Then, we

have

χ(
h̃(x, y, z)

u
) = 0,

where χ is the vector field corresponding to the system (4.63). This gives that

χ(h̃(x, y, z)) = (Lx + Ly + Lz) h̃(x, y, z),

where Lx, Ly and Lz are cofactors for the system (4.63). By simplifying, we obtain

χ(h̃(x, y, z)) = (λ+ λ a u+ µ+ (µ a+ b)u+ ν + (ν a+ c)u)h(x, y, z) h̃(x, y, z)

= (b+ c)uh(x, y, z) h̃(x, y, z).

(4.80)

Let ms r = 1 + k(x, y, z), then 1−msr
ms r

= −k(x,y,z)
1+k(x,y,x)

. We see that
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χ(h̃) =

(
yz(ε1 logm+ ε2 log s) + u(

ε1mx

m
+
ε2 sx
s

) +
−kx

(1 + k)2

)
x (λ+ λau)h

+

(
xz(ε1 logm+ ε2 log s) + u(

ε1my

m
+
ε2 sy
s

) +
−ky

(1 + k)2

)
y(µ+ (µa+ b)u)h

+

(
xy(ε1 logm+ ε2 log s) + u(

ε1mz

m
+
ε2 sz
s

) +
−kz

(1 + k)2

)
z(ν + (νa+ c)u)h.

(4.81)

It must have that −ky yµ−kz zν
(1+k)2

divisible by x. We see that

−ky yµ− kz zν
(1 + k)2

=
−µ y f ′1 − ν z f ′2 + x ˜̃f(x, y, z)

(1 + k)2
,

which gives that −µy f ′1 − νz f ′2 = 0. And then −kx
(1+k)2

should be divisible by yz,

−ky
(1+k)2

should be divisible by xz and −kz
(1+k)2

should be divisible by xy. Therefore,

we must have a function of the following

−kx
(1 + k)2 = yz(k1(x, y, z)),

−ky
(1 + k)2

= xz(k2(x, y, z)),

−kz
(1 + k)2

= xy(k3(x, y, z)),

where k1k2, k3(0) = 0, by integrating, gives

−1

(1 + k)
= xyz(k̃1(x, y, z)) + f1(y, z),

−1

(1 + k)
= xyz(k̃2(x, y, z)) + f2(x, z),

−1

(1 + k)
= xyz(k̃3(x, y, z)) + f3(y, z),

where k̃1, k̃2, k̃3(0) = 0, which gives that

xyz(k̃1(x, y, z)) + f1(y, z)− xyz(k̃2(x, y, z))− f2(x, z) = 0,

111



4.2. Orbitally normalizable system

yields

xyz(˜̃k1,2(x, y, z)) + f1(y, z)− f2(x, z) = 0,

where ˜̃k1,2(0) = 0, it must have f1(y, z)−f2(x, z) divisible by yz, then we have one

possibility, is that, f1(y, z) = f2(x, z), In the same way of other cases, we obtain

f1, f2, f3 = 0. Thus we should have

−1

(1 + k)
= xyz(˜̃k(x, y, z))

where ˜̃k(0) = 0. Since, we have ms r = 1 + k(x, y, z) this gives

1

ms r
= −xyz(˜̃k(x, y, z)),

this implies that h̃(x, y, z) should be divisible by u, and hence eg(x,y,z) is analytic.

We note that (4.68) and (4.63) give

u̇ = (b+ c)u2h(x, y, z), U̇ = (b+ c)U2.

From (4.79) (g(x, y, z) = − 1
U

+ 1
u
) via the above vector fields with the change of

coordinates (4.74), the power series g(x, y, z) should satisfies

ġ =
(b+ c)U2

U2
− (b+ c)u2 h(x, y, z)

u2
= (b+ c)(1− h). (4.82)

Here, by using the orbitally normalizable system (4.63), we have

ġ =
∂g

∂x
ẋ+

∂g

∂y
ẏ +

∂g

∂z
ż

=
∂g

∂x
x(λ+ λ au)h+

∂g

∂y
y(µ+ (µa+ b)u)h+

∂g

∂z
z(ν + (νa+ c)u)h .

(4.83)

We see that
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dg ∧ Ω = (
∂g

∂x
dx+

∂g

∂y
dy +

∂g

∂z
dz) ∧ Ω

=
∂g

∂x
x(λ+ λ a u) +

∂g

∂y
y(µ+ (µ a+ b)u) +

∂g

∂z
z (ν + (ν a+ c)u),

(4.84)

then, directly we obtain

dg ∧ Ω =
ġ

h
=

(c+ b)(1− h)

h
.

Therefore, the above form is equivalent to (4.72). Hence, there is a germ g(x, y, z)

to normalize the system.

Conversely, if there exists a germ, g(x, y, z), satisfies equation (4.79) then we

want to show that the system is formally normalizable.

To achieve this, we want to find the values of m, s and r in the change of

coordinates (4.74). To motivate the construction, we set K1 = K2 = 1 in the

equations (4.77) and (4.78), respectively. Then, equation (4.77) gives

mαsβr = 1, (4.85)

and equation (4.76) gives

mε1sε2 eg(x,y,z) = 1. (4.86)

Relation (4.78) gives ug(x, y, z) = 1− 1
msr

, this implies that

msr = (1− ug(x, y, z))−1. (4.87)

From (4.85) we have

r = m−αs−β. (4.88)
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4.2. Orbitally normalizable system

We substitute (4.88) into (4.87) to give

m1−αs1−β = (1− ug(x, y, z))−1,

this gives

m = s
β−1
1−α (1− ug(x, y, z))

−1
1−α . (4.89)

Putting (4.89) into (4.86) (mε1sε2 = e−g(x,y,z)) which allows to find s, we see that

s
(β−1)ε1

1−α +ε2 = (1− ug(x, y, z))
ε1

1−α e−g(x,y,z),

which gives

s = (1− ug(x, y, z))
ε1

ε1(β−1)+ε2(1−α) e
− 1−α
ε1(β−1)+ε2(1−α)

g(x,y,z)
.

And, putting this in (4.89), this allows us to find m, which is

m =
(

(1− ug(x, y, z))
ε1

ε1(β−1)+ε2(1−α) e
− 1−α
ε1(β−1)+ε2(1−α)

g(x,y,z)
) β−1

1−α
(1− ug(x, y, z))

−1
1−α ,

which simplifies to

m = (1− ug(x, y, z))
−ε2

ε1(β−1)+ε2(1−α) e
− β−1
ε1(β−1)+ε2(1−α)

g(x,y,z)
.

Substituting m and s in (4.88), directly we obtain

r = (1− ug(x, y, z))
αε2−ε1β

ε1(β−1)+ε2(1−α) e
β−α

ε1(β−1)+ε2(1−α)
g(x,y,z)

,

thus we directly obtain the change of coordinates (4.74) of the following
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4.3. Using monodromy map

X = x (1− ug(x, y, z))
−ε2

ε1(β−1)+ε2(1−α) e
− β−1
ε1(β−1)+ε2(1−α)

g(x,y,z)
,

Y = y (1− ug(x, y, z))
ε1

ε1(β−1)+ε2(1−α) e
− 1−α
ε1(β−1)+ε2(1−α)

g(x,y,z)
,

Z = z (1− ug(x, y, z))
αε2−ε1β

ε1(β−1)+ε2(1−α) e
β−α

ε1(β−1)+ε2(1−α)
g(x,y,z)

.

4.3 Using monodromy map

In this section, we introduce the monodromy map in the neighbourhood of the

x-separatrix for the reduced normal form (4.7) with b, c, b+ c 6= 0

ẋ = λx, ẏ = y (µ+
b u

1 + a u
), ż = z (ν +

c u

1 + a u
),

by using the following two independent first integrals

ϕ(x, y, z) = xαyβz, ψ(x, y, z) =
1

xyz
+ ε1 lnx+ ε2 ln y,

where α = cµ−b ν
bλ

, β = −c
b

and ε1 = (aµ+b)(b+c)
b λ

, ε2 = −a(b+c)
b

. This will then be

related to the corresponding normal form for two-dimensional maps.

To find the monodromy map we need to consider the trajectory of the system

near a closed loop in the neighbourhood of the x-separatrix. To achieve this, we

take a transversal to the x-separatrix at every point of the loop and we look at

the trajectories which are close to the loop, and hence intersects the trajectory.

Monodromy does not depend up to conjugation on the homotopy class of the

loop if the base point is fixed, and hence a closed loop can be chosen to be of

the form xθ = x0 e
iθ, θ ∈ [0, 2π] which starts at a base point (x0, 0, 0) on the

x-separatrix.

We extract z from the first integral ϕ(x, y, z) = k1 at the starting point
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4.3. Using monodromy map

(x0, y0, z0) where k1 is constant to obtain

ϕ(x, y, z) = xαyβz ⇒ z = k1x
−α y−β. (4.90)

When x = x0 and y = y0, then k1 = z0x
α
0 y

β
0 . Therefore, we substitute equation

(4.90) into the second first integral (ψ(x, y, z) = k2) to obtain

1

k1

xα−1yβ−1 + ε1 lnx+ ε2 ln y = k2. (4.91)

Secondly, we can substitute a power series yθ =
∑

i≥1 ci(θ)y
i
0 into equation (4.91)

which gives

1

k1

(x0 e2iπθ)α−1yβ−1
θ + ε1 ln (x0 e2i π θ) + ε2 ln yθ =

1

k1

xα−1
0 yβ−1

0 + ε1 lnx0 + ε2 ln y0,

this implies that

1

k1

xα−1
0 yβ−1

θ ( e2i π θ − 1) + ε1 2i π θ + ε2 ln(yθ − y0) = 0.

Since k0 = z0x
α
0 y

β
0 , this yields

1

z0xα0 y
β
0

xα−1
0 yβ−1

θ ( e2i π θ − 1) + ε1 2i π θ + ε2 ln(yθ − y0) = 0,

by simplifying gives

1

x0y0 z0

((c1 + c2y0 + · · · )β−1e2iπθ(α−1) − 1) + ε12iπθ + ε2 ln (c1 + c2y0 + · · · ) = 0,

we consider the Taylor expansion to obtain
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4.3. Using monodromy map

c1
β−1e2 iπ θ (α−1) − 1

x0 y0 z0

+ (
c1
β−1c2e

2 iπ θ (α−1)

c1x0 z0

+ ε2 ln (c1) + 2 iπ θ n1) + (
ε2c2

2c1

+
c1
β−1 (2 c3c1 + c2

2 (β − 2)) (β − 1) e2 iπ θ (α−1)

c1
2x0z0

) y0 + · · · = 0.

Since, we have the value of α, β, ε1 and ε2, then by solving term by term for each

term in y0 with respect to the coefficient ci in yθ, we obtain



c1 = e2 iπ θ µ
λ ,

c2 = 2 iπ θ b
λ

x0z0,

c3 = −2 θ π b(iaλ+2π b θ+π c θ)
λ2

(x0z0)2,

... ,

which gives

yθ = y0 e
2 iπ θ µ

λ (1 +
2 iπ θ b

λ
x0yoz0 −

2 θ π b (iaλ+ 2 π b θ + π c θ)

λ2
(x0yoz0)2 + · · · ).

Thus the monodromy map of y-coordinate is given by a map y1 (θ = 1) which is

of the form

y1 = y0 e
2 iπ µ

λ (1 +
2 iπ b

λ
x0z0y0 −

2 θ π b (iaλ+ 2 π b+ π c)

λ2
(x0y0z0)2 + · · · ),

(4.92)

where ci are functions of the parameters a, b and c.

Next, we assume that the monodromy map of z-coordinate is given by substituting

the power series zθ = e2iπ θ k z0(1 + g(x0, y0, z0, θ)) with equation (4.91) into the

first integral to obtain

k1 = (ei2πθ x0)α(y0 e
2 iπ θ µ
λ (1 + c2 y0 + · · · ))β e2iπ θ k z0(1 + g(x0, y0, z0, θ)),

this implies that

117



4.3. Using monodromy map

x0
αy0

β z0 = xα0y
β
0 (1 + c2 y0 + · · · )β z0(1 + g(x0, y0, z0)) ei2πθ α e

2 iπ θ β µ
λ e2iπ θ k ,

letting k + α + β µ
λ

= 0, then k = − bλ+bµ+cµ
bλ

+ cµ
bλ

= −λ+µ
λ

= ν
λ
, this gives

(1 + c2 y0 + · · · )β (1 + g(x0, y0, z0, θ)) = 1,

which simplifies to give

g(x0, y0, z0, θ) = (1 + c2 y0 + · · · )−β − 1.

We consider the Taylor expansion to obtain

g(x0, y0, z0, θ) =
2 iπ θ c

λ
(x0y0z0)− 2cπ θ (iaλ+ π θ (b+ 2 c))

λ2
(x0y0z0)2 + · · · .

Therefore, we have the monodromy map in z-coordinate which is given by a map

z1 of the following

z1 = e2iπ ν
λ z0(1 +

−2 iπ c

λ
(x0y0z0)− 2cπ (iaλ+ π (b+ 2 c))

λ2
(x0y0z0)2 + · · · ).

Thus, we obtain the 2D map corresponding to the RNFS (4.7) of the following

x1 = e2iπ x0,

y1 = e2 iπ µ
λ y0(1 +

2 iπ b

λ
u0 −

2π b (iaλ+ π (2 b+ c))

λ2
u2

0 + · · · ),

z1 = e2iπ ν
λ z0(1 +

2 iπ c

λ
u0 −

2cπ (iaλ+ π (b+ 2 c))

λ2
u2

0 + · · · ),

(4.93)

where u0 = x0z0y0 is the resonant monomial. Moreover, each the resonant coef-

ficient of this map is a polynomial of the parameters a, b and c. Hence, we can

read off the terms of the normal form (4.7) from the monodromy map (4.93).
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4.3. Using monodromy map

As a consequence, from the above technique we see the relation between the

reduced normal form for system and the monodromy map which also gives the

map in normal form.

We started with an orbital normalizable system, and then the monodromy

map is clearly a normalizable map, so we can state the following theorem.

Proposition 7. If the system (4.1) is orbitally normalizable with rank-one reso-

nant eigenvalues, then monodromy map of the any separatrix is normalizable.

In the similar way to the case of vector field, by using a further change of

coordinates we can bring the map (4.93) into a reduced normal form.

Now, to simplify calculations, we work in the two variables Y and Z. Then

we can rewrite the maps (4.93) in the following form

F = µ̃y0(1 + b1u0 + b2u
2
0 + . . . ), G = ν̃z0(1 + c1u0 + c2u

2
0 + . . . ), (4.94)

where b1 = 2 iπ b
λ̃
, c1 = 2 iπ c

λ̃
, b2 = b1(i a+b1− i

2
c1), c2 = b1(i a+c1− i

2
b1), µ̃ = e2iπ µ

λ ,

ν̃ = e2iπ ν
λ , and u0 = y0z0 is the resonant monomial.

Since, we have λ+ µ+ ν = 0, then

µ

λ
+
ν

λ
= −1,

and hence

µ̃ ν̃ = e2iπ(µ
λ

+ ν
λ

) = e2iπ(−1) = 1,

showing that the eigenvalues have modulus equal to unity at the origin. Thus, the

map (4.94) has rank-one resonant eigenvalues, in which we mean that the product

of the eigenvalues have logarithm of one independent linear dependency over Q.
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4.3. Using monodromy map

4.3.1 Reduction of normal form for map

In this section, we seek an invertible change of coordinates (Y, Z) = Ω(y0, z0)

to bring the map (4.94) into a reduced map (F1, G1) = Ω−1 ◦ (F,G) ◦ Ω only

containing a finite number of resonant terms. Through this way, we only need

the non-zero parameters a, b and c in the RNFS (4.7) to obtain a reduce map, in

order to make a conclusion about the relation between the reduced normal form

and the normalizable system.

Theorem 17. Assume a, b, c and b+c are not equal to zero, then by an invertible

change of coordinates we can bring the map (4.94) into a reduced map

F1 = µ̃ y(1 + k1(u)), G1 = ν̃ z(1 + k2(u)), (4.95)

where k1 = b1 u0 + b2 u
2
0, k2 = c1 u0 + c2 u

2
0 and b1, b2 c1, c2 are the same as the

original map (4.94).

Proof. We seek an analytic change of coordinates in the following

Ω : (y, z)→ (Y, Z) = (y eφ(u), z eψ(u)), (4.96)

where φ(u) = f1u+ f2u
2 + · · · , ψ(u) = g1u+ g2u

2 + · · · , to bring the map (4.94)

into the reduced map (4.95). To achieve this, we only need to prove that

Ω−1 ◦ (F,G) ◦ Ω = (F1, G1),

has an analytic solution. The above equation implies that

(F (Ω), G(Ω)) = Ω(F1, G1),
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4.3. Using monodromy map

this yields,

(F (Y, Z), G(Y, Z)) = (Y (F1, G1), Z(F1, G1)),

we expand out the above equation to obtain

F (Y, Z)− Y (F1, G1) = 0, and G(Y, Z)− Z(F1, G1) = 0. (4.97)

We consider the Taylor expansion and By substitute equations (4.94), (4.95) and

(4.96) into (4.97) to obtain

F (Y, Z)− Y (F1, G1) = µ̃Y (1 + b1Y Z + · · · )− µ̃ y(1 + b1u+ b2u
2)(eϕ(F1,G1))

= µ̃ yeϕ(1 + b1ue
ϕ+ψ + b2 u

2e2(ϕ+ψ) + · · · ).
(4.98)

This implies that

µ̃y
(

1 + (b1 + f1)u+ (b2
1 + f2 − (a− c1

2
− 2 f1 − g1)b1)u2 + . . .

)
− µ̃ y

(
1 + (f1 + b1)u+ (b1

2 + (2f1 − a+
c1

2
)b1 + f2 + c1f1)u2 + . . .

)
= 0.

By the same way, we obtain

G(Y, Z)− Z(F1, G1) = ν̃Y (1 + c1Y Z + · · · )− ν̃ z(1 + c1u+ c2u
2)(eψ(F1,G1))

= ν̃ z(1 + (c1 + g1)u+ (c2
1 + g2 − (a− f1 − 2 g1 −

b1

2
)c1)u2

+ . . . ).

(4.99)

This implies that

ν̃ z

(
1 + (c1 + g1)u+ (c2

1 + g2 − (a− f1 − 2 g1 −
b1

2
)c1)u2 + . . .

)
− ν̃ z

(
1 + (g1 + c1)u+ (c1

2 + (2 g1 − a+
b1

2
)c1 + g2 + b1g1)u2 + . . .

)
= 0.

121



4.3. Using monodromy map

Since we have µ̃ = 1
ν̃
, and simplifying (4.98) and (4.99), this gives

µ̃ x((b1g1 − c1f1)u2 − (f1b1a+ 2 g1b1a− f1c1a− 2 g1b1
2 + 2 b1f1c1 − g1b1c1

− b1f1
2 − 2 b1f1g1 + f1c1

2 + b1f2 − b1g2 + 2 f2c1 − b3)u3 + . . . ) = 0,

(4.100)

and

ν̃z(b1g1 − f1c1)u2 − (b1ag1 − 2c1af1 − c1ag1 − b1
2g1 + b1c1f1 − 2 b1c1g1 + 2 c1

2f1

+ 2 c1f1g1 + c1g1
2 − 2 b1g2 + f2c1 − c1g2 + c3)u3 + · · · = 0.

(4.101)

It is clear that each resonant coefficient contains at least one coefficient of the

power series φ = f1u + f2u
2 + · · · and ψ = g1u + g2u

2 + · · · , respectively. Then,

the coefficients fi and gi are determined by solving of term by term, we have

(b1g1 − c1f1) = 0,

(f1b1a+ 2 g1b1a− f1c1a− 2 g1b1
2 + 2 b1f1c1 − g1b1c1 − b1f1

2 − 2 b1f1g1

+ f1c1
2 + b1f2 − b1g2 + 2 f2c1 − b3) = 0,

... ,

(b1g1 − f1c1) = 0,

(b1ag1 − 2 c1af1 − c1ag1 − b1
2g1 + b1c1f1 − 2 b1c1g1 + 2 c1

2f1 + 2 c1f1g1

+ c1g1
2 − 2 b1g2 + f2c1 − c1g2 + c3) = 0,

... ,

(4.102)

this gives
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

f1 = b1g1
c1
,

f2 = (2 b3+c3)b1+b3c1
2(b1+c1)2

− g1ab1
c1

+ g12(2 b1+c1)b1
2c12

,

... ,

g1 = g1,

g2 = (b3+2 c3)c1+b1c3
2(b1+c1)2

− g1a+ g12(b1+2 c1)
2c1

,

... .

In more detail, we want to show that each equation (4.100) and (4.101) has a

solution for each individual term of the power series ψ(u) and ϕ(u). Firstly,

we consider the Taylor expansion on (4.100), and then the coefficient for each

individual term in u gives an equation with respect to fi. Thus, (4.100) can be

determined term by term. For example, if we choose a coefficient of the term uk,

we see that we have an equation of fk with fi for i = 1, 2, · · · , k − 1, and then

we solve this term in uk with respect to fk. Therefore, we can continue to solve

other term has a lower degree than uk, and so on we find all fi in equation (4.100).

Moreover, we substitute fi in (4.101) and consider the Taylor expansion to find

gi in the each individual term in uk by the same way. Then, equation (4.101)

is solvable. Consequently, by using the power series below with the change of

coordinates (4.96)

ϕ = (
b1g1

c1

)u+ (
(2 b3 + c3) b1 + b3c1

2 (b1 + c1)2 − g1ab1

c1

+
g1

2 (2 b1 + c1) b1

2c1
2

)u2 + · · · ,

ψ = g1u+ (
(b3 + 2 c3) c1 + b1c3

2 (b1 + c1)2 − g1a+
g1

2 (b1 + 2 c1)

2c1

)u2 + · · · ,

the two polynomial maps (4.94) and (4.95) are formally conjugated.
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4.4 Summary for Chapter 4

We have started with an orbital normalizable system with rank-one resonant eigen-

values which satisfies the condition λ + µ + ν = 0 which is one in the following

form

ẋ = λx+
∑
n≥2

Pn(x, y, z), ẏ = µy +
∑
n≥2

Qn(x, y, z), ż = νz +
∑
n≥2

Rn(x, y, z).

By an invertible change of coordinated (X, Y, Z) = (x, y, z), we bring the above

system to the following normal form

Ẋ = X(λ+
∑
k≥1

aku
k), Ẏ = Y (µ+

∑
k≥1

bku
k), Ż = Z(ν +

∑
k≥1

cku
k),

where u = XY Z is the resonant monomial. After dividing the above system by

1 + 1
λ

∑
k≥1 aku

k, without loss of generality, and to simplify calculations, we have

had the following form

ẋ = λx, ẏ = y(µ+
∑
k≥1

bku
k), ż = z(ν +

∑
k≥1

cku
k),

where u = xyz is the resonant monomial. We only considered the generic case, in

which we assume that b1, c1, b1 + c1 6= 0. By using a further change of coordinates

(x, Y, Z) = (x, y eϕ(u), z eψ(u)),

we could bring the above system into the reduced normal form

ẋ = λx, Ẏ = Y (µ+
bU

1 + aU
), Ż = Z (ν +

cU

1 + aU
).
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where U = xY Z, and ϕ(u) =
∑

j≥1 fju
j, ψ(u) =

∑
j≥1 gju

j. The above reduced

normal form has the following first integrals

H1(x, Y, Z) = xαY βZ, H2 =
1

U
+ ε1 lnx+ ε2 lnY.

Furthermore, we have introduced the monodromy map in the neighbourhood of

the one of the separatrices (we choose x-separatrix) by using the above first in-

tegrals to obtain formal normal form for 2D maps which is one in the following

form

x1 = e2iπ x0,

y1 = e2 iπ µ
λ y0(1 +

2 iπ b

λ
u0 −

2π b (iaλ+ π (2 b+ c))

λ2
u2

0 + · · · ),

z1 = e2iπ ν
λ z0(1 +

2 iπ c

λ
u0 −

2cπ (iaλ+ π (b+ 2 c))

λ2
u2

0 + · · · ),

where u0 = x0z0y0 is the resonant monomial.

The above map is determined by the three invariant parameters a, b and c

which appear in the reduced normal form for the system.

In the same way to the case of vector fields, by an invertible change of coordi-

nates we could also reduce formally the above map into a reduced map

x1 = e2iπλ x0,

y1 = e2 iπ µy0(1 +
2 iπ b

λ
u0 −

2π b (iaλ+ π (2 b+ c))

λ2
u2

0),

z1 = e2iπ ν z0(1 +
−2 iπ c

λ
u0 +

2cπ (iaλ+ π (b+ 2 c))

λ2
u2

0),

which only contains the three invariant parameters a, b and c, and u0 = x0z0y0 is

the resonant monomial. We can read off the terms of the reduced normal form for

the system from the reduced map. In which we mean that in three dimensional

system there is a relationship between the reduced normal form for the system

and the reduced map.
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We conclude this chapter by suggesting possible work in this area.

� Extend Theorem 17 to show analytical equivalence for a suitable choice of

reduced normal form for map.

� Investigate the formal monodromy maps in the other cases of reduced normal

forms in Theorem 8.
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Chapter 5

Rank-Two Resonant Singularity

in Three Dimensions

5.1 Introduction

In this chapter, we consider the 3D generalised Lotka-Volterra system (1.2) with

resonant eigenvalues (λ : µ : ν) as

ẋ = x (λ+
∑

i+j+k=n
n≥2

ai,j,kx
iyjzk) = x (λ+ P (x, y, z)),

ẏ = y (µ+
∑

i+j+k=n
n≥2

bi,j,kx
iyjzk) = y (µ+Q(x, y, z)),

ż = z (ν +
∑

i+j+k=n
n≥2

ci,j,kx
iyjzk) = z (ν +R(x, y, z)),

(5.1)

where P,Q,R ∈ C[x, y, z].

We are interested in studying the integrability of the origin when the singular

point of the system (5.1) has rank-two resonant eigenvalues λ, µ and ν which

lie in the Siegel domain. After a possible scaling of time, we can suppose that
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λ, µ, ν ∈ Z \ {0} and g.c.d.(λ, µ, ν) = 1, and that the eigenvalues must not all

have the same sign. Without loss of generality, we can take λ, ν > 0 and µ < 0.

To show this, we take two different linear dependencies of the eigenvalues

a λ+ b µ+ c ν = 0, a′ λ+ b′ µ+ c′ ν = 0,

and solve the above equations simultaneously to obtain

µ(a b′ − a′ b) + ν(a c′ − c a′) = 0,

setting a b′ − a′ b = k1 and a c′ − c a′ = k2, yields

µ k1 + ν k2 = 0,

where k1, k2 ∈ Z\{0}. If one of them is equal to zero, then one of the eigenvalues is

also equal to zero which contradicts the assumption that the eigenvalues are non-

zero. Also, if both k1 and k2 are equal to zero, then the two linear dependencies

are not independent which is also a contradiction. Therefore,

ν

µ
=
k1

k2

∈ Q,

and in the same way, we obtain λ
µ
∈ Q. Thus after a possible scaling of time we

can assume that λ, µ, ν ∈ Z \ {0}.

In the following theorem, we prove that the normal form of the system (5.1)

with rank-two resonant eigenvalues can be generated by two independent resonant

monomials under some conditions.

Theorem 18. Suppose that the system (5.1) is normalizable at the origin with

rank-two resonant eigenvalues C = (λ, µ, ν), λ, µ, ν ∈ Z \ {0}, such that one of
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5.1. Introduction

the following holds

1. If µ = −1, then any resonant monomial u in normal form can be expressed

as

uD = xryszt = (x yλ)α(yνz)β where α, β ∈ Z≥0.

2. If λ = −nµ (or, ν = −nµ) for n ∈ N, then any resonant monomial u in

normal form can be expressed as

uD = xryszt = (x yn)α(yνz−µ)β where α, β ∈ Z≥0.

or

uD = xryszt = (x−µ yλ)α(y zn)β where α, β ∈ Z≥0.

That is, there are two monomials XA = xaybzc and XB = xa
′
yb
′
zc
′

such that all

other terms can be constructed in the normal form from these. If the following

condition holds

3. λ+ µ+ ν = 0.

Then, any resonant monomial u in normal form can be expressed as

u = xryszt = (x y x)α(yνz−µ)β, α, β ∈ Z.

Proof. We bring the system (5.1) to the normal form

Ẋ = X(λ+ P (X, Y, Z)),

Ẏ = Y (µ+Q(X, Y, Z)),

Ż = Z(ν +R(X, Y, Z)),

(5.2)
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5.1. Introduction

where P, Q, R ∈ C[X, Y, Z] only contain the resonant monomials. Let

M = {D = (r, s, t) ∈ Z3 : D · C = 0},

Now, we want to choose A and B with respect the eigenvalues λ, µ and ν of the

following.

1. If µ = −1, we can choose A = (1, λ, 0) and B = (0, ν, 1). Then, for any

D = (r, s, t) ∈M we have,

rλ+ (−1)s+ tν = 0,

this implies that s = rλ+ tν, we see that

D = (r, s, t) = (r, rλ+ tν, t) = α(1, λ, 0) + β(0, ν, 1)

= (α, αλ+ βν, β),

this gives

D = (r, s, t) = rA+ tB.

Hence, any resonant monomial is of this form

uD = xryszt = (x yλ)α(yνz)β = (v)r(v′)t.

2. If λ = −nµ, we can choose A = (1, n, 0) and B = (0, ν,−µ) such that

gcd(µ, ν) = 1. Then, any D = (r, s, t) ∈M we have

r(−nµ) + sµ+ tν = 0,

this implies that
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5.1. Introduction

µ(−r n+ s) + tν = 0.

Since, µ is not divisible by ν, then it should be divisible by t. Let t = µ t̃,

since t ≥ 0 and µ < 0, then t̃ ≤ 0. From the above equation, we obtain

µ(−r n+ s+ t̃ν) = 0,

this gives s = r n− t̃ν, and we see that

D = (r, s, t) = (r, r n− t̃ν, µ t̃) = α(1, n, 0) + β(0, ν,−µ)

this gives

D = (r, s, t) = rA− t̃B.

Hence, any resonant monomial in the normal form is of this form

u = xryszt = (x yn)α(yνz−µ)β = (v)r(v′)−t̃.

3. If λ + µ + ν = 0, we can choose A = (1, 1, 1) and B = (0, ν,−µ) such that

gcd(µ, ν) = 1. Then, for any D = (r, s, t) ∈M , we have

rλ+ sµ+ tν = 0.

Let,

rλ+ rµ+ rν = 0.

We subtract the last two equations to obtain

(s− r)µ+ (t− r)ν = 0.
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5.1. Introduction

Since, gcd(µ, ν) = 1, then we should have

(s− r) = kν, and (t− r) = −kµ, for k ∈ Z,

this implies that

s = r + kν, and t = r − kµ,

Now, for any D = (r, s, t) ∈M , we can express it as the following

D = (r, s, t) = (r, r + kν, r − kµ) = α(1, 1, 1) + β(0, ν,−µ),

this gives

D = (r, s, t) = r A− k B.

Hence, any resonant monomial is of this form

u = xryszt = (xyz)α(yνz−µ)β = (v)r(v′)−k.

Consequently, the system (5.2) directly becomes

Ẋ = X (λ+ h1(v, v′)), Ẏ = Y (µ+ h2(v, v′)), Ż = Z (ν + h3(v, v′)),

where hi ∈ C[v, v′] for i = 1, 2, 3, and v, v′ are resonant monomials as defined

above.

At this moment, we are unable to prove that −k ∈ Z≥0.

In the following example, we show that we can not choose any A,B ∈ Z such

that α, β ∈ Z≥0.

For example consider the case C = (3 : −4 : 1)-resonance. Then, the normal
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5.1. Introduction

form corresponding to the this case is in the form

ẋ = x(3 + a1xyz + a2y
1x4 + a3x

4y3 + · · · ),

ẏ = y(−4 + b1xyz + b2y
1x4 + b3x

4y3 + · · · ),

ż = z(1 + c1xyz + c2y
1x4 + c3x

4y3 + · · · ).

(5.3)

If we choose A = (1, 1, 1) and B = (0, 1, 4). Clearly, the vectors A and B are

linearly independent. Let D = (5, 4, 1), we see that (5, 4, 1) · (3,−4, 1) = 0, and

(5, 4, 1) = α(1, 1, 1) + β(0, 1, 4),

we get α = 5, β = −1 ∈ Z, which contradicts with the values of α, β ∈ Z≥0.

Given the eigenvalues λ, µ and ν satisfies the first two conditions in Theorem

18, then we can rewrite the system (5.2) of the form

ẋ = x(λ+
∑
n≥1

Pn(u, v)) = x(λ+ P (u, v)),

ẏ = y(µ+
∑
n≥1

Qn(u, v)) = y(µ+Q(u, v)),

ż = z(ν +
∑
n≥1

Rn(u, v)) = z(ν +R(u, v)),

(5.4)

where P,Q,R ∈ C[u, v], u = XA = xaybzc and v = XB = xa
′
yb
′
zc
′
, as shown in

Theorem 18. Taking the derivative on u and v, respectively, we get

u̇ = u(
∑
n≥1

Hn(u, v)) = u (H(u, v)), v̇ = v (
∑
n≥1

Kn(u, v)) = (K(u, v)),

where H(u, v), K(u, v) ∈ C[u, v] which depend on the eigenvalues. By which we

mean that we can reduce the 3D system into 2D system.

However, the normal form (5.4) still contains an infinite number of resonant

133



5.2. Integrability of the cubic polynomial systems in 3D

monomials. We tried to find finite reduced normal form, but we could not find

a suitable form associating to the system (5.4) at the moment. This situation

is therefore much more complex than the rank-one case and so we simplify the

investigation by truncating the 3D system to a 3D homogeneous cubic system as

a first step to understanding the general case.

Here, we study the integrability and normalizability for the cubic system with

(1,−1, 1)-resonant eigenvalues. By using the Darboux method we can find a first

integral to the cubic polynomial system. In order to find another first integral

which is independent from the first one, we then extract one variable from the

first integral to reduce the cubic system from 3D into 2D, then a second first

integral can be found for the reduced system.

5.2 Integrability of the cubic polynomial systems

in 3D

We firstly consider the 3D system:

ẋ = x+
∑

i+j+k=n
n≥2

ai,j,kx
iyjzk = x+ P (x, y, z),

ẏ = −y +
∑

i+j+k=n
n≥2

bi,j,kx
iyjzk = −y +Q(x, y, z),

ż = z +
∑

i+j+k=n
n≥2

ci,j,kx
iyjzk = z +R(x, y, z),

(5.5)

where P,Q,R ∈ C[x, y, z] without linear term.

We suppose the above system is normalizable at the origin, then there is an

invertible change of coordinates, which transforms the system (5.5) into the fol-

lowing normal form
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5.2. Integrability of the cubic polynomial systems in 3D

ẋ = x+ a1x
2y + a2xyz + a3yz

2 + · · · ,

ẏ = −y + b1xy
2 + b2y

2z + · · · ,

ż = z + c1xyz + c2yz
2 + c3x

2y + · · · .

Now, we are going to consider the cubic terms in the normal form, by which we

mean that we will truncate the above system to the terms which have the power

three. Therefore, we consider the system

ẋ = x+ a1x
2y + a2xyz + a3yz

2,

ẏ = −y + b1xy
2 + b2y

2z,

ż = z + c1xyz + c2yz
2 + c3x

2y.

(5.6)

Now, we want to use an analytic change of coordinates in order to remove some res-

onant monomials. System (5.6) has the same eigenvalues for both x, z-coordinates,

then we can use the following analytic linear change of coordinates

x̃ = d x+ f z, z̃ = g x+ h z , (5.7)

where d, f, g, h ∈ R \ {0} such that dg − fh 6= 0. The inverse transformation is

x =
hx̃− f z̃
d h− g f

, z =
−gx̃+ d z̃

d h− g f
. (5.8)

We first take the derivative of equation (5.7), and substitute equation (5.8) into

the system (5.6) to obtain

˙̃x = x̃+ ã1x̃
2y + ã2x̃yz̃ + ã3yz̃

2,

ẏ = −y + b̃1x̃y
2 + b̃2y

2z̃,

˙̃z = z̃ + c̃1x̃yz̃ + c̃2 z̃
2y + c̃3x̃

2y,

(5.9)
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5.2. Integrability of the cubic polynomial systems in 3D

where

ã1 =
((−a2gh+ a1h

2 + a3g
2) d+ f (g2c2 − c1gh+ c3h

2))

(dh− gf)2 ,

c̃2 =
((−da2f + a1f

2 + a3d
2) g + h (d2c2 − fc1d+ c3f

2))

(dh− gf)2 .

b̃1 =
(hb1 − gb2)

dh− gf
, b̃2 =

(b2d− b1f)

dh− gf
.

ã2 =
((a2h− 2ga3) d2 + f ((a2 − 2 c2) g + h (4a1 − 2 c1)) d+ f 2 (gc1 − 2hc3))

(dh− gf)2 ,

c̃1 =
((a2f − 2da3) g2 + h ((a2 − 2 c2) d+ f (4a1 − 2c1)) g + h2 (c1d− 2 c3f))

(dh− gf)2 .

ã3 =
(a3d

3 − f (a2 − c2) d2 + f 2 (a1 − c1) d+ c3f
3)

(dh− gf)2 , (5.10)

c̃3 =
(a3g

3 − h (a2 − c2) g2 + h2 (a1 − c1) g + c3h
3)

(dh− gf)2 . (5.11)

We see that the equations (5.10) and (5.11) are cubic homogeneous polynomials

of the variables d, f and g, h, respectively, with the same coefficients. To remove

these resonant monomials, we can only choose two different solutions of the equa-

tion (5.10) or (5.11).

To simplify calculations, let â2 = a2 − c2 6= 0 and â1 = a1 − c1 6= 0 to get

ã3 =
a3d

3 − f d2 â2 + f 2 d â1 + c3f
3

(dh− gf)2 =
(d+ ρ f)3

dh− gf
,

c̃3 =
a3g

3 − h g2 â2 + h2 g â1 + c3 h
3

(dh− gf)2 =
(h+ ρ g)3

dh− gf
.

We have the following solutions of the equation (5.10)

ρ1 =
P

6 c3

+
2 (â2

1 − 3 â2 c3)

c3 P
+

â1

3 c3

,

ρ2,3 =− P

2 c3

− â2
1 − 3 â2 c3

3 c3 P
+

â1

3 c3

± i

√
3

2
(
P

6 c3

− 2 (â2
1 − 3 â2 c3)

3 c3 P
),

where P = 4 (
(27 a3c32−â1(2 â2

1−9 â2 c3))
2
−4 (â21−3 â2 c3)3

9 c32
)
1
2 − 108 a3c3

2 + 4â1(2â2
1− 9â1c3).
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5.2. Integrability of the cubic polynomial systems in 3D

If we choose ρ1 and ρ2, we then directly get ã3 = c̃3 = 0. Thus, by using the

linear transformation (5.7), the system (5.9) becomes the following form

˙̃x = x̃(1 + ã1x̃y + ã2yz̃), ẏ = y(−1 + b̃1x̃y + b̃2yz̃), ˙̃z = z̃(1 + c̃1x̃y + c̃2 z̃y),

To simplify calculations, we can rewrite the above system of the following form

ẋ = x(1 + a1xy + a2yz), ẏ = y(−1 + b1xy + b2yz), ż = z(1 + c1xy + c2 yz).

(5.12)

Theorem 19. System (5.6) with rank-two resonant eigenvalues has two explicit

independent first integrals given in terms of hypergeometric functions.

Proof. We start at the system (5.6). By an analytic linear change of coordinates

(5.7) we can bring the system (5.6) to the system (5.12).

The system (5.12) has the following Darboux factors and cofactors

G1(x, y, z) = x, K1(x, y, z) = 1 + a1 x y + a2 y z,

G2(x, y, z) = y, K2(x, y, z) = −1 + b1 x y + b2y z,

G3(x, y, z) = z, K3(x, y, z) = 1 + c1x y + c2 z y,

G4(x, y, z) = 1 +
z(a2 − c2)

x(a1 − c1)
, K4(x, y, z) = yz(c2 − a2),

Then, we get the following generalized Darboux first integral

ϕ = y x1−εzε(1 + k
z

x
)α, (5.13)

where α = a1b2+a1c2−a2b1−a2c1+b1c2−b2c1
(a2−c2)(a1−c1)

, ε = a1+b1
a1−c1 and k = a2−c2

a1−c1 , such that a2 − c2 6=

0 and a1 − c1 6= 0.
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5.2. Integrability of the cubic polynomial systems in 3D

We extract the variable x from equation (5.13), and let w = z
x

to obtain

x = F (y, w, ϕ) = ϕy−1w−ε (1 + k w)−α. (5.14)

We take the derivative on w = z
x
, and after substituting the above equation, the

system (5.12) becomes

ẇ = xyw(c1 − a1)(1 + kw), ẏ = xy2(− 1

xy
+ b1 + b2w),

dividing by 1
xy2w(1+kw)

, gives

ẇ =
c1 − a1

y
, ẏ = −w

ε−1 (kw + 1)α−1

ϕ
+

b2w + b1

w (kw + 1)
. (5.15)

The above system has the following first integral

ψ(w, y) = (c1 − a1) ln (y)− b1 ln (w) + (b1 −
b2

k
) ln (kw + 1)

+ (ε ϕ)−1wε2F1(ε,−α + 1; 1 + ε; −kw),

where 2F1 is the hypergeometric function

- If a1 = c1. Using the Darboux method with the exponential factor, the

system(5.12) has first integrals of the form

ϕ = x1+αyz−αe
kx
z = xywαekw,

where α = a2+b2
c2−a2 and k = b1+c1

c2−a2 , such that c2 − a2 6= 0, and w = x
z

. In

the same way, by taking the derivative on w = z
x
, and substituting x =

ϕy−1w−αe−kw, the system (5.12) becomes

ẇ = (a2 − c2)ϕw−αe−kw, ẏ = (b1 + b2w
−1 − ϕwαekw)kw.
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5.2. Integrability of the cubic polynomial systems in 3D

We can directly have another first integral of the following

ψ = (a2 − c2) ln(y)− b1
x

z
− b2 ln(

x

z
) + ϕ−1k−1wαekw

− ϕ−1k−1 (w)α 1F1(α; α + 1; kw).

(5.16)

- If a2 = c2, then the system (5.12) has two first integrals of the form

ϕ = x1−αyzαe
kz
x ,

ψ = (c1 − a1) ln(y)− b1 ln(
z

x
)− b2

z

x
+ ϕ−1α−1wα (−kw)α 1F1(α; α + 1; kw),

where α = a1+b1
a1−c1 , k = b2+c2

a1−c1 , such that c1 − a1 6= 0.

- If a1 = c1 and a2 = c2, then in the same way the system (5.12) has two first

integrals of the form:

ϕ = x−1z, ψ =
1

xy
−
(

(b1 + c1) + (b2 + c2)
z

x

)
ln (y) +

(
b1 + b2

z

x

)
ln (xy) .

Open Question for Further study:

We introduced the monodromy method in the 3D vector field with rank-one res-

onant eigenvalues by using two independent first integrals. One of these first

integrals contains logarithm terms. System (5.12) has the two independent first

integrals. One of these first integrals contains the hypergeometric function. This

result clearly needs a further study. For example, can the second first integral

(5.16) be used to find the monodromy map in this case in order to make some

conclusions about the relation between integrability and normalizability of the

system (5.12) with rank-two resonant eigenvalues.
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Chapter 6

Contribution

In the thesis, we address the question of normalizability, integrability and mon-

odromy maps of singularities for the analytic system

ẋ = λx+
∑
n≥2

Pn(x, y, z), ẏ = µy +
∑
n≥2

Qn(x, y, z), ż = νz +
∑
n≥2

Rn(x, y, z).

(6.1)

Firstly, we consider rank-one resonant eigenvalues (λ, µ, ν) which satisfy the

condition λ+ µ+ ν = 0.

We at first extend a technique which was described by Aziz and Christopher

(2012) in order to show integrability for 3D vector fields. We then use this new

technique (see Theorem 6) in order to find two independent explicit first integrals

of the system (6.1).

We also used the normal form method to find the sufficient conditions for

existence of one first integral of a 3D vector field. This is detailed in Section 3.3.

We apply this idea to demonstrate the (formal) sufficiency of the conditions for

the existence of one analytic first integral in Aziz and Christopher (2014). In their

paper a number of necessary conditions for the existence of one first integral for 3D

Lotka-Volterra systems was found. The sufficiency of these conditions was left as
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conjectural. We apply our method to show formal sufficiency of these conditions.

Secondly, we consider when the system (6.1) is an orbitally normalizable sys-

tem. Then, by an analytic change of coordinates, we can bring the system (6.1)

to the following normal form after scaling

Ẋ = X(λ+
∑
k≥1

aku
k), Ẏ = Y (µ+

∑
k≥1

bku
k), Ż = Z(ν +

∑
k≥1

cku
k),

where u = XY Z is the resonant monomial. Since, we work with orbitally

normalizability, without loss of generality, we can divide the above system by

F (u) = 1 + 1
λ

∑
k≥1 aku

k. Thus, we obtain the system

ẋ = λx, ẏ = z(µ+
∑
k≥1

bku
k), ż = z(ν +

∑
k≥1

cku
k).

We seek a further analytic change of coordinates to bring the system into one of

the following reduced normal forms:

ẋ = λx, Ẏ = Y (µ+
F (U) + b Uk

1 + aUk
), Ż = Z (ν +

−F (U) + c Uk

1 + aUk
),

ẋ = λx, Ẏ = µY, Ż = Z (ν +
c U l

1 + aU l
),

which depend on the first non-zero resonant monomial in the original system,

where u = xyz and U = xY Z. This is detailed in Theorem 8. This idea in the

case of 2D systems was addressed by Christopher et al. (2003).

From now on, we only consider the case k = 1 (the generic case). Then, we

have the following reduced normal form

ẋ = λx, Ẏ = Y (µ+
b U

1 + aU
), Ż = Z (ν +

c U

1 + aU
), (6.2)
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where U = xY Z. Using the technique in Section 3.2, the system (6.2) has one

Darboux-analytic first integral and one explicit first integral of the following form

H1(x, Y, Z) = xαY βZ, H2(x, Y, Z) =
1

u
+ ε1 lnx+ ε2 lnY. (6.3)

The more general cases in Theorem 8 also have explicit first integrals, but we do

not obtain a first integral of Darboux-analytic type, so, we have only mentioned

the generic case here.

Thirdly, we have studied different criteria for bringing an orbital normalizable

system to normalizable system. After multiplying the reduced normal form by

1 +aU , and assuming that the system (6.1) is orbitally normalizable, then we can

bring the system formally into the following form, now taking account of time

ẋ = x(λ+ λ a u)h(x, y, z),

ẏ = y(µ+ (µ a+ b)u)h(x, y, z),

ż = z (ν + (ν a+ c)u)h(x, y, z),

where h(x, y, z) is an analytic and h(0, 0, 0) = 1. This is detailed in Theorem 16.

We showed that the above model is analytically normalizable to the system

ẋ = x(λ+ λ aU), Ẏ = Y (µ+ (µ a+ b)U), Ż = Z (ν + (ν a+ c)U),

if and only if there is an analytic series g(x, y, z) vanishing at the origin such that

((b+ c)η − dg) ∧ Ω = 0.

This idea generalizes a theorem in Christopher et al. (2004).

Furthermore, we introduce the monodromy map in the neighbourhood of the
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x-separatrix for the system (6.2) normal for by the two first integrals. To find the

monodromy map, we need to consider the trajectory of the system near a closed

loop xθ = x0 e
i2πθ at the x-separatrix. To achieve this, we take a transversal to

the x-separatrix at each point of the loop starting at a base point, and we look at

the trajectories which are close to the loop, and hence intersects the trajectory.

We at first extract Z from the first integral H1(x, Y, Z) = k1 at the start-

ing point (x0, Y0, Z0) (k1 = xα0 Y
β

0 Z0), and then we substitute H1 and Yθ =∑
i≥1 ci(θ)Y

i
0 into the second first integral (H2(x, Y, Z) = k2) to obtain

1

xα0 Y
β

0 Z0

xα−1
0 Y β−1

θ ( e2i π θ − 1) + ε1 2i π θ + ε2 ln(Yθ − Y0) = 0.

Solving term by term in Y0, we obtain

Yθ = Y0 e
2 iπ θ µ

λ (1 +
2 iπ θ b

λ
x0Y0Z0 −

2 θ π b (iaλ+ 2 π b θ + π c θ)

λ2
(x0Y0Z0)2 + · · · ).

Next, we assume that the monodromy map of Z-coordinate is given by substitut-

ing the power series Zθ = e2iπ θ ν
λ Z0(1 + g(x0, Y0, Z0, θ)) with Yθ into first integral

H1 = k1. After considering the Taylor expansion to find g(x0, Y0, Z0, θ), we obtain

g(x0, Y0, Z0, θ) =
2 iπ θ c

λ
(x0Y0Z0)− 2cπ θ (iaλ+ π θ (b+ 2 c))

λ2
(x0Y0Z0)2 + · · · .

Then, the monodromy map in Y, Z-coordinate is given by a map Yθ=1 and Zθ=1,

respectively. Hence, we obtain the 2D map in normal form

x1 = e2iπ x0,

Y1 = e2 iπ µ
λY0(1 +

2 iπ b

λ
u0 −

2π b (iaλ+ π (2 b+ c))

λ2
u2

0 + · · · ),

Z1 = e2iπ ν
λ Z0(1 +

2 iπ c

λ
u0 −

2cπ (iaλ+ π (b+ 2 c))

λ2
u2

0 + · · · ),
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where u0 = x0Y0Z0. This map is the monodromy map corresponding to the system

(6.2). This is detailed in Section 4.3.

In the same way to the case of vector fields, by an invertible change of coordi-

nates, we can bring the monodromy map formally into the finite reduced map

x1 = e2iπ x0,

Y1 = e2 iπ µ
λY0(1 +

2 iπ b

λ
u0 −

2π b (iaλ+ π (2 b+ c))

λ2
u2

0),

Z1 = e2iπ ν
λ Z0(1 +

2 iπ c

λ
u0 −

2cπ (iaλ+ π (b+ 2 c))

λ2
u2

0),

where u0 = x0Y0Z0. We can read off the terms of the system (6.3) from the

above reduced map. Thus, we can relate the reduced map and the corresponding

system. In the case of 2D vector fields, this idea was addressed by Christopher

and Rousseau (2004).

Finally, we consider the case of rank-two resonant eigenvalues (λ, µ, ν) for the

system

ẋ = x(λ+
∑
n≥1

Pn(x, y, z)), ẏ = y(µ+
∑
n≥1

Qn(x, y, z)), ż = z(ν +
∑
n≥1

Rn(x, y, z)).

After a possible scaling of time, we assume that λ, µ, ν ∈ Z, and g.c.d(λ, µ, ν) = 1.

We proved that if the eigenvalues of the above system with rank-two resonance

satisfy one of the following conditions

µ = −1, λ = −nµ (ν = −nµ) n ∈ N, or λ+ µ+ ν = 0,

then the normal form for the system can be generated by two independent reso-

nant monomials. The following normal form corresponding to the above system

is therefore
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ẋ = x(λ+
∑
n≥1

Pn(u, v)), ẏ = y(µ+
∑
n≥1

Qn(u, v)), ż = z(ν +
∑
n≥1

Rn(u, v)),

where Pn, Qn, Rn ∈ C[u, v]. This details are given in Theorem 18.

We have tried to find a finite reduced normal form for the above system, but

we could not at the moment. Thus, we have simplified our investigation by only

considering the case (1,−1, 1)-resonant eigenvalues, and truncating the normal to

terms which have the power three or less. Thus, we consider the following system

ẋ = x+ a1x
2y + a2xyz + a3yz

2,

ẏ = −y + b1xy
2 + b2y

2z,

ż = z + c1xyz + c2z
2y + c3x

2y.

The above system has two explicit first integrals of the following form

ϕ(x, y, z) = y x1−εzε(1 +
k z

x
)α,

and

ψ(x, y, z) = (c1 − a1) ln (y)− b1 ln
(z
x

)
+ (b1 −

b2

k
) ln

(
k z

x
+ 1

)
+ (ε ϕ)−1 z

x

ε

2F1(ε,−α + 1; 1 + ε;
−k z
x

),

where 2F1 is the hypergeometric function. This is detailed in Theorem 19.

The application of the monodromy in this case using hypergeometric function

in 3D vector field is much harder than the case of rank-one resonance. We have

left this problem as an interesting topic for further investigation.
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