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Nature and significance of the submitted work 

 

Introduction 

The work submitted for consideration of the award of a DSc represents a large sub 

section (102 of 210 published papers) of the candidates (Haswell) sustained research 

over a period of 20 years in the field of micro fluidic based processes.  The candidate 

became aware of the potential of the field of research in 1986, when developing gas 

sensors, through the paper by Terry et al. published in IEEE Trans. Electron. Devices in 

1979, in which the authors described a fully operational gas chromatography instrument 

produced on a silicon wafer using photolithographic and wet etching methodology.  In 

the late 1980’s the candidate adapted the work of Terry to produce etched patterned 

glass substrates which were used to develop a microfluidic flow injection device for 

determining orthophosphate based on electroosmotic pumping.  This work represented 

one of the first analytical devices of its type to be reported in the literature (paper 1).  

Internationally, work in the field had been developing since the 1989 Transducers 

Conference where the term micro Total Analytical System was first used and by 1995 

was concentrated in five centres based in Europe (Basil Switzerland, Twente The 

Netherlands) and North America (Berkeley California, Oak Ridge Tennessee, Alberta).  

In addition to analytical methodology, groups in Europe (Mainz Germany) and North 

America (MIT USA) were also exploring the generation of metal based micro reactor 

systems.  The candidate attended and presented work at both the first micro total 

analytical systems conference in 1994 held in The Netherlands and the first 

International Conference on Microreaction Technology (IMRET) held in Frankfurt 

Germany in 1997.  It is from this base the candidate established over a period of two 

decades an internationally recognized research activity in the field of microfluidics and 

lab on a chip technology. 

 

Commentary 

The figure below shows the research time line for the candidate’s work which identifies 

five main areas of activity underpinned by a number of publications that address the 

more fundament science associated with the research.  Key milestone publications for 

each of the areas of research are also identified below on the time line. 



2 
 

 

The initial research into performing chemical reactions in a microfluidic device was 

based on analytical colorimetric analysis for phosphate (papers 1, 2,) and nitrite/nitrate 

(papers 4, 14) which together with a good review of the relevant literature (paper 2) 

established the practical and scientific platforms on which electrokinetic and 

hydrodynamic driven microfluidic research was established.  The methodology used 

glass based devices as these offered chemical compatibility and good optical detection 

and were initially used to identify the operational characteristic of reactions performed 

in the absence of a large bulk solvent under continuous flow conditions.  The results 

from these early fundamental studies are summarised in paper 21, which made a 

significant contribution in identifying and characterising the spatial and temporal 

control of reagents under a non-turbulent, diffusion limited mixing regime within 

reactor channels.  Of the 79 cited references presented in paper 21, 30% came from the 

candidates research with others (Jensen USA, Eherfeld Germany) contributing to define 

the fundamental operational criteria of micro reactor devices.  This seminal paper which 

was directed at synthetic chemists has received 355 citations to date and has been 

instrumental in setting the research agenda in the field.  The presence of industrial co-

authors Pombo-Villar (Novartis Switzerland), Warrington and Wong (GSK UK) on this 

paper reflect the high level of industrial interest in the technology at the time and the 

subsequent investment made in the ongoing research.  Many of the 58 papers published 

by the candidate in the field of micro reactors were the first to report chemical 

selectivity through the application of electrokinetic (papers 10, 16, 18, 25, 31, 39, 43, 

46, 58) and hydrostatic flow gradients (papers 8, 17), paper 36 in particular describes a 

very elegant example of how localised concentrations gradients, accessed through flow 
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rate control, can be used to achieve stereo selective products.  This is something of a 

holy grail for synthetic chemists and the work attracted considerable interest and 

funding from the pharmaceutical industry where product purity and selectivity are 

paramount.  In addition the candidate’s research reported early work for the 

immobilization of catalysts such as Pd, Pt, sulphated zirconia, zeolites and enzymes 

(papers 6, 34, 38, 41, 51, 75, 77), controlled microwave heating (papers 34, 37, 45), 

electro-synthesis (papers 47, 50, 57) and the monitoring of reactants and products 

(papers 30, 77, 100).  A range of chemical reaction types were also reported for the first 

time in micro reactors and demonstrate the advantages meso/micro flow reactors in 

terms of stereo selective product control (paper 59), multi-step synthesis (paper 56) and 

in situ separations (paper 31).  The 12 invited reviews and feature articles, many of 

which contain novel experimental results, serve also to summarise the impact of the 

candidate’s research in the field (papers 2, 7, 12, 21, 27, 28, 29, 35, 40, 42, 44, 49) and 

demonstrated the relevance of the methodology to combinatorial, drug discovery and 

clean chemistry. 

 

Based on the micro reactor experience gained by the candidate, research into using 

silica monolithic structures which offered favourable flow through characteristic (i.e. 

high flow rates with low backpressures) whilst maintaining the short diffusional 

distances and laminar flow properties, opened up the wider field of flow chemistry.  The 

candidate was instrumental in describing the relationship between fabrication 

methodology and functional characteristics of silica monoliths (paper 90) and 

demonstrated how the cross-sectional area could be effectively be used to scale up 

reaction volumes without losing the intrinsic reaction properties of the micron scale 

environment (paper 88).  In addition the research demonstrated that through the 

incorporation of on-line monitoring and feedback flow control the kinetics of reactions 

could be determined and product yield optimised (paper 100).  

 

The concept of combining synthesis and biological screening into one device, 

introduced in paper 21, represented the early beginnings of research which eventually 

lead the candidate to establish research in the field of lab on a chip methodology.  This 

early work focused mainly on cell based processing (papers 64, 66, 78, 87) and 

eventually generated an integrated microfluidic cell screening device for drug 

candidates synthesised in micro reactors (papers 52, 61).  The lab on a chip idea was 

further developed by the candidate for a number of DNA based applications (papers 70 
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– 72, 74, 71, 79, 83, 93, 94, 102) which described leading work in the area of the real 

world to chip interface where the volumetric change is typically many orders of 

magnitude and matrix effects can be highly significant (papers 70, 72, 74, 83, 93, 94, 

99).  This body of work clearly demonstrated that the design of a real-world interface 

must be an integral component of the microfluidic device and requires a high degree of 

functionality to deal with sample/matrix type and downstream processing if the full 

potential of the technology is to be realised.  Much of the candidate’s research in the 

field of lab on a chip based technology for medical diagnostic application is reviewed in 

paper 85. 

 

From experience gained from earlier cell based processing the candidate established 

collaborations with clinical colleagues to develop microfluidic based devices that would 

bio-mimic the fluidic transfer processes in living organisms.  The first of such 

methodology was reported in paper 65 and lead to a number of studies which 

culminated in clinicians being able to design drug treatment regimens for cancer 

treatment at an individual level (papers 95, 101).  A summary of the candidate research 

in this field and the potential clinical relevance for research and treatment is presented 

in paper 86.  
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The candidate’s contribution to the research and nature of joint work 

It is customary that publications in the field of chemical science appear with multiple 

authors who may include research students, academic colleagues and industry 

collaborators.  Consequently, the quantitative contributions attributable to individual 

authors on each paper cannot be equitably determined and as such can only be shared 

amongst those named in each paper.  However, the academic leadership, provision of 

funding and intellectual contribution has been predominantly that of the candidate.  

Notable exceptions are papers 41, 62, 69 and 82 where the candidate has collaborated in 

providing know-how rather than scientific leadership. 

For clarification in this matter a statement of the originators of the published work, 

source of funding and role of associated authors is summarised for each submitted 

paper.  Where the work involves PhD students the results reported may have been 

included in their thesis.   

 
1. Daykin, R.N.C., and Haswell, S.J., Development of a micro flow injection 

manifold for the determination of orthophosphate, Anal. Chim. Acta, 1995, 313, 
155-159.  

Originator(s) of the published work: Haswell 
Source of funding:  The Parliament of the Channel Islands – 

Haswell PI 
Role of associated authors : Daykin undertook practical experiments as 

a PhD student supervised by Haswell. 
 

2. Haswell, S.J., Development and operating characteristics of micro flow injection 
analysis systems based on electroosomotic flow:  A review, Analyst. 1997, 122, 
1R-10R. 

Originator(s) of the published work: Haswell. 
 
 

3. Doku, G.N and Haswell, S.J., Further studies into the development of micro-FIA 
(µFIA) system based on electroosomotic flow for the determination of 
phosphate as orthophosphate, Anal. Chim. Acta, 1999, 382. 1-13. 

Originator(s) of the published work: Haswell 
Source of funding:  Commonwealth Studentship 
Role of associated authors : Doku undertook practical experiments as a 

PhD student supervised by Haswell. 
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4. Greenway, G.M. Haswell S.J. and Petsul, P. H., Characterisation of a micro-total 
analytical system for the determination of nitrite with spectrophotmetric 
detection, Anal. Chim. Acta, 1999, 387, 1-10. 

Originator(s) of the published work: Haswell 
Source of funding:  Government of Papua New Guinea – 
Haswell PI 
Role of associated authors : Petsul undertook practical experiments as a 

PhD student co-supervised by Haswell and 
Greenway. 

 
 

5. Fletcher, P.D.I., Haswell, S.J. and Paunov, V.N., Theoretical considerations of 
chemical reactions in micro reactors operating under electrophoretic control, 
Analyst, 1999, 124, 1273-1282. 

Originator(s) of the published work: Haswell and Fletcher (75/25%) 
Role of associated authors : Fletcher contributed knowledge on 

electrochemical and surface aspects of the 
paper and Paunov on the fundamentals of 
surface reactivity. 

 
 

6. Greenway, G.M., Haswell, S.J., Morgan, D.O., Skelton, V. and Styring, P, The 
use of novel micro reactors for high throughput continuous flow organic 
synthesis, Sensors and Actuators B, 2000, 63, 153-158. 

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC - Glaxo SmithKline CASE 

studentship Haswell PI 
Role of associated authors : Skelton undertook practical experiments as 

a PhD student co-supervised by Haswell 
and Greenway, Styring advised on the 
organic chemistry and Morgan was the 
industrial collaborator. 

 
 

7. Haswell, S.J. and Skelton, V., Chemical and biochemical micro reactors, Trends 
in Anal. Chem. 2000, 19, 389-395. 

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC - Glaxo SmithKline CASE 

studentship - Haswell PI 
Role of associated authors : Skelton co-authored this review as a PhD 

student. 
 
 

8. Haswell, S.J., O’Sullivan, B. and Styring, P., Kumada-Corriu reactions in a 
pressure-driven micro flow reactor, Lab on a chip, 2001, 1, 164-166. 
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Originator(s) of the published work: Haswell 
Source of funding:  EPSRC – Grant GR/M73002 - Haswell PI 
Role of associated authors : O’Sullivan undertook practical experiments 

as a post-doctoral research fellow 
supervised by Haswell, Styring advised on 
the organic chemistry. 

 
 

9. Doku, G.N., Haswell, S. J., McCreedy, T. and Greenway, G.M., Electric-field 
induced mobilisation of multiphase solution systems based on the nitration of 
benzene in a micro reactor, Analyst, 2001, 126, 14-20. 

Originator(s) of the published work: Haswell 
Source of funding:  Commonwealth Studentship – Haswell PI 
Role of associated authors : Doku undertook practical experiments as a 

PhD student co-supervised by Haswell and 
McCreedy 

 
 

10. Skelton, V., Greenway, G.M., Haswell, S.J, Styring, P., Morgan, D.O., 
Warrington, B.H. and Wong, S., The generation of concentration gradients using 
electroosmotic flow in micro reactors allowing stereo-selectivity in chemical 
synthesis, Analyst, 2001, 126, 11-13. 

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC - Glaxo SmithKline CASE 

studentship Haswell PI 
Role of associated authors : Skelton undertook practical experiments as 

a PhD student co-supervised by Haswell 
and Greenway, Styring advised on the 
organic chemistry and Morgan, Warrington 
and Wong were the industrial 
collaborators. 

 
 

11. Skelton, V., Greenway, G.M., Haswell, S.J, Styring, P., Morgan, D.O., 
Warrington, B.H. and Wong, S., The preparation of a series of nitrostilbene ester 
compounds using micro reactor technology, Analyst, . 2001, 126, 7-10. 

Originator(s) of the published work: Haswell and Warrington (80/20%) 
Source of funding:  EPSRC - Glaxo SmithKline CASE 

studentship Haswell PI 
Role of associated authors : Skelton undertook practical experiments as 

a PhD student co-supervised by Haswell 
and Greenway, Styring advised on the 
organic chemistry and Morgan, Warrington 
and Wong were the industrial 
collaborators. 
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12. Haswell, S.J., Middleton, R.J., O’Sullivan, B., Skelton, V., Watts, P. and 
Styring, P., The application of micro reactors to synthetic chemistry, Chem. 
Comm., 2001, 391-398. 

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC – Grant GR/M73002, and Glaxo 

SmithKline and Novartis - Haswell PI 
Role of associated authors : This was a review co-authored by Skelton, 

O’Sullivan, Watts and Middleton post-
doctoral research fellows supervised by 
Haswell, Styring advised on the organic 
chemistry. 

 
 
13. Watts, P., Wiles, C., S.J. Haswell, Pombo-Villar, E. and Styring, P., The 

synthesis of peptides using micro reactors, Chem. Comm., 2001, 990-991. 

Originator(s) of the published work: Haswell 
Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

Watts a post-doctoral research fellows 
supervised by Haswell, supported by Wiles 
a PhD student supervised by Haswell and 
Styring, Pombo-Villar was the industrial 
collaborator. 

 
 

14. Petsul, P.H., Greenway, G.M. and Haswell, S.J., The development of an on-chip 
micro flow injection analysis of nitrate with a cadmium reductor, Anal. Chim. 
Acta, 2001, 428, 155-161. 

Originator(s) of the published work: Haswell 
Source of funding:  Government of Papua New Guinea  
Role of associated authors : Petsul undertook practical experiments as a 

PhD student co-supervised by Haswell and 
Greenway. 

 
 

15. Doku, G.N., Haswell, S.J., McCreedy, T. and Middleton, R.J., Preliminary 
studies into the direct interfacing of a microreactor to a gas chromatographic 
instrument, Analyst, 2001, 126, 133-135. 

Originator(s) of the published work: Haswell 
Source of funding:  Commonwealth Studentship – Haswell PI 
Role of associated authors : Doku undertook practical experiments as a 

PhD student co-supervised by Haswell and 
McCreedy, assisted by Middleton a post-
doctoral research fellow supervised by 
Haswell. 
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16. Sands, M., Haswell, S.J., Kelly, S.M., Skelton, V., Morgan, D.O., Styring P. and 
Warrington, B., The investigation of an equilibrium dependent reaction for the 
formation of enamines in a microchemical system, Lab on a chip, 2001, 1, 64-
65. 

Originator(s) of the published work: Haswell and Styring (50/50%) 
Source of funding:  EPSRC - Glaxo SmithKline CASE 

studentship Haswell PI 
Role of associated authors : Sands undertook practical experiments as a 

PhD student co-supervised by Haswell and 
Styring, Skelton supported the work as a 
post-doctoral research fellow supervised by 
Haswell, Kelly advised on the reaction 
chemistry and Morgan and Warrington 
were the industrial collaborators. 

 
 

17. Broadwell, I., Fletcher, P.D.I., Haswell, S.J., McCreedy,T. and Zhang, X., 
Quantitative 3-dimensional profiling of channel networks within transparent 
'lab-on-a-chip' micro reactors using a digital imaging method, , Lab on a Chip, 
2001, 1, 66-71.  

Originator(s) of the published work: Haswell and Fletcher (75/25%) 
Source of funding:  EPSRC – Grant GR/M74429 and Institute 

of Applied Catalysis - Haswell PI 
Role of associated authors : Broadwell undertook practical experiments 

as a PhD student co-supervised by Haswell 
and Fletcher, Zhang supported the work as 
a post-doctoral research fellow supervised 
by Haswell, McCreedy advised on 
fabrication. 

 
 

18. Fletcher, P.D.I., Haswell, S.J. and Zhang, X.L., Electrical currents and liquid 
flow rates in micro reactors, Lab on a chip, 2001, 1, 115-121. 

Originator(s) of the published work: Haswell and Fletcher (75/25%) 
Source of funding:  EPSRC – Grant GR/M74429 - Haswell PI 
Role of associated authors : Zhang undertook practical experiments as a 

post-doctoral research fellow supervised by 
Haswell, Fletcher advised on methodology. 

 
 

19. Wiles, C., Watts, P., Haswell, S.J. and Pombo-Villar, E., The aldol reaction of 
silyl enol ethers within a micro reactor, Lab on a chip, 2001, 1, 100-101. 

Originator(s) of the published work: Haswell 
Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

Wiles as PhD student supervised by 
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Haswell supported by Watts a post-doctoral 
research fellow supervised by Haswell, 
Pombo-Villar was the industrial 
collaborator. 

 
 

20. Watts, P., Wiles, C., Haswell, S. J., Pombo-Villar, E., Solution phase synthesis 
of beta-peptides using micro reactors, Tetrahedron, 2002, 58, 5427-5439. 

Originator(s) of the published work: Haswell 
Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

Watts a post-doctoral research fellows 
supervised by Haswell, supported by Wiles 
a PhD student supervised by Haswell and 
Pombo-Villar was the industrial 
collaborator. 

 
 

21. Fletcher, P.D.I., Haswell, S.J., Pombo-Villar, E., Warrington, B.H., Watts, P., 
Wong, S.Y.F., Zhang, X. L., Micro reactors: principles and applications in 
organic synthesis, Tetrahedron, 2002, 58, 4735-4757. 

Originator(s) of the published work: Haswell 
Source of funding:  Novarti and Galaxo SmithKline  - Haswell 

PI 
Role of associated authors : Review paper of earlier research co-

authored by Watts and Zhang post-doctoral 
research fellows supervised by Haswell, 
and Pombo-Villar Warrington and Wong 
industrial collaborators. 

 
 

22. Wiles, C., Watts, P., Haswell, S.J., Pombo-Villar, E., The regioselective 
preparation of 1,3-diketones within a micro reactor, Chem Comm., 2002. 1034-
1035. 

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC – grant GR/M74429 and Novartis - 

Haswell PI 
Role of associated authors : Experimental work was carried out by 

Wiles as PhD student supervised by 
Haswell supported by Watts a post-doctoral 
research fellow supervised by Haswell, 
Pombo-Villar was the industrial 
collaborator. 

 
 

23. Wiles, C., Watts, P., Haswell, S.J. and Pombo-Villar, E., The regioselective 
preparation of 1,3-diketones, Tetrahedron letters, 2002, 2945-2948. 
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Originator(s) of the published work: Haswell 
Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

Wiles as PhD student supervised by 
Haswell supported by Watts a post-doctoral 
research fellow supervised by Haswell, 
Pombo-Villar was the industrial 
collaborator. 

 
 

24. Watts, P., Wiles, C., Haswell, S.J., Pombo-Villar, E., Investigation of 
racemisation in peptide synthesis within a micro reactor, Lab on a chip, 2002, 2, 
141-144. 
 

Originator(s) of the published work: Haswell 
Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

Watts a post-doctoral research fellows 
supervised by Haswell, supported by Wiles 
a PhD student supervised by Haswell, 
Pombo-Villar was the industrial 
collaborator. 

 
 

25. Fletcher, P.D.I., Haswell, S.J. and Zhang, X.L., Electrokinetic control of a 
chemical reaction in a lab-on-a- chip micro-reactor: measurement and 
quantitative modelling, Lab on a chip, 2002, 102-112. 

Originator(s) of the published work: Haswell and Fletcher (75/25%) 
Source of funding:  EPSRC – Grant GR/M74429 - Haswell PI 
Role of associated authors : Zhang undertook practical experiments as a 

post-doctoral research fellow supervised by 
Haswell, Fletcher advised on methodology. 

 
 

26. Wiles, C., Watts, P., Haswell, S.J. and Pombo-Villar, E., 1,4-addition of enolates 
to alpha,beta-unsaturated ketones within a micro reactor, Lab on a chip, 2002, 
62- 64. 

Originator(s) of the published work: Haswell 
Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

Wiles as PhD student supervised by 
Haswell supported by Watts a post-doctoral 
research fellow supervised by Haswell, 
Pombo-Villar was the industrial 
collaborator. 
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27. Haswell, S.J. and Watts, P., Green chemistry: synthesis in micro reactors, Green 
Chem., 2003, 5, 240-249. 

Originator(s) of the published work: Haswell and Watts (50% each) 
Role of associated authors : Co-authored review. 
 
 

28. Watts, P. and Haswell, S.J., Microfluidic combinatorial chemistry, Curr. Opin. 
Chem. Biol., 2003, 7, 380-387.  

Originator(s) of the published work: Haswell and Watts (50% each) 
Role of associated authors :  Co-authored review. 

 
 
29. Watts, P. and Haswell, S.J., Continuous flow reactors for drug discovery, Drug 

Descov. Today, 2003, 8, 586-593. 

Originator(s) of the published work: Haswell and Watts (50% each) 
Role of associated authors : Co-authored review. 
 
 

30. Fletcher, P.D.I., Haswell, S.J. and Zhang, X.L., Monitoring of chemical 
reactions within micro reactors using an inverted Raman microscope 
spectrometer, Electrophoresis, 2003, 24, 3239-3245. 

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC – Grant GR/R09800 - Haswell PI 
Role of associated authors : Zhang undertook practical experiments as a 

post-doctoral research fellow supervised by 
Haswell, Fletcher advised on methodology. 

 
 

31. George, V., Watts. P., Haswell, S.J., and Pombo-Villar, E., On-chip separation 
of peptides prepared within a micro reactor, Chem. Comm. 2003, 23, 2886-
2887. 

Originator(s) of the published work: Haswell 
Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

George a post-doctoral research fellow 
supervised by Haswell and supported by 
Watts a post-doctoral research fellow 
supervised by Haswell, Pombo-Villar was 
the industrial collaborator. 

 
 

32. Wiles, C., Watts, P., Haswell, S.J. and Pombo-Villar, E., Solution phase 
synthesis of esters within a micro reactor, Tetrahedron, 2003, 59, 10173-10179. 

Originator(s) of the published work: Haswell 
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Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

Wiles as PhD student supervised by 
Haswell supported by Watts a post-doctoral 
research fellow supervised by Haswell, 
Pombo-Villar was the industrial 
collaborator. 

 
 

33. Wiles, C., Watts, P. and Haswell, S.J., The application of micro reactor 
technology for the synthesis of 1,2-azols, Org. Proc. Res. Dev., 2004, 8, 28-32. 

Originator(s) of the published work: Haswell 
Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

Wiles as PhD student supervised by 
Haswell supported by Watts a post-doctoral 
research fellow supervised by Haswell. 

 
 

34. He, P., Haswell, S.J. and Fletcher, P.D.I., Microwave heating of heterogeneously 
catalysed Suzuki reactions in a micro reactor, Lab on a chip, 2004, 4, 38-41. 

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC – Grant GR/S34106 - Haswell PI 
Role of associated authors : He undertook practical experiments as a 

post-doctoral research fellow supervised by 
Haswell, Fletcher advised on methodology. 

 
 

35. Feng, X.Z., Haswell, S.J. and Watts, P., Organic synthesis in micro reactors, 
Current Topics in Medicinal Chemistry, 2004, 4, 707-727. 

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC – Grant GR/S34267 - Haswell PI  
Role of associated authors: Experimental work carried out by Feng a 

post-doctoral research fellow supervised by 
Haswell manuscript co-authored by Watts a 
post-doctoral research fellow supervised by 
Haswell. 

 
 

36. Wiles, C., Watts, P., Haswell, S.J. and Pombo-Villar, E., Stereoselctive 
alkylation of an Evans auxiliary derivative within a pressure-driven micro 
reactor, Lab on a Chip, 2004, 4, 171-173. 

Originator(s) of the published work: Haswell 
Source of funding:  Novartis - Haswell PI 
Role of associated authors : Experimental work was carried out by 

Wiles a PhD student supervised by Haswell 
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supported by Watts a post-doctoral 
research fellow supervised by Haswell, 
Pombo-Villar was the industrial 
collaborator. 

 
 

37. He, P., Haswell, S.J. and Fletcher, P.D.I., Microwave-assisted Suzuki reactions 
in a continuous flow capillary reactor, Applied Catalysis A, 2004, 274, 111-114. 

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC – Grant GR/S34106 - Haswell PI 
Role of associated authors : He undertook practical experiments as a 

post-doctoral research fellow supervised by 
Haswell, Fletcher advised on methodology. 

 
 

38. Wiles C., Watts P. and Haswell S.J., An investigation into the use of silica-
supported bases within EOF-based flow reactors, Tetrahedron, 2004, 60, 8421-
8427.  

Originator(s) of the published work: Haswell 
Source of funding:  EPSRC – Grant GR/S34106 - Haswell PI 
Role of associated authors : Wiles and Watts undertook practical 
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Abstract 

Fabrication of micro flow injection analysis ( FFIA) systems based on glass substrates using lithographic techniques and 
etching methodology has been found to produce a reliable manifold for orthophosphate analysis based on calorimetric 
detection. The channel dimensions used were 30 pm deep and 325 km wide, and mobility of the reagents and analytes was 

achieved by exploiting electrokinetic mobility (at pH < 3) and electraosmotic flow (at pH > 3). Detection was facilitated 
through the use of fibre optics coupled to a LED photodiode system. The time for analysis for the PFIA methods was found 
to be 3 min per analysis and the procedure had a limit of detection of 0.7 ppb (PO:- ) with R.S.D. values in the range l-5%. 

The total volume of reactants in the pFIA device was estimated to be 0.5 ~1. 

Keywords: Flow injection: Micro flow injection analysis ( PFIA); Miniaturization; Phosphate 

1. Introduction 

Miniaturization of analytical systems offers con- 
siderable potential for overcoming many of the prob- 

lems associated with traditional instrumental meth- 
ods of analysis, namely the handling of large vol- 

umes of hazardous or costly reagents and the need 
for specialized bench and laboratory support facili- 
ties. Further the combination of such systems with 
sensor technology offers an attractive methodology 
for the realization of field devices. The interest in 
miniaturization has followed closely developments in 
micromachining technology which has allowed accu- 

* Corresponding author. 

rate and reproducible manufacture of small scale 

systems. The main developments to date in miniatur- 
ized analytical systems, other than for specific sensor 
fabrication, have been in the field of separation 

science which benefits from increased speed of anal- 
ysis and from the reduction in sample and reagent 

volumes ( ~1). The focus of such systems has mainly 
been towards liquid separations in the form of capil- 
lary electrophoresis (CE) [I] which achieves separa- 
tion of analytes in an applied electrical field as a 
function of analyte charge properties and in doing so 

exploits two main transport mechanisms: migration 
or electrokinetic mobility and electroosmotic flow 
(EOF) [2]. Migration represents the response of an 
ion to an applied electrical potential, under which 
anions move to a more positively charged electrode 
and cations to a more negative electrode. Electroos- 
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mosis is a more complicated process dependent on 
the interaction between the carrier and the charge 
present on the surface of the capillary. 

The application of electroosmotic pumping to fa- 
cilitate flow in a miniature manifold has been dis- 
cussed by Seiler et al. [3], who discuss the manipula- 

tion of flow in a microchannel system using multiple 
electrodes to control mixing of flow systems. The 

work reported two important results, firstly that both 
hydrodynamic and diffusion effects contribute to the 
creation of Venturi style streaming at side channels, 
i.e., that a solution in a channel perpendicular to that 
in which flow has been induced will be drawn into 

the flow. Secondly that the resistances calculated at 
constant applied voltage across a system of three 

intersecting channels obey Kirchoff’s rules for a 
network of resistors, allowing the potential at a point 
in a system to be predicted from the conductivity and 
geometry of the system. This allows a valveless 
fluidic control to be achieved where mixing and flow 

direction can be controlled by manipulation of the 
voltage applied to the system. 

Compared to conventional small bore flow injec- 
tion systems [4] micro flow injection systems offer a 
more portable, robust and mechanically stable 

methodology which has the potential of producing 
more reliable devices. Further, micro flow systems 
offer the possibility of single sample, multianalyte 

analysis, based on one device in either two or three 
dimensions with multiple chemical systems and de- 
tectors with computer control and data handling in- 
stead of the more linear geometry traditionally asso- 

ciated with small bore flow injection analysis. 
Miniature systems using micromachined di- 

aphragm pumps etched into silica have been reported 

[51 but these often suffer from problems of pump 
pulsing, and back pressure due to their size. In 

addition the complexity of manufacture which may 
require up to 5 layers of machined silica make such 

devices difficult to produce. With such systems it is 
also difficult and troublesome to produce multiple 

flows in different directions or where complex flow 
geometries may be required. 

This paper will describe the fabrication of a pFIA 
system for calorimetric determination of orthophos- 

phate as the molybdenum blue complex. The prelim- 
inary results using micro flow technology are com- 

parable to those obtained using an existing proven 

flow system [6] and some of the major operating 
parameters of the kFIA device will be discussed. 

250 300 350 400 450 so0 

Fig. 1. Dektak scan of 50 pm channel. 
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2. Experimental A 

2.1. Device fabrication 

The devices were prepared according to the 

method given below. Each plate produced 25 devices 
of 5 different geometries, for each geometry 2 de- 
vices were prepared with a pre etch width of 50 pm, 
2 with 30 pm and the final 1 with 20 pm channel 

width. 
The plate (152.4 mm square), made from soda 

glass 3 mm thick was sputtered with a 0.1 pm thick 

layer of chrome and then spin coated with a 0.7 pm 
thick layer of AZ1350 positive photoresist (Shipley). 
The plate was covered with the photomask and 

exposed to UV light for 5 ps. The plate was then 
developed in CD351 photoresist developer (Shipley) 
at 30°C for 30-40 s with agitation. The developer 

was then washed off with deionised water and dried 

before etching the exposed chrome with CE8001 
chrome etch (Shipley). When the channels had been 

clearly etched, the plate was removed from the bath 
of etching solution and washed with deionised water. 
The plate was again dried and placed in an oven at 

120°C for 72 h to harden the photoresist and ensure 
total removal of solvents which might cause the 

photoresist to deform during the glass etching pro- 
cess. The plate was taken from the oven and im- 
mersed in the glass etching solution (1% hydrofluo- 
ric acid (BDH Merck AnalaR) with 5% ammonium 

fluoride (BDH Merck AnalaR)) at 70°C for 2 h with 
constant agitation. The plate was then removed from 
the bath and washed with deionised water. After 

drying the plate was exposed to strong UV light and 
then developed in CD351 for several hours to re- 

move the remaining photoresist. The chrome layer 
was then stripped off using Microposit chrome etch 

18 (Shipley). The plate was washed in deionised 
water, dried and then cut into separate 25.4 mm 

square base sections. 

Fig. 2. Diagram of the mica flow injection analysis system. 

A = Ascorbic acid reservoir; B = ammonium heptamolybdate 

reservoir; C = unused reservoir; D = sample reservoir; E = sample 

waste reservoir. 

expected width expansion of the channel would pre- 

dictably be 40 pm as the acid undercuts the chrome. 
As seen from the Dektak profile the channel has 
expanded more than expected probably due to the 
use of soda glass rather than silica or quartz. The 

resulting etch for the first plate created a set of 
channels based on 50 pm pre etch widths, 30 ,um 
deep with a maximum width of 325 pm. 

For each plate a lid was prepared from 1 mm soda 
glass drilled with 2 mm diameter holes to provide 
reservoirs at points corresponding to the channel 

ends in the base sections. These lids were then fused 
onto the bases by heating in a muffle furnace at 

575°C for 96 h and allowed to cool in the oven for a 
further 24 h. 

The assembled devices had plastic reservoirs fit- 

ted to the holes in the lids to provide both a large 
reserve of reagent and a mechanical support for the 
platinum wire electrodes. 

The channels in the prepared bases were mea- 
sured using a Dektak 3 ST diamond stylus surface 
profiler. A typical trace obtained from this instru- 

ment is shown for a plate with a 2 h etch (Fig. 11. 
The channel width was initially 50 pm on the 
photomask, which when etched was expected to 

expand laterally by twice the depth removed 171, 
therefore for a required final depth of 20 pm, the 

The different designs were produced to evaluate 
different flow and process geometries, however, the 
specific design used to demonstrate FIA methodol- 
ogy can be seen in Fig. 2. The device was used to 
construct a system for the detection of orthophos- 
phate as the phosphomolybdate complex by spec- 
trophotometric measurements. 

The prepared devices were tested in a custom 
built isolation box with a non-conducting stage and 

C D 
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internal current and voltage metering across the two 
electrodes. The isolation box was fitted with a power 
cut-out preventing high voltage operation with the 

lid open and fibre optic cables (1 mm plastic) were 
used to carry optical signals between the device in 

the isolation box and the external light source and 
detector. A Farnell HiVolt XRV30/1.7 reversible 

polarity power supply (Farnell, Leeds) was used 
which enabled a power output up to 50 W with 

voltages up to 30000 V and currents up to 1.7 mA to 
be selectable in constant stabilised current or voltage 
modes with an adjustable trip for overcurrent protec- 
tion. This was connected via high purity copper 
conductors to 0.15 mm diameter platinum electrodes 
with a 10 mm exposed length for interfacing with the 

solutions in the reservoirs. The voltage was mea- 
sured using an AVO analogue voltmeter (Avometer 

8) connected in parallel with the device and the 
current measured on an AVO digital autoscaling 
multimeter (Avo multimeter M2036) with a low 

range of 0.00-300.00 JLA. The light source was a 
red (700 nm peak output) high output LED (RS 
564-015, RS Stores) rated at 3000 millicandela at 10 
V which was matched with a photodetector with 
internal amplifier (850 nm peak sensitivity, RS 30% 
067, RS Stores) with the output range of O-10 V 

dark voltage to LED direct reduced through the 
system to around O-300 mV full scale deflection. 
The optical data was recorded on a chart recorder 

(Chessell BD-40-04, Kipp & Zonen, Netherlands). 

2.2. Procedure 

The ascorbic acid was made up at 5 g/l in order 
to establish a pH just below 3 and the ammonium 
heptamolybdate (0.005 M) made up in UHQ water, 
rather than nitric acid, at the original concentration 
which had a pH of 3.8 which was adjusted to pH 3.2 
with 0.4 M nitric acid. The system was run with the 
molybdate reagent in reservoir B with the positive 
electrode and ascorbic acid in reservoir A with the 
negative electrode (Fig. 2). The phosphate was loaded 
into reservoir D and water placed in reservoir E and 
the electrical field applied from E( +) to D( -) 
which drew the sample into the main channel accom- 
panied a slight change in the observed absorbance 
trace, this taking around 20-30 s. The electrodes 
were then restored to the original positions in reser- 

voirs A and B and the field applied as before. The 
process was repeated up to 6 times before the reagents 

were replenished. A series of standards was prepared 
in the range 10-1000 ppb and a calibration model 

prepared. 

3. Results and discussion 

The initial studies of photolithographic microma- 
chining of soda glass to create micro flow injection 
systems showed that it was a viable technique for the 
manufacture of micro flow systems to high, repro- 
ducible standards. From scanning electron mi- 

croscopy examination the geometry of the junctions 
were found to be well defined despite channel 

spreading, indicating the ability to develop complex 

geometries using the manufacturing method de- 
scribed. 

The ascorbic acid solution as used in the conven- 

tional system had a pH of 1.6 which was too acidic 
for the formation of EOF and the molybdate regis- 
tered no reading on the pH meter ( < pH 1) suggest- 

ing that the solution was extremely acidic, whilst the 
phosphate sample showed a pH of around 6.8. The 
acidity of the molybdenum solution thus explained 

the early difficulties experienced in moving the 
reagent and so it was decided to prepare the molyb- 
denum solution in water instead of the acid so 

relying on the ascorbic acid to both oxidise the 

complex and provide the necessary conditions for 
reaction. In order to verify the chemistry of the 

system, these modified reagents when mixed 1:l in a 
test tube gave an initial pH of 1.99, in the presence 
of phosphate the reaction proceeded rapidly and after 
around 2 min had reached an end point with a pH of 

2.99, which was acceptable for EOF formation. 
With the electrodes placed in their primary posi- 

tions (A + B - ) and the fibre optics applied along 

channel BX a current of 50 PA was applied. The 
molybdate was allowed to move by electroosmotic 
flow towards the positive electrode (A) while the 
ascorbic acid moved purely by electrokinetic mobil- 
ity in the opposite direction. Observing at low cur- 
rent the change in absorbance when the system was 
first primed with reagents, it appeared that the ascor- 
bic acid and molybdenum solutions were meeting 
after approximately 2 min in the vicinity of the 
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junction between reservoir E and the main channel. 
The electrodes were then moved to the sample load- 
ing positions (D + E - ) and the current applied 
again for 1 min which gave rise to a slight increase 
and then drop in the absorbance reading. The elec- 
trodes were then returned to their original positions 

(A + B - ) and the field restored. As the reaction 
reached completion, after about 60 s, the pH rose 

and the precipitate was carried by EOF out of the 
light path and away in the direction of the ascorbic 

acid reservoir. As soon as the precipitate was out of 
the light path and the detector had settled the process 
was repeated for a second sample and so on. It is 

interesting to note that the ascorbic acid moving 
under electrokinetic mobility is able to pass through 
the molybdenum which continued to migrate in the 

opposite direction under EOF in channel A. By 
changing the sample in reservoir A with a syringe a 

series of standards were run in replicate. The data 
obtained from the experiments with the micro system 

showed precision ranging from less than 5% R.S.D. 
at 10 ppb to less than 0.8% at 100 ppb orthophos- 

phate for II = 5. The linear range of the micro sys- 
tem was found to be 10-100 ppb with the equation 
concentration/ppb = (absorbance/mV - 
10.922)/8.357 giving a theoretical limit of detection 

of 0.7 ppb (calculated using 3 X S.D. of lowest 
standard). 

Throughout the experiments the power delivered 

through the electrodes did not cause visible bubble 
formation at the electrodes, neither electrolysis nor 

boiling was observed except in the case of dilute (ca. 
2 M) nitric acid which did exhibit bubble formation 

at the electrodes when used to backflush the chan- 

nels to remove residual molybdenum blue. 
The micro system offered the specific advantages 

of reduced reagent usage (total system volume ap- 
proximately 0.5 ~1, sample volume approximately 
50 nl) and less corrosive reagents. In addition, the 
glass surface of the manifold was not effected by 
dilute acids and so the system does nor require 

regular changing of components such as pump tub- 
ing and connectors as may be required in a conven- 

tional flow system. Potential interferences associated 

with organic components in the system have yet to 
be fully explored but early indications suggest these 
will not pose a serious problem for the proposed 
methodology. 

4. Conclusion 

Miniaturization of chemical processes can offer 

considerable potential for the development of chemi- 
cal measurement techniques in particular sensor 
technology. The present work has demonstrated that 
the fabrication of a pFIA manifold based on litho- 

graphic technology can produce a working device 
based on current chemistries and detection systems. 

The pFIA device fabricated out of glass had chan- 
nels of 325 pm wide and 30 pm deep and used both 
electrokinetic and electroosmotic flow techniques to 

facilitate the mixing and mobility of reagents and 
products. The determination of orthophosphate as the 

phosphomolybdate complex was selected as a well 
understood process with which to evaluate the pFIA 
methodology. A more fundamental study of the reac- 
tion mechanisms, mixing properties and mechanisms 
of mobility has yet to be concluded, but the initial 

results from this and other work in the field show 
great promise 
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Introduction

Over the past 50 years, the design of instrumentation for the
measurement of chemical, biological and physical parameters
has brought analytical chemistry to a highly automated and
technologically advanced science. It would be naive, however,
to believe that the chemistries and physics associated with

present day analytical measurements, are in any way limited by
current technology. On the contrary, laboratory based analysis
has been almost exclusively designed, for the ergonomic needs
of the human worker. There can be little doubt that this
preoccupation with the physical size and operation of equip-
ment, for laboratory based measurements, has significantly
influenced the teaching and practice of analytical chemistry. If
one considers the fundamental chemical and physical phenom-
ena on which measurements are based, then it is apparent that
one only requires a few molecules or atoms to be present for
quantitative measurement to occur. In short, the physics and
engineering of measurement science can be considered as
oversized and in many cases over engineered to meet the needs
of the chemical measurement.

Whilst instrumental design has relentlessly moved towards
automation, the realization that the quality of analytical data can
be profoundly influenced by factors such as sampling, sample
storage, sample pretreatment and matrix interferences has led to
the concept of the total analytical approach. This more holistic
view of analysis, in which traceability and uncertainty predic-
tion can be carried out, is often embodied in the concept of the
‘total analytical system’ (TAS).1 There are, however, numerous
disadvantages to TAS, including slow sample processing, lack
of selectivity and high reagent consumption;2 however, many
such problems may be overcome through system miniaturisa-
tion. The term micro TAS (mTAS) was first used at the
Transducers 89 Conference.3 In its simples sense, mTAS
involves the miniaturisation of all the functions found in an
analytical method for example, pumps, valves, flow manifolds,
mixing and reaction chambers, phase and analyte separation,
detectors, control and communication electronics. One of the
more exciting prospects of the mTAS concept is the suggestion
that the entire chemical measurement laboratory could be
miniaturised onto a device of a few square centimetres.4 This
type of miniaturisation has become possible largely through the
adoption of microfabrication techniques developed in general
by the microelectronics industry, and one can consider
miniaturisation of chemical reactors and their corresponding
instrumental requirements to be in a similar position to the
microelectronics industry 30 years ago. Interestingly, it was
from the heart of the microelectronics industry that Terry et al.5
were one of the first to demonstrate that integrated circuit (IC)
technology could be used to fabricate a miniature GC
instrument using a 5 in silicon wafer. Although the work of
Terry and co-workers served to point the way, it was not until
the advent of capillary electrophoresis (CE)1,6–8 and in
particular, the exploitation of electroosmotic flow (EOF), that
the realization of mTAS came about some 10 years after the
miniature GC work was first reported.
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A significant research base has now built up in the area of
mTAS9–14 and the development of mFIA over the past 5 years
can be attributed to key research carried out by groups based in
Basle, Switzerland,14 Texas Tech. University, USA,15 Uni-
versity of Alberta, Canada,16 the Oak Ridge National Labo-
ratory, Tennessee, USA,17 and in a very modest way in the
author’s own laboratory.18 What follows is a review of the
features present in a relatively small, but rapidly expanding
research base, which can be exploited to develop micro flow
injection analysis (mFIA) systems, based on electroosmotic
flow, to produce reliable sensor-type devices which incorporate
mechanical and chemical robustness.

Fabrication

The fabrication of mFIA systems has attracted various ap-
proaches in recent years, ranging from manifolds based around
CE-type fused-silica capillaries,1 to modular micro pump
systems.19,20 This particular section, however, will focus
specifically on fabrication methodology which leads to the
production of a single integrated device, designed to use
electroosmotic mobility for sample and reagent pumping.18 The
discussion will focus almost exclusively on micro machined
monolithic device fabrication, which adopts standard IC
photolithographic, wet etching and bonding techniques to
produce a planar structure.21,22 As the techniques used are based
essentially on IC technology, they represent well established
methodology, outlined schematically in Fig. 1. If one considers
the current ‘state-of-the-art’ in IC fabrication, then it is clear that
the challenge of producing mFIA manifolds can in no way be
considered as technologically demanding. From what follows, it
will become clear that mFIA device fabrication can be relatively
simple and offer a reasonably high degree of flexibility in
systems design.

The choice of a suitable substrate into which the channels of
a mFIA manifold can be etched is closely related to factors such
as the fabrication method, the analytical chemistries involved

and the proposed pumping, injection and detection systems. The
obvious candidate given the close relationship with IC technol-
ogy is silicon,23 which is amenable to the fabrication of
structures in the nano- and micro-metre range. This crystalline
material can be obtained in a very pure form, at relatively low
cost, and offers good mechanical and chemical properties.
Whilst silicon may seem an ideal microengineering candidate
for mFIA fabrication, it is by nature a conductor and so surface
modifications will be required if electroosmotic pumping of
samples and reagents is to be achieved. This can be carried out
by coating the silicon with SiO2 or Si3N4 to produce the
required surface chemistries. Harrison et al.16 described the
fabrication of such a manifold, in which the properties of silicon
and oxide/nitride-modified layered surfaces were evaluated.
They reported that the operating voltage achievable with such
devices will be limited by the quality of the oxide insulating film
produced. Nevertheless, the results are sufficient to demonstrate
that silicon-based devices using a sandwich structure (i.e.,
oxide–nitride–oxide) can sustain potentials in the range
400–1200 V before dielectric breakdown, which is certainly
sufficient to generate EOF mobility for mFIA systems. Although
silicon does offer the attraction of producing high precision
engineered mFIA manifolds, with well characterised surfaces
and the potential to integrate control and detection on to one
substrate, other materials such as glass24 and silica (quartz)25

are also amenable to IC based fabrication techniques and will
produce surfaces eminently suitable for EOF pumping. Judging
from the reports in the literature, glass and silica have proved to
be the most popular materials for device fabrication to date, but
metal, plastic and ceramic substrates are also possible candi-
dates for the manufacture of mFIA systems.26,27

In general, three basic concepts are required for the
preparation of mFIA systems: (i) a suitably prepared substrate,
(ii) photolithographic equipment and (iii) wet etching and
bonding facilities.28 Prepared substrates based on glass, silica
and silicon can be obtained commercially from photomask
producers (e.g., Alignrite, Wales, UK); these come ready coated
with a metal film (0.1 mm) such as chromium over which is spun
a positive photoresist layer (0.7 mm). These plates, which are
typically 152.4 mm square (5 3 5 in) and 3 mm thick, can be
used directly for manifold pattern transfer using photolitho-
graphic methods. A mask or negative of the final channel
patterns required for the mFIA system can be produced using
CAD computer software.29,30 The mask pattern can be trans-
ferred to the photoresist film on the substrate, using basic
photographic development equipment. For channels larger than
1 mm, visible or UV light can be used to transfer the pattern from
the mask to the photoresist (exposure times being approx-
imately 5 ms); however, to obtain good line definition and sub-
micro patterning, X-ray or electron-beam (e-beam) photo-
lithography will be required. Where facilities permit, e-beam
photolithography offers at present one of the most flexible ways
of producing mFIA manifold designs; however, for most
applications simple basic photographic equipment will suf-
fice.

Once the pattern has been transferred to the photoresist film
on the substrate, the plate can be developed and wet etched. If
one uses the large plates as described, then multiple devices can
be prepared; in our laboratory, for example, 25 manifolds of
various geometries and channel widths are produced from one
plate (Fig. 2).18 Workers in the field tend to prepare their own
plates rather than using a commercial source and, although this
adds additional steps to the fabrication process, it is not too
technically demanding.29,30 As indicated previously, these are
typically made from silica or glass on to which a thin metal film
(0.05–0.1 mm) of chromium, gold or a combination is produced,
using sputtering or chemical vapour deposition (CVD) meth-
ods. The metal film is then spin coated with a layer of positive
photoresist (approximately 0.5–2 mm).

Fig. 1 Schematic diagram of the steps involved in the anistropic etching
technique for the fabrication of mFIA devices. The arrow in Step 1
represents radiation.
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Following the photolithographic transfer of the manifold
pattern, the exposed photoresist and corresponding metal film
are removed using commercially available reagents. The
prepared plates may then be placed in an oven at 120 °C for 72
h to harden the photoresist and remove solvent residues from the
plate.18 It should be noted that although the presence of a metal
film on the glass is important for controlling the degree of
surface etching that will occur, the exposed substrate will
experience undercutting or sideways etching, which will
proceed at a rate of approximately 2 : 1. Thus, as the etch goes
down to 1 mm it spreads laterally 2 mm at the edges, producing
channels, for which the width always exceeds the depth.31

Clearly, for a given substrate, the choice of the initial
photomask line width and the time of etch will influence the size
of the final channels produced.

Various reagents have been used for the wet etching of the
substrate, but in general for glass and silica, hot (70 °C) dilute
HF–NH4F (1% HF + 5% NH4F in water)18,29 will give an etch
rate of approximately 0.3–0.5 mm min21, whereas dilute HF–
HNO3 produces an etch rate of between 0.5 and 0.8 mm min21

in Pyrex.30 Silicon etching requires the use of reagents such as
ethylenediaminepyrocatechol (115 °C, etch rate 2.5 mm min21)
or KOH.16 Although indicative figures for etch rates can be
obtained,31,32 it is strongly recommended that sample strips of
the substrate are tested in the selected etchant to establish the
rate of etching for a given system. It should be stressed that the
final size of the mFIA channels will depend on the initial width
of the lines on the photomask, the substrate material and mode
of etching. During the etching process, agitation of the substrate
or etchant is advisable otherwise asymmetric channel forma-
tion, i.e., uneven etching on the bottom edge or side of the
channel, may occur. It is usual, however, to obtain a channel
profile that is wider at the top than the bottom. This effect,
associated with undercutting, will vary as a function of the etch
time, substrate type and reagents used. The surface quality of
the etch is generally related to the types of material used. Good
quality silica, for example, gives a well defined etch, whereas
Pyrex or borosilicate glass can produce a rougher surface owing
to the crystalline structure of the material. The real effect or
significance of the surface properties in mFIA channels has not
yet been fully characterised, but clearly the more controlled the
etch, the more precise and smaller will be the channels that one
can produce. What is not apparent from experimental results is
the real influence that surface topography may have on the
mobility and reactivity of reagents in a mFIA system. Rough or

poorly defined surfaces and intersections, of one or more
channel, will increase the effect of turbulence and in turn
promote dispersion, which in some instances may prove to be an
advantage where mixing is required. This factor is particularly
important in capillary systems where the Reynolds number is
lower than the transitional values of 2000 or 2300 indicating
laminar flow, thus minimal mixing will dominate.33–35 How-
ever, research indicates that at low Reynolds numbers micro-
fluidic mixing cannot be simply classified as a laminar or
turbulent model.36 What is clear is that as channel sizes become
smaller, surface effects will inevitably become more significant,
which in turn will have an impact on fabrication and material
specifications. Manz and Simon37 demonstrated that for a
10-fold decrease in channel size, a 1000-fold decrease in
reagent consumption and a 100-fold decrease in related time
variables would be obtained. Pressure requirements of such a
system will, however, increase by a factor of 100, but as
indicated later this does not effect the voltage requirements for
EOF.

Once an etched base has been produced, the top of the
channels need to be sealed. Various bonding methods have been
suggested, including glueing, low temperature bonding or
annealing, high temperature fusion and anodic bonding.38 The
use of an adhesive in such systems can pose problems due to
channel plugging and, although this may be overcome to some
extent by using photosensitive dry films laminated on to the
substrate surface as a protective coating,39 the technique has
found little real use in mFIA. Thermal bonding or annealing of
top plates represents one of the simplest and therefore most
widely used methods in device fabrication. These methods
usually involve heating the substrate and top plate, which may
be under slight pressure,30 in an oven or furnace to near the
upper annealing temperature. For glass and silica this is usually
between 500 and 600 °C, whereas silicon will require higher
temperatures of around 900 °C. The period of heating varies
between 48 and 96 h, after which the device is slowly cooled
(48–72 h) to minimize physical stress. For glass substrates,
hydrolysing the surface with dilute NH3–H2O2 followed by
heating at 500 °C for 24 h29 or 575 °C for 96 h18 has been
demonstrated to achieve good reliable bonding. Slightly more
complex temperature programmes have been suggested, but
these are essentially slight modifications to the same basic
method.30 In order to keep the fabrication of a mFIA manifold as
simple as possible and to increase the bonding success rate, it is
advisable to use the same material (i.e., similar thermal
expansion coefficients) for both the base and top of the device,
so minimizing stress features. The fabrication of multilayer
devices can become complex and techniques using intermediate
layers have been described in which more complex structures
such as pumps and valves are required.40,41 One technique
which has found particular favour with workers fabricating
microvalves, micropumps and silicon devices generally is
anodic bonding.42,43 In this process, ions such as sodium and
oxygen are thought to migrate at elevated temperatures to
electrodes placed on the outer surface of one of the layers, so
increasing the electrostatic surface charge. The temperature and
applied voltages used will depend on the materials in question,
but for glass these are found to be 200–400 °C at 30–300 V and
for silica 700–800 °C at 30 V applied for a period of 45 min. It
might be necessary when employing anodic bonding to treat the
surface with HF prior to bonding.

Holes or ports made in the top plate are commonly used as
reagent or sample feeds into the manifold and can be generated
either before18 or after29,30 the bonding process. The holes can
simply be produced by using mechanical18 or ultrasonic16

drilling of the substrate and vary in diameter from 0.5–2 mm. At
present, laser ablation, which offers an attractive method for
hole production, has not been employed, but no doubt the
technique will find its way into the literature before long. Plastic

Fig. 2 Example of the photomask design used to produce five mFIA
manifolds designs with variable line or channel widths. The line widths
shown are A and E, 50, B, 30 and C, 10 mm.
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reservoirs are usually glued to hold liquids and support the
platinum electrodes when required. A photograph of a com-
pleted device used for phosphate and nitrite determination is
shown in Fig. 3.

To date, only planar mFIA systems have been reported based
on the fabrication techniques described. The fabrication of three
dimensional systems is, however, an attractive prospect and no
doubt stacked systems will be produced as more sophisticated
chemistries are exploited. Such systems based on micropumps
have been reported in which multi-layers or modules are
clamped or stuck together to produce a complete device.19,20

Once a complete mFIA manifold has been fabricated for use
with EOF pumping, the success of the bonding process can be
checked by filling the channels with a buffer44 or weak acid18

and plotting the current–voltage relationship. This plot is
generally found to be linear up to 10 kV in glass and silica, after
which point dielectric breakdown of the substrate occurs. Any
deviation in linearity at lower applied voltages is indicative of a
device failure, associated with incomplete bonding.

Pump Design

In order to achieve reliable flow dynamics in an FIA manifold,
which may contain numerous reagent streams, pulse free,
constant flow characteristics must be maintained. It is not
surprising therefore, to find that mFIA systems also call for
pulse free, variable nl min21–ml min21 flow control. Although
a direct syringe or piston pump can be used with mFIA
systems,45,46 the closest equivalent to a conventional peristaltic
FIA pump is the so called micropump, which usually takes the
form of a pulsating one-way valve driven typically by a
piezoelectric device.36,45,47–50

Based on microengineering technology, micropumps have
been employed in mFIA manifolds consisting of channels 100
mm wide, 10 mm deep and 4 cm in total length.47 When such
small channel dimensions are employed, the hydrodynamics of
the system can produce a pressure drop of 0.7 atm at a flow rate
of 0.5 ml min21. However, diaphragm devices, commonly using
microchemical silicon membranes, are only reliable up to back-
pressures of 0.2 atm and so high pressure pumps or large
channel dimensions are therefore required. High pressure pump
designs using nickel rather than silicon check values are now
being developed using low temperature bonding techniques,
incorporating intermediate photoresist layers to adhere the
valve to the body of the pump.47 These devices, which use a
piezoelectric disc glued to the outer surface of the pump

housing, operate at many hundred Hertz, requiring around 300
V to produce flow rates in the range 20–300 ml min21. In an
elaborate example, four such pumps have been used to drive
reagents through a three-dimensional system constructed from
silicon and glass at a flow rate of 1 ml min21, the channel
dimensions being 600 mm wide and 200 mm deep in order to
accommodate pressure effects.19 Diaphragm micropumps do
have an important role to play in applications where electro-
osmotic pumping is not applicable, owing to sample or reagent
chemistries. It is essential, however, that micropumps remain
chemically inert to the reagents and samples with which they
may come into contact. In addition to piezoelectrically driven
pumps, ultrasonic51 and other more exotic electrically activated
pumps have also been described.36,52–54

Electrophoresis embodies two basic electrokinetic com-
ponents, electroosmotic and electrophoretic flow. These two
components combine to give the total flow or velocity (n) in the
following way:

total flow rate = n = (meo + mep)E (1)

where meo = electroosmotic mobility, mep = electrophoretic
mobility and E = applied electric field.

At relatively low electric field strengths, electroosmotic
mobility represents the larger component of the two processes;
however, as the field strengths are increased the influence of the
electrophoretic component (migration of analyte ions) increases
also. For mFIA, where bulk mobility is desired, one finds that
field strengths around 300–400 V cm21 are usually adequate;
however, if separation is required, as in CE, then field strengths
greater than 1 kV cm21 are typically required. It is common
for mFIA systems based on EOF to operate with field strengths
of the order of 80–300 V cm21, at which little or no analyte
separation is observed The generation of an EOF to pump
reagents and samples through a mFIA system is subject,
however, to certain physico-chemical limitations. Firstly, in
order to generate the EOF one must use a material which will
yield negatively charged groups on the surface or walls of the
channels when placed in contact with an appropriate liquid.
Secondly, the liquid phase must dissociate to some extent in
order to generate counter positive ions (notably H+ ions). The
combination of the negatively charged surface (typically SiO2)
and the H+ ions in solution will form a diffuse double layer
(sometimes referred to as the Gouy or Helmholtz layer). This
diffuse double layer acts as a parallel-plate electric capacitor
whose plates are d cm apart each carrying a charge e per cm2.
The zeta potential (x) will be the potential difference between
the plates, given by the general equation

x = 4ped/er (2)

where er is the relative permittivity of the medium between the
hypothetical plates. If an electrical field is now applied through
the liquid phase, ions will migrate to their respective electrodes
dominated by the positive ions (H+) moving to the negative or
ground electrode. As the ions move, they induce a drag on the
bulk of the liquid, which in turn results in a corresponding net
transfer of the solution to the negative electrode. Thus, in EOF
the mobility of the solution is from the anode (positive
electrode) to the cathode (negative electrode) or ground. In
practice, the formation of the double layer is limited to the pH
range 4–10. At lower pH values the cationic population
becomes so high that the EOF is overrun by conductive flow and
at pH values greater than 10 the cation population becomes too
low to sustain the double layer. The zeta potential that is
generated when the double layer forms will be influenced by
changes in pH and ionic strength of the solutions in the channel,
and this can affect the corresponding flow rate. Clearly, as one
of the main attributes of a pump in FIA is to maintain a
reproducible flow rate, the pH and ionic strength of the reagents

Fig. 3 A fully assembled mFIA device showing the mounted plastic
reservoirs which act as wells for the reagents and samples and support the
platinum electrodes required for EOF pumping. The device is shown
mounted in a rig which allows fibre optics (seen either side of the block) to
be coupled into relevant sections or channels of the manifold.
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used in a mFIA manifold need to be controlled, through the use
of buffer systems. As the ionic strength increases, for example,
a counter-ion effect will prevent the ions from migrating
through the solution independent of the EOF. In general, it is
therefore preferable to keep the total ionic strength of reagents
and samples as low as possible.

Once an EOF has been generated, the flow establishes a flat,
trapezoidal profile notably different from the parabolic (bullet)
shape commonly associated with conventional FIA. Closer
investigation of the mFIA profile reveals that the edges of the
profile (i.e., closest to the wall surface) are slightly in advance
of the bulk owing to the drag effect and the extent of this effect
will be a function of the solution viscosity.55 The fact that the
flow profile, which offers minimal band broadening, does not
contain the parabolic flow characteristics of a pressure or
hydrodynamically pumped system, does have implications with
respect to the mixing of reagents in the mFIA reactor, where
some dispersion will be necessary to achieve the desired
chemical reactions. Thus EOF-pumped mFIA can be considered
to be more akin to segmented flow analysis rather than
conventional FIA, in its flow characteristics.

In an EOF-pumped mFIA system, the flow rate can be
effectively controlled by varying the applied voltage as
follows:

n

flow rate v = m (3)
L

where n = applied voltage (V), L = length of the channel (m)
and m = sum of the electroosmotic and electrophoretic mobility
component under different conditions of pH and ionic
strength.

The EOF and hence the flow rate in mFIA, will be unaffected
by capillary diameter up to channel sizes approaching 250 mm,
after which drag effects of the bulk solution may cause serious
disruption to the EOF. The EOF produced in a channel can be
considered, in the electrical sense, as a resistor, thus Joule heat
will occur in the capillary. However, the almost negligible bulk
properties of components in a channel, relative to the substrate,
will ensure an effective dissipation of heat, which rarely poses
a serious problem in mFIA. If, however, the resistance is allowed
to increase, for example when a highly viscous or an immobile
solvent is present in a channel, heating can occur.

It should be stressed that an EOF can only be established if
the double layer is formed, and this requires ions or dipoles to
be present in the liquid stream. In the case, for example, where
organic compounds or solvents may be present, such conditions
may not be met. For example Zheng and Dasgupta55 described
some initial studies, using silica capillaries, to evaluate the
suitability of an EOF in a mFIA system for carrying out in-line
analyte phase separation or solvent extraction. They described
the use of a 50 cm 3 7.5 mm id polyimide coated silica capillary
to investigate various aqueous ionic complexes, based on well
characterised cationic, anionic and neutral ion-pair chemistries.
A quaternary ammonium salt, tetrabutylammonium perchlorate,
was added to chloroform as a supporting electrolyte to assist in
the mobilization process56 and to catalyse phase transfer.57 The
results clearly indicated that organic solvent pumping was
possible, when modified with the quaternary ammonium salt,
but that migration of the ammonium ion occurred, creating a
positive front end to the solvent slug. Bleeding of ions into the
secondary aqueous buffer from the organic phase was also
reported. Furthermore, they suggest that a thin interfacial layer
of buffer is generated between the organic solvent and the
capillary walls which enables the EOF to be generated.
Investigations into solvent extraction indicated that the ion-pair
complexes studied were either extracted into the organic phase
or accommodated in the aqueous phase ahead of the organic
slug interface. Not only were the findings of Zheng and

Dasgupta a significant contribution in terms of demonstrating
phase extraction and organic solvent mobility using EOF in
a mFIA system, but they also clearly indicate that the migration
of ions within a solvent under the influence of an electric field
could lead to the development of gradient and separation
techniques, complementary to CE, such as selective solvent
extractions and matrix modification. Interestingly, the use of
micellar electrokinetic capillary chromatography, described by
Moore et al.,58 suggests that multiphase systems could be
developed for mFIA applications, thus offering significant
advantages for organic solvent based chemistries.

Although it is possible to use EOF as the primary pumping
mechanism in a mFIA manifold, it may be preferable or even
necessary to isolate the pumping mechanism from the injector,
reactor and detector components of the system. Such occasions
might be, for example, when the chemistry of the method or
detector system is not compatible with the electrical field
required for direct EOF pumping. One such system has been
described by Dasgupta and Liu45 in which a section of
polyimide-coated fused-silica tubing (40 cm 3 75 mm id) was
connected to a second capillary, via an isolating membrane. In
the first channel a 2 mm borax buffer is pumped by direct EOF,
with a field strength of around 40 V cm21. As the flow in the
pumped capillary was electrically isolated from the second
capillary it produced a hydrodynamic effect, sufficient to create
a flow in the second channel, which could be varied between 1
nl min21 and 100 ml min21. In this case the hydrodynamic effect
of the EOF is exploited in a mFIA manifold without the need for
a direct electrical field.

Injector Design

The introduction or injection of a sample into an FIA manifold
can generally be classified into two general types. The first is
the timed or gated injection in which a sample is drawn into the
FIA manifold, usually through a sampling probe, for a
controlled period of time, after which the flow is switched back
to the carrier stream. In this way, a variable volume can be
injected into a manifold as a function of time. The second and
more usual method of injection in FIA, is the introduction of a
constant sample or reagent volume into a mobile carrier in a way
that affords minimal flow dispersion. The most common
approach for such systems is to use a rotary or slide valve, which
contains a sample loop of a defined volume. It would therefore
seem appropriate to have both these forms of sample injection
available in mFIA systems, and this is indeed found to be the
case.

The injection of a sample into a mFIA manifold can be
performed using hydrodynamic/pneumatic pressure control,46

miniaturised valves1 or electrokinetic mobility based on
EOF.15,18,59–62 Even the lowest volumes obtainable with
traditionally based rotary-type valves63 are clearly too large for
practical use in mFIA. However, Liu and Dasgupta1 recently
described the use of commercially available valves with an
injection volume of 60 nl. It should be stressed, however, that
most of the work relating to the introduction of small sample
volumes ( < 20 nl) into capillary systems has been focused on
CE methodology rather than addressing mFIA systems. Of
particular relevance to mFIA systems is the development of the
so-called valveless injection method, which uses EOF control in
conjunction with specific capillary channel geometries.64,65

The two simplest approaches to sample injection based on
EOF are first to pump a sample for a given period of time into
a flow channel and second to fill a defined volume (equivalent
of a sample loop) built into the mFIA manifold. In the former
case, Zheng and Dasgupta55 described a modified CE system in
which an organic solvent was loaded for a given period of time
into a mFIA system consisting of a 50 cm 3 75 mm id polyimide
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coated fused-silica capillary. The solvent was introduced into
the system by placing the capillary electrode in the solvent
reservoir at 15 kV for 10 s. Following the injection step, the
capillary electrode was switched to a borate buffer which
subsequently pumped the solvent through the capillary to the
detector. Using this approach, the authors reported an RSD of
0.51% associated with migration effects and 1.7% for the peak,
suggesting that surface tension, viscosity and flow rate will
influence this particular mode of injection. It should be noted
that in this work, the authors were using the method described
for introducing a solvent into the mFIA system for the purpose
of solvent extraction.

The second approach to sample introduction, based on
defined volumes using EOF, falls into two categories, the X-
and Z-type injections (Fig. 4). Of the two injection geometries,
the X or cross design, has been most widely investigated.
Depending on the geometry and electrical field used, the sample
injection can be classified as ‘floating’ (gated) or ‘pinched’
(discrete), with the former occasionally being referred to as the
continuous mode.59,60,64,65 Experimentally, the simplest of
these two modes is the ‘floating’ method, as it only requires one
pair of electrodes (Fig. 5). In this case the sample is pumped by
an EOF from the sample reservoir (A the positive electrode) to
the sample waste reservoir (B the negative electrode) along
channel AB crossing part of channel CD. Note that the channel
AB will have been filled prior to the sample introduction with a
suitable buffer. The reservoirs C and D contain no electrodes
and therefore have no applied field, hence their potential is
floating relative to the field in channel AB. As the sample passes
across the intercept of AB and CD, diffusion and eddy effects
will allow some of the sample to migrate in the direction of both
C and D [Fig. 5(a)]. Subsequently, on placing the electrodes in
reservoirs C and D the field can be made to run in the CD
direction, so any sample molecules in the intercept will be
pumped towards D, the grounded reservoir [Fig. 5(b)], allowing
the sample to pass via a detector on its way. Clearly, we can see
that the leakage or migration of the sample solution into channel
CD during injection and the possibility of dragging the
stationary sample from channels A and B into D as a function of
flow [Fig. 5(c)] will lead to an uncontrolled volume injection.
Examples of this effect have been reported.59,60,64 The leakage
observed into the main channel may not be a serious problem for
certain applications and clearly it offers a simple method of
operation, in which only one pair of electrodes are required.
However, the quality of etch, surface topography and geometry
of the channels concerned will influence the degree of diffusion
using the ‘floating’ injection method.

The need, especially in CE, to have more precise control over
the sample volume injected has lead to the development of the
so-called ‘pinch’ method (Fig. 5). In this case, the sample is
once again pumped under an EOF from reservoir A to B, but this
time reservoirs C and D are not electrically floating, but like A
are given a positive potential, relative to the waste reservoir B

[Fig. 5(d)]. The effect of this is to draw buffer from channels C
and D into B along with the sample from A. Under these flow
dynamics, the sample gains a pinched or trapezoidal shape at the
intercept of channels AB and CD. When the flow is redirected
towards D [Fig. 5(e)], the sample volume, which may be only a
few picolitres, is of a more precisely defined volume, less
affected by diffusion effects. Jacobson et al.60 have reported
improvements in the RSD from 2.7 to 1.7% for a 90 pl injection
volume using the ‘pinch’ method, compared with the ‘floating’
approach. In this particular study, the applied voltages based on
a 1 kV power supply were reservoir A 90, B 0, C 90 and D
100%, giving channel field strengths of 270, 20, 400 and 690
V cm21 in A, B, C and D, respectively. Clearly, operating the
manifold in a multi-electrode configuration will reduce disper-
sion effects at intersections and allow improved control of the
sample injection volume. The concept of the ‘push-back
distance’ associated with surface diffusion has been used66 to
define the migration rate and shape of flow patterns at X-type
intercepts. This approach to sample injection has considerable
potential in controlling sample volumes as a function of applied
field.

The larger volumes (9–22 nl) of the Z-type injection (Fig. 6)
are introduced by pumping the sample between two reservoirs
across a defined volume in a Z geometry. In the example shown,
the sample is pumped from reservoir C or D to the waste
reservoir D or E, so filling a defined volume in channel AX. The
loaded sample can then be reacted with reagents in channel AX
and moved to a detector or be monitored in situ. The Z mode of
injection produces a larger volume than that obtained by the X
mode, which in turn will be less influenced by the diffusional
effects described previously.18,67 Recent work in the author’s
laboratory using the Z injection technique has indicated that

Fig. 4 Discrete volume injection using (a) the X and (b) the Z
approach.

Fig. 5 Flow and dispersion characteristics of floating and pinched modes
of injection.
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pinch control offers no improvement in precision over the
floating method.68

The ability to matrix modify a sample in an injector system
could be an attractive option in mFIA and techniques such as
synchronized cyclic capillary electrophoresis22,69 or sample
fractionation67 may offer considerable scope for such metho-
dology. In these systems selected, analyte fractions can be
separated from a more complex and possibly interfering matrix,
owing to the variation in migration and flow direction under
electrophoretic conditions. The switching of electrodes can be
used to move components along channels and across channel
intersections akin to shunting railway trucks, until the analytes
required become isolated from matrix or interfering compo-
nents. This aspect of sample manipulation is potentially very
exciting for mFIA system development and will no doubt be
exploited in future applications.

Reactor Design

Having satisfactorily injected a sample into an FIA system, the
next objective is usually to present the sample to a detector in an
appropriate form as quickly as possible, using tube or channel
geometries that minimize the dispersion of the sample slug.
In mFIA systems sample diffusion is known to be a function of
the square root of the time after the injection of a sample.69

There remains one additional and often complex step, however,
that of achieving the appropriate chemistry or biochemistry
necessary for the detection of the analyte of interest. This
process typically requires the addition of at least one reagent
and can include more complex steps such as in-line solid-phase
extraction and multiphase separations.70 Indeed, the complexity
of the FIA manifold is only limited by the imagination or
ingenuity of the analyst.

The first and perhaps the most important step in reactor
design is a consideration of the physical and chemical
characteristics that occur when two solutions combine at a
channel junction in a mFIA manifold. From the previous section,
it is clear that even at Reynolds numbers less than 2000 some
turbulent mixing takes place at channel intercepts and that the
electrical potentials at which the channels are held can
significantly influence the interfacial or mixing zone. Turbulent

mixing, for example, has been reported in channels 5.2 mm deep
and 57 mm wide.71 The characterization of channel intersections
indicates that leakage or diffusion of reagents from a ‘floating’
side stream into a channel in which EOF is present is around
2–5%, depending on the viscosity and flow rates.64 This bleed
occurs as a result of hydrodynamic effects, in which the
molecules in the pumped stream entrain the stationary side
channel molecules owing to frictional and eddy properties in a
Venturi- or Bernoulli-type effect. What is interesting with such
systems is that the flow characteristics in the main channel will
have a flat, trapezoidal profile whereas the side channel, whose
flow will be pressure driven, will have a parabolic profile.
Hence the profiles of the merging streams may have a
significant effect on the mixing characteristics at such an
interface. As one of the main objectives of reagent addition in an
FIA system is to induce mixing and so achieve the required
reaction, some consideration needs to be given to this aspect of
pumping in mFIA systems.

In a valuable study, Seiler et al.44 demonstrated that the
individual electrical resistances in a series of interconnecting
channels can be used to predict the flow characteristics, in a
similar way to hydrodynamic estimations in conventional FIA.
The basic concept considers the intercepting channels as
electrical resistors and evokes Kirchhoff’s rules,72 to predict the
net flow of current which can be attributed to the flow dynamics
of the device. One of the important findings of the work by
Seiler et al.44 is that by controlling channel voltages one is able
to manipulate sample or buffer dilutions by adjusting flow rates,
and this offers considerable scope for stopped-flow or reverse-
flow operations. This effect was also recently demonstrated in
our laboratory using a manifold previously described for
phosphate analysis.18 Figure 6(a) illustrates how a sample of
orthophosphate, held in reservoir D, is injected into channel AX
using the Z technique, by pumping the sample to reservoir E.
Thus the slug in channel AX defined by the intercepts DE
represents the injected sample which reacts with ammonium
heptamolybdate (0.01 m) in the presence of ascorbic acid (0.05
m) to produce molybdenum blue. Detection of the molybdenum
blue is achieved by measuring the absorbance at 744 nm in a
spectrophotometer coupled to the manifold by a fibre-optic
system attached along channel AX (optical path 2 cm). Through
the selection of different injection volumes [i.e., C–D (9 nl), D–
E (13 nl) and C–E (22 nl)] and variation in the positive voltage
applied at reservoirs A and B relative to D or C, the absorbance
signal was observed to decrease as the intercept ‘pinch’
potential applied across A–E and B–E became sufficient to
dilute the formation of the coloured complex at each end of the
injection slug.68 In effect, the flow rate in channel A–B was
being increased as a function of voltage, so diluting the flow
from channels D–E, C–E or C–D into channel AX. Results
obtained using this approach (Fig. 7) indicated that calibration
based on one standard is possible and that the technique will
have an important role to play in the development of future
methodology.

Following the mixing of the reagent and analyte streams,
some period of time is usually required to produce sufficient
product, either for further reactions or for subsequent detection.
Conventionally, this hold time is effected by using a coil or
knotted reactor and/or a stopped-flow mode, in order to
minimize dispersion whilst achieving the required reaction
chemistries. In mFIA it may be that owing to the more efficient
interfacial nature of the mixing, i.e., the need for less bulk
mixing, reactions rates may increase; however, reactions are
still likely to require a finite period of time for product
production. A serpentine-type pattern or structure offers a very
simple, but effective, use of space for extending channel length
and is compatible with photolithiographic fabrication tech-
niques. The flow characteristics of serpentine channels have
been studied and whilst disruption to the electroosmotic flowFig. 6 Controlled dilution experiments using a pinch voltage.
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was observed at the 90° bends, no significant band broadening
has been found.60 The particular design used had a total channel
length of 17 cm operating with a field strength of 700 V cm21

and was used to perform electrophoretic separations. It would
seem that using such an approach, time-dependent mFIA
reactions could be accommodated in a physically small area
with minimal dispersion through the use of serpentine or spiral
channels.61

Modification to the surface properties to induce selective
flow characteristics, given the limitations of producing a double
layer and hence EOF, has attracted some interesting approaches.
These include the use of reversed-phase hydrophobic poly-
mers,73 surfactants,74 silanals and quaternary ammonia
groups.75 In addition, the covalent bonding or immobilisation of
glucose oxidase has been used to develop a glucose mFIA
method based on a serpentine geometry using a 260 cm long 3
100 mm wide 3 70 mm diameter reactor.76

One of the interesting extensions of the mFIA technology
described is the development of electrochromatographic (EC)
separations in which capillaries are packed with small particles
(approximately 3 mm) on which efficient separation can be
achieved.77 Using EOF as the primary pumping mechanism, EC
can be mediated with reference to the zeta potential and hence
separation is potentially possible through selection of the
appropriate surface properties of a packing material. Thus the
walls of the capillary act to facilitate the primary pumping
mechanism and the packed chromatographic material offers
enhanced electrophoretic separations.

In addition to surface modification, the physical effect of
field flow fractionation may also be incorporated as a separation
process in capillary systems.78 In this case, an external force,
e.g., magnetism or gravity, is used to pull fractions to the wall
of a channel; on removing the force, a gradual diffusion of the
fractions in the sample occurs back into the flowing stream,
usually based on molecular size.79,80 As yet field flow
fractionation has not been widely studied in mFIA systems, but
the possibility of using field flow fractionation and modifying
the zeta potential using a magnetic field might be an interesting
subject for future research.

Detector Design

Much of the research reported to date in the area of mFIA has
focused on characterising the physical processes of reagent
mobilisation and mixing in microchannel manifolds. Such work
has relied heavily on imaging techniques, using, for example,
charged coupled device (CCD) cameras60 and microscopy-
based techniques.30,44,61,81 In this section, consideration is
given to the design of detectors suitable for direct integration

into EOF based mFIA systems. The major detector systems used
in conventional FIA are based on optical absorption/emission
and electrochemical techniques,70 and this is also found to be
the case for mFIA systems.82,83 Clearly, if electroosmotic based
pumping is employed in the mFIA manifold, then some care is
required with the design of electrochemical detectors, but this
does not pose any real serious limitations.83 Not surprisingly,
optical detection has proved to be the most attractive approach
to on-device detection and various examples can be found in the
literature,15,40,45,67 mainly associated with CE detectors.84 One
of the less obvious advantages of miniaturisation is the ability to
introduce detector systems not readily available to conventional
larger flow systems, such as mass-selective devices of the
surface acoustic wave type.85

Clearly, the design of a flow cell in terms of physical volume
and optical geometry is very important in miniature systems if
sensitivity, reliability and robustness are to be achieved. The
incorporation of fibre optics as part of an optical detection
system has proved to be of value, particularly with the advent of
fibres with diameters of the order of 0.1 mm.86 In the area of
optical detectors, some effort has gone into developing axially
rather than perpendicularly oriented measurement cells.87

Increasing the volume of the flow cell in a perpendicular
viewing axis has been used to increase the optical pathlength,88

whilst the use of multiple reflections axially in a flow cell has
also been evaluated.89 The first example led to severe dispersion
effects and a subsequent loss in sensitivity and the second
approach, based on a silicon device, suffered from signal loss
due to scatter and absorption of light at the silicon surface.

One interesting approach to absorbance measurements is to
consider the mFIA channel as an extension of a fibre optic
system.18,90 In this way, total internal reflection of light may be
achieved and any photoactive species spatially present in the
channel will undergo interaction with the photons present, to
produce either a direct absorption measurement or a subsequent
fluorescence effect. As with most absorption methods, it would
be preferable to use a dual-channel system to improve stability
and reduce scatter. Although a long pathlength is appealing for
absorption measurements, emission-based techniques would
benefit from a small spatial volumes in which the emission
effect can be concentrated, and volumes less than 1 nl have been
suggested.89 The size of the detector cell is clearly related to the
concentration and sensitivity of the method in question and a
flow cell of 15 ml has been reported to be adequate for
chemiluminescent measurements of glucose and lactate in
human serum.91 More recently Liang, et al.92 have described a
UV cell with a parallel flow optical path of 120–140 mm for
absorbance and fluorescence detection at the end of a CE
column, which would be most suitable for mFIA applications.

Sequential detector arrays are an attractive approach in sensor
design and lend themselves well to mFIA systems.82,93 One such
system82 has been described, based on electrochemical detec-
tors, for liquid chromatographic separations of catecholamines
and consisted of four photolithographically prepared ISFET
sensors aligned sequentially in a 5 mm silicon channel 100 mm
wide and 70 mm deep. The total volume of the detector was
20 ml. Another device,93 using a peristaltic pump to control flow
rates, consisted of nine 5 mm ISFET sensors housed in a 15 ml
cell, used for pH, potassium and calcium determinations in
biological fluids. Although neither of these systems was used
in mFIA manifolds, they do illustrate the ability to develop array
detectors compatible with mFIA technology.

One of the most exciting prospects for mFIA detector design
is the ability to incorporate their fabrication into one integrated
device. For example, miniature mass spectrometers (3 3 3 3 3
mm) have been produced based on fabrication technology that
would be ideally suited for mFIA.94 Miniature spectroscopic
systems are also becoming available95,96 and future develop-
ments in spectrometers incorporating opto-electronic systems

Fig. 7 Calibration based on 100 ppb PO4 with dynamic applied pinch
voltage. The equivalent absorbance values for 100, 50 and 25 ppb phosphate
are indicated on the x-axis.
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will undoubtedly bring valuable complementary technology for
future mFIA detector design.

Future Trends

The preceding sections have tried to focus on the basic concepts
and developments relating to mFIA systems based on EOF.
Some indication has been given of the likely areas where current
and future research may prove to be of great value. These
include the fabrication of devices where there is considerable
potential for the construction of stacked or three-dimensional
systems, possibly using cold bonding and direct laser etching
techniques. The mobilisation of reagents and analytes, based on
EOF, requires more complete characterisation if flows and
mixing effects at intersecting channels are to be effectively
exploited.

The most important development if mFIA technology is to be
fully realised is the fabrication of self contained operational
systems with proven application robustness. The close rela-
tionship of mFIA technology with separation techniques such as
capillary electrophoretic and micro-electrochromatographic
separations may well lead to some form of hybride system in the
near future. The area perhaps where the greatest advances
in mFIA-based technology will be most readily realised is the
biotechnology sector, where methodology and applications are
complementary to miniature systems. Already examples are
emerging of applications in DNA fragment analysis97 and
immunoassay methodology.98 Developments, however, need to
be focused not only on the integrated device which may be
encapsulated and equipped with telecommunication for remote
operation, but also to include interfacing to existing measure-
ment systems such as MS or NMR, which would benefit from
some form of sample pretreatment. One area which has not yet
been considered in mFIA systems is a return to the early gas-
phase work started by Terry et al.5 Clearly there are some
exciting possibilities in gas and multiphase systems yet to be
realised.

Conclusion

Where has mFIA and more generally mTAS got to? In 1991,
Manz et al.13 questioned whether the developments in mTAS
were ‘a look into next century’s technology or just a fashionable
craze’. In their concluding remarks, the authors made some
general comments relating to the uptake or acceptance of mTAS
technology, ‘namely that changes are required in the political
and cultural opinions of analytical work if appropriate financial
support is to be forthcoming and that the research base must
grow worldwide to foster both competitive and collaborative
research’. Further, they identified that ‘the market acceptance of
the technology must be embraced through the design and
production of mTAS concepts’. Clearly, these requirements
have been only partially fulfilled. An examination of the
literature indicates that there has been a positive growth in the
research base and this will obviously support the fundamental
development of the science. What is less obvious is the political
and more importantly the economic will to support the
development of the technology, and this may yet be seen to be
the most seriously limitation to the growth of the science.

Although miniaturisation is conceptually appealing, there
remain some important technical obstacles to overcome, such as
the introduction of ‘real’ samples and the ability to deal with
suspended particles. These limitations are not beyond the scope
of present day membrane technology, and should pose no
serious hindrance to the advancement of the science. Develop-
ments in the field of mTAS since 1991 clearly point to the
technique forming the basis of future methodology applicable to
a wide range of applications ranging from measurement science
to chemical synthesis in which mFIA based on EOF flow will

play a significant role. The limitation in releasing the consider-
able potential that micro reactor technology can offer resides
not in the technological challenge but in the imagination of our
minds and only requires us to realize it.
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H., and Widmer, H. M., Chimia, 1991, 45, 103.

15 Lui, S., and Dasgupta, P. K., Anal. Chim. Acta, 1992, 268, 1.
16 Harrison, D. J., Glavina, P. G., and Manz, A., Sens. Actuators B,

1993, 10, 107.
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59 Jacobson, S. C., Hergenröder, R., Koutny, L. B., and Ramsey, J. M.,

Anal. Chem., 1994, 66, 1114.
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Abstract

Photolithographic and wet etching techniques were used to fabricate a mFIA manifold in a borosilicate glass substrate for the

spectrophotometric determination of orthophosphate based on the molybdenum blue reaction, employing electroosmotic ¯ow

for both the mobilization of reagents and sample injection. The manifold channel dimensions were 200 mm wide and 50 mm

deep. An evaluation of the electroosmotic ¯ow characteristics (i.e. voltage, solution concentration/pH ranges and current±

voltage relationships) for ascorbic acid, ammonium molybdate and orthophosphate standards, with and without borate buffer

present, has been carried out. In addition, the effect that reaction precursors may have on the in situ spectrophotometric

detection system is also discussed. Using the optimized operating conditions of 1.75% ascorbic acid and 0.6% ammonium

molybdate in 10 mM borate buffer, the calibration model for phosphate standards was found to be linear

(y � 0.0036x � 0.0155; correlation coef®cient, r2 � 0.9952) over the working range 1±10 mgmlÿ1. A sampling rate of ca.

60 samples/h was achieved, with a detection limit of 0.1 mgmlÿ1 for orthophosphate, with RSDs <5%. The reagent

consumption was very low with the total reactant volume in the system estimated to be 0.6 ml and a sample volume of 0.1 ml

being required. # 1999 Elsevier Science B.V. All rights reserved.

Keywords: Micro¯ow-injection analysis; Miniaturization; Phosphate

1. Introduction

The development of micro¯ow-injection analysis

(mFIA) systems based on microreactor manifolds [1±

4] fabricated using photolithographic and wet etching

[4] or laser ablation [5] techniques offer many attrac-

tive operational advantages. These include high port-

ability, remote operation, reduced reagent and sample

consumption [6], minimal waste generation [7,8] and

fast controllable analysis [8]. An example of a three-

dimensional mFIA system (22 � 22 mm2 planar

micromachined silicon elements), based on a conven-

tional FIA manifold developed by Spielman et al. [9]

for phosphate detection, was described recently by

Verpoorte et al. [10]. The system employed externally

connected piezoelectrically driven silicon micro-

pumps for reagent mobilisation, operating at ¯ow

rates of 0.03±0.2 ml/min which correspond to about

one-tenth of those used in a conventional FIA system,
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leading to a corresponding 270-fold reduction in

reagent consumption. Sample volumes used with

the micro¯ow system were around 25 ml. To increase

the sensitivity of the technique, since the analysis is

carried out under non-equilibrium conditions, a

stopped-¯ow mode was adopted, producing an analy-

sis time of 4 min per sample. The sensitivity achieved

with the mFIA system was comparable to that expected

for a conventional system (5 mgmlÿ1 phosphate as

orthophosphate) [10].

In an attempt to exploit electroosmotic ¯ow (EOF)

rather than the hydrodynamic ¯ow, as described by

Verpoorte et al. [10], Daykin and Haswell [3]

described the development of a mFIA system, also

for the determination of orthophosphate. Channels

325 mm wide and 30 mm deep were etched into a glass

substrate in which molybdate (pH 3.2) was mobilised

by EOF; however, due to pH constraints (pH 1.6), it

was necessary to pump the ascorbic acid by ion

migration rather than EOF. The reagents were com-

bined in a contra-¯ow manner and a Z-mode injection

[4] was used to introduce the orthophosphate. On

completion of the molybdenum blue reaction, the

product was detected in situ using a ®bre-optic con-

®guration. The authors reported an RSD of <5% at

10 ppb, decreasing to <0.8% at 100 ppb for orthophos-

phate, where n � 5. The linear working range was

found to be 10±100 ppb, and the system produced a

limit of detection of 0.7 ppb.

This current work represents a further study into the

development of a mFIA system for phosphate analysis,

as ®rst described by Daykin and Haswell [3], that

utilises EOF control for all the reagents and samples

used and considers potential detector problems asso-

ciated with in situ measurements. The ®rst section of

the paper will, therefore, describe the use of EOF for

the mobilisation of both, the ascorbic acid and ammo-

nium molybdate reagents, together with on-chip sam-

ple injection of potassium dihydrogenphosphate. This

will be followed by an evaluation of the in¯uence

spectrophotometrically active reaction precursors may

have on the ability to detect reliably the molybdenum

blue reaction product in situ.

In the example given, ascorbic acid solutions (pHs

<3), which are initially colourless, turn yellowish,

intensifying to a deep orange colour with time due

to the low pH condition, degrading with the ascorbic

acid [11]. Ammonium molybdate solutions (pH >3)

remain stable and colourless due to a self-buffering

effect. At pH >3 (e.g. in the absence of excess mineral

acid), a mixture of the two reagents (ascorbic acid and

ammonium molybdate) produces an initial yellowish-

green colour partly due to pH increase effect on the

ascorbic acid and partly due to a slight preliminary

direct reduction of some molybdenum(VI) to molyb-

denum(V) state, at pH >0.7. It is interesting to note,

however, that the direct reduction of Mo (VI) to Mo

(V) does not occur when phosphate is present [12].

This background colour of the reagent mixture (reac-

tion precursor) has also been reported by other work-

ers in the ®eld [13] to be unstable and, therefore, the

reagents are usually mixed in a conventional FIA

manifold ahead of the sample injection point. In the

case of the dominant phosphate±molybdenum blue

reaction itself, the ®rst stage of the reaction (formation

of a yellow 12-molybdo(VI)phosphoric acid (12-

MPA) complex) is fast, whilst the second (reduction

of the molybdenum (VI) to a blue � 5 state (phos-

phomolybdenum blue, PMB) by ascorbic acid) is

relatively slow [12,13]. Thus, the background yel-

low-green colour from the reaction precursor and

all other optically active intermediate reaction pro-

ducts that might occur before the formation of the

molybdenum blue, may contribute to an instability in

the base line of the detection system prior to the

formation of the ®nal blue colour. In addition, the

generation of an intermediate with different pH or

ionic strength, to the reactants or product, may in¯u-

ence the EOF dynamics of the system, which in turn

may also contribute to instabilities in the detector

system.

In conventional FIA, the presence of such potential

detection problems can be eliminated in numerous

ways, for example, by ensuring that the full reaction is

completed prior to detection or employing a dual beam

spectrometer to compensate for background varia-

tions. In addition, with conventional FIA systems,

measurements are not normally made directly at the

point of injection, an option that may not be app-

ropriate to mFIA systems. The incorporation of a

dual optics systems in a mFIA system, whilst not

dif®cult, would add to the complexities of the mea-

surement process and, therefore, on-chip manifold

design and integration of detection components are

important considerations if simple systems are to be

produced.
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In order to address potential design problems with

on-chip in situ detection, this paper will describe the

spectrophotometric characteristics of premixing the

ascorbic acid and ammonium molybdate reagents

prior to the generation of the phosphate reaction

product. Considerations will be given to the time-

based instability of the reagent mixture and the buf-

fering effects that a borate buffer may have onthe

generation of a stable phosphate reaction product.

2. Experimental

2.1. Reagents

All reagents and standards were of analytical grade

unless otherwise stated. The primary reagents used

were ammonium molybdate(VI)tetrahydrate ((NH4)6-

Mo7O24�4H2O, 99.98%) supplied by BDH (Poole,

Dorset); L-ascorbic acid (99%) supplied by Sigma±

Aldrich (Gillingham, Dorset); potassium dihydrogen-

orthophosphate (KH2PO4), also supplied by BDH; and

di-sodium tetraborate (Na2B4O7, 98%) supplied by

Hopkin and Williams, Essex. Water was obtained

from an Elga (High Wycombe, UK) UHQ PS system

and had a conductivity of 18 m
 cmÿ1.

2.2. Characterisation of electroosmotic flow

The main EOF characteristics monitored were

applied voltage, current±voltage relationships and

solution concentration/pH which were then selected

to obtain parameters that gave good stable EOF. The

pH of solutions were measured with the Ikamag RH

Nr.361646 pH meter produced by Janke and Kunkel,

GMBH, Germany.

A manifold consisting of channels 200 mm in dia-

meter and 50 mm deep, (Fig. 1) was etched on a

borosilicate glass chip (25 mm long, 25 mm wide

and 3 mm thick), using the technology described

previously [3]. A cover plate (25 mm long, 25 mm

wide and 1 mm thick, also of borosilicate glass), into

which 2 mm i.d. holes had been drilled to align with

the ends of the channels, was annealed/bonded to the

substrate chip. Plastic reservoirs were ®xed at posi-

tions A to F with glass bonding glue (Loctite Glass

Bond, Welwyn Garden City, UK) and dried in sunlight

(UV lamp could also be used for the drying). This chip

was then used to evaluate the reagents EOF and side

streaming characteristics.

A Farnell HiVolt XRV30/1.7 reversible polarity

power supply (Farnell, Leeds) was used which offered

a maximum power output of 50 W with variable

voltages up to 30 000 V and currents up to 1.7 mA

to be selected in constant stabilised current or voltage

modes, with an adjustable trip for overcurrent protec-

tion. The power supply was connected via high-purity

copper conductors to 0.15 mm diameter platinum

electrodes with a 10 mm exposed length for inter-

facing with the solutions in the reservoirs. For safety,

the electrode system was built in an isolation box ®tted

with a power cut-out preventing high voltage opera-

tion when the lid is open. The voltages applied across

the electrodes and the internal currents generated

within the solutions in the channels were monitored

on an AVO digital autoscaling multimeter (Avo multi-

meter M2036, Thurnby Thunder Instruments,

Huntingdon, UK) connected in parallel with the

device.

The solution under investigation was placed in

reservoir A and water or buffer in reservoir B, both

to pre-marked levels. The reservoir levels of other

reagent solutions in the side channel reservoirs C±F,

perpendicular to the main channel AB were also

recorded. The positive electrode was placed in A

and the negative electrode in B, the other reservoirs

were electrically left ¯oating.

Initially, different concentrations of ascorbic acid

(0.1±3%, pH 2.11±1.34) were run at different voltages

(0.2±1.3 kV) over a period of 30 min and the change

(decrease) in volume of ascorbic acid in reservoir A

was measured by recording the new lower level, ®lling

the reservoir to its original level and recording the

addition required with a graduated 100 ml HPLC

syringe. The voltage (V), current (I), time (min) and

Fig. 1. mFIA manifold for determining flow characteristics of

reagents. A, reagent reservoir; B, waste reservoir; and C±F, side

channel reservoirs. AB, 18 mm; AG � GH � HI � IJ � JB �
3.5 mm; and CG � EH � DI � FJ � 8 mm.
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volume changes (ml) were recorded and the ¯ow rates

(ml/min) calculated. The process was repeated to

establish the ¯ow characteristics for ammonium

molybdate (0.1±3%, pH 3.86±5.03) and phosphate

standard solutions (1±40 mg mlÿ1, pH 8.50±5.67).

The EOF characteristics of the ascorbic acid,

ammonium molybdate and the orthophosphate were

®rst determined without the presence of buffer to

establish the natural EOF properties of these reagents.

In a similar manner, the EOF characteristics of borate

buffer (di-sodium tetraborate, 98% G.P.R. obtained

from Hopkins and Williams, UK) solutions were

studied to obtain an optimum buffer concentration

that could be used in conjunction with the reagents

and standards. In addition, the EOF characteristics of a

mixture of the ascorbic acid and ammonium molyb-

date solution with buffer was also studied to establish

any effects of reagent mixing in the channels on the

EOF.

2.3. Reaction precursor studies

In order to establish the basic reaction character-

istics and to simplify the analytical procedure for the

proposed on-chip EOF methodology, the effects of

mineral acid (HNO3) on the generation of the back-

ground yellow-green reaction precursor, resulting

from the reagent mixture, and on the molybdenum

blue reaction product were evaluated. This was carried

out by observing visually the background colour

produced by the reagent mixture. For this part of

the study, equal volumes (1 cm3) of the 1.75% ascor-

bic acid and 0.6% ammonium molybdate solutions

were mixed in a test tube and the background colour

noted. To the yellow-green product produced, 0.5 cm3

of the potassium dihydrogenphosphate solution

(5 mg mlÿ1) was added in the presence, and absence,

of nitric acid to observe whether a blue reaction

product would be formed and if so how long it took

to develop. In addition, the pH of the solutions pro-

duced was monitored to assess the possible in¯uence

of the presence of a mineral acid on the EOF.

The ascorbic acid and the ammonium molybdate

reagents were also dissolved separately in 10 mM

borate buffer with, and without, nitric acid being

present to establish the effects of the buffer on the

¯ow rates and reaction characteristics of the individual

reagents. This was then followed by evaluating the

same parameters for a buffered reagent mixture. The

buffer-reagent mixture (1.75% ascorbic acid and 0.6%

ammonium molybdate) was visually monitored,

together with the unbuffered solutions, periodically

for a number of days to see if any change in colour

intensity occurred.

2.4. mFIA manifold with in situ detector

The mFIA manifold and detector setup for the

phosphate analysis is shown in Fig. 2. In this section

of the work, a glass chip (25 mm long, 8 mm wide and

3 mm thick) with etched channels (200 mm wide and

50 mm deep) was annealed/bonded to a thicker glass

cover plate (25 mm long, 14 mm wide and 17 mm

thick, both of borosilicate), into which 2 mm

holes had been drilled to align with the ends of

channels. The holes served as reservoirs for

Fig. 2. mFIA manifold and detector setup for phosphate analysis. AB � BC � DE � 3 mm; CD � 4 mm, BD � 7 mm; and

RB � SC �WD � 6 mm.
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reagents/analyte and to support the platinum electro-

des. This replaced the use of glued plastic reservoirs so

as to produce a more robust and solution-tolerant

device. In addition, side ports were created at each

end of the main channel to allow axial access for

optical ®bres. Reaction signals were obtained spectro-

photometrically by using the VIS-microspectrometer

(operational wavelength range being 380±780 nm,

supplied by microParts, Germany).

The light source was a high-output red (3000 mcd at

10 V, 700 nm peak output) light emitting diode (LED,

RS 564-015, RS stores) with operating electronics

built in house coupled to the chip also with ®bre optic

connector. The optical ®bres taking light from the

LED to the chip, and from the chip to the diode array

detector, were 110 mm i.d. and made of silica housed

in an outer plastic covering, giving a total o.d. of

125 mm. The ®bre optics were attached to the chip by

stripping off the covering plastic at the tips of the

optic, which were then inserted axially (1±3 mm) into

the channels on either side of the main reagent line

whilst applying a positive pressure on the solution in

one reservoir to create a continuous ¯ow of solution in

the channels, hence avoiding the trapping of any air

bubbles in the channels and around the tips of the ®bre

optics. Excess liquid was then removed and an all-

purpose clear adhesive (Bostic, Leicester, UK) fol-

lowed by a thick layer of silicone rubber compound

(RS Components, Northants, UK) glue were applied.

The ends of the ®bre optics, in this work, were not

polished or prepared in any special way other than

simply cleaving and stripping �3 mm of the ®bre

coating.

Output from the photodiode array detector (micro-

Parts) was coupled to a PC.

The supporting software (SpecView 3.0, micro-

Parts) was operated in two modes ± Scan and Time

drive modes. In both, the Scan and Time drive modes,

the system was zeroed (zero reference) for a base line

determination. Alignment of the ®bre optics was

carried out by observing a maximum transmission

peak at the emission spectra, whilst moving the ends

of the ®bres. Once aligned, the ®bres were ®xed in

place with adhesive. No de®nitive calculations have

been carried out to date on the light losses in the

system; however, this is currently under investigation.

In the Time drive mode, the light transmission values

for the peak maxima and two reference base wave-

lengths were monitored. In both these modes, the

detector performed a pre-selected number of scans

of the signal intensity received by the diode array

detector. The scanned wavelength range selected for

the phosphate analysis was 600±700 nm over which

the blue phosphate reaction product absorbs well, with

the maximum intensity being around 647 nm. Five

scans were made over an integration time of 320 ms

giving a total scanning time of 3 min. The Scan mode

was primarily used to align the ®bre optic and zero the

detector whilst measurements were performed in the

Time drive mode. The Time drive mode was chosen

for in situ measurements because it acquires a signal

intensity data in a continuous mode, which made it

easier to observe reaction characteristics and interpret

the precision and reproducibility of the analysis. By

comparison, the Scan mode will only generate a full

spectra for one injection over the selected wavelength

range.

2.5. Optimisation of sample injection time

(time-mode injection) for phosphate analysis

After priming the main reaction channel (R±W)

with borate buffer (10 mM Na2B4O7, pH 9.22), a fresh

premixed reagent mixture of the 1.75% ascorbic acid

and 0.6% of the ammonium molybdate was placed in

the reagent reservoir R (Fig. 2). Buffer was placed in

the sample reservoir S and suction was applied with a

syringe at the waste reservoir W to facilitate the ®lling

of the channels with the reagent and buffer solution.

The sample reservoir S was then loaded with a

10 mg mlÿ1 phosphate standard. An electrical ®eld

HVPS 1 was then applied between R(�) and W(ÿ)

(400 V, �46 mA) for 30 s to ®ll the main line com-

pletely with the reagent mixture and the spectrometer

was then zeroed using both, the Scan and Time drive

modes to obtain a baseline for the reagent blank. The

electrical ®eld HVPS 2 was then introduced across

S(�) and W(ÿ) (695 V, �16 mA) for a range of times

(60, 55, 50, 40, 30, 20 and 10 s) to inject the phosphate

standard before the reagent ¯ow was resumed to carry

the sample plug towards the detector and, subse-

quently, to waste. The signals obtained were saved

and the process repeated as necessary. In the injection

process, the switching off and on of the reagent ¯ow

(RW) and the sample (SW) was performed simulta-

neously.
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2.6. mFIA calibration

A 20 mg mlÿ1 stock phosphate solution was pre-

pared by weighing 0.088 g of the solid KH2PO4 and

dissolving in 1 dm3 of a 10 mM borate buffer solution.

Serial dilutions of the stock 20 mg mlÿ1 solution were

then carried out to prepare 1, 2.5, 5, 7.5 and

10 mg mlÿ1 phosphate standards. Using the procedure

described in the injection optimisation above, six

replicate injections/measurements were made for

the different standards in turn, and the signal results

obtained on PC were saved as before. Calibration was

achieved by plotting the absorbance vs. concentration

for each standard.

3. Results and discussions

3.1. Flow characteristics in the mFIA system

3.1.1. Ascorbic acid

The concentration range of ascorbic acid that gave

the most stable ¯ow rates was found to be 1.5±2.5%

(Fig. 3(a), pH 1.5±1.9), with 1.75% (pH 1.77) giving

Fig. 3. (a) Plots of flow rate vs. ascorbic acid concentration for different voltages. (b) Plots of flow rate vs. voltage for different ascorbic acid

concentrations.
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the highest ¯ow rate of 1.4 ml/min. At the operating

pH 1.5±1.9, the ascorbic acid could not be assumed to

be moving by EOF, due to the very low pH, but was

undergoing a viscous drag induced by bulk electro-

phoretic mobility of the solution ions. Over the con-

centration range studied, the ¯ow rates were found to

increase quite steadily as a function of voltage from

0.2 kVup to a maximum at 1.2 kV (Fig. 3(b)). Beyond

1.2 kV, the ¯ow was observed to drop due to the

unstablising effects of the high ionic strengths of

the solutions used, and possibly, faster electrophoretic

mobility of ions through the solution due to stronger

attraction by the opposite electrode and, thus, leaving

the bulk solution behind. The higher voltages were,

however, associated with an increase in bubble gen-

eration observed in the reservoirs, caused by Joule

heating. Beyond 2.25% ascorbic acid, the current was

found to ¯uctuate considerably, due to increases in the

thermal resistance caused by excessive bubbling

which, in turn, aggravated the heating effect, even-

tually leading to solution evaporation. Consequently,

reliable volume measurements became dif®cult to

obtain. It was noted that bubbles occurred only at

the negative electrode for ascorbic acid due to the

generation of H2. The current ¯uctuation observed, at

high voltages, made ¯ow rate measurements by cur-

rent±time monitoring [14] dif®cult with the chemistry

used in this study. Thus, the simple volume change

measurement procedure adopted, in this study,

avoided current-based measurements. The current±

time based technique for determining ¯ow rates

may, however, prove suitable at lower voltages

(<1.2 kV) and this approach is worthy of further

investigation.

In addition to ¯ow rate increasing steadily with

voltage over the 0±1.2 kV range (Fig. 3 (b)) (i.e. the

electroosmotic ¯ow generated is linearly proportional

to the applied voltage), plots of current vs. voltage for

the ascorbic acid 1.25±2.25% concentration range

were also found to be linear, leading to correlation

coef®cients �0.9 and indicating that the volumetric

¯ow rate is also linearly proportional to the current.

3.1.2. Ammonium molybdate

The concentration range of ammonium molybdate

that was found to give reasonable EOF rates was 0.1±

0.6% (Fig. 4(a), pH range 3.86±4.36) with the highest

¯ow rates being obtained for 2% (pH 4.0) and 0.6%

(pH 4.36). The operating conditions suggest that the

ammonium molybdate was moving by EOF. At con-

centrations higher than 0.6% (though within the EOF

operating pH range of 3±10) bubbles were generated

in both the reservoirs, leading to an increase in the

resistance and a corresponding decrease in ¯ow. How-

ever, the ¯ow was observed to increase again for

concentrations >1.5%; this was possibly due to an

increase in pH to around 5.0 at 2.5% ammonium

molybdate. The ¯ow rate was, on average, higher

for the ammonium molybdate (pH 3±5) than for

ascorbic acid (pH 1.6±2.0) indicating a direct pH

effect. For the concentration range used, the ¯ow rate

was found to increase quite steadily with an increase in

voltage from 0.2 kV until it reached a maximum at

1.2 kV (Fig. 4(b)) and then a gradual decrease was

observed for the same reasons as those given for

ascorbic acid. It was concluded, therefore, that vol-

tages up to 1.2 kV would be applicable to drive the

ammonium molybdate solution.

Current±voltage plots were found to increase with

increasing concentration from 0.1 to 0.6%, beyond

which point the current/¯ow rate decreased for the 0.7

to 1.5% range then rose again for concentrations

>1.5%, again indicating a current or current±voltage

effect on the ¯ow. It was more dif®culty to identify a

¯ow rate±current linearity, compared with the ¯ow

rate±voltage linearity, which again was probably due

to the slight current ¯uctuations and, therefore, to an

inability to record accurate current values. In general,

correlation coef®cients were found to be better than

0.9 across the concentration range investigated.

As the concentration or applied voltage increases,

the current increases, and as indicated previously

bubble generation in both the reservoirs occurred

beyond 2.0% ammonium molybdate, once again

volume measurements became dif®cult. The bubbles

occurred at both the negative and positive electrodes

due to the generation of H2 at the negative electrode

and, possibly, the liberation of oxygen gas as a result

of some aqueous electrolysis or the liberation of

ammonia in the ammonium molybdate reservoir

caused by thermal decomposition of some NH4
� ions.

3.1.3. Potassium dihydrogenphosphate

The phosphate standard solutions produced higher

¯ow rates (Fig. 5(a)) than either the ascorbic acid or

ammonium molybdate, across the standard working
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concentration range of 1±10 mg mlÿ1 (pH 8.5±6.67),

with an optimum EOF operating pH range associated

with 5 mg mlÿ1 (pH 7.12) giving the highest ¯ow rate,

due to its pH and optimum ionic strength. Whilst the

observed characteristics would enable a fast sample

injection to be achieved by EOF and a corresponding

high sample throughput rate, clearly the variation in

¯ow and, hence, injection volume with time as a

function of concentration will have implications for

the calibration procedure. This apparent problem can,

however, be effectively dealt with when buffer con-

trolled systems are adopted as indicated below.

For the concentration range used, the ¯ow rate

increased with voltage over the range 0.2±1.3 kV

(Fig. 5 (b)). Once again, correlation coef®cients of

the current±voltage models were >0.9, indicating

reasonable linearity between the current and the vol-

tage and, therefore, the ¯ow rate also increased with

current.

Only a few bubbles were produced at both, negative

and positive electrodes even at high concentrations or

applied voltages because of the lower H� ion con-

centration and the absence of any potentially volatile

components. Current ¯uctuations were, therefore, not

Fig. 4. (a) Plots of flow rate vs. molybdate concentration for different voltages. (b) Plots of flow rate vs. voltage for different molybdate

concentrations.
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evident and volume change measurements were rela-

tively simple to make for the potassium dihydrogen-

phosphate solution which produced no apparent Joule

heating.

3.2. EOF characteristics of the buffer±reagent

mixture

In order to achieve EOF control of the ascorbic acid,

improve the quality of calibration data and simplify

the reaction conditions used in the mFIA system, a

mixture of the optimum 1.75% ascorbic acid and 0.6%

ammonium molybdate was prepared in a 10-mM

borate buffer (pH 9.22). The ¯ow rate of the reagent

mixture was found to increase steadily from 0.2 kV up

to a maximum at 1.2 kV beyond which the ¯ow rate

dropped for the same reasons given for the ascorbic

acid and ammonium molybdate. Therefore, voltages

up to 1.2 kV for the reagent mixture were considered

suitable to drive the solution. The reagent mixture

prepared in buffer, however, did show a higher EOF

than the individual reagents over the whole voltage

range studied and, therefore, even voltages as low as

0.2 kV with a current of 20 mA were found to be

Fig. 5. (a) Plots of flow rate vs. phosphate concentration for different voltages. (b) Plots of flow rate vs. voltage for different phosphate

concentrations.
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suf®cient to drive the reagent mixture at a ¯ow rate of

about 1 ml/min.

The most striking contribution/advantage observed

from the buffer was the lack of ¯uctuations in the

current and a more reliable ¯ow control. The presence

of the 10 mM borate buffer in the reagent solutions

was found to have no detrimental effect on the reaction

chemistry. Indeed, there was some evidence to suggest

an apparent enhancement of the reaction signal.

3.3. Induced side channel flow characteristics

In order to establish the presence any Venturi-type

side streaming effect, due to the reagent ¯ow in the

main channel AB, on solutions in perpendicular side

channels CG, EH, DI and FJ, the side reservoirs C, D,

E and F were ®lled with the same solution as was used

in the main channel AB. This study was carried out in

conjunction with the EOF characterisation of above-

mentioned reagents.

The ¯ow of each of the solutions (ascorbic acid,

ammonium molybdate, potassium dihydrogenpho-

sphate and the mixed buffer-reagent mixture) in the

main ¯ow channel AB was found to cause a very slight

viscous drag (hydrodynamic effect) on side channel

(CG, EH, DI and FJ) solutions. In qualitative terms,

this addition of liquid was estimated to be <0.5% of

the total transported material and was monitored by

volume changes in both the side and collection reser-

voirs.

3.4. Reaction precursor studies

The observed change from initial colourless to

yellowish, intensifying to a deep orange colour with

time, of the ascorbic acid solutions (pHs <3, strongly

reducing/antioxidant), is a chemical instability that

might be induced by low lability to light/heat or easy

oxidation by O2 to dehydroascorbic acid (DHA). In an

aqueous solution, this decomposition may lead to

some sort of polymerisation, associated with the

numerous functional groups on DHA which, in turn,

increases the pH conditions and thus degrading the

ascorbic acid [11].

In the ammonium molybdate solutions (pH 3.86±

5.03), the Mo(VI) exists largely as a dimer in equili-

brium with some monomer and polymer [12] which

remain stable and colourless due to a self-buffering

effect. Results obtained for the molybdenum blue

reaction are known to be independent of the age of

the Mo(VI) solution and the original form of the

Mo(VI) [12].

The yellow 12-molybdo(VI)phosphoric acid (12-

MPA) complex, which is formed prior to the genera-

tion of the molybdenum blue reaction product, after

adding phosphate to the ascorbic acid±ammonium

molybdate reagent mixture, produces an absorption

spectrum extending from 190 to 400 nm, which is less

than the wavelength used to detect the molybdenum

blue product (600±900 nm).

Thus, from an assessment of the above chemistries,

it can be concluded that the main spectrophotometri-

cally active reaction precursor most likely to affect the

measurement process will be the initial yellow ± green

baseline colour of the ascorbic acid ± ammonium

molybdate mixture which absorbs weakly over a

190±900 nm range.

In order to reduce possible background detector

effects associated with the generation of a yellow-

green reaction precursor in the optical path of the

detector, two approaches have been adopted. The ®rst

considered the use of mineral acid (HNO3) to mask the

generation of the coloured precursor, whilst the sec-

ond examined various on-chip reagent mixture com-

binations to enable a zero baseline signal to be

determined. Whilst excess HNO3 was able to remove

the background (base line) yellow-green colour of the

reagent mixture and may reduce any direct reduction

of Mo(VI) in the absence of phosphate, it also inhib-

ited the appearance of the blue phosphate reaction

product, suggesting that the use of excess HNO3

should be avoided. This is in agreement with the

results of Crouch and Malmstadt [12] who reported

that, at nitric acid concentrations >0.3±0.5 N, the

amount of molybdenum blue reaction product formed

will be independent of the acidity but that the rate of

formation will decrease sharply with increasing acid-

ity. These observations were attributed to the nitric

acid being associated with the reversible formation of

the intermediate 12-MPA (H3PO4 � 6 Mo(VI)�((12-

MPA) � 9H�, the Mo(VI) existing as a dimer) rather

than the ®nal reduction step. Thus, after the formation

of the 12-MPA intermediate, the equilibrium will

depend on the amounts of phosphate and molybdate

initially present, any excess acid will favour the back-

ward reaction.
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Addition of phosphate to the yellow-green reagent

mixture in the absence of acid (HNO3), however,

required some time (>1 min) for the reaction product

to be produced. Such conditions would, therefore,

necessitate a very low ¯ow rate, implying a corre-

spondingly low sample throughput rate. It was found

that whilst a 0.4 M solution of HNO3 did not totally

remove the background yellow-green colour, it did

promote the phosphate reaction enabling a blue colour

to be formed within 10 s but with slightly lower colour

intensity compared to when HNO3 was not present at

all. An appropriate amount of HNO3 is, therefore, an

advantage over either an excess or no HNO3 being

present in order to establish the required blue reaction

product in a reasonable time frame. However, the low

pH (<4) resulting from the use of acid will also have a

limiting effect on the generation of EOF for the

corresponding solutions. To compensate for this

effect, the reagents were dissolved in a 10 mM borate

buffer in the absence of mineral acid to promote EOF

which, in addition, not only produced the yellow-

green colour more slowly, compared to the non-buf-

fer-dissolved mixture, but also generated a more

intense blue reaction product. Thus, the use of a

10 mM borate buffer was identi®ed as offering pre-

ferable reaction conditions which, in addition,

enhanced the intensity of the reaction product.

The study carried out to investigate the generation

of an unwanted yellow-green background effect indi-

cated that premixing the phosphate and ascorbic acid

solutions gave a clear/colourless mixture prior to

adding the molybdate which subsequently generated

blue phosphate reaction product. Thus, either the

molybdate or the premixed phosphate/ascorbic acid

could be pumped as the main reagent stream and the

other solution injected accordingly, using a single line

FIA. Premixing the phosphate and ammonium molyb-

date also gave a colourless solution mixture before

adding the ascorbic acid to form the blue phosphate

reaction product and, therefore, either combination

could be pumped in the main channel with the other

injected. In each instance, however, the yellow-green

reaction precursor formed ®rst before the blue phos-

phate reaction product.

In order to establish a simple single-line mFIA

system for the determination of phosphate, it was

decided that the phosphate standard/sample would

be injected into a premixed reagents mixture stream

and, due to the generation of the reaction precursor

yellow-green colour, the background reagent mixture

signal would be determined and zeroed prior to mea-

surement of the blue product, using an appropriate

microspectrometer. The actual manifold used is shown

in Fig. 2.

It should be noted that whilst this particular study is

centred on producing a calibration model for phos-

phate, the conditions of pH <7 are also likely to

enhance the potential for interference from silicate,

arsenate, germanate, and tungstate, etc. and, therefore,

in any `real' analysis, an attempt should be made to

avoid these interferences either by isolation of the

interfering species or through the use of multivariate

calibration models.

3.5. On-chip detection

3.5.1. Optimisation of sample chemistry and

injection time for the phosphate analysis

From studies on the ¯ow characteristic of the

phosphate standards, it was clear that the injection

time or corresponding volume (in time-based injec-

tion), will depend on the pH and, therefore, the EOF

rate of the particular standard injected. In the absence

of a pH buffer, standards/samples with lower phos-

phate concentrations would move at faster ¯ow rates,

due to a pH effect, than those with higher concentra-

tions. Clearly such a situation would lead to an

unsatisfactory method of sample injection, indicating

the importance of using a pH buffer to control the

EOF. The dissolution of the phosphate standards/

samples (pH ranging from 6.67 to 8.50) in sodium

borate buffer (10 mM), produced a buffered solution

of around pH 8 which gave a standardised ¯ow across

the entire calibration range.

Using the injection mode described previously and

the optical con®gurations shown in Fig. 2, the detector

response resulting from the different injection times

(10±60 s) for a 10 mg mlÿ1 phosphate standard are

shown in Fig. 6 for which 50 s injection gave the

highest peak intensity. It is important to note that

whilst EOF, with a ¯at (trapezoidal or rectangular)

¯ow pro®le characteristic, is the main mechanism for

solution mobility, electrophoretic mobility will also

occur, effecting the diffusion limiting reactions taking

place in the interfacial zones between the reactants.

Thus, the amount of reaction product formed and,
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therefore, the sensitivity of detection will depend on

the volume injected, the diffusion constants for the

solutions present, the individual electrophoretic mobi-

lity for each component and the reactant concentra-

tions. Thus, if insuf®cient reagent or standard is

injected the response signal is reduced (i.e. <50 s);

however, if the injection volume delivers excess stan-

dard the unreacted solution seems to have a depressive

effect on the detector response (i.e.>50 s), possibly

due to a spectrophotometric effect of the unreacted

potassium dihydrogenphosphate. It is estimated that a

50 s injection time, which is inclusive of the time

Fig. 6. Absorbance signals for different injection times of 10 ppm phosphate.

Fig. 7. Response signals for a 2.5 ppm phosphate.
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required to form the molybdenum blue product, cor-

responds to <0.1 ml, but clearly the whole aspect of

sample injection and reaction characteristics in mFIA

systems requires a more detailed study and such work

is currently in progress. It is also important to stress

that, after injection, the reaction occurred only on

resuming a reagent ¯ow removing the need for a

stopped-¯ow mode of analysis and indicates the rele-

vance of electrophoretic mobility in such systems vs.

diffusion-limited reactions. This latter observation

serves also to support the case for further work to

be carried out into the interfacial dispersion/mixing

between reagents in such systems. Based on the

experimental work carried out to-date, a 50 s injection

time was used for the entire calibration procedure.

3.5.2. Calibration

Typical response signals for the 2.5 mg mlÿ1 stan-

dard are shown in Fig. 7. The calibration plot of

absorbance vs. phosphate concentration was found

to be linear with a correlation coef®cient value of

0.9952 for the equation y � 0.0036x � 0.0155.

The calibration model for the mFIA produced a

theoretical detection limit of 0.1 mg mlÿ1, calculated

using 3 � SD of the lowest standard and a precision

ranging from 4.79 (1 mg mlÿ1) to 2.94% (10 mg mlÿ1

phosphate) RSD for n � 6. This slightly higher RSD

of the system is thought to be more associated with the

micro-detection system which might require the appli-

cation of noise reduction techniques if higher preci-

sion and/or lower detection limits are required. There

was no evidence of a serious chemical baseline effect

suggesting that the single channel mode of detection

will be suitable for future apparatus. The reaction/

detection time for the mFIA system was 10±20 s

which, together with the injection time gave a sam-

pling rate of ca. 60 samples/h.

4. Conclusions

The current study has demonstrated that a mFIA

methodology comparable in performance to conven-

tional FIA can be achieved for the detection of ortho-

phosphate.

The mFIA system offered the speci®c advantages of

reduced reagent usage (total system volume �0.6 ml),

reduced sample consumption (sample volume ca.

0.1 ml), low waste generation and fast analysis times

(60 analysis/h). In addition, the resistant nature of the

glass chip material to acidic/corrosive solutions pre-

vents the regular changing of components such as

pump tubings, connectors, etc. encountered in con-

ventional FIA systems.
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Abstract

A micro-total analytical system (mTAS) is described for the determination of nitrite based on its reaction with sulphanilamide

to form the diazonium salt which when coupled with N-(1-naphthyl) ethylene diamine yields an azo dye whose absorbance

was measured at 526 nm. The reaction took place in an etched glass manifold containing channels 302 mm wide and 115 mm

deep in which electro-osmotic ¯ow was used to move the reagents. The absorbance of the product was measured in situ using

a micro-spectrophotometric-®bre optic detection system. The electro-osmotic ¯ow mixing characteristics of the reagents

together with the production of the colorimetric complex have been investigated. In addition methods for obtaining sensitive

detection in the micro-reactor are reported. Using the conditions established a linear calibration was obtained between 0 and

100 mM with a correlation coef®cient of 0.999. The RSD at 50 mM NOÿ2 was 2.6% (n�6) and the limit of detection obtained

(3�) was 0.20 mM NOÿ2 . # 1999 Elsevier Science B.V. All rights reserved.

Keywords: Micro ¯ow injection analysis; Nitrite; Miniaturisation; mTAS

1. Introduction

The presence of low level chemical species in the

environment, an increasing need for good industrial

process control, developments in clinical diagnostics

and numerous areas have lead to the search for

improved, less expensive and more robust methods

for measuring low levels of chemical analytes. Micro-

total analytical systems (mTAS) have been suggested

as a possible solution for such analysis as they are

primarily concerned with the chemical reactions in

small volumes of liquids where the measurement is

based on the reaction between more than one reagent,

with subsequent determination being achieved in situ

and an appropriate detector. These micro ¯ow systems

have the inherent advantages of being portable, requir-

ing low reagent consumption, and are able to operate

remotely [1]. The development of such systems has

progressed more recently with the introduction of

electro-osmotic ¯ow that provides a ¯exible and

robust method of moving ¯uids through microchan-

nels of typically less than 200 mm i.d. [2±4]. Fast

controllable reactions have been shown to occur

between picolitres of samples in such reactors [5]

which to date have been mostly produced by photo-

lithography techniques using substrates such as glass

and silicon [5±7].
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A range of different detection techniques have been

investigated for mTAS including spectrophotometry

and electrochemistry [8,9]. Daykin and Haswell [8]

for example reported the development of a micro ¯ow

injection system (mFIA) for the determination of

phosphate using spectrophotometric detection [8],

whilst Fiehn et al. [9] have demonstrated the use of

¯uidic ISFET microsystem for the determination of

pH, nitrate, ammonia, sodium and potassium based on

a sensor technology using micro¯uidic injectors and

diodes.

In this work a mFIA has been investigated and

developed for the determination of nitrite. Electro-

osmotic ¯ow has been used to mobilise reagents in an

etched glass manifold to produce a coloured spectro-

photometrically active analytical product. The absor-

bance of the product was measured in the manifold

using a micro-spectrophotometric-®bre optic detec-

tion system. Nitrite was determined by its reaction

with sulphanilamide to form the diazonium salt which

was coupled with N-(1-naphthyl) ethylene diamine to

yield an azo dye whose absorbance was measure at

526 nm.

2. Experimental

2.1. Reagents and materials

All the chemical standards and reagents used were

analytical grade unless stated otherwise and the water

used was high purity de-ionised (18 M
 cm resistiv-

ity) (Elgastat UHQ PS, Elga, High Wycombe, UK).

The sodium nitrite was supplied by Fisher Scienti®c

(Loughborough, UK), ammonium chloride, hydro-

¯uoric acid and ammonium ¯uoride being obtained

from Merck (Poole Dorset, UK). The hydrochloric

acid was supplied from Philip Harris (Shenstone,

Lich®eld, UK), and the sulphanilamide and N-(1-

naphthyl) ethylene diamine (NED) was from Aldrich

(Gillingham, Dorset, UK). Sodium formate and

sodium acetate were from Avocado Research Chemi-

cal (Heysham, UK) and the nitric acid was R.P.Nor-

mapur
TM

, (Fontenay, S/Bois, France). The Microposit

chrome etch 18 and photoresist remover 1112A were

from Shipley (Coventry, UK). The glass for the micro-

reactor chips and cover plates were both Superwhite

Crown B70 borosilicate glass (Instrument Glasses,

En®eld, UK). The silica ®bre optics were obtained

from Opti¯ex (Doncaster, UK). Electronic compo-

nents were from RS Components (Northhants, UK).

The nitrite (10 mM NOÿ2 ) stock solution was pre-

pared from sodium nitrite. The pH of the ammonium

chloride buffer (190 mM) was adjusted with ammonia

to give a pH of 5. The sulphanilamide (1.16 mM) and

N-(1-naphthyl) ethylene diamine (1.95 mM) were pre-

pared as a mixed reagent in ammonium chloride

buffer, with ®ve drops of concentrated hydrochloric

acid being used to dissolve the sulphanilamide.

2.2. Device fabrication

The photolithographic plates containing 25 devices

of ®ve different geometries were obtained from photo-

mask producers (Alignrite, Wales, UK). The method

of wet etching was a modi®ed version of that

described by Daykin and Haswell [8]. The glass plates

were placed in 1% HF and 5% NH4F at 708C and

agitated every 10 min for 1 min, followed by 1 min

lateral stirring with a plastic rod during the etching

process. The etching time for the manifold used in this

work was 2 h after which the plate was removed from

the bath and washed thoroughly with water. Before the

etching solution was discarded the channels on the

plates were measured using a DekTek3ST stylus sur-

face pro®ler to ensure the required channel dimen-

sions had been achieved. Three pro®les were taken at

three different locations along the channel and an

average of the channel width, depth and area were

recorded. With the required channel sizes achieved the

etching solution was carefully discarded. The plates

were then exposed to strong UV-light for 1±2 h before

being dipped into a photoresist remover for 2±3 h to

remove the photoresist. The plates were washed with

tap water and any excess photoresist and the chrome

layer were then stripped off with the Microposit

chrome etch 18 with a ®nal washed being carried

out in de-ionised water. The etched plates were then

cut into individual manifolds i.e. 25 (152 mm2) being

obtained from the original plate.

In the work by Daykin and Haswell [8] the mani-

folds had thin glass cover plates with 2 mm i.d. holes

thermally bonded onto the manifolds. The solution

reservoirs were then stuck on to the cover plates. Many

problems associated with mechanical and chemical

stability were encountered with this approach and
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therefore thick glass cover plates (17 mm) incorpor-

ating 2 mm i.d., predrilled holes as reservoirs were

thermally bonded to the substrate so negating the need

to glue reservoirs into the manifold. To achieve this the

thick cover plate was carefully positioned such that the

2 mm holes (reservoir) were placed directly on the end

of the etched channels in the substrate and were held

®rmly by Blu-tack (Bostik, Leicester, UK). The chip

was placed on the silica support in the centre of a

microwave ashing system (CEM microwave ashing

system 300, NC, USA). During the bonding process

the thicker cover plate was placed at the bottom to

prevent the channel from being completely fused due

to the weight of the cover plate pressing on the etched

base plate. The thermal due to the weight of the cover

plate pressing on the etched base plate. The thermal

programme that was used was 758C for 30 min, 1508C
for 30 min, 6808C for 30 min, 6508C for 30 min,

5708C for 30 min, 5058C for 30 min after which the

oven was allowed to return to room temperature. The

bonded chip was tested for successful fusion by ®lling

reservoirs with water and determining a linear current

voltage relationship over the range 0±1 kV. If the chips

became blocked in the development work they were

cleaned with mineral acid.

2.3. Procedure

2.3.1. Determination of the reagent flow

characteristics

To determine the ¯ow characteristics of the reagents

and reaction products a second manifold prepared as

above with a channel size of 325 mm wide and 30 mm

deep was used. In this work the applied voltage,

concentration and pH of the reagents were the selected

variables. A traditional FIA system using the method

described by Daniel et al. [10] was ®rst used to

identify preliminary reaction conditions. These con-

ditions are shown in Fig. 3. Using these conditions the

optimum applied voltage and corresponding ¯ow rates

were determined for the individual reagents using the

manifold shown in Fig. 1. With 560 mM NH4C1 and a

constant pH of 7.8 the NH4C1 was placed in reservoir

A whilst water was placed in reservoirs B and E.

Reservoir E also acted as ground for the ¯oating

current. Voltage was applied across A(�) and B(ÿ)

which pumped the reagent from A to B for a period of

30 min. The volume of NH4C1 in reservoir A was

measured by ®lling the reservoir to a premarked point

bonding was with a micro syringe thereby replacing

the amount that had been pumped out of the reservoir

A. From the volume change over the 30 min the ¯ow

rate was calculated. The procedure was repeated again

for the next chosen voltage until the optimum applied

voltage was determined. Keeping the optimum applied

voltage and the pH constant the optimum concentra-

tion of the NH4C1 was determined and ®nally keeping

the optimum applied voltage and concentration con-

stant the optimum pH was determined. In a same

manner, the ¯ow characteristics of the sulphanilamide,

NED, nitrite standards and mixed reagent were deter-

mined. The mFIA manifold and con®guration for the

®nal analytical measurements is shown in Fig. 2.

2.4. mFIA system

The mFIA system used is described schematically in

Fig. 2 and was contained for experimental purposes in

a custom built insulation box with two power supplies

offering power outputs of up to 50 W with a maximum

voltage of 1 kV (Advance Hivolt, West Sussex, UK).

The current and voltage were monitored by a comput-

ing multimeter (model 1906, Thurlby Thandar Instru-

ment, Huntingdon, Cambridgeshire, UK). A custom

built light source with a green light emitting diode

(LED) was attached using an SMA ®tting to a 110 mm

i.d., 125 mm o.d. silica ®bre optic (Opti¯ex, Doncaster,

UK) which transferred the light to and from the

reaction channel in the micro-reactor. The receiving

®bre optics carried the absorbed light into a computer

controlled diode array micro-spectrometer with Spec-

View windows software (microParts, Dortmund, Ger-

Fig. 1. Schematic diagram of the micro flow injection manifold for

the determination of reagents flow characteristics. Channel size

was 325 mm wide and 30 mm deep. The volume of the channel

section from the junction BC to BE was 76 nl and BD to BE was

44 nl. A�sulphanilamide, B�ammonium chloride, C�N-(1-

naphthyl) ethylene diamine, D�nitrite/nitrate/sample, E�waste.
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many). The ®bres were prepared by removing the

plastic coated covering at the ends of the ®bre optics

with NITRO1MORS all purpose paint-vanish

remover (Winsford, UK). The bare ends of the ®bre

optics were then cleaned and cut with a quartz crystal.

The ®bre optics were carefully inserted into a water

®lled side channel of the chip and aligned using the

diode array micro-spectrometer. The ®bre optics were

®xed in position by gluing with a general-purpose

adhesive (Bostik, Leicester, UK) and silicon rubber

glue (RS components, Northants, UK) and allowed to

harden over night before being used.

3. Results and discussion

3.1. Characterisation of electro-osmotic flow

properties of the reagents

The electro-osmotic ¯ow characteristics of the

reagents used in the colorimetric determination of

nitrite were identi®ed using the manifold shown in

Fig. 1 according to the procedure described in Sec-

tion 2. The buffer used in the original method was

ammonium chloride. Despite this giving good electro-

osmotic properties bubbles did occur around the elec-

trodes due to formation of ammonia at voltage greater

than 600 V. To overcome these dif®culties several

other buffering systems were investigated, however,

the pH of the borate was found to be too high toward

the end of the scale (9±10) whereby EOF is greatly

reduced. The sodium acetate and sodium formate

buffers gave a low EOF due to their low pH (<3).

In characterising the buffer ¯ow a balance had to be

established between the best conditions for EOF and

the best conditions for the colorimetric reaction to

occur.

3.1.1. Ammonium chloride

The ¯ow characteristics of the NH4C1 are shown in

Fig. 3(a). An optimum voltage of 350 V was found to

deliver a ¯ow of 0.80 ml/min NH4C1, however, any

voltage between 250±400 V was clearly capable of

delivering a suitable ¯ow of NH4C1 (Fig. 3(a1)). As

the applied voltage was increased beyond 400 V the

¯ow rate decreased and as the power increased above

600 V bubbles were formed around the electrodes and

were being entrained into the channel forming air gaps

and causing the current to ¯uctuate.

The most suitable concentration for NH4C1 EOF

was determined to be 190 mM (1% w/v), thereafter, as

the concentration increased the ¯ow decreased due to

the ions migrating to the electrodes and leaving the

bulk solution behind (Fig. 3(a2)). The ¯ow rate for the

reagent is also known to be dependent on the pH

[11,12] with pH values between 4 and 10 being known

to be suitable for EOF. In this study the highest ¯ow

rate was obtained at pH 6.8 (Fig. 3(a3)). The decrease

in the ¯ow observed at pH>7 was again due to bubble

formation.

3.1.2. Sulphanilamide

The ¯ow characteristics of sulphanilamide are

shown in Fig. 3(b). The optimum applied voltage

Fig. 2. A schematic of the micro flow injection manifold for the determination of nitrite using diode array microspectrometer. Microreactor

chip enclosed in insulation box. Microchannel size of 302 mm wide and 115 mm deep with fibre optics (110 mm) indicated by the thick heavy

line, HVPS 1 and 2 are high voltage power supplies. Reservoir A�mix reagent, B�nitrite/sample, C�waste 1, D�waste 2.
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Fig. 3. Characterisation of electro-osmotic flow of reagents: (a) EOF of ammonium chloride, (a1) NH4Cl: 560 mM, pH 7.8, (a2) 350 V, pH

7.8, (a3) 350 V, 190 mM; (b) EOF of sulphanilamide, (b1) sulphanilamide: 2.9 mM, pH 2.0, (b2) 400 V, pH 2.0, (b3) 400 V, 0.39 mM; (c) EOF

of NED, (c1) NED: 5.4 mM, pH 4.0, (c2) 800 V, pH 4.0, (c3) 800 V, 0.05 mM; (d) EOF of nitrite, (d1) nitrite: 0.1 mM, pH 5.0, (d2) 400 V, pH

5.0, (d3) 400 V, 0.05 mM and (e) EOF of mixed reagent, (e1) mixed reagent: 1.16/1.95 mM, pH 4.0.
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for moving sulphanilamide was found to be 400 V,

however, the ¯ow rate at this voltage was only 0.38 ml/

min (Fig. 3(b1)). The lower ¯ow rates obtained at

these applied voltages are due to a low EOF, a result

mainly due to the acidic conditions of the reagent. The

best concentration of sulphanilamide in terms of

obtaining the highest ¯ow rate was 0.39 mM

(Fig. 3(b2)), however, the concentration range

between 0.39 and 0.98 mM was not optimum for

the reaction and the coloured azo dye was not formed.

Higher concentrations causes resistance in the channel

causing ¯ow to reduce, however, a much higher con-

centration of 1.18 mM sulphanilamide was used

because it immediately formed the coloured azo

dye when added to the nitrite even at low ¯ow rates.

The optimum pH of 1.18 mM sulphanilamide was 3.9

and gave a ¯ow rate of 0.52 ml/min (Fig. 3(b3)). The

diazotisation and coupling reaction is known to be pH

sensitive and is better carried out at pH<4. Thus, the

conditions of 1.18 mM sulphanilamide at pH 3.9

offers good compromise conditions.

3.1.3. N-(1-naphthyl) ethylene diamine (NED)

The hydrophobicity of NED meant that a constant

¯ow rate of 0.4 ml/min was found over a large voltage

range and only began to increase at voltages exceeding

800 V (Fig. 3(c1)).

Good ¯ow control was achieved for the given

concentration range (Fig. 3(c2)) at high voltages

with the maximum ¯ow rate obtained at 0.05 mM,

however, a reaction between the 1.18 mM sulpha-

nilamide and the 0.05 mM NED did not produced

an immediate coloured azo dye. It was only at higher

concentration (>1 mM) that an obvious coloured azo

dye was formed. The optimum pH was 4.5 with a

pH>5 showing a decrease in ¯ow rate (Fig. 3(c3)).

This was important because it was found that when

the pH of NED was >5 the coupling reaction did not

occur.

3.1.4. Nitrite standard

The voltage required to deliver a suitable ¯ow rate

for the nitrite standard was found to be between 300

and 600 V with 400 V being the optimum (Fig. 3(d1)).

A linear ¯ow was found between 0.005 and 0.05 mM

NOÿ2 , thereafter, the ¯ow ¯uctuated (Fig. 3(d2)). The

optimum concentration which gave the highest

¯ow rate was 0.05 mM and the optimum pH was

4 (Fig. 3(d3)). In the analytical method ammo-

nium chloride buffer at pH 4 controlled the EOF

overriding these effects and ensuring reproducible

injections.

3.1.5. Mixed reagents

To overcome the dif®culties observed in moving the

NED and sulphanilamide by EOF it was decided to

premix the two reagents. A mixture of 1.18 mM

sulphanilamide and 1.95 mM NED was prepared in

190 mM NH4C1 at pH 4 to facilitate the movement yet

still allow the required reaction to occur. The mixed

reagent was colourless and stable for at least 12 h. The

best applied voltage found to deliver a good ¯ow rate

(0.8 ml/min) for the mixed reagent was 600 V,

although any voltages between 300 and 600 V would

be indeed suitable (Fig. 3(e)). The increase in ¯ow

rate above 600 V lead once again to Joule heating and

an increase in bubble formation with subsequent

evaporation.

3.1.6. Reaction product (azo dye)

The product formed in the channel had a different

¯ow characteristics to the reagent and analyte and

therefore needed a different applied voltage to move it

around in the channel. This was established by carry-

ing out the reaction outside the reactor and introducing

the product to the reservoir for the ¯ow rate to be

determined. The pH of the azo dye dropped to <2

making it dif®cult to move by EOF. Although, applied

voltages between 100 and 1000 V were used there was

no evidence of the dye moving. It was observed that

the coloured azo dye formed in the channel was not

able to move to the detection point and that the

coloured azo dye, when left for more than 2 days

decolourised at applied voltages>400 V indicating

that any azo dye formed in the channel had to be

moved by using lower applied voltages. To achieve

appropriate analytical conditions a buffer system

(NH4C1) was used to aid mobility of the coloured

product.

3.2. Characterisation of detection method

3.2.1. Detector configuration

The detection system was designed to detect the

absorbance of the azo dye product but this depended

also on the arrangement of the ®bre optics, the sensi-
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tivity of the LED and the spectrophotometer detection

system. It was found that the best results were

obtained by actually ensuring that the ends of the

®bres were carefully cut to give a de®ned ¯at surface

so that the light coming out of this surface is not

diffracted but intensely focus into the channel onto the

receiving ®bre optics. The light intensity is greatly

improved when the ends of the ®bre optics are glued

into the channel and in direct contact with the solution

providing a good alignment of the ®bres as this was the

key in obtaining acceptable sensitivity. The intensity

of the green LED used was 0.25 candela with a

viewing angle of 258 which meant that if the ®bre

optics surface was carefully cut there was no need for a

focusing lenses.

3.2.2. Reagent mixing

As the absorbance ef®ciency is measured along the

microchannel in which the reaction occurs (as shown

in Fig. 2) signal intensity is dependent on the length of

sample plug in the channel. Experiments were per-

formed where the reaction was carried out outside the

reactor and the product was introduced directly into

the channel, thus ensuring complete mixing had

occurred. In these experiments the absorbance was

shown to be proportional to sample plug length in the

region of 1±9 mm (r2�0.996) with values up to 1.5

absorbance units for a 9 mm plug of 100 mM nitrite

solution.

However, when the reaction took place in the micro-

reactor the absorbances obtained were found to be

much lower. This was due to the incomplete mixing of

the reagents as they converged in the mFIA manifold.

To understand the processes that were occurring it is

important to realise that in this reaction the coloured

product is formed almost immediately, but the colour

then continues to intensify. The nitrite solution was

introduced at a T-junction into the detection channel

(which already contains the mixed reagent) as illu-

strated in Fig. 2. From the results obtained it appeared

that once the coloured dye (product) has been formed

by diffuse mixing at the interface between the solu-

tions it effectively blocked further contact of the

mixed reagent with the nitrite due to the lack of mixing

in such systems (Reynold numbers<1). The product

slug produced was less than 2 mm and was then

diluted on the resumption of the reagent mixture

giving a much lower absorbance than would be

expected. Further experiments with coloured dyes

and different shaped intersections (T and Y) seemed

to con®rm mixing beyond that expected by natural

diffusion was not occurring.

For the `Y' type (458) junction mixing there was

some evidence of movement as far as the inter-

section and a close look at the intersection with a

9x eye piece magnifying glass con®rmed the lack

of mixing. At the intersection the two dyes formed

distinctively two layers and did not mixed when

water was pumped into the channel to help the

mixing. This con®rmed the suggestion that mixing

was not occurring and therefore the reaction was

as expected to be, a diffusion limited interfacial

reaction. Thus it became apparent that the subsequent

analytical procedure must accommodate the non-mix-

ing or interfacial reaction characteristics of mFIA

systems.

3.2.3. Optimisation of the injection time

The effect of the injection time of the 100 mM nitrite

into the mixed reagent can be seen in Fig. 4. As can be

seen from the graph an injection time<10 s was not

long enough to inject a suf®cient amount into the

measurement channel and secondly an injection

time>50 s was too long so that by the time the

measurement was taken the coloured azo dye has

moved out of the measurement channel leaving a

new column of nitrite occupying the length of the

main channel. The maximum absorbance was

obtained at 30 s, although 20 and 40 s also gave good

response. For this work 20 s injection was chosen for

fast sample throughput.

3.2.4. Detection mode

The microspectrometer (Fig. 2) was supplied by

microParts, Dortmund, Germany. This consist of a

Hamamatsu S5463-256 photodiode array contained in

a grey aluminium housing with a spectral range of

380±780 nm (dispersion of 0.12 nm/mm). Light is

introduced to the diode array via a ®bre of 50 mm.

The electronic components consisted of microcontrol-

ler (Siemens SAB 80C166), A/D converter (Burr

Brown ADS 7807U), and had a resolution of 16 bits

with integration times of 40±2560 ms possible. The

system was used in the Scan mode for this work and

Window software SpecView was used to collect the

data, which was transferred into ASCII-File to be
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analysed in an Excel spreadsheet. To optimise the

absorbance signal the electro-osmotic ¯ow was

stopped when the product was in the channel (stop

¯ow mode) and the dye allowed to increase in inten-

sity, this allowed the signal to be adequately detected.

The absorbance was found to increase the longer the

product was in the channel until a steady state was

reached but a hold time of 20 s was chosen as this gave

acceptable limits of detection (Fig. 5). Subsequent

work was carried out using a 30 s loading of the mixed

reagents then 20 s injection of nitrite followed by 20 s

in the stopped ¯ow mode, the measurement was then

made and the cycle repeated.

3.3. Analytical characteristics

Using the optimised conditions a calibration curve

was obtained. The initial results using the manifold

shown in Fig. 2 (Mode 1) with the two negative

electrodes placed in reservoir C gave poor reprodu-

cibility (r2�0.973) as can be seen in the r2 value in

Table 1. The reproducibility was increased by chan-

ging the set up of the electrodes in the manifold so that

there were two negative waste reservoirs (Mode 2) to

avoid the previous situation where the two negative

electrodes were placed in the same reservoirs. In the

new con®guration (Fig. 2) the reservoir A(�) to

Fig. 4. Investigation of the sample injection time (scan mode), 100 mM nitrite was used with 3 absorbance reading taken (n�3) for each

injection. Chosen �max�526 nm.

Fig. 5. Effect of changing the stop flow mode time on absorbance for injection of 100 mM NOÿ2 (measurement recorded in scan mode).
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reservoir D(ÿ) was used to load the reagents and

reservoirs B(�) to reservoir C(ÿ) was used to inject

the sample. In each calibration run, the absorbance

measurement of the mixed reagent was zero reference

(or blank corrected) to compensate any dye formation

arising from trace nitrite before the nitrite standard

was injected and measured. A linear calibration was

obtained between 0 and 100 mM with an equation of

the line being y�0.0072xÿ0.0007 where y is the

absorbance and x is the concentration in mM with a

correlation coef®cient of 0.999. The limit of detection

(3�) was approximately 0.20 mM NOÿ2 . These results

were comparable with those achieved by the conven-

tional FIA in which the calibration was linear

(r2�0.999) between 0 and 100 mM and the LOD

(3�) was 0.20 mM (Table 1).

The reproducibility was not as good as for the

conventional FIA system where the %RSD was below

5% for all standards. In the micro ¯ow system

although the RSD was 2.6% for the 50 mM NOÿ2
standard and 5.3% for the 10 mM NOÿ2 standard it

decreased to 8.7% for the 1 mM NOÿ2 standard. This

lack of reproducibility is thought to be due to the

possibility of hydrodynamic ¯ow competing with the

EOF. To overcome this we are now investigating the

reproducibility when the channel size in the micro

reactor is reduced to 200 mm.

4. Conclusion

This paper has shown that it is possible to detect the

nitrite by a spectrophotometric method in a micro ¯ow

injection analysis system with acceptable sensitivity

and reproducibility. In developing such a system a

compromise has to be made between the conditions

required for good EOF (for example a pH range

between 2 and 9) and conditions required for the

diazotisation reaction. The optimisation could be car-

ried out more ef®ciently by measuring both the EOF

and absorbance. The method enables a sampling rate

of 50 samples/h with a signi®cant reduction in reagent

volumes and waste products. Further work needs to be

carried out in the more fundamental area of reagent

mixing and reaction characteristics to improve the

system. Work is also currently being carried out to

extend the method to the determination of nitrate by

using in situ cadmium reduction of the nitrate to

nitrite. Samples of natural waters will also be analysed

after ®ltration through a 0.25 mm membrane ®lters.
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1 Introduction

Since the introduction of the concepts of micro flow injection
analysis (mFIA) and micro total analytical systems (mTAS)
nearly a decade ago;1–3 few researchers in the field of analytical
science can fail to have been impressed by their impact,
particularly in the area of DNA diagnostics.4–10 From the
literature one is able to trace the pioneering developments of
fabrication11–19 through detection20–26 and separation23,24,27–32

to sample preparation,5,33–35 culminating, for example, in a
recent paper by Waters et al.34 which describes a fully
integrated mTAS device for DNA characterisation. Whilst the
majority of mFIA and mTAS studies have been focused on their
application as capillary electrophoresis (CE) separation sys-
tems,23,24,27–32 the opportunity exists to extend such micro-
reactor technology into the concept of ‘Lab-on-a-Chip’.36–39 In

this approach, the possibility exists of using a microfabricated
system for the full characterisation of a wide range of chemical
processes. Realisation of this goal requires a better under-
standing of the fluidics of chemically reacting systems in micro-
reactors.

Whilst hydrodynamically pumped systems have been de-
scribed in the literature,40–43 it has been the application of
electrokinetic based fluidic pumping that has dominated
previous studies.44–46 This clear trend can be attributed to
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factors such as the experimental simplicity in achieving
electroosmotic flow, i.e., no moving parts, and minimal back-
pressure effects, with the added dimension of superimposed
electrophoretic separations. It follows, therefore, that a good
basic understanding of the nature and capability of electro-
kinetic based devices is fundamental to the design and
development of future applications. A number of theoretical and
experimental studies of hydrodynamic and electrokinetic flow
within mFIA and mTAS, including channel switching and
velocity profile control, have been reported.47–52

In this tutorial review, we describe the basic theoretical
considerations governing liquid phase chemical reactions in
micro-reactor manifolds using electrokinetic based fluidics. The
calculations described demonstrate how the voltages applied
may be used to control both the spatial (i.e., lengthways along
the channel long axis) and temporal evolution of chemical
components and reaction products. The combination of spatial
and temporal control of reactions, realisable in such micro-
reactor manifolds (but not, for example, in microtitre wells),
offers many potential advantages such as identifying the
optimum detector position and the best point at which to
perform reagent additions in catalytic systems. The purpose of
this work is to review the quantitative theoretical basis for this
type of control and to provide illustrative calculations to guide
the design and development of novel micro-reactor systems.

The paper is organised as follows. First, the basic principles
of electroosmotic flow (EOF) and electrophoresis are described.
We then consider a specific micro-reactor manifold configura-
tion and show how the operating voltages can be adjusted to
control the loading, injection and flow phases necessary to
investigate analytical type chemical reactions. The next section
details the equations describing the spatial and temporal
evolution of chemical reactions under EOF and electrophoretic
control. Numerical results are then presented which illustrate
the main features of the behaviour of chemical reactions under
voltage control. Finally, the conclusions and the outlook for the
future are discussed.

2 Electroosmotic flow and electrophoresis in
micro-reactor manifolds

Fabrication of mFIA or mTAS micro-reactor manifolds involves
creating a network of micron sized channels in a solid substrate
surface using either wet etch, laser ablation, embossing,
micromachining or microlithography techniques.11–19,53–56

Suitable substrates include materials such as glass, oxidised
silicon and various plastics which support EOF. In most
fabrication procedures a top cover is then bonded to the
substrate using anodic or fusion bonding.53,56 Holes drilled
through the top cover allow connection to the channels and also
form the reagent reservoirs. Voltages to drive EOF are applied
through electrodes placed within the reservoirs. With this form
of fabrication the channels approximate to a rectangular cross-
section with depths in the range 10–200 mm, widths of 50–200
mm and lengths in the centimetre range, as shown in Fig. 1. The
reagent reservoirs are typically 1 mm in diameter and 1 cm in
depth. A plan view of an entire micro-reactor manifold (as used
in recent analytical studies57,58) is shown in Fig. 1. For the
purposes of this paper, we shall consider parameters appropriate
to glass micro-reactor manifolds containing aqueous solutions
of reactant species X and Y that react to form a product Z which
can be detected colorimetrically.

For pure electroosmotic flow within a channel, the velocity
profile across the channel is uniform except for the region very
close to the channel wall.50,59,60 The thickness over which the
velocity is non-uniform is of the order of the Debye length and
is in the nanometer range. The linear liquid velocity far from the
walls due to electroosmosis vos is60

v
E

os = - ee z

h
0 (1)

where E is the electric field (equal to the voltage divided by the
distance between the electrodes for channels of uniform
resistance per unit length), e is the relative permittivity of the
liquid, e0 is the permittivity of free space, z is the zeta potential
of the channel/liquid interface and h is the liquid viscosity. The
negative sign indicates that when z is negative, the diffuse
charge in the liquid is positive and so the liquid flow is towards
the negative electrode. The volumetric flow rate due to
electroosmotic flow is Vos = Achannelvos, where Achannel is the
cross-sectional area of the channel. The electric current I
transported by the liquid is proportional to vos according to

I
A v= channel os

0

hl

ee z
0 (2)

where l0 is the electrical conductivity of the liquid. Eqn. (2)
neglects the possibility of surface conduction, which can be a
complicating factor under some conditions.60

It can be seen that the EOF is primarily controlled by the zeta
potential at the channel wall/solution interface.  For aqueous
solutions in glass channels the zeta potential varies from zero at
pH ≈ 2 to about 2100 mV at pH 7.61–64

At fixed pH, the magnitude of z decreases with increasing
concentration of most common electrolytes.61–64 It should be
noted that the presence of species such as cationic surfactants,
which adsorb strongly at the glass/water interface, can strongly
influence z and hence the EOF.65 The zeta potential is also
sensitive to the nature of the glass and its treatment.61 For
aqueous solutions around pH 7 (for which z is around 2100
mV) with E of the order of 100 V cm21, vos is of the order of
mm s21.

Fig. 1 Plan view of the basic micro-reactor configuration (not to scale).
The reservoir diameters are typically 1 mm, the channel widths are typically
100 mm and the side length of the microreactor is typically 2 cm. The middle
diagram shows channel BC filled with Y. The bottom diagram shows the
experimental configuration modelled here in which a stream of X
containing a slug of Y (shown in 3D view in inset) is moving by EOF
towards reservoir D.
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Note that pure electroosmotic flow is only obtained in the
absence of a pressure difference DP across the tube. If DP is not
zero, one obtains a combination of electroosmotic and pressure
driven flow. Since pressure driven flow (in a cylindrical
channel) shows a parabolic velocity profile, a flat velocity
profile across the channel is only obtained when DP is
negligibly small. Experimentally, non-negligible pressure dif-
ferences may be caused by a difference in liquid levels between
the inlet and outlet reservoirs (Dhres), by Laplace pressure
differences resulting from the curved liquid menisci in the inlet
and outlet reservoirs or by obstruction within the channel
leading to a back-pressure.

The Laplace pressure change across the liquid menisci
within the reservoirs is equal to 2g/r, where g is the liquid/air
surface tension and r is the radius of curvature of the liquid
meniscus. As in capillary rise phenomena,66 the radius of
curvature of the liquid meniscus depends on both the radius of
the reservoir containing the surface (rr) and the contact angle q
made by the liquid with the reservoir wall according to r = rr/
cosq. For pure water of tension 72 mN m21 making a contact
angle of 0° within a cylindrical reservoir of radius 1 mm, the
Laplace pressure is approximately 140 Pa. The magnitude of
this Laplace pressure, equivalent to the hydrostatic pressure
exerted by a column of water of approximately 14 mm in height,
can be significant in considerations of flow within micro-
reactors.

Within a micro-reactor, a non-zero DP from Laplace effects
arises only when the Laplace pressure differences across the
inlet and outlet reservoirs are not equal. Since the liquid menisci
within the inlet and outlet reservoir are normally similar, DP
values from Laplace effects are generally expected to be
considerably smaller than the value quoted above for a single
meniscus. For a cylindrical reservoir containing an electrode,
the meniscus shape is complex and the Laplace pressure will
depend on the positioning of the electrode within the reservoir,
the contact angles of the liquid with the electrode and the
reservoir wall in addition to the tension. The value of DP arising
from Laplace pressure differences can be minimised by
matching reservoir diameters and electrode positioning for the
inlet and outlet reservoirs as far as possible. The Laplace
pressure can be reduced to zero if the reservoir diameter is made
sufficiently large such that the liquid surface contains a flat
region. This situation applies when the reservoir radius is much
greater than the length scale over which the liquid meniscus is
curved, i.e., the capillary length equal to Ag/Drg, where Dr is
the density difference between the liquid and air and g is
acceleration due to gravity.

In order to ensure that ‘pure’ EOF is obtained within a
channel, it is necessary to consider the limits of DP within
which the pressure driven component of the total flow can be
considered negligible relative to that from EOF. In the case that
Laplace pressures and channel obstruction effects are absent,
i.e., DP arises only from hydrostatic pressure resulting from a
difference in reservoir liquid height Dhres (DP =DhresDrg),
this can be estimated as follows. We consider the magnitude of
Dhres sufficient to produce a pressure driven volumetric flow
rate Vpress equal to Vos. We estimate Vpress for laminar flow
within a cylindrical channel of ‘effective’ radius reff such that
preff

2 = Achannel and equate this with Vos:

V
h gr

l
V

V

lpress
res eff

channel
os

0

channel

= = =pD r

h

ee z

h

4

8
(3)

where lchannel is the channel length held between the reservoirs
and V is the voltage applied between the reservoirs. Rearrange-
ment of eqn. (3) shows that, for Vpress to be less than 10% of Vos,
then

Dh
V

grres
0

eff
2@

ee x

r10
(4)

Inspection of eqn. (4) shows that for many mTAS operating
conditions described in the literature, Dhres may have to be less
than 1 mm of water pressure in order to suppress pressure driven
flow. Depending on the conditions (e.g., whether the feed
reservoir height is greater or less than the destination reservoir),
the pressure driven flow may either accelerate or retard the
EOF. For either acceleration or retardation, pressure driven flow
will perturb the flat velocity profile expected for ‘pure’ EOF.
Disturbances of EOF by pressure effects have been demon-
strated experimentally by Boer et al.46 Lack of proper control of
these small pressure differences is expected to lead to
irreproducible and erratic experimental results.

In addition to EOF, charged species within the channels move
under the influence of the electric field by electrophoresis. The
electrophoretic velocity vph of a species is given by67

v
zeED

kTph = (5)

where z is the number of electronic charges on the species
(positive for cations, negative for anions), e is the electronic
charge (magnitude only), D is the diffusion coefficient, k is the
Boltzmann constant and T is the absolute temperature. The total
velocity of a particular species is simply the vector sum of that
due to the electroosmosis and electrophoresis, i.e., vtotal = vph +
vos. For aqueous solutions in a glass channel (where z is
negative), a positive value of vos signifies movement towards
the negative electrode. In this situation, the electrophoretic
velocities of cations (z positive) are increased relative to vos

whereas the velocities of anions are decreased. For common
small ions, the magnitudes of vph and vos, both of which scale
with E, are generally similar and in the mm s21 range.

3 Micro-reactor manifold configuration

In this section we present explicit calculations for the simple
micro-reactor manifold configuration shown as a plan view in
Fig. 1. It consists of four reservoirs (A, B, C and D) each
containing an electrode and connected by etched channels. The
lengths of the different channel sections are specified here by
reference to the letters marking the corner points as shown in
Fig. 1. We shall consider a bimolecular, reversible reaction
which, in analytical terms, could be the formation of a
chromogenic complex:

X + Y " Z (6)

The reaction has a forward, second-order rate constant kf and
reverse, first-order rate constant kr. For the configuration
shown, detection of the reaction progress is provided by optical
absorbance measurements along the EH channel section
situated between fibre optics connected to a spectrophotometer.
Although the theoretical results presented here refer to the
specific configuration of Fig. 1, the calculation approach may
be easily modified to apply to a very wide range of manifold
designs with more complex channel labyrinths and different
detection systems.

The reactant species X and Y are introduced into the micro-
reactor as follows. Initially, all reservoirs and channels are filled
with solvent. The solution of reactant X is introduced into
reservoir A and a suitable voltage is applied across the
electrodes within the reservoirs A and D to fill the AD channel
with X (the ‘loading’ phase). Reactant Y is introduced into
reservoir B and a voltage across BC is used to fill the BC
channel (the ‘injection’ phase) as shown in Fig. 1 (middle). For
the experimental situation to be modelled, a voltage is reapplied
across AD which mobilises the stream of X, now containing a
slug of Y, in the EH channel (the ‘flow’ phase, Fig. 1, bottom).
In fact, as will be discussed in detail in the next section, suitable
voltages across both AD and BC must be applied simultane-
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ously for the loading, flow and injection phases in order to
achieve a ‘clean’ injection. The progress of the reaction of the
slug of Y within the flowing stream of X is then monitored by
the fibre optic spectroscopic detection systems and is con-
sidered in detail in the calculations presented later.

4 Voltage conditions for loading, flow and
injection

As discussed by Seiler et al.,49 dc circuit analysis (using
Kirchhoff’s rules) can be used to predict the variation with
applied voltages of the electrical currents, and hence EOFs, in
the different channel sections of a manifold. The manifold
configuration of Fig. 1 can be represented as the equivalent dc
circuit shown in Fig. 2. The circuit consists of two voltage
sources VAD and VBC (supplied by the electrode pairs in
reservoirs AD and BC, respectively) connected by the appro-
priate channel sections which form resistance elements RIJ,
where the subscripts signify the particular channel section. The
overall circuit contains two loops which both contain RFG. We
assume here that all channel sections have a uniform cross-
sectional area and zeta potential and all contain liquid of
identical conductivity. Under these conditions, easily achieva-
ble with solutions containing low concentrations of reacting
species in a relatively high concentration of inert electrolyte, the
resistance of a channel section is proportional to its length. We
note that the approach could be extended to the more complex
case where the resistance per unit length of the channel is not
constant in different parts of the manifold. Neglecting surface
conductivity, the electrical currents (proportional to the EOF
velocity as discussed earlier) in the arms of loops 1 and 2 are I1

and I2, respectively. The current in the FG channel section
(common to both loops) is I1 + I2. Summing the product of
current and resistances around each loop gives the following
pair of equations:

VAD = (RAE + REF + RGH + RHD + RFG)I2 + RFGI1

= Rloop 2I2 + RFGI1

VBC = (RCG + RFB + RFG)I1 + RFGI2

= Rloop1I1 + RFGI2 (7)

Solving the simultaneous equations and rearranging yields the
following expressions for I1 and I2:

I
V V R R

R R R

I
V V R R

R R R

1
BC AD FG loop 2

loop 1 FG
2

loop 2

AD BC FG loop 1

loop 2 FG
2

loop 1

=
-

-

=
-

-

/

/

/

/2 (8)

The current through the FG channel section is I1 + I2. Eqn. (8)
allows the currents, and hence the EOF, in each channel section

to be calculated for any voltages provided that the resistances of
the different channel sections are known.

For the loading and flow phases, we require EOF (i.e., finite
current I2) between reservoirs A and D with zero EOF between
reservoirs B and C (i.e., current I1 equal to zero) to avoid
contamination of one reactant stream with the other. Similarly,
for the injection phase, finite current I1 and zero current I2 are
required. Inspection of eqn. (8) shows that, in order to obtain
zero I1, the voltages VAD and VBC must obey the relationship

VBC = VADRFG/Rloop 2 = VADlengthFG/lengthloop 2 (9)

The second equality is valid in the case that the resistance per
channel length is constant. Similarly, to obtain zero I2, we
require

VAD = VBCRFG/Rloop 1 = VBClengthFG/lengthloop 1 (10)

Hence, in order to obtain a ‘clean’ injection of a slug of reactant
Y into a stream of X, both voltages VAD and VBC must be
switched synchronously between the values required [and
calculated using eqns. (9) and (10)] for the loading, injection
and flow phases. This highlights the necessity for automated
computer control of the applied voltages in micro-reactor
devices.

It is, of course, possible to operate the micro-reactor such that
the contents of reservoirs A and B are made to flow into the
detection channel EH in different ratios controlled by the
applied voltages (as opposed to the load, inject, flow sequence
described above). Fig. 3 shows the ratio I2/I1 for different ratios
of the applied voltages VAD/VBC at constant VBC. Since the ratio
of electrical currents is equal to the ratio of electroosmotic flow
rates, the plot demonstrates that the mixing ratio of the flowing
streams can be varied continuously by adjustment of the voltage
ratio. (It should be noted that the current and voltage ratios in
Fig. 3 are invariant with the absolute magnitudes of either
current or voltages.) Fig. 3 also shows a similar plot in which the
voltage VAD is held constant. These calculations demonstrate
that, in principle, the applied voltages can be used to vary

Fig. 2 The dc circuit equivalent to the micro-reactor configuration of Fig.
1. The rectangular boxes are the resistance elements arising from the
channel sections marked by the subscripts.

Fig. 3 Variation of I2/I1 with VAD/VBC (a) and I1/I2 with VBC/VAD (b). The
calculations are for the micro-reactor configuration of Fig. 1 (assuming
constant resistance per channel length) for channel lengths AE = CG = FB
= HD = 10 mm, EF = FG = 5 mm and GH = 20 mm. The plots show
the voltage ratios required (for this particular configuration) to obtain zero
EOF in the injection circuit during loading/flow and zero EOF in the
loading/flow circuit during injection.
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continuously the ratio of concentrations of X and Y entering the
detection channel. This type of micro-reactor manifold control
can therefore be used, for example, to determine calibration data
in analytical systems53 or to investigate the concentration
dependence of reaction kinetics under voltage control without
refilling of the reservoirs.

It should be noted that this analysis, although revealing the
basic principles, is somewhat simplistic in that hydrodynamic
effects associated with the flows across manifold junctions and
surface conductivity effects are neglected. More sophisticated
modelling, as described, for example, in refs. 47, 48, 51 and 52,
show that complex flow patterns around manifold junctions
may significantly modify slug profiles obtained by the injection
procedure. Additionally, non-zero surface conductivity would
require modification of the equations presented here.

5 Control of chemical reactions under
electroosmotic and electrophoretic flow

We take as the starting point a channel containing species X
with a rectangular slug of reactant Y as would be obtained from
a perfect load–inject–flow sequence (shown in Fig. 1). We
assume here that species movement within the channel is
controlled only by EOF and electrophoresis, i.e., that pressure
driven flow is absent. Under these conditions, the species’
velocity profiles across the channel are flat (except for the
region very close to the channel wall). Hence all concentrations
vary only in the direction of the channel long axis x but are
uniform in both orthogonal directions across the channel.

We consider a section of channel of length 2a centred at x =
0 and extending from x = 2a to x = +a. For the purpose of the
numerical calculations, we adopt a moving coordinate system
such that xlab = x + vost, where xlab is the x coordinate relative
to the laboratory, vos is the linear electroosmotic velocity and t
is time. Initially the channel contains species X at concentration
CX

0 with a rectangular slug of species Y at concentration CY
0.

The slug of Y has a width of 2b and is initially centred at x = 0.
As described above, X and Y can react reversibly to form
product Z with forward rate constant kf (second order) and
reverse rate constant kr (first order). The initial conditions are
stated as follows:

2b @ x @ b: CX = 0, CY = CY
0 at t = 0

± b @ x @ ±a: CX = CX
0, CY = 0 at t = 0

2a @ x @ a: CZ = 0, at t = 0
(11)

Species X, Y and Z have diffusion coefficients DX, DY and DZ

and move (relative to x = 0) with electrophoretic velocities
vphX, vphY and vphZ, respectively. We assume that all diffusion
coefficients are invariant with concentration and that all thermal
effects (arising, for example, from heats of reaction) are
negligible. The concentrations of X, Y and Z are functions of
both time and x according to the following set of equations:68

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
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X
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Z
Z

Z
2 f X Y r Z phZ

Z

= - + -

= - + -

= + - -

2

2

2

(12)

These equations correspond to the simple reaction scheme of
eqn. (6) but more complex reaction schemes are easily
incorporated. The situation described here for micro-reactors is
identical (from a theoretical point of view) with that of
electrophoretically mediated microanalysis (EMMA) described
both experimentally and theoretically by Regnier et al.69–72

Additionally, a related set of equations have been used recently

to describe the elution characteristics of species undergoing a
first-order reaction in a capillary electrophoresis system.73

The boundary conditions are taken to be that the concentra-
tions of X, Y and Z are unperturbed from their initial values at
x = ±a, i.e.,

CX(x = ±a) = CX
0, CY(x = ±a) = CZ(x = ±a) = 0 (13)

The use of these boundary conditions restricts the analysis to
conditions such that the zone of reaction is far from the channel
ends. For the manifold configuration shown in Fig. 1, this is
valid since we wish to simulate the concentration changes
occurring in the detection channel section GH before the
reaction zone moves round the corner into section HD. The
series of  eqns. (11)–(13)  is solved numerically to obtain plots
of CX, CY and CZ versus xlab for different times. The numerical
algorithm, outlined in the Appendix, was implemented in a
Visual Basic program running in EXCEL on a PC.

6 Example calculations

We first model the time evolution of the concentration profiles
for a reaction in which all species X, Y and Z are uncharged. All
other conditions are specified in the legend of Fig. 4. In this
case, all reaction species move together in the channel with the
electroosmotic velocity vos and mixing of the reactants occurs
only by inter-diffusion between the X stream and slug of Y.  Fig.
4 shows three ‘snapshots’ of the concentration profiles where it
can be seen that product Z is formed only at the trailing and
leading edges of the slug of Y where diffusional inter-mixing
gives finite concentrations of both X and Y. Because the time

Fig. 4 Calculated concentration profiles for CX (solid line), CY (dashed
line) and product CZ (solid line) for time = 0 (a), 15 (b) and 30 s (c). The
parameters are CX

0 = 1 mM, CY
0 = 0.9 mM, CZ

0 = 0 mM, DX = 1 3 1029

m2 s21, DY = 0.7 3 1029 m2 s21, DZ = 0.5 3 1029 m2 s21, vos = 0.5
mm s21, kf = 1000 l mol21 s21, kr = 0 s21, slug width (2b) = 5 mm and
all electrophoretic velocities set equal to zero (i.e., all species are
uncharged).
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required for reactant diffusion across the width of the slug of Y
is long relative to the time the slug takes to traverse the detection
channel EH, the extent of product formation is low.

The behaviour of charged reactant species is very different.
We simulate the case in which X and Z both bear a positive
charge and Y is uncharged. Within the electric field, the
velocities of X and Z are accelerated relative to vos whereas Y
moves with velocity vos. As seen in Fig. 5, the difference in
electrophoretic velocities of the different species causes a
displacement of the slug of Y relative to the ‘gap’ in the
concentration profile of X. This gives a greatly increased
mixing of X and Y (with concomitant formation of Z) at the
trailing edge of the Y slug. The extent of product formation
within the detection time is therefore greatly increased relative
to that for the case of uncharged reagents. Changing the signs of
the charges on both X and Z from positive to negative
(calculations not shown) causes the product formation to occur
at the leading (rather than the trailing) edge of the slug. We note
here that it is not necessary for the species X and Y to have
different sign charges to induce displacement of the slug of Y
relative to the ‘gap’ in X. Even with the same (non-zero)
charges, X and Y will have different electrophoretic velocities,
and thus show displacement, so long as their diffusion
coefficients are different [see eqn. (5)].

For the case in which X and Z bear charges, and Y is neutral
as in Fig. 5, the extent of product formation is largely controlled
by the relative rate of displacement of the concentration profiles
of X and Y. In turn, this is determined by their relative
electrophoretic velocities which, like vos, scale with the applied
electric field. Fig. 6 shows the effect of increasing the electric
field which is modelled by increasing vos whilst maintaining vph

for the different species at constant ratios relative to vos. The
ordinate of Fig. 6 shows the integral of the product concentra-
tion profile, integrated over the detection channel length. (For

an optically absorbing species Z with the absorbance detection
configuration of Fig. 1, the measured absorbance signal is
proportional to this integral.) It can be seen that the applied
voltage can be used to control the extent of product formation.
The minimum value of product formation is obtained with zero
voltage when the extent of product formation is determined only
by inter-diffusion of X and Y without the aid of electrophoretic
displacement of the concentration profiles. Sufficiently high
applied voltage produces virtually complete displacement and
complete conversion of Y to product.

As seen above, the time required for complete reaction of the
Y slug is determined largely by the time taken for the slug to be
displaced from the ‘gap’ in the concentration profile of X and
should therefore decrease as the slug width is decreased.
Simulation of this effect is shown in Fig. 7, where it can be seen
that 100% product conversion can be achieved (at a particular
applied voltage) by reducing the width sufficiently. Obviously,
in the simulation shown, the total amount of product formed
reduces as the initial width of the Y slug is decreased. However,
it would of course be possible to inject multiple slugs of Y, so
as to increase the total amount of product formation simultane-
ously with increasing the percentage conversion. We note here
that techniques to produce very narrow slugs (mm) have been
demonstrated experimentally.74 At sufficiently small widths,
diffusion alone would ensure complete reactant mixing and
conversion of the Y slug to product.

We next examine the effects of varying the forward rate
constant of the chemical reaction. As seen above, for the
concentrations used in the simulation with kf = 1000
l mol21 s21, the extent of chemical reaction is largely controlled
by the time required for inter-mixing of the reagents. Under

Fig. 5 Calculated concentration profiles for the conditions of Fig. 4 except
that vphX = 0.5, vphY = 0 and vphZ = 0.25 mm s21. This corresponds to the
species X and Z both bearing a positive charge (which serve to accelerate
their total motion) and Y being uncharged.

Fig. 6 Variation of the integral of the product concentration profile with
time for different vos equal to 0, 0.5 and 1 mm s21 for the curves in
ascending order. The electrophoretic velocities were held at vphX = vos, vphY

= 0 and vphZ = vos/2 with other conditions as for Fig. 5. The horizontal
dashed line corresponds to total conversion to product.

Fig. 7 Variation of percentage conversion of Y with time for (in ascending
order) initial width of the slug of Y equal to 10, 5, 2 and 1 mm. All other
conditions were as for Fig. 5.
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these conditions, increasing kf gives virtually no change in the
extent of product formation (Fig. 8) since chemical reaction is
already faster than the inter-mixing of X and Y. Reducing kf to
lower values causes product formation to decrease as the rate-
determining step switches from mixing to the chemical reaction
step. Concentration profiles for reactions where product
formation is controlled either by mixing or by chemical reaction
are compared in Fig. 9. We note here that the transition from

mixing rate control to chemical reaction rate control may be
induced either by changing the forward rate constant or by
changing the reactant concentrations since forward reaction rate
is equal to the product kfCXCY.

The simulations highlight the importance of a number of
time-scales in considering second-order chemical reactions in
micro-reactor manifolds. Definitions of the time-scales appro-
priate to the manifold configuration discussed here are as
follows:

tdiffusion = b2/D (14)

tchemical = 1/kfCX
0 (15)

tdisplacement = 2b/|vphX 2 vphY| (16)

tdetection = ldetection/(vos + vphY) (17)

where tdiffusion is the time required for inter-diffusional mixing
of X and Y across the slug of Y (width 2b) to occur. In this
context, D is the mean of DX and DY. tchemical is the time
required for chemical reaction between X and Y (under
conditions when CX

0 > CY
0). tdisplacement is the time required to

displace completely the slug of Y from the ‘gap’ in the
concentration profile of X. tdetection is the time spent by the slug
of Y within the detection channel of length ldetection. Considera-
tion of the relative magnitudes of these times allows a crude
prediction of the behaviour of a chemical reaction within a
microreactor system. Virtually complete conversion to product
is expected when tdetection > tdisplacement (or tdiffusion) and
tchemical. The extent of product formation is controlled by the
applied voltage (by control of vph) when tdetection < tdisplacement

and tdisplacement > tchemical. Under these conditions, the product
formation is insensitive to the chemical reaction rate and the
initial concentration of X but is controlled by the applied
voltage. When tdetection < tchemical and tchemical > tdisplacement or
tdiffusion, product formation is sensitive to the chemical rate
constant, the reactant concentrations and the applied voltage.
These considerations apply to the simple load–inject–flow
voltage control sequence described earlier. However, as
demonstrated elegantly by Regnier’s group in the context of
EMMA, more complex voltage control sequences can be used
to control the extent of reaction.69–72

Finally, we consider the effect of introducing reversibility
into the chemical reaction. Under conditions when the reaction
reaches its final, equilibrium extent of product formation before
exiting the detection channel section, the final value reached
decreases with increasing kr as shown in Fig. 10. In this
situation, when displacement and chemical reaction are com-
plete, the final extent of product formation is primarily
controlled by the equilibrium constant K ( = kf/kr) and CX

0.

Fig. 8 Variation of integral CZdx with time for (in ascending order) kf =
10, 100 and 1000 l mol21 s21. The initial width of the slug of Y was 2 mm
and all other conditions were as for Fig. 5. The open circles were calculated
for kf = 10 000 l mol21 s21 and correspond to the fast reaction limit under
these conditions. The horizontal dashed line corresponds to total conversion
to product.

Fig. 9 Concentration profiles of X, Y (dashed line) and Z after 20 s for kf

= 1000 (a), 100 (b) and 10 l mol21 s21 (c). All other conditions were as for
Fig. 8.

Fig. 10 Variation of integral CZdx with time for kf = 1000 l mol21 s21 and
(in ascending order) kr = 3, 1, 0.3 and 0 s21. All other conditions were as
for Fig. 8. The horizontal dashed line corresponds to total conversion to
product.
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The simulations illustrate that product formation in micro-
reactor manifolds may (under different conditions) be sensitive
to the applied voltage, the chemical rate constants, concentra-
tions, diffusion constants and species charge. In principle,
micro-reactor investigation of reactions can yield information
on all these physico-chemical properties. For the simulations,
the range of input parameters were chosen to be realistic for the
type of reaction that may be studied. For example, in aqueous
solution at pH 7 and 25 °C, the complex formation reaction Ni2+

+ PADA gives NiPADA2+ has kf = 1300 l mol21s21 and kr =
0.1 s21 where PADA is pyridine-2-azo-p-dimethylaniline.75,76

Ni2+ and the NiPADA complex both have a charge of +2
whereas PADA is uncharged. The value of D for Ni2+ is 1.25 3
1029 m2 s21.77 Since PADA has a larger molecular volume than
Ni2+, it is expected to have a lower diffusion coefficient
(approximately half). Similarly, the complex is expected to have
a D value lower than that of either reactant. Hence the physico-
chemical properties of the Ni–PADA reaction are such that the
simulation parameters should correspond approximately to
somewhere between those of the top two curves of Fig. 10. For
the Ni–PADA reaction, the molar absorptivity of the complex
product is approximately 32 000 l mol21 cm21 at the wave-
length corresponding to maximum absorption.75 Using the
spectrophotometric detection configuration described here, the
integrated product concentration profile would produce a large
absorbance signal, easily detectable with good precision.

7 Conclusions and future outlook

The theoretical principles and calculations described in this
tutorial review provide the basis for understanding the behav-
iour of chemical reactions within micro-reactor manifolds with
electrokinetic flow control. The aim has been to provide
principles to guide the design and development of such systems
and the main conclusions are as follows:

1. EOF is determined primarily by the zeta potential of the
channel/solution interface and gives a uniform velocity profile
across the channel except very close (nm) to the channel wall.
Non-uniform velocity profiles may be caused by pressure
gradients arising from unequal reservoir heights, Laplace
pressure effects resulting from the liquid menisci within the
reservoirs and non-uniformity of the cross-sectional areas and
zeta potential of the channels. Non-uniform zeta potentials may
arise owing to specific adsorption of reagents in different
channel sections or when the different channel sections are
constructed of different materials. These complicating factors
require careful experimental control in order to obtain accurate,
reproducible results in micro-reactor systems.

2. Analysis of the dc circuit equivalent to the micro-reactor
configuration allows the proper calculation of the voltages
required for a ‘clean’ injection of a reactant slug into a stream of
a second reactant.

3. The temporal and spatial evolution of a chemical reaction
under EOF and electrophoretic control is determined primarily
by the relative magnitudes of tdiffusion, tchemical, tdisplacement and
tdetection. Proper adjustment of the relative magnitudes of these
different time-scales allows the extent of product conversion to
be controlled by the voltages applied to the micro-reactor
device.

The potential power of micro-reactor manifolds lies in the
fact that complex channel labyrinths can be accommodated
within a small device and that they allow the investigation of
chemical reactions to be made under computer control. From
the results described here, measurement of the extent of product
conversion under different voltage conditions should, in
principle, yield quantitative information on reaction rate
parameters and charge/diffusion properties of the reactant
species. It is technically feasible to construct micro-reactor

manifolds in which many reactions could be investigated either
in sequence or simultaneously using automated computer
control. Such a development would go some way towards
realising the ‘Lab-on-a-Chip’ concept and would provide a
quantum leap in the rate of accumulation of physico-chemical
information for analytical, general chemical, biochemical and
catalytic reactions. Analogously to a conventional electronic
chip, the main function of such a device would be rapid
gathering and processing of chemical information.

In this paper, we have discussed a simple homogeneous
liquid phase reaction, but many other possibilities can be
envisaged. The areas of homogeneous and heterogeneous
catalysis, in particular, could benefit from the high speed, high
throughput experimentation possibilities of micro-reactors. In
this connection, it has recently been demonstrated that glass frits
may be incorporated within a micro-reactor channel.78 Further,
a palladium catalyst supported on such a frit has been used
successfully to catalyse reactions within a manifold under EOF
control.79 It was demonstrated that the spatial and temporal
control of reactants could be used to deliver a first reagent to a
catalyst surface followed by a second reagent after a con-
trollable time period. This type of detailed control is generally
impossible (at least within the short time-scales achievable in
micro-reactors) in the usual situation of stirring a reagent
mixture over a slurry of catalyst. In analytical terms, such an
approach could mean controlling the output from a chemi-
luminescent reaction accurately at a specific detector site.80

Some of these possibilities are currently being pursued further
in the authors’ laboratories.

8 Appendix 

8.1 Numerical algorithm for the solution of eqns. (11)–(13)

We use the fact that the diffusion–reaction eqns. (12) have
virtually similar form:

∂
∂

∂
∂

∂
∂

C

t
v

C

x
D

C

x
S x t kk k

k
k

kk
+ = + =ph X,Y,Z)

2

2 ( , ) ( (A1)

where Sk(x,t) are the source terms which depend on x and t
through the rates of the respective chemical reactions. In our
particular case of chemical reaction, eqn. (6), we have

SX = SY =2SZ = krCZ(x,t) 2 kfCX(x,t)CY(x,t) (A2)

To find the evolution of the concentration profiles, Ck(x,t), with
time we use a semi-implicit Crank–Nicholson method for
integration of eqns. (A1).81,82 For the convenience of readers we
give here the details of the numerical scheme applied to eqns.
(A1).  To avoid overburden, we omit the subscript k in our
further notations. The space and time are discretised as
follows:

xi = (i 2 1)Dx, tj = (j 2 1)Dt, i = 1, 2,  . . ., n;
j = 1, 2, . . . (A3)

where Dx and Dt are the spatial and time steps. Since eqns. (A1)
are highly non-linear owing to the source terms, an appropriate
linearisation is needed. In our calculations we apply the Crank–
Nicholson scheme as follows:
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where the non-linear terms, S, are estimated by using only
information from the previous time step (j) or from the initial
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conditions (j = 0). We remark that the coupling between the
three eqns. (A1) comes from the source terms. That is why the
resulting equations after the above discretisation are semi-
decoupled in the framework of a single time step. Thus, the
substitution of the partial derivatives in eqn. (A4) by finite
difference approximations 
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gives a system of linear equations describing each of the profiles
in the next time (j + 1) step:

b(1 + a)Ci + 1,j + 1 2 (1 + 2b)Ci,j + 1 + b(1 2 a)Ci2 1, j + 1 = gi,
i = 2, . . ., n 2 1 (A6)

where

a b
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2
1 1 2 1
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(A7)

The implication of the boundary conditions, eqns. (11), requires
that

Ci,j + 1 = Cn,j + 1 = C0 (A8)

where C0 = C0
X for X profile and C0 = 0 for Y and Z profiles.

Initially, stepwise profiles are used as an initial condition,
according to eqns. (11). We solve the three-diagonal system of
linear eqns. (A6) by using the Thomas algorithm81 to obtain the
new concentration profiles (j + 1), which then are used to
calculate gi for the next time step, etc. Once the spatial step-size
Dx has been selected, the time step Dt is controlled to maintain
the stability of the numerical method. We should stress that the
accuracy of this numerical scheme decreases when the chemical
reaction is much faster than the respective diffusion process
(tdiffusion > > tchemical). In this case we recommend the use of the
fully implicit Crank–Nicholson scheme.81

8.2 Symbols

A–D reservoirs
a half-length of channel
Achannel cross-sectional area of channel
b initial half-width of rectangular slug of reactant

Y
CX concentration of species X
CX

0 initial concentration of species X
DX diffusion coefficient of species X
E–H channel corners
E electric field
e electronic charge
g acceleration due to gravity
i, j indices for space and time steps used in the

numerical calculations
I1 electrical current in loop 1
k Boltzmann constant
K equilibrium constant for reaction
kf second-order forward rate constant
kr first-order reverse rate constant
lchannel channel length
ldetection length of detection channel section
r radius of curvature of liquid meniscus in re-

servoir
RAE resistance across channel section AE

Rloop 1 sum of resistances across channel sections com-
prising loop 1

S(x,t) source terms
T absolute temperature
t time
tchemical time required for chemical reaction
tdetection time required for Y slug to traverse the detection

channel section
tdiffusion time required for diffusion across the rectangular

slug of Y
tdisplacement time required for displacement of slug of Y from

‘gap’ in X concentration profile
VAD applied voltage across reservoirs A and D
Vos EOF driven volumetric flow rate
vos linear electroosmotic flow velocity
vphX electrophoretic velocity of species X
Vpress pressure driven flow rate
x co-ordinate along channel normalised with respect

to vos

X, Y, Z reactant species
xlab coordinate along channel in laboratory coor-

dinates
z number of electronic charges on an ionic species
Dhres height difference between reservoirs
DP hydrostatic pressure difference between reser-

voirs
e relative permittivity
e0 permittivity of free space
g liquid/air surface tension
h viscosity of liquid in the channel
l0 electrical conductivity of liquid
r liquid density
z zeta potential of the channel/liquid interface
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Abstract

The aim of this study was to investigate the performance characteristics of a flow injection microreactor with reference to both the
chemistry and reactor design using a model system, the established synthesis of 4-cyanobiphenyl based on a modified Suzuki coupling of

Ž .an aryl halide and an organoboron compound. The catalytic reaction was carried out in micro-channels 300 mm wide and 115 mm deep
Ž .etched into glass and sealed with a top plate. The mobility of the reagent solutions was achieved using electroosmotic flow EOF assisted

by the incorporation of a microporous silica structure within the microreactor channels, which acted as both a micro-pump and an
Ž .immobilisation technique for the catalyst bed 1.8% palladium on silica . The yield of 4-cyanobiphenyl was determined by GC–MS.

The synthesis of 4-cyanobiphenyl at room temperature in a flow injection microreactor, using a supported catalyst, without the
Ž .addition of a base gave a product yield of 67"7% ns6 . This was achieved by injecting 4-bromobenzonitrile for 5 s, with a 25-s

injection interval, into a continuous stream of phenylboronic acid. A series of injections were performed over a 25-min period and the
product collected for analysis. Palladium contamination in the crude product was found to be in the range of 1.2–1.6 ppb, determined
using ICP–MS, indicating a low leach rate from the immobilised catalyst.

A conventional laboratory batch scale method was also performed for the same synthesis using the identical conditions as those used
Ž .in the flow injection microreactor, with and without the addition of a base, at both room and elevated temperatures 75–808C in an inert

Ž .atmosphere under reflux for 8 h. The product yield for the non-optimised bulk reaction was 10% determined by GC–MS , significantly
lower than with the flow injection microreactor illustrating the potential of microreactors for clean efficient synthesis. q 2000 Elsevier
Science S.A. All rights reserved.

Keywords: Microreactor; Synthesis design; Porosity; Heterogeneous catalysis; Palladium

1. Introduction

Over recent years a number of publications in analytical
literature have described the development of the micro-total

Ž . w xanalytical system mTAS 1–3 with the main thrust of
such work being directed towards the separation and char-

w xacterisation of DNA 4–9 . These devices have been typi-
cally fabricated using a range of materials and manifold
generation techniques creating a network of interconnect-
ing channels, with typical cross-section of between 50 and

w x300 mm 10–13 . In general, such analytical devices have
exploited the highly efficient separation capability of mTAS
for the isolation and detection of analytes of interest. In

) Corresponding author. Telefax: q44-1482-466416.
Ž .E-mail address: s.j.haswell@chem.hull.ac.uk S.J. Haswell .

this study, whilst we adopt similar fabrication technology,
i.e. photolithography and wet etching, to that used in
mTAS the application of flow injection microreactors to
solvent-based chemical synthesis introduces uniquely dif-
ferent modus operandi to that used in current analytical
applications. To date there have been a limited number of
reports describing gas phase catalytic reactions being per-

w xformed in continuous flow injection microreactors 14 , no
reports have appeared to date describing a solvent-based
reaction using a flow injection microreactor system.

The important features of flow injection microreactors
of the type developed in this work are that they offer
unique spatial and temporal control of reactant and prod-

w xucts 15 whilst enabling rapid product production with
desirable reaction kinetics. For the purpose of this study,
the attributes of flow injection microreactors will be evalu-

0925-4005r00r$ - see front matter q 2000 Elsevier Science S.A. All rights reserved.
Ž .PII: S0925-4005 00 00352-X
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Fig. 1. Reaction scheme for the coupling of 4-bromobenzonitrile and
phenylboronic acid in a microreactor under EOF.

ated with reference to both the chemistry and device
design by using a modification of the well-established
Suzuki reaction. One of the key features of such an
approach for chemical synthesis is the ability to achieve
highly selective, pure yields of products with minimal

w xcatalyst residues. Bench marking studies 16 have already
indicated that such devices could be developed for a
number of industrial process where a parallel scale-out
approach could produce the bulk quantities required by the
pharmaceutical and chemical industries.

The Suzuki–Miyaura synthesis is one of the most com-
monly used methods for the formation of carbon to carbon
bonds in the chemical and pharmaceutical industry due to

w xits selectivity in product formation 17 . The Suzuki cou-
pling reaction of the aryl halide and organoboron requires

Ža palladium catalyst to be present for which tetrakis tri-
. Ž .phenylphosphine palladium 0 has traditionally been used,

producing a typical yield of 44–78% in dimethoxyethane
Ž . Ž .DME , benzene and tetrahydrofuran THF with reactions

w x w xtaking between 2–6 h 18 . Recently, Beller et al. 19
performed a Suzuki coupling of aryl halide and phenyl-
boronic acid, reporting a yield of 83% using palladacycles
as efficient catalysts, at 1308C. However, the degradation
of the homogeneous catalyst system can result in undesir-
able by-products in the final product, for example triph-
enylphosphine oxide and palladium metal.

This paper will concentrate specifically on the Suzuki
Ž .coupling reaction Fig. 1 , describing the method used to

prepare the flow injection microreactor for the synthesis of
Ž .4-cyanobiphenyl. In this work electroosmotic flow EOF

w x15 has been used for the mobilisation of THF, which, like
many organic solvents, exhibits very low natural EOF
properties. However, a 75:25 mixture with water and the
presence of a micro-porous silicate structure within the

w xflow channels 20 was found to be sufficient to enhance
the flow characteristics of the solvent. In addition to acting
as a micro-pump, the micro-porous silicate structure was
also used to immobilise the PdrSiO catalyst bed. The2

authors believe that this is the first paper to report on the
combined use of EOF with the micro-porous silicate struc-
ture in a flow injection microreactor to perform the palla-
dium-catalysed organic synthesis and as such illustrates the
future potential of the methodology described.

2. Experimental

All reagents were of analytical grade, unless stated
otherwise, and were used without further purification. Wa-

Ž .ter was high purity, deionised 18 MV cm resistively .

A flow injection microreactor, which included the im-
Ž .mobilised catalyst 1.8% palladium on silica , was pre-

pared in borosilicate glass using a photolithographic pat-
terning technique and a modified wet etch technique, as

w xdescribed by Daykin and Haswell 10 , generating a T
channel geometry. In this case the plate was etched using a

Žglass etching solution of 1% hydrofluoric acid BDH
. ŽMerck AnalaR with 5% ammonium fluoride BDH Merck

.AnalaR at 708C, for 2 h. The plate was then stripped of
photoresist and chrome to produce a clean glass substrate
with final channel geometries of 300 mm wide and 115
mm deep. The catalytic bed was generated by manually

Žmixing 1.8% palladium on silica kindly supplied by John-
. w xson Matthey Chemicals with the silica solution 20 and

physically positioning the slurry in the channel as indi-
cated in Fig. 2. The slurry was then heated in situ to 1008C
for 1 h. The channels were then sealed by annealing to the

Ž .patterned base plate, a 17 mm thick top plate 6808C
Žusing a microwave furnace CEM microwave ashing sys-

.tem 300 . The top plate included 2 mm internal diameter
pre-drilled holes aligned at the ends of each channel to act
as reservoirs and supports for the platinum electrodes
required to generate EOF.

The synthetic method used was adapted from that previ-
w xously reported by Styring et al. 21 . The flow injection

microreactor was operated in the following manor. A
Žstandard solution of phenylboronic acid 100 ml, 0.1 M

. ŽLancaster Synthesis in 75% THF Fisher ScientificŽaq.
.International was added into reservoir B of the continuous

Ž . Žflow microreactor see Fig. 2 . 4-Bromobenzonitrile 100
.ml, 0.1 M, Lancaster Synthesis in 75% THF wasŽaq.

introduced into reservoir A and 30 ml of 75% THF onlyŽaq.
was introduced into reservoir C. Electrodes were then

Ž .placed in each reservoir AqB positive, C ground , which
Žwere then covered using laboratory film Aldrich Chemi-

. Ž .cal . An external voltage in the range of 100–400 V was
Ž . Ž .then applied to channel B q relative to reservoir C y .

This induced a continuous flow of phenylboronic acid
Ž . Ž .from B q to C y . The periodic application of 200 V

Ž . Ž .between reservoir A q and C y efficiently injected
aliquots of 4-bromobenzonitrile into the continuous stream
of phenylboronic acid. The total volume of solution in
reservoir C at the end of each reaction was recorded and

Fig. 2. Schematic diagram of the ‘T’-shaped manifold used in the reactor
for the Suzuki coupling.
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samples taken for gas chromatography–mass spectrometry
Ž .GC–MS and ICP–MS analysis. The GC–MS results
were used to determine the reactor yield whilst the ICP–MS
data was used to determine the concentration of Pd in the
product, so indicating possible bleed from the immobilised
catalyst bed. Three basic mixing techniques were investi-
gated, as follows.

Study 1 investigated the effect of changing the volume
of 4-bromobenzonitrile injected into the phenylboronic
acid stream on the yield of 4-cyanobiphenyl. The phenyl-

Ž y1 .boronic acid solution flow rates0.8 ml min was
moved continuously through the microreactor from B to C

Žwhilst sample plugs of 4-bromobenzonitrile flow rates
y1 .1.56 ml min were injected every minute for a range of

Ž .injection times 5, 20, 30, 40 and 50 s from channel A.
Ž .Repeated injections 25 for each injection time were

carried out to generate sufficient product for analysis.
Study 2 investigated the effect on the yield of 4-cyano-

biphenyl associated with the frequency between injections
of 4-bromobenzonitrile into the phenylboronic acid flow.
As in study 1, the phenylboronic acid solution was moved

Ž .continuously through the microreactor B to C and multi-
Ž .ple injections 5-s duration of 4-bromobenzonitrile from

channel A were carried out for a range of time intervals of
5, 15, 25, 30, 40 and 55 s to identify the maximum catalyst
loading of the 4-bromobenzonitrile compound.

Study 3 investigated how the yield of 4-cyanobiphenyl
changed when the flow rate of the continuous stream of
phenylboronic acid was varied between 0.65 and 1.3 ml
miny1. The flow rate was changed by applying voltages

Ž . Ž .between 100 and 400 V across reservoirs B q and C y .
For this study, 5-s injections of 4-bromobenzonitrile mov-
ing at a flow rate of 1.56 ml miny1 were injected from

Ž .reservoir A q every 25 s into the phenylboronic acid
stream.

The products collected in reservoir C were analysed
Ž .using GC–MS Finnigan MAT 9001 GC–MS . The GC

contained an RTX-5MS 35 m length column that was held
at 708C for 3 min. A ramp rate of 208C per minute was
employed up to 3008C and held for 5 min. The transfer
line was heated to 2508C and the ion source temperature to
2258C with a helium carrier velocity of 40 cm sy1. The
mass spectrometry mass range used was 50 to 450 Da. The
ICP–MS used was a VG Elemental PlasmaQuad IIq
fitted with a Cetac MCN nebuliser. Samples and standards

Žwere diluted in 2% HNO to which internal standards 103
.ppb Ga, Rh, Bi and Ho were added. A calibration model

for palladium was generated in the range 0–100 ppb.
The yield of 4-cyanobiphenyl was based on the reaction

concept of micro-molar concentration levels. Initial solu-
Ž .tion preparation was at molar concentrations 0.1 M . For

each reaction performed, a single flow injection microreac-
tor was used rather than an array of reactors and therefore
only a few micro-litres of product was generated for each

Žanalysis, approximately 35 ml in total including the initial
.30 ml of THF placed in reservoir C . Yields wereŽaq.

calculated from a knowledge of the input weight of aryl
bromide, the volume of solution in reservoirs A and C
before and after the reaction, measurement of the concen-
tration of arylbromide in reservoir A and C at the end of
the reaction and the concentration of product in reservoir
C. Concentrations were determined by GC measurement
relative to authentic material.

2.1. Batch synthesis of 4-cyanobiphenyl

Ž .A solution of 4-bromobenzonitrile 0.4550 g, 0.1 M
Ž .and phenylboronic acid 0.3025 g, 0.1 M in aqueous THF

Ž .75%, 50 ml total volume was stirred at room temperature
Ž . Ž .over 1.8% wrw PdrSiO 0.7585 g, 3 mol% for 8 h.2

The progress of the reaction was monitored by GC. As no
Žreaction was noted after this period, sodium carbonate aq,

.0.2 M, 20 ml was added and the solution stirred for a
further 8 h. The reaction temperature was then increased to
reflux. After 8 h, GC–MS analysis revealed 10% conver-

Žsion to the 4-cyanobiphenyl product retention time 10.22
w xq .min, M s179 Da .

3. Results and discussion

The initial stage of the catalytic cycle for the production
Ž .of 4-cyanobiphenyl is the oxidative addition Fig. 3 of an

Ž . Ž .aryl bromide to palladium 0 to form a palladium II com-
Ž II . w xplex Ar–Pd –Br . Matos and Soderquiat 22 have re-

ported that oxidative addition of bromobenzene to
w Ž .xPd PPh can occur readily at room temperature, al-3 4

though immobilised metal catalysts have not been investi-
gated. Transmetallation of the resulting Ar–Pd–Br with

X Ž . Ž X IIcomplex Ar –B OH gives the biaryl species Ar –Pd –2
.Ar .
Conventionally, the Suzuki synthesis requires the addi-

w xtion of a base, commonly aqueous sodium carbonate 23 ,
which activates the metal towards the reaction with the
boronic acid. The synthesis of 4-cyanobiphenyl in this
flow injection microreactor system is, however, unique in
that the addition of a base was not required. This is
thought to be due to the water associated with the aqueous

Fig. 3. Proposed catalytic cycle for the synthesis of biaryl systems using
an immobilised palladium metal catalyst in a microreactor under EOF.
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THF undergoing partial ionisation to form hydroxide
species at the high surface feature generated by the silica
frit in the flow injection microreactor channel. Clearly, the
presence of free hydroxide ions batch reactions would be
at a negligible concentration, but due to the high electrical
field associated with the EOF generation and the presence
of the palladium catalyst in the flow injection microreac-
tor, it is postulated that a localised concentration effect is
occurring around the palladium metal surface, negating the
need for a base to be present i.e. in-situ base generation.

w xBadone et al. 24 recently reported higher yields for
similar coupling reactions, using a conventional laboratory
system in an aqueous solvent system, however, the system
still required an inorganic base to be present.

Initial studies indicated that the continuous diffusive
Ž .mixing rather than using the injection mode of reagents

did not produce any significant quantities of the 4-cyano-
biphenyl. This may in part be attributed to the flow
characteristics within the flow injection microreactor,
which is essentially a non-turbulent laminar flow, resulting
in diffusion-limited mixing. Thus, when two streams of
reagents are moved under EOF in such a reactor, it is only
at the reagent contact region that a reaction will proceed,
which in turn leads to a low yield, i.e. the bulk of the
reagents have not mixed and therefore cannot react. Addi-
tionally, the transmetallation mechanism described previ-
ously would suggest that if the 4-bromobenzonitrile is in
too high a concentration, compared to the number of
palladium sites available on the immobilised catalyst bed,
and because of the continuous flow, the effective concen-

X Ž .tration of the Ar -B OH available for the transmetallation2

step would be reduced by dilution. The catalytic rate
would therefore be reduced. However, injecting a sample
plug of aryl halide into a continuous stream of the phenyl-
boronic acid would decrease the effective concentration of
the 4-bromobenzonitrile but increase the effective phenyl-
boronic acid concentration on the catalyst surface and
would therefore increase the interfacial regions for the
reaction to occur.

Using this concept, the optimum injection lengths or
volumes to allow complete diffusive mixing, the level of
catalyst loading and the optimum voltage or flow rate were
investigated in terms of the yield of 4-cyanobiphenyl.

Ž .Study 1 centred on one injection of variable lengths
per minute across a total experimental time of 25 min. The

Žhigher the concentration of the aryl halide longer injection
.times the lower was the yield of 4-cyanobiphenyl ob-

tained. Increasing the concentration of 4-bromobenzonitrile
in turn caused a decrease in the effective concentration of

X Ž .Ar -B OH due to dilution of the reaction system. The2

optimum injection length was found to be 5 s, which gave
a yield of 14%. This injection time, which reflected the
volume time for diffusive mixing, was used for the remain-
der of the investigations.

Study 2 investigated the effect of altering the proportion
of the 4-bromobenzonitrile relative to the continuously
flowing phenylboronic acid by varying the time delay
between consecutive 5-s duration injections of the 4-
bromobenzonitrile. The results obtained can be seen in Fig.

Ž .4. The initial section of the graph 5–20 s delay indicate
that catalyst saturation with 4-bromobenzonitrile is occur-
ring due to the high injection rates which renders the

Fig. 4. Plot of the mean yield of 4-cyanobiphenyl for various time intervals between injections for 5 s injection of 4-bromobenzonitrile.
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phenylboronic acid levels too low for any appreciable
product to be formed. As the time between injections of

Žthe 4-bromobenzonitrile becomes too long delay times of
.30–55 s , the effective concentration of the 4-bromo-

benzonitrile becomes too low relative to the phenylboronic
acid concentration for the reaction to produce appreciable
yields. However, as the relative concentrations of the two
reactants reaches an optimum at around 25 s injection
interval for the 4-bromobenzonitrile, for a fixed 5-s injec-
tion time giving a yield of around 60%.

Study 3 compared the yield of 4-cyanobiphenyl ob-
tained for various flow rates or voltages of the phenyl-
boronic acid based on a fixed injection mode of 5-s
injection, 25-s time interval for the 4-bromobenzonitrile.
The results are presented in Fig. 5. The results indicate that

Ž y1 .at 200 V 0.8 ml min , the flow rate of the phenyl-
boronic acid gave a yield of 4-cyanobiphenyl between
49% and 68% whilst the other voltages investigated pro-

y1 Žduced negligible yields. At 1.0 and 1.3 ml min 300 and
.400 V the flow rate is too fast, reducing the residency

time of the 4-bromobenzonitrile on the palladium catalyst.
Ž y1 .At lower voltages 0.65 ml min , the flow rate is too

small for effective transfer of the 4-bromobenzonitrile to
occur efficiently.

In order to evaluate more fully the results obtained
when using the flow injection microreactor, comparative
batch reactions were performed, with and without added

Ž .base, both at room and elevated temperature 75–808C
using the solvent and reagents described for the microreac-

Ž .tor system i.e. not using the optimal bulk method . At
room temperature, with and without the presence of a base,

the reaction did not yield any detectable quantities of the
4-cyanobiphenyl product, which suggests that the charac-
teristic features of the flow injection microreactor and the
immobilisation of the catalyst bed within the microreactor
are highly efficient.

The same reaction was performed at elevated tempera-
tures of 75–808C with the addition of sodium carbonate
Ž .aq, 0.2 M, 20 ml water . Under these conditions the
conversion of the reagents to 4-cyanobiphenyl after 8 h
was found to be 10% by GC–MS analysis.

For many areas of applications such as the pharmaceuti-
cal industry, the levels of contamination in the final prod-
uct from a palladium catalyst can be a serious problem
dependent upon the product compound synthesised, partic-
ularly when homogeneous catalytic systems are used, which
can lead to increased production costs. As the flow injec-
tion microreactor used in this study employed an immo-
bilised heterogeneous Pd catalyst, ICP–MS analysis of the
product was carried out to determine the levels of palla-
dium leach. Results indicated that Pd was present in the
range 1.2–1.6 ppb, in the crude product, which was indica-
tive of a very low rate of leach from the catalytic bed.

In addition to direct palladium contamination, homoge-
neous catalyst can generate high levels of impurities such
as triphenylphosphine oxide and often require regeneration
due to the formation of colloidal palladium, which is
difficult to isolate and recycle. Using a supported immo-
bilised palladium catalyst not only allows immobilisation
on a micro-porous silica structure within the flow injection
microreactor but also prevents the diffusion of the catalyst
into the product solution. This negates the costly process

Fig. 5. Plot of the mean yield of 4-cyanobiphenyl against the flow rate of phenylboronic acid for 5 s injection of 4-bromobenzonitrile.
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of removing the catalyst impurities and allows for long
term catalyst activity. The current flow injection microre-
actors have been used for a large number of reactions
Ž .operating for over 35 h with no apparent loss of catalytic
activity. Whilst a more detailed study of catalytic perfor-
mance is required, the chemistries involved do not suggest
potential problems with long term stability of the immo-
bilised palladium catalyst.

4. Conclusions

The synthesis of 4-cyanobiphenyl at room temperature
without the addition of a base using a novel microreactor
for high throughput continuous flow organic synthesis
offers an efficient methodology, giving GC yields of 67"

7% with respect to the aryl halide with negligible presence
of catalyst residues. The reaction was carried out using a

Ž .supported catalyst 1.8% palladium on silica which was
immobilised within a flow injection microreactor manifold
using a microporous silica frit.

It should be stressed that for the purpose of this study
the reaction described was selected to simply illustrate the
feasibility and identify any interesting features of perform-
ing such a reaction in a flow injection microreactor. The
results suggest that further work should involve the en-
hancement of the yield of the 4-cyanobiphenyl through the
development of a post-reaction separation system, which
will allow the recycling of the starting materials so enhanc-
ing the yield and enabling isolation of a pure product. The
development of in-situ fluorescence detection should also
be considered, as natural fluorescence is observed by many
liquid crystals, which can be generated by the Suzuki
method.
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Research into the fundamental and practical advan-
tages of using micrometre scale reactors for chem-
ical and biochemical applications is now growing at
a considerable rate. This review tracks such devel-
opments, illustrating their inherent strengths and
identifying areas where further development of a
technology is poised to revolutionise signi¢cant
areas of synthetic chemistry and biochemis-
try. z2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In recent years research and development of
miniaturised chemical systems has grown dramati-
cally, allowing the realisation of the micro total ana-
lytical system (W-TAS), which the reader will ¢nd
well-documented [ 1^6 ] and described, elsewhere
in this issue of TrAC. In a less dramatic way the
application of similar technology to that used for
W-TAS has also led to the development of so-called
micro-chemical reactors [ 7^9 ]. However, simply
reducing the size of a chemical reactor because
technology is available goes beyond just being gim-
micky and this review will attempt to illustrate some
of the intrinsic features such as the spatial and tem-
poral control of reagents and reactants that can be
achieved under the diffusion-limited and unique
thermal properties that exist at the micrometre
scale [ 10 ].

Areas that have attracted most research to date
have centred on gas and liquid phase reactions cov-
ering heterogeneous and homogeneous catalysis,
catalytic oxidation, heterocyclic synthesis, and
photochemical reactions. In particular, the pro-
cesses described have clearly indicated the value

of using microreactor technology for solution-
based chemistry and bio-application in areas such
as chemical discovery and development. In addi-
tion we should not underestimate the relevance
microreactors will have as tools for purely research
and teaching applications across a wide range of
scienti¢c disciplines.

Microreactors exhibit numerous practical advan-
tages when compared with traditional batch-scale
synthesis, not least is the demand for a high stan-
dard of safety, which includes the transportation
and storage of toxic, explosive or otherwise harm-
ful materials. In such cases microreactors offer the
capability to carry out production on site at the
point of demand. The removal of potentially signi¢-
cant large-scale plant accidents associated with
thermal runaway could also be envisaged due to
the inherent thermal dissipation possible in micro-
reactor devices. Indeed it has been demonstrated
that reactions can be performed beyond their cur-
rent explosive limits by adopting microreactor tech-
nology [ 11 ]. The whole aspect of heat manage-
ment, enabling mass and heat transfer to be
extremely rapid, leads inevitably to a higher level
of reaction control and reactant manipulation at any
one point within a device. In addition, the problems
associated with traditional scale-up could be over-
come by reactor scale-out producing the required
quantity of raw material. Adopting a scale-out phi-
losophy coupled with large-scale microreactor fab-
rication technology, it is possible to see how the
optimisation of reaction conditions on a single
device could be extended, allowing multiple num-
bers of single units referred to as `parallel scale-out'.
By adopting such an approach, the reaction ef¢-
ciency and throughput capacity allowing the pro-
duction of material on a supply and demand basis
could be achieved without the need to redesign or
validate the reaction methodology. Thus one can
conclude that microreactors applied to the ¢eld of
chemical and biochemical synthesis offer greater
reaction control and selectivity, which in turn can
be optimised through a scale-out methodology cre-
ating a safe and ef¢cient approach to chemical dis-
covery and production.
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2. Microreactor fabrication and
applications

Currently, microreactor devices are produced
using a number of techniques, for example wet
etching [ 12 ], injection moulding [ 13 ] and laser
microforming [ 14 ] using a variety of materials,
such as noble metals, polymers, ceramics, glass
and silica. Noble metal devices are suitable for
fast exothermic heterogeneously catalysed reac-
tions and this has been successfully demonstrated
for the partial oxidation of methane to syngas using
a honeycomb, structured rhodium catalyst device
[ 15 ]. Metal devices are commonly generated using
microlamination techniques in which thin lami-
nates of metal are stacked forming channels and
partitions. The channels generated are achieved
by pressure stamping or using photochemical
machining techniques. Mobilisation of organic so-
lutions in metal devices requires the use of micro-
pressure pumping systems that can lead to an
increase in internal pressure which may or may
not be seen as an advantage for a number of reac-
tions.

Glass and silica devices are suitable for a variety
of applications allowing, for example, fast reaction
screening for drug discovery applications and het-
erogeneously catalysed reactions. At the University
of Hull, drug discovery screening applications are
being developed in glass microreactors using
model systems such as the Wittig synthesis based
on aldehyde functionality [ 16 ]. In addition, hetero-
geneous catalytic reactions based around a modi-
¢ed Suzuki reaction have been investigated as
these offer spatial and temporal delivery of reac-
tants to the catalytic surface and in situ base gener-
ation to be exploited [ 17 ]. This type of device
exhibits chemical inertness and temperature stabil-
ity and can also mobilise aqueous and organic so-
lution via electroosmotic £ow (EOF) which has
numerous advantages including minimal back
pressure, no mechanically moving parts and there-
fore a corresponding high reliability with minimal
hydrodynamic dispersion. In addition, the oppor-
tunity to exploit electrokinetic separation in con-
junction with EOF offers considerable scope to
temporally and spatially control of reaction inter-
mediates and products [ 10 ].

3. World-wide development

This special issue of TrAC serves well to demon-
strate that the whole area of microtechnology
applied to chemical processes is a rapidly expand-
ing area of research and there are now a number of
growing research groups around the world focus-
ing on chemical microreactor applications. Jensen's
group from the Department of Chemical Engineer-
ing at the Massachusetts Institute of Technology has
a particular interest in the safety aspects of reac-
tions, especially the explosive and toxicity issues
relating to the production of a variety of com-
pounds at the point of demand. This has been dem-
onstrated with the production of a microreactor for
organic peroxides generated from acid chlorides
[ 11 ]. In addition, advances in thin ¢lm metal mem-
branes have allowed the development of a hydro-
gen £ux device that has additional application for
hydrogenation reactions [ 18 ]. With a similar
emphasis on safety, Ehrfeld's group at the Institut
fuër Mikrotechnik, Germany, has been a prime
mover in developing microreactors for the reduc-
tion of exposure to hazardous materials. Recently a
microreactor has been developed for the Andrus-
sow reaction allowing the synthesis of the toxic
material hydrogen cyanide [ 15 ] to be achieved.
Success in controlling a high temperature reaction
will now allow systems for a variety of similar high
temperature reactions to be developed. Other work
has centred on the direct £uorination of aromatic
compounds in which greater product sensitivity
was achieved [ 15 ].

The research group of Wegeng and Drost at the
Paci¢c Northwest National Laboratories in Rich-
land, WA, has generated a variety of applications
for the development of an automotive fuel pro-
cessor and heat pumps, microengineered devices
for hydrogen-rich fuel streams and the develop-
ment of microchannel contractors for gas absorp-
tion and microdevices for solvent extraction
[ 15 ].

Other related applications include the fabrication
of a multistep synthesis device by Orchid Biocom-
puters, USA, which will enable the synthesis of over
100 compounds to be performed simultaneously,
the development by Bergveld of a microdialysis
device and counter£ow heat exchanger at the Uni-
versity of Twente, Netherlands [ 15 ] and develop-
ments in Sweden in the area of biocatalysis [ 19 ]. In
addition, Yager's group from Washington State
have extensively described the development and
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fabrication of T-shaped manifolds for chemical
reactions and sensors [ 20 ]. Karube's group has
described the development of an enzyme-immobi-
lised column with electrochemical £ow cell for glu-
cose detection using micromachining techniques
[ 21 ]. In the UK, the Chemical Engineering Depart-
ment at the University of Shef¢eld has been inves-
tigating the use of stacked gas-phase microchan-
nels. The work, led by Ray Allen, has extensively
modelled the fundamental parameters that affect
the scaling of reactions [ 22 ] based on channel
hydraulic diameter, reaction intensity and reactor
proportions.

Finally, Haswell's group at the University of Hull
has been working for a number of years on various
areas of microreactor research, focusing in particu-
lar on establishing the practical capabilities of
microreactor devices using already established syn-
thetic chemistry reactions including the Suzuki cat-
alytic-based reaction [ 17 ], and the characterisation
of £uidic control demonstrated using the Wittig syn-
thesis [ 16 ]. The group has a number of on-going
projects looking at multi-stage synthesis and exper-
imental design methods based on microreactor
technology.

4. Research themes

In this section a selected number of examples
have been chosen from the literature to illustrate
the novelty microreactors can bring to the area of
synthetic and bio-applications. The review is in no
way meant to be de¢nitive or wide ranging but will
serve to illustrate some of the current developments
that are occurring in a rapidly developing ¢eld.

Chambers et al. [ 23 ] have reported the develop-
ment of a microreactor in which elemental £uorine
has been used to allow both the selective £uorina-
tion and per£uorination of organic compounds in a
simple controllable manner. The synthesis of £uo-
rine-containing organic compounds has many
inherent safety issues such as safe handling and
temperature control. Chambers outlined the poten-
tial bene¢ts of the microreactor used as being ( i ) a
small inventory of £uorine in the reaction zone, ( ii )
an opportunity for good mixing and temperature
control and ( iii ) simple reaction scale-up. Taking
into account these criteria, Chambers designed the
reactor outlined in Fig. 1. The microreactor is fab-
ricated from a block of nickel in which a groove is
machined (ca 500 Wm) and sealed using a block of

polychlorotri£uoroethane. Liquid reactant and sol-
vent delivery was achieved using pressure syringe
pumps, whilst the £uorine in nitrogen was deliv-
ered from a small cylinder via a mass £ow control-
ler. Liquid^gas mixing was achieved using cylindri-
cal £ow and the products were trapped in
polychlorotri£uoroethylene tubing and cooled.
Residual gas was scrubbed using soda lime. The
microreactor was shown to achieve the successful
synthesis of a variety of selective £uorinations
yielding 75% conversion derivatised from di( m-
nitrophenyl )disulphide and for p-nitro systems
44% conversion was achieved using acetonitrile,
10% F2 in N2 (10 ml / min) at room temperature.
Fluorination of L-dicarbonyl illustrated the catalytic
effect by the £uorinated metal surface, giving a
highly ef¢cient conversion (step 5 to 6, 99%, step
7 to 8, 90% conversion) even though the overall
yield was low (62%). The £ow system obviously
promotes the formation of the enol, which can be
a limiting factor in large-scale reactors. Chambers
also demonstrated that the microreactor could be
used for per£uorination, which has many inherent
safety issues. The overall product yield was 70%
(stage 9 to 10, 52% conversion, yielding 91% and
stage 11 to 12, 82% recovery, yielding 70%). The
results obtained indicate a potential for elemental
£uorine reactions to be achieved in the laboratory
as well as on an industrial scale.

The group of Jensen et al. [ 18 ] has reported the
development of a novel palladium membrane to
allow for a controlled selective hydrogen £ux.

Fig. 1. Microreactor top and side view for elemental £uorine
reactions.
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The membrane was speci¢cally designed for incor-
poration with microelectromechanical systems,
micro£uidic devices allowing hydrogen separation
in palladium micromembranes resulting in two sep-
arate streams being generated. In addition the
potential to perform hydrogen puri¢cation applica-
tions such as hydrogenation and dehydrogenation
are possible with this form of a membrane reactor.
Fig. 2 outlines the type of device fabrication used.
The device is a two-channel £ow system separated
by a thin membrane layer that is fabricated from
composite layers of perforated silicon nitride, sili-
con oxide that supports and insulates the palladium
metal from the integrated temperature sensing and
heater elements. The overall channel geometry is
1.2 cm long and slightly less than 700 Wm wide. The
extensive device fabrication method allows the use
of arbitrarily thick or thin palladium ¢lms, due to the
support being porous and so offering attractive
cheaper metal alternatives. An intrinsic property
of the device is the symmetric heater design, allow-
ing a large area of the membrane to be heated whilst
maximising the area in the centre for perforations
and hydrogen £ux. The micromembrane perme-

ability and selectivity were characterised as a func-
tion of the hydrogen pressure gradient and average
membrane temperature. A mixture of hydrogen
and nitrogen (1:9 ) together with pure hydrogen
was fed into the device. At elevated temperatures,
the membrane generated a notable exit drop in
hydrogen concentration and increased nitrogen,
indicating the presence of a selective hydrogen
£ux. In addition, a membrane separation factor of
over 1800 was determined. At an average temper-
ature of 500³C, a hydrogen £ow rate of 0.5 sccm was
observed for a single active heater segment, at a
pressure of 0.1 atm, corresponding to a £ux of 600
sccm/cm2. These results indicated that the micro-
fabricated membranes are potentially much more
ef¢cient than large-scale devices. Finally, the mem-
brane's potential for hydrogenation and dehydro-
genation was investigated using a hydrogen /nitro-
gen mixture exposed to air in the device. The
hydrogen permeating through the membrane
reacted with oxygen to form water, which con-
densed on the cold top of the surface.

At the Third International Conference on Micro-
reaction Technology in Frankfurt am Main, Ger-

Fig. 2. Palladium membrane fabrication process.
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many, Worz et al. discussed the development of a
high temperature hydrogen cyanide synthesis
device using the synthetic Andrussow route [ 15 ].
The device was fabricated enabling the investiga-
tion of the in£uence of isothermal processing and
extremely rapid cooling of a hot, reactive product
gas and a highly exothermic reaction with extreme
handling and exposure risks. The reaction was
achieved in a 60 Wm diameter microchannel,
which allowed the reactant gas to be heated to
1000³C within 1 ms. The microreactor feasibility
was compared with published results achieved in
ceramic and metal monoliths with channel geome-
tries of 0.5^1 mm. With the microreactor an increase
in yield for hydrogen cyanide of up to 30% was
obtained compared to standard methodology. The
higher yields were attributed to the improved mass
transfer because of the signi¢cant reduction in
channel dimensions by at least one order of magni-
tude. In addition, the microreactor generated less
than 2% ammonia and methane by-products com-
pared to 59% ammonia and 27% methane in con-
ventional reactors. The microreactor device dem-
onstrated selective, high throughput conversion
based on the Andrussow reaction, indicating that
the device could easily be adapted allowing the
development of a variety of high temperature reac-
tions.

At the University of Hull, two solvent-based syn-
thetic processes have been investigated as model
systems to evaluate the potential of microreactors
for such applications. The selected processes were
heterogeneous catalysis based on a modi¢ed
Suzuki synthesis [ 17 ] and homogeneous reactions
based on Wittig chemistry [ 16 ]. The ¢rst example
allowed an evaluation to be made of a £ow injec-
tion-based methodology using the Suzuki reaction.
The microreactor used was fabricated in borosili-
cate glass with channel geometries of 300 Wm
wide and 115 Wm deep (Fig. 3). Reagent solutions

were mobilised via EOF assisted by the incorpora-
tion of a microporous silica structure [ 24 ], which
was also used to immobilise the palladium as a het-
erogeneous catalyst bed. The synthesis of 4-cyano-
biphenyl was achieved at room temperature, via in
situ generation of base giving a product yield of
67 þ 7% (n = 6). Conventional laboratory batch
methodology using the same reaction criteria as
used with the microreactor was performed, how-
ever the reaction was re£ux for 8 h under an inert
atmosphere, giving a non-optimised product of
10%. Further work is currently proceeding to
improve the product yield in the microreactor by
developing a post-reaction separation system,
which allows the recycling of starting material and
the isolation of a pure product.

The second reaction is based on Wittig chemistry
[ 16 ] in which 2-nitrobenzyltriphenylphosphonium
bromide and a variety of aldehydes, for example
methyl-4-formylbenzoate in dry methanol and
sodium methoxide, were reacted in a T-shaped
manifold (300 Wm wide and 100 Wm deep). The
microreactor is currently being evaluated for its
potential to perform diverse generic chemistry for
a variety of syntheses as this clearly has value in
reaction optimisation and combinatorial applica-
tions. The reaction was optimised using EOF
assisted by the incorporation of microporous silica
frits, generating a product yield for 2:1 reaction stoi-
chiometry of 70% (10% increase compared with
traditional synthesis ). This was achieved using con-
tinuous £ow of both reagents through the micro-
reactor for 20 min. Further reaction optimisation
using a series of injections performed over a 20
min period gave a yield of 59% (1:1 stoichiometry,
11% increase over traditional batch synthesis ). The
optimised reaction was also investigated for a fur-
ther four aldehydes, demonstrating the general
applicability of the method. Fig. 4 shows a series
of image captures using an optical microscope at
which the coloured reaction intermediate (ylide)
can be seen. In plate 1, the reagents are being
moved by EOF from both the left- and right-hand
side and a clear interface can be seen. Poor £ow
control however is observed due to the formation of
the intermediate in the left-hand channel, which
was readily corrected by the slight increase in the
voltage applied to the left-hand electrode (plate 2).
This allowed the reactants to move down the cen-
tral channel due to the increase in £ow of the
reagent from the left-hand channel. As the reagents
are pumped by EOF turning the power off sees the

Fig. 3. Schematic diagram of the T-shaped manifold used in
the reactor for the Suzuki coupling.
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loss of colour rapidly (plate 3) thus demonstrating
that the spatial position of a reaction can be con-
trolled with relative ease. As indicated, the resulting
optimised methodology is currently being devel-
oped for combinatorial screening implying
increased analysis speed but also demonstrating
diversity for a variety of reagents.

In the ¢eld of bio-catalysis, Laurell et al. [ 19 ] have
investigated the use of porous silicon as a carrier
matrix in microstructured enzyme reactors, increas-
ing the surface area onto which enzymes could be
coupled. The microreactor was fabricated using a
£ow-through cell comprising 32 channels, 50 Wm
wide, spaced 50 Wm apart and 250 Wm deep in sil-
icon, p-type (20-706 cm) generated by anisotropic
wet etching. The porous matrix was generated by
anodisation in hydro£uoric acid and ethanol, pro-
ducing three different pore morphologies at 10, 50
and 100 mA/cm2 current densities. Glucose oxi-
dase was immobilised onto the three porous micro-
reactors and onto the non-porous reference device.
The enzyme activity was monitored using a colori-
metric assay. The devices were used to study glu-
cose turnover rates, which were deemed to be good
and illustrated the potential value of using porous
silicon as a support in enzyme reactors. Using the
microreactor fabricated at 50 mA/cm2, they found
that the enzyme activity was increased 100-fold
compared with the reference reactor. The micro-
reactor was also coupled with an FIA system allow-
ing glucose monitoring. The system gave a linear
response up to a 15 mM concentration of glucose.

Laurell et al. [ 25 ] further investigated the use of
porous silicon by varying the matrix depth in micro
enzyme reactors. Using p-type (20^70 6 cm) ori-
entated silicon, in which porous silicon was gener-
ated on a planar surface and on an isotropically pre-
etched high aspect ratio parallel channel reactor,
different silicon morphologies were generated for
each sample type by varying the anodisation time,
and two current densities. Standard methodology
was used to immobilise the glucose oxidase on to
the silicon surface, and the enzyme activity was
monitored by colorimetric assay. In comparison to
the identical non-porous material the results
obtained for the silica matrices indicated a 170-
fold increase in catalytic turnover for a reactor
pore depth of 10 Wm. Above this level, catalytic
activity levelled out. The results clearly indicate
the variation in catalytic activity with the difference
in matrix depth for both the planar and reactor
structures. In addition, work reported by Laurell
[ 26 ] has demonstrated an increase in enzyme activ-
ity of up to 350 times, using the porous silicon as an
enzyme carrier matrix.

5. Concluding remarks

From the examples given above we are already
seeing evidence that microreactors can bring nov-
elty and real practical advantages to reaction-based
chemistry. The advantages come essentially from
the thermal, spatial and temporal control possible
in such devices, coupled with the capability to mon-
itor reactions in situ while operating if necessary
under controlled temperature, pressure and atmos-
pheric conditions. In simple terms, microreactors
reduce many of the practical dif¢culties associated
with performing chemical reactions based on tradi-
tional methods. Indeed many of the experimental
observations reported to date could not have been
possible using conventional methodology. Work is
currently under way by the authors and other lead-
ing research groups that will rapidly push the tech-
nology towards working devices for combinatorial
and controlled multi-stage syntheses. In this con-
text we should not forget the inherent advantage
the technology offers in terms of being able to rap-
idly perform a reaction and screen for products with
minimal practical intervention and reagent con-
sumption. Issues over product volumes will always
be raised when using microreactors but given the
inherent practical advantages of the methodology,

Fig. 4. A series of images captured using an optical micro-
scope in which the coloured reaction intermediate (ylide)
£ow pro¢le can be observed.
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these will no doubt already be attracting the neces-
sary engineering and design developments to real-
ise appropriate system scale-out. However many
question the time it will take for this emerging tech-
nology to reach the market place. To this end one
should not underestimate the role of the vendor
organisations who will no doubt respond to reduce
many of the cultural and practical dif¢culties asso-
ciated with the technology due to the tremendous
commercial potential that will catalyse this area of
scienti¢c research over the next few years.
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Reaction rates for the Kumada reaction (of Grignard reagents with aryl halides) catalysed by an immobilised
nickel(II) catalyst have been shown to be enhanced when the reaction is carried out in a pressure driven
microreactor (internal diameter 100–200 µm) rather than with conventional batch reaction techniques.

Introduction

Metal-catalysed carbon–carbon bond forming reactions are of
great importance to the pharmaceutical and fine chemicals
industries. Reactions such as the Heck1 Sonogashira2 and
Suzuki3 couplings are well established as convenient routes to
vinylaryl and biaryl compounds. Of similar importance is the
Kumada–Corriu reaction,4,5 in which an aryl halide is oxida-
tively coupled with a homogeneous nickel(II) phosphine
catalyst, and then reacts with a Grignard reagent to form biaryl
or alkylaryl compounds. Murahashi et al.6 later extended the
range of catalysts for this type of reaction with palladium
phosphine complexes, and reported stereospecific transforma-
tions of (E)- and (Z)-bromostyrenes to their aryl-substituted
derivatives. Since then, due in part to the mild reaction
conditions and clean conversions, nickel- and palladium-
catalysed cross-coupling reactions have become one of the most
widely used methods for carbon–carbon bond formation.

One major disadvantage of the Kumada–Corriu reaction is
the dependence on homogeneous catalysis, with attendant
purification difficulties. Heterogeneous catalysts immobilised
on an inert support such as polymer beads offer the possibility
of cleaner simpler reactions, as it is possible to remove the
catalyst prior to product purification, and recycle it if necessary.
Recently, Styring and co-workers7 synthesised an unsymme-
trical salen-type nickel(II) complex 1, and used the acidic
phenolic functional group to covalently bind it to the chloro-
methylstyrene group in Merrifield resin polymer beads (Scheme
1). The immobilised catalyst was air- and moisture-stable, could
be re-used several times, and when used in a series of batch
Kumada reactions, afforded yields of 70–95% under mild
conditions.

Microreactors, in which microlitre quantities of reagents are
manipulated, have been shown to confer many advantages over
conventional scale chemistry.8 Heat transfer is improved and

mixing times reduced by orders of magnitude as a result of the
decrease in linear dimensions. Whilst the size of an individual
reactor may seem to preclude large-scale synthesis, it is possible
to use multiple copies of the reactor to bypass the process
development stage of ‘scaling up’, creating a high throughput
system while maintaining the control and selectivity of the
original system.

The microlitre flow rates involved in liquid-based micro-
reactor research mean that high precision syringe pumps or
HPLC pumps can be used as the back pressures present no
serious problem. In this paper we describe how a microflow
reactor containing an immobilised catalyst can effect rapid,
clean production of biaryl compounds, with improved reaction
rates compared to the equivalent batch reactions.

Experimental

Immobilisation of [9-(2,4-dihydroxyphenyl)-
5,8-diaza-4-methyl-nona-2,3,8-trienato] nickel(II) 1

Merrifield resin (200–400 mesh, ≈ 1.7 mmol Cl (g resin)21,
Fluka) was pre-swelled by soaking in N,N-dimethylformamide
(DMF) for 30 min. The catalyst 1 (0.67 g, 2.1 mmol) was
dissolved in a mixture of 40 ml dry DMF and 10 ml dry
tetrahydrofuran (THF) and added dropwise to sodium hydride
(0.08 g, 3 mmol, 60% suspension in mineral oil), then stirred at
room temperature for 30 min. The suspension of Merrifield
resin was added and the reaction mixture stirred for 18 h. On
allowing the beads to settle, the supernatant liquid was pale,
indicating that most of the complex had been immobilised on
the resin. The resin was filtered off and washed with
dichloromethane (3 3 20 ml) and water (3 3 20 ml). ICP
analysis of different batches of the beads showed nickel
loadings between 2 and 6% by weight.

In order to compare microreactor systems with batch
reactions, Kumada reaction kinetics were studied under both
sets of conditions.

Batch reactions

Batch reactions were carried out in a carousel synthesiser
(Radley’s). In a typical example, 4-bromoanisole (5 ml, 1.0 M
in dry THF) was added over the immobilised catalyst and the

Scheme 1 The immobilisation of [9-(2,4-dihydroxyphenyl)-5,8-diaza-
4-methyl-nona-2,3,8-trienato] nickel(II) onto Merrifield resin.

This journal is © The Royal Society of Chemistry 2001
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mixture stirred for 5 min to allow the beads to swell.
Phenylmagnesium bromide (5 ml, 1.0 M in dry THF) was added
via syringe and the mixture stirred at room temperature.
Portions (0.5 ml) were removed via syringe at regular intervals
and quenched using saturated aqueous sodium hydrogen
carbonate. Samples of the aqueous phase were extracted into
diethyl ether, which was analysed by GC-MS with reference to
a 1.0 M standard solution of 4-methoxybiphenyl (Lancaster
Synthesis) in THF. (Varian CPSIL8 column, 30 m, held at 50 °C
for 4 min, then heated at 30 °C min21 to 250 °C, products
identified by comparison of mass spectra and retention times
with those of authentic materials). A graph of percentage
conversion to the product against time is shown in Fig. 1(a).

Flow experiments

In order to establish the effectiveness of the immobilised
catalyst resin in a capillary channel similar to that expected in a
microreactor, flow reactors were constructed from lengths of
clear polypropylene tubing with flanged ends (id 2 mm) or glass
tubing (id 1 mm). The required amount of catalyst beads were
held in place by plugs of glass wool (typical catalyst bed lengths
ranged from 2 to 10 mm). Standard HPLC connectors allowed
one end of the reactor to be connected to a disposable solvent-
resistant syringe, while the other end was attached to a syringe
needle leading to a quenching vessel containing ether and
saturated aqueous sodium bicarbonate. A syringe pump (Har-

vard Apparatus, PHD 2000) was used to drive pre-determined
volumes of a mixture of equimolar solutions of the aryl halide
and the Grignard reagent through the reactor at known flow
rates. Note that in the absence of any catalyst, no reaction
occurred in the pre-mix over a 72 h period.

In the case of the reaction of 4-bromoanisole with phenyl-
magnesium bromide, a glass capillary was used connected to the
reactor body using OmniFit connectors. A flow rate of 13.3 or
33.3 µl min21 was maintained using a syringe pump and the
output stream passed directly into a flask containing a solution
of saturated aqueous sodium hydrogen carbonate to quench the
reaction. The aqueous solution was extracted into diethyl ether
and analysed by GC as described above. Conversion was found
to be independent of flow rate for each of the flow rates used,
with 60 ± 2% conversion to the target compound and 20 ± 2%
production of biphenyl being observed, leaving approximately
20% of the unreacted 4-bromoanisole.

Results and discussion

Batch reactions

The observed rate of reaction (kobs) is first order with respect to
the aryl bromide over the reaction profile. As the residence
times in the microreactor are typically much shorter than in the
batch process, then kobs is also assumed to be first order and so
comparisons were made using that assumption.

The stirred batch reaction is described by the first order
design equation [eqn. (1)]. After 6 h the reaction has gone to
21% completion, achieving 72% completion after 24 h. A plot
of 2ln(1 2 xArBr) against time [Fig. 1(b)] where xArBr is the
mole fraction of aryl bromide consumed or is the mole fraction
of product produced and t the reaction time gives a rate constant,
kobs = 1 3 1025 s21.

k
t

xobs ArBr= - -1
1( ) (1)

Flow reactors

For the reaction of 4-bromoanisole described above, the
observed rate constant for the process at the highest flow rate
was determined by applying the design equation [eqn. (2)] for a
first order continuous flow process, where vt is the flow rate and
V is the reactor volume. kobs was determined to be 0.033 ± 0.002
s21 at 33.3 µl min21. A list of kobs values obtained in batch and
flow reactors for a series of aryl halides reacted with
phenylmagnesium bromide is given in Table 1.

k
v

V
xt

obs ArBr= -ln( )1 (2)

Comparison of the rates from continuous flow and batch
reactions gives an enhancement of the rate of 3.4 3 103 (over
three orders of magnitude) in the case of 4 bromoanisole. Less
dramatic improvements are recorded for the iodoarenes. This
can be rationalised in terms of the number of catalytic sites
available at which reaction can occur. In the stirred batch
process, although the beads are swollen and have a high porosity
due to the solvent, reaction occurs essentially at the surface of
the support, since the penetration of the reagents to the interior
catalytic sites is governed by a slow diffusion process. In the
constraints of the microreactor, where the beads are packed into
the capillary, the reaction solution is driven through the pores
under pressure and the number of catalytic sites available for
reaction is increased. As we are unsure as to the exact
availability of sites in the swollen state, the turnover frequency
of the system would have little physical meaning. However, we

Fig. 1 (a) Profile of the first order batch reaction of 4-bromoanisole with
phenylmagnesium bromide. (b) Plot of 2ln(1 2 xArBr) against time for the
same reaction, where xArBr is the mole fraction of 4-bromoanisole. The
observed rate constant, kobs, is found to be 1 3 1025 s21.
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can clearly see the advantage gained by using a microreactor
system. The enhanced rate means that yields obtainable after 24
h in a batch reaction can be realised in a matter of minutes using
the capillary systems. In the reactors discussed, 0.62 mmol (116
mg) of product was produced in only 2 h. By scaling out the
system, it is easily seen that yields of synthetic value can readily
be obtained: for example 10 parallel reactors would yield 1.16
g of target material in the same time interval.

Conclusions

The enhanced reaction rates described above are solely due to
the dimensions of the microreactor (since the reagents and
catalyst are the same in batch and flow reactor). Although
simple in design and concept, with easily replaceable catalyst
beds and interchangeable reagent premixes, it provides a
powerful tool in catalyst screening and a route to high
throughput synthesis.
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Table 1 Comparison of rate constants for a series of Kumada coupling reactions in flow reactors with the corresponding batch reaction

R X RA
Flow rate/
µl min 21

Flow reactor rate
constant k/1023 s21

Batch reactor rate
constant k/1025 s21

Rate
enhancement

CH3 I Ph 25 2.67 3.50 76.3
OCH3 I Ph 25 1.59 3.50a 45.4
OCH3 I CH3 25 2.67 3.35 79.3
CH3 I CH3 25 1.05 6.73 15.6
OCH3 Br Ph 33.3 33 1 3300

a Rate constant estimated, since reaction complete (all of the 4-iodoanisole consumed) before first aliquot removed.
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This paper describes the electric field-induced flow characteristics of multiphase solutions in a micro reactor
device using the nitration of benzene as a model process. Photolithographic and wet etching techniques were used
to fabricate the micro reactor (channels, 200 mm id, 100 mm deep) in a borosilicate glass substrate. The results
focus specifically on the flow parameters of reagents/reactants (i.e., voltage, solution concentration and pH ranges
and current–voltage relationships) used in this study. The benzene was introduced and mobilised by electroosmotic
flow (EOF), as a microemulsion using an appropriate surfactant (sodium dodecyl sulfate), whilst the nitronium
ions, produced in situ from mixed H2SO4–HNO3 (the nitrating agent), underwent electrophoretic-induced
(electrokinetic) mobility. A co-surfactant, butan-1-ol, was used owing to (a) its relative solubility in the aqueous
surfactant solution, (b) its ability to aid the solubilization of benzene, (c) the provision of a water-rich
(oil-in-water) rather than oil-rich (water-in-oil) microemulsion system and (d) its lack of significant adverse effects
on the EOF. The optimum conditions used for the nitration of benzene within the micro reactor were a run of the
microemulsion as main reagent stream, then three 30 s segmented injections of mixed acid, with a 5 s push of the
microemulsion into the system after each injection, and then a 60 s stopped-flow reaction time before driving
reaction product segments to a collection reservoir.

1. Introduction

Whereas the field of micro total analytical systems (mTAS),
based on the use of electroosmotic flow (EOF) and electro-
phoretic separations,1–8 has gained much attention in recent
years, the application of complementary micro reactor technol-
ogy based on the electric field-induced mobility for chemical
reactions9,10 and in particular organic synthesis11 has attracted
less attention. In addition, solutions employed to date in such
systems have primarily been aqueous or single solvent phases.
Early work, however, involving the nitration of nitrophenol,
indicated that performing multiphase reactions in micro reactors
was feasible.12 Furthermore, this provisional research suggested
that the position of the nitration and thus the isomers of
nitrophenol produced may be influenced by the operating
conditions used. In this work, the nitration of benzene using
mixed acid, H2SO4–HNO3, as the nitrating agent was used as a
model process to investigate the ability to move multiphase
solutions in a microreactor using electrically driven flow. The
benzene was introduced into the system as a microemulsion
using an appropriate surfactant, as this provided the necessary
ionic character to mobilise the organic system under an electric
field. In addition, the formation of the microemulsion droplets
of the benzene would increase the surface area available to the
nitrating agent, as the rate of nitration is determined not only by
the chemical kinetics of the reaction, but also by the mass
transfer between the two phases.13 The choice of a surfactant–
co-surfactant system was based on an evaluation of what effects
they will have on both the EOF and reaction mechanism. In
addition, due consideration was given to the solubilization
power of the surfactant–co-surfactant and the ease with
which a water-rich (oil-in-water) rather than oil-rich (water-in-
oil) microemulsion system can be formed in a stable
manner.

2. Experimental

2.1. Reagents and materials

All reagents were of the analytical-reagent grade unless stated
otherwise. The primary reagents used were disodium tetraborate
(borax, 98%) (Merck, Poole, Dorset, UK), sodium dodecyl
sulfate (SDS, 99%) (Lancaster Synthesis, UK), methanol
(99.8%, 0.791 g ml21) (BDH, UK), ethanol (absolute) (bottled
by U.O.H), propan-1-ol (99.5%) (BDH, butan-1-ol (99%)
(BDH), pentan-1-ol (98%, 0.814 g ml21) (BDH), hexan-1-ol
(98%, density 0.814 g ml21), (Aldrich, UK), octan-1-ol (99%)
(Avocado, UK), decan-1-ol (0.83 g ml21) (BDH), benzene
(99.8%, 0.878 g ml21) (Fisons, UK), sulfuric acid (98%) (Fisher
Scientific, Loughborough, Leicestershire, UK) and nitric acid
(68%) (Prolabo, Fontenay s/Bois, France). High purity distilled,
de-ionised water (Elgastat UHQ PS system, Elga, High
Wycombe, UK) with a conductivity of 18 (mΩ cm)21 was used.
Hydrofluoric acid (40%) and ammonium fluoride were obtained
from Merck (Poole, Dorset, UK). Microposit chrome etch 18
and photoresist remover 1112A were purchased from Shipley
(Coventry, UK). The glass for the micro reactor chips and
cover-plates were both superwhite Crown B70 borosilicate
glass (Instrument Glasses, Enfield, UK).

2.2. Chip device and instrumentation

The micro reactor consisted of channels 200 mm in diameter and
100 mm deep (Fig. 1), fabricated in borosilicate glass (25 mm
long, 25 mm wide and 3 mm thick), using a wet-etching
technique described previously.14 The glass chip was thermally
bonded to a thicker glass cover-plate (25 mm long, 14 mm wide
and 17 mm thick, also of borosilicate) containing 2 mm holes
pre-drilled to align with the ends of channels which served as

This journal is © The Royal Society of Chemistry 2001
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reservoirs for reagents and analyte and to support the platinum
electrodes used to apply voltages to the solutions.

A Farnell (Leeds, UK) HiVolt XRV30/1.7 reversible polarity
power supply was used to supply the electric field to the system.
This offered a maximum power output of 50 W with variable
voltages up to 30 000 V and currents up to 1.7 mA to be selected
in constant stabilised current or voltage modes, with an
adjustable trip for overcurrent protection. The power supply
was connected via high purity copper conductors to 0.15 mm
diameter platinum electrodes with a 10 mm exposed length for
interfacing with the solutions in the reservoirs. For safety, the
electrode system was built in an isolation box fitted with a
power cut-out preventing high voltage operation when the lid
was opened. The voltages applied across the electrodes and the
internal currents generated within the solutions in the channels
were monitored on an AVO M2036 digital autoscaling
multimeter (Thurnby Thunder Instruments, Huntingdon, UK)
connected in parallel with the device.

Gas chromatography-mass spectrometry (GC-MS) with a
GC970870-MS200478 system (Finnigan MAT GCQ, Austin,
TX, USA), was used to analyse for benzene mobilised within
the channel by the bulk flow of the microemulsion, and any
benzene-nitrated products. The GC column used was a 35 m 3
0.25 mm id Rtx-5MS capillary (Crossbond 5% diphenyl–95%
dimethylpolysiloxane stationary phase), stable to 360 °C; the
carrier gas was helium at a flow rate of 40 cm3 s21. The
temperatures used were: injector 250, detector 250 and oven
85 °C (held for 3 min) ramped at 30 °C min21 to 250 °C (held
for 15 min).

2.3. Characterisation of electroosmotic flow

The main EOF characteristics monitored were applied voltage,
current–voltage relationships and solution concentration and
pH, which were then selected to obtain parameters for stable
electric field-driven flow.

The solution under investigation was placed in reservoir R
(Fig. 1) and water or buffer in reservoir W1, both to pre-marked
levels. The reservoir levels of other reagent solutions in the side
channel reservoirs S and W2 perpendicular to the main channel
R–W1 were also recorded. The positive electrode was placed in
R and the negative electrode in W1; the other reservoirs were
electrically left floating.

Initially, different disodium tetraborate buffer solutions of
concentrations 20 mM (pH 9.25), 15 mM (pH 9.24), 10 mM (pH
9.22) and 5 mM (pH 9.11) were run at different applied voltages
(200–1200 V) over a period of 15 min and the change (decrease)
in volume of buffer in reservoir R was measured by recording
the difference in reagent level in the reservoir. This was done by
filling the reservoir to its original level after each 15 min run and
recording the addition required with a graduated 100 ml HPLC
syringe. The voltage (V), current (mA), time (min) and volume

changes (ml) were recorded and the flow rates (ml min21)
calculated to obtain an optimum buffer concentration that could
be used in conjunction with the reagents having a pH > 4.

In a similar manner, the EOF properties of SDS solutions of
concentrations 100 mM (pH 6.32), 50 mM (pH 6.05), 20 mM
(pH 5.75), 15 mM (pH 5.80), 10 mM (pH 5.78) and 5 mM (pH
5.47) were studied to verify the effect of voltage and/or current
on the flow. In addition, it was established which concentrations
of the SDS could be used as the micellating or micro-
emulsification surfactant in the buffer solution.

The above approach was repeated to establish the flow
characteristics for different SDS–borate buffer solution mix-
tures containing 15 mM SDS (the SDS concentration that gave
the best EOF properties) at different borate buffer concentra-
tions, 5, 10, 15 and 20 mM, giving solution mixtures of pH 9.13,
9.24, 9.26 and 9.28, respectively. Finally, the buffer concentra-
tion was kept constant at 10 mM Na2B4O7 (the buffer
concentration that gave highest EOF rate) whilst the SDS
concentration was varied to verify the effect of SDS concentra-
tion on the EOF of the mixture. In this case, the actual SDS
concentrations and the pH of the solution mixtures were 5 mM
(pH 9.06), 10 mM (pH 9.11), 15 mM (pH 9.24), 20 mM (pH
9.25), 50 mM (pH 9.28), 100 mM (pH 9.33) and 200 mM (pH
9.38).

A number of straight chain alcohols, methanol, ethanol,
propan-1-ol, butan-1-ol, pentan-1-ol, 1-hexan-1-ol, octan-1-ol
and decan-1-ol, were considered as possible co-surfactant
agents but owing to solubility considerations only methanol to
butanol were investigated. Initially, separate 10% v/v alcohol
(methanol to butanol) mixtures with 10 mM borate buffer–SDS
solution mixtures with various SDS concentrations (5–200 mM)
were studied, to establish the effect of the presence of the
alcohols on the EOF, and to establish how the SDS concentra-
tion in alcohol solution would affect the EOF. In a further study,
the alcohol concentration was varied from 5 to 50% in separate
50 mM SDS–10 mM borate buffer solutions. This was followed
by preparing separate 100 mM SDS–10mM borate buffer
solutions to investigate the effect of alcohol concentration on
the EOF and thus the possibility of using higher co-surfactant
(alcohol) levels at higher surfactant (SDS) levels since this may
be the only conditions under which some non-polar organic
compounds would be solubilized.

Six microemulsion systems of the quaternary system, H2O–
SDS–butanol–benzene, one oil-rich (water-in-oil) and five
water-rich (oil-in-water) with various water contents, were
prepared by selecting various relative percentage weight ratios
of each of the components from a Winsor IV phase diagram.15

The actual corresponding amounts (in weight or volume) were
measured and mixed with gentle agitation and allowed to settle
for 4 h to give clear or nearly clear microemulsion systems. The
EOF properties of the different microemulsion systems were
then studied at voltages ranging from 100 to 500 V to ascertain
the trend in flow and the voltage–current characteristics as the
mixture moved from the oil-rich to the more water-rich
microemulsion systems. This was followed by evaluating the
amounts of benzene moved by EOF for the five oil-in-water
microemulsion systems (the oil-rich system did not exhibit any
EOF) under an applied field of 100 V, by taking a 0.5 ml aliquot
of the resulting solution in the collection reservoir W1 (Fig. 1)
and analysing it by GC-MS (single-ion MS monitoring at
masses 76, 77, 78 and 79). A portion (0.5 ml) of the remaining
solution in the reagent reservoir R was similarly analysed to
determine how much benzene was left in the reagent reservoir
R after applying the electrical field.

A stock standard 11.22 M H2SO4–5.37 M HNO3 solution was
prepared and serial dilutions (dilution factors 1.333, 1.5, 1.666,
1.82, 2, 2.5, 3, 4, 5, …, 10) were carried out to produce other
mixtures of concentrations ranging from 8.42 M H2SO4–4.03 M
HNO3 to 1.22 M H2SO4–0.53 M HNO3, which were used in
similar electrokinetic flow studies at voltages ranging from

Fig. 1 Micro reactor design used for the nitration of benzene. BC = 3 mm,
CD = DE = 4 mm, RB = SC = W2D = W1E = 5.5 mm, BE = 11 mm,
RW1 22 mm, SW2 = 14 mm.
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100–500 V to ascertain the trend in bulk flow and the effect of
the acid concentration on the current.

The optimum acid concentration for the model nitration
reaction and the maximum voltage and time of field application
suitable for driving the mixed acid in the system, with
microemulsion (containing organic components) also present,
were investigated. For practical reasons, i.e., minimising Joule
heating effects and stabilising the current flow properties of the
two reactants, it was necessary to select a set of compromised
lower voltages than indicated in the univariate optimisation. It
was therefore decided to pump the microemulsion at 90 V by
EOF as the main reagent and inject the mixed acid at 200 V.

In a further experiment, microporous silica frits16 0.5 mm in
length were integrated into the channels R–B, C–S and W2–D
(leaving the main reagent channel B–W1 free) to control
hydrostatic pressure effects caused by imbalance in liquid levels
in reservoirs, and to aid EOF.

2.4. Multiphase solution mobilisation and optimum
operational conditions for the model nitration reaction
(nitration of benzene)

The micro reactor manifold used for the multiphase solution
mobilisation, based on the model nitration experiment (Fig. 1),
contained four solution reservoirs (R, W1, S and W2). A Z-
mode sample injection3 was used to introduce the mixed acid
whilst running the microemulsion as the main reagent. The
microreactor also contained 0.5 mm long microporous silica
frits16 integrated into the channels R–B, C–S and W2–D.

After loading the reagent reservoir R and sample reservoir S
with 10 mM borate buffer (Na2B4O7, pH 9.22), and the waste
reservoirs W1 and W2 also with buffer, the electrical fields
HVPS 1 and HVPS 2 (400 V in each case) were applied one
after the other to prime all channels with the blank buffer. The
buffer in reservoir R was then replaced with a 92.5% water
microemulsion and the sample reservoir S was loaded in a
similar way with 6.17 M H2SO4–2.95 M HNO3. Reservoirs W1
and W2 were loaded with the buffer. The electrical field HVPS
1 (90 V, ≈ 270 mA) was applied between R (+) and W1 (2) for
5 min to fill the main reaction channel R–W1 with the
microemulsion. A second voltage was then applied using the
HVPS 2 (200 V, ≈ 300 mA) across S (+) and W2 (2) for 5 min
to fill the sample channel C–D completely with the mixed acid,
driving any microemulsion between C and D to waste W2. The
HVPS 1 (90 V, ≈ 270 mA) was again applied across the R (+)
and W1 (2) to drive any mixed acid and buffer along the main
reaction channel to W1. After replacing the contents of
reservoirs W1 and W2 with fresh 10 ml of buffer, the HVPS 2 [S
(+), W2 (2)] was then applied for 180 s to inject the mixed acid
into the microemulsion stream and, after allowing a 60 s
stopped-flow mode as initial reaction time, the HVPS 1 was
then applied across R (+) and W1 (2) again for 5 min to drive
the reaction segment to the reservoir W1. A 100 ml HPLC
syringe, pre-loaded with 6 ml of octane, was then used to transfer
the reaction mixture in W1 to a 90 ml sample glass tube,
followed by introduction of a further 6 ml of octane to assist in
the extraction of any reaction products into the top organic
layer.

Using fresh microemulsion and fresh mixed acid solution in
each case, the process was repeated with different injection
times between 0 and 120 s to verify the optimum continuous
sample injection time for the process, and the corresponding
reaction mixtures were collected separately. In this way, the
amount of microemulsion fed into the system was kept constant
whilst that of the mixed acid was varied. Before using the
solutions, the 10 mM borate buffer, the 6.17 M H2SO4–2.95 M
HNO3 and the 92.5% water microemulsion were cooled to 4 °C
in a refrigerator to minimise the temperature effects associated
with the exothermic nitration reaction. At injection times > 1

min, bubble generation was observed in the injection line S–W2
owing to excessive heating. In the injection process, the
switching off and on of the microemulsion flow (R–W1) and the
mixed acid reactant (S–W2) was performed simultaneously.
Each of the mixtures produced was stirred with a small stainless
steel rod, allowed to settle and 1 ml each of the octane extracted
solutions was then analysed by GC–MS. In this part of the work,
0.5 ml of pure nitrobenzene and then pure octane were first
injected in turn to determine the respective retention times and
their MS data in full scan mode (mass 70–220).

Experiments based on a segmented mixed-acid injection
coupled with a non-stopped-flow mode of operation, but with
different segmented microemulsion run times, were also carried
out to verify the effects of these conditions on the product yield.
In these experiments, after priming all channels with the borate
buffer, the main reaction line R–W1 was filled with the
microemulsion, and the sample channel S–C was filled with the
mixed acid, as before. Reservoirs W1 and W2 were each loaded
with a fresh 10 ml of buffer. The HVPS 2 [S (+) W2 (2)] was
then applied for 30 s (the optimum mixed-acid injection time) to
inject the mixed-acid into the microemulsion stream and,
without allowing any initial stopped-flow reaction time, the
HVPS 1 [R (+) W1 (2)] was introduced for 30 s to run the
microemulsion and drive the sample segment away from the
injection point, followed by a further two 30 s mixed-acid
injections with 30 s microemulsion runs between injections.
Finally, the HVPS 1 was applied from R (+) to W1 (2) for 8 min
to drive all sample segments to reservoir W1.

Using fresh microemulsion and fresh mixed acid solution in
each case, the process was repeated with the same three times
30 s mixed-acid injection sequence but using different micro-
emulsion run times of 0–25 s between injections and the
corresponding reaction mixtures were collected separately. In
this way, in addition to segmenting the injection and verifying
the effect of non-stopped flow mode on the reaction, the amount
of mixed acid introduced into the system was kept constant at
three 30 s injection volumes, whilst the amount of micro-
emulsion fed into the system was varied by altering the
segmented microemulsion run times. The extraction of samples
from the collection reservoir and subsequent GC–MS analysis
were performed as described previously.

3. Results and discussion

3.1. EOF properties of buffer, surfactant and alcohol
reagent systems

In order to establish the suitability of pumping a microemulsion
in a borate buffer solution by EOF, the flow characteristics of
the borate buffer were initially investigated to identify the
optimum concentration required when used in conjunction with
the surfactant SDS and other reagents. The anionic surfactant
SDS was employed because it is known to solubilize benzene
strongly,15,17–19 especially when employed with a co-surfactant
such as an alcohol. In addition to providing an ionic character to
the organic system, the small droplets (10 nm) produced
increased the surface area available for the nitronium ion attack.
SDS was also expected to exhibit an extra positive catalytic
effect on the benzene reactions since it would exert an attraction
on attacking electrophiles on to the surface of the droplet to aid
attack on the solubilized benzene. It was expected that SDS
molecules would not adsorb on the micro-channel surfaces of
the microreactor, thus posing no adverse effects on the EOF,
since the SDS and the glass surface are both negatively
charged.

The borate buffer solutions alone all gave good EOF under
applied voltage over the concentration range 5–20 mM studied,
with the flow rate changing very little as a function of
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concentration. The highest EOF of 2.6 ml min21 was recorded
for the 10 mM solution.

On the whole, the surfactant solutions alone also moved well
by EOF within the voltage (200–1200 V) and concentration
(5–100 mM) ranges studied, since SDS is an anionic surfactant
and had no detrimental adsorption effects on the capillary
surface. The 15 mM SDS solution gave the maximum flow rate
of 2 ml min21. Generally, the flow rates recorded for the
surfactant solutions (pH 5–7) were lower (1.2–2 ml min21),
however, than the 2.3–2.6 ml min21 obtained for the borate
buffer solutions (pH 9.13–9.33), owing to the lower pH and the
slightly viscous nature of the surfactant solutions.

In order to use the surfactant (SDS) in a borate buffer
solution, it was clearly necessary to establish the EOF
parameters of the surfactant–buffer solution mixtures, across a
range of different relative concentrations. Indeed, the dissolu-
tion of the SDS in the borate buffer solutions was found to
improve the EOF rates, over the SDS solution systems without
buffer, owing mainly to the pH buffering effect (pH 9.06–9.48
range) produced by the borate buffer. It was observed, however
that beyond 100 mM SDS concentration, voltages > 300 V
resulted in higher and fluctuating currents, causing some degree
of Joule heating to occur. SDS concentrations > 100 mM were
therefore thought to be a practical limitation. In Fig. 2, for
example, the errors in the measured flow rates of the SDS–
buffer mixtures (with no alcohol present) were in the range
1–2% RSD, with the error increasing as a function of the SDS
concentration, possibly owing to the current fluctuations
resulting from the increasing Joule heating effects.

The flow rates recorded for all the alcohol containing solution
mixtures were slightly lower than those obtained for the
mixtures without alcohol (Fig. 2). The presence of the alcohols
resulted in a slight suppression of the EOF owing to their
organic nature and possibly a slightly non-ionic surfactant
adsorption property on the capillary wall. All four alcohols
investigated (methanol, ethanol, propanol and butanol), how-
ever, gave nearly the same EOF properties, with butanol
showing only a slight lowering of the EOF compared with the
other alcohols. The errors in the measured flow rates of these
alcohol containing mixtures were between 1.0 and 2.5% RSD
for all four alcohols, with the error again increasing as a
function of the SDS concentration. For all the four alcohols
investigated, the EOF became suppressed as the alcohol
concentration increased in both the 50 mM (Fig. 3) and the
100 mM SDS solutions (Fig. 4), owing to the increase in the
organic character and viscosity of the solutions. In addition, it
was possible that the alcohol was adsorbed on the capillary
surface, so affecting the zeta potential of the system.20 The
general trend observed (Fig. 3 and 4) as the alcohol concentra-
tion increased was that the flow rate of the individual alcohol

systems all approached a convergence value at about 50%
alcohol concentration. Beyond 40% alcohol concentration for
the three most soluble alcohols (methanol, ethanol and
propanol), the Joule heating and bubbling effects became more
pronounced, especially at high SDS concentrations and applied
voltages > 600 V, owing to the higher volatility of these
alcohols (methanol, ethanol and propanol). In these cases of
different alcohol concentrations (Fig. 3 and 4), the errors in the
flow rate measurements were between 2 and 3% RSD, with the
error increasing slightly with increasing alcohol concentration.
It is important to note, however, that in the SDS operating
concentration range of 0–100 mM, as the concentration of
alcohol or any other organic compounds increases, the SDS
concentration must also be increased to ensure that sufficient
ions are present in the medium to induce solution mobility under
applied field.

The solubilizing properties of SDS–alcohol in a micro-
emulsion increases substantially with increasing salinity.19 In
this work, any additional salinity was expected to be provided
by the sodium borate buffer employed.

3.2. EOF properties of the microemulsion systems

Of the four alcohols investigated for EOF purposes, butanol was
selected because it has the highest threshold number15 of carbon
atoms, nC = 4, i.e., where the unique Winsor IV domain is
broadest and therefore there is more opportunity for changing
the relative percentage composition of components without
extending beyond the boundaries of the microemulsion domain.
The percentage compositions obtained and the actual quantities
of components measured to generate the microemulsion
systems are shown in Table 1.

After mixing the components of the microemulsion and
applying some agitation, clear microemulsion media were
successfully obtained at room temperature. The time required
for equilibration was, however, found to increase as the water

Fig. 2 Plots of flow rate versus SDS concentration for SDS–10 mM borate
buffer solutions without alcohol, and flow rate versus SDS concentration for
systems containing 10% v/v alcohols (methanol to butanol), at 800 V.

Fig. 3 Plots of flow rate versus alcohol concentration in 50 mM SDS–
10 mM borate buffer, at 800 V.

Fig. 4 Plots of flow rate versus alcohol concentration in 100 mM SDS–
10 mM borate buffer, at 800 V.
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content increased; thus, the oil-rich microemulsion systems 1
and 2 required between 1–4 h to become clear whereas the more
water-rich systems 3, 4 and 5 required 8–12 h. In each case, the
formation was found to be slightly endothermic and any
foaming disappeared after the equilibration.

Fig. 5 shows the plots of the EOF rate versus voltage for the
different microemulsion systems investigated for different
percentage water content. The oil-rich microemulsion system 1
exhibited no bulk solution movement over the whole voltage
range studied. This was thought to be owing to the high levels
of SDS, alcohol and benzene components of the microemulsion
which made the solution very oily (viscous) and interfered with
the channel surface. With this oil-rich microemulsion system,
the recorded currents were very high and fluctuated owing to
high resistance, creating strong Joule heating in the system. It
was found that, because the organic (benzene and butanol)
additives generally decreased the vapour pressure of the whole
mixture and the amount of SDS was substantial, evaporation
occurred which precipitated the SDS in the reservoir, making its
use impractical. The water-rich (oil-in-water) microemulsions
showed a steady increase in the EOF, with a corresponding
decrease in the current required. This trend was accompanied by
a more stable current and less Joule heating, as the samples
moved to more water-rich and lower organic/surfactant concen-
tration systems. Voltages as low as 100 V and a current of 28 mA
were found to be sufficient to move the water-rich micro-
emulsion solutions. The three most water-rich microemulsion
systems (containing 85.0, 88.75 and 92.5% water, respectively)
showed similar and steady EOF properties over the voltage
range studied, but with decreasing current fluctuation and Joule
heating effects. The errors in the flow rate measurements were
between 1 and 2% RSD, with the error decreasing as the water
content of the microemulsion increased.

3.3. Flow properties of the nitrating mixed-acid solutions

Fig. 6 shows the plots of the volumetric flow rate versus applied
voltage for a range of acid concentrations at a fixed H2SO4 to
HNO3 ratio. The nitrating mixed-acid systems showed a steady
decrease in flow rate as the concentration of the acids increased,
with the highest concentration (11.22 M H2SO4–5.37 M HNO3)
showing almost a zero flow rate within the micro reactor. Owing
to the low pH ( < 2) and high ionic strength of the mixed-acid
solutions, the bulk mobility observed for the less concentrated
solutions was more likely to be induced by bulk ionic
electrophoretic movement, rather than EOF. For the more dilute
solutions with concentrations less than 5.61 M H2SO4–2.68 M
HNO3, voltages as low as 100 V appeared to be sufficient to
move the solutions in the micro reactor. In addition, there was
reduced Joule heating owing to the low electrical resistance.
The errors in the flow rate measurements for the acid solutions
were between 1.5 and 2.5% RSD, with the error decreasing as

the acid concentration decreased. In all cases, no evolution of
brown nitrogen dioxide gas was noticed at the electrodes and in
the channels.

Flow rates were determined by the simple volume change
measurement procedure,20 avoiding current-21 and optical-

Table 1 Percentage compositions and amounts of components in the microemulsion systems. CS is the composition of the surfactant (SDS)–alcohol (ROH)
combination of the ratio 1+2, CH is the composition for the hydrocarbon (benzene) and CW is the composition for the water in which 10 mM borate buffer
is dissolved

Water-rich (oil-in-water) system

Parameter Oil-rich system 1 2 3 4 5

CW (%) 32.50 70.00 79.38 85.00 88.75 92.50
(2.6 g, 2.6 ml) (10.18 g, 10.18 ml) (15.88 g, 15.88 ml) (26.7 g, 26.7 ml) (30.43 g, 30.43 ml) (49.33 g, 49.33 ml)

CH (%) 31.25 9.38 5.63 3.75 2.50 1.88
(2.5 g, 2.9 ml) (1.36 g, 1.58 ml) (1.13 g, 1.31 ml) (1.0 g,1.16 ml) (0.86 g, 0.99 ml) (1.0 g, 1.16 ml)

CS (%) 37.50 20.63 15.00 11.25 8.75 5.63
SDS (%) 12.50 6.88 5.00 3.75 2.92 1.88

(1.0 g) (1.0 g) (1.0 g) (1.0 g) (1.0 g) (1.0 g)
ROH (%) 25.0 13.75 10.00 7.50 5.83 3.75

(2.0 g, 2.5 ml) (2.0 g) (2.0 g) (2.0 g) (2.0 g) (2.0 g)
Total volume/ml 8.0 14.28 19.68 30.36 33.92 52.99

Fig. 5 Plots of flow rate versus voltage for the microemulsion systems
with different percentage water contents.

Fig. 6 Plots of flow rate versus voltage for the mixed-acid concentration
levels.
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based21 methods which when applied to a two-phase system
may pose some significant problems. For example, the presence
of organic components in the aqueous phases and the employ-
ment of solutions with pH < 2 may result in some current
irregularities, which would make flow rate measurements by
current–time monitoring difficult. However, the integration of
UV/visible optical detectors to allow flow rate measurements by
more conventional approaches through the use of injected
neutral marker21 is currently under investigation.

3.4. Characteristics of the nitration model reaction based
on the electric field-induced mobilisation of the
multiphase system

Ideally, the yield of reaction product should be calculated
relative to the amount of reagent or sample injected into the
reactor channel. However, this was difficult to achieve in this
investigation as the nitronium ions injected are generated as
reaction intermediates in the reversible interaction between
H2SO4 and HNO3. Hence, the yields of any benzene-nitrated
products (as absolute gram amount and as percentage conver-
sion) were calculated relative to a theoretical yield based on
100% conversion of the amount of benzene in an estimated
volume of microemulsion interacting with the injected mixed
acid at the reagent–sample interfaces initially created at the
channel junction C (Fig. 1). The volume of the channel junction
C was calculated to be 4 nl and the total amount of
microemulsion interacting within the injected mixed acid at
both sides of the injected slug was estimated to be approx-
imately half (i.e., 2 nl) of the volume of the channel
junction.22

Fig. 7 shows the percentage yield (calculated as percentage
mass) for mono-, di- and trinitrobenzene obtained by injecting
a slug of the mixed acid, for different periods of time, from
reservoir S into the microemulsion filled main channel. During
this process the flow was stopped for 60 s after each injection to
allow the reaction to proceed.

The products formed were found to be dependent on the
injection time and thus the corresponding volume of reactant
acid introduced into the microemulsion stream. For the mono-
nitrobenzene an injection slug of acid between 30 and 60 s
proved to be optimal, giving a yield of 62–65%, but the less
abundant di- and trinitrobenzene species increased slowly with
a corresponding increase in acid injection time. It is important to
note that whereas EOF, with a characteristic flat (trapezoidal or
rectangular) flow profile, is the main mechanism for solution

mobility, electrophoretic mobility will also occur, affecting the
diffusion limiting reactions taking place in the interfacial zones
between the reactants.22 The amount of reaction product formed
would therefore depend not only on the volume injected but also
on the diffusion constants for the solutions present, the
individual electrophoretic mobility for each component and the
reactant concentration. Thus, if insufficient acid is injected the
nitrobenzene yield will be reduced (i.e., < 30 s). Attempts to
deliver more acid by increasing the injection time (i.e., > 60 s)
had a limiting effect on the amount of product obtained and this
trend could possibly be due to an increase in Joule heating
effects creating some in-channel bubbling during the injection,
which eventually stopped the fluid flow. To prevent such
excessive time-dependent Joule heating effects, a 30 s injection
time, coupled with the 60 s initial stopped-flow mode reaction
time, were chosen. This corresponds to < 5 nl injected mixed-
acid volume completely filling the reagent-sample channel
junction C, and about 2 nl of microemulsion interacting with the
acid at the interfaces between the microemulsion and the mixed-
acid. To establish fully the optimum reaction conditions,
experiments were carried out in which the mixed acid was
segmented by different volumes of microemulsion, operating in
a continuous flow mode. These results showed that the most
appropriate injection sequence for this reaction was three 30 s
segmented mixed-acid injections each immediately followed by
a 5 s flush of microemulsion into the system. Clearly, however,
the whole aspect of sample injection and reaction characteristics
in mFIA systems requires a more detailed study, which is
currently in progress.

It is also important to stress that in the absence of any
turbulent mixing, to disperse the injected mixed-acid slug in the
relatively larger volume of microemulsion in the channel means
that some concentrated mixed acid would still be in direct
interfacial contact with the already formed nitrobenzene
product. This situation could therefore lead to the possible
formation of polynitration products. However, only traces of the
di- and trinitrobenzene were formed owing to the deactivating
nature of the nitro group already present on the benzene ring and
the limited amount of mixed acid introduced as a sample into the
benzene stream. Thus, kinetically, the formation of the
polynitrated products was found to be, as expected, a function of
both time and the amount of mixed acid introduced into the
system. Shorter reaction times and less acid (or excess
microemulsion) would favour the production of the mono-
nitrobenzene, whereas a longer time and excess acid would
favour the production of the polynitrated products.

Generally, any temperature gradients within the channels,
resulting from the exothermic nature of the reaction and Joule
heating effects, are expected to be minimal owing to the
relatively small volume present. Locally high thermal effects
may, however, still occur and the absence of active cooling may
influence the reaction equilibrium to some extent, leading to
decomposition of the reactants. In addition, the displacement of
some of the surfactant SDS as sulfonic acid and the borate
buffer as boric acid by the H2SO4–HNO3, together with the
presence of water and other side-reactions consuming some free
hydrogen ions in solution, will act to suppress the generation of
the electrophilic nitronium ion. As a consequence, the yields are
expected to remain lower than that of the conventional
industrial process. Other contributing factors to these low yields
could be attributed to the product collection from the collection
reservoir and the extraction efficiency of octane.

4. Conclusions

This investigation has demonstrated that it is possible to
mobilise a non-polar liquid (benzene) under EOF by dissolving
it in an oil-in-water microemulsion. It should be pointed out,

Fig. 7 Plots of the percentage yield for mono-, di- and trinitrobenzene
obtained by varying the injection times of the mixed acid into the
microemulsion filled main channel.

Analyst, 2001, 126, 14–20 19

Pu
bl

is
he

d 
on

 1
9 

D
ec

em
be

r 
20

00
. D

ow
nl

oa
de

d 
on

 0
1/

07
/2

01
4 

07
:1

6:
24

. 
View Article Online

http://dx.doi.org/10.1039/b007585j


however, that other methods such as the addition of ion pairs
(e.g., a quaternary ammonium salt)12 and electrohydrody-
namics23 are possible options for mobilising relatively non-
polar compounds. It was also possible to mobilise concentrated
acid solutions by bulk electrokinetic mobility of solution ions at
low pH.

The optimum conditions for the nitration of benzene in the
microreactor developed were a run of the microemulsion as
main reagent stream, then three 30 s segmented mixed-acid
injections each immediately followed by a 5 s flush of
microemulsion into the system. This was followed by a 60 s
stopped-flow reaction time before driving all reaction product
segments to the collection reservoir. An in-channel microporous
silica frit integrated in the manifold system was found to be
helpful in reducing hydrodynamic effects, so offering greater
control over the fluidics.

Clearly, it is possible to use time, applied electric field and
relative amount (feed rate) of reacting species (acid or
microemulsion) to control the relative yields of the various
products as required. The most important factors leading to the
production of the mononitrobenzene were higher rates of
microemulsion feed into the system, lower acid feed rate and
shorter reaction times (60 s maximum). High interaction
between the levels of SDS and the percentage of sulfuric or
nitric acid (in the nitrating mixture) used were also found to
influence the production of mononitrobenzene. Lower amounts
of the di- and trinitrobenzene were found to occur owing to the
deactivating nature of the nitro groups already present on the
benzene ring and the limited amount of mixed acid introduced
as a sample into the benzene stream serving as the main
reagent.

The synthesis of the nitrated benzene compounds using such
microtechnology indicated that the reaction itself was feasible
on a small scale. The system operational variables such as the
applied voltage and current, reagent concentrations and pH,
relative flow rates of reactant species into the system, channel
sizes, etc., which could influence chemical reactions on this
small scale are important considerations in the manifold design
if simple systems are to be realised. Control over the selectivity
of reaction products, i.e., mono-, di- and trinitrobenzene, was
not conclusive. The novel mixing characteristics and the high
heat dissipating capability of the glass devices together with the
direct close contact of reacting species in the channels in view

of the system miniaturisation could maximise the product
yield.
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The stereoselective control of chemical reactions has been achieved by applying electrical fields in a micro reactor
generating controlled concentration gradients of the reagent streams. The chemistry based upon well-established
Wittig synthesis was carried out in a micro reactor device fabricated in borosilicate glass using photolithographic
and wet etching techniques. The selectivity of the cis (Z) to trans (E) isomeric ratio in the product synthesised was
controlled by varying the applied voltages to the reagent reservoirs within the micro reactor. This subsequently
altered the relative reagent concentrations within the device resulting in Z/E ratios in the range 0.57–5.21. By
comparison, a traditional batch method based on the same reaction length, concentration, solvent and
stoichiometry (i.e., 1.0+1.5+1.0 reagent ratios) gave a Z/E in the range 2.8–3.0. However, when the stoichiometric
ratios were varied up to ten times as much, the Z/E ratios varied in accordance to the micro reactor i.e., when the
aldehyde is in excess, the Z isomer predominates whereas when the aldehyde is in low concentrations, the E
isomer is the more favourable form. Thus indicating that localised concentration gradients generated by careful
flow control due to the diffusion limited non-turbulent mixing regime within a micro reactor, leads to the observed
stereo selectivity for the cis and trans isomers.

Introduction

The controlled production of stereoselective products from
organic reactions represents a significant development for the
production of pharmaceutical drugs and the synthesis of
polyunsaturated natural products. Such control, at the touch of
a switch, has now been achieved so minimising the need for
separation and purification of stereoisomers post-reaction. The
micro reactor systems used exploit electroosmotic (EOF) and
electrophoretic mobility to create a unique reaction environ-
ment in which localised diffusional mixing occurs in the
presence of controlled electric fields.1–5 To demonstrate Z/E
control we have used well-established Wittig chemistry in
which 2-nitrobenzyltriphenylphosphonium bromide (0.01 M) is
reacted with methyl 4-formylbenzoate (0.01 M) in dry methanol
at a 1 to 1 stoichiometry to illustrate the experimental protocol.
In the traditional batch synthesis, the kinetically favoured cis
stereoisomer is produced with a typical Z/E ratio of 3.0. The
reaction is normally performed at room temperature (25 °C) in
the presence of an electrophilic phosphorous reagent (PPh3)
diluted by a polar, aprotic solvent.

Micro reactor—experimental

The micro reactor (Fig. 1) was fabricated in borosilicate glass
using photolithography and wet etching6 techniques to produce
appropriate channel geometries (200 mm wide and 100 mm
deep). Microporous silica frits7 positioned in the subsidiary
manifold channels and were used to minimise hydrodynamic

pressure improving the precision of electroosmotic pumping
and electrophoretic mobility1 of the solutions used. The
network of interconnecting channels was subsequently an-
nealed to a 17 mm top plate (680 °C) using a microwave
furnace. The top plate included a series of 3 mm id pre-drilled
holes (four reservoirs in total), which acted as reagent reservoirs
and supported the gold electrodes. The final outer dimensions of
the micro reactor were 20 mm 3 20 mm square and 25 mm in
depth.

Using a prototype power supply developed by Kingfield
Electronics (Sheffield, UK) see Fig. 2, the Wittig reaction was
investigated at a number of external applied voltages generating
a variety of EOF rates. Using the Kingfield power supply, the
micro reactor was positioned on the top plate of the unit into

Fig. 1 Schematic diagram of the micro reactor used for the investigation
of Z/E ratios in Wittig chemistry.

This journal is © The Royal Society of Chemistry 2001
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which a solution of 2-nitrobenzyltriphenylphosphonium bro-
mide (0.01 M, 50 mL) in dry methanol (MeOH) was added to
reservoir A. Sodium methoxide (0.015 M, 50 mL in MeOH) was
added into reservoir B and methyl 4-formylbenzoate (0.01 M,
50 mL, in MeOH) was added to reservoir C. Finally, 40 mL of
dry MeOH was added to reservoir D that was the collection
reservoir and common ground for the system. Using multi-
variate experimental design,8 a number of chemical reactions
were performed that investigated a series of voltages within the
range 494 V to 754 V for a period of 20 min. Previous
experimental design data suggested that the voltage region
outlined above minimised the relative standard deviation
between data points resulting in the models precision and
potential prediction capability being high. In total, the multi-
variate experimental method designed produced 27 voltage
combinations, which investigated the region 494 V to 754 V
sufficiently. After each reaction combination was finished, the
reagent volume in reservoir D was recorded and the product
yield was determined using off-chip reversed phase high
performance liquid chromatographic (HPLC) analysis (condi-
tions: Phenomenex C18(2) 3 mm column, 75 3 4.60 mm,
mobile phase composition: 0.% trifluroracetic acid in water and
0.1% trifluoroacetic acid in acetonitrile (90% aqueous to 10%
aqueous over 6 min) at 40 °C, flow rate 3 ml min21).9 The
compound yield was calculated using the knowledge of the
input weight of the phosphonium salt, the volume of the
solution in reservoirs A and D before and after the reaction, the
measurement of the concentration of phosphonium salt in
reservoirs A and D at the end of the reaction and the
concentration of the products in reservoir D.

Batch reaction—experimental

For comparison purposes, a series of batch reactions were
performed varying the concentration of the aldehyde. This was
achieved by stirring the following reagents for 20 min at room
temperature, 2-nitrobenzyltriphenylphosphonium bromide
(0.01 M in 10 ml of MeOH) with sodium methoxide (0.015 M
in MeOH) and the aldehyde, methyl 4-formylbenzoate at
various concentrations. The concentration values investigated
were 0.005 M, 0.01 M, 0.03 M, 0.05 M and 0.1 M. The yields
were determined using the same HPLC method detailed
above.

Results and discussion

In Fig. 3 we illustrated how applying a voltage of +494 V at
reservoir A, increases the amount of ylide produced in the
reaction channel. This is simply due to the negative potential
difference (2166 V) between reservoirs A and B (with respect

to A), allowing the sodium methoxide (reservoir B) to ‘flow
back’ towards reservoir A. The opposite trend applies when the
voltage is increased at reservoir A (+694 V), giving a potential
difference between reservoir A and B of +34 V, which reduces
the amount of ylide intermediate formed due to the increased
flow rate of 2-nitrotriphenylphosphonium bromide. Monitoring
the current during the reaction indicated that the current in
channel C was extremely small (0.01 mA) and could be classed
as the system noise. However, a large current in the region of 50
to 70 mA was recorded between reservoir B and D in the main
channel and this maybe due to the formation of sodium bromide
(step 1 by-product), which will influence locally the solution
mobility and the stereoselectivity of the reaction product.

The lowest and highest Z/E ratios obtained in this particular
data set were 0.57 (reservoir A: 495 V, reservoir B: 660 V and
reservoir C: 678 V) and 5.21 (reservoir A: 550 V, reservoir B:
300 V and reservoir C: 500 V) respectively, which when
compared with the Z/E ratio ( ≈ 3.0) obtained for a similar batch
reaction (the same reaction length, concentration, stoichiometry
and solvent system), illustrate the significant variation and
control possible on the products produced. In the course of this
work a number of additional aldehydes, detailed previously9

have been observed to also display stereoselectivity using the
same basic Wittig chemistry and investigations are continuing
in this area to establish the effective scope of the methodology
described.

The origin of the Z/E selectivity can be rationalised in terms
of the localised concentrations that occur within the capillary
channel system of the micro reactor where diffusion limited
non-turbulent mixing conditions predominate. This effect,
which is supported by batch based experiments, illustrates the
potential control and selectivity possible when using micro
reactors for synthetic chemistry.1 Thus when the solution
velocity through the microchannels is high and hence the
residency time or local concentration of the reagents in the
channels is low, the cis isomer is kinetically favoured and hence
the ylide reacts with the excess aldehyde to give the cis-
oxaphosphotane. The cis-oxaphosphotane then quickly passes
through the reaction channel before eliminating triphenylphos-
phine oxide to yield the cis-stilbene in excess. However, the
formation of the cis isomer is not absolute and even at high field
strengths some trans isomer is produced. As the residency time
is increased, by reducing the applied electric field, the relative
concentration of the ylide to aldehyde increases and the
equilibrium position moves to the more thermodynamically
favoured trans-oxaphosphotane, which is produced in excess.
Again, the equilibrium between the two isomers ensures that
there is never absolute selectivity of the trans-isomer, see Fig.
4. Experimental evidence to support the proposition that
localised concentration gradients are being generated and
controlled with in a micro reactor is given in Fig. 5. This
demonstrates that the variation in the Z/E ratios is dependant on
the concentration of reactants. When the aldehyde is in excess,
the Z isomer is the predominant product whereas if the

Fig. 2 The Kingfield electronics power supply.
Fig. 3 The schematic representation of the spatial production of the ylide
intermediate as a function of varying the applied voltage at reservoir A.
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phosphonium salt is in excess, the E isomer is the predominant
product. This concentration effect is currently being investi-
gated further within the author’s laboratory looking at the
fundamental kinetics of the reaction.

In conclusion, the micro reactor investigated using Wittig
chemistry has demonstrated that stereoselective control of
products can be induced using applied electrical fields in a
micro reactor device. This was achieved by varying the voltage
at reservoirs A, B and C, which allowed the precise control of
the reagent concentration within the reactor channels. The
micro reactor system described is currently being used in
conjunction with statistical modelling techniques to predict the
Z/E ratio with reference to the applied voltages at reservoirs A,
B and C. The micro reactor developed offers considerable

potential for use in a number of chemical fields such as synthetic
development and optimisation, combinatorial synthesis and
drug discovery enabling rapid synthesis of a number of
compounds with versatile selective control.
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The synthesis of stilbene esters using Wittig chemistry has been used to illustrate the generic diversity micro
reactors offer in terms of chemical control and rapid method development. The micro reactor consisted of a ‘T’
design based on channel geometries 200 mm wide and 100 mm deep, etched into borosilicate glass and sealed with
a borosilicate top plate using a thermal bonding technique. The movement of the reagent and products was
achieved using electroosmotic flow (EOF), assisted by the incorporation of micro porous silica frits within the
micro-channels to allow accurate solution control. To optimise the operating conditions methyl 4-formylbenzoate,
premixed with sodium methoxide, was reacted with 2-nitrobenzyl-triphenylphosphonium bromide in dry degassed
MeOH using flow conditions for both reagents of 0.40 mL min21 for 20 min. A product yield of 70% (2+1
reaction stoichiometry with the aldehyde in excess) was obtained representing a 10% increase compared with the
traditional batch synthesis. To demonstrate the capability of micro reactors to perform atom efficient synthesis a
series of experiments based on an injection methodology (optimised to 30 s) were performed in the micro reactor
at 1+1 stoichiometry resulting in a yield of 59%. Finally, the capability of micro reactors to perform a series of
analogue reactions was investigated. The yields for a further three aldehydes indicated that the technology will be
suitable for the development of automated device to support the generation of combinatorial libraries and rapid
high throughput synthetic methods.

Introduction

In recent years, interest in developing total analytical system (m-
TAS) has grown considerably1–10 as the reality of achieving a
faster and cheaper means of performing chemical analysis has
been demonstrated. Interestingly, the principles demonstrated
by m-TAS can readily be exploited to develop reactors at the
micron scale for the synthesis of organic compounds. Whilst
such devices offer a rapid and practically attractive approach to
synthesis, the real potential lies in the possibility of achieving
novel reaction control and product formation.11

A strong research base is now developing in the field of micro
reactor technology with a particular emphasis on gas phase
catalytic reactions,12,13 and a growing interest in solution based
chemistry.14 This trend in micro reactor methodology is
reflected in the growing number of papers appearing in
associated conferences.15 Micro reactor fabrication can be
achieved using a variety of mediums, for example glass, metals
and silicon, however, glass substrates with typical cross sections
between 50 and 300 mm have been preferred for organic
synthesis due to the chemical inertness, temperature stability,
optical transparency and the ability to support electroosmotic
flow (EOF).16

For the purpose of this study, the evaluation of a glass based
micro reactor for synthetic chemistry has been investigated
using as an example, the Wittig chemistry commonly used for
vitamin A synthesis.17 The reaction (Fig. 1) allows the
formation of a carbon to carbon bond by the reaction of a
phosphorane or phosphonium ylide and an aldehyde or ketone
to form an alkene and phosphine oxide. The Wittig reaction was

investigated on a micro reactor with two specific aims, firstly to
establish the criteria for achieving a solution based synthetic
application and secondly, to investigate the potential for the
technology to perform analogue-type chemistry. In this present
case, the Wittig synthesis has been selected for its homogeneous
solution properties, which produces a coloured intermediate
(ylide) enabling solution profiling and diffusive mixing visual-
isation to be achieved, so gaining a greater understanding of
system flow and reaction control.

Experimental

All reagents were of analytical grade, unless otherwise stated
and were used without further purification. The micro reactor
was fabricated using photolithographic techniques (200 mm
wide and 100 mm deep) and the microchannels included
microporous silica frits18 positioned as shown in Fig. 2. The
channels were sealed by annealing the patterned base plate to a
17 mm thick top plate (680 °C) using a microwave furnace
(CEM microwave ashing system 300). The top plate included 3
mm internal diameter pre-drilled holes aligned at the ends of
each channel to act as reservoirs and electrode supports. The
final outer dimensions of the micro reactor were 20 mm 3 20
mm square and 25 mm in depth. In addition, the total length of
the channels was 20 mm from reservoir A to C.

The synthetic method was adapted from that previously
reported by Hughes et al.19–20 In this paper, 2-nitrobenzyl-
triphenylphosphonium bromide was used as it produced a
coloured intermediate (ylide), due to the presence of the nitro

This journal is © The Royal Society of Chemistry 2001
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functional group. Visual observation of the ylide enabled the
reaction and the fluidics of the system to be monitored via a
microscope and CCD camera. The yield was also determined
using high performance liquid chromatography (Zorbax C18
3.5 mm, 75 3 4.5 mm id, mobile phase composition: 0.1%
trifluroacetic acid in water and 0.1% trifluroacetic acid in
acetonitrile, using a gradient system 90% aqueous to 10%
aqueous over 6 min with a flow rate of 3 ml min21 at 40 °C).

Wittig synthesis based on 2+1 stoichiometry

Prior to synthesis, the microchannels were primed with dry
methanol (MeOH) removing any excess moisture from the
channels and the microporous silica frits to reduce a hydrolysis
side reaction. A standard solution of 2-nitrobenzyltriphenyl-
phosphonium bromide (50 mL, 0.01 M) in dry MeOH was added
into reservoir A of the micro reactor. Methyl 4-formylbenzoate
(50 mL, 0.02 M, 2 eq.) was premixed with sodium methoxide
(0.015 M) and 50 mL of the premixed solution was introduced
into reservoir B. Dry MeOH (40 mL, dry, degassed) was
introduced into reservoir C. Gold electrodes were placed in each
reservoir (A + B positive, C ground) and an external voltage of
100–700 V was applied to channels A (+) and B (+) relative to
reservoir C (2), see Fig. 2. This induced the continuous flow of
methyl 4-formylbenzoate from B (+) to C (2) and 2-ni-
trobenzyltriphenylphosphonium bromide from A (+) to C. The
total volume of the solutions in reservoir A and C at the end of
each reaction was recorded and samples were taken for HPLC
analysis. The flow rates over the voltage region 100 V to 700 V
were determined using a volumetric approach with time. The
yield obtained in the micro reactor was calculated from a
knowledge of the input weight of 2-nitrobenzyltriphenylphos-
phonium bromide, the volume of solution in reservoirs A and C,
before and after the reaction, measurement of the concentration
of 2-nitrobenzyltriphenylphosphonium bromide in A and C at
the end of the reaction and the concentration of the product in
reservoir C.

Using the optimised conditions obtained, three additional
aldehydes with various functional diversities (supplied by
SmithKline Beecham Pharmaceuticals, Harlow) were used to
demonstrate the potential of micro reactors to perform a variety
of reactions. The aldehydes chosen were 3-benzyloxybenzalde-
hyde, 2-naphthaldehyde and 5-nitrothiophene-2-carboxalde-
hyde. Each aldehyde was reacted using the optimum conditions
established for the aldehyde methyl 4-formylbenzoate. For
comparison purposes, each aldehyde was reacted in a batch
mode using the method outlined below.

Batch scale methodology

Batch synthesis was also performed at 2+1 and 1+1 stoichio-
metry in order to make a comparison of the yields obtained with
the micro reactor versus traditional synthetic methods. This was
achieved by stirring 2-nitrobenzyltriphenylphosphonium bro-
mide (0.01 M in MeOH) with sodium methoxide (0.015 M in
dry degassed methanol) and each aldehyde in turn at various
stoichiometric ratios (concentrations 0.02 M and 0.01 M) at
room temperature for 20 min. The reaction parameters set for
the micro reactor and the batch system allows the comparison of
the reaction length (20 min), concentration, and the solvent of
choice. The solution was then evaporated to dryness, purified by
Prep HPLC and the yield (g) recorded.

Wittig reaction based on 1+1 stoichiometry

Traditional batch syntheses are typically performed with an
excess of reagent, in this particular case the aldehyde is in
excess relative to the phosphonium bromide. To establish the
operating features of the micro reactor, for the reduced reaction
stoichiometry of 1+1, an injection profiling technique was
adopted. This required the methyl 4-formylbenzoate solution to
be continuously driven by EOF through the micro reactor from
B to C whilst sample plugs of 2-nitrobenzyltriphenylphosphon-
ium bromide were injected every min for a range of injection
times (20 to 50 s) from channel A to C. Injection was initiated
by the periodic application of an optimised voltage between A
(+) and C (2) which injected slugs of the reagent (flow rate of
0.4 mL min21 determined using volumetric flow rate with time).
Repeat injections (20) for each injection time were carried out
to generate sufficient product for off-chip analysis.

Fig. 1 Reaction scheme for the coupling of 2-nitrobenzyltriphenylphosphonium bromide and methyl 4-formylbenzoate in a micro reactor under EOF.

Fig. 2 Schematic of the T-shaped manifold used in the reactor for the
Wittig synthesis.
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Results and discussion

The 2+1 stoichiometric study initially centred on evaluating the
effect of reagent flow rates on the spatial location of the reaction
intermediate by adjusting the voltage applied in reservoirs A
and B relative to C. Whilst the initial data gave extremely high
product yields several problems were experienced with the
reaction. At high voltage (500–700 V) the purple colour
observed from the ylide intermediate could clearly be seen
being produced in reservoir C and the yields (approximately
50%) suggest the reaction was occurring in the reservoir rather
than in the microchannels. Under such a regime, one of the
fundamental benefits of the micro reactor, i.e., the spatial
control, was not being exploited. The yield however was
comparable with that obtained for the traditional batch method-
ology. As the voltage (flow rates) was decreased to less than 400
V, the yield increased dramatically, on average from 30 to 70%.
The variation in the RSD of the yield at 100 V was however
greater than 5% associated error due to the irreproducible
generation of the flow rates for both reagents. However, at 400
V an optimum pumping voltage (this equated to a flow rate of
0.4 mL min21) was found which offered well-controlled flow
conditions in which the reaction was contained within the
channels of the micro reactor.

Fig. 3 summarises the results obtained for the micro reactor
compared with the traditional batch process. In this case, the
optimised micro reactor conditions were based on methyl
4-formybenzoate (A), which gave an overall product yield of
70% compared to 60% obtained for the batch method performed
in this study.

Using the optimum parameters established for methyl
4-formylbenzoate, Fig. 3 summarises the remaining results
obtained for three additional aldehydes. For all the aldehydes
tested the yield obtained in the micro reactor (2+1) were
approximately half of those obtained by the traditional batch

methodology. It is postulated that the reduction in yield may be
due to the individual variation in flow dynamics through the
micro reactor associated with each aldehyde, as described
below.

Fig. 4 shows a series of photographs captured using an optical
microscope. The images clearly indicate the diffusive flow
profile of the reaction intermediate (ylide). Plate 1 shows the
movement of reagents from the left (2-nitrobenzyltriphenyl-
phosphonium bromide) and right hand (aldehyde and base)
channels via EOF at 350 V. A clear diffusive reaction interface
can be seen between the two reagents. However, due to poor
flow control the formation of the ylide can be seen to be
primarily occurring in the left-hand channel. This may be due to
the zeta potential in the central channel being smaller than in the
two feeder channels thus causing feedback of the reagent from
B to A.21,22 In addition, the base, which is premixed with the
aldehyde, has greater electrophoretic mobility compared to the
aldehyde, see Plate 1 for ylide formation in the left hand
channel. By slightly increasing the voltage and hence the flow
rate in the left hand channel, the ‘over flow’ from the right hand
channel can be corrected, see Plate 2. In this case the reaction
can be spatially contained in the middle channel of the T reactor,
see Fig. 2. Further adjustment of the voltages applied to the feed
reservoirs allows complete diffusive mixing across the channel
to be achieved, see Plate 3, demonstrating the EOF control
possible in micro reactors. This small variation in reagent flow
can significantly alter the position and the reaction conditions of
the reagents in the channels. Thus when using a number of
reagents, it is probable that each reagent will have a slightly
different flow profile causing a disruption to the diffusive
reaction interface. Such a situation will result in the reaction
interface occurring in a non-optimum position for example, in
either of the feed channels, where reaction conditions may not
be ideal, resulting in reduced reaction yields. The results
indicate that by in situ monitoring of the reaction and voltage
feedback, an automated system could be developed enabling
rapid method development and optimisation with high through-
put synthetic capabilities.

The 1+1 stoichiometric study was carried out to investigate
the effects on the overall solution yield of periodically injecting
a known volume of 2-nitrobenzyltriphenylphosphoniuim bro-
mide into a continuous stream of aldehyde, e.g. methyl
4-formylbenzoate. Previously, Fig. 3 illustrated a decrease in
the yields for three of the aldehydes investigated in the micro
reactor when compared to the traditional bulk reaction. By
developing an injection profile (i.e. the optimisation of the
injection time and interval) for the reaction, the surface area of
the reaction is increased automatically which in theory should
enhance the overall yield.13 In addition to increasing the overall
yield, the fundamental features of the micro reactor, i.e., spatial
and temporal control needed to be investigated. This was easily
achievable by reducing the stoichiometry of the reaction, which
in turn enabled the micro reactor to be evaluated for reagent
efficient chemistry.

Fig. 5 summarises the yields obtained for the traditional batch
reaction and micro reactor scale based on a 1+1 stoichiometry.

Fig. 3 Summary of the product yields obtained for both micro reactor and
traditional batch methods for four aldehydes based on the optimisation with
methyl 4-formylbenzoate using 2+1 stoichiometry. The aldehydes shown
are methyl 4-formylbenzoate (A), 3-benzyloxybenzaldehyde (B), 2-naph-
thaldehyde (C) and 5-nitrothiophene-2-carboxaldehyde (D).

Fig. 4 Photographs obtained from an optical microscope showing the Wittig reaction ylide intermediate formation under variable flow control.
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For the micro reactor the maximum yield of 59% was achieved
using a 30 s injection length (i.e. one 30 s injection per min over
a total of 20 min) from channel A into a continuous flow from
B to C, see Fig. 2. Whilst there is a 10% reduction in the overall
yield compared with the 2+1 reaction, the micro reactor under
the injection optimised conditions still produced a high product
yield at the chemically more favourable 1+1 stoichiometry. The
1+1 stoichiometry results in a lower reagent consumption and
reduced work up and sample purification.

Using the optimum reaction (reservoirs A and B at 400 V
with an injection length of 30 s from reservoir A) conditions
based on methyl 4-formylbenzoate, once again the additional
three test aldehydes were reacted. For the reaction with
aldehyde B (3-benzyloxybenzaldehyde) in the micro reactor, a
29% increase in reaction efficiency was obtained compared
with the batch reaction performed using the same concentra-
tions, solvent and reaction time. For the reaction using aldehyde
C (2-naphthaldehyde), the micro reactor yield was comparable
with the traditional batch methodology. Aldehyde D (5-ni-
trothiophene-2-carboxaldehyde) gave a 9% decrease in reaction
efficiency, which was an improvement over the 2:1 data (47%
reduction).

The micro reactor device allows the synthesis of nitro
stilbene esters, which are comparable with the reactions
obtained in a more traditional fashion. With respect to the
variation in yields for the remaining aldehydes tested, it is worth
stressing that the micro reactors generated products rapidly and
in sufficient quantities to determine the products of each
reaction. This attribute of micro reactors clearly has important
implications in establishing rapid analogue based high through-
put chemistries and so representing a significant approach for
future developments in the field.

Conclusions

The micro reactor has demonstrated the synthetic novelty to
achieve the rapid synthesis of nitro stilbene esters, and hence the

potential generic diversity using simple homogeneous solution
chemistry. The optimised micro reactor based on methyl
4-formylbenzoate on average gave a 10% increase in reaction
efficiency for both 2+1 and 1+1 stoichiometry. In addition, the
reactor could also be used as a tool for rapid reaction
development and optimisation based on analogue chemistry.

Due to the diverse reaction features of the micro reactor, a
combinatorial screening device is currently being investigated
illustrating the potential to synthesise a combinatorial library
and on-chip screening. If the micro reactor device could be
coupled with a separation chip, the Z and E isomers could be
purified from the solution making the device suitable for
synthetic development.
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methyl 4-formylbenzoate using 1+1 stoichiometry. The aldehydes shown
are methyl 4-formylbenzoate (A), 3-benzyloxybenzaldehyde (B), 2-naph-
thaldehyde (C) and 5-nitrothiophene-2-carboxaldehyde (D).
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A feature article describing the fundamental characteristics and
emerging applications of micro technology in the field of
synthetic chemistry.

Introduction
It is interesting to observe that despite the many advances made
in synthetic chemistry over recent decades the basic practical
methodology used remains unchanged. This situation arises
primarily because reactions tend to be carried out on a bulk scale

using a batch approach which chemists feel comfortable
manipulating. At the molecular level however, it makes little
difference fundamentally whether a reaction takes place in a 10
ml or 10 pl container. By applying technology developed for the
electronics industry, it is now possible to produce reactors in
which one can manipulate and analyse materials on a micron to
nanometer scale. It is our belief that so called micro reactor
technology can do for synthetic chemistry what the solid-state
transistor has done for computing, vastly increasing the
versatility and the amount of chemical information that a single
person can generate. In short it represents a paradigm shift,
changing the way we think about the way we work.

Stephen Haswell is Professor of Analytical Chemistry at the
University of Hull. His current research activities are in the
areas of micro reactors including analytical developments,
microwave enhanced reaction chemistry, trace elemental
speciation and process analysis. He is author of over 100
research papers, a number of books and patents and is widely
known nationally and internationally for his enthusiastic
lectures. For a number of years one of the underlying principles
of Professor Haswell’s research has been to break down the
sectorial walls which exist in science, in particular, the
integration of analytical science with main line chemistry,
physics, engineering and biology. Many of these ideals are
encompassed in his research into micro-chemical reactors the
subject of this feature article.

Robert Middleton obtained a B.Sc. (Hons) from the University
of Nottingham and carried out postgraduate studies in synthetic
organic chemistry with Professor David Knight at Cardiff
University focusing on the synthesis of highly substituted
tetrahydrofurans via electrophilic cyclisation. Now working at
the University of Hull as part of the ‘Lab on a Chip’
Consortium, developing enzymatic and other catalytic reactions
in micro reactors.

Brian O’Sullivan obtained a Ph.D. in physical organic
chemistry from the University of Exeter, and has spent some
time at the University of Reading researching heterogeneous
catalysis and organic synthesis in supercritical fluids. He is
currently working at the University of Hull as part of the ‘Lab
on a Chip’ Consortium, studying metal-catalysed carbon–
carbon bond forming reactions in micro reactors and using
electro-osmotic flow to control reagent mobilisation. Brian is
also interested in modelling currents within micro reactors, in
order to achieve a greater understanding of the fundamental
processes underlying this technology.

Victoria Skelton graduated from the University of Hull in 1997
with a B.Sc. Hons. degree in Chemistry with Analytical
Chemistry and toxicology. This included a year of industrial
pharmaceutical experience in the analytical research and
development department within Pfizer Central Research, Kent.
Vikki obtained her Ph.D. at Hull University in 2000, investigat-
ing the role of micro reactors for organic synthesis and
combinatorial applications and has continued a collaboration
with GlaxoSmithKline. She is currently developing a number of
chemical reactions and detection systems in micro reactors in
order to establish the physical and chemical requirements of
such devices.
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with a B.Sc. in chemistry. He continued his studies at Bristol,
obtaining a Ph.D. in bio-organic chemistry in 1999 under the
supervision of Professor Tom Simpson and Professor Chris
Willis. His Ph.D. focussed on the synthesis of isotopically
labelled compounds for use in the determination of biosynthetic
pathways to polyketide-derived natural products of biological
interest. Paul is currently researching methods of peptide
synthesis using micro reactor technology at the University of
Hull. The project is funded by Novartis Pharmaceuticals, Basel,
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aspects of high throughput organic chemistry and catalysis
within miniaturised devices.
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Basic concepts of micro reactors
A micro reactor is generally defined as a series of inter-
connecting channels (10 to 300 microns in diameter) formed in
a planar surface in which small quantities of reagents are
manipulated. The reagents can be brought together in a
specified sequence, mixed and allowed to react for a specified
period of time in a controlled region. The product may then be
analytically monitored and if necessary separated for further
steps in a reaction, or collected for analysis or testing.

In what is basically a diffusion limited environment, where
laminar flow characteristics dominate, the micro reactor confers
many advantages over conventional scale chemistry. The
decrease in linear dimensions allows heat transfer coefficients
to exceed those of conventional heat exchangers by an order of
magnitude.1 Micromixers can reduce mixing times to milli- or
nano-seconds.2 The increased surface to volume ratio in micro
reactors (10 000 to 50 000 m2 m23, compared to 1000 m2 m23

in conventional laboratory vessels) has implications for surface-
catalysed reactions.3 Other properties include localised control
of concentration gradients, separation of reaction products and
the possibility of eliminating unwanted side reactions. For
example, when Ehrfeld et al.4 prepared hydrogen cyanide in a
micro reactor via the Andrussow route, the rapid cooling of the
products by a micro heat exchanger prevented hydrolysis of the
HCN to ammonia. Jensen and coworkers5 demonstrated that the
synthesis of organic peroxides from acid chlorides and
hydrogen peroxide may even be carried out beyond the
‘explosion limit’, as the transfer of heat energy from the area of
reaction is rapid enough to prevent explosion.

In addition the small scales used reduce exposure to toxic or
hazardous materials, and the enclosed nature of the micro
reactors means greater ease of containment in the event of a
runaway reaction. The greatest contribution to safety is the fact
that hazardous materials can be synthesised as required at the
point of use, in precisely defined quantities, thus eliminating the
problems associated with transportation and storage.

Although the small size of the micro reactors would seem to
preclude industrial scale synthesis, it has been shown6 that only
1000 micro reactors operating continuously could produce 1 kg
of material in a day. This so called ‘scaling out’ concept has
clear implications in process development where the costly and
time-consuming process of going from lab to pilot plant to full-
scale production is by-passed simply by optimising the reaction
on a single chip and replicating it 1000 or 1 000 000 times. The
main attraction of this approach is not only the elimination of
the problems associated with the scaling up procedure but also
the ability to maintain the high level of control and selectivity
made possible through using micro reactor technology.

The micro total analysis systems (m-TAS)
In recent years, research in the area of miniaturised analytical
systems has become well established with a large rapidly
growing number of publications reflecting this trend.7–14 The
first fully miniaturised system fabricated was a gas chromato-
graphic device reported by Terry et al.15 at Stanford University
in 1979. This micro device was constructed using a silicon
wafer, which included a sample inlet port, a 1.5 m long column,
an injector and thermal conductivity detector allowing the
separation of a mixture of hydrocarbons within 10 s. However,
it took a further 10 years before Manz and colleagues16 at Ciba-
Geigy laboratories in Switzerland fabricated a micro capillary
electrophoresis device. The m-TAS was fabricated from glass
and allowed the rapid separation of two fluorescent dyes.
During the past decade, the main research thrust in academia
and industry has centred on the separation and characterisation
of DNA.17–22 This has now led to commercially available micro
analytical devices such as the DNA analyser from Agilent,
formerly Hewlett–Packard. More recently, a number of research

groups worldwide have shifted the focus of research from m-
TAS to developing micro reactor technology building on the
already existing m-TAS concept. Some of the unique features of
such devices will be described in the remainder of this paper but
it is worth stressing that integration between m-TAS and micro
reactors is essential if chemical and biochemical reactions, at
the micro scale or less, are to be effectively monitored and
controlled.

Fabrication techniques
Many of the existing fabrication methods described for the m-
TAS systems have been successfully transferred to the field of
chemical micro reactors.23 A number of materials such as
silicon, glass, quartz, metals and some polymers can be used to
construct micro reactors. Glass and certain polymers have been
particularly useful because of their physical properties and
chemical inertness. These substrates also allow the mobilisation
of organic reagent and aqueous solutions using a number of
pumping mechanisms such as hydrodynamic pumping and
electro-osmotic flow (EOF).24–26 A range of fabrication
methods such as photolithography, hot embossing, powder
blasting, injection moulding, laser micro forming and LIGA,
from the German Lithographie, Galvanioformung (electroform-
ing) and Abformung (moulding), are available and can be both
versatile and relatively low cost processes.

Fig. 1 shows the steps that are involved in the popular
technique of photolithography and wet etching to produce

channels in a glass micro reactor. A thin layer of metal, such as
chromium, is deposited on the surface of a glass plate to control
the degree of undercutting during the etching process. A layer of
positive photoresist is then spin coated on top of the chromium
to a depth of 0.5 to 2.0 mm. The pattern of the required network
of interconnecting channels is transferred to the photoresist
layer using photolithography. After exposure, the photoresist is
developed and removed together with the chromium layer to

Fig. 1 Sequence of processes in photolithographic fabrication.
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reveal the areas of glass to be etched. The plate is then heated to
allow volatiles to evaporate, before performing the chemical
etch. The channels are then etched using, for example, a mixture
of 1% HF and 5% NH4F in water at 65 °C, resulting in an etch
rate of 0.3 to 0.5 mm min21. A glass top block, with pre-drilled
holes to act as reservoirs and if necessary electrode supports, is
aligned with the channel geometry and thermally bonded to the
glass base plate, producing an all glass device. An example of
such a micro reactor, produced by the photolithographic, wet
etch and thermal bonding method outlined above is shown in
Fig. 2. It should be noted that a range of alternative fabrication

techniques have been reported describing a number of different
masking layers, etchant solutions, low temperature bonding,
anodic bonding, and polymer based substrates. A recent review
of these may be found in ref. 3.

Chemical control in micro reactors
Flow mechanics of liquids in micro channels

One of the main areas that liquid based micro reactor research
has focused on to date has been the accuracy with which fluids
in capillaries can be manipulated. Owing to the microlitre flow
rates that are generally required, some groups have used
methods such as syringe pumps, HPLC pumps and peristaltic
pumps with high reproducibility being achieved through
computer control. Syringe pumps can also be used to infuse and
withdraw fluids through channels in both directions. These
techniques provide a relatively quick and simple method for
pumping reagents through a micro reactor in a controlled
manner. However, these systems can build up high back-
pressure due to capillary effects, which may lead to pulsing in
the flow: this could be a particular problem when using
peristaltic pumps.24 Another problem is the cost associated with
HPLC and syringe pumps. These pumps can also be intolerant
of mixed-phase liquid systems, or systems that contain
particulate matter.

Several companies have developed pumps specifically for
micro reactor applications. These pumps are typically based on

a piezoelectric driven one way valve to mobilise liquids.27 For
example, the Institut für Mikrotechnik, Mainz has developed a
membrane pump that operates with microlitre volumes, but can
also pump at up to 0.4 ml min21. These pumps, which are very
small, can deliver the microlitre volumes that are required for
managing the movement of liquids in typical devices. However,
as they have been constructed from a polymer, practical
difficulties may arise when using organic solvents, and
depending upon the micro channel geometry, excessive back
pressures may be generated.

As one of the attractive features of using micro reactors is
their capacity to perform high throughput parallel processing,
the use of hydrodynamic pumping may become impractical due
to the large number of different solutions that will be required
within the reactor. To overcome the need therefore for a large
number of pumps and to simplify the construction of micro
fluidic systems, electro-osmotic flow (EOF) which has no
moving parts, has proved to be a widely preferred method for
reagent and solvent pumping.

EOF can be used to move reagents and solvents around a
system of channels as a function of applied voltages, with a very
high degree of control and allowing the processes to be readily
automated. In addition, due to the high electric field (e.g. 200 V
per centimetre of channel) associated with the EOF, variations
in the electrophoretic mobility of individual species enables
separation to be achieved. The combination of EOF and
electrophoretic mobility can be used to both model and
practically control the spatial and temporal position of compo-
nents in a micro reactor system.28

To illustrate the principles of EOF, one can consider a
microchannel fabricated from a material (e.g. glass), having
naturally negatively charged functional groups on its surface. If
a liquid, displaying some degree of dissociation, is brought into
contact with the material, positive counter ions will form a
double layer such that the positively charged ions are attracted
to the negatively charged surface. If an electric field is now
applied through the liquid phase, the positive mobile ions will
migrate to the negative electrode inducing a drag on the bulk
liquid. In an aqueous buffered system (pH 3–9) the solution
flows towards the cathode with volumetric flow rates in the
order of nl min21 to ml min21 depending on the channel
dimensions and applied field. The flow velocity achieved with
EOF is given by eqn. (1)

u mEOF = V

L

where V is the applied field, L is the length of the channel and
m is electro-osmotic mobility (dependent on factors such as zeta
potential, ionic strength and pH).

Since V and L are controlled by the user, a very high level of
control is achievable. Furthermore, this control can be auto-
mated and a relatively simple LabVIEW™ program, such as
that developed at Hull which allows one to control the output
from a power supply to a number of channels in a micro reactor
(Fig. 3) has been developed. By varying the potentials across
each channel section, it is possible to rapidly optimise the
relative flows of different reagents, or to inject plugs of one
reagent into a stream of another, or to introduce a number of
reagents in a specified sequence for multi-step reactions.

Unlike conventional (hydrodynamic) flow systems, solutions
that are moved by EOF have a flat velocity profile across the
channel. This, together with an absence of back pressure effects
and an inherent low Reynolds number, affords minimal band
broadening and efficient electrophoretic separation of reactants
and products.

Although EOF has mainly been used in applications with
aqueous solutions, it is not restricted to these systems and EOF
may be applied to reagents in polar solvents such as methanol,
tetrahydrofuran, acetonitrile and dimethylformamide. For ex-
ample, Harrison and coworkers29 used EOF to achieve valveless

Fig. 2 A simple all-glass micro reactor.
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pumping of acetonitrile reagent solutions during the synthesis of
an azo dye in a glass micro reactor. This degree of solvent
choice greatly extends the types of EOF-controlled chemistry
that can be carried out in micro reactors. Obviously the solvent
systems used must exhibit some level of polarity, and strictly
non-polar solvents cannot be pumped by EOF unless a polar
modifier is added.

Applications of micro reactors in synthesis
The inherent benefits of micro reactors, namely rapid genera-
tion of small but detectable quantities of reaction products,
efficient heat transfer and fluidic control, are now being applied
successfully to synthetic chemistry. In theory, these factors
might give a research worker using a micro reactor the ability to
greatly increase the rate at which new compounds are produced.
The work highlighted in this section demonstrates how some of
the initial findings obtained by research groups developing
micro reactor systems could be applied to high throughput
synthesis. There are also some operating characteristics of the
micro reactor environment that result in fundamental differ-
ences in chemistry. Of more immediate and perhaps significant
impact to the research community is the opportunity micro
reactors offer in terms of performing a large number (many
hundreds) of reactions to explore and optimise a single reaction
or a series of chemical reactions. For example, the capability to
generate information about reaction conditions, kinetics and
product selectivity is now readily accessible using micro
reactors, an option not easily available using conventional
methodology.

Micro reactor systems have so far been successfully deployed
in gas and liquid phase chemistry, including catalyst testing. A
recent example of the application of micro reactors to gas phase
chemistry was reported at the IMRET 4 conference. Hönicke
and coworkers reported the gas phase partial hydrogenation of
cyclododeca-1,5,9-triene (CDT), cycloocta-1,5-diene (COD)
and benzene over palladium and ruthenium/zinc catalysts (see

Scheme 1).30 The micro reactor system consisted of alumina
wafers with mechanically etched channels, which were then

activated by anodic oxidation and impregnation with an organic
solution of palladium(II) acetylacetonate. This gave an 18 mm
thick activated layer with 0.18 wt% palladium. Twenty four of
these wafers were then stacked to give 672 micro channels with
internal geometries of 200 mm 3 200 mm 3 30 mm. A similar
process was used for the construction of the Ru/Zn reactor,
which contained 0.2 wt% each of ruthenium and zinc. The
organic solvent was then removed via oxidation in air at 417 °C
followed by hydrogen reduction at 150 °C to give the activated
catalyst. Although palladium showed no conversion of benzene
to cyclohexene, CDT was converted with high yield and
selectivity to cyclododecene at 150 °C, with the catalyst bed
giving > 80% conversion to cyclododecene for over 20 h. The
COD conversion went from 75 to 100% at 150 °C by increasing
the residence time in the reactor from 40 to 115 ms. This system
proved to be robust, in that throughput could be increased ten-
fold from 50 to 500 mg h21 whilst conversion to cyclooctene
remained above 80%. Partial hydrogenation of benzene by Ru/
Zn was less successful with conversion falling rapidly, and only
low yields of cyclohexene were obtained, with the major
product being cyclohexane. This work shows that high
conversions may be achieved given only a short residence time.
By controlling the rate of flow, conversion rate and product
yields may be selected or rapidly optimised. This micro reactor
system also allows easy re-activation of the catalyst, and it
would be readily possible to allow the mixture and velocity of
gases to be adjusted automatically in real-time via feedback
control from analysis of exhaust gases.

Micro reactors using heterogenous catalysts have been
applied in liquid-phase organic synthesis. An early, though still
comparatively recent development was reported from the Micro
Reactor Group in Hull by Greenway et al..31 The micro reactor
utilised EOF to mobilise the reagents and allowed the catalytic
synthesis of 4-cyanobiphenyl using a modified Suzuki coupling
reaction (Scheme 2). The incorporation of micro porous silica
frits32 within the reactor manifold enhanced EOF and allowed
the immobilisation of the heterogeneous catalyst (1.8% palla-
dium on silica). The catalyst immobilisation method produced a
leaching rate in the region of ppb (1.2 to 1.6 ppb) removing the
need for subsequent purification from metal residues. The micro
reactor device was optimised using flow injection analysis
principles producing a 67 ± 7% (n = 6) yield of the
4-cyanobiphenyl product at room temperature within 25 min.

Fig. 3 An automated computer controlled chemical reaction, showing the
hardware and a schematic of the system. Using the configuration shown, the
duration and magnitude of voltage applied to each reservoir can be selected
and the resulting current monitored.

Scheme 1 The mild reaction conditions and the unique mass transfer
properties of micro reactors allow hydrogenation of cyclic trienes and
dienes to industrially important monoalkenes (ref. 26).
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The flow injection method adopted allowed the periodic
injection of the aryl halide (5 s injection length with a 25 s
injection interval) into a continuous flow of phenylboronic acid.
Flow was maintained using an external applied voltage of 200
V. The yield obtained using the device was comparable with
Suzuki reactions performed on a large (batch) scale using
homogeneous catalysts. One of the interesting observations of
this reaction was that, unlike conventional Suzuki couplings
performed in a flask, base was not required. Although the reason
for this is as yet unclear, it is thought that the applied electric
field may be sufficient to cause localised ionisation of solvent
water to H+ and OH2 at the metal surface. It may be this so-
formed hydroxide that performs the function of a conventional
inorganic or amine base. However, the micro reactor demon-
strated the potential application of such devices to perform
chemical reactions, allowing high throughput screening, rapid
method development or reaction optimisation.

The Hull group have also demonstrated that a superacid
catalyst (sulfated zirconia) could be immobilised onto the
surface of a polydimethylsiloxane (PDMS) micro reactor top
plate. This was achieved by dusting the pre-cured PDMS
surface with activated catalyst and baking the plate at 100 °C for
1 h. The PDMS top plate (containing the catalyst) was clamped
to a glass base plate (with etched micro channels) and syringe
pumps were used to mobilise the hexan-1-ol, which underwent
dehydration to hex-1-ene. The micro reactor featured an in situ
resistive heater wire cast into the PDMS top plate, which was
operated at 155 to 160 °C.33

An attractive feature of micro reactors is their ability to carry
out chemical processes that may be hazardous. For example
Burns and Ramshaw34 at the University of Newcastle have
described the nitration of toluene and benzene in stainless steel
or PTFE micro reactors, demonstrating the approach is suited to
a hazardous processes involving organic solvents and concen-
trated acids. In addition, they are also investigating the
challenge of manipulating bi-phasic liquid–liquid systems and
the control of product distribution to avoid hazardous trinitrated
aromatic products. Their studies have yielded some elegant
ways to control immiscible liquid layers in capillary systems
that include (i) segmented flow, in which plugs of alternate
phases travel down a capillary and (ii) parallel laminar flow,
where similar amounts of two phases run together through the
capillary producing an interfacial contact zone.

Burns and Ramshaw’s studies on benzene nitration also
demonstrated that conversion, while showing a near linear
relationship with temperature, can be increased substantially by
the use of smaller capillaries that enhance diffusion effects by
reducing the size of the slugs of material in the channel. Halving
the capillary diameter from 250 to 130 mm more than doubled
the rate of nitration. Flow rates were also found to be important,
with faster flow rates giving rise to higher conversion as they
promoted internal circulation of the liquid plugs travelling down
the capillary.

In comparison with conventional nitration techniques, the
results showed that rate constants for the micro reactor process
(1–8 min21) in 178 mm capillaries were similar to those in the
published literature (1–5 min21). It is expected that further
optimisation of the micro reactor device and its operation,
particularly by increasing the sophistication of the technology to
decrease droplet size, will result in substantial improvement to
the efficiency of the devices.

To demonstrate the advantages that micro reactors offer when
dealing with potentially hazardous reagents, Chambers and
Spink35 recently reported the development of a micro reactor
fabricated from a block of nickel, which was used for the
elemental fluorination of organic substrates. Conversions
compare well with results from conventional reactors. The
small amount of fluorine involved, together with the heat and
mass transfer properties of the micro reactor, overcame many of
the safety issues associated with this type of reaction.

Optimisation of catalytic processes
To demonstrate the testing and optimisation of catalytic
processes, the Hull group has developed a simple procedure for
the immobilisation and introduction of supported reagents in
micro reactors (Fig. 4). Such configurations enable solutions to

be passed over catalysts in either a continuous or plug mode
with a high degree of fluidic control. Catalyst types under
investigation include immobilised enzymes (such as lipases and
esterase), metals, sulfated zirconia and zeolite-based materials.
For example, in the case of an enzyme system based on porcine
liver esterase, symmetrical diesters are passed over this catalyst
bed to effect desymmetrisation to a chiral mono-ester, creating
a high-throughput reactor for biocatalysis.

A second approach is to pulse several different reagents one
by one over the catalyst bed. Given the computer-based flow-
control possible with micro reactors, it is now relatively easy to
achieve accurate and reproducible reaction sequencing. In the
Suzuki reaction performed at Hull, the aryl halide and boronic
acid were alternately pulsed over a catalyst bed of palladium on
silica. This had the effect of increasing yields from < 5% to 68%
by simulating the catalytic cycle (Scheme 2).31 The catalyst was

flushed with the aryl bromide to drive the oxidative addition to
the metal, and then flushed with boronic acid to effect
conversion to the biphenyls.

Using a system of five continuous flow micro reactors, the
Suzuki reaction has been carried out on an industrial scale by
Merck in Germany, where researchers found improvements
over conventional batch reactors.30 For example, in the reaction
of 3-bromobenzaldehyde with 4-fluorophenylboronic acid,
90% yields were reported for the micro reactors, compared with
50% in stirred flasks.

One of the chief limitations of the studies in Hull has been the
high temperatures (680 °C) required to anneal the top glass plate

Fig. 4 A Hull micro reactor, configured for the Suzuki reaction. Reservoir
A contains 100 ml of 4-bromobenzonitrile (0.1 M) and reservoir B 100 ml of
phenylboronic acid (0.1 M), both in 75% THF(aq). Products from the
reaction are taken from reservoir C and analysed by GCMS.

Scheme 2 The catalytic cycle of the Suzuki reaction.
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to the etched glass base plate as any organic material would be
destroyed in these processes, hence metals on silica have been
favoured as catalysts.

These early studies into catalytic processes demonstrate the
potential of using micro reactor technology for a continuous
production line approach to single compound production.
However, the design of such devices could be easily modified to
evaluate the performance of a catalyst across a broad range of
substrates. Another opportunity would be in using multi-
channel systems that would allow the evaluation of a number of
different catalysts for a single reaction. These studies allow
rapid evaluation of reaction conditions to allow the best catalyst
for a given reaction to be studied, or the efficacy of a catalyst
over a range of substrates to be evaluated.

Multi-step and analog based reactions
At the recent IMRET 4 conference, the Hull group reported a
micro reactor device that allowed the synthesis of a number of
nitrostilbene esters using a borosilicate micro reactor.36 The
micro reactor allowed the development of the Wittig reaction
investigating a number of reaction features such as stoichio-
metry, stereochemistry and reaction diversity (Scheme 3).

Initial investigations centred on using the device for synthetic
method development and optimisation, allowing rapid reaction
design in conjunction with EOF as the mobilisation method.
With a 2+1 reaction stoichiometry (aldehyde in excess) a yield
of 70% was achieved using the micro reactor in a continuous
flow mode with an optimum voltage of 400 V. The micro
reactor demonstrated an increase in reaction efficiency of 10%
over the conventional batch method. The reaction stoichiometry
was then reduced to 1+1 but the yield was poor (39%) so a flow
injection technique was adopted. This resulted in the injection
of the phosphonium salt into the continuous flow of the
aldehyde compound at 400 V. A 59% yield was obtained, but
more importantly it allowed a series of aldehydes to be reacted
in sequential injections using the optimum conditions estab-
lished at 1+1 stoichiometry. This demonstrated the micro
reactors diversity and high through-put capability.

The above research has been extended to investigate the
stereoselective control of the chemical reaction by applying
electrical fields which generate controlled concentration gra-
dients of the reagent streams.37 The stereoselective synthesis of
the cis (Z) and trans (E) isomers was controlled by varying the
applied voltages to the reagent reservoirs within the device. The
variation in the external applied voltage subsequently altered
the relative reagent concentrations within the device producing
Z/E ratios in the region of 0.57 to 5.21. In comparison, a
traditional batch reaction was performed based on the same
reaction length, concentration, solvent and stoichiometry result-
ing in a Z/E ratio of 3.0. The unique flow control created in the
micro reactor system has allowed the localised concentration
gradients, produced by a diffusion limited non-turbulent mixing
regime, to generate the observed stereoselectivity. The control
of these localised diffusion-limited concentration gradients is an
important feature of micro reactors and one that can be
effectively exploited for yield and product selectivity.

Multi-step reactions
So far, micro reactors appear to be limited to carrying out a
single synthetic step. One of the thrusts of the research in Hull
is to develop methodology that will give the chemist the ability

to look as multi-step reactions, culminating in target or diversity
based synthesis.

To extend the capability of performing multi step reactions in
micro reactors, processes such as peptide synthesis represent a
good model system. Peptides have been traditionally prepared
combinatorially via solid supported techniques38,39 but this
approach has the disadvantage that a fairly expensive polymer
support is required and that the product requires post-synthetic
cleavage. In addition, extra steps are added to the synthesis as a
result of having to initially link the amino acid to the polymer
support. The preparation of peptides in micro reactors, using
solution phase chemistry, offers the possibility of overcoming
such problems.

Using solution phase chemistry there are several methods that
may be used to form peptide bonds such as diethyl
azodicarboxylate40 (DEAD) or carbodiimide reagents such as
dicyclohexylcarbodiimide (DCC)41 or 1-(3-dimethylaminopro-
pyl)-3-ethylcarbodiimide hydrochloride (EDCI).42 In addition
acyl halides, anhydrides and azides may be utilised in the
formation of peptide bonds.43 Once the methodology for the
formation of peptide bonds has been fully established, selective
deprotection of either of the protecting groups will allow longer
peptide chains to be assembled. This multi-step synthesis will
clearly allow the rapid generation of libraries of peptides, which
could then be used in determining their biological properties.

In situ detection methods in micro reactors
As indicated earlier, research focused on m-TAS has developed
a number of suitable detection methods for micron scale
systems, with the most common method adopted being
fluorescence. Other detection systems developed have included
UV–VIS44–48 and electrochemical49–52 detection offering sensi-
tivity and simple detection with environmental micro systems.
The information provided is however generally insufficient for
structural characterisation of unknown chemical species. For
the micro reactor system to become truly versatile, the
development of hyphenated techniques and specialised equip-
ment such as NMR and Raman spectrometry would allow
direct, real time characterisation and spatial determination of
concentration and pH information. Currently a range of
analytical techniques are being investigated by a number of
research groups. These include mass spectrometry (MS)53 and
near infrared (NIR).54–57

One area of analysis which has been readily reported in the
literature is the hyphenation of micro reactor to mass spectrom-
eters.58–61 Lazar et al.58 from Oakridge National Laboratories
have coupled a micro fluidic device with a nanospray tip for
electrospray ionisation, allowing dilute peptide and protein
solutions to be characterised using a time of flight mass
spectrometer. The hyphenated system allowed the capture of
spectra within milliseconds (10 to 20 ms) resulting in 50 to 100
spectra per second. The second study by Mitchell et al.,
presented at the recent Micro Total Analytical Systems
conference,59 described the detection of a multicomponent
reaction using an electrospray ionisation (EIS)-MS. The
multicomponent synthesis investigated was the Ugi reaction
(Scheme 4) in which a solution of formaldehyde and pure

solvent was infused through one of the inlets whilst a
multicomponent mixture (isocyanide, amine salt) was also
added. The hyphenated micro reactor-MS system allowed the
real time detection of the synthetic Ugi coupling reaction.

Other detection systems reported have been NIR and Raman
spectrometry. A miniaturised NIR spectroscopic system fabri-

Scheme 3 The Wittig reaction.

Scheme 4 The Ugi reaction.
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cated in borosilicate glass has been developed by Ache.56 The
micro device contains a circular wave guide covered by a
sensing membrane. In addition, the micro NIR system contained
an incandescent light source, a NIR micro spectrometer with a
self-focusing reflection grating and NIR diode. At the Uni-
versity of Michigan, Reshni and co-workers62 demonstrated one
early example of Raman spectrometry on a micro device. The
system was fabricated using a Raman microprobe stage coupled
to a capillary electrophoresis chip. Traditionally, Raman
spectroscopy has a limit of detection in the millimolar region,
however Reshni’s micro device achieved a limit of detection in
the micromolar region and below. This was due to the addition
of a preconcentration stage using isotachophoresis. This system
has allowed the successful fingerprinting and quantification of
reactions on-chip.

Commercialisation of micro reactor technology
A commercially available chemical synthesiser using micro
reaction technology already exists, and is produced by IMM-
Mainz. It consists of a pumping module, a micro-reactor that
results in very efficient mixing of reagents, followed by a
capillary to allow time for the reaction to go to completion. The
outflow is then collected for further manipulation by the user.
This could be just the first step along a road which will see the
integration of automated reagent manipulation, reaction mon-
itoring and product purification into a single instrument
containing several interconnected micro reactors, or possibly a
single micro reactor device. In common with microelectronic
chips, once the facilities to fabricate micro reactors are in place,
they become progressively cheaper to produce in quantity. This
should make the production of chemicals in massive parallel
arrays of reactors an economic possibility. It is likely that some
of the peripheral equipment required will still represent a
considerable cost, but this should be set against the potential
increase in productivity per research worker. In addition, the
effective production of molecules in terms of energy, safety and
environmental impact will emerge as important factors in the
future exploitation of micro reactor technology. One of the
underlying features of any future commercially available
automated synthesis system must be versatility. Research is
now moving towards a ‘plug and play’ approach in which the
reaction and detection configurations can be customised. The
next couple of years will undoubtedly see significant develop-
ment in this area of the technology. We should now prepare
ourselves, including university courses for undergraduates, for
the impact the micro reactor is going to have on the whole area
of chemical research and production.
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We have demonstrated the first application of multi-step
synthesis within a micro reactor and have shown that
peptides may be prepared in quantitative yield in a period of
20 min, compared with batch reactions where only moderate
yields (40–50%) were obtained in a 24 h period.

During the past ten years, there has been a rapid growth in the
development of micro-Total Analytical Systems (m-TAS)1–3

which exploit electroosmotic flow (EOF).4 The development of
micro reactor devices for chemical synthesis based on com-
plementary technology is less common. However, recent
research has shown that Suzuki5 and Wittig6 reactions may be
performed using micro reactor systems.7

Peptides have been commonly prepared via solid supported
techniques since its introduction by Merrifield in 1963.8 Solid
phase peptide synthesis is based on the addition of a protected
amino acid residue to an insoluble polymeric support. The acid-
labile Boc group9 and base-labile Fmoc group10 have been
commonly used for N-protection. After removal of the protect-
ing group the next protected amino acid may be added using
either a coupling reagent or a pre-activated amino acid
derivative. If this dipeptide is the desired product, it may be
cleaved from the polymer support using various reagents, one of
the more common methods being treatment with 25–80% HF.11

If a longer peptide is required additional amino acids can be
added by repeating further coupling reactions.

Solid phase peptide synthesis has the disadvantage that a
fairly expensive polymer support is required. In addition, extra
steps are added to the synthesis as a result of initially linking the
amino acid to the support and finally having to remove the
peptide from the polymer. In this paper a micro reactor has been
used to prepare peptides using solution phase chemistry in an
attempt to overcome some of the current problems associated
with such syntheses.

The micro reactor devices used in this work were prepared
using standard procedures developed at Hull.12 A schematic of
a typical micro reactor produced using such fabrication
techniques is shown in the graphical abstract.† Microporous
silica frits13 were placed in the channels to prevent hydro-
dynamic flow occurring.

In the first instance a one-step reaction was considered in
which an N-protected b-amino acid was reacted with an O-
protected b-amino acid, to prepare the protected b-dipeptide. To
enable the methodology to be applicable to the synthesis of
more complex peptides, the use of orthogonal protecting groups
was clearly required. After careful consideration, the base-labile
Fmoc protecting group10 was selected for N-protection while
the Dmab ester14 was chosen for protection of the carboxylic
acid. Importantly, both protecting groups may be removed
under mild conditions, since electroosmotic flow is retarded if
the pH of the reaction is outside the range 3–10.

Commercially available Boc-b-alanine 1 was protected as the
Dmab ester using an EDCI [1-(3-dimethylaminopropyl)-
3-ethylcarbodiimide hydrochloride] and DMAP coupling reac-
tion, to give the ester 2 in 92% yield in a bulk reaction (Scheme
1). Treatment of 2 with trifluoroacetic acid furnished the desired
amine 3 in 61% yield, which was subsequently reacted with
Fmoc-b-alanine 4 via a carbodiimide coupling reaction, to give
a synthetic sample of dipeptide 5.

Having prepared dipeptide 5, it represented a synthetic target
for preparation using the micro reactor. Prior to synthesis, the
micro reactor channels were primed with anhydrous DMF to
remove any air and moisture from the channels and the
microporous silica frits. A standard solution of Fmoc-b-alanine
4 (50 ml, 0.1 M) in anhydrous DMF was added to reservoir A,
a solution of EDCI (50 ml, 0.1 M) was placed in reservoir B and
a solution of amine 3 (50 ml, 0.1 M) was placed in reservoir C.
Anhydrous DMF (40 ml) was placed in reservoir D, which was
used to collect the products of the reaction. Platinum electrodes
were placed in each of the reservoirs (A, B and C positive, D
ground) and an external voltage was applied to the channels
inducing electroosmotic flow of the reagents. The reactions
were conducted at rt for a period of 20 min, in order to acquire
sufficient volume of product to determine the yield of the
reaction. Analysis was achieved by high performance liquid
chromatography (Jupiter C18 10 mm, 4.6 3 250 mm, obtained
from Phenomenex), mobile phase composition: 0.1% TFA in
water and 0.1% TFA in acetonitrile, using a gradient system of
30% aqueous to 70% aqueous over 20 min, with a flow rate of
2.5 ml min21 at rt).

When stoichiometric quantities of the reagents were used
only ca. 10% conversion to peptide 5 was achieved when a
voltage of 700 V was applied to the reagents (A, B and C).
However, by using two equivalents of EDCI (0.2 M solution)
the yield of the reaction was increased to ca. 20%. By applying
a stopped flow technique (2.5 sec injection length with flow
stopped for 10 sec) the yield of the reaction was further
increased to 50%. Since the yield of the reaction appeared to
greatly depend on the number of equivalents of EDCI used, we
wished to further investigate the effect of carbodiimide
concentration on the reaction, however we found that EDCI was
insoluble in DMF above 0.2 M concentrations. In further
experiments DCC was used as the coupling reagent as it was
considerably more soluble in DMF. Using 5 eq. of DCC (0.5 M
solution in reservoir B) a 93% yield of dipeptide 5 was obtained
using the optimised conditions described above.

† Electronic supplementary information (ESI) available: schematic of a
borosilicate glass micro reactor. See http://www.rsc.org/suppdata/cc/b1/
b102125g/ Scheme 1 Synthesis of standard dipeptide derivative.
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Another common method utilised in peptide bond formation
involves the reaction of a pre-activated amino acid derivative,
such as a pentafluorophenyl ester, with an amine.15,16 Fmoc-b-
alanine 4 was activated as the pentafluorophenyl ester 6 via an
EDCI coupling reaction (Scheme 2). The pentafluorophenyl
ester 6 was stable and could be stored indefinitely in the freezer.
The ester 6 was subsequently reacted in bulk with amine 3 to
produce dipeptide 5.

Having prepared dipeptide 5 via the alternative pre-activated
strategy, we wished to investigate if the reaction could be
performed in a micro reactor. A standard solution of the
pentafluorophenyl ester of Fmoc-b-alanine 6 (50 ml, 0.1 M) in
anhydrous DMF was added to reservoir A, a solution of amine
3 (50 ml, 0.1 M) was placed in reservoir B and anhydrous DMF
(40 ml) was placed in reservoir D, which was used to collect the
products of the reaction. It was found that using continuous flow
of both reagents, where the ester 6 was maintained at 700 V and
the amine 3 was maintained at 600 V, dipeptide 5 was produced
in quantitative yield in just 20 min. This represented a
significant increase in yield compared with the traditional batch
synthesis where only 40–50% conversions were obtained.

Similarly, the reaction between the pentafluorophenyl ester 7
of Boc-b-alanine and amine 3 was also investigated in the micro
reactor (Scheme 3). In this case, when the reagents were mixed
under a continuous flow regime, with both reagents maintained
at 700 V, a quantitative yield of peptide 8 was observed.
Importantly, this result demonstrates that both Boc and Fmoc
protecting groups are suitable for use in the preparation of
peptides using micro reactors.

Having successfully demonstrated that peptide bonds could
be formed in micro reactors using two common methods, we
wished to show that we could extend the methodology to the
preparation of longer chain peptides. Consequently, we needed
to be able to conduct deprotection reactions in the micro reactor
and subsequently perform further peptide bond forming reac-
tions. Fmoc-b-alanine 4 was converted into the Dmab ester 9, in
a bulk reaction, using standard conditions (Scheme 4). It was
proposed to convert ester 9 into amine 3 by deprotection of the
Fmoc group in the micro reactor and subsequently react the
amine ‘in situ’ with pentafluorophenyl ester 7, to give the
dipeptide 8. Treatment of 9, with 10 eq. of piperidine in DMF
using the micro reactor, resulted in 60–70% deprotection over a
20 min period, to give amine 3.17

Subsequently, a standard solution of the Dmab ester of Fmoc-
b-alanine 9 (50 ml, 0.1 M) in anhydrous DMF was added to
reservoir A, a solution of piperidine (50 ml, 1.0 M, 10 eq.) was
placed in reservoir B and a solution of pentafluorophenyl ester
7 (50 ml, 0.1 M) was placed in reservoir C, in an attempt to
prepare dipeptide 8 using this multi-step approach. Anhydrous
DMF (40 ml) was placed in reservoir D, which was used to
collect the products of the reaction. The HPLC of the reaction
mixture showed that Fmoc deprotection had occurred, however

no peptide was evident. It was however found that the excess
piperidine used in the reaction was reacting with the penta-
fluorophenyl ester 7 to give amide 10.

As a result, an alternative method of Fmoc deprotection was
required that would not cause the aforementioned problem.
Using the micro reactor, the Dmab ester of Fmoc-b-alanine 9
was reacted with one equivalent of DBU to give the free amine
3 which was then reacted with the pentafluorophenyl ester of
Boc-b-alanine 7, in an attempt to form the dipeptide 8.

In this case, when the reagents were mixed using continuous
flow, with the reagents maintained at 700 V, product 8 was
observed in typically 25% yield. By comparing the flows of
each reagent at this stage we were able to optimise the reaction.
The Dmab ester of Fmoc-b-alanine 9 was maintained at 750 V
while reacted with DBU at 800 V. The deprotected amine was
then reacted, using continuous flow, with the pentafluorophenyl
ester of Boc-b-alanine 7 to give a conversion of 96%, based on
the amount of Dmab ester 9 present at the end of the reaction.

Having shown that more complex peptides could be produced
by removal of the N-protecting group we wished to determine if
we could remove the Dmab protecting group using hydrazine.
Hence, a solution of the Dmab ester of Fmoc-b-alanine 9 (50 ml,
0.1 M) in anhydrous DMF was added to reservoir A and a
solution of hydrazine (50 ml, 0.1 M) was placed in reservoir B.
Anhydrous DMF (40 ml) was placed in reservoir D, which was
used to collect the products of the reaction. Using continuous
flow of both reagents, maintained at 700 V, quantitative
deprotection was observed to give carboxylic acid 4.
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Abstract

The development of a method to determine nitrate by micro-flow injection analysis (mFIA) is described, using electro-osmotic
flow (EOF) control in a micro-chip with 300mm wide and 115mm deep channel wet etched in borosilicate glass. Anin situ
miniature copperised cadmium reductor column was produced by immobilisation within a micro-porous silica frit made from
10% formamide and 21% silicon dioxide. The reductor frit was located in the sample introduction reservoir of the device.
Nitrate standards were placed in the sampling reservoir and an applied voltage of 50 V relative to a waste reservoir was used
to move the nitrate ions through the reductor frit formFIA. Silica frits without copperised cadmium were also introduced
into the interconnecting channels of themFIA device to promote EOF and minimise hydrodynamic movement of solutions.
The nitrite produced on leaving the reductor frit was detected using the Griess diazo-coupling reaction. The reaction was
monitoredin situusing a micro-spectrometer. A calibration was obtained between 0.5 and 20mM with a correlation coefficient
of 0.985. The R.S.D. at 5mM NO3

− was 8.3% (n = 6) and the limit of detection (3σ ) was 0.51mM (0.026mg ml−1) NO3
−.

© 2001 Elsevier Science B.V. All rights reserved.

Keywords:mFIA; Nitrate; Electro-osmotic flow; Copperised cadmium

1. Introduction

The determination of nutrients such as nitrate in
natural waters is known to be of great environmen-
tal importance [1]. The World Health Organisation
for example, through the Environmental Protection
Agency (EPA), had set the maximum contamination
levels of nitrate in drinking water at 10mg ml−1. To
monitor nitrate accurately in environmental systems
it is preferably to monitor the levelsin situ and this
can be analytically very challenging. Conventional

∗ Corresponding author. Tel.:+44-1482-465475;
fax: +44-1482-466416.
E-mail address:g.m.greenway@chem.hull.ac.uk
(G.M. Greenway).

FIA methods for determining the nitrate are well doc-
umented [1–3], however, these systems are laboratory
based and therefore samples have to be collected and
brought to the laboratory. FIA systems have been
adapted for shipboard and remote analysis [4,5] but
these require frequent replenishment of reagent and
considerable maintenance.

Micro-flow injection analysis (mFIA) using EOF
[6] to move reagents and samples around the mani-
folds overcomes many of the problems of portability
and robustness associated with the traditional FIA sys-
tems. The amounts of reagents required for analysis
are vastly reduced as flow rates and volumes in the
nanolitre region are used. There are also no moving
mechanical parts required if the reagents and samples
are pumped using EOF.

0003-2670/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0003-2670(00)01244-7
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The most commonly adopted method for deter-
mining nitrate is based on reduction of nitrate to
nitrite using reagent such as titanium III chloride [7],
photoreduction [8] or metal reduction (cadmium for
example) [9]. The nitrite is then determined spec-
trophotometrically using a diazo-coupling (Griess)
reaction [9]. The copperised cadmium reductor is
the most widely used reduction technique in FIA
with good sensitivity between 1 and 20mg l−1 being
obtained.

In mFIA systems nitrate has been determined
electrochemically using ISFET’s Islet’s at levels
down to 1× 10−5 M [10]. In a previous paper we
determined nitrite spectrophotometrically in amFIA
systems with limits of detection of 0.20mM. The aim
of this work was to determine nitrate in amFIA by
developing a method to reduce it to nitrite within the
mFIA manifold. In carrying out this work we also
investigated how frits or porous constriction within
channels could be used in the manifold to control
solution flow and retain reactantsin situ.

2. Experimental

2.1. Instrumental and reagents

The light source for the spectrophotometric
detection was a green light emitting diode (RS Com-
ponents, Northants, UK) and the detector was a S2000
diode array fibre optic spectrometer (Ocean Optics,
Inc., Anglia Instruments Ltd., Cambridge, UK). Its
wavelength range was between 350 and 880 nm and
its sensitivity was 86 photons counts with a resolu-
tion of approximately 0.3–10 nm full width at half
maximum (FWHM).

Absorbance measurements were made along a
micro-channel etched within manifold as shown in
Fig. 1 and described previously for the analysis of ni-
trite [6]. The chip manifold was connected via 100mm
i.d. 125mm o.d. fibre optics to both the spectrometer
and light source using a fibre optic connectors (surface
mounting assembly (SMA) 905, Optiflex, Doncaster,
UK). The instrumentation was set-up as described
previously [6], two multimeters were used to measure
the current and voltages applied across the reservoirs
(models 1705 and 1906, Thurby Thandar Instrument,
Ltd., Huntingdon, Cambridge, UK). The chemicals

and reagents used for the determination of nitrite have
already been described [6] with a slight modification
in which sodium acetate was used instead of ammonia
to adjust the pH of the mixed reagent solution (pH 4).
The main reason for this was to reduce the pungent
smell of ammonia and minimise bubbles generation.

The nitrate standard solutions were prepared from
a stock solution of 0.082 g of dried potassium nitrate
dissolved in 100 ml of 195 mM NH4Cl solution. The
reagents used to prepare the frits are described in the
Section 2.2.

2.2. The fabrication of in situ frits in micro-channels

The micro-porous silica (frit) solution was prepared
from 10% m/m formamide (Avocado Research Chem-
icals Ltd., Heysham, Lancashire, UK) and potassium
silicate (21% SiO2, 9% K2O, Prolabo, Manchester,
UK) [11]. The frits in the micro-channels on the man-
ifold were prepared by mixing 18ml of formamide
and a 140ml of potassium silicate for 30 s. This
mixture was then carefully placed into the side arm
channels (Fig. 1) of the etched, unbonded manifold,
using a Pasteur pipette. The frit reagent was prevented
from invading the main channels by plugs of Blu-tack
(Bostik, Leicester). The prepared base plate was then
placed in an oven at 100◦C for 1 h before being re-
moved, cooled and cleaned. The etched unbonded
base plate was then smoothed off with abrasive paper,

Fig. 1. Chip manifold for the reduction of nitrate. Dimension of the
manifold are bottom etched substrate 26.2mm×18.2mm×3.1 mm,
top cover plate was 27mm×17.2mm×17.2 mm. The main channel
lengths were; intersection A–D was 11.2 mm and intersection B–C
was 4.4 mm.
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to remove any excess frit material and rinsed with
distilled de-ionised water before being air-dried. The
final manifold was then produced by thermal fusion
of a top plate using the method already described
[6]. Once the manifold was bonded thein situ frits
(consisting of 90% porosity with<10mm pore size)
were rinsed and primed by placing distilled de-ionised
water in the reservoirs (see Fig. 1) and applying pres-
sure to drive the solution into the empty channels. A
voltage of 50 V was then applied between reservoirs
A/D and B/C for about 30–60 min to flush out excess
reagents and air-trapped in the frit.

2.3. Preparation of the cadmium reductor frit in the
µFIA manifold

Cadmium granules (30–80 mesh, >99%) were ob-
tained from Aldrich (Gillingham, Dorset, UK) and
copper (II) sulphate 5 hydrate was from BDH Ltd.
(Poole, UK). Both of these reagents were analytical
grade. Fresh cadmium granules (50 mg) were coated
with 40 mM copper sulphate for 10 min before be-
ing rinsed with distilled de-ionised water. A portion
(3 mg) of the copperised cadmium was mixed with the
potassium silicate frit reagents (described in the pre-
vious section) and then deposited into the bottom of
reservoir B (see Fig. 1). The length of the mixed cop-
perised cadmium frit was between 2 and 3 mm. Dur-
ing the deposition of the reductor into reservoir, water
was placed in the other reservoirs and channels to en-
sure accurate placement of the cadmium/frit material.
The chip manifold was placed in the oven at 100◦C
for 1 h for the frit to harden.

2.4. Procedure for flow rate studies through frits and
reductors in straight capillaries (off-chip)

In addition to generating a copperised cadmium
frit in the mFIA manifold three frits were generated
in straight capillary tubes (1 mm i.d.) of 5, 10 and
250 mm lengths, respectively. The ends of the capillary
tubes was inserted into two suba seals and attached
to the glass reservoir wells and the optimum applied
voltage (for maximum flow rate) was determined.
The amount of reagent moved was determined and
volume flow rates calculated. The experiments were
repeated for a reductor in which the copperised cad-
mium reductor material (5 mm) sandwiched between

two 10 mm frits and for two reductors in which the
copperised cadmium reductor material was physi-
cally trapped throughout the frit (16 and 40 mm) as
described previously.

2.5. Procedure for the determination of nitrate

1.16 mM sulphanilamide and 1.95 mMN-(1-naph-
thyl) ethyelene diamine, pH 4 was placed in reser-
voir A and the nitrate standard solution was placed in
reservoir B over the mixed copperised cadmium frit
(see Fig. 1). Reservoirs C and D contained distilled
de-ionised water.

400 V was then applied between reservoirs A(+)
and D(−) for 50 s using a power supply (HVPS 1) to
load the main channel with the reagent mixture before
simultaneously switching the HVPS 1 off and applying
50 V from the second power supply (HVPS 2) between
B(+) and C(−) for 25 s to inject the reduced nitrate
solution. There was then a 25 s hold (stop flow mode)
after which the absorbance of the reaction mixture was
measured.

3. Results and discussion

3.1. Use of frits to control flow

The chip manifold in this work was different to that
used previously [6] in that frits had been placed in all
the side channels connected to reservoirs. Theoretical
studies [12] have shown that very small differences in
the heights of the reservoirs in themFIA manifold can
cause hydrostatic flow resulting in loss of EOF con-
trol over the movement of reagents and samples. The
addition of frits to the channels were used to reduced
hydrostatic flow by restrictive flow through the 90%
porous<10mm pores which simultaneously enhanced
and stabilised the EOF.

Frits of three different lengths were prepared in
capillaries to investigate the relationship between so-
lution flow rate and frit length. The results shown
in Fig. 2 indicate that for the 5 and 10 mm frit there
was a clear linear relationship between the applied
voltage and flow rate in the range 0–50 V, after which
point the flow rate is seen to deteriorate. A similar
trend was also observed for the 250 mm frit over the
range 0–100 V. In general a clear relationship exists
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Fig. 2. The change in flow rate with increased applied voltages
for different frit lengths. Each value represent an average of the
replicates (n = 3), (m) 250 mm frit; (d) 10 mm frit; (r) 5 mm
frit.

between the frit lengths in which the longer frit was
found to generate a higher flow rate. This trend can
be attributed to the numerous pore openings in the frit
creating large surface areas to support the required
electrical double layers for EOF as discussed by
Christensenet al. [11]. The advantage of the longer
frit was outweighed however, by the need to apply
relatively high currents to induce flow which led to un-
wanted bubble formation due to Joule heating effects.
From these initial frit studies it was found that for a
good flow rate to be maintained the current needed
to be held below 1000mA and this was best achieved
with the 5 and the 10 mm frit running below 50 V.

For practical reasons the 5 mm frits were subse-
quently used in themFIA manifold but it remained
important to ensure that such frit lengths would be
sufficient to reduce hydrodynamic effects due to the
pressure head differences caused by the changing lev-
els of reagents in the various reservoirs. Verification
of hydrostatic control was carried out by filling the
reservoirs (A and D for example, in Fig. 1) with frits
in place and monitoring the height change of the fluid
over time. A voltage was then applied across reser-
voirs A and D so that liquid flowed through the con-
necting channel. The manifold was then sealed and
left overnight and the relative heights of the reservoirs
were noted the next morning. No movement of liquid
was seen in the manifold containing frits however, in
an identical manifold without frits, fluid from reser-
voir D readily flowed back to equilibrate the levels of
buffer in the reservoirs once the EOF was turned off.

3.2. Development of reductor frit

An initial study to evaluate the effect on EOF plac-
ing a copperised cadmium reductor between two frits
was carried out. The results indicated that no flow was
obtained with this design of column due to the highly
conducting nature of the metals within the column
that severely affected the EOF. To overcome this prob-
lem a second type of reactor (a mixed reductor) was
prepared in which the copperised cadmium was dis-
persed within the potassium silicate frit material. Two
different lengths (16 and 40 mm) of the mixed reduc-
tor were produced in capillary tubes and the flow rates
for a buffer in each of the tubes was obtained (Fig. 3).

The 16 mm mixed copperised cadmium frit
indicated a much improved volume flow rate profile
compared to the sandwiched reductor. In all cases
the current was kept below 1000mA and there was
reproducible flow as can be seen by the error bars.
The volume flow rates obtained were reasonably re-
producible in a range between 20–100 V. An applied
voltage of 50 V was selected for further work in the
chip as this gave the most reproducible data and it
was noted that at voltages below 50 V it was difficult
to initiate the flow when the reductor was placed in
the chip reservoir. Using the 40 mm mixed copperised
cadmium frit a higher flow rate was observed com-
pared to the 16 mm frit. It became apparent however,
from these studies that the longer frit whilst giving
higher flow rates, also required higher currents and

Fig. 3. The change in flow rate with increasing applied voltage
for flow through the reductor in which the copperised cadmium
was dispersed in the frit. Each value represent and average of the
replicates (n = 3), (d) 16 mm reductor frit; (r) 40 mm reductor
frit.
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this significantly affected the reproducibility of the
flow due to heating and subsequent bubble formation
as discussed previously. This effect is reflected in the
size of the error bars at 100 V. At 200 V (not shown)
no volume flow was recorded indicating channel
blockage due to bubble generation.

3.3. On-chip reductor frit

Care had to be taken with the reductor frit because if
the pH of solutions were allowed to become too acidic
the copperised cadmium would dissolved. It was
also necessary to have sufficient copperised cadmium
present in the frit to ensure a high conversion rate of
nitrate to nitrite. It was therefore decided to put the
reductor frit in the sample reservoir B (Fig. 1) rather
than in the channel. The reductor frit was 2.5 mm deep
and had a diameter of 2.3 mm and contained 3 mg of
copperised cadmium. The reductor frit was primed by
soaking in buffer solution overnight. The copperised
cadmium reductor frit was found to give a conversion
rate of 95.9% nitrate to nitrite which is comparable
with conventional flow injection reductor column [9].
The lifetime and stability of the copperised cadmium
reductor in such devices is clearly important as it was
noted that a continuous application of the voltage
appeared to have degraded the surface by the de-
colourisation of the copperised cadmium. In the work
carried out using the straight capillaries a blue green
colour was seen moving along the frit after two weeks

Fig. 4. (a) The change in absorbance as the injection time for the NO3
− plug increased; (b) the change in absorbance as the holding time

(stopped flow time) for the colour azo product increased. Each value represent an average of the replicates (n = 3).

of operation. The blue green colour was attributed
to hydroxides of copper which are found to decrease
the performance of the reductant [3]. The reactor was
used over a 2-week period with approximately 2000
samples being injected before deterioration of the
copperised cadmium reductor column was noticed.
Regeneration of the reductor column can however, be
achieved by treatment with copper sulphate solution.

3.4. Conditions for the determination of nitrate

The initial investigation had shown that an applied
voltage 50–100 V would give the most reproducible
flow through the frits and that short frit lengths of
5 mm were adequate to control hydrostatic pressure ef-
fects. The nitrate standard was prepared in pH 4 buffer
as used in conventional flow injection methods [9].

The reduction of nitrate to nitrite was achieved
in situ and mobility of the sample was achieved by
applying 50 V between B(+) and C(−) to generate
EOF so moving the nitrate through the reductor frit
at a flow rate of 0.3ml min−1. The nitrite produced
then flowed into the main channel containing the
mixed reagent (sulphanilamide+ (N-(1-naphthyl)
ethylene diamine) for the diazo-coupling reaction.
Mixing of the reactants in such a manifold is by dif-
fusion (Reynolds number<1). Applying the voltage
for 25–40 s was found to give reasonable absorbance
readings (Fig. 4a), however, 25 s was found to give
the optimal absorbance value. At lower times 5–20 s,
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Fig. 5. Absorbance spectra for the nitrate determined by themFIA manifold.

only a small amount of NO3− were effectively getting
into the main light path and beyond 40 s the coloured
product had moved out of the light path. To allow
full colour development a stop flow mode was used
in which the product was held in the detector chan-
nel after injection for up to 1 min. Fig. 4b shows how
the absorbance increased with time, 25 s was chosen
as a compromise between obtaining sufficient sensi-
tivity and having a high enough sample throughout
(20–30 sample h−1).

3.5. Analytical calibration

Fig. 5 shows the absorbance of the azo product be-
tween 450 and 646 nm. The maximum absorbance of
the nitrite (reduced NO3−) was recorded at 526 nm.
The spectrometer was zeroed when the mixed reagent
without nitrite was in the channel. With the current
system used an automated blank subtraction could
not be achieved as there was only one channel in the
device. A linear calibration was obtained between 0.5
and 20mM with a correlation coefficient of 0.985.
The equation of the line wasy = 0.0125x + 0.0111,
where y is absorbance andx is concentration in

mM and the limits of detection (3σ ) were 0.51mM
(0.026 mg ml−1) (n = 6) which expressed in mass
terms, would be approximately 20 pg. These results
compare favourable with flow injection or sequen-
tial injection systems [1,3] however, the precision of
the method at 5mM NO3

− was found to be 8.3%
R.S.D. which is not quite as good as that obtained
for conventional FIA systems. Use of the frits in the
system did not improve the reproducibility of the sys-
tem over the previous system [6] however, they have
prevented hydrodynamic flow. Poor mixing of the
reagents at the intersection is one of the main causes
of irreproducibility of the system. Currently work is
been carried out to improve mixing by providing a
combination of frit and open channels in the manifold
design.

4. Conclusion

This paper has now shown that nitrate can be de-
termined in amFIA manifold using a reductor frit
to reduce the nitrate to nitrite. The sampling rate
of this method was around 30 samples h−1 and the
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consumption of reagents and amount of waste gener-
ated (approximately 2ml per analysis) is significantly
lower than for conventional FIA systems. This work
and previous work clearly demonstrated that nitrate
and nitrite could be sequentially analysed by a com-
binedmFIA systems on the same device. The method
currently lacks the reproducibility of conventional
FIA systems, probably due to mixing problems, and
further studies are continuing to improve this. The
problem could be overcome by using a combination
of frits and open channel to optimise the mixing zone
or by adopting a micro-mixer design such as that
described by Bessoth et al. [13].
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The paper reports on a preliminary study into the coupling
of a microreactor to a GC-FID, using a standard GC needle
as the interface between the microreactor and the injection
port of a conventional GC. Using the injection needle as the
ground electrode, electroosmotic flow was used to control
the injection of reagent/sample into the GC. Photolitho-
graphic and wet etching techniques were used to fabricate
the microreactor (channels 200 mm id, 100 mm deep) in a
borosilicate glass substrate. The results of the effects of
voltage and injection times on the response signal are
presented. The critical obstacles to overcome were the
backpressure posed by the carrier gas disrupting the liquid
flow in the channels and reservoirs of the microreactor and
the need to thermally insulate the microreactor, to prevent
evaporation of solvent and reagents from the device. 

1. Introduction

The development of so-called micro total analytical systems
(mTAS), based on electroosmotic flow (EOF) and electro-
phoretic separations has gained much interest in recent years,1–9

however, the use of similar technology to construct micro-
reactors for primarily organic-based chemical synthesis, has
been less widely reported.10–15 The often complex nature of the
chemistries performed and the demand for high throughput
screening for combinatorial type applications, require rapid
separations, detection and characterisation of intermediates and
product to be carried out at or in a microreactor. Detection can
be achieved relatively simply offline by taking a portion of the
product collected from a sample reservoir and analysing it with
a detection system such as the GC-MS.15 Online, at micro-
reactor detection clearly requires some form of interface to be
constructed between the reactor and the detection system, whilst
on- or in-microreactor detection may be achieved by integrating
part or all of the detection system into one device.

In terms of automation one of the simplest approaches to take,
and one which exploits existing technology, is to directly couple
the microreactor with a gas chromatograph (GC) or GC-MS.
This paper reports on some preliminary results for coupling of
a chemical microreactor to the injector of a conventional GC-
FID instrument, employing electroosmotic flow as the reagent/
sample injection mechanism. The interfacing of a microreactor
directly to an MS has already been reported,13,14 however, there
are potential limitations of such an approach associated with the
overloading of the detector due to the relatively high concentra-
tions of reagents present (e.g, 1–0.1 mM) when performing
synthetic reactions. One of the main advantages of the proposed
methodology is the ability to control the injection volume and
hence the amount of product and/or reactants injected into the
analytical system. In addition, the opportunity to perform post-
reactor separations based on conventional GC would be a
relatively simple extension to the method described.

2. Experimental

2.1. Reagents and materials

The primary reagent used was N,N-dimethyl formamide
(Lancaster, Eastgate, UK) of analytical reagent grade. Hydro-
fluoric acid (40%) and ammonium fluoride were used for
etching the microreactor channels (Merck, Poole Dorset, UK).
The hydrofluoric acid was diluted to 1% buffered with 5%
ammonium fluoride. Microposit chrome etch 18 and photoresist
remover 1112A were from Shipley (Coventry, UK). The glass
for the microreactor chip and cover plate were both superwhite
Crown B70 borosilicate glass (Instrument Glasses, Enfield,
UK).

2.2. Chip device and instrumentation

The microreactor consisted of channels 200 mm in diameter and
100 mm deep (Fig. 1), fabricated in borosilicate glass base-plate
(25 mm long, 14 mm wide and 3 mm thick), using a wet-etching
technique described previously.16 The base-plate was thermally
bonded to a thicker glass cover-plate (25 mm long, 14 mm wide
and 17 mm thick, also of borosilicate) containing 2 mm holes
pre-drilled to align with the ends of channels which served as
reservoirs for the reagent and physical support for the platinum
electrodes required to generate EOF.

Frits17 ranging from 2–3 mm in length were integrated into
the channels R1-B, R2-C and R3-D (Fig. 1) to regulate the
hydrostatic pressure within the microreactor, so preventing an
imbalance of liquid levels in the individual reservoirs. In
addition, the frits aid EOF and compensate for the backpressure
generated by the GC injector carrier flow which, if not reduced,
would cause disruption to the flow of reagents in the
microreactor channels.

Interfacing the microreactor to the injection port of the GC
was achieved using a GC needle (5.7 cm long, 75 mm id and 300
mm od) detached from a GC syringe (SGE, Australia). An
access channel of approximately 300 mm id was created at
position E (Fig. 1) in the microreactor and the interface needle
was inserted (blunt end) 1.5 mm into the channel and sealed in
place with a metallic silver adhesive. A coil of a high purity
copper conductor was positioned 1.5 mm from the inserted end
of the needle to provide a ground connection for the electric
circuit, (RS, components, Northants, UK). The silver adhesive

Fig. 1 Microreactor constructed from borosilicate glass with channel
dimensions: 200 mm wide, 100 mm deep with R1B = R2C = R3D = 5.5
mm, BC = 3 mm, CD = DE = 4 mm, BE = 11 mm, showing position of
the interface connection to a GC injection port and location of the high
voltage power supply (HVPS).

This journal is © The Royal Society of Chemistry 2001
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was then coated with a quick set epoxy resin (RS, components,
Northants, UK) to make the interface more physically stable. A
20 mm long, 0.15 mm in diameter platinum electrode, soldered
to the high-purity copper conductor wire, with a 15 mm exposed
length for interfacing with the solution in reservoir R3, was used
as the positive electrode. The positive and the ground electrodes
were connected via the copper cables to a power supply system,
built in-house, capable of supplying up to 700V.

The GC was a standard Autosystem XL GC (Perkin Elmer,
Beaconsfield, UK) with FID. As no separations were being
performed in this preliminary study, a short (12 in long, 75 mm
id) Rtx-5MS (Crossbond 5% diphenyl-95% dimethyl poly-
siloxane stationary phase) open capillary column, stable to 360
°C, was used to connect the injector port with the FID detector.
The carrier gas used was helium and the injector, detector and
oven temperatures were 250, 250, and 250 °C, respectively.

2.3. Reagent injection into GC

The channels in the microreactor, including the GC needle,
were initially primed with the DMF by filling reservoir R1 with
the reagent and applying a positive pressure with a syringe. This
was then followed by filling all three reservoirs R1 to R3 with
the DMF. A positive electrode was then placed in reservoir R3
whilst the grounded end of the injection needle was inserted into
the injection port of the GC. EOF injection was achieved by
switching the power supply on and off between the two
electrodes described. The carrier gas flow was adjusted to
minimise backpressure effects by visually monitoring bubble
generation in the connecting channels.

Initially, an electric field R3 (+) E (–) of 700V was applied for
60 s followed by a waiting period of 60 s, to achieve a pulse
injection of the DMF into the GC. This process was repeated
consecutively (n = 5) to verify the repeatability of the injection
process. Next, the applied voltage was kept constant whilst the
injection time was varied with a sufficiently long waiting time
between injections to allow each subsequent signal to return to
the baseline. This was carried out to verify the effect of the
injection time on the signal. Finally, the applied voltage was
varied whilst keeping the injection time constant at 60 s to
establish the effect of the voltage on the response signal. Once
again, sufficient time between injections was allowed for the
signal to return to the baseline.

3. Results and discussion

With a 3 mm microporous silica frit length in channel R3-D, a
carrier gas pressure of 0.3-0.4 psi was found to be just enough
to prevent a back flow of the DMF in the microreactor channel.
It was possible, however, to increase the carrier gas pressure to
around 10 psi by increasing the microporous frit length to 10
mm along the channel R2-E (Fig. 1). Extending the frit length
also had the effect of decreasing tailing of the injection profiles,
an essential factor for separation of complex mixtures. The
porosity of the frit is also a crucial factor in this regard.
Increasing the porosity of the frit, e.g., by increasing the
percentage formamide in the frit solution mixture,17 would
enhance the liquid bulk flow but renders the system more
susceptible to the carrier gas backpressure. Decreasing the
porosity of the frit, by increasing the percentage of potassium
silicate in the frit mixture, would decrease the liquid flow but
offers greater resistance to the carrier gas backpressure. A 10
mm medium porosity frit (approximately 70% porous) with a
pore size of 5–10 mm in a 250–300 mm id channel was found to
give suitable operating conditions with respect to providing
good EOF whilst minimising GC carrier gas backpressure
effects.

Fig. 2 shows the FID signals obtained for a number of 60 s
injections of DMF at 700 V, for a range of different time
intervals between injections. A common trend seen in this data

is a rapid rise from a relatively low baseline of the first peak,
followed by a general elevation in the baseline due to the
conductive heating of the interface needle which is fixed in the
heated injection port, causing bleed of the DMF into the GC. As
the time between injections is increased, the baseline can be
seen to become more constant but still elevated. The RSD,
based on five injections (700 V, 60 s on with 60 s off), was
found to be 1.7%. The results clearly indicate that a more careful
study into the injection process, in particular thermal control of
the interface, is required to reduce the baseline and improve the
sensitivity of the technique. An investigation into the effect of
varying injection time on the FID response signal (Fig. 3)
indicated that as the injection time is increased the signal
intensity and baseline also increased, indicating more DMF was
being dispensed into the injector port. Finally, Fig. 4 shows the
FID response for DMF as the voltage is decreased from 700 to
165 V), corresponding to a reduction in the flow rate of the
solvent into the injector port.

4. Conclusion

The results presented in the paper have shown that it is feasible
to link a chemical microreactor directly to the injection port of

Fig. 2 FID signals obtained from repeated 700 V, 60 s pulse injections of
DMF, increasing the time interval between injections: 1 = 60 s, 2 = 90 s,
3 = 120 s, 4 = 150 s, 5 = 180 s, 6 = 210 s, 7 = 240 s, 8 = 270 s, 9 =
300 s.

Fig. 3 FID signals obtained for different injection times at a constant
voltage of 700 V.
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a conventional GC, such that the injection of samples/reagents
can be controlled. The injection can be performed using timed
electroosmotic flow pulses, with sufficient backpressure control
(up to 10 psi at present) of the GC carrier gas, this being
achieved through the use of a porous frit positioned in the
channels of the microreactor. Problems linked with the heating
of the interface injector needle lead to an elevated FID baseline
signal caused by a solvent bleed from the interface, leading in
turn to an adverse effect on the detector sensitivity. Clearly, the
technique could be extended to offer post-microreactor separa-
tions if an appropriate GC column were fitted to the system. In
addition, the method would be equally amenable to GC-MS
applications. Clearly, the construction of an appropriate inter-
face between the microreactor and the injection port with

appropriate thermal control is an important consideration in the
future development of the proposed interface.
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The paper describes the equilibrium dependant reaction for the formation of enamines in a microchemical system
utilising electroosmotic flow (EOF) for fluid mobilisation. The authors have shown that the reaction can be carried
out without the presence of a Lewis acid catalyst, in addition the enamine intermediate was synthesised at room
temperature using mild solvent conditions. A 42% conversion of cyclohexanone into the enamine has been
achieved to date.

Introduction

The paper describes the equilibrium dependent reaction for the
formation of enamines in a microchemical system utilising
electroosmotic flow (EOF) for fluid mobilisation. The authors
have shown that the reaction can be carried out without the
presence of a Lewis acid catalyst, in addition the enamine
intermediate was synthesised at room temperature using mild
solvent conditions. The largest conversion of cyclohexanone
into the enamine achieved has been 42%.

To date microreactors have been used to demonstrate a wide
range of different chemistries. 1–3 The benefits of using
microreactors for synthetic applications has been clearly
demonstrated using the Wittig reaction4 where not only the
reaction yields were increased but also stereoselective control
was possible. In this paper we intend to evaluate the Stork-
enamine reaction in a microreactor for the synthesis of
enamines.

The enamine reaction was first proposed by Stork et al. in
19545 and allows the addition of an electrophile alpha to a
carbonyl substituent. This carbon–carbon bond forming reac-
tion can be used extensively over a wide range of chemistries.
This presents an interesting challenge when performed in a
microreactor due to the need for water removal from the
reaction mixture to enable the enamine to be formed.

In order for equilibrium reactions to proceed, the removal of
water can be achieved in one of two ways. Firstly, by the
physical removal of water using molecular sieves, however this
would introduce complications as molecular sieves may
possibly disrupt EOF. In addition it would also cause problems
with device design because of the need for immobilisation
within the reaction channels. Alternatively chemical removal
using a homogeneous drying agent can be achieved by a
relatively simple operation to introduce it into a microreactor
device. Thus the addition of 1,3-dicyclohexylcarbodiimide
(DCC) to the reaction mixture to remove water has been
investigated (see Scheme 1).

Experimental

The reaction was carried out using a T-chip fabricated in
borosilicate glass with channels produced by photolithography
and wet etching.6

A top plate of 17 mm borosilicate glass which included 3 mm
pre-drilled holes was annealed at a temperature of 680 °C.
Microporous silica structures were added into the annealed chip
to reduce hydrodynamic effects.7 The final channel geometries
were 200 µm wide at the top and 100 µm deep, with the overall
outer dimensions of 20 mm 3 20 mm and 25 mm in depth. EOF
was generated and controlled via a computer/Labview interface
developed by Kingfield electronics, Sheffield. An example of
the chip used can be seen in Fig. 1.

All of the chemicals were purchased from Aldrich Fine
Chemicals (Gillingham, Dorset). A solution of cyclohexanone
(0.3 M, 50 µl) in anhydrous methanol with added DCC (approx
1 mg) was introduced into reservoir A. Pyrrolidine (0.3 M, 50
µl) in anhydrous methanol was added into reservoir B, whilst
anhydrous methanol (30 µl) was added to reservoir C. Ranges

Scheme 1 General reaction scheme for the enamine formation using
DCC.
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and combinations of positive voltages were applied to the
platinum wire electrodes placed in reservoirs A and B relative to
the ground electrode situated in reservoir C. The variety of
voltages applied was in the region from 300 to 1000 V.

The voltages were applied for a period of 40 min after which
the content of reservoir C was analysed by gas chromatography
coupled to a mass spectrometer (GC-MS). The GC-MS used
was a Varian CP-3800 coupled to a Varian Saturn 2000 mass
spectrometer. The column was a CP-Sil 8 (30 m capillary
column). The following analysis conditions were employed:
injector temperature 250 °C, helium flow rate 1ml min21, oven
temperature 50 °C held for 4 min, ramping to 250 °C over a
period of 8 min and holding this temperature for 3.5 min. The
use of GC-MS allowed the mass ion of m/z 151 to be identified
at a retention time of 9.11 min. The retention time for the pure
material had already been determined from batch reactions
under similar conditions.

Results and discussion

Fig. 2 summarises the enamine yields obtained in the micro-
reactor over a range of voltage combinations. Using an applied
external voltage combination of 600 V at reservoir A (cyclohex-
anone) and 800 V at reservoir B (pyrrolidine) the largest yield
of product obtained, based upon the percentage conversion of
cyclohexanone to enamine, was 42% at room temperature, for
which no catalyst was used. The yield obtained in the
microreactor was comparable to that obtained using a batch
Stork-enamine reaction performed using cyclohexanone, pyrro-
lidine and p-toluene sulfonic acid in methanol under Dean &
Stark conditions.

The results presented represent preliminary findings, which
demonstrates that enamine chemistry can be carried out in a
mild solvent system at room temperature and in the absence of
a Lewis acid catalyst in a microreactor. Product yields so far
produced in the microreactor are comparable to those obtained
by the bulk reaction, but the chip reaction negates the need for

Dean and Stark conditions. It is also carried out in the absence
of a Lewis acid catalyst utilising a different solvent system and
work is continuing to fully optimise the reaction. Once the
reaction conditions have been optimised, the next stage will be
to investigate the reaction using a wide range of suitable
electrophiles. The initial product will then be hydrolysed back
into the ketone. Once this part of the reaction has been
optimised, some asymmetric synthesis can be carried out to
investigate enantioselectivity in microchemical devices.
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Fig. 1 Schematic of the ‘T’ microreactor used for the synthesis of the
enamine intermediate. Positive voltages were applied to platinum wire
electrodes placed reservoirs A & B relative to a ground electrode being
placed in reservoir C.

Fig. 2 The percentage conversion of enamine for a range of voltages. The
letter after the value denotes the reservoir in which the voltage was
applied.

Lab on a Chip, 2001, 1, 64–65 65



 

Quantitative 3-dimensional profiling of channel networks
within transparent ‘lab-on-a-chip’ microreactors using a
digital imaging method

Ian Broadwell, Paul D. I. Fletcher,* Stephen J. Haswell, T. McCreedy and Xunli Zhang

Department of Chemistry, The University of Hull, Hull, UK HU6 7RX.
E-mail: P.D.Fletcher@chem.hull.ac.uk

Received 11th April 2001, Accepted 25th June 2001
First published as an Advance Article on the web 9th August 2001

We have developed a method for the quantitative 3-dimensional profiling of micron sized channel networks within
optically transparent “lab-on-a-chip” microreactor devices. The method involves capturing digitised microscope
images of the channel network filled with an optically absorbing dye. The microscope is operated in transmission
mode using light filtered through a narrow bandpass filter with a maximum transmission wavelength matching the
wavelength of the absorbance maximum of the dye solution. Digitised images of a chip filled with solvent and dye
solution are analysed pixel by pixel to yield a spatially resolved array of absorbance values. This array is then
converted to optical path length values using the Beer–Lambert law, thereby providing the 3D profile of the
channel network. The method is capable of measuring channel depths from 10 to 500 µm (and probably even
smaller depths) with an accuracy of a few percent. Lateral spatial resolution of less than 1 µm is achievable. It has
been established that distortion of the measured profiles resulting from a mismatch in refractive index between the
dye solution and the glass of the microreactors is insignificant. The method has been successfully used here to
investigate the effects of thermal bonding and etch time on channel profiles. The technique provides a convenient,
accurate and non-destructive method required to determine channel profiles; information which is essential to
enable optimisation of the operating characteristics of microreactor devices for particular applications.

Introduction

There is increasing interest in the development of miniaturised
microreactor devices for a wide range of analytical, chemical
synthesis and other measurements as encompassed in the so-
called ‘lab-on-a-chip’ concept. The microreactor designs devel-
oped and used by the Hull group consist of a network of micron-
sized channels connecting a number of reagent reservoirs which
also hold the electrodes used for electro kinetic pumping. Timed
voltage sequences applied under computer control to the
appropriate pairs of reservoir electrodes may be used to control
the movement (and hence the chemical reactions) of reagents
within particular regions of the channel network by a combina-
tion of electro-osmotic and electrophoretic effects. This enables
control of the spatial and temporal evolution of chemical
reactions in microreactors in a manner not achievable in
conventional batch reactors. It has been demonstrated that this
control can be used to alter the yields and selectivities of product
mixtures for a range of different reactions performed in
microreactors (see refs. 1–6 for recent progress in this area). The
theoretical principles of electrokinetic control of chemical
reactions in microreactors have been reviewed previously.7

The particular microreactor designs used in Hull (and by
other researchers) are fabricated by etching a channel network
into a glass base plate of typical dimensions 20 mm wide 3 20
mm deep 3 2 mm thick.5,8,9 The etched base plate is then
thermally bonded to a thick glass upper plate (thickness
typically 15 mm) containing pre-drilled holes of about 3 mm
diameter which connect to the channel network and act as
reagent reservoirs. In order to quantitatively predict and control
the electrokinetic movement of reagents within the micro-
reactors it is necessary to determine the full 3D profiles of the
channel networks in the assembled microreactor devices. In
addition, control and optimisation of the base etching and

thermal bonding processes also require methods for 3D
profiling of both non-bonded and bonded base plates. A key
consideration here is the possible extent to which the thermal
bonding of the upper and base plates may distort the channel
profile. For the open etched base plates before bonding, 3D
profiles can be obtained using mechanical, stylus-based tech-
niques. For such methods, care must be taken to avoid artefacts
at the near vertical channel edges arising from the limited
resolution and imperfections in the shape of the stylus tip. For
the closed, bonded base plates, it is possible to obtain the
channel profile by cutting the bonded device perpendicular to
the channel axis followed by microscopically imaging the
channel profile. This procedure has a number of disadvantages.
Firstly, the device is destroyed by the measurement. Secondly,
the channel profile is only obtained at a single point where the
cut is made. Lastly, it is not a trivial matter to obtain the channel
cross section accurately without artefacts due to ‘chipping’ of
the edges arising from the cutting process. In order to meet the
need for a rapid, accurate and non-destructive method for 3D
profiling of both open and closed etched channel networks, we
have developed a technique based on digital microscopic
imaging of the channel network filled with an optically
absorbing dye solution (see Fig. 1). The method is generally
applicable for the quantitative 3-dimensional profiling of any
voids fillable with dye solution which are present in a
transparent solid. In this paper we describe the application of the
method for the profiling of channel networks within a range of
bonded and non-bonded microreactor devices.

The method described here is similar in principle to a range
of (generally more complex) spectroscopic imaging techniques
(UV/vis, IR, Raman) which have been developed for particular
applications.10–16 The absorbance imaging method described
here is simple to implement and provides absolute values of the
channel depths.

This journal is © The Royal Society of Chemistry 2001
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Experimental

1 Materials

m-Cresol (Lancaster, 99%), glycerol (Lancaster, > 99%), Patent
Blue (Fluka standard reagent), Rose Bengal (Aldrich, dye
content approx. 95%) were used without further purification.
Water was purified by reverse osmosis.

2 Methods

An Axiovert S100 inverted microscope (Carl Zeiss) using
transmission optics was employed to obtain digital micro-
graphic images of the microreactors filled with either solvent or
dye solutions. The light source was a 100 W tungsten lamp
emitting over the wavelength range from approximately 400 to
800 nm. Wavelength selection appropriate to the particular dye
solution used was achieved by incorporating an appropriate
narrow band pass filter of the correct maximum transmission
wavelength between the microscope objective and camera (Fig.
1). Transmittance spectra of the two filters used here (Chroma
11002, peak 546 nm full width at half maximum 10 nm and
Edmund Scientific N43-136, peak 649, full width at half
maximum 11 nm) are given in Fig. 2. Stray ambient light was
reduced to negligible levels by use of a hood over the
microscope. Microscope images were collected using a digital
monochrome CCD camera (Hamamatsu C4742-95-12NRB)
giving a digital output of a maximum of 1024 3 1024 pixels
with 12 bit resolution of the light intensity in each pixel. The
camera was connected to a PC and controlled by the digital
image recording and analysis software AQM from Kinetic
Imaging Ltd. Averaging of pixel intensities over 4 3 4 groups
of pixels (‘4 3 4 binning’) was used to yield a 256 3 256 array
of intensity values. This procedure was found to provide the best
compromise between rapid data acquisition, signal-to-noise
ratio, spatial resolution and data file size. Scion Image software

(Scion Corporation) was used to transfer the numerical image
data into Microsoft EXCEL for subsequent conversion into
absorbance values and hence pixel-by-pixel depth values.

As explained in detail below, for the profiling measurements
by the imaging technique it is necessary to capture images of the
microreactor filled with dye solution and filled with solvent. For
the proper calculation of pixel-by-pixel absorbance values, it is
essential that there is no movement of the microreactor between
the capture of these two images. Hence, care was taken to ensure
that the microreactor was firmly located in a fixed position on
the microscope stage and filled with the appropriate liquid in
situ using syringes. For 3D profiling of non-bonded base plates,
the etched channels were filled with either solvent or dye
solution and then covered with a non-bonded top plate. This
procedure always gave a thin layer of dye in the non-etched
regions of the base plate (see detail in Fig. 1). This small
measured thickness of dye solution was subtracted from the
derived values to obtain the true channel depths. Dye solution
UV/Vis spectra and absorbance values required for calibration
were recorded using a Unicam UV3 spectrophotometer using
quartz cuvettes (Hellma) with accurate path lengths in the range
50–10000 µm.

Microreactor devices were fabricated according to published
procedures.9 The base plate of chip 1 was etched using a
solution comprising 250 ml of water, 12.5 g ammonium fluoride
(Lancaster, 98%) and 7 ml of 40% HF solution in water (BDH
Merck, AnalaR grade) for 25 min at 65 °C. The base was placed
on a support in the etch solution with patterned side facing
downwards within a heated ultrasonic bath (Ultrawave Scien-
tific Supplies, Nottingham, UK). Ultrasound was applied in 1
min bursts at 5 min intervals. This procedure has been found to
ensure that debris is effectively removed during the etch and
that fresh etchant solution remains in good contact with the
surface. Thermal bonding of chip 1 was made as follows. The
base and upper plates were placed on a flat quartz plate in a
conventional muffle furnace and a block of quartz of mass 70 g
was placed on top to aid bonding. The oven temperature was
then held at 575 °C for 3 h. Chip base 2 was etched similarly
except that the etching temperature was 60 °C and the solution
was stirred with a rod instead of using ultrasound. It was
thermally bonded using an oven temperature of 570 °C for 3 h
using a quartz top block of mass of 28 g. Chip bases 3–7 (non-
bonded) were etched for variable times using an etch bath
temperature of 60 °C with ultrasonication (non-continuous, 1
min on followed by 9 min off) to aid debris removal.

Fig. 1 Schematic diagram of the inverted optical microscope arrangement
used for the 3D profiling of microreactor chip channel networks. The lower
diagrams show side views of dye filled channels (shaded gray) in a bonded
chip and in a non-bonded chip covered with a non-bonded top plate.

Fig. 2 Absorbance spectra of RB (1.0567 mM in water, lmax = 547 nm) and
PB solutions (0.8275 mM in 30.2 wt.% glycerol in m-cresol, lmax = 647
nm). The path length was 100 µm. The dashed lines show the transmittance
curves for the two narrow bandpass filters used in conjunction with the
different dye solutions.
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Results and discussion

1 Imaging procedure to obtain 3D profiles

The optical absorbance A of a solution is given by the Beer–
Lambert law.

A
I I

I I
Cd= -

-
Ï
Ì
Ó

¸
˝
˛

=log ref dark

sol dark

e (1)

where Iref and Isol are the transmitted light intensities recorded
through the reference liquid (the solvent) and the dye solution
respectively. Idark is the detector signal recorded in the absence
of incident light, C is the concentration of absorbing species in
the solution, d is the optical path length and e is the molar
absorption coefficient. Using a dye solution for which the
product Ce at the appropriate wavelength has been measured
separately using a conventional spectrophotometer, determina-
tion of A for a channel filled with dye solution yields d which
corresponds to the channel depth.

To obtain d, the following sequence of images was captured
for each sample using the apparatus shown schematically in Fig.
1.

1. Image of the channels with zero incident illumination to
obtain the array of Idark intensities.

2. Image of the channels filled with solvent giving the array
of Iref intensities.

3. Image of the channels filled with dye solution giving the
array of Isol intensities.

For each measurement set, the incident light intensity and the
camera gain were adjusted so that the maximum intensities in
the Iref array were close to the maximum value of 4095 allowed
by the 12 bit resolution of the camera. It was monitored that,
under the set conditions, the array of Idark values did not exceed
200 or so. This procedure ensured that the full dynamic range
allowed by the 12 bit resolution of the camera was used.

Solutions of two different dyes were used in this study. The
spectra of RB (Rose Bengal) and PB (Patent Blue) solutions are
shown in Fig. 2 and compared with the transmittance curves of
the narrow band pass optical filters used in the microscope
imaging. The water-soluble dye RB was used in aqueous
solution for which the refractive index (RI) of approximately
1.33 is not matched to that of the glass (approximately 1.5).
Because of this lack of RI matching, optical refraction is
expected at the channel edges which may give some distortion
of the measured channel profile. The profiling of non-bonded
base plates requires that the dye solution be spread on the etched
channel surface of the base before covering with a non-bonded
top plate. In early experiments with RB and other dye solutions,
problems were encountered due to significant evaporation of the
dye solution during this procedure, resulting in uncontrolled
changes in dye concentration. We developed the PB dye
solution with the following characteristics required to optimise
the 3D profiling method. The dye solution should be matched in
RI with the glass of the microreactor chip and must be
involatile. The dye must be highly soluble in the solvent in order
that sufficiently high absorbance required to profile channels of
low depth (i.e. small path lengths). It is advantageous if the
absorbances of the dye solutions are proportional to concentra-
tion. This facilitates the optimisation of dye concentration
necessary to minimise experimental uncertainties for different
channel depths. The dye solutions should be chemically stable
and the absorbance of the solvent should be negligible
compared to that of the dye solution at the optimum wave-
length.

These characteristics were fulfilled by PB solutions in a
mixed solvent consisting of 30.2 wt.% glycerol in m-cresol. Fig.
2 shows the spectrum of a PB solution. Fig. 3 shows plots of
absorbance at 647 nm versus PB concentration for different path
lengths recorded using a conventional spectrophotometer. It is

clear that sufficiently high absorbance values can be obtained
and that the Beer–Lambert law is obeyed with reasonable
precision. For the PB solutions, full dissolution of the dye
required treatment in an ultrasonic bath for several hours.
Absorbance measurements over several weeks showed the dye
solutions have adequate stability for reliable imaging meas-
urements.

The accuracy with which d can be determined for each image
array value (corresponding to a single ‘binned’ pixel group)
depends on the value of the absorbance. For the setup used here,
the typical experimental uncertainty in each of the intensity
values Iref, Isol and Idark was estimated from the variation in
measured arrays of intensity values to be approximately ±5. The
values for Idark and Iref using optimised settings for the incident
light intensity and camera gain were typically 100 and 3500
respectively. Conversion of the uncertainties in the individual
(binned) pixel intensities to the uncertainties in derived
absorbance yields the plot shown in Fig. 4. The uncertainty in
absorbance, and hence in depth d, is minimum for absorbance
values of around 0.6 and is approximately 2%. Since ab-
sorbance is proportional to channel depth, the dye concentration
used must be adjusted in order to achieve the optimum
absorbance of 0.6 for the particular channel depth under study
and an acceptable uncertainty of 2% in d.

An additional possible source of systematic error in the
measurement of d arises from the fact that microscope
objectives have a significant numerical aperture NA, meaning
that light rays passing through the sample take on a variety of
paths with different angles. A microscope objective lens accepts
light over a cone in the angle range ±a relative to the
perpendicular. For an air objective, NA = sina. Hence the
actual path length experienced by a light will be the intensity
weighted average for all angles between 0 and a. The maximum

Fig. 3 Absorbance (647 nm, measured using a conventional spec-
trophotometer) versus PB concentration in glycerol–cresol mixed solvent
for path lengths of 50 (open circles), 100 (filled circles) and 200 µm (open
triangles).

Fig. 4 Variation of percentage uncertainty in the measured absorbance with
true absorbance for Idark = 100 and Iref = 3500. Uncertainties of ±5 in each
of the intensities Idark, Iref and Isol were assumed.
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error in the channel depth measurement can be estimated by
calculation of the ratio xmax = (true perpendicular path length/
max light path length). The maximum light path length occurs
for light rays at the maximum acceptance angle a and is equal
to cos(sin21NA). The effective path length measured will differ
from the perpendicular value by the intensity distribution
weighted average < x > which will be intermediate between 1
and xmax. As an approximate estimate of this effect, we take
< x > to be (1 + xmax)/2. For the objective lenses used in this
work with magnifications of 1.25, 2.5, 4 and 103, the values of
NA are 0.035, 0.075, 0.1 and 0.3 respectively. The correspond-
ing values of < x > are 0.9997, 0.9986, 0.9975 and 0.9770.
Thus, it can be seen that the errors in channel depth introduced
by this effect are negligible so long as objectives of 103 or less
are used. Proper correction for the effect would be required
when using objectives of higher magnification.

It was checked that the microscopic imaging method yielded
reliable absorbance measurements. Images of dye filled rectan-
gular capillaries of different path lengths (obtained from
Camlab, UK) and a 1 mm cuvette were recorded and converted
to absorbance. The absorbance of the 1 mm cuvette sample was
also measured using a conventional spectrophotometer. The
results, plotted in Fig. 5, show that the microscope absorbance
values agree within the experimental uncertainties (mainly
arising from the uncertainties (±7%, estimated microscopically)
in the path lengths of the capillaries).

Fig. 6 shows a 3D profile image of a 7 3 7 mm area of chip
1 recorded using a 1.53 objective lens. Even at this low
magnification (required to image a large area) the spatial
resolution is sufficient to allow details of the channel profiles
and intersections to be seen clearly. The deep circular shape at
X = 7800, Y = 0 mm corresponds to one of the reservoirs on the
microreactor. When viewed on the computer screen using
EXCEL software, the image can be fully rotated in 3D allowing
examination from all angles. The time required for acquisition
of the image set and subsequent data analysis to produce Fig. 6
was about 1 h.

Higher magnification images using a 103 objective of a sub-
area of chip 1 were recorded using both aqueous RB (non-RI
matched) and glycerol–cresol PB dye (RI matched) solutions.
The aim here was to determine whether non-RI matching
between the dye solution and the glass of the microreactor
produces significant distortion of the channel profiles due to
refraction of the light at the channel edges. 2D ‘slices’ through
the channels at corresponding positions in the two full 3D
profiles are shown in Fig. 7. It can be seen that non-RI matching
does not produce any significant distortion of the channel
profiles. This conclusion is valid for aqueous RB solutions with
an RI of approximately 1.33 as compared with approximately
1.52 for the glass. Although a higher level of mismatch in RI
may produce significant distortion, it is important for many
future microreactor applications to establish that use of aqueous
solutions in glass microreactors in the context of imaging
methods does not give significant distortion.

Fig. 8 shows an optical micrograph of one end of a channel
which was etched right up to the edge of chip 1. This was done
to enable us to compare the channel profile without the
necessity for cutting the chip open. The dimensions of the
channel end profile imaged in Fig. 8 shows reasonable
agreement with those determined from the imaging measure-
ments of Fig. 7.

2 Comparison of channel profiles before and after
thermal bonding of the upper plate

Figs. 9a and 9b show 3D profile images recorded before and
after thermal bonding of chip 2. The channel cross sections at
corresponding positions in the two 3D images are compared in
Fig. 10 where it can be seen that the effect of bonding has been
to “squash” the channels from an initial depth of 55.3 down to
39.9 µm.

Fig. 5 Absorbance (546 nm, measured using the microscope imaging
method) versus path length for dye filled capillaries or rectangular cross
section (open circles) and a 1 mm path length cuvette (filled circle).

Fig. 6 3D profile image of a 7 3 7 mm area of the channel network of chip
1. The image was recorded using RB as the dye (non-RI matched).

Fig. 7 Comparison of channel cross sectional profiles for chip 1 obtained
using RB aqueous dye solution not RI matched to the glass (filled circles)
and PB solution in glycerol–cresol mixed solvent which was RI matched to
the glass (open circles). The two channel cross sections correspond to the
same position in the channel network of chip 1.

Fig. 8 Micrograph of a side view of a channel end in chip 1. The horizontal
arrow length (409 µm) corresponds to the channel top width measured in
Fig. 7. The vertical arrow length (119 µm) corresponds to the channel depth
measured in Fig. 7.
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The etching of glass, using the etch solution described above,
proceeds at equal rates in all directions, i.e. the etching is
isotropic. The etch depth d is controlled by the etch conditions
and the etch time. Ideal isotropic etching through a channel
mask of width m is expected to produce a channel profile
comprising a rectangular shape of width m and depth d bounded
by two quarter circle edges of radius equal to d. The expected
channel width at the glass surface is equal to (m + 2d). In
practice, either prolonged etching or thermal bonding may
produce a ‘smoothing’ of the channel edges away from the
idealised quarter circle shape. In order to model the channel
profiles, we first calculate the ideal isotropic etch profile using

the values of m and d. The ‘smoothing’ of the profile is then
parameterised by incorporation into the model of a variable
smoothing length d. The channel depth at each X value is
obtained by taking the depth calculated for the isotropic etch
profile averaged over the range of X values corresponding to ±d.
Fitting of the experimental channel profiles then yields the best-
fit values of m, d and smoothing length d. A zero value of d
corresponds to no distortion from the idealised isotropic etch
profile whereas a high value indicates that significant smooth-
ing has occurred during either the etching or thermal bonding
processes.

For the profiles of Fig. 10, the solid lines shows the best fits
to the smoothed isotropic etch model. The derived parameters
for chip 2 (shown in Table 1) show relatively low values of d
indicating little distortion from the isotropic etch profile.
Thermal bonding in this case apparently reduces d slightly.
However, it can be seen in Fig. 10, that the difference in channel
profile shapes corresponding to the best fit values of d of 25 and
15 µm (for the non-bonded and bonded chips respectively) is
rather small. In contrast to chip 2, the d values for chip 1 (Table
1, where similar values are seen for non-RI and RI matching)

Fig. 9 Comparison of 3D profile images of a 1.7 3 1.7 mm area of chip 2
(a) before and (b) after thermal bonding of the base and upper plates. The
images were recorded using PB as the dye (RI matched).

Fig. 10 Channel cross sectional profiles for chip 2 before (larger depth) and
after thermal bonding (smaller depth) of the base and upper plates. The co-
ordinates of the channel centres correspond to X = 500 and Y = 615 µm in
Fig. 9. The solid curves are best-fits to the model described in the text with
the parameters listed in Table 1.

Table 1 Summary of measured channel profile parameters. Chip 1 (non-RI matched) was profiled using an RB solution in water. All other chips were profiled
using PB solutions in glycerol–cresol mixed solvent which was RI matched to the glass of the chip

Chip Depth/µm
Apparent mask width/
µm d/µm

Actual mask
width/µm

Chip 1 (non-RI matched) 119.4 170.9 59 118
Chip 1 (RI matched) 119.2 173.8 72 118
Chip 2 (non-bonded) 55.3 129.0 25 128
Chip 2 (bonded) 39.9 138.2 15 128
Chip base 3 (24 min etch time) 50.1 126.0 17 128
Chip base 4 (36 min etch time) 62.8 137.1 11 128
Chip base 5 (48 min etch time) 85.7 157.3 41 128
Chip base 6 (96 min etch time) 173.4 145.2 88 128
Chip base 7 (120 min etch time) 189.8 126.9 57 128

Fig. 11 Channel cross sectional profiles for chip bases with etch times of (in
order of increasing depth) 24, 48 and 120 min. The solid curves are best-fits
to the model described in the text with the parameters listed in Table 1.

Fig. 12 Variation of channel depth with etch time under the conditions
described in the text. The solid line corresponds to a mean etch rate of 1.7
µm min21.
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are high indicating that significant smoothing of the channels
occurred during the fabrication of this chip. It is relevant to note
here that chip 1 was bonded using a higher temperature and a
larger top mass (added to aid bonding) than chip 2. Both factors
might be expected to increase channel profile distortion during
bonding. These examples serve to demonstrate the utility of the
3D profiling method coupled with the channel profile modelling
in the characterisation of microreactors channel networks and
the optimisation of their fabrication.

3 Channel profiles for different etch times

A series of microreactor bases were prepared using a constant
mask width of 128 µm and etched for different times.
Illustrative channel cross sectional profiles including fits to the
smoothed isotropic etch model are plotted in Fig. 11. The
variation of fitted depth with etch time (Fig. 12) indicates that
the etch rate is approximately constant and equal to 1.7 µm
min21. The mask widths derived from the fits to the measured
channel profiles (Table 1) vary only slightly with etch time and
are reasonably close to the actual mask width of 128 µm. The
origin of the small differences between fitted and actual mask
widths observed for some of the samples is unclear at present.

For each of the different chip bases, we have determined the
standard deviation in channel depth over the flat region of the
channels around the channel centre. The observed variability in
channel depth can result from two causes. Firstly, variation can
result from the random uncertainty in the microscope ab-
sorbance measurements and hence in the measured depths.
Secondly, the channel surfaces may actually be rough giving a
real point-to-point variation in depth. Fig. 13 shows a plot of the
standard deviation in depth versus depth. The slope of the plot
corresponds to the uncertainty (one standard deviation) in depth

being 2.3% of the measured depth. This level of uncertainty is
reasonably consistent with the value expected from the analysis
shown in Fig. 4. The intercept of Fig. 13 suggests that the actual
roughness of the channel surfaces is of the order of 0.7 µm.
Although plausible, the ‘scatter’ of the data of Fig. 13, makes
this estimate rather uncertain.

Finally, Fig. 14 shows the variation of fitted smoothing
length d versus etch time. Although the uncertainty in d is large,
the results suggest that the distortion away from the ideal
isotropic etch profile increases with increasing etch time.

Conclusions

We have developed a rapid, accurate and non-destructive
technique to determine the 3D profiles of microreactor channel
networks based on optical imaging of dye filled channels. The
method is capable of measuring channel depths from 10 to 500
µm (and probably smaller depths) with an accuracy of a few
percent and a spatial resolution of less than 1 µm. It has been
established that distortion of the measured profiles resulting
from a mismatch in refractive index between the dye solution
and the glass of the microreactors are insignificant. The method
has been successfully used to investigate the effects of thermal
bonding and etch time on channel profiles.

The imaging method developed here could be applied to
profile any solution-fillable voids within transparent solids.
Furthermore, for microreactor channels where the depth (path
length) has been measured, the technique may also be applied to
determine the concentration profiles of either absorbing or
fluorescent species in the channels with a time resolution of
greater than 10 frames per second. This aspect is currently under
active investigation in our laboratories.
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For micro-reactor devices in which liquids are pumped by electro-osmotic flow (EOF), in situ monitoring of the
electrical currents in the channel networks provides a valuable diagnostic tool. We demonstrate here that the
voltage–current characteristics of a micro-reactor channel network can be accurately modelled using measurements
of the full 3-D geometry of the channel network, the liquid conductivity and the channel wall–liquid surface
conductivity. It is shown that surface conductivity provides a significant contribution to the overall measured
electrical currents in channel networks for which the ratio of surface area to volume is high. Following correction
for surface conductivity, the electrical currents are proportional to the liquid volumetric flow rates measured in the
different branches of the channel network. The constant of proportionality is related to the zeta potential of the
channel wall–liquid surface. Measurements of the variation of electrical currents and volumetric flow rates as a
function of the applied voltages allows the determination of the surface conductivity and zeta potential within the
micro-reactor which enables the prediction of the voltages required to produce the desired flow rates in any
channel section. In situ logging of the electrical currents, incorporated within the control system, allows
continuous monitoring of the liquid flow rates during micro-reactor operation.

Introduction

There is increasing interest in the development of miniaturised
micro-reactor devices for a wide range of analytical, chemical
synthesis and other measurements as encompassed in the so-
called ‘Lab-on-a-Chip’ concept. The particular micro-reactor
designs developed and used by, inter alia, the Hull group
consist of a network of micron-sized channels connecting a
number of reagent reservoirs which also hold the electrodes
used for electro-kinetic pumping. Timed voltage sequences
applied under computer control to the appropriate pairs of
reservoir electrodes may be used to control the movement of
reagents within particular regions of the channel network by a
combination of electro-osmotic and electrophoretic effects.
This enables control of the spatial and temporal evolution of
chemical reactions in micro-reactors in a manner not achievable
in conventional batch reactors. It has been demonstrated that
this control can direct the yields and selectivities of product
mixtures for a range of different reactions (see refs. 1–7 for
recent progress in this area). The theoretical principles of
electrokinetic control of chemical reactions in microreactors
have been reviewed previously.8

Electro-osmotic flow (EOF) produces a flat liquid velocity
profile across the micro-reactor channels except in the regions
very close (nm) to the channel walls.9,10 However, as explained
in ref. 8, pressure driven flow caused by reservoir height
differences plus differences in the Laplace pressures associated
with the liquid menisci within the reservoir leads to a parabolic
velocity profile. In order to obtain reproducible and predictable
micro-reactor operation, it is advantageous to minimise the
effects of pressure driven flow such that the EOF liquid flow
rates are unaffected by the liquid reservoir heights and
uncontrolled, variable velocity profiles are minimised. Specifi-
cally, the pressure driven flow contribution arising from (say) a
10 mm liquid height difference between reservoirs should be
negligible in comparison with the EOF. For EOF, the linear
liquid velocity is unaffected by channel cross sectional area (so
long as channel diameters are much larger than the nm thickness
of the diffuse layer of counter-ions at the channel wall interface)

whereas pressure driven flow is strongly suppressed by
reducing the channel cross sectional dimensions. Hence,
pressure driven flow can be reduced to negligible levels by
including sections of high hydrodynamic resistance, i.e. small
channel cross sectional area, within micro-reactor channel
networks. For channels with typical dimensions of 50 3 100 mm
cross section and 10 mm length operating under EOF voltages
of 200 to 1000 V, the EOF liquid volumetric flow rates are
comparable in magnitude to the pressure driven flow arising
from liquid reservoir height differences of only a few mm. In
this situation, the actual flow rates result from contributions
from both EOF and pressure driven flow and are highly
sensitive to the reservoir heights. Virtually ‘pure’ EOF can be
obtained by incorporation of one or more porous glass frits
(typical porosity 10% and pore diameters of a few mm) which
provide a high hydrodynamic resistance within the channel
network and suppress pressure driven flow.11

The fabrication and performance of frits, formed in situ
within the channel networks as described in ref. 11, has been
found to be rather irreproducible. An alternative method of
incorporating regions of high hydrodynamic resistance uses a
two-stage etching process as shown schematically in Fig. 1. For
the simple T channel network used in this study, reservoirs A, B
and C are linked by non-continuous large channels which are
etched within the bottom plate. The breaks in the large channels
are linked by rectangular grids of small channels which are
etched on the lower side of the middle plate. The micro-reactor
assembly is completed by thermal bonding of the ‘sandwich’ of
bottom, middle and upper plates. Three holes drilled through the
middle and upper plates connect to the ends of the large channel
segments and form the reagent reservoirs. The strategy of using
rectangular grids of small channels (as opposed to sections
containing only a single small channel) is employed in order to
avoid fabrication failure due to misalignment between the
bottom and middle plates during thermal bonding.

For electrokinetic controlled operation of the micro-reactor,
small Pt wire electrodes are placed in each reservoir and
connected to a voltage supply and control box which, in turn, is
operated under computer control using LabVIEW software.
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Each voltage supply/control box allows timed sequences of
voltages (0 to 1000 V) to be applied to up to 4 electrode pairs.
In addition, the control system logs the values of voltage and
electrical current between each electrode pair. Voltage supply to
more than 4 electrode pairs, as required for complex channel
networks, is easily achieved by using more than one voltage
supply/control module. In this paper, starting from the channel
network dimensions and the liquid conductivity, we describe a
quantitative analysis of the electrical currents measured as a
function of the applied voltages in the micro-reactor design
shown in Fig. 1. The currents are then linked to the liquid flow
rates measured as a function of the applied voltages. The
importance of this analysis and its experimental validation lies
in the fact that it provides the complete framework required to
achieve the next step in micro-reactor control. At present, the
input for the control software is simply the desired voltage–time
sequences for each electrode pair. Using the analysis given here,
it will be possible to input the desired liquid flow rates in the
different channel sections directly into the control software.
Following input of the relevant system parameters (micro-
reactor geometry and liquid properties), the control software
can then calculate the necessary voltage sequences required to
achieve the inputted flow rate sequences.

EOF in micro-reactors has been used extensively in the last
decade. Aspects of the modelling concepts used here and their
application in micro-fluidic devices have been discussed
previously in, for example, refs. 12–15. Novel devices allowing
the control of EOF by application of an electric field
perpendicular to the fluid flow have been fabricated.16 In
addition, detailed modelling of the microscopic details of
electro-osmotic fluid flow around channel junctions has been
described.17

Experimental

Materials

Rose Bengal (Aldrich, dye content approx. 95%) was used
without further purification. Water was purified by reverse
osmosis. Methanol (Aldrich, anhydrous, 99.8%), sodium meth-
oxide (NaOMe, Aldrich, 0.5 M solution in methanol, A.C.S.
reagent) and potassium chloride (BDH, AnalaR, > 99.5%) were
used as received.

Methods

An Axiovert S100 inverted microscope (Carl Zeiss) using
transmission optics was employed to obtain digital micro-
graphic images of the micro-reactor. Quantitative 3-D profiles
of the channel network were obtained by analysis of micrograph
images of the channels filled with dye solution according to the
method described fully in ref. 18. In the present work, aqueous
solutions of Rose Bengal (6 g dm23) were used and the images
were obtained using a wavelength of 546 nm (selected using a
narrow bandpass filter Chroma 11002, peak 546 nm full width
at half maximum 10 nm) and a 103 objective lens. For the
normal optical micrographs, a 1.253 objective was used to get
a fuller view of the channel network.

The micro-reactor chip was fabricated according to published
procedures19 with some variations. The bottom and middle
plates were made from White Crown glass sheets pre-coated for
etching (Align Rite, 3 mm thickness). Using an etch solution
comprising 250 ml of water, 12.5 g ammonium fluoride
(Lancaster, 98%) and 7 ml of 40% HF solution in water (BDH
Merck, AnalaR grade), the bottom plate was etched for 10 min
at 65 °C. The middle plate was etched for 1 min at 65 °C.
Etching was carried out by placing the glass pieces on a support
in the etch solution with patterned side facing downwards
within a heated ultrasonic bath (Ultrawave Scientific Supplies,
Nottingham, UK). Ultrasound was applied continuously to
ensure that etch debris is effectively removed during the etch
and that fresh etchant solution remains in good contact with the
surface. The bottom and middle plates were thermally bonded
together by placing them in a muffle furnace set at 570 °C for 3
h. A quartz block of mass 70 g was placed on top of the
assembly to aid bonding. The top block was then bonded to the
two bonded lower plates using the same procedure.

Electrokinetic control, voltage and current measurements of
the micro-reactor were made using a home designed power
supply which was constructed by Kingfield Electronics, UK.
The power supply has four channels for voltage outputs, four
channels for monitoring the electrical current of each channel
and four channels to monitor the applied voltage for each
channel. Programmed control of the timed voltage sequences to
each channel and current and voltage logging was made using
LabVIEW software (National Instruments). For the T shaped
channel network used in this work, voltages were controlled,
and the currents and voltages logged, for two channels only, i.e.
between reservoirs A and C (ground) and between B and C
(ground). Lengths of shiny Pt wire (Goodfellow, diameter 0.26
mm) were used as electrodes.

Liquid flow rates as a function of applied voltages were made
by monitoring the changes in liquid heights over time for the
reservoirs A, B and C. The reservoirs were connected to
vertically-mounted, glass 0.5 ml graduated pipettes (Gallen-
kamp, approximately 1.2 mm internal diameter, 130 mm height)
via plastic connecting tubes. The internal diameters of each
pipette were measured accurately using a travelling microscope
equipped with a digital clock gauge with 1 mm resolution
(Mitutoyo). The electrodes were inserted through the sides of
the connecting plastic tubes in order that they did not distort the
liquid menisci positioned within the pipettes. The assembly was

Fig. 1 Schematic diagram of the T shaped channel network of the micro-
reactor showing the correspondence between channel sections and re-
sistance elements. The lower diagram (not to scale) shows a side view
before thermal bonding of the ‘sandwich’ construction.
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sealed using Permabond epoxy glue. Complications arising
from possible evaporation of the test liquids were avoided by
layering a 3 mm depth of squalane (involatile and immiscible)
on top of each liquid surface within the pipettes. Height changes
of the solvent/squalane menisci were measured optically using
the travelling microscope described above. The accuracy of the
liquid height measurements was estimated by repeated meas-
urements to be approximately ±15 mm

The liquid conductivities were measured using a WTW
GmbH model LF340 AC conductivity bridge operating at 1000
Hz and equipped with a graphite electrode dip cell with cell
constant equal to 0.475 cm21.

All measurements were made at room temperature which was
22–25 °C and was measured separately for each experiment.

Results and discussion

Micro-reactor channel network geometrical parameters

The overall micro-reactor geometry is shown schematically in
Fig. 1. Fig. 2 shows a microscope image of the central region of
the channel network. As discussed below, the T shaped micro-
reactor channel network filled with a conducting liquid can be
analysed in terms of two connected DC circuits consisting of a
number of resistance elements connected in series and parallel.
Calculation of the electrical resistance of each element requires
knowledge of the length and cross sectional area for every
section. The different sections of the network, their resistance
values and the corresponding DC circuit are defined in Figs. 1
and 3.

The lengths of the different channel sections were determined
directly from a series of micrographs similar to Fig. 2. The
different cross sectional profiles were obtained from full 3-D
profile images such as that shown in Fig. 4 which shows the
channel region where RC2 and RCf join. As shown in Fig. 5, the
channel cross sections were fitted to an isotropic etch profile.
For an isotropic etch of depth d under an etch mask width m, the
resultant etched channel cross section is expected to consist of
a rectangle of dimensions (d 3 m) with channel sides having a
quarter circle shape with radius equal to d. The channel cross
sectional area A is given by

A dm
d= +( )
p 2

2
(1)

As discussed in ref.18, the channel shapes in thermally bonded
micro-reactors may be distorted from this idealised shape.
However, the channel cross sectional area A estimated using

Fig. 4 Quantitative 3-D channel network profile in the region of the rectangular grid of small channels at RCf.

Fig. 2 Optical micrograph of the T shaped channel network. The image,
recorded using a 1.253 magnification objective, corresponds to an area of
14.6 3 14.6 mm.

Fig. 3 The DC circuit equivalent the T shaped channel network.
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eqn. (1) with the best fit values of d and m is not significantly
different to that obtained by integration of the fit to a slightly
distorted channel profile. In the channel region shown in Fig. 4,
the large channels have best-fit values of d and m of 24 ± 2 and
100 ± 10 mm respectively. The small channels have d = 2.4 ±
0.2 and m = 210 ± 20 mm. Channel dimensions in different
regions of the channel network (close to RAf and RBf) were
measured separately and found to be similar but not identical.

The regions of the rectangular grids of small channels, which
have overlap with the large channels (i.e. RAf, RBf and RCf),
were each taken to consist of five different sections as shown in
Fig. 3. Sections 1 and 5 correspond to the sections where the
large channels overlap with the grid end borders. Sections 2 and
4 are the sections where the large channels overlap with the
small channel zone. Section 3 contains only small channels.
Values of the lengths and cross sectional areas for RA1, RA2,
RB1, RB2, RC1, RCf (sections 1–5) and RC2 are summarised in
Table 1. Separately measured dimensions for the RAf and RBf

sections (not shown in Table 1) were found to be similar to the
corresponding RCf sections. The full set of individual values
were used in the data analysis.

The uncertainties in the channel lengths (Table 1) are
relatively minor compared with those in d and m (approx. 10%
in each) for the different channel sections. The uncertainties in
the derived channel cross sectional areas are approximately
20%. The uncertainties in the channel dimensions, dominated
by that in the area values, gives an approximate uncertainty of
20% in each of the derived resistance values used in the
subsequent current–voltage analysis.

Voltage–current characteristics of the micro-reactor

The resistance R of a channel of length L and cross sectional
area A and filled with a liquid of conductivity k is given by

R
L

A
=
k

(2)

For channels in which the ratio of surface area to volume is
relatively high and the conductivity of the liquid is low, the
surface conductivity of the channel wall–liquid interface
becomes significant relative to that of the bulk liquid.9,10 For a
resistance element with length L, cross sectional area A, cross
sectional circumference C and surface conductivity ks, the
resistance is

R
A

CL
=
k s

(3)

For each resistance element, the components of the total
resistance arising from the bulk liquid and the surface act in
parallel. Hence, the overall resistance of each element is given
by

R
A

L

CL

A

=
+

Ê

Ë

Á
ÁÁ

ˆ

¯

˜
˜̃

1
k k s

(4)

Using an independent measurement of the liquid conductivity k
and the geometrical parameters of the channel network, eqn. (4)
enables the calculation of the resistances of all the different
channel sections of the micro-reactor using only the surface
conductivity ks as an adjustable parameter.

The DC circuit equivalent to the channel network (Fig. 3)
contains two connected circuits. For each circuit, the applied
voltage (relative to ground in reservoir C) is equal to the sum of
the products of resistance and current in each limb of the circuit,
according to

VA = ( RA + RC )IA + RCIB (5)

VB = ( RB + RC )IB + RCIA (6)

where RA = (RA1 + RAf + RA2), RAf = (RAf1 + RAf2 + RAf3 +
RAf4 + RAf5) and RB and RC refer to similar sums for the B and
C limbs of the channel network. IA corresponds to the current in
the channel from the A reservoir to the channel intersection and
IB that for the channel from B to the intersection. The current
from the intersection to the reservoir C is given by the sum of IA

+ IB. Solution of the two simultaneous equations provides
expressions for IA and IB.

I
R V R V R V

R R R R R RA
B A C A C B

A B A C B C

= + -
+ +

( )

( )
(7)

I
R V R V R V

R R R R R RB
C A A B C B

A B A C B C

= - - -
+ +

( )

( )
(8)

The currents IA and IB were measured as functions of the
voltages VA and VB. At constant set voltages, the currents were
constant over 5 min and responded to a change in voltage within
a few seconds. Fig. 6 shows the variation of the measured
currents IA and IB (all values averaged over 5 min) with the
voltage VB for a constant voltage VA equal to 300 V. The
solution in the micro-reactor consisted of 40 mM sodium
methoxide in methanol for which the conductivity was
measured to be 2.46 3 1023 S cm21. The currents calculated
using eqns. (7) and (8), incorporating the channel dimensions,
the measured solution conductivity and a best fit value of ks of
0.095 nS show good agreement with the measured values. As
can be seen from Fig. 6, it is necessary to include a contribution
from surface conductivity in order to successfully model the
measured currents. A similar level of agreement between theory
and experiment was obtained for a 10 mM sodium methoxide

Fig. 5 Cross sectional profiles of the large (lower plot) and small channels
(upper plot). In each case, the solid line shows a fit to the isotropic etch
model.

Table 1 Lengths L and cross sectional areas A of the different channel
section types as defined by the subscripts on the R values in Fig. 1. Cross
sectional areas for the large channels, small channels and the border region
are indicated by Al, As and Ab respectively. The dimensions of the RAf and
RBf channel sections (not included here) were measured and found to be
similar to the corresponding RCf sections

Channel section Length/mm ± 0.05 Expression for A A/mm2 ± 20%

A1 1.53 Al 3830
A2 2.74 Al 3830
B1 0.81 Al 4121
B2 3.06 Al 4121
C1 7.18 Al 3291
C2 7.02 Al 3291
Cf1 0.30 Al + Ab 7263
Cf2 0.83 Al + 5As 5825
Cf3 1.53 5As 2534
Cf4 0.83 Al + 5As 5825
Cf5 0.30 Al + Ab 7263
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solution with a conductivity of 0.70 3 1023 S cm21 and a best-
fit value of ks of 0.048 nS. Experimental values of surface
conductivities show a wide variation. The values estimated here
are smaller than most experimental values determined for the
glass–water surfaces of a range of different systems but are
similar in magnitude to theoretical estimates.9

The conclusion that it is necessary to include a non-zero
surface conductivity to correctly predict the current–voltage
curves requires some discussion of the uncertainties. The major
uncertainty in the comparison of the measured and predicted
currents arises from uncertainties of ±20% in the channel cross
sectional areas which translate into approximately 20% un-
certainties in the resistance values. The sensitivity of the fitting
procedure to the uncertainties in the predicted resistance values
was tested by setting the surface conductivity to zero and
floating the values of RA, RB and RC simultaneously to obtain a
best fit. In order to obtain a fit to the measured data similar to
that seen in Fig. 6, the floated values of RA, RB and RC

corresponded to reductions in the values of 9, 8 and 33%
respectively. The same exercise was performed for the micro-
reactor filled with 10 mM NaOMe for which the liquid
conductivity was lower. In this case, reductions in RA, RB and
RC of 28, 13 and 46% were required to obtain a fit to the
experimental data (having set the surface conductivity to zero).
Overall, we conclude that the experimental data cannot be fitted
within the estimated uncertainties without inclusion of the
surface conductivity terms.

Electro-osmotic liquid flow rates

The volumetric liquid flow rate F by EOF pumping is
proportional to the corresponding electrical current resulting
from EOF according to8–10

F I= -
Ê
ËÁ

ˆ
¯̃EOF

ee z

hk
0

(9)

where IEOF is the current from electro-osmotic flow (equal to the
total current I minus the surface current Is), e is the relative
dielectric constant of the liquid, e0 is the permittivity of free
space, z is the zeta potential of the channel wall–liquid
interface, h is the liquid viscosity and k is the liquid
conductivity.

Fig. 7 shows the measured reservoir height changes versus
time for 10 mM NaOMe in methanol with VA = VB = 300 V.
The time plots are linear indicating that the volumetric flow

rates are independent of the relative reservoir heights, i.e.
pressure driven flow resulting from differential reservoir
heights is insignificant here. For VA and VB both equal to 300 V,
liquid flows from reservoirs A and B (these heights both
decline) towards C, for which the height increases. For each
reservoir, multiplication of the rate of height change by the
internal cross sectional area of the reservoir pipette yields the
volumetric flow rates FA, FB and FC. As required by mass
conservation, FC is found to be equal to 2(FA + FB). The
volumetric flow rates FA and FB measured as a function of the
voltage VB at a fixed voltage VA equal to 300 V are shown in
Fig. 8. As predicted from eqn. (9), the forms of the plots in Fig.
8 are very similar to the plots of the currents IA and IB versus VB

in Fig. 6.
Fig. 9 shows the variation of the flow rates FA, FB and FC

plotted versus the corresponding electrical currents IA,EOF,
IB,EOF and IC,EOF. The EOF currents were obtained from the
measured total currents by subtraction of the surface con-
ductivity contribution, calculated using the value of surface
conductivity estimated from fits to the voltage–current data.
The flow rates are proportional to EOF current and the solid line
is calculated according to eqn. (9) using the following data taken
either from the literature20,21 or measured independently; e =
32.6, h = 0.544 cP and k = 0.74 3 1023 S cm21 (all at the
measurement temperature of 25.3 C). The value of z required to
match the experimental data (246 mV) is equal to that
measured for the interface between glass and a 10 mM solution
of KI in methanol.9

A similar analysis was made for a range of different
electrolyte/solvent systems and the values of the zeta potentials
and surface conductivities are summarised in Table 2. The zeta
potentials estimated for the solutions are in reasonable agree-

Fig. 6 Measured currents IA (filled circles) and IB (open circles) as a
function of the voltage VB at a constant voltage VA equal to 300 V for the
channel network filled with 40 mM NaOMe in methanol at 21.7 °C. The
solid lines correspond to the currents calculated using the measured channel
geometry and the solution conductivity (2.46 3 1023 S cm21) and a best-fit
value of the surface conductivity of 0.095 nS. The dashed lines show the
currents calculated with the surface conductivity set to zero.

Fig. 7 Liquid heights versus time for reservoirs A (filled circles), B (open
circles) and C (filled triangles) for 10 mM NaOMe in methanol at 25.3 °C.
The voltages VA and VB were both equal to 300 V relative to reservoir C
(ground).

Fig. 8 Measured volumetric flow rates FA (filled circles) and FB (open
circles) as a function of the voltage VB at a constant voltage VA equal to 300
V at 25.3 °C.
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ment with literature values.9,22–29 It is relevant to note that
caution must be exercised in comparing values of zeta potentials
drawn from the literature. As shown in refs. 9, 22–29, different
studies for glass–aqueous electrolyte interfaces show common
features: the pH corresponding to zero zeta potential is equal to
2–3; the zeta potential becomes increasingly negative with
increasing pH; and the zeta potential magnitude decreases with
increasing electrolyte concentration. However, the absolute
values of the zeta potentials for a particular glass–electrolyte
solution commonly show a wide variation due to sensitivity to
the exact nature of the glass used and the precise details of the
measurement and data analysis methods (including correction
for surface conductivity).

Conclusions and future outlook

We have demonstrated that the voltage–current characteristics
of a micro-reactor channel network can be predicted with
reasonable precision using complete 3-D channel network
dimensional information and the measured liquid conductivity
with the channel wall–liquid surface conductivity as the only
adjustable parameter. The electrical currents due to EOF in the
different limbs of the channel network are proportional to the
corresponding volumetric liquid flow rates with the constant of
proportionality dependent on the dielectric constant, viscosity
and conductivity of the liquid and the zeta potential of the
channel wall–liquid interface. Measurement of the volumetric
flow rate within the channel network as a function of the
electrical current provides a simple method to determine the
zeta potential for solvent/reagent systems of interest for
synthesis applications in micro-reactors for which literature
data is absent. In this context, it is relevant to note that, although
literature data for the zeta potential for different aqueous
solutions at the glass surface is available, data for organic
solvents is relatively scarce.9,22–29

Since the EOF electrical current is proportional to liquid flow
rate, in situ logging of the total currents using the micro-reactor
power supply and control system provides a useful diagnostic
tool in several ways. Firstly, as noted above, combined
measurements of flow rates and currents (corrected for surface
conductivity) allows the measurement of zeta potentials for
which literature data is absent. Secondly, micro-reactor opera-
tional problems arising from, for example, channel blockage
and the formation of gas bubbles are easily detected. Thirdly, it
is reasonably simple to incorporate the analysis given here
within the micro-reactor control software to allow the user to
directly input the desired sequences of liquid flow rates within
specified sections of the channel network (as opposed to the
present situation where voltages are inputted). Lastly, for
chemical reactions in micro-reactors which produce a sig-
nificant change in solution conductivity, current measurements
can, in principle, provide a measure of the extent of reaction.
Elucidation of such effects will require extension of the
theoretical framework given here to allow for liquids having
variable bulk and surface conductivities and zeta potentials
within different channel sections. These aspects are currently
under active development in our laboratories.
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We have demonstrated the use of silyl enol ethers in the aldol
reaction within a micro reactor. Quantitative conversion of
the silyl enol ether to a b-hydroxyketone was observed in a 20
min period compared to traditional batch systems, where
quantitative yields were only obtained when extended
reaction times of 24 h were employed.

Introduction

Over the past three years, there has been a rapid growth in the
development of micro reaction technology exploiting the
technique of electroosmotic flow (EOF).1 Recent research has
demonstrated that along with multi-component reactions such
as the Suzuki coupling2 and the Wittig reaction,3 multi-step
peptide synthesis can also be performed within a micro
reactor.4

Enolates are often regarded as one of the most important
intermediates in C–C bond formation. They are prepared by the
removal of acidic protons a to a carbonyl using a base. In the
late 1960’s, Stork and Hudrlik demonstrated that an enolate
could be transformed into a silyl enol ether and then converted
back to the enolate.5 This technique therefore enabled the
temporary trapping of enolates, while maintaining the stereo-
and regiochemical features.6 Stork and Hudrlik described the
regeneration of the enolate via the use of methyllithium,
however, tetraalkylammonium fluorides have more recently
found widespread use in desilylation reactions.7

This paper describes the aldol reaction of the silyl enol ethers
of acetophenone and cyclohexanone with 4-bromobenzalde-
hyde using catalytic tetrabutylammonium fluoride (TBAF)
within a micro reactor.

Experimental

Micro reactor methodology

The borosilicate micro reactor used in this work was prepared
using a standard fabrication procedure developed at Hull.8 The
reactions were carried out using a 4 channel micro reactor,
illustrated in Fig. 1, with approximate channel dimensions of
100 3 50 mm and outer dimensions of 20 3 20 3 25 mm. Micro
porous silica frits were placed within the channels in order to

minimise hydrodynamic effects.9 An in-house LabVIEW™
program was used to set and monitor the voltages applied to
platinum electrodes placed in the reservoirs (power supply was
built by Kingfield electronics).

All micro reactions were carried out at room temperature
over a period of 20 min to ensure a sufficient volume of product
was generated for analysis. Reaction products were determined
by GC-MS via the comparison of retention times and spectra
with those obtained from synthetic standards 1 and 5. Product
conversions were calculated from the GC-MS with respect to
the amount of starting material remaining in the sample.

Synthesis of the silyl enol ether of cyclohexanone 3

A solution of cyclohexanone (0.1 g, 1.02 mmol) in anhydrous
THF (10 ml) was added dropwise to a stirred solution of lithium
bis(trimethylsilyl)amide (LiHMDS) (1.02 ml, 1.0 M, 1.02
mmol) over a period of 30 min. The solution was then stirred for
a further 15 min prior to the addition of chlorotrimethylsilane
(0.13 ml, 1.20 mmol). The reaction mixture was concentrated in
vacuo and the resulting residue dissolved in DCM. The
inorganics were removed by filtration and the resulting solution
concentrated in vacuo, yielding the silyl enol ether of cyclohex-
anone 3 (0.16 g, 93%); m/z (EI) 171 (M+ + 1, 38%), 170 (70),
169 (65), 155 (100) and 127 (40).

Synthesis of the silyl enol ether of acetophenone 4

The silyl enol ether of acetophenone 4, was prepared as for the
enol ether of cyclohexanone above (0.79 g, 98%); m/z (EI) 193
(M+ + 1, 92%), 192 (70), 191 (100), 177 (94) and 103 (26).

Preparation of ‘anhydrous’ tetrabutylammonium
fluoride10

Tetrabutylammonium fluoride trihydrate (TBAF·3H2O) was
dried at room temperature over phosphorus pentoxide under
vacuum (10 mm Hg) for 48 h to afford a gelatinous solid.

Synthesis of 1 via the silyl enol ether of cyclohexanone 3

The silyl enol ether of cyclohexanone 3 (0.1 g, 0.58 mmol) was
added dropwise to a stirred solution of ‘anhydrous’ TBAF
(0.015 g, 0.057 mmol) and 4-bromobenzaldehyde 2 (0.109 g,
0.58 mmol) in anhydrous THF (10 ml). The reaction mixture
was stirred for 24 h and 3 extracted into ethyl acetate (3 3 50
ml). The combined organic solvents were dried over magne-
sium sulfate and the product recrystallised from DCM/diethyl
ether/hexane to afford a crystalline material 1 (0.16 g, 94%); m/z
(EI) 267 (M+ + 1, 15%), 266 (60), 264 (55) and 185 (100).Fig. 1 Schematic of the micro reactor used in the synthesis of 1.

This journal is © The Royal Society of Chemistry 2001
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Synthesis of 5 via acetophenone and
4-bromobenzaldehyde 2

Acetophenone (1.0 g, 8.26 mmol) was added dropwise to a
stirred solution of LiHMDS (41.32 ml, 1.0 M, 41.32 mmol) and
4-bromobenzaldehyde (1.53 g, 8.27 mmol) in anhydrous THF
(100 ml). The reaction mixture was stirred for 24 h and 5
extracted into ethyl acetate (3 3 50 ml). The combined organic
solvents were dried over magnesium sulfate. Recrystallisation
from DCM/hexane afforded a white crystalline material 5 (1.33
g, 56%); m/z (EI) 289 (M+ + 1, 40%), 288 (100), 287 (77), 286
(90), 208 (65), 178 (25) and 105 (50).

Synthesis of 5 via the silyl enol ether of acetophenone 4

The silyl enol ether of acetophenone 4 (0.09 g, 0.48 mmol) was
added dropwise to a stirred solution of anhydrous TBAF (0.013
g, 0.05 mmol) and 4-bromobenzaldehyde 2 (0.089 g, 0.48
mmol) in anhydrous THF (100 ml). The reaction mixture was
stirred for 5 h and the reaction mixture analysed by GC-MS and
found to contain 100% 5 with respect to the silyl enol ether 4;
m/z (EI) 289 (M+ + 1, 40%), 288 (100), 287 (77), 286 (90), 208
(65), 178 (25) and 105 (50).

Results and discussion

In order to prepare b-hydroxyketone 1, the enolate of cyclohex-
anone was formed using LiHMDS and subsequently reacted
with 4-bromobenzaldehyde 2. After a 24 h period only 20%
conversion of cyclohexanone to product 1 had taken place. The
reaction was then repeated using the silyl enol ether of
cyclohexanone 3 resulting in a conversion of 100% with respect
to the silyl enol ether 3 in 24 h (Scheme 1).

Having demonstrated that compound 1 could be prepared
from the silyl enol ether 3, this represented a synthetic target for
preparation within a micro reactor (Fig. 1). Prior to the
synthesis, the micro reactor was primed with anhydrous THF, in
order to remove any air or moisture from the channels and
microporous silica frits. A standard solution of TBAF (40 ml,
0.1 M) in anhydrous THF was placed in reservoir A, a solution
of 4-bromobenzaldehyde 2 (40 ml, 1.0 M) in anhydrous THF in
reservoir B and the silyl enol ether of cyclohexanone 3 (40 ml,
1.0 M) was placed in reservoir C. The reaction products were
collected in anhydrous THF in reservoir D. The reagents were
manipulated within the device by the application of the
following applied fields: 417, 455, 476 and 0 V cm21 (A, B, C
and D respectively). However, only 1% conversion of silyl enol
ether 3 to product 1 was observed. Upon altering the applied
field to 417, 341, 333 and 0 V cm21 and hence increasing the
proportion of TBAF, 100% conversion to product 1 was
obtained.

Having demonstrated that the product 1 could be formed
within a micro reactor, we wished to further demonstrate this
technique using another ketone. In order to prepare a synthetic
standard of 5, the enolate of acetophenone was formed using
LiHMDS and subsequently reacted with 4-bromobenzalde-
hyde.

After 24 h, 80% conversion to b-hydroxyketone 5 with
respect to acetophenone had taken place. The reaction was

subsequently repeated using the silyl enol ether of acetophenone
4 and the resulting conversion of 100% with respect to the silyl
enol ether 4 was obtained (Scheme 2).

A standard solution of TBAF (40 ml, 0.1 M) in anhydrous
THF was placed in reservoir A, a solution of 4-bromobenzalde-
hyde 2 (40 ml, 1.0 M) in anhydrous THF in reservoir B and the
silyl enol ether of acetophenone 4 (40 ml, 1.0 M) was placed in
reservoir C. The reaction products were collected in anhydrous
THF in reservoir D. The reagents were manipulated within the
device using the following applied fields: 375, 409, 381 and 0 V
cm21 to A, B, C and D respectively. This resulted in 100%
conversion of the silyl enol ether of acetophenone 4 to product
5.

Conclusions

In batch reactions, it has been shown that enhanced yields of b-
hydroxyketones can be obtained via the use of silyl enol ethers,
compared to the use of traditional lithium enolates. We
subsequently demonstrated the formation of b-hydroxyketones
within a micro reactor, whereby quantitative conversions were
obtained in a 20 min period. This shows an improvement over
traditional systems, where quantitative conversion was only
observed if extended reaction times of 24 h were employed.
Enhanced reaction rates of this type have previously been
demonstrated by O’Sullivan et al. where enhancements of the
order of 3.4 3 103 were reported as a result of miniaturisa-
tion.11
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�	��� ��� �!���� 
������!�	 �2 	�$��!)�� 2��� ���
����
����!	$��+� ��� 
�����	�� 
���� !� ���	 ������ �� ����� ���
)����!��� �� �)�
������ �2��� 
��2���!	$ ��� ����!��� �����
��� ���		��� ��� ������ ��!	$ � �!9���� �2 *J �� �	� 0J
D�-� !	 ����� �� �0�8� ������!	$ !	 �	 ���� ���� �2 ��/>
��0 �� �!	�*� ���!	$ ���� !� !� !�
����	� ���� ��� �1����
!� ���� �$!����� �� �	���� ��	�!���	� ��

�1 �2 �����	� �� ���
���2��� 
��� ����)�� �2 ���� ���!�� �	 ��� ��������!��� ��
��)� 2��	� ���� ��������	� !����!��!�	 ���!	$ ���� !�
�22���!)��

�	 ��� 
�������� �����!�� ��)�� $���� !� ������ �	��	�$
������ !��� ��� $���� !� ������ ���1 �� �;��� ����� !	 ��� �!����
�!�	� 2��� ��� 
�!	�� �2 �9
���� $���� ���2��� �	��� ���
����� ���3� ��� ���		�� ����������!�	�� ���
� ���� �������
!� ����	 !	 �!$� +� ��� �	 !	!�!�� �
�!��� ���3 ���		�� �!���
� �	� �	 ���� ��
�� �� ��� ���		�� ����������!�	 ��	�!��� �2
� �����	$�� �2 �!��	�!�	� 6���7 5�	3�� 1 ��� ;������
�!����� �2 ���!�� � ��!�� �	������ ��� ���3� ,� ����	 !	
��� �!���$��
� �2 �	 �9
���� ���		�� �	�� ��!� �������!���
���		�� ���
� !� 	������1 ���!	�� !	 
����!��� ������$�
������� �	�!	$ 6�!������� �����7 ��1 ������ !	 ���� ��!$��
�!�����!�	� D��� ����� 2�� !�����
!� ����!	$� !� !� !�
���!�� ��

��
��� ���		��� ��� ��
�� �2 ��!�� �9����� ���!� �!����
,	!�����
!� �����!���� ����)��� ���� �� �!�!��	� ���� ��
�!22���	� ����� ���	$ �!22���	� ��1���� 
��	��� ����!	$ �2
����� �����!��� �����2��� �����	�1 
�������  ����
��
���		��� ��� $������1 �2 ��!�� !� ������� �� ��� �����!)�
��!�	���!�	� �2 ��� ���� ���3 �	� ��1���� 
��	��� ��$�����
�!�� ��� �!22���	�!�� ���� ������+�

��� ��� 
���� ��	��!	!	$ ��� ������ ���		�� 	�����3 ����
	�9� � ������ 1 �	�!	$ �� � *. �� �

�� 
���� ��	��!	�

!	$ 
�����!���� ����� �� ��� �� �����)�!�� 2�� ���$�	��� �	 ���
��������!��� ��� �

�� 
���� !� ��!$	�� �!�� ��� ���		��
$������1 �	� ��������1 �	��� �� ��� ��� 
���� 6�1
!����1
0.0�8 2�� / �7�+.�+C ������� �	�!	$ !� �!��� 1 
���!	$ �
��!$��!	$ ���3 �2 	�	������!	$ ;����? �2 �!$� ��2��	!	$
���
������� �	 ��� �

�� 
����� , �������!� �2 �	 ����$����
��)!�� 
������� 1 ��� ������ �����!�� !� ����	 !	 �!$� /�
��� $��� ������� �	�!	$� !� !� !�
����	� �� �	���� ���� ���
��� $���� �1
�� �2 ��� �

�� �	� ����� 
����� ��)� ��� �������
������� ��2��	!	$ �	� �9
�	�!�	 
��
���!��� �	 ���!�!�	� ���
���2���� �� � �	��� ���� � ����	 �	� 5���

���� ������������� �� ��� �� �����	���	 �� ��� ������
�������	

��)!	$ 2��!����� ��� �!��� �������� !� !� ����	�!�� �� 3	��
��� 2��� ��� �2 �!��	�!�	� !	 /� �2 ��� ���		�� 	�����3 !	
����� �� �����!�� )�������!� 5�� ����� �	� �	��� �����!�	
���������!���!�	� �	 ��� 
��	� �2 ��� ���		�� 	�����3� ���
��	$��� �2 ��� �!22���	� ���		�� ����!�	� ��� ���!�1 ������
�!	�� ��!	$ �
�!��� �!������
1� 8��		�� 
��B��� 6��
���
�	� �!����7 ��	 � ������!	�� ��!	$ ��1��� 
��B�!	$
������� �	 ��� ��� 
����� �2��� �	�!	$� ,� ��	�!�	��
����!��� ����)��� ������� �	�!	$ ��	 ������ !	 ���� ��$���
�2 �!�����!�	 �2 ��� ���		�� 
��B��� ��!�� ��	 �	�1 � ���!�
����� 1 ���������	� �2 �	��� ��)!���� 4	� �

�����
2�� �	��� ��!
� !� �� ��� ��� ��!
 
��
�	�!����� �� ���
���		�� �9!� 2������� 1 ���������	� �2 ��� ���		��

��B�� ��!	$ �
�!��� �!������
1� ��!� ������ !� ��������!)�
�	� �	�1 �	���� ��� 
��B�� �� � ������!	�� �� � �����
	���� �2 
����������� 
�!	��� ����� �!���)�	��$�� ��	 �
�)������ 1 ��!	$ � 	���1���)���
�� ������ ���� �	
�!$!��� �!������
!� !��$!	$ �2 � �1� �����!�	�B���� ���		��
	�����3�/� ,� ����	 !	 �!$� -� ��� ��!
 !� ���	��� �	 �
���	��!��!�	 �!������
� �
����!	$ �!�� ��	��������!�
�!$�� �� � ��)���	$�� ������
�	�!	$ �� ��� ��9!��� �����
�	�� �2 � �1� �����!�	 �!��!	 ��� ���		�� 	�����3� K�!	$ �
�!$!��� ������ �	 ��� �!������
�� +0��+0� ����1� �2 
!9��
�!$�� !	��	�!�1 )����� ��� �������� 2�� ��� ��!
 B���� �!��
�1� �����!�	 6;�1�7� B���� �!�� ���)�	� 6;���)�	�7 �	� A���3=
!��$�� 6;���37� ��� ���� ����1� ��� ���	 ��	)����� �� �	
����1 �2 �����	�� )����� 6,�7 ��!	$ �;� 6*7

,� � ��$*�
;���)�	� � ;���3
;�1� � ;���3

� �
�*�

������ �� �!�$��� ����!	$ ��� �����!�	��!
 �����	 ���3 �!��� �� ����
��
�� � �	� ��� ���		�� 
��B�� 6$��1 ������ ����7 2�� �	 !�����
!� ���� !	
$����� ��� �!���$��
� ����� � ���		�� �	� )!�� !	 � �	��� $���� �!���
��������

������ �� �9
����� )!�� �2 � �!��� ������� ��	�������� 2��� � ��� 
����
��	��!	!	$ ��� ������ ���		�� 	�����3 �	� ��������1 �	��� �� � ��!�3
�

�� 
���� ��	��!	!	$ ���$�	� �����)�!���
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D�9� 1 �

�1!	$ ��� "���>:����� :�� ,����� 6�����
� !� ��� �9�!	��!�	 ���2B�!�	� �2 ��� �1�� � !� ��� �1� ��	��	�
����!�	 �	� � !� ��� �
�!��� 
��� ��	$��7� ����� ��� �9�!	��!�	
���2B�!�	� 6� 7 �	� ��	��	����!�	 6�7 �2 ��� �1� ��)� ��	
������!	�� ��!	$ � ��	)�	�!�	�� K @ �� �
������

���������� ��� ����1 �2 ,� )����� ��	 � ��	)����� !	��
�	 ����1 �2 �
�!��� 
������	$�� )����� ������
�	�!	$ �� ���
��
�� �2 ���� ���		�� 6�7� �	� ��� ������ ��
�� 2�� ��� &>%

��!�!�	� �!��!	 ��� ��!
 !��$�� ��� ���!	��� �!$� - ����� �
2��� /� 
��B�� �������� !	 ��!� ��1 2�� � ����!�	 �2 �
���		�� 	�����3� ,	��1�!� �2 A��!���= �����$� ��� 2���
����1 �2 ���� �	���� ��� ������!	��!�	 �2 ��� ������

����!�	�� ���		�� 
��B�� �!��!	 �	1 
��� �2 ��� !��$��
	�����3� ������ ��
��� !	 ��� ��	$� 2��� � 2�� �� ��
��	����� �2 �� ��	 � ������!	�� �!�� � 
���!�!�	 �2 �
2�� 
����	�� ��)!	$ ������!	�� ��� 
��� ��	$�� � 2�� ���
���		�� 	�����3� ��� ��	��	����!�	 
��B�� �2 � ��������
6�� 5�������	�7 ������	� �� 
������ �
��!�� ��	 � �!�!����1
���!)�� 2��� �!$!��� ������ !��$��� �	 �9��
�� �2 ��!�
�

����� �!	$ !���������� !	 ����!�	 /�/� ,� �!�� �����
���� �

���	� !	 ��� ����� ����!�	�� ��� 
�1�!��� $������1 �2
� �!��� ������� 6!��� ����������!�	�� 
��B��� �	� ���		��
!	�������!�	�7 !� !	��!	�!����1 �!	3�� �� ��� ����!���

�������� !� ��

����� ��� !	5��	�� �2 ���2���������3

������  � �!$!�!��� !��$�� ��3�	 ��!	$ � ���	��!��!�	 �!������
� ��	 � ���� �� 
������ 2��� /� 
��B��� �2 � ���		�� 	�����3� ��� !	��� 
��� ����� �
���	�)���� ��!�� ������ � ���		���
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2�� �9��
��� ��� ��� �22����� 1 ��� �����!�� �	� $������1 �2
��� �!��� ��������

�� !�������� �� ����� �������	 �	��� �������������
������

���� "������	����� #�� $"!�% ��� �����������	�	

���
!	$ �2 �����!�	� ����	� � ���		�� 	�����3 1 �4�
��!	$ )����$�� �

�!�� )!� ���������� 
����� !	 ��� �����)�!��
��� ��)���� �!$	!B��	� ��)�	��$�� �)�� �����	��!)� 
��
!	$
�������� �� ��	 � ���!�1 �!	!����!��� �!	�� 	� �����	!���
��)!	$ 
���� ��� !	)��)�� �	� ��� ��;�!��� )����$�
��;��	��� ��	 � ����!�1 �

�!�� �	��� ��������� ���
����
��	����� ��� � $���� �!��� �������� ��� ���		�� ����������!�	
!	���2��� 	������1 ��� � 	�$��!)� ����$�� ��!�!	$ 2���
!�	!���!�	 �2 ���2��� $���
� ���� ��� !���!��� ��!�
!���!�� ���2��� ����$� �������� � �!22��� ��1�� 6�2 ��!�3�
	��� �2 ��� ����� �2 	�7 �2 ��!��� �

��!���1�����$��
���	���!�	� !	 ��� �����!�	 ��H���	� �� ��� ���		�� ����
6���!�	� 2�� � 	�$��!)��1�����$�� $���� ���		�� ����7� ,�
����	 �������!����1 !	 �!$� 0� �

�!���!�	 �2 �	 ������!�
B��� ���	$ ��� ���		�� ��	$�� ������ ��� 	� ��!�3 A�3!	=
�2 ��!�� ���!�	� �� ��)� ������� ��� ���� 	�$��!)� �����
����� �	� ���$� ��� ��� !	���)�	!	$ �����!�	 !	 ��� ��3 �2 ���
���		�� �!�� !�� ,	 !�
����	� 2������ �2 �4� !� ���� ���
�!;�!� �4� )����!�1 !� ��	���	� ������ ��� ���		�� �9��
�
!	 ��� 	� ��!�3 ��$!�	� �2 ��� �!22��� ��1�� �2 ���	���!�	�
)��1 ����� �� ��� ����� K	�!3� �4�� 
����������!)�	 5��

������� � 
�����!� )����!�1 
��B�� �!�� �!$� )����!�!��
!	 ��� ���		�� ��	��� �	� ���� )����!�!�� 	��� �� ��� �����
$!)!	$ �!�� �� !	������� A����!	$= �2 ���$�	� ?�	�� ���	$ �
���		�� ��	$��� ���$!	$ �2 ��� �!22���	� )����!�1 
��B���
!	����� 1 �4� �	� 
����������!)�	 5�� ��� ��	
�����!�� 1 ���� �� ���/*

��� �4� 5�!� )����!�1 ���2 !� $!)�	 1 �;� 6+7
/+>/-

���2 � �����

�
�+�

����� � !� ��� ������!� B��� 6)����$� �!)!��� 1 ���������
��
����!�	7� � !� ��� �����!)� �!������!� ��	���	� �2 ��� �!;�!��
� � !� ��� 
���!��!)!�1 �2 2��� �
���� � !� ��� ?��� 
���	�!�� �2
��� ���		�� ����������!�	 !	���2��� �	� � !� ��� �!;�!�

)!����!�1� ��� ��� $������;����� �����!�	 !	���2���� ���
)���� �2 � )��!�� 2����0� ���*0� � �� 
� . 6��
�	��	�
�	 !�	!� ����	$��7 �� ��������� �� � �� 
� ����	� +�0�/0 ���
��$	!���� �2 ��� ������!� B��� �

�!�� !	 �!��� ��������
6�1
!����1 ���� ��	����� �2  ���*7 $!)�� �4� )����!�!��
!	 ��� ��	$� ��*>* �� ��* 2�� �;����� �����!�	� �� 
� .�

���� �;� 6+7� !� ��	 � ���	 ���� ���2 !� 
��
���!�	�� �� ���
�

�!�� )����$� �	� ��
�	�� �	 ��� 
��
���!�� �2 ��� ���
�!;�!� �	� ��� ���		�� �����!��� �4� !� 	�� ���!	�� �!��
���!��	������ �����!��� ���� �� �!�!��	 �	� ���� 	�� �����
�!�� ��� 
����!�1 ���)�	�� ���� �� ��3�	�� ����� 	� �!22���
��1�� �2 ���2��� ���	���!�	� �9!���� ��� �4� )����!�1 ���2 !�
!	��
�	��	� �2 ��� ���		�� ����������!�	�� �!��	�!�	�
������� ��� �4� )�������!� 5�� ���� 6$!)�	 1 ��� 
������
�2 ���2 ����!
�!�� 1 ��� ���		�� ����������!�	�� ����7 ����
��
�	� �	 ��� ���		�� �!��	�!�	�� ,��!�!�	���1� !� !� !�
���
��	� �� 	��� ���� ��� ���		�� �!��	�!�	� ������!	� �������
A
���= �4� �� � �!9���� �2 �4� �	� 
����������!)�	 5�� !�
�������1 ���!	�� !	 
����!��� ,� !	�!����� ��)�� 5��
�!��!	 � �!��� ������� 
������� �!;�!� ��!$�� �!22���	���
�����	 ��� ���$�	� �����)�!�� ��!��� !	 ���	� ��1 
������

����������!)�	 5�� �

��!	$ ��� �4� �	� �!����!	$ ���
5�� )����!�1 
��B�� 2�� 
��� �4�� ,� �!������� !	 (�2� /��

����������!)�	 5�� ��!�!	$ 2��� ����� 6��7 �����)�!�
��!$�� �!22���	��� ��	 � �!$	!B��	� 2�� �����!)��1 ���$�
���		��� �� !� ��

������ 2�� ����� ���		��� ����� ���
�1����1	��!� ���!���	�� !� ���$�� 4)������ ��� ���		��
�!��	�!�	� ���� � ���!$	�� �� � ��2B�!�	��1 ����� ����
���� 
����������!)�	 5��� ��� 	�$�!$!�1 ����� �����!)� ��
��� �4� �	� ������ ��!�!	$ 2��� )��!���� 
����������!)�	
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��������
��� ��$	!���� �2 �
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!��� �!��� ������� �
����!	$
)����$�� !� �����	�1 ���
����� �!�� ���2� ��� ����� )����
�!�1 �2 � ����$�� �
��!�� !� $!)�	 1 ��� )����� ��� �2 ���2

������ &�  ����$����!)�	 ��)���	� �2 ��� �!22��� ��1�� �2 ���!�	� ������� �� ��� 	�$��!)��1 ����$�� ���		�� ���� 6��2����	� B$���7 
������� � 5�� �4�
)����!�1 
��B�� ������ ��� ���		�� �9��
� �!��!	 ��� 	� ��!�3 �!22��� ���	���!�	 ��1�� 6�!$�����	� B$���7�
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�	� �
�� ,� 	���� ��)�� ��� �!����!�	 �2 �4� 5�� 2��
�;����� �����!�	� !	 � $���� �!��� ������� !� 	������1
������� ��� ���� 	�$��!)� ���������� ��� � ���!�	!� ������
�
��!��� �
� �!�� �����2��� � !	 ��� ���� �!����!�	 �� ���
�4� 6!��� ������� ��� ���� 	�$��!)� ���������7 �	� �!��
��)� 2����� ���	 ��� ���		�� ���	 ��� ���)�	� �	� 	������
�
��!��� ,	!�	!� ������� �!�� � �������� �	� ��1� !2 ���
��$	!���� �2 �
� !� $������ ���	 ���2� ��)� !	 ��� �

��!��
�!����!�	� �	 ��!� ��1� �������
�����!� ��
����!�	 �2 �������
������ ���	$ �!�� �4� !	 �!��� ������� ���		��� ���	
�
������ ��!	$ �������3!	��!� ��	����� ��� �!�!�1 �� ���
�������
�����!� ��!�!�1 �� ��)� ����$�� ���$�	�� ��
�
��!�� �	� 
������� �!��!	 � �!��� ������� !	��
�	��	��1
�2 ��� ���)�	� ��� ��	 �9
��!��� !	 �!��� �������� �	�
�!	$� � ������ 	�)�� ��	��
� �� �����!�	 ����!���1� �	 ���
#!��!$ ����!���1 �����!�� !	 ����!�	 -� 2�� �9��
��� ���
����$�� ��� �	� 
���
��	!�� ���� ���� �� 2��� ��� !	����
���!��� 1�!�� ��)� �	� �!9 ��
!��1 1 �������
�����!��
	�$��!	$ ��� 	��� �� ��)� �	� �!9 ��� ���)�	�� �	 ���!�!�	�
!	 �����!�	� ����� ��
����!�	 �2 ��� 
������� �	� ������	��
!	 ���� �!�� !� ��)�	��$����� �������
�����!� ��!�!�1 !� �
�!��!	�� ��)�	��$�� �!22���	�!�� �������
�����!� ��!�!�!��
��)� ��	 �9
��!��� �� ������!)��1 ��	���� 
������ ������!�	
�!��� !	 ��� ��
!����1 �������
�����!� ����	!;�� �2 ��������

�����!����1����!���� �!����	��1�!� 6�LL,7�/.>-�

���� ������ �� ������� ������� �� � ������ �������

��� ������$1 �2 ��!	$ �!��� �������� �� �������3!	��!����1
��	���� ��� �
��!�� �	� ���
���� �)����!�	 �2 ����!��� �����
�!�	� ���!�� �	 ��� �!�!�1 �� ��� )����$� ��;��	��� �� �!����
���$�	�� �� �������� 
�!	�� �� �
��!B�� �!��� �!��!	 �
���		�� 	�����3� ��� �	 !	��!���� ���		�� 	�����3 �!��
��	1 �����)�!�� �	� ����������� ��� �����!�	��!
� �����	
��� �

�!�� )����$�� �	� ��� �!;�!� 5�� ����� �	� ������
��!�!�!�� !	 ��� �!22���	� ����!�	� �2 ��� 	�����3 ��	 �
)��1 ���
��9� ��� ��!� �

����� !� �� �	��1�� ��� ���		��
	�����3 !	 ����� �2 �	 �;�!)���	� �8 �!���!� ����� ���
�!22���	� ���		�� ����!�	� ������
�	� �� ���!���	�� �����	��
�	�� �� �!�� � ����	� ��� ������!��� �����	�� ��� 
��
���
�!�	�� �� ��� )�������!� �!;�!� 5�� ����� �!��!	 ��� ������
�
�	�!	$ ���		�� ����!�	��/��-* ,� �	 !��������!)� �9��
���
�� �!����� ��� ���		�� 	�����3 ����	 !	 �!$� � ����� ��
�!�� �� ���!�)� � 5���!	H����5�� ��;��	�� �� ���!	 �
A���$= �2 �	� ���$�	� !	 � 5��!	$ ������ �2 � ����	�
���$�	�� �	 ��� A5��= ����� �� ��;�!�� 5�� 2��� �����)�!�
, �� � �!�� ?��� 5�� 2��� ��� " �	� 8 �� �� �	 ��� A!	H���=
����� �� ��;�!�� 5�� 2��� " �� 8 �!�� ?��� 5�� 2��� , ��
�� �� ���!	 ��� ������ � ����!���		�� )����$� ��

�1
�
����!	$ �	��� ���
���� ��	���� ��!	$ :� ��# ��2�����
!� ���� �� ���!)�� ��� ������� )����$� ��;��	��� �� ��� �����
������ !	 �����)�!�� ,� " �	� 8 6)����$�� >,� >" �	� >87
�����!)� �� �����)�!� �� ��� �� $���	� )����$�� ��� ��	����
�1���� ���� �� ���� ���� �	���� ���
���� ��$$!	$ �2 ���
)����$�� �	� �����	�� ���!	$ � ��	� ��� 2�����!	$ �	��1�!�
����� ��� ��� )����$�� ��� ������� �� ��� ������!��� �����	��
;,� ;" �	� ;8 ��!��� !	 ���	� ��� ������� �� ��� �!;�!� )����
����!� 5�� ����� !	 ��� ������
�	�!	$ ���		�� ����!�	� �,�
�" �	� �8�

#� ��	�!��� ��� �!�
���� 
���!�� �!����!�	 !	 ��!�� ���
���		�� 	�����3 �2 �!$� � !� B���� �!�� � �!;�!� �2 �	!2���
������!��� ��	����!)!�1 � �	� ��� ?��� 
���	�!�� �2 ���

���		�� ���� !� �;��� !	 ��� ���		�� ����!�	�� �9
��!��	�
����1� ��!� �!����!�	 ��	 � ���!�)�� �)�	 ���	 �!9!	$
�!22���	� ������	� �����!�	� 1 �	���!	$ � �!$� ��3$���	�
6A����
!	$=7 ��	��	����!�	 �2 !	��� ��������1�� !	 ��� �!22���
�	� ���$�	� �����!�	� �� � �!9��� ��� ��� ��3� �2 �!�
�!�!�1

������ '������ ��H�	��!�	 ���		�� 	�����3 �	� 5���!	H����5�� ��;�!���
�� ���!�)� � ���$ �2 �	� ���$�	� �!��!	 � 5��!	$ ������ �2 � ����	� ���$�	��

������ (� �8 �!���!� ���� �� ��!)� ��� ���		�� 	�����3 �2 �!$� �� (����)�!�
)����$�� 6�����!)� �� $���	� !	 �7 ��� >,� >" �	� 9 �	� 1 ��	��� ��� ���		��
H�	��!�	�� ��� ������!��� �����	� !	 ���		�� ����!�	 ,9 !� ;,� ����!�	 "9 !� ;"�
����!�	 81 !� ;8� ����!�	 91 !� 6;,�;"7 �	� ����!�	 1� !� 6;,�;"�;87�
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�� !$	��� ��� 6	������1 �����7 ��	��!��!�	 �� ��� �)�����
��	����!)!�1 �2 � ���		�� ����!�	 ��!�� ��!��� 2��� ���2���
��	����!�	�/+>/-�-* #!�� ����� �

��9!���!�	�� ��� ������!���
���!���	�� �2 ��� �� ���		�� ����!�	 � !� $!)�	 1 �;� 6-7
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����� , �	� 8 ��� ��� ��	$�� �	� ����������!�	�� ���� �2 ���
�� ���		�� ����!�	� ��� �8 �!���!� ���� �� ��!)� 5�� !	 ���
���		�� 	�����3 �2 �!$� � !� ����	 !	 �!$� . �	� ���)�� ��
��B	� ��� �����	� )����� !	 ��� �!22���	� ���		�� ����!�	�� �	
���� �2 ��� �!�� �2 ��� ���
��� �!���!�� ��� �

�!�� )����$��
��� �;��� �� ��� ��� �2 ��� 
������� �2 ��� ���!���	��� �	�
�����	�� �	� �	� �	�� �
 �!�� � ���!�� �2 6��*7 �!����
��	���� �;���!�	� ����� � !� ��� 	���� �2 �����)�!��
��	��!	!	$ ���������� 6!� !� ��* �!	�� �	� ��������� !� ���
�� $���	�7� ��� ��� ���		�� 	�����3 ��	�!����� ����� ��
��)� ��� ����� �;���!�	� !	���
������ !	 �;� 607
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!	$ �9
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��� )�������!� �!;�!� 5�� ���� !	 ��� �� ���		�� ����!�	 �
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���!�	�� �� ��� ������
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�	 ����� �� ������!	� ��� )����$�� ��;�!��� �� ���!�)� �

���!����� 
�����	 �2 5�� ����� 6��$� 5�� �� !	H��� �����
�����!�� ��)�7� ��� ��� ���!���	�� )����� �2 ��� �!22���	�
���		�� ����!�	�� B���� �!�� ��� �!;�!� �2 !	������� ���� �
3	��	� ��!� ��	 � ��	� 1 ������!	$ ��� �����	�� �� �
2�	��!�	 �2 ��� )��!��� )����$�� �!��!	 ��� �!��� �������
�	� ���
���� B��!	$ ��� ���!���	�� )������ ,����	��!)��1�
�	� ��	 ������� ��� �!;�!� ��	����!)!�1 6��!	$ � ��	)�	�
�!�	�� ��	����!)!�1 �����7 �	� ��� ��� ���		�� �!��	�!�	�
�	� ��������� ��� ��;�!��� ���!���	��� ������!	$ �� �;� 6-7�
8��!���!�	 ���������	�� �2 �!;�!� 5�� ����� �!��!	 ���
�!��� ������� �� � 2�	��!�	 �2 �!22���	� ��� �����	�� 1!���
��� )���� �2 � �	� ���	 �	��� ��� ��	)���!�	 �2 ��������
�����	�� 6��$$�� ���!	$ � ��	7 �� �!;�!� 5�� ����� 2���
�;� 6.7�
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)����$�� 6�!�� ��� ����!	!	$ )����$�� �!	$ B9��7 ���
����	 !	 �!$� C� ��� �����	� )����� ��� �1
!����1 !	 ���
�, ��	$� �	�� �� �9
����� 2��� 4��=� ���� ���1 ���

��
���!�	�� �� ��� )����$�� ����)��� ������ �2 ��� �!	3!	$
��$����� �2 ��� �!22���	� �!�� �2 ��� �)����� �!���!�� ���

������ )� ���������!)� 
���� �2 ������!��� �����	�� )����� >, 2�� >" �	� >8
��� ��� �� +��  � ��� ���� ��2�� �� ��� ���		�� 	�����3 �2 �!$� � B���� �!��
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���� �22�� �� 
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�	�!	$ ������!��� �����	�� 2�� ��� ���		�� 	�����3 �2 �!$� � B����
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���
���� �22�� �� 
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)����$�� ��;�!��� �� 
������ ?��� �����	� !	 � 
���!�����
���		�� ����!�	 ��� ������!	�� 1 � ���
��9 2�	��!�	 �2
��� ���!���	�� �	� )����$� )������ ,	 �9��
�� �2 ��� �!	���
��������!�	 �����	 ��� ������!��� �����	� �	� �!;�!� 5��
����� !	 ������
�	�!	$ ���		�� ����!�	� !� ����	 !	 �!$� ��
,

�1!	$ ��!� �1
� �2 !	2�����!�	� ���� * �!��� ��� ������
����� )����$� ����!	$� ��;�!��� �� ���!�)� 5�� �	� !	H���!�	
����� �!�� ��� 5�� ����� 2�� ��� �1���� ����	 !	 �!$� ��

���� ����!�� �2 ��!� �	�!�� 
�������� ��� �����!�� !	 (�2� -*
����� !� !� ����	������� ���� ���������	� �2 ��� �!;�!�
��	����!)!�1 � � ?��� 
���	�!�� � �	� ��� ���		�� �!��	�!�	�
�	���� ��� ������� ��������!�	 �2 ��� )����$�� 	����� ��
���!�)� �	1 ��� �2 5�� ������

��)���� 	���� �2 ����!�	 ���� ��!� �	��1�!� ������ �
��
���!���� �!����1� ��� ����1 �����!�� !	 (�2� -* !	�!�����
���� �������!�	 �2 ��� �)����� ������!��� �����	� 2�� ���2���
��	����!�	 ���	$ ��� ���		�� ����� !� �����!��� ��;�!����
��� ���2��� ��	����!�	 ��1 ����� 	�	�	�$�!$!�� ���	
��� ��3 ��	����!)!�1 �2 ��� �!;�!� !� �����!)��1 ����
����	��1� ��� �	��1�!� $!)�	 ���� �

�!�� �� ��� �!����!�	
���	 ��� �!;�!� ��	����!)!�1 �	� ��� ?��� 
���	�!�� ���
�	!2��� �����$���� ��� ���		�� 	�����3� L!9!	$ �2 ���$�	�
�����!�	� ��!�� 
������ �!22���	� ��	����!)!�!�� �	�@��
��!�� ��)� �!22���	� ?��� 
���	�!��� �!�� ��� ���		�� �����

�!�� 
������ ��)!	$ ���		�� ?�	�� �!�� 	�	��	!2���

��
���!�� �	� �4� ��!�!�!��� 4)!����1� ��!� �!����!�	
��;�!��� � ��	�!�����1 ���� ���
��9 �	��1�!�� :����1� ���
�!�
�!B�� �	��1�!� 
����	��� ����� ������$� ��2B�!�	� ��
!��������� ��� ��!	 2������� �2 5�� ��	����� ��3�� 	� �����	�
�2 5�� !	���!�� �22���� �	� ��� 	�	��	!2���!�1 �2 ��� �����
��!��� B��� ����	� ���		�� H�	��!�	�� ,� � �!������
!� ��)���
��� �22���� ����� ���
��9 ����� 5�� 
�����	� !	 �����
��$!�	�� ��!�� ��	 � �������� ��!	$ ��
�!��!����� 5�!�
�1	��!�� ��2������ �	�������� ������� ��� ��2����� �� (�2��
-+>-� 2�� 
��$���� !	 ��!� B����

�	 ���!�!�	 �� !�� ��� !	 ������!	!	$ ��� ��;�!��� ��������
3!	��!� 5�� ��	���� 
���������� ��� ����!	�� !	 �!�� ��	!����
!	$ �2 ������!��� �����	�� !	 ���		�� 	�����3� 
��)!���
���2�� �!�$	���!� !	2�����!�	 �	 �!��� ������� �
����!�	�
�!����1� ��� ����)��!�	 �2 � �����	� ���

!	$ �� ?��� !	 �
��	�� �2 ��� ���		�� 	�����3 ��	 !	�!���� ��� 
��!�!�	 �2 �
���		�� ���3�$�� ����	��1� �

�!���!�	 �2 �	 �9����!)�
)����$� ������ � ���		�� 	�����3 ��	 ����� �����������!���
�����!�	� ���� ��1 ������ !	 ��� ������� �2 $�� �����
�!$� *� ����� �	 �9��
�� �2 � �����	� ����� ����� � ���!��
�2 ��$���� A�
!3��= ���� ������ 1 ��� �!����!�	 �	�
����;��	� �!������!�	 �2 �1���$�	 ���� �� �	 ����������
��������1�!� ������ !	 �!��� �������� ���	 ��� �)�����
)����$� �!22���	�� �����	 �	 ��������� 
�!� 6�1
!����1
��)���� ��	����  7 !� ��2B�!�	��1 �!$� �� ��� ������!���
���!���	�� �2 ��� ����)�	� ���		�� ����!�	 !� ��� ���� ����
��� )����$� ���	$� ������ �	 ���������@�����!�	 !	���2���
6�1
!����1 � 2����!�	 �2 �  7 �9����� ��� ����9 
���	�!��
��;�!��� 2�� �	 �����������!��� �����!�	� :����1� ���	
����!��� �����!�	� ����� !	 � �!��� ������� �	� ������ !	 �
���	$� �2 ��	����!)!�1 �2 ��� �����!�	� !	 �!�� �����	� ��	!�
���!	$ ��	� !	 
�!	�!
��� � �9
��!��� �� ��	!��� ��� �9��	� �2
� �����!�	 �!��!	 ��� ���		�� 	�����3� �!$� ** ����� ���
���	$� !	 ��	����!)!�1 ����)�� ���!	$ ��� 
��$���� �2 �
#!��!$ �����!�	� ����� �����	�� !� ���� �� ��� ���)�	��

+��� ��  ����$��� ������!��� �����	��� )�������!� 5�� ����� �	� �!;�!� �4�
)����!�!�� 2�� 5�� �	� !	H���!�	 ����� !	 ��� �1���� �2 �!$� �

 ��!��� ���� ���� 6,��7 �	H��� ���� 6"�87
>, 6 7 ++0 *
>" 6 7 *�� C�
>8 6 7 *�� �/C
;, 6�,7 *0 6���7 � 6���7
;" 6�,7 � 6���7 C 6���7
;8 6�,7 � 6���7 �C 6���7
�, 6	� �

�*7 ��-0 �
�" 6	� �

�*7 � ��+-
�8 6	� �

�*7 � ���+-
���2 6,7 6�� �

�*7 ���0 �
���2 6"7 6�� �

�*7 � ���/
���2 687 6�� �

�*7 � ����/

������ �,� ������!��� �����	� ���!����!�	� ��� �� ��������1�!� 2�����!�	 �	�
����;��	� �!������!�	 �2 $�� ���� !	 ��� �!��� ������� ���		�� 	�����3
�2 �!$� ��

������ ��� 8�	����!)!�1 ���	$�� ��!�� ����� ���!	$ ��� #!��!	$ �����!�	
�2 +�	!���
��	1�
��	!�� ���!�� 6D��"7 60 �L7� ���!�� �����9!��
��� 6.�0 �L7 �	� �� *0� �	� /� �L ����1� -�2���1��	?�����1��
6L�"7 !	 �����	�� �� +��8� ��� �����!�	 
������� )!� ��� 2��� ��)���!��
2�����!�	 �2 ��� 1�!� ��!�� ���	 �!���� �����
���� �� ������ �� 2��� �	
������ �!�� L�"� ��� ���!?�	��� �!	� ����� ��� ��	����!)!�1 �2 ���
���$�	�� !	 ��� ���	�� �2 ��� 2�����!�	 �2 ��� 1�!� !	������!����
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���� -������ ��.��� ��� ������� �������� �� � �����
�������

�9��
� 2�� �	!��������� �����!�	�� ��� �� ���� ������	�
�����!�	� ���� � �!9�� �� � 	�������1 B��� ���
 �� ���!�)�
!	$ �����!�	� ��� ��!	 ����� �2 �!9!	$ ��� 
���!�� ��!��
��)� )��1 �!22���	� ���������!��!��� ��� B��� ����� ��	����
A�!22��!)� �!9!	$=� !� !���������� !	 �!$� *+ ��!�� ����� ���
/� ��	��	����!�	 
��B�� ������!	$ ���	 � �1� �����!�	
6�	���!	$ 2��� ��� ��2� ���		��7 !� ���!	�� �!�� ���)�	�
�	���!	$ 2��� ��� �!$�����	� ���		�� �2 � ��H�	��!�	� ���
��� �����!�	� 5�� ��$����� ���	 ��� ��$ �2 ��� �� ���
�1
!��� �4� ��	�!�!�	�� ��� �!	��� 5�!� )����!�!�� ��� �2
��� ����� �2 ��*>* �� ��*� ��� (�1	���� 	���� ��
6�;��� ������ @� ������� !� ��� �22���!)� ���		�� �!�������
� !� ��� )����!�1� � !� ��� �!;�!� ��	�!�1 �	� � !� ��� �!;�!�
)!����!�17 2�� ���� 5�� !� �*�� ���� ���� ��� ���	�!�!�	
2��� ���!	�� �� ������	� 5�� ��!�� ������ �� �� )����� �2
����	� +0��� ��� ���5��!	$ ���$�	� ������� �����2���
����!	 ���!� ���!	�� 5�� 
�����	 �	� �!9!	$ ������ �	�1
1 !	�����!22��!�	� ���� ��� /� ��	��	����!�	 
��� �2 ���
�1�� !� ��	 � ���	 ���� �	�1 � ����� �9��	� �2 �!22��!�	��
�!9!	$ ������ !	 ��� �!�� �����	 ��� B��� ��	���� �2 ���
�����!�	 �������= 6�� ��� ��
 ��$� �2 ��� !��$�7 5�� �� �

��!�!�	 ������
�	�!	$ �� ��� ����� ��$� �2 ��� !��$�� ���
��� 5�� )����!�1 ���� 6��-C �� ��*7� ��!� �!�� ������
�	��
�� �

��9!�����1 + �� �	 ��!� ���� �2 �!9!	$� �� )��1 ��	$
�!��� ��� ���$�	� ��	��	����!�	� ��� �!����� 1 � ���!� �;���
�� ��� ���!� �2 ��� 5�� ����� �2 ��� !	���!	$ �������� ,
����� ���!���� �2 ��� �!�� ��;�!��� 2�� �!9!	$ ������ ���
���
���� �!��� �2 ��� ���		�� 6�7 !� $!)�	 1 ��00+@��
����� � !� ��� �!22��!�	 ���2B�!�	� �2 ��� ������ �
��!���

��� � �1
!��� ���		�� �!��� �2 *�� �� �	� � )���� �2 � �2
0�*��*� �+ ��*� ��!� �!�� !� �2 ��� ����� �2 *�� �� �� ��	 �
���	 ���� ��� �!9!	$ �2 ��� ������� 5��!	$ �� * �� ��* !	 �
�1
!��� ���		�� ��	$�� �2 � 2�� �� �!�� 	������1 � )��1
!	���
����� ���$!	$ �2 ��� �!22��!)� �����	!	$ �2 ���
��	��	����!�	 $���!�	� 
��
�	�!����� �� ��� ���!	���5��!	$
������� �� �!22���	� �!��� ��� !	 2��� ��	 ���� �� ������!	�
�!22��!�	 ���2B�!�	�� �2 ����!	$ �� 5�������	� �
��!���-.

8��
���� �!9!	$ 1 �!22��!�	 ��	 � ���!�)�� 1 ��!	$
���� 6�� ���

��7 5�� �� !	������ ��� ��	���� �!��� ,�����
	��!)��1� 2����� 5�� �� ������� ���		�� ����������!�	��
�!��!	 ��	$ ���		��� 6$�	�����1 2����� �� ������ �)�����
��)!�� �!?�7� �!�� ���!�)� ��� ���� ������� ���$�	� ���!$	�
�2 	�����3� ��	��!	!	$ �������� �2 ��H�	��!�	� ��		�����
1 ��!���1 ��	$� �������� ���		��� ��)� ��	 ���� ��

������ ���
�� ���		��� $!)!	$ �!�����	�����1 � ���!�� �2
2���1��!9�� �!���!�	� �2 ��� ��!$!	�� !	
�� �����!�	�-C�-� ��!�
�1
� �2 ����!
�� ���
�� !� ���2�� ���	 ��!	$ � �!��� �������
�� ������!	�� 2�� �9��
��� � ���!���!�	 
��� �2 ��������
�!$	�� )����� ��� ��	��	����!�	 �2 �	 �	��1�� �
��!��� ���
2��� ���� ��� ���!	�� 5��� �2 ���$�	� ������� !	�����!22���
�	�1 �����!)��1 �����1 ��� ��	 �9
��!��� 1 ��!	$ ����!�
����1������!)� ���$�	� �������� (����!�	� �����	 �

��
�!�
��� ���$�	�� �� ��� !	���2��� �����	 ���!	��� ���5��!	$
������� �2 ��� ������	�� ��)� ��	 ����� 2�� �9��
��� ��
��
��!� )��1 ��!	 �!	�� �2 ������ 6
��� � ��	$� �2 �����
�
��!��7 �� ��� ���		�� ��� �� � 	�)�� ���	� �2 2��!���!	$
A	�	��!���= !	 �
��!B�� �����!�	��0�

��� ����	� ���� �2 �!9!	$� A���$ !	H���!�	=� !� !����������
!	 �!$� �� K�!	$ � 
�!� �2 �22��� ��H�	��!�	� �	� ���

������ ��� /� 
��� �2 �1� ��	��	����!�	 )����� 
��!�!�	 �!��!	 � ��H�	��!�	� ��� �1� �����!�	 �	���� 2��� ��� ��2� �	� !� ���!	�� �!�� ���)�	� �	���!	$ 2���
��� �!$��� ��� 5�� )����!�1 ���	 ��� A��$= �2 ��� � !� ��-C �� ��*� ����!��� �	��1�!� �2 ��� �!22��!�	�� �����	!	$ �2 ��� �1�����)�	� !	���2��� ���	 �� ���
���!	�� ������� ��)� ���	 ��� ���		�� 6������
�	�!	$ �� �!22���	� ����� �2��� ��	����7 1!���� ��� �!22��!�	 ���2B�!�	� �2 ��� �1� 6*���*��*� �+ ��* !	 ��!�
�9��
��7�
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A5���!	H����5��= ��;��	�� �����!�� ����!��� � ���$ �2 �	�
���$�	� !� 
������� �!��!	 � 5��!	$ ������ �2 � ����	�
���$�	�� #� !��������� ��� ��!	 2������� �2 ��!� ���� 1
��	�!���!	$ ��� ���)!��� �2 � ���$ �2 � ���$�	� & !	 �
5��!	$ ������ �2 � ���$�	� % ����� & �	� % ��	 ����!�
����1 ����� �� $!)� 
������ '� #� ��	�!��� ��� �!����!�	
����� ��� ������	� ��	��	����!�	� �	� ��� �����!�	 ����
��	���	� ��� ���� ���� ����!��� �����!�	 ������ 2���� !���
)!������1 !����!����1 ��� ���$�	�� ��� ������1 �!9�� !	 �

���!����� ���		�� ����!�	� K�!	$ ��� �!�����!�	 
��������
�����!�� !	 (�2� /�� �� ��� ��� �� ��������� ��� ��	��	����
�!�	� �2 ��� ��� �
��!�� &� % �	� ' �� � 2�	��!�	 �2 ���
�!���	�� 9 ���	$ ��� 5�� ���		�� ��	$�� 2�� �!22���	�
�!��� �2��� ��� 
������!�	 �2 ��� !	!�!�� �����	$���� ���$ �2
& !	 ��� ������ �2 %� �	
�� )��!���� !	����� ��� !	!�!��
��	��	����!�	� �2 &� % �	� '� ��� 2������ �	� ��)���� ����
��	���	�� 2�� ��� �����!�	 &�%�'� ��� �4� )����!�1 �	�
��� �������
�����!� )����!�!�� �2 &� % �	� '� ��� B��� �!���
���!�	 6�!$� */7 ����� � ���!�� �2 �!�� �	�
����� 2�� ���
�!����!�	 !	 ��!�� ��� �������
�����!� )����!�!�� �2 &� %
�	� ' ��� ��� ?��� 6������
�	�!	$ �� ����� �
��!�� ���
�!	$ �	����$��7� �	 ��!� ����� ��� �
��!�� ��)� �!��
)����!�!�� �;��� �� ���2 �	� �!9!	$ 6�	� ��	�� �����!�	7
������ �	�1 1 !	�����!22��!�	 �� ��� ����!	$ �	� ���!�!	$
��$�� �2 ��� ���$ �2 &� ��� ��� �!�� ���$ �	� ��� �����
�!�� ����	 !	 �!$� **� ��� !	�����!22��!�	 �	� �����2���

��� �9��	� �2 ��� �����!�	� !� ���� ��� �!�� 2�� �!22��!�	��
�!9!	$ ������ ��� ���$ 6�

��9!�����1 0 0�

+@�� ����� 0� !�
��� ���$ �!���7 ��	 � ���� ������� 1 �����!	$ ��� ���$
�!���� �	 ����� �� ��9!�!�� ��� ��	)���!�	 �� 
�������� �
���!�� �2 ��	1 	����� ���$� !� �����2��� ���� �22���!)� ���	
� �!	$��� ���� ���$� ���$�	� ������� �� ���!�)� )��1
	����� ���$ �!���� ��)� ��	 �����!���--

�	 ��� ����	� �!�����!�	 ����	 !	 �!$� */� �
� 2�� & !� ��� ��
?���� �� �
� 2�� % �	� ' ��� ��� �� 
��!�!)� )����� ������
�
�	�!	$ �� ����� �
��!�� ���!	$ 
��!�!)� ����$��� % 	��
��)�� �����1 �!�� � )����!�1 ���2 ������� & ��)�� 2�����
�!�� � )����!�1 ���2��
�� �	 ��!� �!����!�	� ��� ���$ �2 &
������ �!�
����� �����!)� �� ��� ��	��	����!�	 A$�
= !	 %
�	� �!9!	$ �2 & �	� % �����2��� ������ �����!)��1 ��
!��1 ��
� ������ �2 ��� �!22���	� �������
�����!� ��!�!�!�� �2 ��� ���
�
��!�� �	� ������� !	 �����!�	 �� ��� ���!�!	$ ��$� �2 ��� ���$
�2 &� �� ������ � 	���� ����� !	 ��	����� �� ��� �!22��!)�
�!9!	$ ���� �!������� ��)�� �!9!	$ 1 �!22���	�!��
�������
�����!� ��!�!�!�� ���� 	�� ������ !	 �!���!�	 �2 ���
�����!��� ���$�	� ��	��	����!�	�� �!$� *- ����� ��� �9
��!�
��	��� ����!���!�	 �2 ��!� �1
� �2 �!9!	$ �	� �����!�	� , ���$
�2 ��� �	����$�� �!$�	�� 
1�!�!	���?���!����1��	!�!	�
6�,�,7� !� !	H����� !	�� � 5��!	$ ������ �2 D!+� !�	��
,� ���	 !	 ��� �������� ��	��	����!�	 
��B��� ���	$ ���
���		�� ��	$��� 2��� ���
��9��!�	 �� 2��� ��� D!�,�,+�

������ ��� �!�� �	�
����� �� �� *� �	� +� � �2 ��� ��	��	����!�	 
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���� ������
�	� �� ���2����0 �� ��* �!�� �
� �2 ���
�
��!���� 6�!22��!)� �!9!	$ �	�17� ��� �!$�����	� 
���� ������
�	� �� ���2����0 �� ��* �	� �
� 6&7��� �
� 6%7���.� �� ��* �	� �
� 6'7���+/ �� ��*� �	
��!� ����� �!9!	$ �2 & �	� % ������ ��!	�1 �� � ������ �2 ��� �!22���	� �������
�����!� )����!�!���
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��9 ������ �� ��� ���!�!	$ ��$� �2 ��� �,�, ���$ �	�
��	 � �������2���1 �������� ��!	$ ��� 3!	��!� ���� 
����
������ �������� 2�� ��� 2������ 6���
��9��!�	7 �	�
��)���� 6���
��9 �!����!��!�	7 �����!�	��0*

������!	$ ��� �!�� ��;��	�� ����	 !	 �!$� *-� !� !� 
���!��
�� ��)���� ��� 5�� ��!�� ��)�� ��� D!�,�,+� ���
��9

������ 
��3 ��3 !	�� ��� ��	��	����!�	 $�
 �2 D!+�� �!	��
��� ���
��9 2�����!�	 �����!�	 !� ��)���!��� ��� ���
��9
�!����!���� )!� ��� ��3 �����!�	 !	�� �,�, �	� D!+�� ��!�
�9��
��� ��!	$ � �����	!��!����1 )��1 �!�
�� �����!�	�
����	������� ��� �1
� �2 �
��!�� �	� ���
���� ��	���� �2
����!��� �����!�	� ���� !� ���!�)��� !	 �!��� ���������

�� 	�� !	 ��3 �����!�	 �������� ����� ��� ��	��	����!�	�
��� �	!2���� ��� 
���	�!�� 2�� ����!��� ��	���� �2 ���
��9�
����!���
 �����!�	� !� �	�1 H��� �$!		!	$ �� � �9
������ ,�
�!������� ����� ��� ��
!�!��� ������� 2�� � �!�� ��	$� �2
�����!�	� 
��2����� !	 �!��� �������� !	�!���� ���� )����$�
��	���� ��	 ����� ��� 
������ 1!���� �	� ������!)!�1 2�� ��	1
�����!�	�� ��� 2��� ����!���!�	 �	� �
�!�!���!�	 �2 �����
�22���� �!�� ��;�!�� ����!��� �	��1�!� ��!	$ ��� 
�!	�!
���
�����!�� ��)�� �	 ���!�!�	 �� �

�!���!�	� !	)��)!	$ ���
��	���� �2 �1	����!� �����!�	�� �!��� �������� ���� ��)�

���	�!�� �� A����!��� !	2�����!�	 ��!
�=� 8��
��!��	 �2
�9
��!��	��� ��	��	����!�	 
��B�� ���� 2�� �����!�	� 2��
��!�� �!22��!�	 ���2B�!�	��� �������
�����!� ��!�!�!�� �	�
���� ��	���	�� ��� �	3	��	 �!�� �!�����!�	� ���� �� �����
����	 !	 �!$�� */ �	� *- ������ �	��� ��� ������!	��!�	 �2
��� ����)�	� 
�1�!������!��� 
��
���!��� L!��� ��������
�����2��� 
���	�!���1 �22�� � �!$	!B��	� 	�� ���� !	 ���
������!�� �2 ��� �1	����!� �	� 
�1�!��� ����!����

 � -�������	 ��������� �� ����� �������	

 ��� /�0��� ���	� ��������	

���!�!�L����)! �� ���0+ ��)� ����	������� ��� �1	����!� �2
�!�?� �1�� �!��!	 � �!��� �������� ��� ������� ��)� �������
-�	!����	?�	��!�?�	!�� �����5��������� � �!�� !�!�
�!����1��	!�!	� � !	 � �!��� ������� 2��!����� 2��� $�����
�� $!)� ��� ��� �!�?� ���
��	� � 6������ *7� ��� ���$�	��
���� ��!�!��� !	 ��� ������� ��!	$ �4� !	 �!���� � 
���!�
6�����	��7 �� �	 �
���!� 6�����	!��!��7 ���)�	�� �� $!)�
��	)���!�	� �2 /. �	� ++J� ���
���!)��1�

D!����!�	 �����!�	� !	 ��$�	!� �1	����!� ��� 
�������!�
������ �2 ��� ��� �2 �9���� ;��	�!�!�� �2 ��	��	������ 	!��!�
�	� ���
���!� ��!��� ��� �����!�	� ��� �9������1 �9������!�
�	� !� !� ��	�� �!2B���� �� ��	���� ��� ���
������� �2 ����
�����!�	� ���	 
��2����� �	 � ���$� ������ ,� � �������
�!��� �������� ��)� � ��	�!������ �������!�	 2�� ����� �����
�!�	� ������ ��� ������� �	���� �9�����	� ���
�������
��	���� �2 ��� �����!�	�

��3� �� ���0/ ��)� ��
����� ��� 	!����!�	 �2 �	?�	�  !	 �

������ � � 8��
��!��	 �2 �!������� 6���!� �!	��7 �	� �������� 6����

�!	��7 ��	��	����!	$ 
��B��� 2�� ��� �����!�	 �����	 D!+� !�	� 6���37
�	� � ���$ �2 ��� �!$�	� �,�, 6���7 �� 2��� ��� D!�,�,+� ���
��9 6���7
�� ��� ��!�!	$ ��$� �2 ��� �,�, ���$� 8�	��	����!�	 
��B��� �2 ��� ��������
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��9 �
��!�� ���� ������!	�� 1 �	��1�!� �2 �!$!�!��� )!���
!��$��� ��� ��	��	����!�	 
��B��� ������
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����!�!���� $���� �!��� �������� ��� �	?�	� ��� ��!�!���
1 ������������!� 5�� �� � �!��������!�	 ��!	$ ���
���2����	�� ���!�� �����1� ���
���� 6���7� ��� 	!���	!��
!�	�� ��!�� ���� 
������� !	 �!�� 1 �!9!	$ ���
���!� �	�
	!��!� ��!��� �	�����	� �������
�����!��!	����� ��!�!�1� ,
������)�	�� ���	�*���� ��� ���� �� �	��	�� ��� ����!�!�1 �2
��� �	?�	� !	 ��� �;����� �1����� ��� ������� ��
��� ����
��	�	!����!�	 ������ !	 �0J ��	)���!�	 �� $!)� 	!����
�	?�	� & 6������ +7 �	� ���� �

��9!�����1 CJ �2 *�/�
�!	!����	?�	� ' �	� 0J �2 *�/�0���!	!����	?�	� ( ����
���!	��� ��
����	��1� ��3� ����	������� ���� !� !� 
���!��
�� ��!�!�� � 	�	�
���� �!;�!�� ���� �� �	?�	�� ��!	$ �4�
1 �!����)!	$ !� !	 � �!��������!�	�

"��	� �	� (������0- ��)� ���� !	)���!$���� ��� 	!����!�	 �2
�	?�	� �	� �����	� !	 � �!��� �������� ���1 ��)� ��
�����
���� ��� ��	)���!�	 ��� � �!	��� �����!�	��!
 �!�� ���
����
����� L��� !	������!	$�1� ���1 ��)� ����	������� ���� ���
��	)���!�	 ��	 � ��	�!�����1 !	������� 1 �����!	$ ���
�!��	�!�	� �2 ��� �!��� ������� ���		���� ���1 2��	� ����
���)!	$ ��� ��
!����1 �!������ 2��� +0� �� */� �� ����
���	 ������ ��� ���� �2 	!����!�	� ��� 5�� ����� ���� ���!�
�!�	���1 ������!	�� �� � ��!�!���� �!�� 2����� 5�� �����
$!)!	$ �!$��� ��	)���!�	�� ��� ������� 
�������� ���� ���
!	������� 5��� 
������� !	������� �!9!	$ �!��!	 ���
���		����

�3����	 �	� ������3��� ��)� ��
����� ��� �

�!���!�	 �2
�!��� ��������� 
��
���� 2��� ����!�!���� $����� 2�� ���
#!��!$ �����!�	�00�0� ��� ������� ���� ��� �!��� ������� ��

��
��� ��� ��� �	� ������	!�����!��	� ������ ) �	� * ��!	$
��� #!��!$ �����!�	 6������ /7� , 	���� �2 2������� ����
�� ���!��!�����1 �	� ����������!���1 ���� !	)���!$�����
#��	 + �;�!)� �2 ��� �����1�� �, �� ��� 
���
��	!�� ����
�� ���� ���� !	 ��� �����!�	� � ��	)���!�	 �2 .�J ���
���!�)��� ��� �!��� ������� ����	������� �	 !	������ !	
�����!�	 �2B�!�	�1 �2 *�J �)�� ��� ����!�!�	�� ����
�1	����!�� ��� �����!�	 ���!��!�����1 ��� ����;��	��1
������� �� *F*� �� ��!	$ � ��	�!	���� 5�� �2 ���$�	��� ��
��)�� ��� ��	)���!�	 ��� 
��� 6/�J7� ��� ��	)���!�	 ���
!	������� �� 0�J ��!	$ �	 !	H���!�	 ����	!;��� ����� ���$�
�2 ��� 
���
��	!�� ���� �� ���� !	H����� !	�� � ��	�!	����
5�� �2 ��� �����1�� �,�

��� �������� ��� 2������ �9��	��� �� !	)���!$��� ��� �������
����!���1 �2 ��� �����!�	� ��� ���!� �2 !������ ) �	� * ���
��	������� 1 �����!	$ ��� �

�!�� )����$�� �� ��� ���$�	�

�����)�!�� �!��!	 ��� ��)!��� ��� )��!��!�	 !	 ��� �9���	��
)����$� ����;��	��1 ������� ��� �����!)� ���$�	� ��	��	����
�!�	 �!��!	 ��� ��)!��� 
�����!	$ ?@� ���!�� !	 ��� ��$!�	
��0.>0�+*� �	 ���
��!��	� ��� ������� ��
��� ����� ���	 �
����!�!�	�� ���� �1	����!� ��� 
��2����� ���� �	 ��� ����
�����!�	 �!��� ��	��	����!�	� ���)�	� �	� ���!��!�����1� �
?@� ���!� �2 �

��9!�����1 /F* ��� ����)��� ��!�
����	������� ���� �!$	!B��	� ��	���� ��� 
���!�� !	 �
�!��� ������� ���
���� �!�� ���� �����!�	��

��	�� �	� ������3���0. ��)� ����	��1 ��
����� ��� 
��
����
�!�	 �2 �	��!	�� !	 � �!��� �������� �	��!	�� ��� ����!�!�	�
���1 
��
���� �	��� ���	 �	� ����3 ��	�!�!�	�� ����� ���
3���	� �	� ����	���1 ��!	� ��� ������ �� ��5�9 !	 �����	��
����� ��	�!�!�	� ����)� ��� ����� 2��� ��� �����!�	 ��

������ ��� �;�!�!�!�����
�	��	� �	��!	�� K�!	$ ���
�!��� �������� �1�����9�	�	� �� ��� ������� �!�� 
1����!�
�!	� �� ��!	$ �����	�� �� ��� ���)�	�� !	 ��� 
����	�� �2
�!�1�����91������!!�!�� 6�887� �� 2��� ��� �	��!	� � 
!	 -+J ��	)���!�	 �� ���� ���
������� 6������ -7� ���
������� 
�������� ���� ��� �88 ������ �!�� ��� ����� ���� !�

������� !	 ��� �����!�	�

#!��� �� ���0C ��)� ����	��1 ����	������� ��� ��� �2 �!�1�
�	�� ������ !	 ��� ����� �����!�	 �!��!	 � �!��� ��������
M��	�!���!)� ��	)���!�	 �2 ��� �!�1� �	�� ������ ��
���1���913���	�� ��� ����)�� !	 +� �!	 ���
���� ��
����!�!�	�� ���� �1������ ����� ;��	�!���!)� 1!���� ����
�	�1 ���!	�� ���	 �9��	��� �����!�	 �!��� �2 �
 �� +- �
���� ��
��1��� 4	� �9��
�� !	)��)�� ��� �������	� �2 ���
�L� �	�� ����� �& �!�� ����������1�����	!�� 5���!��
6�",�7 �� $�	����� ��� ����������1�����	!�� �	����� �'
!	 �!��� 2������� 1 ��	��	���!�	 �!�� �������	?�����
�1�� �( �� $!)� ��� ���1���913���	� �) !	 *��J
��	)���!�	 6������ 07�

1����� ��
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#!��� �� ���0� ��)� ��
����� ��� 
��
����!�	 �2 ��� �	������
2��� � ���!�� �2 *�/��!3���	�� ��!	$ �	 ��$�	!� ���� �	�
���!� ����;��	� �����!�	 �!�� � )��!��1 �2 L!�����
����
���� ���� �� �* �� �22��� *�-����!�!�	 
������� �!��!	
� �!��� ������� 6������ �7�

#��	 ��!	$ � ��	�!	���� 5�� �2 ��� ���$�	�� �* �	� �,�
*0J ��	)���!�	 �� ��� ������ �� ��� ����)��� ���
����
�!�� 0�J���	 ��� �!3���	� ����� ������� �!�� �* 2���!	$
��� L!����� ������ ��� ��� �������� ����)��� ����	�������
�	��	����	�� !	 ��	)���!�	� �����$� ��� �

�!���!�	 �2 ���
���

�� 5�� ����	!;��� ��!� 
�������� !	)��)�� ��� ��!�
�!���!�	 �2 ���$�	�� �����$� ��� ��)!�� 2�� � ���!$	����

��!�� �2 �!��� ��!	$ �	 �

�!�� B���� �	� ��� 5�� ���
����;��	��1 
����� 1 ��� ����)�� �2 ��� �

�!�� B����

�!�� �� ����

�1!	$ ��� B���� K�!	$ ��� ��$!�� �2 +�0 � �	
�	� 0 � �22� ��� ��	)���!�	 �� ��� 
������ �� ��� !�
��)��
�� /-J� ��!�� ��	$���	!	$ ��� ���

�� 5�� 
��!�� �� *� ��
�������� !	 � 2������ !	������ �� *��J� ��!� ��� ���
���� ��
��� 
��
����!�	 �2 ��� !	 ��!�� ��� ��$!�� �2 +�0 � �	 �	� 0 �
�22 �������� !	 �	 !	������ !	 ��	)���!�	 �� �0J� ��!�
����	������� ���� ��� �	����� �2 +�-�
�	��	��!�	� �� ���

���� �����!)� ���	 ��� ������
�	�!	$ �	����� �2 �	?�1�
�����	� �,� ��� ������� 
��
��� ���� ��� ����)�� !	������
!	 ��	)���!�	� ���	 ��!	$ ��� ����	!;�� �2 ���

�� 5���
��� ��� �� �	 �22���!)� !	������ !	 ���!��	�� �!�� �!��!	 ���
��)!�� �	� ��	�� �	 !	������ !	 ��� �!22��!)� �!9!	$ �2 ���
���$�	� ��������

��	��	 �� ����� ��)� ��
����� � 
��������!��� �����!�	
�!��!	 � �!��� �������� ��� ������� ��� 2��!����� 1 �	��
!	$ � 
�����	�� �!�!��	 ��2�� �� � ;����? ��2��� ��� ��)�	�
��$� �2 ��!� 2��!���!�	 ����	!;�� �!	$ ���� ��� ;����?
�������� ������ �����!�	 �	� ������!�	 ��!	$ K �!$�� �2
����� ��)���	$��� ���	 
���!���� 1 �1��9 ����������

��� ������� !	)���!$���� ��� 
!	���� 2�����!�	 �����!�	 �2
�	?�
��	�	� � !	 
��
�	�+��� 6������ .7� ��� �����!�	
!� 3	��	 �� 2����� � ���!��� �����!�	 
�����1��* �	� !� !�
��
����� ���� ��� ��	$�� ��� ���!��	�� �!�� �2 ��� �����!�	�
��� $������ ��� ��	)���!�	 �� �	?�
!	���� �&� ��� �������
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�?� �1� �( 6������ C7� �1�!	$� 
��
� ���� ���� ��
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�� �2
� ����!���
 �1	����!� !	 � �!��� ������� ����� ���1 ��)�
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 �� �/J
�2 ��� �!
�
�!�� �, ��� ���!	�� ��!	$ ��� ���

�� 5��
����	!;���

��� ������� ���� ����	������� ���� ��� �!
�
�!�� ����� �

��
���� 2��� 
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��� ������� ��
��� ���� �1���$�	��!�	 �2 �	?�	� �� �1����
��9�	� & ��� �����
�!���� ��!	$ � �!��� ������� �1����
��	�!��!	$ �2 � �����	!��@?!	� �����1��� ��!�� ��� !	���
��
����� !	�� ��� �!��� ������� ��!	$ ��� ���� ���������$1�
�� ��� ��	)���!�	� ���� ��
����� �� � ��� 6�� *�J7� �!�� �
��9!��� ������!)!�1 �2 /�J�

��� ��� �2 �����	��� 5���!	� !	 ��$�	!� �1	����!� !�

�������!� �� � ������ �2 ��� �!2B����!�� �����!���� �!��
��� ��2� ��	��!	$ �2 $������ 5���!	��.*�.+ �	 ���!�!�	�
5���!	��!�	 �����!�	� ��� $�	�����1 �9������1 �9������!�
�	� !� !� �!2B���� �� ��	���� ��� ���
������� �2 ���� �����!�	�
���	 
��2����� �	 � ���$� ������ L!��� �������� ��)� �
��	�!������ �������!�	 2�� �!���� 5���!	��!�	 
��������
������ ����� !� �	�1 � ����� ����	� �2 5���!	� !	 ���
������� �� �	1 $!)�	 �!��� ��� �!��� ������� �	����

1����� �&�

1����� �'�

1����� �(�

1����� �)�
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�9�����	� ���
������� ��	���� �2 ��� �����!�	 �� ���� �� �	
�

����	!�1 2�� ����� �
� 1 ��� �!�����	���� ��� �2 ��	1
���� ���������

8������ �	� �
!	3./�.- ��)� ��
����� ��� ��� �2 �!���
�������� 2�� ��� 5���!	��!�	 �	� 
��5���!	��!�	 �2 ��$�	!�
���
��	�� ��!	$ �����	��� 5���!	�� , 	!�3�� �� ��

��
�!��� ������� ��� ���� 2�� ��� !	)���!$��!�	 �	� ��� �!;�!�
������	�� �	� ���)�	�� ���� !	�������� !	�� ��� �����!�	
������ )!� � �1�!	$� ��!	$ � �1�!	$��
��
� �����!	�� !	
� 	!���$�	 ����!�� $��� ��� !	�������� 2��� � �1�!	��� ��!	$
� �����5�� ��	�������� ��� �!;�!��$�� �!9!	$ 
�������� )!�
A�1�!	��!��� 5��=� ����� ��� �!;�!� 2���� �	 ����� �1�!	���
����!	$ ��� ������� ���2��� �!�� ��� $�� 5��!	$ �����$� ���
��	���� ��!� 5�� ��$!�� ��� �	������ �	�B�� !	 ���� !�

��)!��� )��1 ���$� ���2�������)����� ���!�� 2�� ��� �!;�!�

����� 
�����!	$ � )��1 �2B�!�	� �����!�	 �)�� � �����
�!���	��� ��� 
������� ���� ���

�� !	 � ���� ��!�� ���
������ �!�� �!���� � ����@!�� ��� 6��87 �� �	 �����	�@����	
�!�9!�� ��� 6�.C�87� ��� 5���!	��!�	 �2 ���!����	1�
���
��	�� 
�������� �!�� � �!$� �2B�!�	�1 ��!	$ *�J
5���!	� !	 	!���$�	 �� 0�8 �	� �!�� 2���!� ��!� �� ���
���)�	�� ���1� ������������ && ��� 5���!	���� !	 ��J
��	)���!�	 �� $!)� ���1� +�5���������������� &' ��!��

���1� +������������������� &( ��� 5���!	���� !	 ��J
��	)���!�	� 1!���!	$ ���1� +��������+�5����������������
&) 6������ *�7� ��
����	��1� �	��� ����� ��	�!�!�	�� 	�

��5���!	��!�	 �2 ��� ��������� ��� ����)��� �!�� �	�1
��� ��	�5���!	���� ���!)��!)�� �!	$ !�������� ��� �������
��
��� ���� ��� ��3 5���!	��!�	 �2 ���1� +�������������
������� &( $!)�� �	�1 � ��� ��	)���!�	 �� &)�.0 !��������!	$
���� ��� 5�� �1���� !� ���� �2B�!�	�� ��!� !���������� ���
�����1�!� �22��� �2 ��� 5���!	���� ����� ���2����

��� ���
��� 
�	��5���!�� ���!)��!)� &* ��� 
��
���� !	
.0J 1!��� 1 ��� �����!�	 �2 ��� �!���
�!�� ', �!�� *�J
5���!	� !	 	!���$�	� ��!	$ �����	!��!�� �� ��� ���)�	�
6������ +�7� �!�!����1� �������	� �2 ��� ��!5���!�� '�
�!�� �9���� 5���!	� $�)� ��� ���
��� 
�	��5���!��
���!)��!)� '� !	 --J 1!����

���5���!	��!�	 �����!�	� ���� 2��	� �� ��;�!�� �	 ���!�!�	��
����!	$ ���$� 2�� ��� �����!�	 �� $� �� ���
���!�	� ��� �����
�!�	 �2 ��� ������1���2���	 ���!)��!)� '� �!�� 0�J 5���!	�
!	 	!���$�	 �� +C��8 $�)� ��� 
��5���!	���� ���
��	� ' !	
�*J 1!��� 6������ +*7� �	 ��	)�	�!�	�� �����!�	�� �����
��!5���!�� ����� � ���� �� 
��5���!	��� �1�������	��.�

���� �2 ��� �����!�	� ����!�� ��� 1 ��� �������� ����)���
��;�!��� ���� ����� ���
�������� ���	 ����� � �9
�����
!2 ��!� ���
��	� ��� �����

��	��	 ��� ����	������� ��� �!���� 5���!	��!�	 �2 ������!�
���
��	�� !	 � �!��� �������� � 
������ �!2B���� �� 
��2���
�	 � ��	)�	�!�	�� ������.. ��� ������� ��� 2��!����� 2���
�!�!��	 �	� ��

�� �!�� �1��9 ��!	$ �	��!� �	�!	$� ���
���2���� �2 ��� �������� ��!�� ���� !	 ��	���� �!�� ���
���$�	��� ���� ������ �!�� � 	!�3�� B�� ��!	$ � �����
��
��!�!�	 ����	!;��� ��� ������� ��)� ���� ��� �!��� �����
��� !	 ��� 5���!	��!�	 �2 �����	� '& �� ���� ���
�������
6������ ++7� K�!	$ *� �;�!)� �2 5���!	�� !	 �����	�� ��
��� ���)�	�� ��� ������� ��
��� �	 C�J ��	)���!�	 �� $!)�

1����� �*�

1����� ���

1����� �,�
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��� ��	�5���!	���� �����	��� ��� ����!���!�	 
�����	 �2 ���
	���	�''� �����'( �	� �����') !������ ��� ������!	�� ��
� -F*F+ 1 <8�

��!	!)���	 �� ���.C 
��2����� ��� 
���!�� �9!���!�	 �2
����	!� ��!	$ � �!�!��	����� �!��� �������� �	��$�����
������� �� ���� �� 5�� �	� ���
������� ��	���� ���� 2��!�
����� !	�� ��� ����� 5�� ���		���� ��� 
���!	�� �����1��
��� ��
��!��� !	 ��� �����!�	 ���		�� 1 �������	����
�)�
����!�	 )!� � ������ ���3� ��� $������ ������	��
���� 2�� 2��� �1�!	���� !	�� ��� �!��� ������� 1 �9���	��
�����5�� ��	��������� ��!�� ��!	��!	�� ��� ���!��� 5��
������ ��� 
������ ���
��!�!�	 ��� ��	�!	�����1 ��	!�����
��!	$ � ���� �
����������� ��� ������� ��
����� � ���	$� !	
��� �!��� ������� �9����� ���
��!�!�	 �)�� � ��	$� �2
���
�������� �	� 5�� ����� �	� ���1 ���� ����	�������
���� ��� ��	)���!�	 �	� ������!)!�1 ���)!��� �2 ��	)�	�
�!�	�� �������� ����� � ��
������� !	 � �!��� ��������

��� �22���!)� ���� ���	�2�� �2 �!��� �������� 
��)!��� )��1
�������� ���
������� ��	���� 2�� ��� �9������!� �	�
�	�������!� �����!�	�� ���� ��!�!	��!	$ �	���!��� �!��
�����!�	�� ,	 �9��
�� ��� ��	 ��
����� 1 ������ ��
����.� ��� ����	������� ���� � �!��� ������� ����� � ����
�� 
��
��� �1���$�	 �1�	!�� )!� ��� ,	������� ������ �	
����!�!�	�� ��������1 �����!�	�� ��� �1���$�	 �1�	!�� !�
��
����� �� �1����1�� �� ����	!�� ��� ��� �2 � �!�������
�9���	$�� !	 ��!� �9
��!��	�� ����)��� 
��)�	��� ��!�
2������ �����!�	 ������!	$�

,� � B	�� ������1 �� ��!� ����!�	� �� �!�� !	 ���� + ���
�����!�	� ���� ��� �����	��1 �!	$ !	)���!$���� !	 �!���
���������

&� 3������� ����������	 �� ����� �������	

��!� ��)!�� ��� ������!��� � ����� 1�� �!$	!B��	� ���� �2
��!�	�!B� �������� ���� !� 
�!��� �� ������	$� ��� �	����
���	�!	$ �	� 2����� �

�!���!�	� �2 �����!�	 ����!���1� ��
����� ��� ������� �2 ��� ��
����� �������� ��� ��	B����
���� �!��� ������� ���������$1 !� �

�!���� �� 
��2���!	$
��� $�� �	� �!;�!� 
���� �����!�	 ����!���1� "�� ���
;����!�	 ��!�� ����!	� ���F !� ����� ���� �1�	� H���
��!	$ ������� ���	 ���� ��	 ������1 � 
��2����� 1 ����!�
�!�	�� ���������$1P ���� ��� ���3 �!��� !	 ��!� ���!���� ���
�)!��	�� !� ���� ��� �	!;�� �	��� 	������ �2 �!��� �����
����� 	����1 ��� ����)����� �
��!�� �	� ���
���� ��	���� �2
������	�� �	� 
������� !	 � ���!	�� 5�� �!22��!)� �!9!	$
�	)!��	��	� !	 ��!�� �!��!	��!)� ������� �	� ��	��	����!�	
$���!�	�� �9!��� �22��� � 	�)�� ������ 2�� ��� ����!���
��	!
����!�	 �	� $�	����!�	 �2 
�������� �	 ������ �!���
�������� ��� 	�� ����� �!�� ��!�� �� $�	����� ���������
�	� !	������ ��� 3	�����$� �2 ���
��9 ����!��� 
���������

��� ����	���$1 !� ��!�� !	 !�� ����1 ��)���
��	� ���$� �	� !�
����� � 
�����
����� �� ��!� 
�!	� �� �9
�	� ��� 2�� �	 ���

���	�!�� �

�!���!�	� ���� �!��� �������� �!�� B	�� �� ����
����1 ���	�� ��� ������ �	 ��� �������= �9
��!�	��� �����!�	�

1����� ���

+��� �� (����!�	� ��	������ !	 � �!��� �������

(����!�	 8�!
 �����!�� ���)�	� 8�	)���!�	 6J7 8����	�� (�2���	��

��?�3! <���� �; ��� �. �4� �.
N����� ���
�!	$ ���1
��
1��	� ��� �� �1�!	$� 
��
 ��
,���� <���� ��� *�� �4� 0C
D!����!�	 <���� "�	?�	� �0 �4� 0/
#!��!$ <���� L�4� /�>0� �4� 00� 0�
�	��!	� <���� L�4� -+ �4� 0.
K$! 2��� ���
�	�	� ���
�!	$ <���� L�4� �4�
��
�!�� �1	����!� <���� �L� *�� �4� �/
�1	����!� �2 
1�!��?!	�	�� <���� ��4�@,�4� /� �4�
�1	����!� �2 ��!��� 2���
��!	�� �	� ��!� �����!���

<���� �8L .. �4�

�!�?� ���
�!	$ <���� L�4�� L�8D /.� ++ �4� 0+
,�!	���!�?��� �1	����!� <���� DL� 0C>*�� �4�
N	��)�	�$�� <���� L�4�@�+4 0�>�C �4�
��	�?��� ��!�?��� �1	����!� <���� DL� 0C>*�� �4�
L!����� ���!�!�	 <���� ��4� �0>*�� �4� 0�
�D+ ��31� ���!�� <���� �L�@�+4 +0 �4�
���1����!�	 <����@��L� ��4� C0>�0 �4� �� �1�!	$� 
��
 �C
���������!��� �!�!��	@;����? 68�/7+8�4� �� �1�!	$� 
��
 ��
����� ���	�2�� <���� ��4,� *�� �1�!	$� 
��
 �+
�����!	��!�	 D! �� 8� D!���$�	 $�� ��>�� �1�!	$� 
��
 ./� .-
�����!	��!�	 �!�!��	@
1��9 L�4� C� �1�!	$� 
��
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��2����� !	 � �!��� ������� !	)��!��1 $�	����� �����!)��1

��� 
������� !	 �!$� 1!���� !	 ���
��!��	 �� ��� �;�!)���	�
��3 �����!�	�� !	 ���� ������� �!��� �	� !	 ��2B�!�	� ;��	�
�!�!�� �� 
��2��� 2��� !	������	��� ���������!���!�	� 4	� �2
��� !����!��� �	� �)!��� �

�!���!�	� !� �����2��� !	 ���$
�	� 
������ �!���)��1� ����� ��� $�	����!�	 �2 ���
��	��
�!���� �!�� �!22���	� ���$�	�� �� �	��� )��!��� ��	�!�!�	� !�
�	 ����	�!�� 2������ �	 ���!�!�	� ��� �

����	!�1 �� �����!��
�
�!��� ����!��� 
�������� !	����!	$ �����!�	 �	� 2�������
�!�	 !� �	 �9�!�!	$ ��
�!�!�1 �2 ��� ����	���$1� ��!�� �����
����!�1 � ����!�� �� �

��
�!��� �	��1�!��� ��	!���!	$� ,	
!	������!	$ ��!�� �� ��� ����!���1 ����!�� ��� �� ���� !	 ���
������=� ��������!�� !	 	�� H��� ��� �

����	!�1 �� ��
�����
������	�� �	� 
������� !	 ���� �!�� �� ���� ��� ��
�!�!�1 ��
��	�2������ �	� ��� ���$�	�� !	 �!��� �����
� ����
!	��!$�!	$� !� ���� 	�� �	$��� �!��� �������� �!	$ ��
�����!�	 ����!���1 �	� ����� ��� �	�1 	�� H��� ����$!	$�
�9��	�!	$ ��� ������$�	���� �����1�� ���3 ������1
�����!���->�� �	� ��	 ��� ��� !���!�!��� �� ��

�����
���$�	�� ����� � 
����� �!��!	 � ��)!�� �� !�
��� 2�	��!�	�
��!�1 �� � �����!�	 ��!��� ��!	��!	!	$ �
��!�� �	� ���
����
��	����� ��!� ��	��
� ����� � �9��	��� �� ��	�!��� ���2�
������1 ������� 2�� $�	����!	$ ���2�����
��!B� 
��
���!��
���� �� ���
� �	� �	��$1 �� �����!�������� 
��������� ����
��	��
�� ����� ���� � ���!�1 �9��	��� �� !	����� !���$!���
2�	��!�	��!�1 �	� !	��$���!�	� 4	� !	��!$�!	$ ��
��� �2
������3!	��!����1��
������ �!��� �������� !� �	�������
�����������!��� �22��� ���� �!�� �	�������1 1!��� 	�)��
����!���!�� !	 ��� 	�9� 2�� 1�����

��!� ��)!�� ����� 	�� � ���
���� �!����� ���� ���!����
�2 ��� !�
��� �2 ��!� ����	���$1� ��� ������� �2 
������
����!��� ���
�	!�� ���!��� ���$��1 �	 �1	����!� �	� �����	�
!	$ �2 	�)�� ����!��� �	�!�!�� ��
����	���!)� �2 ��� �	!)����
�2 ���$��!3� ���
��	��� ��!�� ��1 � �2 ��� ����� �2 *�+��

���
��	�� �� ���� *�-� ������1
��� �	� �� �
�!�!��
�������� ����� �� ���3����� ���$�� 8�����1� ���� � �����
$�	����!�	 ���3 !� �1�	� ��������!�� ���������� �	 �	
!	�����1 ����� ��)���
��	� ����� ��� �9������!	��!�1 �!$�
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We demonstrate a simple method for the regioselective
preparation of 1,3-diketones within a micro reactor from
silyl enol ethers where the products are free from both
competing O-acylation and diacylation products.

Over the past three years, there has been a rapid growth in the
development of micro reaction technology exploiting the
technique of electroosmotic flow (EOF).1 Recent research has
demonstrated that along with multi-component reactions such
as the Suzuki coupling2 and the Wittig reaction,3 multi-step
peptide synthesis can also be performed within a micro
reactor.4

The enolate has been described as the most important
intermediate in C–C bond formation. Its ambident nature
however, allows the formation of bonds at either the carbon or
the oxygen. In the case of acylation, this can result in the
formation of a mixture of O- and C-acylated products which are
difficult to separate, often resulting in low yields.5 A large
amount of work has been undertaken in order to explore and
understand the reaction conditions that promote the re-
gioselective acylation of enolates, these include; the nature of
the counter ion, reaction temperature, solvent, stoichiometry of
reagents, order of reagent addition and type of acylating
reagent.6,7 Although careful selection of the aforementioned
conditions has been shown to influence the regioselectivity of
the acylation, the 1,3-diketones produced remain contaminated
with small amounts of O-acylated products.8,9,10 The procedure
is however, still regarded as being heavily substrate depend-
ent.11

We recently demonstrated a simple technique for the
regioselective preparation of uncontaminated 1,3-diketones in
high to excellent conversions ( > 95%) via the reaction of silyl
enol ethers with acyl fluorides (1 h) and cyanides (24 h) in the
presence of a catalytic amount of anhydrous TBAF (tetra-
butylammonium fluoride).12 We found that a-substituted
ketones react with both acyl fluorides and cyanides to give
100% C-acylated products compared with non a-substituted
ketones which gave 100% O-acylated products when reacted
with acyl fluorides and C-acylated products when reacted with
acyl cyanides. In this paper we wish to demonstrate the
regioselective acylation of silyl enol ethers within a micro
reactor using catalytic amounts of anhydrous TBAF. We also
report reduced reaction times within a micro reactor in
comparison to traditional batch reactions.

The borosilicate micro reactor used in this work was prepared
using a standard fabrication procedure developed at Hull.13 The
reactions were carried out using a 4 channel micro reactor, as
illustrated in Fig. 1, with approximate channel dimensions of
100 3 50 mm and outer dimensions of 20 3 20 3 25 mm. Micro
porous silica frits were placed within the channels in order to
minimise hydrodynamic effects.14 An in-house LabVIEW™
program was used to set and monitor the voltages applied to
platinum electrodes placed in the reservoirs (power supply was
built by Kingfield electronics).

All micro reactions were carried out under fume extraction in
order to minimise exposure to the reagents used. The micro
reactions were performed over a period of 20 min in order to
ensure a sufficient volume of product was generated for analysis

(Typical flow rates of 0.3–0.4 ml min21 were observed from
each reservoir). Reaction products were determined by GC-MS
via the comparison of retention times and spectra with those
obtained from synthetically prepared standards.12

A synthetic standard of product 1 was prepared via the
dropwise addition of the enol ether of acetophenone 2 (0.1 g,
0.52 mmol) to a stirred solution of anhydrous TBAF (0.014 g,
0.05 mmol) and benzoyl fluoride 3 (0.06 g, 0.52 mmol) in
anhydrous THF (10 ml)(Scheme 1). The reaction mixture was
stirred for 1 h, subsequent analysis by GC-MS showed that
100% conversion of the silyl enol ether of acetophenone 2 to the
product 1 had been achieved.

Having demonstrated that 1 could be prepared from the silyl
enol ether 2, this represented a synthetic target for preparation
within a micro reactor (Fig. 1). Prior to the synthesis, the micro
reactor was primed with anhydrous THF in order to remove any
air or moisture from the channels and micro porous silica frits.
A standard solution of TBAF (40 ml, 0.1 M) in anhydrous THF
was placed in reservoir A, a solution of benzoyl fluoride 3 (40
ml, 1.0 M) in anhydrous THF in reservoir B and the silyl enol
ether of acetophenone 2 (40 ml, 1.0 M) in anhydrous THF was
placed in reservoir C. The reaction products were collected in
anhydrous THF in reservoir D over a period of 20 min. The
reagents were manipulated within the device by the application
of the following applied fields; 333, 455, 333 and 0 V cm21,
resulting in 100% conversion to 1 (no products of C-acylation 4
or diacylation were observed).

Having successfully demonstrated the O-acylation of acet-
ophenone within a micro reactor, we wished to also demonstrate
that C-acylation was possible.

Fig. 1 Schematic of the micro reactor used in the synthesis of 1.

Scheme 1 Formation of 1 via the silyl enol ether of acetophenone 2.
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A synthetic standard of dibenzoylmethane 4 was prepared via
the reaction of the silyl enol ether of acetophenone 2 and
benzoyl cyanide 5 (Scheme 2). In order to obtain high
conversion of the enol ether 2 to the product 4, extended
reaction times of 24 h were necessary. This is due to the reduced
reactivity of benzoyl cyanide 5 compared with benzoyl fluoride
3. Under the conditions stated above, 98% conversion with
respect to the enol ether 2 was observed in bulk. Using a micro
reactor, a standard solution of TBAF (40 ml, 0.1 M) in
anhydrous THF was placed in reservoir A, a solution of benzoyl
cyanide 5 (40 ml, 1.0 M) in anhydrous THF in reservoir B and
the silyl enol ether of acetophenone 2 (40 ml, 1.0 M) was placed
in reservoir C. The reaction products were collected in
anhydrous THF in reservoir D over a period of 20 min. The
reagents were manipulated within the device using the follow-
ing applied fields; 416, 318, 476 and 0 V cm21, this resulted in
100% conversion of the enol ether 2 to product 4. In order to
demonstrate the generality of the technique, the silyl enol ethers
of propiophenone and cyclohexanone were also investigated.

A synthetic standard of 2-benzoylcyclohexanone 6 was
prepared via the reaction of the silyl enol ether of cyclohex-
anone 7 and benzoyl fluoride 3 (Scheme 3). Within 1 h, 100%
conversion with respect to the silyl enol ether 7 was obtained in
bulk. A standard solution of TBAF (40 ml, 0.1 M) in anhydrous
THF was placed in reservoir A, a solution of benzoyl fluoride 3
(40 ml, 1.0 M) in anhydrous THF in reservoir B and the silyl enol
ether of cyclohexanone 7 (40 ml, 1.0 M) was placed in reservoir
C. The reaction products were collected in anhydrous THF in
reservoir D over a period of 20 min. The reagents were
manipulated within the device using the following applied
fields; 208, 409, 357 and 0 V cm21. This resulted in 100%
conversion of the silyl enol ether of cyclohexanone 7 to product
6. The reaction was repeated using benzoyl cyanide (40 ml, 1.0
M) and the following applied fields; 208, 409, 381 and 0 V
cm21, this resulted in 100% conversion of the enol ether of
cyclohexanone 7 to 2-benzoylcyclohexanone 6.

We subsequently extended the technique to the preparation of
product 8 within a micro reactor. A synthetic standard of 8 was
prepared via the reaction of the silyl enol ether of propiophe-
none 9 with benzoyl fluoride 3 (Scheme 4). After stirring for 1
h, the reaction mixture was analysed by GC-MS and 99% of the

silyl enol ether 9 was converted to product 8. Using a micro
reactor, a standard solution of TBAF (40 ml, 0.1 M) in
anhydrous THF was placed in reservoir A, a solution of benzoyl
fluoride 3 (40 ml, 1.0 M) in anhydrous THF in reservoir B and
the silyl enol ether of propiophenone 9 (40 ml, 1.0 M) was
placed in reservoir C. The reaction products were collected in
anhydrous THF in reservoir D over a period of 20 min. The
reagents were manipulated within the device using the follow-
ing applied fields; 375, 455, 405 and 0 V cm21. This resulted in
100% conversion of the silyl enol ether of propiophenone 9 to
product 8.

In conclusion, we have developed a simple, room tem-
perature route to the regioselective formation of uncon-
taminated 1,3-diketones or O-acylated products depending
upon the acylating reagents used. In all instances, no competing
diacylation products were observed. The use of ammonium
enolates is also advantageous as it removes the effect of a metal
counter ion along with the observed reactions between aminated
bases and acylating reagents.

In the preparation of b-hydroxyketones from silyl enol ethers
we previously demonstrated that enhancements in both reaction
rates and conversion are observed when using micro reactors.15

This work therefore re-emphasises the increase in reaction rates.
Typically, the formation of 4 in batch required extended
reaction times of 24 h due to reduced reagent reactivity
however, when transferred to a micro reactor, quantitative
conversions were observed in minutes.
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Abstract—The regioselectivity of the acylation of Li enolates and silyl enol ethers is reported using acyl halides and acyl cyanides.
We illustrate a simple method for the preparation of 1,3-diketones via the silyl enol ether in excellent yields, free from competing
O-acylation and diacylation products. © 2002 Elsevier Science Ltd. All rights reserved.

The enolate has been described as the most important
intermediate in C�C bond formation. Its ambident
nature however, allows the formation of bonds at either
the carbon or the oxygen. In the case of acylation, this
can result in the undesirable formation of a mixture of
O- and C-acylated products which are difficult to sepa-
rate, often resulting in low yields.1 A large amount of
work has been undertaken in order to explore and
understand the reaction conditions that promote the
regioselective acylation of enolates, these include; the
nature of the counterion, reaction temperature, solvent,
stoichiometry of reagents, order of reagent addition
and type of acylating reagent.2,3 Although careful selec-
tion of the aforementioned conditions has been shown
to influence the regioselectivity of the acylation, the
1,3-diketones produced remain contaminated with
small amounts of O-acylated product.4,5 The procedure
is still therefore regarded as being heavily substrate
dependant.6

In the late 1960s, Stork et al. demonstrated that an
enolate could be transformed into a silyl enol ether and
then converted back to the enolate.6 The technique
therefore enables the temporary trapping of an enolate
while maintaining the regio- and stereochemical fea-
tures.7,8 Stork described the regeneration of enolates via
the use of methyllithium. However, more recently anhy-
drous fluoride salts9 and reagents such as potassium
ethoxide10 have found use in desilylation reactions.
Beck et al. demonstrated the C-acylation of Li enolates
generated by the treatment of silyl enol ethers with
methyllithium.11 This technique proved advantageous
as it removed the undesirable reaction between the

acylating reagent and amide base (LDA), previously
observed by Rathke et al.2 Howard and co-workers12

have also demonstrated the C-acylation of Li enolates
(generated using LDA) using acyl cyanides.13,14 Using
this methodology, no competing O-acylation, diacyl-
ation or reactions of the enolate with the cyanide group
were reported.

Although many techniques have demonstrated the for-
mation of C�C bonds via the use of Li enolates and
silyl enol ethers, there are few that enable the prepara-
tion of clean O-acylated products. Noyori et al. how-
ever demonstrated the selective O-acylation of silyl enol
ethers using stoichiometric amounts of the expensive
fluoride source, tris(dimethylamino)sulfonium difluoro-
trimethyl silicate (TASF).15 Limat and co-workers, sub-
sequently demonstrated the use of a catalytic amount of
tetrabutylammonium fluoride trihydrate to afford enol
esters in good yields.16

We report here a simple procedure for the regioselective
acylation of ketones from their respective Li enolates
(prepared using LiHMDS)17 and silyl enol ethers18,19

using a series of acylating reagents. The enolates are
regenerated from the silyl enol ethers using a catalytic
amount of anhydrous TBAF.20 This effectively means
that the enolate formed is ‘naked’ i.e. remains relatively
unaffected by its counterion, in this case the ‘soft’
ammonium ion.7 As Table 1 illustrates, the products
were isolated in good to excellent yields.

As Table 1 illustrates, the acylation of the Li enolate of
acetophenone with acetyl chloride results in the forma-
tion of the O-acetylated product 1.21 O-Acylation 323

was also observed when using the reagent benzoyl
chloride (Table 1), no contamination from competing
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Table 1. Products obtained from the acylation of a series of Li enolates and their respective silyl enol ethers
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C-acylation was observed in either reaction. Subse-
quent reactions of the Li enolate of acetophenone with
acetyl cyanide and benzoyl cyanide however, resulted in
the formation of the C-acylated products, benzoyl ace-
tone 222 and dibenzoylmethane 5,24 respectively. Again
no contamination occurred from competing O-
acylation (1 and 3).23

Upon treatment of the silyl enol ether of acetophenone
with acetyl chloride and benzoyl chloride, no reactions
were observed. This phenomenon was also noted by
Olofson et al. whereby the use of chloroformates in
place of fluoroformates impeded the synthesis of enol
carbonates from silyl enol ethers.27 The acyl chlorides
were therefore replaced by their respective acyl fluoride
and again, O-acylation was observed 4. Treatment of
the silyl enol ether of acetophenone with benzoyl cya-
nide resulted in C-acylation and the preparation of
dibenzoylmethane 5.24 As Table 1 illustrates, the
acylation of propiophenone25 (6 and 7) and
cyclohexanone26 (8, 9 and 10) via both the Li enolates
and their respective silyl enol ethers resulted in the
formation of the C-acylated product regardless of the
acylating reagent used.

The regioselectivity of both the acylations of Li eno-
lates and silyl enol ethers was found to be dependent
upon the type of ketone used i.e. �-substituted ketones
gave C-acylated products and non �-substituted
resulted in O-acylation with acyl halides and C-
acylation with acyl cyanides. In all cases, the products
were found to be 100% C- or O-acylated, no mixtures
were observed. In comparison to the use of acyl halides,
the treatment of a Li enolate with an acyl cyanide
showed an increase in yield. An increase in conversion
was also observed when using the silyl enol ether
approach, compared to the direct acylation of the Li
enolate.

In conclusion, the use of silyl enol ethers is advanta-
geous as it removes the effect of a metal counterion
along with the observed reactions between aminated
bases and acylating reagents. The procedure provides a
simple, room temperature, route to the formation of
uncontaminated 1,3-diketones or O-acylated products
in high yields.
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We demonstrate that peptides derived from a-amino acids may be prepared in a micro reactor. The peptides were
prepared in 20 min with quantitative conversion, compared to batch reactions which require prolonged reaction
times. We illustrate that by using dilute reagent concentrations and short reaction times, less racemisation is
observed in micro reactions than in bulk reactions.

Introduction

A range of multi-component reactions such as the Sukuki,1
Wittig,2,3 Aldol condensation4 and Michael addition5 have been
performed in micro reactors under electroosmotic flow (EOF)
conditions.6,7 In addition, we recently demonstrated that
pentafluorophenyl ester 1 could be converted into dipeptide 2
with 100% conversion (Scheme 1) within a micro reactor.8,9 In
comparison, when the reaction was performed at the same
concentration and temperature in a bulk reaction only 75%
conversion was obtained after nearly 500 h (Fig. 1).

Whilst rate enhancements associated with reactions within
micro reactor devices are generally attributed to diffusive
mixing under non-turbulent conditions,10 in this current exam-
ple the enhanced rate of reaction is also associated with the
reaction occurring within an electric field, previously described
in ref. 9.

To date, only the synthesis in a micro reactor of peptides
containing b-amino acids has been reported.8,9 These amino
acids do not have chiral centres, hence potential problems with
racemisation are avoided. In addition, b-peptides have attracted
much interest due to their structural11,12 and biological
properties.13 In particular, their stability to degradation by
peptidases14,15 makes them potentially superior to the drugs
derived from a-amino acids. However, many peptides also
contain a-amino acid residues which are prone to racemisation.
We were therefore interested to investigate if the low reagent
concentrations and reduced reaction times, observed in micro
reactors, would effect the levels of racemisation occurring.

In bulk reactions, peptides are commonly derivitised as their
Moshers amide16 and 19F-NMR is used to calculate the amount
of racemisation occurring. However, micro reactors currently
produce ng–mg quantities of product, which is insuffient for
such NMR analysis. Hence it was necessary to use a GC-MS
method to calculate the degree of racemisation.

In this paper, a micro reactor has been used to prepare peptide
derivatives using solution phase chemistry to evaluate the level

of racemisation that occurs when reactions are conducted within
micro reactors.

Results and Discussion

As a model reaction we investigated racemisation of R-
2-phenylbutyric acid 3. The acid 3 was reacted with R- and S-a-
methylbenzylamine 4 and 5 to prepare synthetic samples of the
diastereomers 6 and 7 with 97 and 95% yield respectively
(Scheme 2). It was demonstrated that these products were

Scheme 1 Synthesis of a b-peptide.

Fig. 1 Conversion of PFP ester 1 into dipeptide 2 in bulk reaction.

Scheme 2 Preparation of amides of R-2-phenylbutyric acid.

This journal is © The Royal Society of Chemistry 2002
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separable by gas chromatography and the results indicated that
up to 6.2% racemisation occurred in the bulk reactions.

Having established a method to separate the diastereomers it
was now possible to quantify if racemisation occurred when the
reaction was performed in a micro reactor. The micro reactions
were conducted using the pentafluorophenyl ester 8 of R-
2-phenylbutyric acid 3, which was prepared via a 1-(3-dimethy-
laminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) cou-
pling reaction with 93% yield (Scheme 3). The
pentafluorophenyl ester derivative 8 was used, based on
previous results.8,9

Prior to synthesis the micro reactor was primed with
anhydrous N,N-dimethylformamide (DMF), in order to remove
any air and moisture from the channels and the micro porous
silica frits. A standard solution of pentafluorophenyl ester 8 (30
ml, 0.1 M) in DMF was placed in reservoir A and a solution of
S-a-methylbenzylamine 5 (30 ml, 0.1 M) was placed in reservoir
B. The reaction products were collected in reservoir C, which
contained anhydrous DMF (30 ml) (Fig. 2).

It was found that using continuous flow of both reagents (0.1
M), where the ester 8 was maintained at 600 V and the amine 5
was maintained at 1000 V, the product 7 was prepared
quantitatively in 20 min. Under these conditions it was found
that 4.2 ± 1.1% (n = 5) racemisation occurred. The reaction was
also investigated at a higher concentration (0.5 M) and as
expected it was found that the amount of racemisation increased
to 7.8 ± 1.0% (n = 6).

Having demonstrated that racemisation of a simple chiral
carboxylic acid could be monitored, the racemisation of the a-
amino acid, alanine was investigated. Boc-D-alanine 9 was
reacted with S-a-methylbenzylamine 5 via an EDCI coupling
reaction, to prepare a synthetic sample of amide 10 with 61%
yield (Scheme 4). Similarly Boc-L-alanine 11 was converted
into amide 12 with 84% yield and it was shown that
diastereomeric amides 10 and 12 were also separable by gas
chromatography.

In the micro reactor, a standard solution of the penta-
fluorophenyl ester 13 of Boc-D-alanine (30 ml, 0.1 M) in DMF
was placed in reservoir A and a solution of S-a-methylbenzyla-
mine 5 (30 ml, 0.1 M) was placed in reservoir B. The reaction
products were collected in reservoir C, which contained
anhydrous DMF (30 ml). It was found that using continuous
flow of both reagents (0.1 M), where the ester 13 and the amine5
were both maintained at 1000 V, the product 10 was prepared
quantitatively in 20 min. Under these conditions it was found
that 5.6 ± 0.8% (n = 5) racemisation occurred.

Conclusions

In conclusion, we have demonstrated that peptides derived from
a-amino acids may be prepared in a micro reactor. We have
shown that the peptide bonds may be prepared in 20 min with
quantitative yield, compared to batch reactions which generally
require prolonged reaction times of up to 24 h to achieve high
yields.

We have shown that the amount of racemisation is highly
dependant upon the concentration of the reagents. When the
reaction was conducted at 0.1 M concentration, the amount of
racemisation was slightly less than in the bulk reactions. Further
studies are currently underway within our laboratories to
investigate racemisation in more complex peptides and to purify
the peptides by electrophoretic separation.17

Experimental

Micro reactions

The borosilicate glass micro reactor used in this work was
prepared using standard fabrication procedures developed at the
University of Hull.18 The micro reactor had approximate
channel dimensions of 100 3 50 mm and outer dimensions of 20
3 20 3 25 mm. Micro porous silica frits were placed within the
channels to minimise hydrodynamic effects.19 An in-house
LabVIEW™ program was used to set and monitor the voltages
applied to platinum electrodes, which were placed in the reagent
reservoirs (power supply built by Kingfield Electronics, UK).

All micro reactions were carried out at room temperature
over a period of 20 min to ensure a sufficient volume of product
for analysis. Reaction products were determined by GC-MS via
comparison of retention times and spectra with those obtained
from synthetic standards. A Varian CP-3800 coupled to a
Varian Saturn 2000 mass spectrometer fitted with a CP-Sil 8
column (30 m) was used for the analysis (injector temperature
250 °C; helium flow rate 1 ml min21; oven held at 60 °C for 1
min then ramped to 270 °C at 25 °C min21). Product
conversions were calculated with respect to the amount of
amino acid remaining in the sample.

Bulk reactions

All solvents were purchased as anhydrous solutions over
molecular sieves from Fluka. Reagents were purchased from
Fluka or Aldrich and used as supplied. Column chromatography
was carried out using Fluka silica gel 60 as the solid support.
Compounds were eluted using various mixtures of ethyl acetate
and hexane. Nuclear magnetic resonance (NMR) spectra were
recorded as solutions in deuteriochloroform (CDCl3), using
tetramethylsilane (TMS) as internal standard. The spectra were
recorded on Jeol GX270 or GX400 spectrometers. The
chemical shift values for all spectra are given in parts per
million with coupling constants in Hertz. Mass spectra were
recorded using a Varian Saturn 2000 mass spectrometer.

Scheme 3 Preparation of pentafluorophenyl ester.

Fig. 2 Schematic of micro reactor.

Scheme 4 Preparation of amides of alanine.
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Synthetic standards of all products were prepared using the
following procedure: A solution of EDCI (ca. 1.3 eq.) and
4-dimethylaminopyridine (DMAP, ca. 0.1 eq.) in dichloro-
methane (DCM, 10 ml) was added to a stirred solution of the
carboxylic acid (1 eq.) and a-methylbenzylamine or penta-
fluorophenol (ca. 1.3 eq.) in DCM (20 ml) at room temperature
under nitrogen. After 24 h, the solvent was washed with dilute
hydrochloric acid (20 ml) and the aqueous layer was further
extracted with DCM (2 3 50 ml). The combined organic
extracts were dried over magnesium sulfate and concentrated in
vacuo to give the product which was purified by column
chromatography.

R-a-methylbenzylamide of R-phenylbutyric acid 6

The reaction was carried out according to the general procedure
using EDCI (271 mg, 1.41 mmol), DMAP (11 mg, 0.09 mmol),
R-2-phenylbutyric acid 3 (227 mg, 1.38 mmol) and R-a-
methylbenzylamine 4 (203 mg, 1.67 mmol). Elution with 20%
ethyl acetate in hexane gave amide 6 (358 mg, 97%) as a white
solid; dH (400 MHz) 0.89 (3H, t, J 7.6, CH3CH2), 1.41 (3H, d,
J 6.7, CH3CH), 1.77 (1H, m, CH3CHH), 2.18 (1H, m,
CH3CHH), 3.27 (1H, t, J 7.6, CHCH2), 5.08 (1H, dq, J 7.8 and
6.7, CHCH3), 5.84 (1H, br d, J 7.8, NH) and 7.18–7.35 (10H, m,
Ar); dC (100 MHz) 12.3, 21.9, 26.3, 48.5, 55.0, 125.7, 127.0,
127.1, 127.9, 128.4, 128.6, 140.0, 143.2 and 172.5; m/z (EI) 267
(M+, 65 %), 252 (5), 119 (45), 105 (100), 91 (95) and 77
(27).

S-a-methylbenzylamide of R-phenylbutyric acid 7

The reaction was carried out according to the general procedure
using EDCI (219 mg, 1.14 mmol), DMAP (14 mg, 0.11 mmol),
R-2-phenylbutyric acid 3 (141 mg, 0.86 mmol) and S-a-
methylbenzylamine 5 (121 mg, 1.00 mmol). Elution with 20%
ethyl acetate in hexane gave amide 7 (217 mg, 95%) as a white
solid; dH (400 MHz) 0.84 (3H, t, J 7.3, CH3CH2), 1.41 (3H, d,
J 7.0, CH3CH), 1.77 (1H, m, CH3CHH), 2.15 (1H, m,
CH3CHH), 3.22 (1H, t, J 7.6, CHCH2), 5.08 (1H, dq, J 7.6 and
7.0, CHCH3), 5.80 (1H, br d, J 7.6, NH) and 7.21–7.36 (10H, m,
Ar); dC (68 MHz) 12.3, 21.5, 26.5, 48.7, 55.1, 126.0, 127.1,
127.2, 127.9, 128.6, 128.7, 140.1, 143.3 and 172.6; m/z (EI) 267
(M+, 57 %), 252 (5), 119 (40), 105 (95), 91 (100) and 77
(30).

Pentafluorophenyl ester of R-phenylbutyric acid 8

The reaction was carried out according to the general procedure
using EDCI (331 mg, 1.73 mmol), DMAP (29 mg, 0.24 mmol),
R-2-phenylbutyric acid 3 (254 mg, 1.55 mmol) and penta-
fluorophenol (364 mg, 1.98 mmol). Elution with 10% ethyl
acetate in hexane gave ester 8 (476 mg, 93%) as a colourless oil;
dH (400 MHz) 1.00 (3H, t, J 7.4, CH3CH2), 1.94 (1H, m,
CH3CHH), 2.25 (1H, m, CH3CHH), 3.81 (1H, t, J 7.6, CH3CH)
and 7.30–7.41 (5H, m, Ar); dC (68 MHz) 11.9, 26.7, 52.8, 127.9,
128.0, 128.9, 136.1 (m), 137.2, 137.6 (m), 139.2 (m), 139.8 (m),
141.3 (m), 142.9 (m) and 170.1; m/z (EI) 301 (M+-CH3CH2,
2%), 119 (100) and 91 (27).

S-a-methylbenzylamide of Boc-D-alanine 10

The reaction was carried out according to the general procedure
using EDCI (255 mg, 1.33 mmol), DMAP (7 mg, 0.06 mmol),
Boc-D-alanine 9 (177 mg, 0.94 mmol) and S-a-methylbenzyla-
mine 5 (144 mg, 1.19 mmol). Elution with 30% ethyl acetate in
hexane gave amide 10 (167 mg, 61%) as a white solid; dH (400

MHz) 1.32 (3H, d, J 7.0, CH3CH), 1.41 (9H, s, (CH3)3C), 1.46
(3H, d, J 7.0, CH3CH), 4.18 (1H, br s, NH), 5.05 (1H, q, J 7.0,
CH3CH), 5.21 (1H, d, J 7.0, CH3CH), 6.85 (1H, br s, NH) and
7.20–7.31 (5H, m, Ar); dC (100 MHz) 17.8, 22.0, 28.2, 48.6,
49.9, 80.0, 126.0, 127.1, 128.5, 143.2, 155.7 and 171.7; m/z (EI)
293 (M++1, 2 %), 237 (100), 193 (32), 120 (40) and 105
(45).

S-a-methylbenzylamide of Boc-L-alanine 12

The reaction was carried out according to the general procedure
using EDCI (283 mg, 1.48 mmol), DMAP (5 mg, 0.04 mmol),
Boc-L-alanine 11 (220 mg, 1.16 mmol) and S-a-methylbenzyla-
mine 5 (140 mg, 1.16 mmol). Elution with 30% ethyl acetate in
hexane gave amide 12 (286 mg, 84%) as a white solid; dH (400
MHz) 1.31 (3H, d, J 6.8, CH3CH), 1.42 (9H, s, (CH3)3C), 1.46
(3H, d, J 7.0, CH3CH), 4.19 (1H, br s, NH), 5.08 (1H, q, J 6.8,
CH3CH), 5.28 (1H, d, J 7.0, CH3CH), 6.84 (1H, br s, NH) and
7.21–7.33 (5H, m, Ar); dC (100 MHz) 18.2, 21.9, 28.3, 48.6,
50.0, 79.9, 126.0, 127.2, 128.6, 143.1, 155.6 and 171.9; m/z (EI)
293 (M++1, 2%), 237 (100), 193 (30), 120 (37) and 105 (32).

Pentafluorophenyl ester of Boc-D-alanine 13

The reaction was carried out according to the general procedure
using EDCI (733 mg, 3.82 mmol), DMAP (10 mg, 0.08 mmol),
Boc-D-alanine 9 (677 mg, 3.58 mmol) and pentafluorophenol
(699 mg, 3.80 mmol). Elution with 20% ethyl acetate in hexane
gave ester 13 (1.10 g, 86%) as a white solid; dH (400 MHz) 1.47
(9H, s, (CH3)3C), 1.59 (3H, d, J 7.3, CH3CH), 4.66 (1H, m,
CHCH3) and 5.03 (1H, br d, J 6.5, NH); dC (68 MHz) 18.2, 28.2,
49.2, 80.6, 136.0 (m), 137.8 (m), 139.2 (m), 139.7 (m), 141.5
(m), 142.9 (m), 154.9 and 169.8; m/z (EI) 300 (100) and 256
(62).
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We have investigated the complex formation/dissociation reaction between Ni2+ ions and the ligand
pyridine-2-azo-p-dimethylaniline (PADA) in a glass micro-reactor operating under electrokinetic control. An in
situ, microscope-imaging technique was used to determine the spatial and temporal evolution of the reaction
within the channel network of the micro-reactor. Using appropriately controlled voltage sequences, a ‘slug’ of
PADA was injected into a stream of Ni2+ solution. Under the experimental reaction conditions used, Ni2+ ions are
mixed with the PADA as a consequence of the species’ different electrokinetic mobilities allowing the complex
formation to occur at the trailing edge of the PADA slug. Following complex formation, reversal of the flow
results in the partial re-formation of free PADA by dissociation of the complex, demonstrating that voltage control
can be used to drive the reaction either forwards or backwards. We discuss the methods whereby all the
parameters required to predict the spatial and temporal evolution of the reaction in the micro-reactor can be either
measured or estimated. Based on the estimated parameters, model calculations of the concentration profiles as a
function of time show good agreement with the measured data.

Introduction

There is a growing interest in the development of miniaturised
micro-reactor devices for a wide range of chemical and
measurement applications encompassed by the so-called ‘Lab-
on-a-Chip’ concept. The particular micro-reactor designs
developed and used by, inter alia, the Hull group consist of a
network of micron-sized channels connecting a number of
reagent reservoirs which also hold the electrodes used for
electrokinetic pumping. Timed voltage sequences applied under
computer control to the appropriate reservoir electrodes are
used to control the movement of reagents within particular
regions of the channel network by a combination of electro-
osmotic and electrophoretic effects. This enables control of the
spatial and temporal evolution of a chemical reaction in a
micro-reactor in a manner not achievable in a conventional bulk
reactor where reagent concentrations are uniform. For a range of
different reactions in micro-reactors, it has been demonstrated
that voltage control can, in many cases, alter the yields and
selectivities of product mixtures.1–11 However, for the reactions
studied to date, detailed knowledge of solvent flow rates and
reagent velocities within the channel networks as a function of
the applied electrode voltages has been lacking with the result
that data interpretation has been somewhat speculative. As
discussed in a review of the theoretical principles of electro-
kinetic control of reactions in micro-reactors,12 the prediction
and control of the spatial and temporal evolution of a reaction in
a channel network requires knowledge of the detailed 3D
geometry of the channels, the dependence of the electrical
currents and electroosmotic flow rates in the different channel

sections as a function of the applied voltages, the electro-
phoretic mobilities and diffusion coefficients of all species
involved in the reaction together with the kinetic rate law and
rate constants for the reaction. The aims of the study described
here are to estimate all these physico-chemical parameters for a
selected reaction and to quantitatively validate predictions of
the spatial and temporal evolution of concentrations by
comparison with experimental data.

The chemical reaction selected for this study was the
reversible formation of a complex between Ni2+ ions and the
bidentate ligand pyridine-2-azo-p-dimethylaniline (PADA).
This choice was dictated by three considerations. Firstly, the
reaction is relatively simple with no complications from side-
reactions. Secondly, the kinetic rate law and rate constants are
known from the literature13,14 and are such that the reaction
occurs in the micro-reactor within an experimentally convenient
time frame. Lastly, both PADA and the complex show strong
and reasonably widely separated absorbance bands in the visible
spectral range which enable the use of an in situ microscope
imaging technique to determine their spatial concentration
profiles in the micro-reactor as a function of time. The water-
based solvent mixture for the reaction contained 30 vol%
ethanol (required to achieve sufficient PADA solubility) and 50
mM tris buffer at pH 7.5. Under these conditions, the nickel ion
is present as Ni2+, PADA is uncharged and the complex is
NiPADA2+. The overall concentration of tris buffer was such
that the ionic strength and electrical conductivity of the solvent
mixture, nickel, PADA and complex solutions were approx-
imately constant (within 10%). This condition of high back-
ground electrolyte greatly simplifies the analysis of the
electrical current–voltages relationships. The ranges of voltages
applied in this study were restricted to values low enough such
that the electrolytic formation of gas bubbles was not observed.
Electrolytic bubble generation (observed at higher voltages than
those used here) was easily detected in the micro-reactor
through large effects on the electrical currents.

This paper is organised as follows. Following the Experi-
mental section, the Results and Discussion section starts with a
description of the 3D geometry of the micro-reactor channel

† Electronic supplementary information (ESI) available. The first video file
(run2 PADA 450nm.avi) shows a video sequence of gray images recorded
at 450 nm where PADA has maximum absorbance. The sequence shows the
PADA injection followed by reaction when the ‘flow’ mode is restarted.
The second file (run2 Complex 550nm.avi) shows the corresponding image
sequence recorded at 550 nm where the complex has maximum absorbance.
The videos do not correspond to real time; they consist of a series of
‘snapshots’ run in sequence. The actual time sequences are detailed in Figs.
11 and 12. See http://www.rsc.org/suppdata/lc/b2/b201685k/
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network. The relationships between the applied voltages and the
measured currents and liquid flow rates are then discussed. The
next section deals with the estimation of electrophoretic
mobilities and diffusion coefficients for all the species partici-
pating in the reaction. In the final Results and Discussion
section, the channel network flow configurations used to initiate
the reaction are described together with measured concentration
profiles as a function of time. The measured profiles are then
compared with calculated curves based on the parameters
estimated in earlier sections. Finally, the main conclusions are
summarised.

Experimental

Materials

Water was purified by reverse osmosis and by passage through
a Milli-Q Reagent system. Ethanol (absolute AR grade, Fisher
Scientific), Ni(NO3)2·6H2O (99%, Acros Organics), PADA
(99%, Sigma), Rose Bengal (dye content 95%, Aldrich) and tris
buffer (tris(hydroxymethyl)methylamine, AnalaR grade, BDH)
were used without further purification.

Methods

The micro-reactor chip was fabricated according to published
procedures15,16 with minor variations. For the channel network
used in this study (Fig. 1), reservoirs A, B, C and D are linked
by non-continuous large channels which are etched within the
bottom plate. The breaks in the large channels are linked by
rectangular grids of small channels which are etched on the
lower side of the middle plate. The grids of small channels have
a high resistance to hydrodynamic flow and act to suppress
pressure driven flow resulting from differences in the reservoir
heights. The micro-reactor assembly is completed by thermal
bonding of the ‘sandwich’ of the bottom, middle and a 20 mm
thick upper plate. Holes drilled through the middle and upper
plates connect to the ends of the large channel segments and
form the reagent reservoirs. The strategy of using rectangular
grids of small channels (as opposed to sections containing only
a single small channel) is employed in order to avoid fabrication
failure due to misalignment between the bottom and middle
plates during thermal bonding.

The bottom and middle plates were made from White Crown
glass sheets pre-coated for photolithographic etching (Align

Rite, 3 mm thickness). The channel network design was drawn
in large scale, photoreduced and transferred to the photoresist
layer using a standard UV exposure unit (Mega Electronics,
Cambridge, UK). Using an etch solution comprising 250 ml of
water, 12.5 g ammonium fluoride (98%, Lancaster) and 7 ml of
40% HF solution in water (AnalaR grade, BDH Merck), the
bottom plate was etched for 10 min at 65 °C. The middle plate
was etched for 1 min at 65 °C. Etching was carried out by
placing the glass pieces on a support in the etch solution with
patterned side facing downwards within a heated ultrasonic bath
(Ultrawave Scientific Supplies, Nottingham, UK). Ultrasound
was applied continuously to ensure that etch debris is effec-
tively removed during the etch and that fresh etchant solution
remains in good contact with the surface. The bottom and
middle plates were thermally bonded together by placing them
in a muffle furnace set at 570 °C for 3 h. A quartz block of mass
70 g was placed on top of the assembly to aid bonding. The top
block was then bonded to the two bonded lower plates using the
same procedure.

An Axiovert S100 inverted microscope (Carl Zeiss) using
transmission optics was employed to obtain both conventional
micrographs and quantitative absorbance images of the micro-
reactor. The absorbance imaging method is described fully in
ref. 17. Briefly, at a fixed wavelength selected by insertion of a
narrow bandpass filter in the microscope light path, digitised
256 3 256 arrays of camera pixel transmission intensity values
are collected for the sample system (the chip containing an
absorbing solution), the same chip filled with solvent and a
“dark” image. The intensity arrays are I, I0 and Id respectively.
The combined set of intensity arrays are then converted to a
single array of absorbance values A using A = log10{(I02 Id)/(I
2 Id)}. From the Beer-Lambert law (A = Ecd where d is the
path length, c is the concentration of the absorbing species and
E is the extinction coefficient at the relevant wavelength), the
array of absorbance values yields either the path length d (equal
to the channel depth) or the concentration at that pixel position.
Quantitative 3D profiles of the channel network in the
assembled device were obtained using this analysis for
micrographic absorbance images of the channels filled with
aqueous solutions of Rose Bengal (2.1 g l21). A wavelength of
550 nm, selected using a narrow bandpass filter (Edmund
Scientific N43-126, peak 550 nm, full width at half maximum
10 nm) was used. Concentration profiles of PADA (wavelength
of maximum absorbance lmax = 450 nm) and the NiPADA2+

complex (lmax = 550 nm) were determined by similar analysis
of micrographic absorbance images obtained using the appro-
priate narrow bandpass optical filter and using the values of d
measured in the profiling work. For PADA, the Edmund
Scientific N43-111 (peak 450 nm, full width at half maximum
10 nm) was used; for the complex, the Edmund Scientific N43-
126 (peak 550 nm, full width at half maximum 10 nm) was
used.

Electrokinetic control, voltage and current measurements of
the micro-reactor were made using a home designed power
supply which was constructed by Kingfield Electronics, UK.
The power supply has four channels for voltage outputs, four
channels for monitoring the electrical current of each channel
and four channels to monitor the voltages delivered to each
channel. Programmed control of the timed voltage sequences
applied to each channel plus current and voltage logging was
made using LabVIEW software (National Instruments). For the
chip design used here (Fig. 1), voltages were controlled, and the
currents and voltages logged for three channels only, i.e.
between reservoirs A and D (ground), B and D (ground) and
between C and D (ground). Lengths of shiny Pt wire
(Goodfellow, diameter 0.26 mm, length 20 mm) were used as
electrodes.

Liquid flow rates as a function of the applied voltages were
determined as described in ref. 16, by monitoring the changes in
liquid heights over time for the reservoirs A, B, C and D. The

Fig. 1 Diagram of the micro-reactor channel network and reservoirs. The
thick lines show the large channels which are connected by grids of small
channels which act as hydrodynamic resistance elements. The thin lines
show the external electrical connections and applied voltages.
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reservoirs were connected to vertically mounted, glass 0.5 ml
graduated pipettes (Gallenkamp, approximately 1.2 mm inter-
nal diameter, 130 mm height) via plastic connecting tubes. The
internal diameters of each pipette were measured accurately
using a travelling microscope equipped with a digital clock
gauge with 1 mm resolution (Mitutoyo). The electrodes were
inserted through the sides of the connecting plastic tubes in
order that they did not distort the liquid menisci within the
pipettes. The accuracy of the liquid height measurements was
estimated by repeated measurements to be ±15 mm.

Liquid conductivities were measured using a WTW GmbH
model LF340 AC conductivity bridge operating at 1000 Hz and
equipped with a graphite electrode dip cell with cell constant
equal to 0.475 cm21. All measurements were made at room
temperature equal to 24 ± 1 °C.

Results and discussion

Micro-reactor geometry

The overall micro-reactor geometry and the external electrical
connections, voltages and reservoir labels are shown schemat-
ically in Fig. 1. Each different section of the network of large
cross sectional area channels contains a channel break which is
spanned by a grid of channels of low cross sectional area. The
grids of small channels have a high resistance to hydrodynamic
flow and hence act to suppress pressure driven flow arising from
hydrostatic pressure gradients resulting from small differences
in liquid heights between the different reservoirs. It was
confirmed that such pressure driven flows were negligible by
observation of the lack of liquid reservoir height changes over
an hour following the deliberate creation of high initial reservoir
height differences of 25 mm. Since pressure driven flow was
found to be negligible, species’ mobility within the micro-
reactor under electrokinetic operation results only from electro-
osmosis and electrophoresis. Fig. 2 shows an optical micro-

graph of the channel network in the region of the channel
intersections at positions x and y which, as will be seen later, is
where the reaction occurs.

An illustrative example of a quantitative 3D profile, corre-
sponding to the channel network in the region where a large
channel intersects with a grid of small channels, is shown in Fig.
3. ‘Slices’ through the data array perpendicular to the long axes
of the channels give the cross sectional profiles of the large and
small channels. Since the etching of glass by HF proceeds
isotropically, for an etch of depth d under an etch mask of width
m, the etched channel cross section is expected to consist of
rectangle of dimensions (d 3 m) with channel sides having a
quarter circle shape with radius equal to d.17 The channel cross
sectional area Achannel is given by

(1)

As discussed in ref. 17, the channel shapes in micro-reactors
following thermal bonding are generally slightly distorted from

Fig. 3 3D channel profile in the region of overlap between the large channel and the grid of small channels.

Fig. 2 Optical micrograph of the channel network in the region of the x–y
channel section.
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this idealised shape. However, the channel cross sectional area
Achannel estimated using eqn. 1 with the best-fit values of d and
m is not significantly different to that obtained by integration of
the fit to a slightly distorted channel profile. The large channels
have best-fit values of d and m of 38 ± 2 and 146 ± 5 mm
respectively. The small channels have d = 3.1 ± 0.5 and m =
183 ± 5 mm.

Voltages, currents and flow rates

The electrokinetic mobilities of reagent and solvent species
within the different sections of the channel network are related
to the corresponding electrical currents.16,18,19 Hence, it is
necessary to establish the relationship between the applied
reservoir voltages (VA, VB and VC relative to ground in reservoir
D) and the electrical currents. The currents in the channel
network (Fig. 1) are defined as follows. IA is the current flowing
from reservoir A ? x, IB is from B ? x and IC is from C ? y.
The current flowing from x? y is (IA + IB) and that from y?
D is (IA + IB + IC). The electrical resistance R of a channel
section of length L and cross sectional area A and filled with a
liquid of conductivity k is given by16

(2)

In this study, we have used a high concentration of background
electrolyte (50 mM tris buffer) such that the liquid conductivity
is approximately constant and independent of the local
concentrations of the reaction species (Ni2+, PADA and
complex). In addition, because the bulk liquid conductivity is
relatively high (approximately 1000 mS cm21), corrections to
eqn. 2 arising from surface conductivity are relatively small and
are neglected here.16,18 Under these conditions, the electrical
resistances of the different channel sections are proportional to
the channel lengths and inversely proportional to the channel
cross sectional areas. For the channel network of Fig. 1, one
expects the resistances of the grids of small channels to be large
relative to the same length of a large channel.

The DC circuit equivalent to the channel network (Fig. 1)
contains three connected circuit loops. For each circuit loop, the
applied voltage (relative to ground in reservoir D) is equal to the
sum of the products of resistance and current in each channel
section according to

VA = RAxIA + Rxy (IA + IB) + RyD (AA + IB + IC) (3)

VB = RBxIB + Rxy (IA + IB) + RyD (IA + IB + IC) (4)

VC = RCyIC + RyD (IA + IB + IC) (5)

where the R values refer to the resistance of the channel section
denoted by the subscript. Solution of the three simultaneous
equations provides expressions for IA, IB and IC.

The resistance values were determined by measurements of the
currents IA, IB and IC for a series of different set values of the
voltages VA, VB and VC. At constant set voltages, the currents
were constant over 5 min and responded to a change in voltage
within a second. Each data series was simultaneously fitted to
eqn. 6–8 using the EXCEL Solver function to obtain the best-fit
resistance values. For a data set covering a wide range of
applied voltages in reservoirs A, B and C, a comparison of the
currents measured and those calculated using the set of best-fit
resistance values is shown in Fig. 4. It can be seen that all
currents can be reliably predicted within the experimental
uncertainty of ±0.5 mA. Resistance values for the reaction
solvent system (30 vol% ethanol in water containing 50 mM tris
buffer, pH 7.5 and conductivity = 1028 mS cm21 and the same
solution also containing 2.1 mM Ni2+ ions, conductivity =
1194 mS cm21) are summarised in Table 1. The properties of the
solvent mixture were unaffected by the addition of 2.1 mM
PADA. The magnitudes of RAx, RBx and RCy (all containing a
grid of small channels plus a similar length of large channel) are
all similar and larger than Rxy (containing no grid of small
channels). The resistance RyD is the largest as it contains a grid
of small channels plus the largest length of large channel.

The volumetric liquid electroosmotic flow rate F in a
particular channel section is proportional to the electrical

(6)

(7)

(8)

Fig. 4 Comparison of measured currents with those calculated using eqns.
(6)–(8) with the resistance values listed in Table 1 for solution 1. The data
set corresponds to applied voltages ranges of VA: 30 to 340, VB: 80 to 320
and VC: 2110 to 270 V. The solid line shows a slope of unity.

Table 1 Electrical resistance values (units MW) for the micro-reactor
channel sections indicated by the subscripts when filled with either solution
1 or solution 2. Solution 1 contained 30 vol% ethanol in water, 50 mM tris
buffer, pH 7.5 and conductivity = 1028 mS cm21. Solution 2 had the same
composition plus 2.1 mM Ni2+ ions with conductivity = 1194 mS cm21

Channel section Solution 1 Solution 2

RAx 9.44 8.13
Rxy 3.12 2.68
RyD 15.0 12.9
RBx 8.77 7.55
RCy 10.8 9.28
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current in the corresponding channel section according
to12,16,18,19

(9)

where I is the current, e is the relative dielectric constant of the
liquid, e0 is the permittivity of free space, z is the zeta potential
of the channel wall–liquid interface, h is the liquid viscosity and
k is the liquid conductivity. Fig. 5 shows an example of
measured reservoir height changes used to determine flow rates.
For the set voltages corresponding to Fig. 5, liquid flows out of
reservoir A (the height decreases) into reservoirs B and D for
which the heights increase. Reservoir C has virtually zero flow.
As expected, the algebraic sum of all the flows is zero, i.e. the
total volume of liquid is conserved.

Fig. 6 shows plots of volumetric flow rate versus the
corresponding electrical current for solutions 1 and 2. For
solution 1 (containing no Ni2+ ions) significant flow is observed
and, as expected from eqn. 9, the plot is linear. For 30 vol%
ethanol in water, the relative dielectric constant is 64 and the
viscosity is 0.975 cP. These values were estimated by taking the
volume fraction weighted mean of the values for water and
ethanol.20–22 Substitution of these values and the slope of Fig. 6
into eqn. 9 yields a value of 27 ± 2 mV for the zeta potential of
the channel wall–solution interface. This value is rather low
when compared with literature values for the interface between
glass and water of this pH containing electrolytes such as NaCl
or KCl for which values (somewhat dependent on the exact type

of glass involved) are typically in the range 230 to 280
mV.16,18,23–30 The low value of the zeta potential observed here
may be a consequence of adsorption of the tris buffer to the
channel wall. For solution 2, containing 2.1 mM Ni2+, the zeta
potential is further reduced to 0 ± 2 mV, suggesting that specific
adsorption of Ni2+ ions is occurring. For solutions containing
2.1 mM PADA (not shown), the flow rates were identical to the
solvent mixture without added reagents.

Estimation of electrophoretic mobilities and diffusion
coefficient measurement

As discussed previously,12 for the modelling of chemical
reactions in a micro-reactor operating under electrokinetic
control, one must take account of EOF (electroosmotic flow),
electrophoresis, diffusion and chemical reaction. Within the
electric field present in the micro-reactor, uncharged species,
including the solvent, undergo diffusion and EOF with velocity
veof. The value of veof is given by18,19

(10)

where Ef is the electric field. Within a channel section where the
current is I, the cross sectional area is Achannel and the liquid
conductivity is k, the local value of Ef = I/Achannelk. Hence,
knowledge of the current–voltage relationships and the channel
cross sectional area enables the estimation of veof for any
channel section with any voltage settings. Charged species
move with a velocity equal to the vector sum of veof and the
electrophoretic velocity vph. The electrophoretic velocity vph is
given by18,19

(11)

where ze is the charge on the species, D is the diffusion
coefficient, k is the Boltzmann constant and T is the absolute
temperature. From eqn. (11), it can be seen that vph can be
estimated provided that the diffusion coefficient is known. For
the reaction modelling described later, the values of D for
PADA (uncharged), Ni2+ and the NiPADA2+ complex are, in
any case, required to take account of diffusion. The D values for
the charged species can be used additionally to obtain the
required electrophoretic velocities.

We first describe the measurement of D for the uncharged
PADA using a method based on EOF within a micro-reactor.
Using the simple T shaped channel network micro-reactor
described fully in ref. 16, EOF was used to combine a flowing
stream of PADA with a flowing stream of solvent down the
‘leg’ of the T. For the EOF conditions used, the typical linear
velocities are of the order of 0–1 mm s21. The Reynolds number
(Re equal to Deveofr/h where De is the effective channel
diameter and r is the liquid density) for such flow is typically
less than 1, well below the transition point from laminar to
turbulent flow which occurs at Re of approximately 2500. Thus,
the flowing dye and solvent streams retain their integrity when
combined and mix only by diffusion as they flow together. Fig.
7 shows an example of a measured concentration profile in the
region of the channel junction when a PADA solution is
combined with a solvent stream. From Fig. 7, it can be seen that
the interface between the co-flowing streams is noticeably
broadened as one goes from low Y values (corresponding to
short times after stream combination) to large Y values
(corresponding to long times after stream combination).
Analysis of this diffusional broadening yields the diffusion
coefficient of the PADA.

Using images such as those shown in Fig. 7, PADA
concentration profiles perpendicular to the channel length (i.e.
[PADA] versus X position) corresponding to different times

Fig. 5 Plots of reservoir height changes versus time for the micro-reactor
filled with 30 vol% ethanol in water plus 50 mM tris buffer at pH 7.5.
Applied voltages were VA = 337.5, VB = 120 and VC = 102 V and
measured currents were IA = 17.7, IB = 25.8 and IC = 22.8 mA. The
calculated value of ID ( = IA + IB + IC) = 9.0 mA.

Fig. 6 Plots of flow rates versus current for 30 vol% ethanol in water plus
50 mM tris buffer (filled circles) and the same solvent mixture plus 2.1 mM
Ni2+ (open circles). The solid line corresponds to a zeta potential of 27
mV.
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after stream combination were obtained by taking ‘slices’ of the
data at different Y values. Y values were converted to times after
stream combination using the EOF velocities measured as
described earlier. Measurements were made at two different
velocities, 0.48 and 0.78 mm s21. For short times, such that the
PADA concentrations at the channel edges remain equal to their
initial values, the concentration as a function of X and time t is
given by31

(12)

where c0 is the unperturbed PADA concentration far from the
PADA–solvent interface, D is the diffusion coefficient and erfc
is the error-function complement. The time corresponding to
each Y position was calculated according to

(13)

where Y is the measured Y position of the concentration profile
(see Fig. 7) and Y0 is an adjustable Y shift to take account of the
fact that the Y position corresponding to t = 0 is uncertain for
the channel intersection geometry used here. The four concen-
tration profiles of Fig. 8, corresponding to two different values
of Y and two values of veof, were globally fitted to eqn. 12 and
13 using D and Y0 as adjustable parameters. It can be seen that
the fitted lines show good agreement with the experimental data
using a fitted value of D for PADA of 4.0 3 10210 m2 s21. The
best-fit value of Y0 was found to be 2252 mm which gives the
time values for each concentration profile derived from the data
of Fig. 7. The value of Y0 indicates that time zero, corresponding
to a vertical step change in PADA concentration apparently
occurs at Y = 2252 mm, i.e. outside the region of the channel
intersection. A more realistic interpretation is probably that the
PADA concentration profile is actually slightly distorted from
the ideal vertical step profile at the point at which the solutions
meet, thereby giving the appearance of slightly more diffusion
than expected at short times. The procedure of using a global fit

of the set of concentration profiles was found to be robust, i.e.
constant best-fit values were obtained for widely differing
initial guesses of D and Y0. The use of several concentration
profiles, corresponding to different times after contact, over-
comes the problem of the uncertainty in the channel position
corresponding to time zero.

The diffusion coefficient of Ni2+ ion was estimated using
literature values for the single ion molar conductivity as
follows. At 25 °C, the molar conductivity lm of Ni2+ in aqueous
solutions of NiCl2 is 106.1 cm2 S mol21 at infinite dilution and
decreases to 72.8 cm2 S mol21 at a concentration of 0.05 M.32

According to the Nernst-Einstein equation31

(14)

the value of D for Ni2+ is 7.03 3 10210 m2 s21 at infinite
dilution and decreases to 4.83 3 10210 m2 s21 at 0.05 M due to
a combination of ionic relaxation and electrophoretic effects as
described by Debye–Huckel–Onsager theory.33 For the reaction
solvent containing 30 vol% ethanol in water and 0.05 M tris
buffer, the viscosity is slightly higher than that of water at 25 °C.
Assuming that D scales inversely with viscosity and that the
relaxation and electrophoretic retardation effects in the reaction
solvent are equal to those in 0.05 M NiCl2, we estimate D for
Ni2+ to be approximately 4.5 3 10210 m2 s21. For NiPADA2+,
the value of D at infinite dilution is expected to be slightly lower
than that for PADA because of the increase in molecular volume
due to ion binding. Assuming D for NiPADA2+ (at infinite
dilution) to be 3.0 3 10210 m2 s21 (i.e. 75% of the value for
PADA) and that the fractional reduction in D for NiPADA2+

due to relaxation and electrophoretic effects is similar to that
calculated for Ni2+, leads to an approximate estimate of 2 3
10210 m2 s21 for D of the complex.

In situ imaging of the reaction

The complex formation reaction between Ni2+ and PADA can
be written as

Fig. 7 PADA concentration profile for a T shaped channel network. PADA solution enters from the top left corner and solvent enters from the right.
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(15)

where kf is the second-order, forward rate constant and kr is the
reverse, first-order rate constant. The rate law for the reaction
is

(16)

At 25 °C and pH 7.5, the rate constants kf and kr are 1300 M21

s21 and 0.1 s21 respectively.13,14

The reaction was performed in the micro-reactor as shown
schematically in Fig. 9. Initially, all channels were filled with 30
vol% ethanol in water containing 0.05 M tris buffer. The same
solvent mixture containing 2.1 mM Ni2+ was loaded into
reservoir A using a micro-syringe. Using appropriate control-
ling voltages, the channel connecting reservoir A to D was filled
with Ni2+ solution (by electrophoresis) whilst maintaining zero
flow from/to reservoirs B and C. This flow pattern is denoted
‘flow mode’. Solvent mixture containing 2.1 mM PADA was
then loaded into reservoir B. Using control voltages for the
‘injection mode’, the channel connecting reservoirs B and C

was filled (by EOF) with PADA solution whilst maintaining
zero flow from/to reservoirs A and D. Following the flow-inject
sequence, the A–D channel section is filled with Ni2+ solution
except for the x–y channel section which contains a ‘slug’ of
PADA. Mixing of the Ni2+ and PADA, and hence reaction, is
initiated by restarting the flow mode between A and D. Voltages
and currents corresponding to the ‘flow’ and ‘inject’ modes are
summarised in Table 2.

As seen in the spectra of Fig. 10,14 the complex formation
between Ni2+ and PADA produces a colour change in the visible
wavelength range from the yellow colour of PADA (lmax =
450 nm) to the purple colour of the NiPADA2+ complex (lmax

= 550 nm). For the reaction measurements in the micro-reactor,
each kinetic run was performed twice, once using a wavelength
in the absorbance-imaging microscope of 450 nm and once at
550 nm. Hence, each run yielded a series of 256 3 256 arrays
of values of the optical absorbances at 450 and 550 nm (A450 and
A550) corresponding to each camera pixel position for each time
frame collected. As seen in Fig. 10, the spectra of the PADA and
complex overlap significantly and hence both species absorb at
both 450 and 550 nm. The values of A450 and A550 were used to
derive the concentrations of PADA and the complex using the
Beer-Lambert law as follows. At each wavelength, the ab-
sorbance is given by the sum of contributions from PADA and
the complex according to

(17)

(18)

where d is the optical path length (equal to the channel depth),
E is the extinction coefficient of the superscripted species at the
subscripted wavelength and the square brackets denote concen-
trations. Solution of the two simultaneous equations yields

(19)

Fig. 8 PADA concentration profiles across the interface between co-
flowing streams of PADA solution and solvent. The solid lines show the
global best-fit to the profiles corresponding to the different times shown in
the key.

Fig. 9 Schematic diagram showing the formation of a ‘slug’ of PADA
solution within a stream of Ni2+ solution following a ‘flow-inject-flow’
sequence.

Table 2 Control voltages and electrical currents corresponding to the
‘flow’, and ‘inject’ modes in the micro-reactor (see Figs. 9 and 11)

Flow mode Inject mode

VA/V 225 31
VB/V 160 120
VC/V 134 2110.5
IA/mA 7.2 0
IB/mA 0 11.1
IC/mA 0 211.1

Fig. 10 Absorbance spectra of PADA (solid line) and the NiPADA2+

complex (dashed line). Because of the peak overlap, both species show
significant absorbance at both observation wavelengths used in the micro-
reactor (450 and 550 nm).
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(20)

Fig. 11 shows a series of time snapshots of the concentration
profiles of PADA and complex along the A–D channel in the
vicinity of the x–y intersections where the rectangular slug of
PADA is formed. During PADA injection (upper plots) from
reservoir B to C, the PADA concentration builds up at the
intersection point x and spreads towards y. Using the data of Fig.
5, the expected value of veof for the PADA solution is 0.052 mm
s21 for the inject mode current applied (11.1 mA). Although the
moving front of the PADA slug during injection shows
considerable distortion (upper left plot of Fig. 11), an approx-
imate value of veof can be estimated using a plot (not shown) of
the PADA front position (taken to correspond to [PADA] = 1
mM) versus time. The value for veof of 0.043 mm s21 estimated
in this way is similar to, but significantly smaller than 0.052 mm
s21. In addition to the observed distortion of the PADA solution

front, the PADA solution also spreads back along the channel
section A–x in addition to filling the x–y section. As seen in Fig.
11 (left hand upper plot), the length of the x–y channel section
is 3.8 mm whereas the final width of the PADA slug is 5.0 mm.
This observed ‘leakage’ of the PADA slug, giving an increase of
approximately 20% in the final slug width, is the probable
origin of the 20% reduction in the EOF velocity of the PADA
slug front noted earlier. The right hand upper plot of Fig. 11
shows that a small amount of complex is formed during
injection at a channel position of 22.5 mm, corresponding to
the length of A–x channel section filled with ‘leaked’ PADA.

Following injection, when the flow mode (with current of 7.2
mA) is restarted at 180 s, the EOF velocity of the Ni2+ stream
containing the slug of PADA is uncertain. For the Ni2+ filled
sections of the A–D channel, veof is zero whereas veof for the
PADA filled section (around x–y) is expected to be 0.034 mm
s21. As discussed in the literature,34–36 for a channel with non-
uniform EOF velocities, the flat velocity profile expected for
uniform EOF is distorted since EOF in one zone produces
pressure driven flow in the second zone and the overall mean
velocity is intermediate between the uniform values for the

Fig. 11 Concentration profiles of PADA and the complex along the x–y channel section. Following filling of the A–D channel section with Ni2+ solution
using ‘flow mode’, the slug of PADA is formed using ‘inject mode’ for 0 to 180 s (upper plots). ‘Flow mode’ is restarted for 180–260 s which results in the
consumption of the PADA slug and the formation of a peak of complex (middle plots). ‘Reverse flow’ mode (260–300 s) and ‘stop mode’ is then used to
return the complex peak to channel position zero and leads to the partial reversal of the reaction (bottom plots). In the upper left plot, the vertical dashed lines
show the positions of the x and y channel intersections and serve to relate the channel position scale to the chip geometry.
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different sections. In agreement with this latter expectation, we
find that the average value of veof is approximately 0.01 mm s21

for the reaction conditions used here, i.e. intermediate between
the velocities expected for the PADA and Ni2+ solution zones.
For the profiles shown in the middle plots of Fig. 11 (180–260
s), the Ni2+ moves by electrophoresis from left to right through
the PADA slug. Hence, the PADA slug is eroded from the
trailing edge and a peak of complex grows and shifts to channel
positions closer to the leading edge of the PADA slug. Further
detailed discussion of this reaction sequence is postponed to the
section dealing with quantitative model comparison.

The bottom series of plots of Fig. 11 show the effect of
reversing the flow such that the peak of complex is moved back
to channel position zero. The flow reversal was effected by
manually switching the electrodes between reservoirs A and D,
thereby making A the ground voltage. Voltages and currents
were VD–A = 225, VB–A = 160 and VC–A = 136 V, ID–A = 6.0,
IB–A = 6.8 and IC–A = 1.1 mA (the additional subscripts
indicate that the values are relative to ground at reservoir A
instead of relative to reservoir D as ground as in the rest of this
paper). From the current values, it can be seen that, along with
reversal of the flow along the A–D channel, significant flow
from/to reservoirs B and C also occurs in this situation.
Following the flow reversal from 260–300 s, all flow was then
stopped for 58 s by setting all applied voltages to zero.
Following this flow sequence, the complex peak is positioned in
the approximate centre of the zone containing zero Ni2+ and
hence the complex is expected to partially dissociate back to
free PADA. As seen in the plots, the complex peak diminishes
and the PADA peak is partially restored. Full restoration of the
PADA is not expected since the Ni2+ concentration liberated by
partial dissociation of the complex coupled with the high value
of the reaction equilibrium constant (K = kf/kr = 13000 M21)
is sufficient to maintain an equilibrium concentration of
complex. Although a detailed analysis has not been undertaken,
this data set has been included here to provide an illustration of
the point that voltage control can be used successfully to drive
the reaction both forwards and backwards.

Comparison with modelling

Finally, we compare calculated and measured concentration
profiles for the reaction phase occurring during the re-
application of the flow mode following injection of the PADA
slug. Although this sequence corresponds to the middle plots of
Fig. 11, it is worth noting that the data analysed was actually
obtained in a second independent run which shows good
agreement with the first. For the calculations, the starting
position is taken to be a perfectly rectangular slug of PADA of
width 5 mm centred at channel position 0 (located approx-
imately midway between x–y, see the left hand upper plot of Fig.
11 for the slug position relative to x and y) within a stream of
Ni2+. The EOF velocity is taken to be uniform for all channel
positions and the electrokinetic velocities of all species are
taken to be the vector sum of veof plus the appropriate value of
vph. In fact, as noted above, the EOF is not uniform. However,
the mean EOF velocity (intermediate between 0 for Ni2+ and
0.03 mm s21 for PADA) is an order of magnitude smaller than
the electrophoretic velocities of Ni2+ and the complex and so
this non-uniformity is not expected to have a large effect under
the reaction conditions used.

The numerical calculations take account of EOF, electro-
phoresis, diffusion and chemical reaction. The concentrations of
Ni2+, PADA and complex are functions of both time and
channel position x according to the following set of equa-
tions12

(21)

(22)

(23)

Details of the full numerical procedure for the solution of this
coupled set of differential equations are given in ref. 12. The
situation described here for micro-reactors is identical (from a
theoretical point of view) to that of electrophoretically mediated
microanalysis (EMMA) described both experimentally and
theoretically by the group of Regnier et al.37–40

Calculated and measured concentration profiles are com-
pared in Fig. 12. The full set of calculation parameters is
summarised in Table 3 and compared with independent
estimates of each parameter used. Overall, the calculations
successfully capture the main features of the measured profiles.
In particular, the fact that the reaction of a stream of 2.1 mM
Ni2+ with a slug of 2.1 mM PADA produces a relatively narrow
peak of complex with maximum concentration of 12 mM is
predicted successfully. Detailed features that are not captured
include the following. The concentration profiles at the edges of
the PADA slug are not predicted accurately, probably due to
two main effects. Firstly, the initial slug of PADA is not
perfectly rectangular due to flow distortion of the slug around
the channel corners during the injection phase (see Fig. 11).
Although visualisation and computer modelling of this type of
detailed effect have been discussed in the literature,41–45 such
calculations are extremely computer intensive and thus have
only been attempted for the (relatively) simple case of liquids
not including a variety of different species undergoing chemical
reaction. Secondly, under the conditions of this experiment,
additional distortion of the slug edges beyond that predicted by
diffusion alone is expected to occur due to the non-uniformity of
the EOF mobility along the channel length. The second feature
of the profiles seen in this work which was not predicted is that
the initial width of the slug of PADA (5 mm) is wider than the
gap between the channel intersections x–y (3.8 mm). During
injection, the PADA ‘leaks’ from x–y into the A–x channel
section. Currently, we have no clear explanation for this
effect.

Conclusions

We set out in this study to demonstrate and validate by
comparison with experiment the full set of measurement and
data analysis tools required for the control and prediction of the
spatial and temporal evolution of a chemical reaction within the
channel network of a micro-reactor device. These tools include
(1) the proper design of the channel network to ensure the
absence of uncontrolled pressure driven flow, (2) full 3D
quantitative profiling of the channel network using absorbance
imaging, (3) measurement and modelling of the relationship
between currents and applied voltages, (4) measurement of the
liquid flow rates and their correlation with currents to determine
zeta potentials and hence EOF for any applied voltages, (5)
measurement of diffusion coefficients within a micro-reactor,
(6) estimation of electrophoretic mobilities from conductivity
data, (7) in situ, microscopic absorbance imaging of concentra-
tion profiles and (8) modelling of the full concentration profiles.
Combining and applying these tools, we have demonstrated that
predictable control of the spatial and temporal evolution of the
(relatively simple) reaction between Ni2+ and PADA can be
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Fig. 12 Comparison of calculated concentration profiles of Ni2+ (solid black lines), PADA (red solid lines) and complex (blue solid lines) with measured
profiles for PADA (red points) and complex (blue points). The numbers noted in each plot correspond to the time in seconds elapsed in ‘flow mode’ following
the formation of the PADA slug using a ‘flow-inject’ sequence. The parameters used in the model calculations are summarised in Table 3.

Table 3 Summary of parameters used in the modelling of the concentration profiles of Fig. 12 showing the comparison with independent estimates. For
the conversion of measured absorbances to concentrations, the optical path length (equal to the channel depth, 38 mm) was measured and the necessary
extinction coefficients were taken from the spectra of Fig. 10

Parameter Input value Independent estimation

IA/mA 7.2 measured
IB/mA 0 measured
IC/mA 0 measured
DPADA/m2 s21 4.0 3 10210 measured
DNi/m2 s21 4.4 3 10210 ≈ 4.5 3 10210 estimated from the molar conductivity of 0.05 M NiCl2 in water with a small

correction for the viscosity of the reaction solvent.
Dcomplex/m2 s21 2.4 3 10210 ≈ 2.1 3 10210 estimated assuming Dcomplex at zero ionic strength is 0.75 3 DPADA with

correction for relaxation and electrophoretic retardation at finite ionic strength as for Ni2+.
vphPADA/mm s21 0 zero charge
vphNi/mm s21 0.215 ≈ 0.26 derived from estimate of DNi.
vphcomplex/mm s21 0.117 ≈ 0.12 derived from estimate of Dcomplex.
mean veof/mm s21 0.01 intermediate between measured values of 0 for Ni2+ and 0.03 mm s21 for PADA.
kf/M21 s21 1300 literature value9,10

kr/s21 0.1 literature value9,10

initial PADA slug width/mm 5.0 larger than the x–y distance of 3.8 mm
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reliably achieved to a level that captures most of the main
features. Fundamentally, the ability to control the micron-scale
spatial and temporal evolution of reactions (not achievable in
bulk reactors where concentrations are generally uniform) is a
key feature of micro-reactor technology which has some
analogies with the control exerted on biochemical reactions by
the micron-scale structures of living cells. Exploitation of this
effect, e.g. by controlling a complex, multi-step reaction such
that reaction occurs in a position where the local concentration
of a key intermediate is high, to control and alter chemical
reactivity is a potentially fruitful avenue which is under active
investigation in our Laboratories.
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We demonstrate the formation of a series of diketone
enolates and their subsequent reaction with a,b-unsaturated
carbonyl compounds in order to prepare a variety of Michael
adducts. In all cases, the conversions observed within a
micro reactor were greater than those obtained in batch.

Introduction

Over the past three years, there has been a rapid growth in the
development of micro reaction technology exploiting the
technique of electroosmotic flow (EOF).1 Recent research has
demonstrated that along with multi-component reactions such
as the Suzuki coupling2 and the Wittig reaction,3 multi-step
peptide synthesis can also be performed within a micro
reactor.4,5

We have recently demonstrated the formation of enolates
within a micro reactor using a class of reagents known as silyl
enol ethers.6,7 The enolates were generated in situ using
tetrabutylammonium fluoride and subsequently reacted with a
series of aldehydes and acylating reagents, resulting in the
preparation of b-hydroxy ketones, 1,3-diketones and O-
acylated ketones. We were therefore interested in the prepara-
tion of enolates via the direct treatment of a ketone with a base
and subsequently investigated the area of 1,4-additions.

Conjugate additions of enolates to a,b-unsaturated carbonyl
compounds are generally known as Michael additions or
1,4-additions. The enolates of 1,3-diketone systems are tradi-
tionally formed using bases such as sodium ethoxide,8 we
however observed a reaction between the Michael acceptor and
the sodium ethoxide. As 1,3-dicarbonyl compounds are more
acidic than mono substituted ketones (e.g. acetophenone), the
protons can be abstracted using relatively weak bases (pKa
9–13). We therefore investigated the use of an organic base,
diisopropylethylamine. Here we demonstrate the preparation of
enolates from a series of 1,3-diketones using an organic base,
and their subsequent reaction with a variety of Michael
acceptors to afford 1,4-addition products within a micro
reactor.

Experimental

Micro reactor methodology

The borosilicate glass micro reactor used in this work was
prepared using a standard fabrication procedure developed at
Hull.9 The reactions were carried out using a 4 channel micro
reactor, illustrated in Fig. 1, with approximate channel dimen-
sions of 100 3 50 mm and outer dimensions of 20 3 20 3 25
mm. Micro porous silica frits were placed within the channels in
order to minimise hydrodynamic effects.10 An in-house Lab-
VIEW™ program was used to set and monitor the voltages

applied to platinum electrodes placed in the reservoirs (power
supply was built by Kingfield electronics). All micro reactions
were carried out at room temperature over a period of 20 min to
ensure a sufficient volume of product was generated for
analysis. Reaction products were determined by GC-MS via the
comparison of retention times and spectra with those obtained
from synthetic standards 1, 5, 7 and 9 (Varian GC (CP-3800)
coupled to a Varian MS (2000),CP-Sil 8 column (30 m), injector
temperature 200 °C, helium flow rate 1 ml min21, oven
temperature 50 °C for 4 min then ramped to 250 °C at 30 °C
min21). Product conversions were calculated from the GC-MS
with respect to the amount of respective diketone remaining in
the sample. The synthetic standards were prepared using the
following procedures:

Synthesis of the 1 using 2,4-pentanedione 2

2,4-Pentanedione 2 (0.50 g, 5.00 mmol) was added to a stirred
solution of ethyl propiolate 4 (0.49 g, 5.00 mmol) and
diisopropylethylamine 3 (1.29 g, 10.00 mmol) in ethanol (50
ml), the reaction mixture was subsequently stirred overnight.
The reaction mixture was concentrated in vacuo and subse-
quently purified by silica gel chromatography. Elution with 7%
ethyl acetate in hexane yielded the title compound 1 as a
colourless oil (0.88 g, 89%); dH (400 MHz, CDCl3/TMS) 1.34
(3H, t, J 7.0, CH2CH3), 2.13 (6H, s, 2 3 CH3), 4.24 (2H, t, J 7.0
CH2CH3), 4.4–4.45 (1H, m, COCHCO), 5.74 (1H, d, J 16.9,
CH) and 7.39 (1H, d, J 16.9, CH); dC (100 MHz, CDCl3/TMS)
14.3 (2 3 CH3), 18.5 (CH2CH3), 61.6 (CH2CH3), 61.8
(COCHCO), 125.4 (CH), 141.8 (CH), 165.4 (2 3 CO) and
203.5 (CO2); m/z (EI) 199 (M++1, 15%), 198 (27), 181 (20), 153
(30), 124 (100) and 109 (20).

Synthesis of 5 using benzoyl acetone 6

Benzoyl acetone 6 (0.25 g, 1.54 mmol) was added to a stirred
solution of ethyl propiolate 4 (0.15 g, 1.54 mmol) and
diisopropylethylamine 3 (0.40 g, 3.00 mmol) in ethanol (25 ml),

Fig. 1 Schematic of the micro reactor used in the synthesis of 1.
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the resulting reaction mixture was subsequently stirred over-
night. The reaction mixture was concentrated in vacuo and
subsequently purified by silica gel chromatography. Elution
with 5% ethyl acetate in hexane yielded the title compound 5 as
a pale yellow oil (0.31 g, 78%); dH (400 MHz, CDCl3/TMS)
1.34 (3H, t, J 7.2, CH2CH3), 1.96 (3H, s, CH3), 4.07–4.12 (3H,
m, CH2CH3 and COCHCO), 5.47 (1H, d, J 16.8, CH), 7.69 (1H,
d, J 16.8, CH), 7.69 (1H, m, Ar), 7.80 (2H, m, Ar) and 7.93 (2H,
m, Ar); dc (100 MHz, CDCl3/TMS) 14.2 (CH3), 19.1
(CH2CH3), 60.7 (CH2CH3), 96.7 (COCHCO), 125.2 (CH),
128.6 (Ar, CH), 128.7 (Ar, CH), 129.7 (Ar, CH), 135.2 (Ar, C0),
142.9 (CH), 165.5 (CO), 195.8 (CO) and 204.2 (CO2); m/z (EI)
261 (M++1, 10%), 260 (15), 181 (40) and 105 (100).

Synthesis of 7 using diethyl malonate 8

Diethyl malonate 8 (0.50 g, 3.10 mmol) was added to a stirred
solution of ethyl propiolate 4 (0.30 g, 3.10 mmol) and
diisopropylethylamine 3 (0.80 g, 6.20 mmol) in ethanol (50 ml),
the reaction mixture was subsequently stirred overnight. The
reaction mixture was concentrated in vacuo and subsequently
purified by silica gel chromatography. Elution with 5% ethyl
acetate in hexane yielded the title compound 7 as a colourless oil
(0.73 g, 91%); dH (400 MHz, CDCl3/TMS) 1.27 (3H, t, J 7.0,
CH2CH3), 1.29 (3H, t, J 7.4, CH2CH3), 1.31 (3H, t, J 7.4,
CH2CH3), 4.19–4.27 (7H, m, 3 3 CH2CH3 and COCHCO),
5.88 (1H, d, J 16.4, CH) and 7.28 (1H, d, J 16.4, CH); dC (100
MHz, CDCl3/TMS) 18.6 (3 3 CH2CH3), 61.5 (3 3 CH2CH3),
64.0 (COCHCO), 123.5 (CH), 143.0 (CH), 169.1 (2 3 CO) and
203.5 (CO2); m/z (EI) 259 (M++1, 5%), 258 (15), 257 (50), 255
(95), 227 (100), 212 (80), 182 (23), 167 (50), 109 (40) and 81
(15).

Synthesis of 9 using 2,4-pentanedione 2

2,4-Pentanedione 2 (0.50 g, 5.00 mmol) was added to a stirred
solution of methyl vinyl ketone 10 (0.35 g, 5.00 mmol) and
diisopropylethylamine 3 (1.29 g, 10.00 mmol) in ethanol (50
ml), the reaction mixture was subsequently stirred overnight.
The reaction mixture was concentrated in vacuo and subse-
quently purified by silica gel chromatography; elution with 10%
ethyl acetate in hexane yielded the title compound 9 as a
colourless oil (0.77 g, 89%); dH (400 MHz, CDCl3/TMS) 2.08
(2H, dt, J 7.0, CH2), 2.10 (3H, s, CH3), 2.20 (6H, s, 2 3 CH3),
2.46 (2H, t, J 7.0, CH2CO) and 3.39 (1H, J 7.0, COCHCO); dC
(100 MHz, CDCl3/TMS) 29.3 (2 3 CH3), 30.0 (CH3), 37.9
(CH2), 40.5 (CH2CO) 66.9 (COCHCO), 191.2 (CH2COCH3)
and 204.2 (2 3 CO); m/z (EI) 171 (M++1, 5%), 170 (1), 153
(15), 128 (25), 110 (20), 95 (40), 71 (25), 58 (10) and 43
(100).

Results and discussion

In order to prepare product 1, the enolate of 2,4-pentanedione 2
was formed using diisopropylethylamine 3 and subsequently
reacted with ethyl propiolate 4. After a 24 h period, 89%
conversion of 2,4-pentanedione 2 to product 1 had taken place.
Although there are two isomers of product 1, both in batch and
within a micro reactor, the major product ( > 99%) formed was
the trans product 1 (Scheme 1).

Having demonstrated that compound 1 could be prepared
from 2,4-pentanedione 2 using the organic base diisopropyle-
thylamine 3, this represented a synthetic target for preparation
within a micro reactor (Fig. 1). Prior to the synthesis, the micro
reactor was primed with absolute ethanol, in order to remove
any air or moisture from the channels and microporous silica
frits. A standard solution of diisopropylethylamine 3 (40 ml, 5.0
M) in EtOH was placed in reservoir A, a solution of ethyl
propiolate 4 (40 ml, 5.0 M) in EtOH in reservoir B and
2,4-pentanedione 2 (40 ml, 5.0 M) was placed in reservoir C.
The reaction products were collected in EtOH in reservoir D.
The reagents were manipulated within the device by the
application of the following applied fields; 417, 318, 333 and 0
V cm21 (A, B, C and D respectively). Using continuous flow of
the reagents, resulted in 56% conversion of 2 to 1. However,
when the technique of stopped flow was employed, whereby the
fields are applied for 2.5 s and then turned off for 5.0 s, 95%
conversion of 2 to 1 was observed. In both cases, the reactions
were performed for a period of 20 min, therefore the observed
improvement in conversion can be attributed to the increased
residence time within the micro reactor. Also by stopping the
flow within the device, there is an increase in diffusion between
the reagent streams allowing a higher degree of mixing which
results in higher converison of 2 to product 1.11,12 The
enhancements observed within a micro reactor compared with
batch are summarised in Table 1.

Having demonstrated that the product 1 could be formed
within a micro reactor, we wished to further demonstrate this
technique using another diketone. In order to prepare a synthetic
standard of 5, the enolate of benzoyl acetone 6 was formed
using diisopropylethylamine 3 and subsequently reacted with
ethyl propiolate 4. After 24 h, 78% conversion of 6 to compound
5 was observed in batch, the reaction was therefore transferred
to the micro reactor (Scheme 2).

A standard solution of diisopropylethylamine 3 (40 ml, 5.0 M)
in EtOH was placed in reservoir A, a solution of ethyl propiolate
4 (40 ml, 5.0 M) in EtOH in reservoir B and benzoyl acetone 6
(40 ml, 5.0 M) was placed in reservoir C. The reaction products
were collected in EtOH in reservoir D. The reagents were
manipulated within the device by the application of the
following applied fields; 417, 318, 333 and 0 V cm21 (A, B, C

Scheme 1 Formation of 1 via the deprotonation of 2,4-pentanedione 2.

Scheme 2 Formation of 5 via the deprotonation of benzoyl acetone 6.

Scheme 3 Formation of 7 via the deprotonation of diethyl malonate 8.

Table 1 Comparison of conversions obtained in batch with those obtained
within a micro reactor

Product conversion (%)

Reaction method 1 5 7 9

Batch 89 78 91 89
aContinuous flow 56 15 40 13
a2.5 on/5.0 off 95 34 100 95
a5.0 on/10.0 off N/A 100 N/A N/A

a Reactions performed within a micro reactor.
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and D respectively). Using the continuous flow approach,
resulted in 15% conversion of 6 to 5. However, when the
technique of stopped flow was employed, 2.5 s on and then 5.0
s off for a period of 20 min, 34% conversion was observed. This
was subsequently increased to 100% conversion when using the
regime of 2.5 s applied voltage and 10 s turned off. The
technique was further demonstrated by the preparation of the
Michael adduct 7 of diethyl malonate 8 within a micro reactor.
Using diisopropylethylamine 3, the enolate of diethyl malonate
8 was formed and subsequently reacted with ethyl propiolate 4
to form the product 7. After 24 h, 91% conversion of the diethyl
malonate 8 to the adduct 7 had taken place (Scheme 3).

Using the following procedure, the reaction was subsequently
transferred to a micro reactor: A standard solution of diisopro-
pylethylamine 3 (40 ml, 5.0 M) in EtOH was placed in reservoir
A, a solution of ethyl propiolate 4 (40 ml, 5.0 M) in EtOH in
reservoir B and diethyl malonate 8 (40 ml, 5.0 M) was placed in
reservoir C. The reaction products were collected in EtOH in
reservoir D. The reagents were manipulated within the device
by the application of the following applied fields; 417, 386, 381
and 0 V cm21 (A, B, C and D respectively). Using the
continuous flow approach, resulted in 40% conversion of 8 to 7.
However, when the technique of stopped flow was employed,
whereby the fields were applied for 2.5 s and then turned off for
a further 5.0 s, 100% conversion of 8 to 7 was observed.

As the generality of the technique has been demonstrated
through the use of the highly reactive alkynic Michael acceptor
4, we further illustrated the technique using a less reactive
alkenic acceptor methyl vinyl ketone 10. A synthetic standard of
9 was prepared by the formation of the enolate of 2,4-pentane-
dione 2 using diisopropylethylamine 3, subseqent reaction with
methyl vinyl ketone 10 resulted in the formation of the Michael
adduct 9. After 24 h, 89% conversion of 2 to 9 was observed in
batch, the reaction was therefore transferred to a micro reactor
(Scheme 4).

A standard solution of diisopropylethylamine 3 (40 ml, 5.0 M)
in EtOH was placed in reservoir A, a solution of methyl vinyl
ketone 10 (40 ml, 5.0 M) in EtOH in reservoir B and
2,4-pentanedione 2 (40 ml, 5.0 M) was placed in reservoir C.
The reaction products were collected in EtOH in reservoir D.
The reagents were manipulated within the device by the
application of the following applied fields; 417, 455, 476 and 0
V cm21 (A, B, C and D respectively), continuous flow resulted
in 13% conversion. Using the stopped flow approach (2.5 on/5.0
off), resulted in 95% conversion of 2 to 9.

Interestingly, the flow regimes implemented with these
reactions illustrated the varying reactivities of the respective
diketone enolates i.e. when using continuous flow, 56%
conversion of 2,4-pentanedione 2 to the adduct 1 was observed,
compared with benzoyl acetone 6 whereby 15% conversion to 5
was obtained. In order to increase the conversion, the technique
of stopped flow was implemented whereby the reaction of
2,4-pentanedione 2 required 2.5 s on and 5.0 s off (95%)
compared with 2.5 s on and 10.0 s off for the reaction with

benzoyl acetone 6 (100%). Thus demonstrating that the enolate
of 2,4-pentanedione 2 is more reactive than that of benzoyl
acetone 6.

Conclusions

In conclusion, we have demonstrated the formation of a series of
enolates within a micro reactor using the organic base,
diisopropylethylamine. The enolates were subsequently reacted
with a,b-unsaturated carbonyl compound in order to prepare a
variety of Michael adducts. In all cases, the observed conver-
sion within a micro reactor is greater than that obtained in batch,
in one instance an increase of 22% was observed.

We have also illustrated enhancements in conversion through
the application of the stopped flow technique. This was
particularly highlighted in the synthesis of 5 whereby con-
tinuous flow resulted in an optimised conversion of 15%, by
applying the regime of 2.5 s applied field and 5.0 s stopped flow,
this increased to 34% and subsequently by increasing the time
that the flow was stopped to 10.0 s, the conversion was further
increased to 100%. We propose that the observed increase in
conversion when utilizing stopped flow is due to an effective
increase in residence time within the device and hence an
increase in the diffusive mixing of the reagent streams.

We have therefore demonstrated the successful transfer of a
reaction from batch, where it typically takes hours, to a micro
reactor where it takes seconds or minutes.
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The importance of minimizing the impact that chemical processing has on the environment is growing, with an
increased appreciation of the need to reduce pollution and the depletion of our finite environmental resources.
Optimal use of material, energy and consequent waste management can be recognised as important factors for
environmental protection. In the case of minimising waste there are two approaches, the traditional approach aims
at reducing waste at the end of the pipeline, for example, decreasing emission by catalytic incineration of exhaust
fumes. The second approach is based on minimising waste at the source. In this case, innovative procedures have
to be employed to change both the method and the technology used throughout the production cycle. The
miniaturisation of chemical reactors offers many fundamental and practical advantages of relevance to the
pharmaceutical and fine chemicals industry, who are constantly searching for controllable, information rich, high
throughput, environmentally friendly methods of producing products with a high degree of chemical selectivity.
Indeed, for pharmaceutical companies an informatics-based approach, that micro reactor chemistry can uniquely
deliver, may be the trigger for a step change in processes. This review explores how miniaturisation may
revolutionise chemical synthesis, highlighting in particular the environmental benefits of this new technology,
which include solvent free mixing, in situ reagent generation and integrated separation techniques. Furthermore,
the possibility of preparing the chemicals in the required volume at point of use, negates the need to store and
transport hazardous materials.

1 Introduction

In their simplest form, micro reactor devices consist of a
network of micron-sized channels (typical dimensions are in the
range 10–300 mm) etched into a solid substrate (see, for example
refs. 1–9 for introductory overviews). For solution-based
chemistry, the channel networks are connected to a series of
reservoirs containing chemical reagents and products to form
the complete device or ‘chip’ with overall dimensions of a few
cm.

Reagents can be brought together in a specific sequence,
mixed and allowed to react for a specified time in a controlled
region of the channel network using electrokinetic (electro-
osmotic and electrophoretic) or hydrodynamic pumping. For
electrokinetically-driven systems, electrodes are placed in the
appropriate reservoirs to which specific voltage sequences can
be delivered under automated computer control. This control
offers a simple but effective method of moving and separating
reactants and products within a micro reactor, without the need
for moving parts. Hydrodynamic pumping uses conventional, or
micro-scale pumps (notably syringe pumps) to manoeuvre
solutions around the channel network, however this technique
has the disadvantage of requiring either large external pumps or
complex fabrication of small moving parts.

The largest research effort in the field of micro scale devices
to date has been in analytical science, where the aim has been to
develop a Miniaturised Total Analytical System (m-TAS).10–17

Alongside the continuing development of m-TAS and related
analytical applications, a concerted effort has now begun to
establish the benefits that micro reactors can bring to the field of
reaction chemistry. For example, the ability to manipulate
reagent concentrations in both space and time within the
channel network of a micro reactor, provides an additional level
of reaction control which is not attainable in bulk stirred
reactors where concentrations are generally uniform. Fur-
thermore, the spatial and temporal control of chemical reactions

in micro reactors, coupled with the features of very small
reaction volumes and high surface interactions, is somewhat
akin to the situation of reactions within biological cells. Nature
exploits the organised distribution of reagents within the
micron-sized sub-domains of cells to control and alter chemical
reactivity relative to the situation of homogeneous solutions, in
a rapid and efficient manner. Consistent with this notion, many
reactions have been demonstrated to show altered reactivity,
product yield and selectivity when performed in micro reactors
as compared with conventional bench top glassware.

To date, the outcome of the reported research has confirmed
that micro reactor methodology is applicable to performing both
gas and liquid phase reaction chemistry. From the work cited in
this review article, the evidence is that the unique modus
operendi of micro reactors, namely the low-volume spatial and

Green Context
Traditional chemical manufacturing is heavily based on
economy of scale with large reactors and associated plants
requiring large process batches and associated large scale
transport and storage of raw materials and products. All
these large scale features present health and safety problems
which can lead to major disasters as well as unacceptable
levels of risk to operators and the neighbouring community.
Microreactor chemistry shows great promise as a novel
method on which to build new chemical technology and
processes. The desired product is often produced in higher
yield and purity, and more quickly. Reactions are much
easier to control thus minimising risk and side reactions.
Furthermore, solvent free mixing, in-situ reagent generation
and integrated separation techniques can all help green the
chemistry. JHC
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temporal control of reactants and products in a laminar flow
diffusive mixing environment in which distinctive thermal and
concentration gradients exist, offers a novel method for the
chemical manipulation and generation of products. In short,
micro reactors are new, safe and more atom efficient tools with
which to generate molecules and increase our knowledge of
complex chemical processes.

The technology is still in its early development stage and it
would be presumptuous at this point to expand too far on the
potential applications that micro reactors will find, but some
early trends are clear. In the authors’ experience, reactions
performed in a micro reactor invariably generate relatively pure
products in high yield, in comparison to the equivalent bulk
reactions, in much shorter times and in sufficient quantities to
perform full instrumental characterisation. One of the im-
mediate and obvious applications is therefore in drug and
process discovery, where the generation of compounds either
with different reagents or under variable conditions is an
essential factor. In addition, the opportunity to establish optimal
chemical processes including reaction and formulation is an
exciting capability of the technology, which could be integrated
to appropriate analytical instrumentation. An interesting twist to
the chemistry carried out to date in the authors’ laboratories is
not just the opportunity to separate reactants and products in real
time but also the capability to manufacture and use reagents in
situ. In this review, a brief description of the fabrication and
operation of micro reactors is outlined, followed by a detailed
description of the type of reactions that can be performed in
micro reactors. The environmental significance of performing
the reaction in micro reactors, compared with traditional
techniques, is subsequently highlighted.

2 Fabrication of micro reactors

A number of materials such as silicon, quartz, glass, metals and
polymers have been used to construct micro reactors.11

Important considerations in material choice include chemical
compatibility, ease and reproducibility of fabrication, whether
or not the material supports electroosmotic flow (EOF) with the
solvents of interest and compatibility with detection methods.
Glass is a popular choice since it allows EOF with many
common solvents, is chemically inert, enables the use of visible
light detection and fabrication methods are well established.

Depending on the material used, a range of channel
microfabrication methods such as photolithography, hot em-
bossing, powder blasting, injection moulding and laser micro
forming are available.18 For glass micro reactors, photolitho-
graphic fabrication of channel networks is performed as shown
schematically in Fig. 1 and described in refs. 19 and 20. First,
the channel network is designed and printed using suitable
computer drawing software and a film negative of the desired
final size is then prepared by photoreduction to form the optical
mask. Commercially supplied borosilicate glass photolitho-
graphic plates (thickness 3 mm) coated with a thin metal etch
mask layer (normally chromium) plus an upper layer of positive
photoresist (0.5–2.0 mm depth) are used for channel network
fabrication. The pattern of the required network of inter-
connecting channels is transferred from the optical mask to the
photoresist layer. After light exposure, the photoresist is
developed and removed, together with the chromium layer, to
reveal the areas of glass to be etched. The channels are then
etched using a mixture of 1% HF and 5% NH4F in water at 65
°C, resulting in an etch rate of 0.3–0.5 mm min21. During the
etching process it is important that the system is well agitated to
ensure consistent supply of etchant to the surface plus removal
of etch debris.

The base plate containing the etched channel network must
next be sealed by bonding to an upper plate (17 mm thick)

containing pre-drilled holes which act as reservoirs for reagents
and products. In our laboratories, the upper plate is aligned with
the channel geometry and thermally bonded to the base plate
(typically 575 °C for 3 h).19,20 Thermal bonding is aided by
placing a weighting block of non-adhering quartz of high
softening temperature on the upper plate. A photograph of an
all-glass device produced by the method described is shown in
Fig. 2. For good thermal bonding, it is important to ensure that

both the glass types of the upper and lower plates have the
correct thermal softening and expansion properties. In addition,
the surfaces to be bonded must be clean and flat.

More recently the thermal bonding of ceramic adaptors has
enabled hydrodynamic pumping to be more effectively re-
alised.19 Fig. 3 shows a glass micro reactor with ceramic
adaptors enabling HPLC type fittings to be connected directly to
the chip.

Fabrication in polymeric materials, whilst attractive from an
engineering and cost perspective, does pose a number of reagent
compatibility issues. However, recently, the UK Lab on a Chip

Fig. 1 Photolithographic fabrication of micro reactors.

Fig. 2 A borosilicate glass micro reactor.
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Consortium project demonstrated that polymer devices with
channels fabricated in SU-8 (an epoxy resin) coated on a
polymer support (such as methacrylate) is relatively robust to
chemical attack. The first generation of such devices (Fig. 4) are

now being evaluated. This methodology has the advantage that
the non-wetted bulk of the chip can, if desired, be fabricated
from low cost commodity polymers.

Of all the fabrication media, perhaps metals are the most
robust in terms of engineering requirements and more specifi-
cally, micro mixers have been constructed and applied in
chemical processing. This subject is extensively reviewed in ref.
9.

3 Operation of micro reactors using electrokinetic
control

Pumping of solutions around a channel network by EOF, using
voltages applied via electrodes placed in the reservoirs, has
several significant advantages over hydrodynamic based pump-
ing methods.21–24 It can be easily miniaturised since no
mechanical moving parts are involved and the required voltage
sequences can be readily applied under automated computer
control. For a glass micro reactor, the channel wall–solution
interface normally has a negative charge, arising from ionisa-
tion of surface groups, which are immobile. This immobile
surface charge attracts a diffuse layer (of thickness of the order
of nm) of mobile, oppositely charged counter-ions in the
solution adjacent to the channel wall (cations for a negatively-
charged glass channel wall). As shown schematically in Fig. 5,
application of an electric field along the channel length causes
the nm thick ‘skin’ of mobile cations to move towards the more
negative electrode, which drags all the intervening solution in
the bulk of the channel with it. An important feature of EOF is
that the liquid EOF velocity is constant across the channel
except in the nm thick regions of the diffuse layer of counter-

ions very close to the wall. Unlike EOF, pressure-driven flow
produces a parabolic velocity profile with high velocities in the
channel centre and slow velocities near to the wall, giving rise
to increased ‘blurring’ of reagent zones along a channel length.
Imaging of the different velocity profiles induced by EOF and
pressure-driven flow has been described by Paul et al.25 It
should however be emphasised, that under EOF control,
charged solutes move with an electrophoretic velocity in
addition to the EOF of the solvent.

It should be stressed, that for EOF to be achieved polar
solvent types need to be used (e.g. methanol, DMF, DMSO
etc.). Clearly this limitation could reduce the scope of micro
reactor applications, however the authors are currently develop-
ing a combined electrokinetic/hydrodynamic pumping method
for manipulating reactants, intermediates and products within a
micro reactor device. Such a system offers wider solvent and
reagent capability, whilst still enabling the electrophoretic
mobility of chemical species to be exploited.

4 Reactions performed in micro reactors

The following section reviews the chemical reactions that have
been performed within micro reactor systems to date. The
review is divided into three sections, concentrating on solution
phase synthesis, catalysed reactions and finally gas phase
synthesis.

4(a) Liquid phase reactions

The diazotization of aromatic amines is an industrial process of
great importance, however the dangers of diazotization are well
known. The explosive nature of diazonium salts necessitates
extreme care hence the low volume associated with micro
reactors affords a safe route to perform such reactions. Salimi-
Moosavi et al.26 have demonstrated the synthesis of diazo dyes
within a micro reactor. The authors have reacted 4-ni-
trobenzenediazonium tetrafluoroborate 1 with N,N-dimethyla-
niline 2 in a micro reactor fabricated from glass, to give the red
diazo compound 3 (Scheme 1). The reagents were mobilised in

the reactor, using EOF in either a protic (methanol) or an aprotic
(acetonitrile) solvent, to give conversions of 37 and 22%,
respectively.

In comparison Wootton et al.27 have demonstrated the
synthesis of azo dyes using hydrodynamic pumping within a
micro reactor. The authors demonstrated that aniline 4 could be
converted into the diazonium salt 5 before being reacted in situ
with b-naphthol 6 to form the azo dye 7 in up to 52% overall
conversion (Scheme 2).

Fig. 3 Micro reactor with ceramic fittings.

Fig. 4 Micro reactors fabricated from polymers (Photograph courtesy of
Epigem Ltd.).

Fig. 5 Profile of electroosmotic flow.

Scheme 1
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Hisamoto et al.28 have described the first example of a phase-
transfer reaction in a micro reactor. The authors have success-
fully conducted a phase-transfer diazo coupling reaction in
which a solution of 5-methylresorcinol 8 in ethyl acetate was
reacted with an aqueous solution of 4-nitrobenzenediazonium
tetrafluoroborate 1 to form the azo dye 9 (Scheme 3). Syringe

pumps were used to move the reagents around the reactor
manifold and the authors report that the product was isolated in
100% yield.

Nitration reactions also represent an important but hazardous
process, in which the use of excess quantities of concentrated
nitric and sulfuric acids are used. The reactions are extremely
exothermic and it is hence difficult to control the temperature of
such reactions when performed on a large scale. As a result,
micro reactors have a considerable attraction for these reactions
because the reactor enables not only excellent temperature
control of the reaction but also product selectivity.

Doku et al.29 have reported the nitration of benzene 10 in a
borosilicate glass micro reactor. The benzene was mobilised by
electroosmotic flow as a microemulsion using the surfactant,
sodium dodecyl sulfate (SDS). The nitronium ions, which were
produced in situ by mixing sulfuric and nitric acids, underwent
electrophoretic-induced mobility (i.e. the ions not the reagents
moved). A co-solvent, butan-1-ol, was used to enhance the
solubility of the benzene in the aqueous system. The authors
report that mononitration occurs in 65% conversion to give
nitrobenzene 11 (Scheme 4) and that approximately 8% of

1,3-dinitrobenzene 12 and 5% of 1,3,5-trinitrobenzene 13 were
obtained. Importantly, Doku et al. demonstrated that it is
possible to mobilise a non-polar liquid, such as benzene, using
EOF by dissolving it in a two-phase microemulsion system.

Burns and Ramshaw30 have also investigated the nitration of
benzene and toluene in a micro reactor. They have reported that
the conversion has a linear relationship with temperature. More
interestingly, they have demonstrated that the conversion may
be increased, by reducing the dimensions of the micro reactor
channels. They found that reducing the capillary diameter from
250 to 130 nm more than doubled the rate of nitration. The flow
rates were additionally determined to be critical, with faster
flow rates giving higher conversions. The authors postulate that
the increased flows promoted increased mixing within the
channels.

Skelton et al. have reported the application of micro reactors,
prepared from borosilicate glass, for the Wittig reaction.31,32

The authors used the micro reactor to prepare the cis- and trans-
nitrostilbene esters 14 and 15 using the Wittig reaction (Scheme
5). A number of features such as stoichiometry and ster-
eochemistry were investigated. When two equivalents of the
aldehyde 16 to the phosphonium salt 17 were used in the
reaction, a conversion of 70% was achieved. The micro reactor

demonstrated an increase in reaction efficiency of 10% over the
traditional batch synthesis. The reaction stoichiometry was
subsequently reduced to 1+1, but using a continuous flow of
reagents, as above, the conversion was poor (39%). The
conversion was increased to 59% using an ‘injection’ technique,
where ‘slugs’ of the phosphonium salt 17 were injected into a
continuous flow of the aldehyde 16.

The research was further extended to investigate the
stereochemistry of the reaction. The ratio of isomers 14 and 15
was controlled by altering the voltages applied to the reagent
reservoirs within the device, which in turn affected the EOF and
electrophoretic mobility of the reagents. The variation in the
external voltage subsequently altered the relative reagent
concentration within the device, producing cis/trans ratios in
the region 0.57–5.21. In comparison, the authors report that,
when a traditional batch synthesis was performed based on the
same reaction time, concentration, solvent and stoichiometry, a
cis/trans ratio of approximately 3+1 was observed. This
demonstrated that significant control was possible in a micro
reactor compared with batch reactions.

Sands et al.33 have recently reported the preparation of
enamines in a micro reactor. Enamines are traditionally
prepared under Dean and Stark conditions, where the ketone
and secondary amine are heated to reflux in toluene. These
conditions remove the water from the reaction to produce the
equilibrium-dependent enamine. Using the micro reactor,
cyclohexanone 18 was reacted with pyrrolidine 19 using
methanol as the solvent, in the presence of dicyclohex-
ylcarbodiimide (DCC), to form the enamine 20 in 42%
conversion at room temperature (Scheme 6). Clearly the use of

methanol as solvent at room temperature, compared with the
traditional conditions, represents a more environmentally
friendly procedure. In this case also, the electrophoretic
mobility of the product is thought to be greater than that of
water, so enabling product separation and purification in situ.

Carbanion chemistry is one of the most common methods of
C–C bond formation used in the pharmaceutical industry. In
such reactions large volumes of highly pyrophoric bases are
frequently employed. In addition, large quanties of heat are
frequently generated which means that careful control of the
temperature, to prevent by-product formation, is required.
Hence, micro reactors have a considerable attraction for these
reactions because the reactor enables excellent temperature
control of the reaction.

Wiles et al.34 have recently demonstrated the use of silyl enol
ethers in the aldol reaction within a micro reactor. Quantitative
conversion of the silyl enol ethers to b-hydroxyketones was
observed in 20 min compared to traditional batch systems,
where quantitative yields were only obtained when extended
reaction times of up to 24 h were employed. One example
involved the treatment of the TMS enol ether 21 with tetra-n-
butylammonium fluoride (TBAF), to generate the tetra-n-

Scheme 2

Scheme 3

Scheme 4

Scheme 5

Scheme 6
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butylammonium enolate 22 in situ, followed by condensation
with p-bromobenzaldehyde 23 to give the b-hydroxyketone 24
in 100% conversion (Scheme 7).

Wiles et al.35 have also reported the preparation of the
enolates from a series of 1,3-diketones using an organic base
and their subsequent reaction with a variety of Michael
acceptors such as 25 to afford 1,4-addition products within a
micro reactor (Scheme 8).

When using a continuous flow of the reagents 25 and 26, 15%
conversion to the adduct 28 was observed, compared with 56%
when the diketone 27 was reacted with 25 forming the Michael
adduct 29. The authors, however, demonstrated enhancements
in conversions through the application of the stopped flow
technique. This procedure involved the mobilisation of reagents
through the device for a designated period of time, using an
applied field, and the flow was subsequently paused by the
removal of the applied field, prior to re-applying the field. Using
the regime of 2.5 s on and 5 s off, the conversion to the product
28 was improved to 34%, while lengthening the stopped flow
period to 10 s, resulted in a further increase to 100%. This was
compared to the preparation of 29, in which the regime of 2.5 s
on and 5 s off resulted in an increase in conversion to 95%. This
demonstrated that the enolate of 2,4-pentanedione 27 was more
reactive than the corresponding enolate of benzoyl acetone 26.
The authors propose that the observed increase in conversion,
when using the technique of stopped flow, was due to an
effective increase in residence time within the device corre-
sponding to the different kinetics associated with these
reactions. This approach is clearly relevant to those wishing to
study reaction kinetics of such reactions.

Although the previous result demonstrates the ease with
which reaction conditions may be optimised, it is still
sometimes necessary to heat reactions in order to achieve high
yields of products. Industrially, special equipment is required
when performing large-scale reactions at elevated temperature.
However, Garcia-Egido et al.36 at GlaxoSmithKline have
demonstrated the synthesis of 2-aminothiazoles using a
Hantzsch synthesis within a micro reactor. The paper represents
the first example of a heated reaction using an organic solvent,
within a glass micro reactor under EOF conditions. During the
experiments the T-shaped micro reactor was heated to 70 °C
using a Peltier heater, which was aligned with the channels and
the heat generated by the device was applied to the base of the
micro reactor. Reaction of a-bromoketone 30 with thiourea 31,
using N-methylpyrrolidine (NMP) as solvent, resulted in the
preparation of aminothiazole 32 in up to 85% conversion
(Scheme 9).

Fernandez-Suarez et al.37 have reported the synthesis of
cycloadducts in a micro reactor using hydrodynamic driven
flow. The reactions consisted of Knoevenagel condensation of
an aldehyde 33 with a 1,3-diketone 34 in the presence of

ethylenediamine acetate (EDDA) as catalyst, in aqueous
methanol as solvent. The reaction intermediate underwent an
intramolecular hetero-Diels–Alder reaction to form cycloadduct
35 in 60–68% conversion (Scheme 10).

Environmentally attractive photochemically induced reac-
tions are problematic on a large scale because many chemical
species strongly absorb the light, effectively reducing the path
length, even when powerful irradiation is used. Hence better
results are obtained when the desired reaction is scaled down in
size and Jenson and coworkers38 have reported a photochemical
reaction within a micro reactor. The reactor was fabricated by
bonding a patterned silicon wafer to a quartz wafer, the
advantage of this fabrication technique being that the quartz
substrate allows reaction and detection using UV light of lower
wavelengths than permitted by Pyrex substrates. The authors
investigated the pinacol formation reaction of benzophenone 36
using propan-2-ol as solvent (Scheme 11). The reaction is

known to follow a radical reaction pathway39 and it is reported
that the longer the residence time of the reaction, the greater the
conversion to benzopinacol 37. The authors report that there
was no detectable product formation for flow rates greater than
10 ml min21. With reduced flow rates, having larger residence
times, the conversion improves because the amount of light
absorbed increases and there is therefore sufficient time for the
excited species to diffuse and react with the benzophenone. The
authors report conversions of up to 60% when using flow rates
of 4 ml min21.

Using a similar approach Wootton et al.40 investigated the
photochemical generation of singlet oxygen within micro
reactors. The technique allows the generation of singlet oxygen
without the inherent dangers of forming large quantities of
potentially explosive oxygenated solvents. The singlet oxygen
was formed within the reactor channel by irradiation with a 20
W, 6 V tungsten lamp. The authors have used the afore-
mentioned conditions to convert a-terpinene 38 into ascaridole
39 (Scheme 12) in greater than 80% conversion. For safety,

nitrogen degassing of the product mixture was undertaken as
soon as the solution was collected, hence avoiding accumula-
tion of oxygenated solvents.

Scheme 7

Scheme 8

Scheme 9

Scheme 10

Scheme 11

Scheme 12
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Watts et al. have recently demonstrated the first example of
a multi-step synthesis in a micro reactor where they have used
their devices in peptide synthesis.41,42 The authors evaluated the
reactor using a carbodiimide coupling reaction of Fmoc-b-
alanine 40 (Fmoc = fluorenylmethoxycarbonyl) with the amine
41 to give the dipeptide 42 (Scheme 13). When stoichiometric

quantities of the reagents were used, only ca. 10% conversion to
the dipeptide 42 was achieved. By using two equivalents of
dicyclohexylcarbodiimide (DCC), however, an increase in
conversion to ca. 20% was observed and by applying a stopped
flow technique (2.5 s injection length with stopped flow for 10
s), the conversion of the reaction was further increased to
approximately 50%. Using five equivalents of DCC, a conver-
sion of up to 93% of the dipeptide 42 was obtained using the
stopped flow technique.

The authors also demonstrated that the dipeptide could be
prepared from pre-activated carboxylic acids.41,42 They report
that the reaction of the pentafluorophenyl (PFP) ester of Fmoc-
b-alanine 43 with the amine 41 gave the dipeptide 42
quantitatively in 20 min (Scheme 14). This represented a

significant increase in yield compared with the traditional batch
synthesis, where only a 50% yield was obtained in 24 h.

Having demonstrated that peptide bonds could be success-
fully formed when using a micro reactor, the authors then found
that they could extend the methodology to the preparation of
longer-chain peptides. Using the micro reactor, the Dmab ester
(Dmab = 4-[N-(1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-
3-methylbutyl)-3-amino]benzyl) of Fmoc-b-alanine 44 was
reacted with one equivalent of piperidine or 1,8-diazabicy-
clo(5.4.0)undec-7-ene (DBU)43,44 to give the free amine 41 in
quantitative conversion. This is in comparison to solid phase
peptide synthesis where 20% piperidine in DMF is frequently
employed, which demonstrates the atom efficiency of reactions
performed within the devices. The authors then reacted the
amine in situ with the pentafluorophenyl ester 45 to give the
dipeptide 46 (Scheme 15) in 96% overall conversion.

Having shown that more complex peptides could be produced
by removal of the N-protecting group, the authors then
demonstrated that they could remove the Dmab ester using
hydrazine. The reaction of the Dmab ester 44 with one
equivalent of hydrazine resulted in quantitative deprotection, to
afford the carboxylic acid 40 (Scheme 16). This is in

comparison to the solid phase peptide synthesis where 2%
hydrazine in DMF is generally required to effect complete
deprotection.45

The authors have further extended the approach to the
synthesis of tripeptide 48.42 Reaction of pentafluorophenyl ester
43 with amine 41 formed dipeptide 42, which was reacted with
DBU to effect Fmoc deprotection. The amine 47 was then
reacted in situ with another equivalent of pentafluorophenyl
ester 43 to prepare tripeptide 48 in 30% overall conversion
(Scheme 17). The approach clearly demonstrates that inter-

mediates may be generated in situ and used in subsequent
reactions. Although in the above examples the intermediates are
relatively non-toxic, it is postulated that the approach may be
used to generate highly toxic reagents in situ, that one would
rather not use in a large-scale synthesis.

Having demonstrated that peptide bonds could be success-
fully formed when using a micro reactor, the authors then
investigated racemisation in peptides derived from a-amino
acids.46 Reaction of the pentafluorophenyl ester of (R)-
2-phenylbutyric acid 49, at 0.1 M concentration, with a-
methylbenzylamine 50, gave the product 51 in quantitative
conversion with 4.2% racemisation (Scheme 18). Importantly

there was less racemisation than observed in the batch reaction
at the same concentration and temperature. The reduced level of
racemisation was attributed to the reduced reaction times
observed within the micro reactors.

4(b) Catalytic reactions

Greenway et al. have demonstrated the Suzuki reaction within
a micro reactor.47 This represented an example of heteroge-
neous catalysis where 1.8% palladium on silica was placed in
the central channel of the micro reactor. The catalyst was
immobilised between microporous silica frits prepared from
potassium silicate and formamide. The micro reaction was
optimised using flow injection analysis principles, producing a
conversion of 67% of cyanobiphenyl 52 at room temperature.
The flow injection method adopted allowed the periodic
injection of the aryl halide 53 into a continuous flow of the
phenylboronic acid 54 (Scheme 19). Traditionally, tetra-

hydrofuran (THF) is used as the solvent in this reaction,
however as has been found with many organic solvents THF has

Scheme 13

Scheme 14

Scheme 15

Scheme 16

Scheme 17

Scheme 18

Scheme 19
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very low natural EOF properties and for this reason, it was
mixed with water (75+25) for use in the reaction. The yields
obtained were comparable with Suzuki reactions on a batch
scale using homogeneous catalysis. Importantly, there were
negligible levels of the palladium catalyst in the product, which
was demonstrated using inductively coupled-mass spectrometry
(ICP-MS), this illustrating that the catalyst was not leaching
from the reactor.

One of the interesting observations of the reaction was that,
unlike conventional Suzuki reactions, an additional base was
not required. Although the exact reason for this is not clear, it is
postulated that the electric field may be sufficient to cause
ionisation of the water at the catalyst surface. It is feasible that
the hydroxide formed in this way may be sufficient to perform
the function of the conventional organic or inorganic base.
Alternatively, it has been subsequently proposed that a more
basic environment may be formed at the surface of the micro
reactor. Once again this effect could have wider implications in
the field of clean chemistry.

Wilson and McCreedy48 have reported the use of a micro
reactor to perform the dehydration of hexan-1-ol to hex-1-ene,
using a sulfated zirconia catalyst. The micro reactor was
fabricated from a glass plate, which was etched using
photolithography. A PDMS top block, with pre-drilled holes to
act as reservoirs for the reagents, was then aligned with the
channel geometry. In order to introduce the catalyst into the
micro reactor, it was dusted over the surface of the PDMS face
before the base plate was joined to the top plate. This process
immobilised the catalyst, while simultaneously increasing its
surface area. The overall effect was to produce a catalytically-
active wall of the microchannel. A heater, fabricated from
Nichrome wire, was also immobilised in the top plate. Pumping
was produced with a syringe pump and the products were
analysed by gas chromatography (GC). The conversion of
hexan-1-ol 55 to hex-1-ene 56 was between 85 and 95% with no
additional products being detected (Scheme 20). This yield is

extremely good when compared to the 30% yield expected for
the industrially used process.

The reaction was also applied to ethanol. At a reaction
temperature of 155 °C and using a syringe pump at a flow rate
of 3 ml min21, the product collected was found to contain 68%
ethene, 16% ethane and 15% methane, together with trace
amounts of ethanol. When electroosmotic pumping was used,
the flow rate was between 0.9 and 1.1 ml min21 at a field
strength of 200 V cm21. The only detectable product was
methane, indicating that the reaction had progressed beyond
dehydration to complete cracking of the ethanol. Additionally,
trace amounts of methanol were present in the product. It is
proposed that the slow flow rate of the electroosmotic pumping,
resulted in longer residence times in the reactor. EOF however
cannot be applied to all reactions because organic reactants,
such as hexanol, exhibit no natural EOF under an applied
potential.

The authors used the same device to investigate esterification
reactions, where a 1+1 mixture of acetic acid 57 and ethanol 58
was pumped through the micro reactor using a syringe pump at
a flow rate of 2 ml min21 to produce ethyl acetate 59 (Scheme
21).49 By increasing the temperature of the reaction from room
temperature to 180 °C, the conversion of the reaction was

increased to about 30%. Although the preliminary yield was not
great, the procedure has environmental advantages compared to
the traditional conditions used in esterification reactions.

4(c) Gas phase reactions

Hönicke and coworkers50 have reported the gas phase partial
oxidation of cyclic dienes, to their corresponding monoalkenes,
over palladium and ruthenium/zinc catalysts. The micro
reactors consisted of aluminium wafers, with mechanically-
etched channels, which were activated by anodic oxidation to
obtain a porous oxide layer, which was used as the catalyst
support. Impregnation of an organic solution of palladium(II)
acetylacetonate resulted in microchannels consisting of an 18
mm thick layer of 0.18% Pd catalyst. The wafers were then
stacked in a stainless steel housing to form a micro reactor
consisting of 672 microchannels for a stream of reagents to pass
through. The authors used the device to investigate the
hydrogenation of 1,5-cyclooctadiene 60 to cyclooctene 61
(Scheme 22). The diene 60 was vapourised and mixed with

hydrogen, before being passed through the micro reactor at a
temperature of 150 °C. By increasing the residence time of the
reaction from 35 to 115 ms the authors report that the
conversion increased from 75 to 99.5%. Although the increased
residence time resulted in increased quantities of cyclooctane 62
being formed, the selectivity of cyclooctene 61 decreased from
99.5 to 98% under these conditions. The procedure represented
a novel method for the immobilisation of potentially toxic
catalysts, hence the process has possible environmental ad-
vantages.

The authors used the same device to investigate the
hydrogenation of cis,trans,trans-1,5,9-cyclododecatriene 63 to
the cyclododecenes 64 and 65 (Scheme 23). At a temperature of

150 °C, a selectivity of 85 to 90% was reported, where the
conversion was approximately 90%. The selectivity of this
reaction was lower than the previous example because of the
formation of the by-products 66, 67 and 68. It was demon-
strated, however, that there was a selectivity advantage of the
micro reactor compared to a fixed-bed reactor.

The catalytic hydrogenation of benzene 10 was also investi-
gated (Scheme 24), but complete reduction to cyclohexane 69

was observed to take place when using the Pd catalyst. The
authors report that hydrogenation of benzene to cyclohexene 70
was accomplished using a micro reactor system consisting of a
ruthenium/zinc catalyst, which was incorporated into the micro
reactor using the same methodology, but the conversions were

Scheme 20

Scheme 21

Scheme 22

Scheme 23

Scheme 24
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reported to be low (ca 10%), with a maximum selectivity of
36%.

The use of elemental fluorine in organic synthesis is
problematic as a result of the difficulties associated with the safe
handling of gaseous fluorine.51,52 In addition, fluorination
reactions are generally extremely exothermic and it is difficult
to control the temperature of such reactions when performed on
a large scale. Micro reactors have considerable attraction for
direct fluorination processes because there is only a small
amount of fluorine in the reactor at any given time. The micro
reactor enables excellent temperature control of the reaction as
well as an opportunity for scale up, by the simultaneous use of
many such reactors.

Chambers and Spink53,54 have reported the use of micro
reactors for the fluorination and perfluorination of organic
compounds using elemental fluorine. A nickel or copper micro
reactor was used for the investigation and the liquid reactants
and solvents were introduced into the reaction chamber via a
syringe using a syringe-pump. Fluorine, in a nitrogen carrier
gas, was introduced from a cylinder using a mass-flow
controller. The liquid-gas mixing proceeded via ‘cylindrical
flow’, where the liquid forms an outer cylinder coating the
reactor surface with the gas flowing through the centre. This
flow regime has enormous benefits in that it provides very large
surface-to-volume ratios for the liquid phase, producing a very
efficient reaction over a short distance. The products were
trapped in a tube, which was cooled with either a salt/ice bath (0
°C) or an acetone/carbon dioxide bath (278 °C). The fluorina-
tion of b-dicarbonyl compounds proceeded with a high
efficiency using 10% fluorine in nitrogen at 5 °C and with
formic acid as the solvent. Ethyl acetoacetate 71 was fluorinated
in 99% conversion to give ethyl 2-fluoroacetoacetate 72 while
ethyl 2-chloroacetoacetate 73 was fluorinated in 90% conver-
sion, yielding ethyl 2-chloro-2-fluoroacetoacetate 74 (Scheme
25). Importantly, under these conditions, no perfluorination of

the substrates was observed, with only the monofluorinated
derivatives being isolated. The authors report that the bulk
fluorination of ethyl 2-chloroacetoacetate 73 gives only a low
conversion to 74,55 illustrating that the flow system is more
efficient. This illustrates the catalytic effect of the fluorinated
metal surface.

Sulfur pentafluoride derivative 75 was prepared in 75% yield
by the reaction of the disulfide 76 with 10% fluorine in nitrogen,
using acetonitrile as the solvent (Scheme 26). Similarly,

treatment of the trifluoride 77 with fluorine gave sulfur
pentafluoride derivative 78 in 44% yield.

Perfluorination reactions were found to require an additional
heating stage for the reaction to go to completion. The reaction
of the tetrahydrofuran derivative 79 with 50% fluorine in
nitrogen at 280 °C gave the perfluorinated compound 80 in 91%
yield (Scheme 27). In conventional reactions, cobalt trifluoride

would be used to perfluorinate hydrocarbons.56 Some of the
reactions carried out by the authors, however, required much
lower temperatures than would be expected if this compound
was used.

Jenson and coworkers have also demonstrated the direct
fluorination of aromatic compounds in a micro reactor, a
process difficult to perform on a conventional scale.57 The
reactor was fabricated from silicon and capped with Pyrex using
anodic bonding. The surfaces of the reactor, which were in
contact with the reagents, were coated with a nickel film using
a metal deposition technique. The authors have used the micro
reactor in the fluorination of toluene 81 at room temperature
(Scheme 28). Using ten equivalents of fluorine, in methanol as

the solvent, the authors report an 80% conversion to give the
monofluorinated toluenes. The substitution pattern of the ortho-
82, meta- 83 and para- 84 isomers was determined to be 4+1+2
by GC.

Srinivasan et al.58 performed the partial oxidation of
ammonia using a silicon-based micro reactor. Integrated heaters
as well as flow and temperature sensors were fabricated into the
sub-mm flow channels. The platinum catalyst was deposited in
the reaction channel by electron-beam evaporation via a shadow
mask. The gaseous reactants were fed from cylinders into the
micro reactor by external mass-flow controllers, which main-
tained the desired flow rates. The product composition was
continuously monitored using a mass spectrometer. The authors
reported a change in the micro reactor exhaust composition over
a range of temperatures and flow rates and they also
demonstrated that the conversion and selectivity behaviour of
conventional reactors could be reproduced in a micro reactor.

The effective heat transfer of micro reactors provides very
accurate temperature control for both exothermic and endo-
thermic reactions, thus eliminating undesired side reactions. An
example has been reported by Hessel et al.,59 who demonstrated
that a micro reactor could be used to prepare hydrogen cyanide
via the Andrussow route. In traditional laboratory reactions, the
hydrogen cyanide is reported to hydrolyse to ammonia. The use
of a microheat exchanger in this experiment, however, pre-
vented this further reaction.

5 Concluding remarks

Micro reactor chemistry is currently showing great promise as a
novel method on which to build new chemical technology and
processes in which the reactions generally produce the desired
product in higher yield and purity, in shorter periods of time,
compared with traditional batch reactions. The technology is
still in its early development and it would be presumptuous to
expand too far on the potential applications that micro reactors
will find, but some early trends are clear. One of the immediate
and obvious applications is in combinatorial chemistry and drug

Scheme 25

Scheme 26

Scheme 27

Scheme 28
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discovery, where the generation of compounds with different
reagents or under variable conditions is an essential factor.
Perhaps more intriguing, is what new angles micro reactors
bring to reaction chemistry and these are only now just
emerging. For example, extending the heterogeneous catalyst
work already described one can see how immobilised or
supported reagents could be placed within a device to impart
functionality to a reaction whilst maintaining spatial and
temporal control. In addition, a microchannel system also
provides a potential separation column and integration of a
micro reactor device to one of the many highly sensitive
microchannel-based biological assay systems may therefore not
only be possible, but may also address some of the pharmaceuti-
cal industries’ potential requirements. Apart from the greatly
reduced reaction times demonstrated for the micro reactors,
handling times to assay and chemical reagent costs may be
virtually eliminated. This paradigm is shown diagramatically in
Fig. 6.

Reactions within the micro reactors are found to be more
atom efficient, which is of significant environmental im-
portance as this reduces the quantities of raw materials required
and minimises waste. Furthermore, the technology allows the
temperature of reactions to be controlled, enabling reactions to
be conducted safely, where explosion may be observed if the
reaction was conducted on a batch scale.

The use of solvent for purification of products is often the
largest contributor to waste in a chemical process. Research is
currently underway to investigate the purification of chemicals
within the micro reactors by exploiting the electrophoretic
mobility of the chemical species, which would not require any
solvent to be moved within the reactor. This process may be
further enhanced through the use of supercritical fluid and ionic
liquids, which would be compatible with current micro reactor
devices.

In terms of Green Chemistry, micro reactors clearly offer
considerable potential in performing safer and more efficient
chemical reactions by the use of novel methodologies such as
solvent free mixing, in situ reagent generation and integrated
separation techniques. The capability of producing a parallel
network of micro reactors, the so called ‘scaling out’ of the
process, offers a clear route to generating product volume on
demand, at the point of use, so reducing the need to store and
transport hazardous or reactive chemicals. This is where micro
reactors make the greatest contribution to the publics’ percep-
tion of environmentally clean chemistry.
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Microfluidic combinatorial chemistry
Paul Watts� and Stephen J Haswell

Microreactors are finding increasing application in the field of

combinatorial chemistry. In the past few years, microreactor

chemistry has shown great promise as a novel method on which

to build new chemical technology and processes. It has been

conclusively demonstrated that reactions performed within

microreactors invariably generate relatively pure products in high

yield. One of the immediate and obvious applications is therefore

in combinatorial chemistry and drug discovery.
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Abbreviations
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCC N,N-dicyclohexylcarbodiimide

DMF dimethylformamide

EOF electroosmotic flow

Introduction
Microreactors consist of a network of micron-sized chan-

nels (typical dimensions are in the range 10–300 mm)

etched into a solid substrate (see, for example, [1–9]

for introductory overviews). They may be fabricated from

a range of materials including glass, silicon, quartz, metals

and polymers using a variety of fabrication techniques

including photolithography, hot embossing, powder blast-

ing, injection moulding and laser microforming [10]. For

glass microreactors, photolithographic fabrication of chan-

nel networks is performed as shown schematically in

Figure 1 [11,12].

For solution-based chemistry, the channel networks are

connected to a series of reservoirs containing chemical

reagents to form the complete device with overall dimen-

sions of a few centimetres, as illustrated in Figure 2.

Reagents can be brought together in a specific sequence,

mixed and allowed to react for a specified time in a

controlled region of the channel network using either

electrokinetic (electroosmotic and electrophoretic) or

hydrodynamic pumping. For electrokinetically driven

systems, electrodes are placed in the appropriate reser-

voirs to which specific voltage sequences can be delivered

under automated computer control [13–16]. This control

offers a simple but effective method of moving and

separating reactants and products within a microreactor,

without the need for moving parts. In comparison, hydro-

dynamic pumping uses conventional or microscale pumps

(notably syringe pumps) to manoeuvre solutions around

the channel network; however, this technique has the

disadvantage of requiring either large external pumps or

complex fabrication of small moving parts.

A concerted effort has now begun to establish the benefits

that microreactors can bring to the field of reaction

chemistry. For example, the ability to manipulate reagent

concentrations in both space and time within the channel

network of a microreactor provides an additional level of

reaction control that is not attainable in bulk stirred

reactors, where concentrations are generally uniform

[17��]. Consistent with this notion, many reactions have

been demonstrated to show altered reactivity, product

yield and selectivity when performed in microreactors as

compared with conventional bench-top glassware [18��].

To date, the outcome of the reported research has con-

firmed that microreactor methodology is applicable to

performing both gas- and liquid-phase reaction chemistry

[18��]. From the work cited in this article, the evidence is

that the unique modus operendi of microreactors, namely

the low-volume spatial and temporal control of reactants

and products in a laminar flow diffusive mixing environ-

ment in which distinct thermal and concentration gradi-

ents exist, offers a novel method for the chemical

manipulation and generation of products. In short, micro-

reactors are new, safe and more atom-efficient tools with

which to generate molecules and increase our knowledge

of complex chemical processes.

Reactions performed in microreactors
Most reactions that have been performed in microreactors

have been conducted simply to demonstrate proof of

principle. A summary of the reactions that have been

performed in microreactors to date is presented in Table 1

and these are reviewed in detail in [18��].

This section reviews reactions that have been performed

within microreactor systems specifically with combina-

torial applications.

Skelton and co-workers [19�,20�] have reported the appli-

cation of microreactors, prepared from borosilicate glass,

for the Wittig reaction. They used the microreactor to
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Current Opinion in Chemical Biology 2003, 7:380–387 www.current-opinion.com



prepare the cis- and trans-nitrostilbene esters 1 and 2 using

the Wittig reaction (Figure 3a). Several features such as

stoichiometry and stereochemistry were investigated.

When two equivalents of the aldehyde 3 to the phospho-

nium salt 4 were used in the reaction, a conversion of 70%

was achieved. The microreactor demonstrated an

increase in reaction efficiency of 10% over the traditional

batch synthesis. The reaction stoichiometry was subse-

quently reduced to 1:1, but using continuous flow of

reagents, as above, the conversion was poor (39%). The

conversion was increased to 59% using an ‘injection’

technique, where ‘slugs’ of 4 were injected into a con-

tinuous flow of the aldehyde 3.

The research was further extended to investigate the

stereochemistry of the reaction. The ratio of isomers 1
and 2 was controlled by altering the voltages applied to

the reagent reservoirs within the device, which in turn

affected the electroosmotic flow (EOF) and electrophore-

tic mobility of the reagents. The variation in the external

voltage subsequently altered the relative reagent concen-

tration within the device, producing Z/E ratios in the

region 0.57–5.21. In comparison, the authors report that

when a traditional batch synthesis was performed using

the same reaction time, concentration, solvent and stoi-

chiometry, a Z/E ratio of approximately 3:1 was observed.

This demonstrated that significant control was possible in

a microreactor compared with batch reactions. The

authors also demonstrated that the microreactor could

to used as a tool for the rapid reaction development and

optimisation based on analogue chemistry by using other

aldehydes in the reaction [19�,20�].

Carbanion chemistry is one of the most common methods

of C–C bond formation used in the pharmaceutical

industry. The temperature of the reaction often governs

the stereochemistry of the product, hence microreactors

have a considerable attraction because the reactor

enables excellent temperature control to be attained.

Wiles et al. [21�] have recently demonstrated the use

of silyl enol ethers in the aldol reaction within a micro-

reactor. Quantitative conversion of the silyl enol ethers to

Figure 1
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Photolithographic fabrication of microreactors.

Figure 2

A borosilicate glass microreactor.
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Table 1

Reactions conducted in a microreactor.

Reaction Chip material Solvent Conversion (%) Comments Refs

Suzuki Glass Aq THF 67 EOF [28]
Kumada coupling Polypropylene THF 60 Syringe pump [29]

Nitration Glass Benzene 65 EOF [30]

Enamine Glass MeOH 42 EOF [31]

Diazo coupling Glass MeOH 37 EOF [32]

MeCN 22

Diazotisation Glass DMF/H2O 52 Syringe pump [33]

Photocyanation Polymer Pyrene/H2O 73 Syringe pump [34]

Dehydration Glass/PDMS EtOH 85–95 EOF or syringe pump [35]

Esterification Glass/PDMS EtOH 30 Syringe pump [36]

Photochemical Silicon/quartz (CH3)2CHOH 60 Syringe pump [37]

Photochemical Glass MeOH 80 Syringe pump [38]

Phase transfer Glass EtOAc 100 Syringe pump [39]

Fluorination Ni or Cu Nitrogen gas 90–99 Syringe pump [40,41]

Fluorination Silicon/Pyrex MeOH 80 Syringe pump [42]

Oxidation Al None 75–99 Syringe pump [43]
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b-hydroxyketones was observed in 20 min in the micro-

reactor, compared with traditional batch systems where

quantitative yields were only obtained when extended

reaction times of up to 24 h were employed. One example

involved the treatment of the trimethylsilyl enol ether 5
with tetra-n-butylammonium fluoride (TBAF), to gener-

ate the tetra-n-butylammonium enolate 6 in situ, followed

by condensation with p-bromobenzaldehyde 7 to give the

b-hydroxyketone 8 in 100% conversion (Figure 3b). The

reaction has also been successfully achieved using a

variety of other silyl enol ethers and aldehydes, which

demonstrates that microreactors may be used in the

synthesis of combinatorial libraries.

Similarly, Wiles et al. [22�] have also reported the pre-

paration of the enolates from a series of 1,3-diketones

using an organic base and their subsequent reaction with a

variety of Michael acceptors such as 9 to afford 1,4-

addition products within a microreactor (Figure 3c).

When using a continuous flow of reagents 9 and 10, 15%

conversion to the adduct 12 was observed, compared with

56% when the diketone 11 was reacted with 9 forming the

Michael adduct 13. The authors, however, demonstrated

enhancements in conversions through the application of

the stopped-flow technique. This procedure involved the

mobilisation of reagents through the device for a desig-

nated period of time, using an applied field, and the flow

was subsequently paused by the removal of the applied

field, before re-applying the field. Using the regime of

2.5 s on and 5 s off, the conversion to the product 12 was

improved to 34%, whereas lengthening the stopped-flow

period to 10 s, resulted in a further increase to 100%. This

was compared to the preparation of 13, in which the

regime of 2.5 s on and 5 s off resulted in an increase in

conversion to 95%. This demonstrated that the enolate of

2,4-pentanedione 11 was more reactive than the corre-

sponding enolate of benzoyl acetone 10. The authors

propose that the observed increase in conversion, when

using the technique of stopped flow, was due to an

effective increase in residence time within the device

corresponding to the different kinetics associated with

these reactions. This approach is clearly relevant to those

wishing to study the kinetics of such reactions and the

results demonstrate the ease with which reactions may

be optimised in microreactors when conducting com-

binatorial synthesis.

Although the previous result demonstrates the ease with

which reaction conditions may be optimised, it is still

sometimes necessary to heat reactions to achieve high

yields of products. Industrially, special equipment is

required when performing large-scale reactions at ele-

vated temperature. However, Garcia-Egido et al. [23��]
have demonstrated the synthesis of a series of 2-ami-

nothiazoles using a Hantzsch synthesis within a micro-

reactor. The paper represents the first example of a

heated solution-based organic reaction within a glass

microreactor under EOF conditions. The T-shaped

microreactor was heated to 708C using a Peltier heater,

which was aligned with the channels, and the heat gen-

erated by the device was applied to the base of the

microreactor. Reaction of a-bromoketones such as 14
with a thiourea derivative such as 15, using N-methyl-

pyrrolidinone as solvent, resulted in the preparation of the

aminothiazoles 16 in up to 85% conversion (Figure 4a).

Fernandez-Suarez et al. have reported the synthesis of

cycloadducts in a microreactor using hydrodynamic dri-

ven flow [24�]. The reactions consisted of Knoevenagel

condensation of an aldehyde 17 with a 1,3-diketone 18
with ethylenediamine acetate (EDDA) as catalyst, in

aqueous methanol as solvent. The reaction intermediate

underwent an intramolecular hetero-Diels-Alder reaction

to form cycloadduct 19 in 60–68% conversion (Figure 4b).

Initially, four different compounds were prepared indi-

vidually but the research was extended to a multi-reaction

experiment where all compounds were prepared in a

single run.

Watts et al. [25,26��] have recently demonstrated the first

example of a multi-step synthesis in a microreactor, using

their devices in peptide synthesis. The authors evaluated

the reactor using a carbodiimide coupling reaction of

Fmoc-b-alanine 20 with the amine 21 to give the dipep-

tide 22 (Figure 4c). When stoichiometric quantities of the

reagents were used, only ca 10% conversion to dipeptide

22 was achieved. By using two equivalents of N,N-dicy-

clohexylcarbodiimide (DCC), however, an increase in

conversion to ca. 20% was observed, and by applying a

stopped flow technique (2.5 s injection length with stopped

flow for 10 s) the conversion of the reaction was further

increased to approximately 50%. Using five equivalents of

DCC, a conversion of up to 93% of 22 was obtained using

the stopped-flow technique.

The authors also demonstrated that the dipeptide could

be prepared from pre-activated carboxylic acids [25,26��].
They reported that the reaction of the pentafluorophenyl

(PFP) ester of Fmoc-b-alanine 23 with the amine 21 gave

the dipeptide 22 quantitatively in 20 min (Figure 4d).

This represented a significant increase in yield compared

with the traditional batch synthesis, where only a 50%

yield was obtained in 24 h.

Having demonstrated that peptide bonds could be suc-

cessfully formed when using a microreactor, the authors

then found that they could extend the methodology

to the preparation of longer-chain peptides. Using the

microreactor, the Dmab ester of Fmoc-b-alanine 24
was reacted with one equivalent of piperidine or 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) to give the free

amine 21 in quantitative conversion. This is in compar-

ison with solid-phase peptide synthesis where 20%

Microfluidic combinatorial chemistry Watts and Haswell 383
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piperidine in dimethylformamide (DMF) is frequently

employed, which demonstrates the atom efficiency of

reactions performed within the devices. The authors then

reacted the amine in situ with the pentafluorophenyl ester

25 to give the dipeptide 26 (Figure 5a) in 96% overall

conversion.

Having shown that more complex peptides could be

produced by removal of the N-protecting group, the

authors then demonstrated that they could remove the

Dmab ester using hydrazine. The reaction of the Dmab

ester 24 with one equivalent of hydrazine resulted in

quantitative deprotection, to afford the carboxylic acid 20
(Figure 5b). This is in comparison to solid-phase peptide

synthesis where 2% hydrazine in DMF is generally

required to effect complete deprotection.

The authors have further extended the approach to the

synthesis of tripeptide 28 [26��]. Reaction of pentafluoro-

phenyl ester 23 with amine 21 formed dipeptide 22,

which was reacted with DBU to effect Fmoc deprotec-

tion. The amine 27 was then reacted in situ with another

equivalent of pentafluorophenyl ester 23 to prepare tri-

peptide 28 in 30% overall conversion (Figure 5c). The

approach clearly demonstrates that intermediates may be

generated in situ and used in subsequent reactions,

enabling the combinatorial synthesis of peptides, which

are of biological and pharmaceutical interest.

Having demonstrated that peptide bonds could be suc-

cessfully formed when using a microreactor, the authors

then investigated racemisation in peptides derived from

a-amino acids [27]. Reaction of the pentafluorophenyl

ester of R-2-phenylbutyric acid 29, at 0.1 M concentra-

tion, with a-methylbenzylamine 30, gave the product 31
in quantitative conversion with 4.2% racemisation

(Figure 5d). Importantly, there was less racemisation than

observed in the batch reaction at the same concen-

tration and temperature. The reduced level of racemisa-

tion was attributed to the reduced reaction times

observed within the microreactors. This demonstrates

that there would be real advantages to performing com-

binatorial chemistry in microfluidic reactors compared

with traditional batch systems.

Figure 4
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Conclusions
Microreactor chemistry is currently showing great pro-

mise as a novel method on which to build new chemical

technology and processes. Reactions performed in a

microreactor invariably generate relatively pure products

in high yield, in comparison to the equivalent bulk

reactions, in much shorter times and in sufficient quan-

tities to perform full instrumental characterisation. One of

the immediate and obvious applications is therefore in

combinatorial chemistry and drug discovery, where the

generation of compounds either with different reagents or

under variable conditions is an essential factor. An inter-

esting twist to the chemistry carried out to date is not just

the opportunity to separate reactants and products in real

time but also the capability to manufacture and use

reagents in situ.

The success of pharmaceutical companies resides largely

on the ability to synthesise novel chemical entities and to

optimise the production of marketable drugs. In an
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industry where development costs are extraordinarily

high and attrition rates from lead generation onwards

are about 98%, careful lead selection and ruthless pres-

sure to shorten optimisation times are crucial for survival,

microreactor technology could certainly help meet these

criteria.
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Monitoring of chemical reactions within
microreactors using an inverted Raman
microscopic spectrometer

An inverted Raman microscope spectrometer has been used to profile the spatial evo-
lution of reactant and product concentrations for a chemical reaction within a micro-
reactor operating under hydrodynamic flow control. The Raman spectrometer was
equipped with a laser source at wavelength of 780 nm, confocal optics, a holographic
transmission grating, and a charge-coupled device (CCD) detector. The microreactor
consisted of a T-shaped channel network etched within a 0.5 mm thick glass bottom
plate that was thermally bonded to a 0.5 mm thick glass top plate. The ends of the
channel network were connected to reagent reservoirs that were linked to a syringe
pump for driving the solutions by hydrodynamic pumping within the channels. The
microchannels were 221 �m wide and 73 �m deep. The synthesis of ethyl acetate
from ethanol and acetic acid was investigated as a model system within the microreac-
tor as Raman scattering bands for each reactant and product species were clearly
resolved. Raman spectral intensities of each band were proportional to concentration
for each species and hence all concentrations could be quantitatively measured after
calibration. By scanning specific Raman bands within a selected area in the micro-
channel network at given steps in the X-Y plane, spatially resolved concentration pro-
files were obtained under steady-state flow conditions. Under the flow conditions
used, different positions within the concentration profile correspond to different times
after contact and mixing of the reagents, thereby enabling one to observe the time
dependence of the product formation. Raman microscopy provides a useful comple-
mentary technique to UV/VIS absorbance and fluorescence methods for the in situ
monitoring and analysis of chemical reaction species having their lowest S0-S1 absorp-
tion bands too far in the UV to be of use, due to their probable overlap with the bands
from other reactant, product and solvent molecules.

Keywords: Microreactor / Miniaturization / Monitoring of chemical reactions / Raman micro-
scopic spectroscopy / Synthesis of ethyl acetate DOI 10.1002/elps.200305532

1 Introduction

The development of miniaturized microreactors based on
the so-called “Lab-on-a-Chip” concept has witnessed an
explosive growth in recent years [1–4]. Such miniaturized
devices represent the ability to “shrink” conventional
bench chemical reactors to a size of a few square centi-
metres with major advantages of speed, performance,
integration, portability, sample/solvent quantity, automa-
tion, hazard control, and cost. These merits are important
for a variety of applications in analytical chemistry, bio-
chemistry, clinical diagnosis, medical chemistry and
industrial chemistry [5, 6]. A microreactor is generally

defined as a device consisting of a number of inter-
connecting capillary channels in which small quantities
of a liquid or gas are moved in a specified sequence,
mixed and allowed to react for a specified period of time.
For a liquid-based microreactor, the typical cross sec-
tional dimensions of the channels used are normally in a
range of 10–500 �m. The movement of reagents and
products in microreactors can be achieved in a number
of ways including micropumping and electrokinetic mobi-
lisation by electroosmotic flow coupled with electropho-
resis [7].

To analyse the reagents within a microchannel, a wide
range of analytical methods have been examined with
UV/VIS absorbance and fluorescence techniques being
the most common [5]. Raman spectroscopy offers a num-
ber of advantages over other spectroscopic techniques
for chemical analysis and has in recent years been used
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effectively for process analysis monitoring [8–11]. It
enables the analysis of a wide range of organic species
which possess no UV/VIS chromophores and, since
Raman spectra are “information rich”, can be used to
identify unknown species. Since water is almost Raman
“transparent”, this technique is ideally suited for analyzing
aqueous based reaction media whereas infrared (IR)
methods fail in this case owing to the strong adsorption
by water. The major disadvantage of Raman is that,
relative to UV/VIS methods, the sensitivity is poor and
hence either high concentrations, long data acquisition
times or the use of specialist surface or resonance
enhancement techniques are required. The use of an
inverted microscope optical systems in combination with
a charged coupled device (CCD) detector allows Raman
spectroscopy to be used for measurement of several
Raman spectra simultaneously for chemical reactants
and products within a microreactor. The use of confocal
optics also provides discrimination between points of dif-
ferent depths within the sample. Raman laser excitation
sources covering a range of wavelengths from 496 to
1064 nm have been used for studies of bulk reaction sys-
tems involving liquid and solid-phase reactions. Longer
wavelength sources in the near-IR region are advanta-
geous to suppress unwanted fluorescence background
signal [8].

The aim of the current study was to develop an in situ
chemical imaging technique using Raman spectroscopic
microscopy to obtain spatially resolved concentration
profiles of reactant and product species within a micro-
reactor. The reaction selected for this study was the ester-
ification of ethanol and acetic acid catalysed by H�,
resulting in the products ethyl acetate and water, see
Eq. (1).

CH3COOH�CH3CH2OH H2SO4 CH3COOCH2CH3�H2O (1)�

This reaction was chosen because (i) it is relatively simple
with no side reactions, and (ii) the kinetics of the reaction
are known from the literature [12].

2 Materials and methods

2.1 Chemicals

Ethanol (absolute, A. R. grade) and ethyl acetate (99%)
were obtained from Fisher Scientific (Springfield, NJ,
USA). Acetic acid (99.8%) was provided by Vickers
Laboratories (Pudsey, West Yorkshire, England). Sulphu-
ric acid (97.5%, A. R. grade) was obtained from Aldrich
(Milwaukee, WI, USA) and used as catalyst for the synthe-
sis of ethyl acetate using ethanol and acetic acid. All the
above chemicals were used as received.

2.2 Fabrication of microreactors

The microreactor consisted of a bottom plate of Pyrex
glass (thickness, 0.5 mm) containing an etched micro-
channel which was thermally bonded to a top glass plate
(also 0.5 mm thick). The microchannel network was fabri-
cated by a powder blasting technique in which an Al2O3

particle jet was directed through a nozzle towards the
glass surface for mechanical material removal [13]. The
particle diameters were in the range of 3–30 �m and the
jet was at a speed of about 100 m�s�1 which was set
using an applied pressure of 5�105 Pa. The desired
pattern of the microchannel network was obtained by
scanning the nozzle over the target glass surface coated
with an electroplated copper mask patterned with the
network design. The blasting time was adjusted to control
the channel depth. Figure 1 shows a schematic plan view
of the entire T-shaped channel network and reservoirs
together with an optical micrograph of the junction sec-
tion. The ends of the channel network were connected to
holes (2 mm in diameter) drilled through the top plate
at appropriate positions. Lengths of plastic tubing were

Figure 1. (a) Schematic plan view showing reservoir posi-
tions and (b) optical micrograph of the T-shaped channel
network in the region of the T-junction.
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attached over the holes in the top plate to form the
reagent reservoirs A, B, and C. The reservoirs filled with
the appropriate solutions were then connected to syringe
pumps to drive the reagents through the channel network.

2.3 Instrumentation

Raman microscope spectrometer: All Raman spectra
were acquired with a LabRam inverted microscope spec-
trometer, manufactured by Jobin Yvon Ltd. This spec-
trometer was equipped with dual laser sources at wave-
lengths of 780 and 633 nm, confocal optics, a holographic
transmission grating, and a charge coupled device (CCD)
detector with 1024�256 pixels. The instrument included
a precision motorized XY sample stage for automated
chemical imaging at spatial resolution down to less than
1 �m and extensive software support (LabSpec 4.02)
for data processing. In this study, an Olympus objective
lens of 10� magnification, 10.0 mm working distance,
and numerical aperture (NA) of 0.3 was used (Olympus
UPLFL 37542). A grating with 950 grooves/mm, a con-
focal aperture of 500 �m, an entrance slit of 1000 �m,
and the 780 nm excitation laser were selected for the
experiments. The Raman spectrometer wavelength range
was calibrated using the center frequency of the silicon
band from a silicon sample (520.2 cm�1). Using these
conditions, spectra of adequate signal/noise from the
pure liquid reagents contained in channels of 70 �m depth
required an acquisition time of 5 s. Liquid pumping: A dual
channel syringe pump (PHD 2000; Harvard Apparatus,
South Natick, MA, USA) was used to pump the two reac-
tants into reservoirs A and B of the T-shaped network.
Unreacted reagents and product flowed into reservoir C.

Heating microscope stage: A Microstat heated stage,
supplied by Brunel Microscopes Ltd, UK, was mounted
directly onto the microscope stage to heat the microreac-
tor. The heating plate with a round aperture (diameter,
4.4 mm) for transmitted illumination was controlled via a
controlling unit for temperatures up to 50�C with an accu-
racy of 0.5�C.

3 Results and discussion

3.1 Microchannel profiling

The T-junction of the microreactor channel network,
where the reactants mixed and reacted, is shown in
Fig. 1. To determine the average liquid linear velocity in
the channel, it was necessary to profile the channel cross
section. An optical microscope absorbance imaging
technique [14] of the channel network filled with dye solu-
tion was used to obtain the quantitative 3-D profile of the
T-junction region (see Fig. 2). “Slices” through the data
array perpendicular to the long axes of the channels give
the cross sectional profiles of the three channels (see
Fig. 3). It was observed that the cross sectional shape of
the channel etched by powder blasting consisted of a tra-
pezoidal shape in which the bottom of the channel was
slightly rounded. This shape was markedly different from
the cross sectional shape obtained for a channel pro-
duced by isotropic wet etching of glass which consists
of a rectangle flanked by quarter circles [14]. By fitting
the channel profile (Fig. 3) it was obtained that the best-
fit values of the etch mask width (m), the depth at the
edge of the channel bottom (d), the radius of the curved

Figure 2. 3-D channel profile
in the region of the T-junction
determined using microscope
visible absorbance imaging of
the microreactor filled with a
dye solution.

 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



3242 P. D. I. Fletcher et al. Electrophoresis 2003, 24, 3239–3245

Figure 3. Cross sectional channel profile “sliced” from
the 3-D plot in Fig. 2.

channel bottom (r), with origin shifted a depth (y0), and the
angle between the channel sidewall and the horizontal
plane (�) were 221 � 2, 71 � 2, 202 � 1, 127 � 1 �m,
and 45�, respectively. These parameters enabled the cal-
culation of the channel cross sectional area. It can be
noticed from Figs. 1–3 that the surfaces and edges of the
channels were not smooth. The roughness, typically in the
range of 0.2–2.5 �m, was a consequence of the high
speed Al2O3 particle blasting method since hydrogen flu-
oride (HF) solution etching of glass produces relatively
smooth channels [15].

3.2 Chemical imaging in microchannels

Figure 4 shows the reference Raman spectra for ethanol,
acetic acid, and ethyl acetate which were obtained by fil-
ling the channels with each pure liquid. Background spec-
tra measured using the empty microchannel were sub-
tracted in each case. It was found that ethanol had a
main characteristic band at 882 cm�1, acetic acid had
two at 620 and 893 cm�1, and ethyl acetate had three
characteristic bands at 376, 632, and 845 cm�1. These
characteristic bands obtained were in good agreement
with literature values [9], and were used as fingerprints
for chemical imaging of the three compounds within
microreactors. Based on these spectra, a scan region
from 200 to 1450 cm�1 was used in most of the experi-
mental runs to cover all the main characteristic bands
and also minimize the acquisition time.

Figure 4. Raman spectra of ethanol, acetic acid, and
ethyl acetate.

Figure 5. Raman spectra taken at different positions
across the downstream channel containing co-flowing
streams of acetic acid and ethanol.

We next describe the spatial imaging of mixtures of etha-
nol and acetic acid in the T-junction region of the channel
network. Acetic acid was pumped from reservoir A down
the left channel and ethanol from reservoir B down the
right channel, both at constant flow rates of 0.1 �L�min�1.
No acid catalyst was included and hence no ethyl acetate
product formation is expected in this case. Since the flow
in the microchannels is laminar (the Reynolds number for
the flow is less than 1, well below the threshold value of
2500 at which the transition to turbulent flow occurs), the
two solutions meet at the T-junction and then flow side-
by-side in the downstream channel towards the outlet
reservoir C. Mixing occurs only by interdiffusion across
the interface between the co-flowing laminar streams
[16]. Raman mapping of the T-junction region was made
by programming the movement of the automated micro-
scope stage in both X and Y directions. Using step sizes
of 17.73 �m and 25.09 �m in the X and Y directions,
respectively, an array of 21�15 spectra was recorded.
Figure 5 shows a series of illustrative spectra taken
across the interface region when acetic and ethanol were
co-flowing side by side. The spectra stacked in the figure,
from top to bottom, were taken from five positions across
the channel in X direction 35.46 �m apart and the middle
spectrum was from the central position. The transition
from the channel region filled with acetic acid (bands at
893 and 620 cm�1) to that filled with ethanol (band at
882 cm�1) can be clearly seen.

Using the complete array of spectra, a 3-D plot of Raman
intensities for the band of 893 cm�1 for acetic acid across
the T-junction was obtained and the result is shown in
Fig. 6a. Similarly, the corresponding 3-D plot for ethanol
using the band at 882 cm�1 is shown in Fig. 6b. The con-
tact between the two liquids and the formation of co-flow-
ing laminar streams down the leg of the T towards reser-
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Figure 6. 3-D plots of Raman intensity (without back-
ground subtraction) in the T-junction region for specific
bands; (a) 893 cm�1 from acetic acid, and (b) 882 cm�1

from ethanol.

voir C can be clearly seen. It was noticed that a “spike”
appeared in the left side channel (see Fig. 6b) where only
acetic acid is present. This “spike” of apparent high
Raman intensity, shown as an example, was likely caused
by a defect in the glass structure giving a high fluorescent
signal since it appeared in the same position for several
runs. This “spike” and some additional background noise
have been removed by subtracting a blank spectrum
recorded for water-filled channels in the further data pro-
cessing. In principle, the chemical mapping can be
achieved with different spatial resolution down to less
than 1 �m by changing the step sizes applied to the
microscope stage. However, finer spatial resolution must
be balanced against considerations of the size of the final
array of spectra and the total acquisition time (5 s for each
X–Y location).

Figure 7. Raman intensity profiles across the down-
stream channel for acetic acid at 893 cm�1 and ethanol
at 882 cm�1 at different Y positions corresponding to
different times after first contact between the reagent
streams.

“Slicing” of the 3-D images in Fig. 6 across the X axis
yields the Raman intensity profile at the specific band
across the channel at different Y positions. The different
Y positions correspond to different times after contact
between the two solutions according to

t � Y � Y0

v
(2)

where Y is the measured position in the Y direction (see
Fig. 6), Y0 is at the middle of the top channels where the
two reactants were assumed to first contact each other,
and v is the average linear velocity of liquid flowing in
the Y direction. The average velocity v can be calculated
by dividing the set volumetric flow rate by the channel
cross sectional area. For the combined flow rate used
here (0.2 �L�min�1), the mean liquid velocity was
0.323 mm�s�1. Figure 7 shows three Raman intensity pro-
files across the co-flowing streams of ethanol and acetic
acid corresponding to three positions in the Y direction
(Y = 150, 250, and 350 �m, respectively). These Y posi-
tions correspond to times after contact of the two liquids
of 0.46, 0.77, and 1.08 s, respectively. As seen in Fig. 7,
a slight broadening of the interface between the ethanol
and acetic acid, due to diffusional inter-mixing, occurs
over this time scale.

3.3 Monitoring of a chemical reaction within
microreactor

The synthesis of ethyl acetate from ethanol and acetic
acid was performed in the microreactor under identical
flow conditions to those described above except that
5% (by volume) of sulphuric acid was added into the
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Figure 8. Raman spectra taken at different positions
across the downstream channel containing co-flowing
streams of acetic acid plus catalyst and ethanol. Reaction
to form ethyl acetate occurs at the interface between the
reactant streams.

acetic acid as catalyst. In addition, the Microstat heating
plate was mounted between the microscope stage and
the microreactor to increase the temperature to 37.5�C.
Using the Raman mapping method described above, an
array of spectra covering the T-junction region was
obtained in order to monitor the spatial and temporal evo-
lution of the reaction. Figure 8 shows examples of the
stacked Raman spectra obtained at different X positions
across the down stream channel where ethanol and
acetic acid with catalyst were co-flowing at a temperature
of 37.5�C. The characteristic Raman bands of 632 and
845 cm�1 for ethyl acetate product together with the
bands for ethanol and acetic acid (the middle spectrum
in Fig. 8) are observed in the interface region between
the ethanol and acetic acid streams where mixing and
the esterification reaction occurs. At the channel edges
only the bands due to either acetic acid (the upper spec-
trum in Fig. 8) or ethanol (the bottom spectrum in Fig. 8)
are seen.

To profile the concentrations, the relationships between
solution concentrations and corresponding Raman inten-
sities (the characteristic peak heights, in practice) must
be obtained. This calibration was carried out by recording
the Raman spectra of mixed solutions of varying concen-
trations for all the species involved in the reaction under
exactly the same conditions as used for the reaction.
Figure 9 shows the calibration results for acetic acid,
ethyl acetate, and ethanol with characteristic bands of
893, 632, and 882 cm�1, respectively. In each case, a
linear relation between the solution concentration and
the Raman intensity is observed as expected [8]. It was
also confirmed that the additional reaction product
(water) showed negligible Raman scattering.

Figure 9. Calibration results of Raman intensity vs. con-
centration for ethanol, acetic acid and ethyl acetate.

Figure 10. Concentration profiles for (�) acetic acid,
(�) ethanol, and (�) ethyl acetate across the downstream
channel at different Y positions corresponding to the
times shown on the plot.
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The calibration plots were used in conjunction with the
array of Raman spectra to obtain the concentration pro-
files of the reactants and product across the downstream
microchannel at three Y positions (Y = 750, 1950, and
3150 �m respectively), corresponding to times after con-
tact of the two reactants of 2.3, 6.0, and 9.8 s, respec-
tively. As shown in Fig. 10, the concentrations of the reac-
tants and ethyl acetate product depend on both X posi-
tion (relating to the diffusional mixing of the reactants
between the co-flowing streams) and Y (corresponding
to increasing time for reaction). It was also observed that
the asymmetric nature of the product concentration pro-
file (see Fig. 10). This was likely due to the difference in
diffusion speeds and viscosities of different species in
the mixture region. Optimization of the reaction in the
microreactor thus requires careful consideration of both
mass transfer and reaction kinetic processes. The Raman
concentration imaging method described here is a valu-
able tool needed to test and validate mathematical mod-
els of organic reactions in these systems.

4 Concluding remarks

The results presented here demonstrate the utility of
Raman spectroscopy microscope for profiling the spatial
and temporal evolution of chemical reactions within a
microreactor. As shown by this example, this technique
provides in situ information on the progress of fluidics
(i.e., flow properties), mixing and reactions within channel
networks, and can be used to optimize reactions in micro-
reactors. However, some points should be taken into con-
sideration concerning the recording of Raman spectra
from samples within microreactors. (i) The material and
thickness of the bottom glass plate should be selected
carefully to minimise the background fluorescence sig-
nals from the glass, even though confocal optics are
used. In general, a quartz glass plate with thickness of
0.5–1 mm yields acceptable signal:background ratios.
(ii) For some chemicals, especially in the small volumes
within microchannels, the Raman signals are very weak
and so require long accumulation times (up to a few
minutes) and high concentrations. In some cases, surface

or resonance enhancement may be used to improve the
inherently low sensitivity of Raman scattering. Alterna-
tively, long spectral accumulation times can be used for
steady-state flow conditions (as in this work). Even with
these limitations, this method is expected to find applica-
tions in situ chemical imaging in microreactor channel
networks, particularly for aqueous solvent systems which
enable good transmission of Raman signals.

The Engineering and Physical Sciences Research Council
(EPSRC) of the UK is thanked for funding this study.
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We have demonstrated that peptides may be electro-
phoretically separated from unreacted reagents within an
integrated micro reactor.

Over the past five years there has been a rapid growth in the
development of micro reactor technology exploiting the
technique of electroosmotic flow (EOF).1 Recent research has
demonstrated that a selection of gas and liquid phase reactions
may be successfully performed within micro reactors where the
products are inherently produced in higher yield and purity in
much shorter periods of time compared with traditional batch
reactions.2,3

The authors have recently reported an extensive study on the
synthesis of peptides within micro reactors, in which multi step
reactions may be performed in high overall conversion in much
shorter periods of time when compared with batch reactions at
the same concentration and temperature.4,5 Furthermore, the
reduced levels of racemisation in reactions involving a-amino
acid derivatives is attributed to the reduced reaction times.6

The previous work concentrated on the reaction of a variety
of pentafluorophenyl esters of Boc (tert-butoxycarbonyl) and
Fmoc (9-fluorenylmethoxycarbonyl) protected amino acids
within a micro reactor. In all dipeptide-forming reactions it was
demonstrated that 100% conversion of the pentafluorophenyl
ester to the peptide was achieved with just residual amine still
present in the reaction mixture. In this paper we report the on-
chip separation of the peptide from the unreacted amine by
exploitation of their different electrophoretic mobilities.

The borosilicate glass micro reactors used in this work were
fabricated by Micro Chemical Systems Ltd.7 In both micro
reactor designs the channels had a width and depth of 200 mm
and 65 mm respectively. In order to prevent hydrodynamic flow
a restriction (3 mm in diameter) was fabricated at the entrance to
each channel.8 Platinum electrodes were integrated into the
reservoirs through the bottom glass plate (Fig. 1). The glass
reactor is connected to a MDK™ power supply in order to
initiate electrokinetic flow, where the voltages may be con-
trolled either manually or from a computer controlled panel.
This modified power supply system (Fig. 1) is advantageous
over the previously used assembly4,5 as it is has a wider range
of operating voltages (±1500 V). Prior to use, the micro reactors
were primed with anhydrous N,N-dimethylformamide (DMF)
to remove air and moisture from the channels.

As mentioned above, peptide bond forming reactions within
the micro reactor generally produce a dipeptide contaminated
with only residual amounts of amine. Consequently an initial

study was carried out to investigate the electrophoretic
separation of peptide 1 from an equal concentration of amine 2
(Dmab is 4-{N-[1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-
3-methylbutylamino]benzyl).

A solution of dipeptide 1 (25 ml, 0.1 M) and amine 2 (25 ml,
0.1 M) dissolved in anhydrous DMF was premixed and placed
in reservoir G (ground electrode) of a micro reactor (Fig. 2).
Anhydrous DMF (25 ml) was placed in reservoir A, and an
external voltage was applied in order to induce electrokinetic
flow of the dipeptide 1 from the ground reservoir G to reservoir
A (separated by 3 cm). The experiment was conducted at room
temperature for a period of 20 minutes (the contents of reservoir
A were analysed by HPLC, using a Jupiter C18 10 mm column,
4.6 3 250 mm, with a mobile phase composition of 0.1% TFA
in water and 0.1% TFA in acetonitrile, using a gradient system
of 30% aqueous to 70% aqueous in 20 minutes with a flow rate
of 2.5 ml min21 at room temperature).

When various voltages (Table 1) were applied across the
reservoirs, the peptide 1 was found to move from the ground
reservoir G to reservoir A, with a corresponding decrease in the
volume of DMF in reservoir A and increase in G. We therefore
postulate that the DMF is moving from A to G under
electroosmotic flow whilst the peptide 1 moves in the opposite
direction via its electrophoretic mobility. The analysis illus-
trates that peptide 1 has moved to reservoir A (at the higher
voltage) which leads to preconcentration of the amine 2 in
reservoir G (ground), which could potentially be recycled in
subsequent reactions.

Having demonstrated that it is possible to separate the desired
peptide 1 from the amine 2, a reactor was designed to enable the
synthesis of the peptide 1 by reaction of the amine 2 with the
pentafluorophenyl (PFP) ester 3 (Scheme 1), followed by
subsequent separation within a single device (Fig. 3).

A solution of amine 2 (50 ml, 0.1 M) in DMF was added to
reservoir A and a solution of ester 3 (50 ml, 0.1 M) in DMF was

Fig. 1 MDK™ Power supply and micro reactor; electrodes were fabricated
within the base plate of the micro reactor.

Fig. 2 Micro reactor design for separation.

Table 1 HPLC analysis of 1 and 2 in reservoir A at various voltages

Entry Voltage/V Amine (%) Peptide (%)

1 800 — 100
2 900 — 100
3 1000 — 100
4 1100 — 100
5 1200 — 100
6 1300 — 100
7 1400 — 100
8 1500 — 100

Th is journa l i s © The Roya l Soc ie ty of Chemist ry 20032886 CHEM. COMMUN. , 2003, 2886–2887

D
O

I: 
10

.1
03

9/
b

31
07

44
b



placed in reservoir B and anhydrous DMF (20 ml) was placed in
the ground reservoir G and reservoir C. A continuous voltage of
1000 V and 900 V was applied for 10 min across reservoirs A
and B respectively to collect the dipeptide product 1 in reservoir
G. HPLC analysis indicated that the peptide was produced in
greater than 92% conversion at the ground reservoir. The
dipeptide was then electrophoretically mobilised from the
ground reservoir G to reservoir C by applying a voltage of 1500
V at reservoir C for a further 10 min to collect the pure dipeptide
(Table 2) which showed no trace of any amine 2 or
pentafluorophenyl ester 3.

In summary we have reported for the first time a facile
method of separating a peptide from a reaction mixture using
the reverse electrokinetic flow technique within a micro
reactor.

We wish to thank Novartis Pharmaceuticals for financial
support. We are grateful to Micro Chemical Systems (MCS),
Hull for providing the MDK™ power supply and micro
reactor.
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Scheme 1 Synthesis of dipeptide 1.

Fig. 3 Micro reactor design for synthesis and separation.

Table 2 HPLC analysis of reservoir C

Reservoir C

Entry
Peptide
conversion (%) 2 (%) 3 (%) 1 (%)

1 93 0 0 100
2 92 0 0 100
3 96 0 0 100
4 95 0 0 100
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Abstract—A range of techniques are demonstrated for the solution phase synthesis of esters within an EOF-based borosilicate glass micro
reactor, including the use of mixed anhydrides and the in situ preparation of acyl halides.
q 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past five years, interest in the miniaturisation of
chemical synthesis has grown rapidly with the desire to
miniaturise being driven by the need for greater process
control.1 Due to the predictable thermal and mass
transportation properties observed within a micro reactor a
high degree of reaction control is obtained.2 Also, the
inherently high surface to volume ratio obtained is
advantageous, enabling heat generated by exothermic
reactions to be dissipated rapidly, reducing the likelihood
of thermal runaway. Using an approach referred to as scale-
out or numbering-up,3 a reaction is firstly optimised within
the laboratory using a single micro reactor and in order to
increase production volume, the number of reactors
employed is simply increased. Consequently, a reaction is
only optimised once and all subsequent reactors are
controlled using the same operating conditions, making
the technique cost effective, time saving and flexible. With
these factors in mind, micro reaction technology is of
particular interest to the pharmaceutical industry, where
long term objectives include the desire to perform multiple
functions such as synthesis, screening, detection and
biological evaluation on a single integrated device, resulting
in an overall reduction in the time taken to discover new
lead compounds and put them into production.4

In the context of this paper, a micro reactor is defined as a
device containing a series of interconnecting channels
formed in a planar substrate, with dimensions in the range of
10–400 mm.5 Depending on the application of the device, a
range of substrates have been employed,6 however due to its
compatibility with organic solvents, high mechanical
strength, temperature resistance and optical transparency,
borosilicate glass is the chosen substrate for the work

described herein. The device consists of a borosilicate glass
base plate, containing an etched channel network; and a top
block, containing 3 mm drilled holes to form the reagent
reservoirs.7 Thermal bonding of the two layers affords a
sealed micro reactor, with typical dimensions in the range of
2.5 cm£2.5 cm£2.0 cm (Fig. 1). In order to perform a
reaction, reagents are brought together within the micro
channel using a suitable pumping mechanism, in this case
electroosmotic flow (EOF),8 reacted for a specified period of
time and the reaction products collected in the product
reservoir and analysed using a suitable chromatographic
technique. Using this approach, a number of groups have
successfully synthesised a range of compounds, including;
azo dyes,9 stilbene esters,10,11 peptides,12 1,3-diketones13

and a,b-unsaturated carbonyl compounds,14 demonstrating
reduced reaction times, enhanced conversions and reaction
stereoselectivity.

For many years, functional group incompatibility remained
a problem for synthetic chemists, until Emil Fischer15

developed the notion that an otherwise reactive group could
be temporarily rendered inert by the use of a ‘protecting
group’. In complex systems, such as the synthesis of
peptides,12 there is often a need for more than one protecting
group, it is therefore crucial that the groups can be added

0040–4020/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.
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Figure 1. A typical borosilicate glass micro reactor.
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and removed selectively. The widespread use of carboxyl
groups in organic synthesis has lead to a great deal of work
in the field of carboxyl protection.16 Although many
techniques are available within the literature for the
transformation of carboxylic acids to esters, there remains
a need for mild and rapid techniques that enable the
efficient protection of the carboxyl group in base sensitive
molecules.17 Many of the existing techniques however are
not suitable for use within an electrokinetic environment
due to the extremes of pH (acid/base catalysed) and elevated
reaction temperatures employed. Consequently, the cata-
lytic conversion of mixed anhydrides to esters, demon-
strated by Kim et al.18 was of considerable interest, as the
reaction was found to proceed rapidly and in high yield,
whilst employing mild reaction conditions.

2. Results and discussion

2.1. Use of alkyl chloroformates within a micro reactor

In order to investigate the use of alkyl chloroformates within
a micro reactor and highlight any advantages associated
with the use of this technique, a series of synthetic standards
were prepared and characterised in batch (Scheme 1). The
alkyl chloroformate was added to a stirred solution of
carboxylic acid and triethylamine 1 at 08C, after stirring for
5 min DMAP 2 was added (0.5 equiv.) to afford the
respective ester. Although the reaction is traditionally
performed in DCM, this solvent exhibits no electroosmotic
mobility therefore alternative solvent systems were
investigated. As solvents such as DMF are incompatible
with alkyl chloroformates, prior to transferring the reaction
from batch to a micro reactor, the reaction was investigated
using anhydrous MeCN. As Table 1 illustrates, comparable
conversions were obtained for the preparation of benzoic
acid methyl ester 3 in both DCM and MeCN, consequently
all synthetic standards were prepared using anhydrous
MeCN as solvent.

Using the reaction manifold illustrated in Figure 2, the
preparation of benzoic acid methyl ester 3 was investigated
within a micro reactor; a standard solution of triethylamine
1 (40 ml, 1.0 M) in anhydrous MeCN was placed in
reservoir A, a solution of benzoic acid 4 and methyl
chloroformate 6 (40 ml, 1.0 M) in anhydrous MeCN in
reservoir B, a solution of DMAP 2 (40 ml, 0.5 M) in
anhydrous MeCN in reservoir C and the reaction products
collected in anhydrous MeCN in reservoir D over a period
of 20 min. The reagents were manipulated within the device
using the following applied fields, 276, 400, 318 and
0 V cm21 (A, B, C and D respectively). Analysis of the
reaction products by GC–MS illustrated 100% conversion
of benzoic acid 4 to the ester 3.

The reaction was subsequently repeated without DMAP 2 in
order to investigate whether or not the ester 3 could be
prepared in the absence of a catalyst; a standard solution of
triethylamine 1 (40 ml, 1.0 M) in anhydrous MeCN was
added to reservoir A, a solution of benzoic acid 4 (40 ml,
1.0 M) in anhydrous MeCN in reservoir B, a solution of
methyl chloroformate 6 (40 ml, 1.0 M) in reservoir C and
the reaction products were collected in anhydrous MeCN at
reservoir D. The reagents were manipulated using the
following applied fields, 276, 400, 400 and 0 V cm21.
Although subsequent analysis of the reaction products by
GC–MS illustrated ester 3 formation (ca. 20% conversion),
the reaction mixture also contained a significant quantity of
benzoic anhydride 7 (Scheme 2), a phenomenon previously
reported by Kim et al.19 As a result of this observation, all
subsequent micro reactions were performed using 0.5 equiv.
of DMAP 2.

In order to further demonstrate the technique, the prepa-
ration of 4-nitrobenzoic acid methyl ester 8 was investi-
gated. A standard solution of triethylamine 1 (40 ml, 0.5 M)
in anhydrous MeCN was placed in reservoir A, a solution of
4-nitrobenzoic acid 5 and methyl chloroformate 6 (40 ml,
0.5 M) in anhydrous MeCN in reservoir B, a solution of
DMAP 2 (40 ml, 0.25 M) in anhydrous MeCN in reservoir C
and the reaction products collected in anhydrous MeCN in
reservoir D. The reagents were manipulated within the
device using the following applied fields, 345, 400, 455 and
0 V cm21, to afford 100% conversion of 4-nitrobenzoic acid

   
 

  
  

 

Scheme 1. Preparation of an array of esters using alkyl chloroformates.

Table 1. Comparison of conversions obtained for the preparation of
benzoic acid methyl ester 3 using anhydrous MeCN and DCM

Solvent Conversion (%)

30 min 24 h

DCM 44 67
MeCN 46 69

Figure 2. Schematic of the reactor manifold used to synthesise benzoic acid
methyl ester 3.

Scheme 2. Preparation of the by-product benzoic anhydride 7.
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5 to the methyl ester 8. Using the aforementioned
methodology, the technique was extended to the preparation
of ethyl esters 9 and 10, and benzyl esters 11 and 12. In all
cases, compared to the esterification of benzoic acid 4,
reduced reagent concentrations were employed for all
4-nitrobenzoic acid 5 micro reactions due lower reagent
solubility in anhydrous MeCN. As Table 2 illustrates, in all
cases, comparable conversions were obtained within a
micro reactor compared to the batch technique.

As previously mentioned, the protection of the carboxyl
group is an important transformation used in the synthesis of
peptides, the technique was therefore extended to the
preparation of a series of Boc-glycine esters (Scheme 3).
Using the following procedure, Boc-glycine methyl ester 13
was subsequently prepared within a micro reactor; a
standard solution of triethylamine 1 (40 ml, 1.0 M) in
anhydrous MeCN was placed in reservoir A, a solution of
Boc-glycine 14 and methyl chloroformate 6 (40 ml, 1.0 M)
in anhydrous MeCN was placed in reservoir B, a solution
of DMAP 2 (40 ml, 0.5 M) in anhydrous MeCN in reservoir
C and the reaction products collected at reservoir D in
anhydrous MeCN. The reagents were manipulated within
the device using the following applied fields, 385, 417, 364
and 0 V cm21, resulting in 100% conversion of Boc-glycine
14 to Boc-glycine methyl ester 13. The technique was
further exemplified using ethyl chloroformate 15 and benzyl
chloroformate 16 to afford the respective ethyl ester 17 and
benzyl ester 18 in quantitative conversion. As Tables 2 and
3 illustrate, we have successfully transferred a simple room
temperature technique for the preparation of esters from
batch to a micro reactor, demonstrating enhanced or
equivalent conversions compared to those obtained in

batch. In all cases when employing DMAP 2, no undesirable
anhydride formation was observed.

2.2. In situ preparation of an acyl bromide

Having successfully demonstrated the synthesis of esters
via the mixed anhydride approach, the investigation was
extended to incorporate the preparation of esters via and acyl
halide. As Scheme 4 illustrates, treatment of 4-nitrobenzoic
acid 5 with CBr4 19/PPh3 20 (1:2),19 – 21 enabled the
preparation of the acyl halide 4-nitrobenzoyl bromide 21.
Subsequent quenching of the acyl bromide 21 with
anhydrous MeOH afforded the methyl ester 8 in 100%
conversion over the two-step synthesis.

Using the manifold illustrated in Figure 3, the in situ
preparation of an acyl halide and subsequent ester formation
was investigated. A standard solution of 4-nitrobenzoic
acid 5 (40 ml, 0.2 M) in anhydrous MeCN was placed in
reservoir A, a solution of CBr4 19 (40 ml, 0.2 M) in
anhydrous MeCN in reservoir B and a solution of PPh3 22
(40 ml, 0.4 M) in anhydrous MeCN in reservoir C. In order
to detect the formation of 4-nitrobenzoyl bromide 21 as the
methyl ester 8, the reaction products were collected in
anhydrous MeOH at reservoir D. Manipulation of the
reagents within the device using the following applied
fields, 385, 417, 455 and 0 V cm21, resulted in a
disappointing 11% conversion to the methyl ester 8 with
respect to residual 4-nitrobenzoic acid 5. The low conver-
sion obtained compared to batch is attributed to the poor
electroosmotic flow exhibited by the PPh3 20, therefore in
order to improve reagent flow, the concentration of PPh3 20
was reduced. Using 0.2 M standard solutions, the reagents
were mobilised using the applied fields, 385, 417, 455 and
0 V cm21, whereby 6% conversion to the ester 8 was
obtained.

Table 2. Comparison of the conversions obtained for the preparation of
esters 3–12 in a micro reactor with those in batch

Product No. Conversion (%) Applied field (V cm21)

Batch Micro reaction

3 67 100 276, 400, 318, 0
8 95 100 345, 400, 455, 0
9 100 95 345, 400, 455, 0
10 93 98 385, 396, 386, 0
11 80 91 345, 200, 455, 0
12 98 100 345, 400, 455, 0

 
 

 

Scheme 3. Preparation of Boc-glycine esters 13, 17 and 18.

Table 3. Conversions obtained for the preparation of Boc-glycine esters

Product No. Conversion (%) Applied field (V cm21)

Batch Micro reaction

13 100 100 385, 417, 364 and 0
17 100 100 385, 417, 364 and 0
18 100 100 385, 417, 364 and 0

Scheme 4. Preparation of an acyl bromide using CBr4 26/PPh3 27.

Figure 3. Schematic of the manifold used for the synthesis of ester 8.
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Although initial studies illustrate poor conversion within the
micro reactor (11%), attributed to poor mobilisation of the
PPh3 20, further investigations into solvent system,
concentration of reagents and pumping mechanism are
required in order to fully evaluate the feasibility of this
approach within a micro reactor. Alternatively, polymer-
supported PPh3 could be used with the added advantage
being that resulting products are free from triphenylphos-
phine oxide. Through investigating the above parameters,
the in situ generation and subsequent reaction of acyl
halides should prove to be a synthetically useful trans-
formation within a micro reactor.

2.3. Preparation of phenolic esters within a micro
reactor

Phenyl acetate 22 formed via the acetylation of phenol 23,
Scheme 5 is a synthetically useful compound as subsequent
Fries rearrangement leads to the pharmaceutically important
hydroxyacetophenone.22 Having successfully demonstrated
the preparation of esters using the mixed anhydride
technique, the investigation was extended to the preparation
of phenolic esters. Due to the acidity of the phenolic proton,
the preparation of phenolic esters can be performed using
relatively mild conditions, therefore having previously
demonstrated the mobilisation of triethylamine 1 by EOF,
the organic base was again investigated.

Using the following procedure, the preparation of acetic
acid phenyl ester 22 was investigated; a standard solution of
triethylamine 1 (40 ml, 2.0 M) in anhydrous MeCN was
placed in reservoir A, a standard solution of phenol 23
(40 ml, 2.0 M) in anhydrous MeCN was placed in reservoir
B, a solution of acetyl chloride 24 (40 ml, 2.0 M) in
anhydrous MeCN in reservoir C (Fig. 4). The reagents were
manipulated within the device using the following applied
fields, 345, 400, 364 and 0 V cm21 and the reaction
products collected in anhydrous MeCN at reservoir
D. Analysis of the reaction products by GC–MS illustrated
100% conversion of phenol 23 to the ester 22 had occurred.

Having successfully demonstrated the preparation of
acetic acid phenyl ester 22, the preparation of acetic acid
4-nitrophenyl ester 25 was investigated. Again, a standard

solution of triethylamine 1 (40 ml, 1.0 M) in anhydrous
MeCN was placed in reservoir A, a solution of 4-nitro-
phenol 26 (40 ml, 1.0 M) in anhydrous MeCN was placed in
reservoir B, a solution of acetyl chloride 24 (40 ml, 1.0 M)
in anhydrous MeCN was placed in reservoir C and the
reaction products collected in anhydrous MeCN at reservoir
D. The reagents were manipulated within the device using
the following applied fields, 345, 375, 455 and 0 V cm21,
whereby 77% conversion to the ester 25 was observed (with
respect to residual 4-nitrophenol 26). As the preparation of
acetic acid phenyl esters proved successful, the study was
extended to the preparation of benzoic acid phenyl esters 27
and 28 whereby 100% and 87% conversion were obtained
respectively. As Table 4 illustrates, in all cases, enhance-
ments in conversion were obtained compared to batch.

3. Conclusions

Previous work by Wilson et al.23 demonstrated catalytic
esterification within a heated PDMS/glass micro reactor by
incorporating a solid acid catalyst into the channel network.
Operating the device at 1808C enabled 35% conversion of
a 1:1 ethanol and ethanoic acid solution to ethyl acetate to
be obtained using pressure-driven flow. Compared to the
work described herein, this approach is disadvantageous,
as elevated reaction temperatures are required to
enable relatively moderate conversions to be obtained.
This investigation therefore focussed on the preparation
of an array of esters within a micro reactor at room
temperature.

In conclusion we have demonstrated a range of techniques
for the preparation of esters within an EOF-based,
borosilicate glass micro reactor. With the exception of the
in situ preparation of acyl bromides, excellent conversions
were obtained for all examples investigated. Further studies
are currently underway within our laboratories in order to
improve the conversions obtained for the in situ preparation
of an acyl halide via the use of diphenyldibromo-
phosphorane and to utilise the chemistry in more complex
natural product synthesis.

4. Experimental

4.1. Materials and methods

All solvents were purchased as anhydrous grade over
molecular sieves from Fluka Chemie. Reagents (analytical
grade) were purchased from Sigma-Aldrich and unless
otherwise stated, were used without purification. Nuclear
magnetic resonance (NMR) spectra were recorded as

 
   

   

Scheme 5. Preparation of a series of phenolic esters.

Figure 4. Schematic of the reaction manifold used for the preparation of
acetic acid phenyl ester 22.

Table 4. Conversions obtained for the preparation of phenolic esters

Product No. Conversion (%) Applied field (V cm21)

Batch Micro reaction

22 93 100 345, 400, 364, 0
25 73 77 345, 375, 455, 0
27 96 100 308, 333, 364, 0
28 74 87 259, 308, 364, 0
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solutions in deuteriochloroform (CDCl3), using tetramethyl-
silane (TMS) as an internal standard. The spectra were
recorded on a Joel GX400 spectrometer and the chemical
shifts are given in parts per million (ppm) with coupling
constants in Hertz (Hz). Elemental combustion analyses
were performed using a Fisons Carlo Erba EA1108
analyser. Gas Chromatography–Mass Spectrometry data
was obtained using a Varian GC (CP-3800) coupled to a
Varian MS (2000) with a CP-Sil 8 (30 m) column
(Phenomenex) and ultra high purity helium (99.999%
Energas) carrier gas. Samples were analysed using the
following method, injector temperature 2008C, helium flow
rate 1 ml min21, oven temperature 508C for 4 min then
ramped to 2508C at 308C min21, with a 3.0 min filament
delay.

4.2. Micro reactor methodology

The reactions described herein were carried out using a 4
channel borosilicate glass micro reactor, as illustrated in
Figure 2, with channel dimensions of 350 mm (wide)
£52 mm (deep) £2.5 cm (long).8,24 In order to minimise
the effect of pressure gradients within the micro channels,
micro porous silica frits were placed within the channels.25

In order to mobilise reagents by EOF, platinum electrodes
(0.5 mm o.d. £2.5 cm) were placed within the reagent
reservoirs and voltages applied using a Paragon 3B high
voltage power supply (HVPS) (capable of applying
0–1000 V to four pairs of outputs) (Kingfield electronics,
Sheffield, UK). Automation of the HVPS using an in-house
LabVIEWe program enabled complex sequences of
voltages to be investigated. To enable the results obtained
to be applied to devices of different dimensions, voltages are
reported as applied fields (V cm21) i.e. voltage/channel
length. In order to monitor the progress of the reaction,
experiments were conducted over a period of 20 min, after
which the product reservoir was analysed by GC–MS
whereby comparison of the amount of product with respect
to residual starting material enabled the progression of the
reaction to be determined.

4.3. Batch reactions

4.3.1. General procedure for the preparation of esters
using alkyl chloroformates. A typical experimental
procedure is as follows: Alkyl chloroformate in MeCN
(0.5 ml per mmol) was added to a stirred solution of
carboxylic acid (1 equiv.) and triethylamine 1 (1 equiv.) in
MeCN (0.5 ml per mmol) under N2 at 08C. The reaction
mixture was stirred for a further 5 min prior to the addition
of DMAP 2 (0.5 equiv.) in MeCN (1 ml per mmol). After
stirring overnight, the reaction mixture was concentrated in
vacuo and the residue diluted with DCM (100 ml). The
organic portion was washed with saturated sodium hydro-
gen carbonate (50 ml) followed by dilute hydrochloric acid
(50 ml, 0.1 M). The combined organic extracts were dried
(MgSO4) and concentrated in vacuo to afford the ester.
Residual DMAP 2 was subsequently triturated using DCM/
hexane, to afford the respective ester.

4.3.2. Benzoic acid methyl ester 3.26 Using methyl
chloroformate 6 (0.16 ml, 2.05 mmol), benzoic acid 4
(0.25 g, 2.05 mmol) and DMAP 2 (0.13 g, 1.0 mmol),

benzoic acid methyl ester 3 was obtained (0.19 g, 68%) as
a colourless oil; spectroscopic data as previously reported in
the literature.

4.3.3. 4-Nitrobenzoic acid methyl ester 8.27 Using methyl
chloroformate 6 (0.12 ml, 1.50 mmol), 4-nitrobenzoic acid
5 (0.25 g, 1.50 mmol) and DMAP 2 (0.09 g, 0.75 mmol),
4-nitrobenzoic acid methyl ester 8 was obtained (0.26 g,
97%) as a pale yellow solid; spectroscopic data as
previously reported in the literature.

4.3.4. Benzoic acid ethyl ester 9.27 Using ethyl chloro-
formate 15 (0.20 ml, 2.10 mmol), benzoic acid 4 (0.25 g,
2.10 mmol) and DMAP 2 (0.13 g, 1.05 mmol), benzoic acid
ethyl ester 9 was obtained (0.29 g, 95%) as a pale yellow oil;
spectroscopic data as previously reported in the literature.

4.3.5. 4-Nitrobenzoic acid ethyl ester 10.27 Using ethyl
chloroformate 15 (0.14 ml, 1.50 mmol), 4-nitrobenzoic acid
5 (0.25 g, 1.50 mmol) and DMAP 2 (0.09 g, 0.75 mmol),
4-nitrobenzoic acid ethyl ester 10 was obtained (0.27 g,
93%) as a yellow solid; spectroscopic data as previously
reported in the literature.

4.3.6. Benzoic acid benzyl ester 11.28 Using benzyl
chloroformate 16 (0.29 ml, 2.05 mmol), benzoic acid 4
(0.25 g, 2.05 mmol) and DMAP 2 (0.12 g, 1.0 mmol),
benzoic acid benzyl ester 11 was obtained (0.37 g, 85%)
as a colourless oil; spectroscopic data as previously reported
in the literature.

4.3.7. 4-Nitrobenzoic acid benzyl ester 12.28 Using benzyl
chloroformate 16 (0.21 ml, 1.50 mmol), 4-nitrobenzoic acid
5 (0.25 g, 1.50 mmol) and DMAP 2 (0.09 g, 0.75 mmol),
4-nitrobenzoic acid benzyl ester 12 was obtained (0.35 g,
90%) as a colourless oil; spectroscopic data as previously
reported in the literature.

4.3.8. tert-Butoxycarbonylaminoacetic acid methyl ester
13.28 Using methyl chloroformate 6 (0.11 ml, 1.42 mmol),
Boc-glycine 14 (0.25 g, 1.42 mmol) and DMAP 2 (0.09 g,
0.71 mmol), the title compound 13 was obtained (0.26 g,
93%) as a colourless oil; spectroscopic data as previously
reported in the literature.

4.3.9. tert-Butoxycarbonylaminoacetic acid ethyl ester
17. Using ethyl chloroformate 15 (0.14 ml, 1.42 mmol),
Boc-glycine 14 (0.25 g, 1.42 mmol) and DMAP 2 (0.09 g,
0.71 mmol), the title compound 17 was obtained (0.27 g,
93%) as a colourless oil. (Found C, 52.93; H, 8.83; N, 7.03;
C9H18O4N requires C, 52.90; H, 8.89; N, 6.86%); dH

(400 MHz, CDCl3/TMS) 1.28 (3H, t, J¼7.0 Hz, CH2CH3),
1.45 (9H, s, 3£CH3), 3.90 (2H, d, J¼5.6 Hz, NHCH2CO),
4.21 (2H, q, J¼7.0 Hz, CH2CH3) and 5.11 (1H, br s, NH);
dC (100 MHz, CDCl3/TMS) 14.1 (CH2CH3), 28.3 (3£CH3),
42.4 (C(CH3)3), 61.3 (CH2CH3), 79.9 (NHCH2CO), 155.7
(CO) and 170.4 (CCONH); m/z (E.I.) 204 (Mþþ1, 3%), 203
(5), 148 (100) and 104 (15); GC–MS RT¼5.69 min.

4.3.10. tert-Butoxycarbonylaminoacetic acid benzyl ester
18. Using benzyl chloroformate 16 (0.20 ml, 1.42 mmol),
Boc-glycine 14 (0.25 g, 1.42 mmol) and DMAP 2 (0.09 g,
0.71 mmol), the title compound 18 was obtained (0.36 g,
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96%) as a colourless oil. (Found C, 63.38; H, 7.42; N, 5.47
C14H20O4N requires C, 63.14; H, 7.57; N, 5.26%); dH

(400 MHz, CDCl3/TMS) 1.44 (9H, s, 3£CH3), 3.95 (2H, d,
J¼5.6 Hz, COCH2NH), 5.08 (1H, br s, NH), 5.17 (2H, s,
CH2Ph) and 7.36 (5H, m, Ar); dC (100 MHz, CDCl3/TMS)
28.3 (3£CH3), 42.5 (C(CH3)3), 67.0 (CH2Ph), 80.0
(NHCH2CO), 128.4 (2£CH), 128.5 (2£CH), 128.6 (CH),
135.2 (C0), 155.7 (CO) and 170.3 (OCONH); m/z (E.I)
266 (Mþþ1, 1%), 265 (1), 256 (75), 166 (100) and 91 (25);
GC–MS RT¼7.56 min.

4.3.11. Acetic acid phenyl ester 22.29 Purified sodium
hydride 29 (0.06 g, 2.33 mmol) in THF (5 ml) was added to
a stirred solution of phenol 23 (0.20 g, 2.13 mmol) in THF
(20 ml), after stirring at room temperature for 10 min, acetyl
chloride 24 (0.17 g, 2.13 mmol) was added; the reaction
mixture was stirred for a further 1 h prior to concentrating in
vacuo. The aqueous layer was neutralised with sodium
hydrogen carbonate (50 ml) and the product extracted into
DCM (3£50 ml). The combined organic extracts were
dried (MgSO4) and concentrated in vacuo to afford, after
recrystallisation (DCM/hexane), the ester 22 (0.26 g, 90%)
as a cream solid; spectroscopic data as reported in the
literature.

4.3.12. Acetic acid 4-nitrophenyl ester 25.30 Purified
sodium hydride 29 (0.10 g, 3.96 mmol) in THF (5 ml) was
added to a stirred solution of 4-nitrophenol 26 (0.50 g,
3.59 mmol) in THF (20 ml), after stirring at room
temperature for 10 min, acetyl chloride 24 (0.26 ml,
3.66 mmol) was added. The reaction mixture was stirred
for a further 1 h and subsequently concentrated in vacuo, the
aqueous layer was neutralised with sodium hydrogen
carbonate (50 ml) and the product extracted into DCM
(3£50 ml). The combined organic extracts were dried
(MgSO4) and concentrated in vacuo to afford, after
recrystallisation (DCM/hexane), acetic acid-4-nitrophenyl
ester 25 (0.43 g, 65.0%) as a colourless solid; spectroscopic
data as previously reported in the literature.

4.3.13. Benzoic acid phenyl ester 27.29 Purified sodium
hydride 29 (0.06 g, 2.33 mmol) was added to a stirred
solution of phenol 23 (0.20 g, 2.13 mmol) in THF (2 ml),
after stirring at room temperature for 10 min, benzoyl
chloride 30 (0.25 ml, 2.15 mmol) was added. The reaction
mixture was stirred for 1 h and subsequently concentrated in
vacuo, the aqueous layer was neutralised with sodium
hydrogen carbonate (50 ml) and the product extracted
into DCM (3£50 ml). The combined organic extracts were
dried (MgSO4) and concentrated in vacuo to afford, after
recrystallisation (DCM/hexane), the ester 27 (0.41 g, 98%)
as a pale yellow solid; spectroscopic data as previously
reported in the literature.

4.3.14. Benzoic acid 4-nitrophenyl ester 28.30 Purified
sodium hydride 29 (0.10 g, 3.96 mmol) in THF (10 ml) was
added to a stirred solution of 4-nitrophenol 26 (0.50 g,
3.59 mmol) in THF (25 ml). The reaction mixture was
stirred for 10 min prior to quenching with benzoyl chloride
30 (0.50 g, 3.60 mmol). The reaction mixture was stirred for
a further 1 h and subsequently concentrated in vacuo, the
aqueous layer was neutralised with sodium hydrogen
carbonate (50 ml) and the reaction products extracted into

DCM (3£50 ml). The combined organic extracts were dried
(MgSO4) and concentrated in vacuo to afford, after
recrystallisation (DCM/hexane), the ester 28 (0.85 g, 97%)
as a cream solid; spectroscopic data as previously reported
in the literature.
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Abstract:
We demonstrate the successful synthesis of an array of 1,2-
azoles within a borosilicate glass microreactor whereby conver-
sions in the range of 98-100% were obtained. In terms of large-
scale production, this corresponds to 0.339 g day-1 per
microreactor when employing reagent concentrations of 1.0 M.

Introduction
Current production technology is based on the scale-up

of successful lab-scale reactions in order to achieve large-
scale production. This approach is however fundamentally
flawed as at each stage of the scale-up, modifications made
to the reactor vessel result in changes to the surface-to-
volume ratio, which in turn have a profound effect on thermal
and mass-transport properties of the reaction. As a result of
these variations it is often necessary to re-optimise the
process at each stage of the scale-up process. Consequently,
the route from bench to production is both costly and time-
consuming. It is therefore postulated that through the
application of microreaction technology, the transfer of
reactions from the laboratory to production will be both rapid
and cost-effective.

The desire to miniaturise chemical synthesis has been
driven by the need for greater process control as a means of
increasing not only product purity but also reactor safety.1

Using an approach referred to as scale-out or numbering-
up,2 a reaction is first optimised within the laboratory using
a single microreactor, and to increase production volume,
the number of reactors employed is simply increased.
Consequently, a reaction is only optimised once, and all
subsequent reactors are controlled using the same operating
conditions. This approach is therefore both cost-effective,
time saving, and flexible, enabling changes in production
volume by simply increasing or decreasing the number of
reactors employed. With these factors in mind, microreaction
technology is of particular interest to the pharmaceutical
industry, where long-term objectives include the desire to
perform multiple functions such as synthesis, screening,
detection, and biological evaluation within a single integrated
device, resulting in an overall reduction in the time taken to
discover new lead compounds and put them into production.

Microreactors. In the context of this paper, a micro-
reactor is defined as a device containing a series of
interconnecting channels formed in a planar substrate, with
dimensions in the range 10-400µm. Microreactors may be
fabricated from glass, quartz, ceramics, polymers, and metals;
however, due to its compatibility with organic solvents, high
mechanical strength, temperature resistance, and optical
transparency, borosilicate glass is the chosen substrate for
the work described herein. As Figure 1 illustrates, the
microreactor consists of a borosilicate glass base plate,
containing an etched channel network, and a top block,
containing the reagent reservoirs. Thermal bonding of the
two layers affords a sealed microreactor, with typical
dimensions in the range of 2.5 cm× 2.5 cm× 2.0 cm.3

To perform a reaction, reagents are brought together
within the microchannel using a suitable pumping mecha-
nism, reacted for a specified period of time, collected in the
product reservoir, and analysed using a suitable technique.
Although examples of pressure-driven systems have been
reported within the literature, owing to its simplicity, the
technique of electroosmotic flow (EOF) is frequently em-
ployed.4 As Figure 2 illustrates, when an ionisable surface
such as glass, quartz, or Teflon comes in contact with a
suitable solvent system, the surface is neutralised with a
diffuse layer of positive ions from the bulk liquid. A

(1) Jensen, K. F.Chem. Eng. Sci.2001, 56, 293.
(2) Ehrfeld, W.; Hessel, V.; Lowe, H.Microreactors: New Technology for

Modern Chemistry; Wiley-VCH: New York, 2000.
(3) McCreedy, T.Anal. Chim. Acta2001, 427, 39.
(4) Fletcher, P. D. I.; Haswell, S. J.; Paunov, V. N.Analyst1999, 124, 1273.

Figure 1. Exploded view of a borosilicate glass microreactor.

Figure 2. Schematic illustrating the principle of electroosmotic
flow.
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proportion of the counterions are adsorbed onto the surface,
resulting in the formation of an immobile layer, and the
remaining positive ions form a transient double layer.
Application of an electric field causes the double layer to
move towards the negative electrode, inducing bulk flow
within the microchannel.

With respect to fluidic manipulation, the use of EOF is
advantageous as it is easy to use, requires no mechanical
parts, enables reproducible pulse-free flow, and generates
minimal backpressure. Therefore, with respect to scale-out,
the technique is advantageous as multiple reagent streams
can be controlled by a single power supply, maintaining the
simplicity of the technique.

Advantages of Miniaturisation. As previously men-
tioned, the main advantage associated with the miniaturisa-
tion of chemical synthesis is the increased reactor control
obtained, owing to the predictable thermal and mass trans-
portation properties observed within the laminar flow
environment.

In traditional large-scale reactor vessels, fluctuations in
temperature are difficult to correct as any alterations made
take time to have an effect on the system as a whole. In
comparison, changes on the microscale are observed almost
immediately. Along with increasing the rate of thermal
mixing, decreasing the reactor dimensions results in an
inherently high surface-to-volume ratio. Consequently, heat
generated by exothermic reactions can be dissipated rapidly,
reducing the likelihood of thermal runaway or hot-spot
formation. As a result of the uniform reactor conditions
obtained, a high degree of reaction control is observed.5

Previous work has successfully demonstrated the ability to
synthesise a range of compounds within an EOF-based
microreactor including azo dyes, stilbene esters, peptides,
1,3-diketones andR,â-unsaturated carbonyl compounds,
demonstrating both reduced reaction times and enhanced
conversions compared to those observed in batch.6

1,2-Azole Synthesis.Heterocyclic compounds represent
an important group of organic compounds, with many of
them exhibiting significant biological activity, including anti-
rheumatic agents such as antipyrine,1, and leflunomide,2
(Arava) (Figure 3). To compare the use of a microreactor
with traditional batch techniques, the reactions were initially
performed in batch, enabling the products to be characterised.

Results and Discussion
As Scheme 1 illustrates, treatment of a 1,3-diketone with

hydrazine monohydrate3 (1.1 equivalents) in THF affords

the respective 1,2-azoles4-8 in excellent yield within a
batch reaction. Using this methodology, a series of synthetic
standards were prepared, representing synthetic targets for
preparation within a microreactor. Analysis of the crude
reaction mixture by GC-MS enabled the proportion of 1,2-
azole to be determined with respect to residual 1,3-diketone
i.e. percent conversion (Table 1).

Using the experimental setup illustrated in Figure 4, the
preparation of 3,5-dimethyl-1H-pyrazole,4, was initially
investigated by using the solvent system THF. A standard
solution of 2,4-pentanedione9 (40 µL, 0.1 M) in THF was
placed in reservoir A, a solution of hydrazine monohydrate
3 (40 µL, 0.1 M) in THF was placed in reservoir B, and the
reaction products were collected in THF at reservoir C. The
reagents were manipulated within the device using the
following applied fields, 292, 318, and 0 V cm-1 (A, B, and
C respectively); analysis of the reaction products by GC-
MS demonstrated 100% conversion of the 1,3-diketone9 to
3,5-dimethyl-1H-pyrazole,4. The reaction was subsequently
repeated using the solvent system DMF, whereby application
of the following applied fields, 318, 318, and 0 V cm-1 again
resulted in quantitative conversion to pyrazole4. The use of
different applied fields compared to those employed for THF
is attributed to the different physical properties exhibited by
the solvents and hence slightly different electroosmotic
mobilities.7

To increase the volume of product synthesised, the reagent
concentrations were increased by a factor of 10; a standard
solution of 1-phenylbutane-1,3-dione10 (40 µL, 1.0 M) in
THF was placed in reservoir A and a solution of hydrazine
monohydrate3 (40 µL, 1.0 M) in THF in reservoir B; the
reaction products were collected in THF at reservoir C. The
reagents were manipulated within the device using the
following applied fields, 364, 341, and 0 V cm-1, resulting
in quantitative conversion of the 1,3-diketone10 to 3-methyl-
5-phenyl-1H-pyrazole,5. Using the same reaction conditions,
the reaction was repeated in DMF, whereby 100% conversion
to the pyrazole5 was again obtained. The reaction was
subsequently repeated using the diketones, 2-benzoylcyclo-(5) Schwalbe, T.; Volker, A.; Wille, G.Chimia 2002, 56, 636.

(6) Fletcher, P. D. I.; Haswell, S. J.; Pombo-Villar, E.; Warrington, B. H.; Watts,
P.; Wong, S. Y. F.; Zhang, X.Tetrahedron2002, 58, 4735. (7) Rice, C. L.; Whitehead, R.J. Phys. Chem.1965, 69, 4017.

Figure 3. Some heterocyclic compounds of pharmaceutical
interest.

Scheme 1. General reaction scheme illustrating the
preparation of a series of 1,2-azoles

Table 1. Summary of the conversions obtained for the
batch-scale preparation of 1,2-azoles 4-8

product no. R- R1- R2- conversion/%a

4 CH3 H CH3 62
5 Ph H CH3 63
6 -(CH2)4- Ph 72
7 Ph H Ph 64
8 Ph CH3 CH3 71

a Conversion based on GC-MS analysis of the crude reaction mixture after
1 h.

Vol. 8, No. 1, 2004 / Organic Process Research & Development • 29



hexanone, 1,3-diphenylpropane-1,3-dione, and 2-methyl-1-
phenylbutane-1,3-dione to afford 3-phenyl-4,5,6,7-tetrahydro-
2H-indazole6, 3,5-diphenyl-1H-pyrazole7, and 3,4-dimethyl-
5-phenyl-1H-pyrazole8 in 100, 100, and 98% conversion
respectively (Table 2).

Having successfully demonstrated the preparation of an
array of pyrazoles, the technique was extended to the
synthesis of an isoxazole11 and a substituted pyrazole12
(Scheme 2). A standard solution of 1-phenylbutane-1,3-dione
10 (40 µL, 1.0 M) in THF was placed in reservoir A and a
solution of hydroxylamine hydrochloride13 (40 µL, 1.0 M)
in THF in reservoir B, and the reaction products were
collected in reservoir C. Manipulation of the reagents using
the following applied fields, 296, 409, and 0 V cm-1 resulted
in 98% conversion to 5-methyl-3-phenylisoxazole11.

Using the following procedure, the substituted pyrazole,
1-benzyl-3-methyl-5-phenyl-1H-pyrazole12, was synthesised
within a microreactor. A standard solution of phen-

ylbutane-1,3-dione10 (40 µL, 1.0 M) in THF was placed in
reservoir A and a solution of benzyl hydrazine hydrochloride
14 (40 µL, 1.0 M) in THF in reservoir B, and the reaction
products were collected in reservoir C. Manipulation of the
reagents using the following applied fields, 318, 318, and 0
V cm-1 resulted in 42% conversion to pyrazole12. This was
later increased to 100% by employing a stopped-flow regime.
The technique involved the application of a field for 2.5 s
and no field for 5.0 s; these steps were subsequently repeated
over a period of 20 min and served to increase the reagents’
residence time within the device (Table 2).8

As Table 2 illustrates, compared to traditional batch
techniques, the use of a microreactor is advantageous because
not only are excellent conversions obtained in all cases, but
the reaction times involved are also decreased from typically
hours to seconds.

Since conducting this investigation, Garcia-Egido et al.9

demonstrated the preparation of a pyrazole library (21
compounds) within a pressure-driven system. The authors
employed a serpentine reactor, with channel dimensions in
the range of 100µm × 25 µm × 3 m, coupled to an LC-
UV-MS. To prepare an array of compounds, 2.5µL slugs
of reagent were introduced into the device at 1µL min-1

and mobilised throughout the channel network using metha-
nol as the driving solvent. Using 0.01 M diketone and 0.8
M hydrazine monohydrate3 solutions and a residence time
of 210 s enabled the sequential preparation of a range of
pyrazoles in moderate to high conversion (35-99%). How-
ever, compared to the system discussed herein, the pressure-
driven approach is disadvantageous as the device is relatively
large (6× 2.5 cm), the reaction requires a lengthy equilibra-
tion time (10 min) to ensure stable flow, and the reactions
are performed using 81 equiv of hydrazine monohydrate3.
Although the quantities of reagents employed are reduced
due to the desire to prepare small quantities of each
compound, the use of an 81-fold excess of hydrazine
monohydrate3 is unnecessary with respect to both product
purification and environmental concerns, i.e., disposal.

Using the preparation of 5-methyl-3-phenylisoxazole11
as a model and employing 1.0 M standard solutions, the
EOF-based device can synthesise 0.339 g day-1 (based on
98% conversion and an average flow rate of 1.5µL min-1).
Therefore, if 1000 microreactors were operated in parallel,
339.0 g day-1 could be synthesised, compared to the
pressure-driven system whereby 2.5× 10-6 g of product is
prepared per 2.5µL aliquot injected. Therefore, if only a
small amount of compound is required for biological
evaluation, devices of the kind used by Garcia-Egido et al.9

can be employed as a means of preparing a large number of
samples, i.e., libraries, in a short period of time. Alternatively
the approach of scale-out can be employed as a means of
preparing fine chemicals or pharmaceuticals on a large-scale,
demonstrating the flexibility associated with microreaction
technology.

(8) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E.Lab Chip2002, 2,
62.

(9) Garcia-Egido, E.; Spikmans, V.; Wong, S. Y. F.; Warrington, B. H.Lab
Chip 2003, 3, 73.

Figure 4. Schematic of the microreactor used to synthesise
1,2-azoles.

Table 2. Comparison of the conversions obtained for the
preparation of 1,2-azoles 4-12 in batch and a microreactor

conversion/%

product no. batch microreactor applied field/V cm-1

4 62 100a (100)a 292, 318, and 0
5 63 100a (100)a 364, 341, and 0
6 72 100a 260, 303, and 0
7 64 100a 386, 364, and 0
8 71 98a 409, 386, and 0

11 52 98a 292, 318, and 0
12 76 42a (100)c 364, 341, and 0

a Reaction performed using THF.b Reaction performed using DMF.c Reaction
performed using stopped flow regime.

Scheme 2. Preparation of an isoxazole 11 and a substituted
pyrazole 12
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Summary
In conclusion, we have demonstrated a simple, stoichio-

metric technique for the preparation of an array of 1,2-azoles
within an EOF-based microreactor, whereby excellent con-
versions were obtained in all cases.

Experimental Section
Materials and Methods.All materials (analytical grade)

were purchased from Aldrich and were used without
purification. All NMR spectra were recorded as solutions in
deuteriochloroform (CDCl3) using tetramethylsilane (TMS)
as an internal standard. The spectra were recorded on a Joel
GX400 spectrometer and the chemical shifts given in parts
per million (ppm) with coupling constants in Hertz (Hz).
The following abbreviations are used to report NMR data:
s ) singlet, d) doublet, t) triplet, br s) broad singlet, m
) multiplet, and C0 ) quaternary carbon. Gas chromatog-
raphy-mass spectrometry (GC-MS) was performed using
a Varian GC (CP-3800) coupled to a Varian MS (2000) with
a CP-Sil 8 (30 m) column (Phenomenex) and ultrahigh purity
helium (99.999%, Energas) carrier gas. Samples were
analysed using the following method: injector temperature
200°C, helium flow rate 1 mL min-1, oven temperature 50
°C for 4 min and then ramped to 250°C at 30°C min-1,
with a 3.0 min filament delay.

Microreactor Methodology. The reactions described
herein were carried out using a three-channel microreactor,
as illustrated in Figure 1, with channel dimensions of 350
µm (wide)× 52 µm (deep)× 2.5 cm (long).10 To minimise
the effect of pressure gradients within the microchannels,
microporous silica frits were placed within the channels.11

To mobilise reagents by EOF, platinum electrodes (0.5 mm
o.d. × 2.5 cm) were placed within the reagent reservoirs
and voltages applied using a Paragon 3B high-voltage power
supply (HVPS) (capable of applying 0-1000 V to four pairs
of outputs) (Kingfield Electronics). Automation of the HVPS
using an in-house LabVIEW program enabled complex
sequences of voltages to be investigated. To enable the results
obtained to be applied to devices of different dimensions,
voltages are reported as applied fields (V cm-1), i.e. voltage/
channel length. To monitor the progress of the reaction,
experiments were conducted over a period of 20 min, after
which the product reservoir was analysed by GC-MS,
whereby comparison of the amount of product with respect
to residual starting material enabled the progression of the
reaction to be determined.

General Procedure for the Preparation of 1,2-Azoles
in Batch. A typical experimental procedure was as follows:
Hydrazine monohydrate3 (1.1 equiv) in THF (2 mL mmol-1)
was added via a syringe to a stirred solution of 1,3-diketone
in THF (2 mL mmol-1) over a period of 30 min. After
stirring overnight, the reaction mixture was concentrated in
vacuo prior to the addition of water (50 mL), and the reaction
products were extracted into ethyl acetate (3× 50 mL). The

combined extracts were dried (MgSO4) and concentrated in
vacuo, whereby purification by silica gel chromatography
(7-10% ethyl acetate in hexane) afforded the respective 1,2-
azole.

3,5-Dimethyl-1H-pyrazole (4):12 (0.48 g, 100%) as a pale
yellow solid; δH (400 MHz, CDCl3/TMS) 2.19 (6H, s, 2×
CH3), 5.75 (1H, s, CH), and 7.25 (1H, br s, NH);δC (100
MHz, CDCl3/TMS) 12.2 (2× CH3), 104.0 (CH), and 144.4
(2 × CN); m/z (EI) 97 (M+ + 1, 100%) and 96 (5); GC-
MS retention timeRT ) 7.35 min.

3-Methyl-5-phenyl-1H-pyrazole (5):13 (0.49 g, 100%)
as a pale yellow solid;δH (400 MHz, CDCl3/TMS) 2.35 (3H,
s, CH3), 6.36 (1H, s, CH), and 7.29-7.62 (5H, m, Ar) (NH
not observed);δC (100 MHz, CDCl3/TMS) 11.8 (CH3), 102.2
(CH), 125.7 (CH), 127.0 (2× CH), 128.0 (CH), 128.6 (CH),
132.3 (C0), 143.2 (CNCH3), and 149.9 (CN);m/z (EI) 159
(M+ + 1, 75%), 158 (100), and 77 (5); GC-MS retention
time RT ) 10.43 min.

3-Phenyl-4,5,6,7-tetrahydro-2H-indazole (6):14 (0.49 g,
94%) as a pale yellow oil;δH (400 MHz, CDCl3/TMS) 1.85
(4H, m, 2× CH2), 2.74 (2H, t,J 5.7, CH2), 2.86 (2H, t,J
5.7, CH2), 7.46 (3H, m, Ar), 7.80 (2H, m, Ar), and 12.14
(1H, br s, NH);δC (100 MHz, CDCl3/TMS) 21.4 (3× CH2),
22.7 (CH2), 114.4 (C0), 127.5 (C0), 127.6 (2× CH), 129.2
(2 × CH), 129.9 (CH), 142.4 (CN), and 145.4 (CN);m/z
(EI) 199 (M+ + 1, 100%), 198 (5), and 170 (10); GC-MS
retention timeRT ) 12.71 min.

3,5-Diphenyl-1H-pyrazole (7):13 (0.42 g, 86%) as a pale
yellow solid;δH (400 MHz, CDCl3/TMS) 7.13 (1H, s, CH),
7.49 (6H, m, Ar), 7.96 (4H, m, Ar), and 9.96 (1H, br s, NH);
δC (100 MHz, CDCl3/TMS) 100.2 (CH), 126.0 (4× CH),
127.6 (2× C0), 128.6 (4× CH), 129.3 (2× CH), and 147.0
(2 × CN); m/z (EI) 221 (M+ + 1, 20%), 220 (100), and 77
(25); GC-MS retention timeRT ) 14.98 min.

3,4-Dimethyl-5-phenyl-1H-pyrazole (8):15 (0.45 g, 93%)
as a pale yellow solid;δH (400 MHz, CDCl3/TMS) 2.13 (3H,
s, CH3), 2.25 (3H, s, CH3), 7.22 (3H, m, Ar), 7.32 (2H, m,
Ar), and 18.29 (1H, s, NH);δC (100 MHz, CDCl3/TMS)
10.9 (CH3), 31.4 (CH3), 127.4 (2× CH), 127.9 (2× CH),
128.7 (CH), 130.9 (C0), 141.9 (CNCH3), and 146.8 (CN);
m/z (EI) 173 (M+ + 1, 70%), 172 (100), and 77 (15); GC-
MS retention timeRT ) 10.72 min.

5-Methyl-3-phenylisoxazole (11).16 Hydroxylamine hy-
drochloride13 (0.21 g, 3.09 mmol) was dissolved in THF
(10 mL) and added dropwise to a stirred solution of
1-phenylbutane-1,3-dione10 (0.50 g, 3.09 mmol) in THF
(10 mL). After stirring overnight, the reaction mixture was
concentrated in vacuo prior to the addition of water (50 mL),
and the reaction products were extracted into ethyl acetate
(3 × 50 mL). The combined organic extracts were dried
(MgSO4), concentrated in vacuo, and purified by silica gel
chromatography. Elution with 10% ethyl acetate in hexane

(10) Broadwell, I.; Fletcher, P. D. I.; Haswell, S. J.; McCreedy, T.; Zhang, X.
Lab Chip2001, 1, 66.

(11) Christensen, P. D.; Johnson, S. W. P.; McCreedy, T.; Skelton, V.; Wilson,
N. G. Anal. Chem.1963, 35, 341.

(12) Barluenga, J.; Muniz, L.; Iglesias, M. J.; Gotor, V.J. Chem. Soc., Perkin
Trans. 11984, 611.

(13) Texier-Boullet, F.; Klein, B.; Hamelin, J.Synthesis1986, 409.
(14) Bunnelle, W. H.; Singam, P. R.; Narayanan, B. A.; Bradshaw, C. W.; Liou,

J. S.Synthesis1997, 439.
(15) Tensmeyer, L. G.; Ainsworth, C.J. Org. Chem.1996, 31, 1878.
(16) Werner, A.; Sanchez-Migallon, A.; Fruchier, A.; Elguero, J.; Fernandez-

Castano, C.; Foces-Foces, C.Tetrahedron1995, 51, 4779.
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afforded 5-methyl-3-phenylisoxazole11 (0.46 g, 93%) as a
pale yellow solid;δH (400 MHz, CDCl3/TMS) 2.34 (3H, s,
CH3), 6.35 (1H, s, CH), 7.42 (3H, m, Ar), and 7.74 (2H, m,
Ar); δC (100 MHz, CDCl3/TMS) 11.5 (CH3), 100.2 (CH),
125.7 (2× CH), 127.6 (C0), 128.9 (2× CH), 130.0 (CH),
160.34 (CN), and 169.6 (CO);m/z (EI) 160 (M+ + 1, 30%),
159 (100), 105 (50), and 77 (10); GC-MS retention time,
RT ) 9.56 min.

1-Benzyl-3-methyl-5-phenyl-1H-pyrazole (12).17 Benzyl
hydrazine hydrochloride14 (0.61 g, 3.09 mmol) was
dissolved in THF (10 mL) and added dropwise to a stirred
solution of 1-phenylbutane-1,3-dione10 (0.50 g, 3.09 mmol)
in THF (10 mL). After stirring overnight, the reaction mixture
was concentrated in vacuo prior to the addition of water (50
mL), and the reaction products were extracted into ethyl
acetate (3× 50 mL). The combined organic extracts were

dried (MgSO4), concentrated in vacuo, and subsequently
purified by silica gel chromatography. Elution with 7% ethyl
acetate in hexane afforded 1-benzyl-3-methyl-5-phenyl-1H-
pyrazole12 (0.74 g, 97%) as a pale yellow oil;δH (400 MHz,
CDCl3/TMS) 2.34 (3H, s, CH3), 5.28 (2H, s, CH2), 6.14 (1H,
s, CH), 7.03 (2H, m, Ar), and 7.22-7.38 (8H, m, Ar);δC

(100 MHz, CDCl3/TMS) 13.7 (CH3), 52.2 (CH2), 106.2 (CH),
126.7 (2× CH), 127.1 (CH), 127.8 (4× CH), 128.2 (3 x
CH), 130.9 (C0), 132.4 (C0), 145.0 (CN), and 148.4 (CN);
m/z (EI) 249 (M+ + 1, 100%), 248 (20), 91 (15), and 77
(10); GC-MS retention time,RT ) 12.02 min.
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The Suzuki cross-coupling reaction of aryl halides with phenylboronic acid to form biaryls has been used to illustrate the
development of a microwave based technique capable of delivering heat locally to a heterogeneous Pd-supported catalyst
located within a micro reactor device. A 10–15 nm gold film patch, located on the outside surface of the base of a glass
micro reactor, was found to efficiently assist in the heating of the catalyst when irradiated with 5–7 W of microwave
power at 2.45 GHz. Using a hydrodynamically pumped system, reactant–catalyst contact times of less than 60 s were
found to give conversions for different substrates which were in the range 50–99%. Two methods of loading catalysts
into the micro reactor were investigated which required either 1.5 or 6 mg of material.

Introduction
To date the majority of liquid based chemical syntheses carried out
in lab-on-a-chip micro reactors have involved homogeneous
reactions performed at room temperature.1 As discussed in ref. 1,
the ability to spatially control localized concentrations of reactant,
intermediates and products within the micro-channel networks of
micro reactors enables a level of reaction control (including rates,
yields and product selectivities) which is not achievable in bulk
reactors where concentrations are generally uniform. In addition to
the control of local concentrations, the ability to deliver localized
heating2–3 and the more effective use of in situ supported reagents
such as catalysts would add a further dimension of reaction control
and hence extend the range of potential applications of micro
reactors. Accordingly, in this paper we describe a microwave (MW)
based localized heating technique used in conjunction with an
immobilized palladium catalyst to perform a number of exemplary
Suzuki based reactions4 within a hydrodynamically pumped micro
reactor.

The palladium-catalyzed cross coupling of aryl halides with aryl
boronic acids was selected for this study because of its relevance as
a popular method for the selective formation of carbon–carbon
bonds4–5 (see Scheme 1). Such Suzuki reactions are commonly
performed using a homogeneous soluble palladium catalyst,
however, recovery of such homogeneous catalysts can prove
difficult at the aqueous work-up stage.6 Developing a methodology
based on a heterogeneous catalyst in a continuous flow micro
reactor type operation offers many advantages over homogeneous
batch based methods. These include effective product isolation
from the catalysts reaction zone and improved control of the
catalyst–reactant contact time leading to more rapid optimization of
both yield and product selectivity. In addition, the solid phase
catalysts which are required only in mg quantities, can be readily
tested under reaction conditions and are easily recovered for reuse
if required.

The use of MW heating in organic synthesis7–8 including Suzuki
reactions9–11 has attracted considerable interest in the past few
years where the main benefits are reported to be significant rate-
enhancements and increased product yields.11–13 These features
have attracted interest from the drug discovery and medicinal
chemistry communities14–15 who are also interested in the high

throughput, rapid optimization, small volume and intrinsically safe
operating characteristics of micro reactors. Coupling the use of
MW heating with micro reactor based synthesis potentially
combines a number of advantages of each technology and hence
may have good potential in applications involving the synthesis of
fine chemicals. One obvious problem with the direct heating of
liquid phase reagent solution in a micro reactor channel of micron
depth is the limited absorption of MW energy directly by the
channel contents. Even for polar species which show (relatively)
strong absorption of MW, efficient absorption typically requires a
liquid depth in the order of a cm for MWs at 2.45 GHz.16 However,
this shortcoming can be overcome by exploiting the absorption of
MWs by either supported metal catalysts within a channel and/or
thin metallic films16 located on the surface of a micro reactor.
Positioning of the MW absorbing species or patch in or on the micro
reactor enables localized heating over a prescribed length of a
channel and, through careful control of the substrate amount/
thickness, selected local temperatures may be reliably generated.16

In the present study, direct MW heating of a catalyst and the
combined MW heating of a catalyst and a thin gold film on the outer
surface of the micro reactor are evaluated as methodologies for the
efficient localized heating of a micro reactor device.

Experimental
The reactions were conducted in glass micro reactors supplied by
Micro Chemical Systems Ltd (Hull). Two linear channel designs
(see Fig. 1) were used in which a premixed reactant solution
containing an aryl halide (0.1 M), phenylboronic acid (0.12 M) and
K2CO3 (0.3 M) with dimethylformamide (DMF) and H2O (3:1
volume ratio) mixture as solvent, was pumped from an input
reservoir to a collection reservoir through a catalyst bed. PEEK
tubing (outer diameter OD = 1.58 mm, inner diameter ID = 0.18

Scheme 1 General reaction scheme for palladium catalysed Suzuki cross-
coupling.

Fig. 1 Schematic diagram of the linear channel micro reactor designs and
catalyst packing strategies used to perform Suzuki based reactions.
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mm) was fitted to the inlet and outlet reservoirs and sealed using
Torr seal (Varian). The end of the inlet tube was connected to a
Harvard PHD 2000 syringe pump which delivered the homoge-
neous reaction solution to the reactor. The end of the outlet tube was
connected to a sample vial which was placed in an ice bath and used
to collect the reaction products.

In design A, the top and bottom plates of the micro reactor were
both 3 mm thick. The catalyst channel was 1.5 mm wide, 80 mm
deep and 15 mm long and connected to the inlet and outlet
reservoirs by channels which were 130 mm wide and 50 mm deep.
Design B used a 10 mm thick top plate and a 3 mm bottom plate
with a catalyst channel which was 1.5 mm wide, 50 mm deep and 15
mm long, i.e. 20 mm shallower than that of design A. The catalyst
channel again used channels which were 130 mm wide and 50 mm
deep to connect to the inlet and outlet reservoirs. For both micro
reactor designs, the catalyst was introduced as a dry powder
through the central port (3 mm in diameter) and then located in the
micro reactor channel using the air pressure generated from a hand
held syringe. This packing procedure only took a few minutes to
complete, as did the removal of the wet catalyst achieved by
drawing the slurry out through the central port again with a syringe.
During reaction, the central port was blanked off with a tightly
fitting PEEK rod. The catalyst consisted of particles of size 45–63
mm (selected by sieving). These catalyst particles fitted within the
catalyst channel of design A to create a monolayer of particles
(requiring 1.5 mg) over the entire catalyst channel area. During the
continuous flow maintained during reaction, the particles were
retained by the keystone effect.17 The catalyst particles were too
large to fit within the depth of the catalyst channel of design B and
were located within the central reservoir in the form of a plug about
0.5–1 mm in height (requiring 6 mg). As required, an area (15 3 1.5
mm) on the outside of the bottom plate corresponding to the region
of catalyst packing was sputter coated with gold to a thickness of
either 10 or 15 nm using a SEMPREP 2 Sputter Coater (Nanotech
Ltd.). During MW irradiation no electrical sparking was observed
from the film, however, caution may be required if thicker or larger
areas of metalization are used.

The micro reactor was heated in the cavity of a Discover MW
system from CEM, which is capable of delivering 0–300 W of MW
power at 2.45 GHz. An IR temperature sensor located in the base of
the Discover enabled determination of the temperature at the base
of the micro reactor. It should be emphasized that this temperature
refers to the lower exterior surface of the micro reactor and not the
actual reaction zone within the catalyst channel. The measured
temperature of each reaction was mediated by variation of the MW
heating power (power time mode) in conjunction with different
solution flow rates. The residence times of the solutions within the
catalyst bed were measured by timing the movement of the liquid
front during first filling.

During a reaction run, product samples were collected in a cooled
(0 °C) product vial for 5 min. This collection period was found to
be long enough to obtain a representative sample for subsequent
analysis. Samples were weighed, a known amount of dodecane was
added as an internal standard and then treated with 1 M aqueous
NaOH to remove unreacted phenylboronic acid. The remaining
organic material was then extracted, washed three times with
distilled water, collected and dried over MgSO4. Samples were then
analysed for both aryl halide reactant and biaryl product using a GC
instrument (Shimadzu GC-17A) equipped with a capillary column
(CP SIL 8 CB, 30 m length, Chrompack). Pressure of carrier gas
(helium) was 600 kPa and injector temperature was set to 250 °C.
The GC column temperature was held initially at 70 °C for 4 min,
ramped at 20 °C min21 to reach 240 °C which was then held for 12
min. The retention times for starting materials and products are
summarized in Table 1.

The retention times for all compounds were verified using pure
materials obtained as indicated below. All analysis was carried out
in duplicate with replicates agreeing to within a 5% variation.
Conversions were calculated from GC data by determining the

quantity of aryl halide present in the collection vial after reaction
using internal standard method. Overall mass balances were
checked using the GC data for the product and were correct to
within a few percent.

The reagents and solvents 4-bromobenzonitrile (Aldrich, 99%),
4-cyanobiphenyl (Aldrich, 99%), 4-bromonitrobenzene (Aldrich,
99%), 4-nitrobiphenyl (Aldrich, 99%), 4-bromobenzaldehyde (Al-
drich, 99%), biphenylaldehyde (Aldrich, 99%), 4-iodoanisole
(Aldrich, 98%), 4-methoxybiphenyl (Aldrich, 99%), 4-iodotoluene
(Aldrich, 99%), 4-methylbiphenyl (Aldrich, 99%), benzonitrile
(Aldrich, 99%), biphenyl (Aldrich, 99%), phenylboronic acid
(Aldrich, 97%), dodecane (Aldrich, 99%), N,N-dimethylforma-
mide (DMF, Fluka, 99%), dichloromethane (DCM, Fisher, 99%),
MgSO4 (Fisher, 99%) and K2CO3 (Lancaster, 99%) were used
without further purification. The catalysts Pd supported on alumina
(Pd/Al2O3) and Pd anchored on polymer (Pd–polymer) were
supplied by Johnson Matthey and contained 5 wt% Pd for the Pd/
Al2O3 and 4 wt% Pd for Pd–polymer.

Results and discussion
The first set of experiments were carried out using the micro reactor
with a catalyst plug (design B) and 5 selected substrates, in order to
evaluate the potential of the proposed methodology. It should be
noted that, in order to maintain comparable temperature ranges for
each reaction, monitored by the optical detector in the base of the
Discover instrument, the applied MW power was varied. As shown
in Fig. 2, the gold films became less efficient at absorbing the MW
power and reaching a high temperature following MW exposure
during a larger number of 5 min heating cycles.

The appearance of the gold film changed from dark grey to an
increasingly lighter grey following repeated heated cycles. This
observation suggested that the films became progressively thinner,
probably due to evaporation of the gold, rather than “peeling” away
from the glass surface of the micro reactor. For the experiments

Table 1 Retention times for starting materials and products obtained by
GC analysis

Compound Retention time/min

4-Bromobenzonitrile 9.4
4-Cyanobiphenyl 13.2
4-Bromonitrobenzene 10.3
4-Nitrobiphenyl 14.0
4-Bromobenzaldehyde 9.2
4-Biphenylaldehyde 13.1
4-Iodoanisole 10.0
4-Methoxybiphenyl 12.6
4-Iodotoluene 8.4
4-Methylbiphenyl 11.5
Benzonitrile 6.5
Biphenyl 10.6
Dodecane 8.8

Fig. 2 Variation of the MW absorption efficiency (expressed as the ratio
IR sensor temperature/MW power) following repeated 5 min heating cycles.
The gold film was 15 nm thick initially.
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here, the first heating cycle was ignored and all reaction
measurements refer to heating cycles 2–4 where the gold films are
more constant. As noted earlier, the MW power was adjusted for
each run so as to obtain a constant temperature as measured by the
IR sensor.

Some preliminary measurements were made using heating patch
films of different materials. For the same MW power and film
thickness, the measured temperatures were in the order Au > Pt ≈
Pd > C. This ranking sequence correlates with the electrical
conductivities of the materials, i.e. the more conducting, the better
the MW absorption and the higher the temperature reached. It was
observed that improved MW heating could be obtained with Pt by
using thicker films. Further work is proceeding to find the best
choice of metal material and film thickness which optimizes
heating performance, metal film stability and its adhesion to the
glass surface of the micro reactor. The results presented in Table 2
for different aryl halide reactants indicate that deactivated species
such as 4-bromonitrobenzene and 4-bromobenzonitrile are more
reactive than activated substrates and give correspondingly high
conversions. This is consistent with a mechanism in which electron
withdrawing groups favor oxidative addition of aryl halides to a
Pd(0) species.2

Having established that the proposed methodology was able to
generate significant product, the effects of different heating
methods on product yield were measured using 4-bromobenzoni-
trile as aryl halide reactant. As seen in Table 3, no conversion is
detected under the reaction conditions used at room temperature. In
the second heating method, the micro reactor was immersed in an
oil bath at 130 °C. Reactants from a reservoir at room temperature
were then pumped through the micro reactor and a 65% conversion
was obtained. The third heating method used the MW absorption by
the alumina supported catalyst without any metal film heating
patch. In this case, 150 W of MW power were required to produce

a temperature of around 95 °C as sensed on the external micro
reactor surface by the IR sensor. The localized temperature at the
catalyst surface is hard to estimate under these conditions as it is
simultaneously cooled by the reagent flow and heated by MW
absorption into (mainly) the alumina catalyst support. In the fourth
method, MW energy was absorbed into both the catalyst and the
gold film heating patch situated underneath the catalyst channel.
The more efficient MW absorption is clearly evident by the reduced
MW power required to achieve the measured temperature of around
95 °C. In all cases a flow rate of 5 ml min21 was used and it can be
seen that the best conversion (virtually 100%) is obtained at
relatively low MW power when MW absorption into both the
catalyst and gold coating is used. Because of the coupled effects of
reagent flows, energy absorption and conduction, it is difficult to
estimate the localized temperature within the reaction zone. On the
basis that the conversion is an effective measure of the localized
temperature experienced by the reaction (i.e. the MW effect is
purely thermal), the data of Table 3 suggest that MW absorption
into both catalyst support and gold film is both effective and
efficient in focusing heating energy into the small reaction zone
within the micro reactor.

A comparison between the two catalyst packing modes (design A
and B) was carried out in order to evaluate the proposed
methodology. As seen in Table 4, product yields were generally
similar for the two packing designs. However design A, using a
slightly longer residence time (lower flow rate), did need less mass
of catalyst and was found to require significantly less MW energy.
Although somewhat uncertain due to the variation in gold film
properties (Fig. 2), the apparently more efficient heating of design
A is attributed to the fact that the catalyst is present as a thin particle
monolayer to which heat transfer from the gold patch is more
effectively achieved. The results also indicate that a system using a
catalyst particle monolayer design plus a relatively low powered
MW system (5 W, see Table 4) can be used to achieve good product
yields in systems requiring localized temperatures in excess of 100
°C. Noting that the present system is very far from being optimized,
these first results are very encouraging.

Finally, in order to evaluate the suitability of the proposed
packing methodology to deal with polymeric based catalysts, a Pd
anchored polystyrene support was used in a B design micro reactor.
Using the design B micro reactor with the substrate 4-bromobenzo-
nitrile, reagent concentrations as listed in Tables 2–4, 3 mg of both
catalysts, 3 ml min21 flow rate, a catalyst contact time of 32 s and
a MW power of 55 W giving a measured temperature range of
90–100 °C which gave a 75% conversion for the Pd–polystyrene
and 72% for Pd–alumina. Despite having a 20% lower loading of

Table 2 Conversion for a range of aryl halides reacted in micro reactor
design B. Reaction mixture consisting of aryl halide (0.1 M), phenyl boronic
acid (0.12 M), K2CO3 (0.3 M) in a DMF (75 vol%)/H2O (25 vol%) mixed
solvent was pumped continuously through the catalyst channel at 5 ml
min21. The solution–catalyst contact time was 36 s. The gold film was 15
nm initial thickness and 6 mg of 5 wt% Pd/Al2O3 catalyst was used

Aryl halide

X R
MW
power/W Temp/°C

Conva

%

Br NO2 50 90–98 98
Br CN 55 90–102 99
Br CHO 40 90–96 75
I OCH3 80 90–100 75
I CH3 55 90–98 58
a Conversions were calculated from GC data based on the amount of aryl
halide present in the collection vial after reaction. Only cross-coupling
product was produced.

Table 3 Conversion for different heating methods using micro reactor
design B. Reaction mixture consisting of 4-bromobenzonitrile (0.1 M),
phenyl boronic acid (0.12 M), K2CO3 (0.3 M) in a DMF (75 vol%)/H2O (25
vol%) mixed solvent was pumped continuously through the catalyst channel
at 5 ml min21. The solution–catalyst contact time was 36 s. The gold film
was 15 nm initial thickness and 6 mg of 5 wt% Pd/Al2O3 catalyst was
used

Heating method
MW
power/W Temp/°C

Conva

%

Room temperature 0 25 0
Oil bath 0 130 65
MW heating only 150 94–98 71
MW heating plus gold coating 55 90–102 99
a Conversions were calculated from GC data based on the amount of
4-bromobenzeonitrile present in the collection vial after reaction. Only
cross-coupling product was produced.

Table 4 Comparison of conversion for a range of aryl halides reacted in
micro reactor designs A and B. Reaction mixture consisting of aryl halide
(0.1 M), phenyl boronic acid (0.12 M), K2CO3 (0.3 M) in a DMF (75 vol%)/
H2O (25 vol%) mixed solvent was pumped continuously through the
catalyst channel at the flow rates shown. The gold film was 15 nm initial
thickness, 6 mg of 5 wt% Pd/Al2O3 catalyst was used for design B and 1.5
mg for design A

Flow/ml
min21 MW power/W

Substrate
/Contact
time/s /Temp/°C

Packing
design

Conv
%

Br–C6H4–NO2 5/36 50/90–98 B 98
Br–C6H4–NO2 3/44 7/90–105 A 90
Br–C6H4–CN 5/36 55/90–102 B 99
Br–C6H4–CN 3/44 5/90–108 A 92
Br–C6H4–CHO 5/36 40/90–96 B 75
Br–C6H4–CHO 3/44 50/80–90 A 72a

a A 10 nm gold film was used for this run which is therefore not strictly
comparable. Use of a 15 nm gold film at a measured temperature range of
90–103 °C achieved with 10 W MW power gave an overall conversion of
98%. However, 50% of the conversion was biphenyl side product.
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metal than the alumina supported catalyst, the Pd–polystyrene
catalyst gives a comparable product yield. When using the polymer
supported catalyst, it was found that filling the channel of micro
reactor design A was practically very difficult due to the particle
shape, size and texture however, filling design B with the polymeric
based catalyst was virtually straightforward.

Conclusions
In order to more fully exploit the use of micro reactor technology in
chemical and biochemical synthesis, methods for the controlled
localized heating and the utilization of highly intensive surface
properties need to be established. Whilst micro reactor based
heating may be achieved using for example localized electrical
resistance,2–3 in this work a contactless technique based upon MW
induced heating has been used. In this way the controlled heating of
a reaction can be achieved using selective MW absorption into both
a catalyst and an externally applied gold film. It was found that at
present the 10–15 nm film of gold used, whilst mechanically stable,
did appear to evaporate and work in this area to generate a more
robust film is in progress. In addition, a simple and practical
technique is described for the loading and removal of an alumina
and polymer supported metal catalyst from a micro reactor device.
Whilst a Suzuki type reaction was used to illustrate the method-
ology, the results clearly point the way to developing a wider range
of chemical methods and process applications of micro reactor
technology.

Acknowledgements
We thank CEM Microwave Technology Ltd. and the Engineering
and Physical Sciences Research Council for funding and Mr.

Sinclair of the University of Hull for the preparation of the gold
coatings.

References
1 P. D. I. Fletcher, S. J. Haswell, E. Pombo-Villar, B. H. Warrington, P.

Watts, S. Y. F. Wong and X. Zhang, Tetrahedron, 2002, 58, 4735.
2 M. U. Kopp, A. J. de Mello and A. Menz, Science, 1998, 1046.
3 D. S. Yoon, Y-S. Lee, Y. Lee, H. J. Cho, S. W. Sung, K. W. Oh, J. Cha

and G. Lim, J. Micromech. Microeng., 2002, 12, 813.
4 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
5 S. Kotha, K. Lahiri and D. Kashinath, Tetrahedron, 2002, 58, 9633.
6 J. H. Clark, Green Chem., 1999, 1, 1.
7 P. Lidstrom, J. Tierney, B. Wathey and J. Westman, Tetrahedron, 2001,

57, 9225.
8 L. Perreux and A. Loupy, Tetrahedron, 2001, 57, 9199.
9 C. G. Blettner, W. A. Konig, W. Stenzel and T. Schotten, J. Org. Chem.,

1999, 64, 3885.
10 N. E. Leadbeater and M. Marco, J. Org. Chem., 2003, 68, 888.
11 M. Larhed and A. Hallberg, J. Org. Chem., 1996, 61, 9582.
12 D. Villemin and F. Caillot, Tetrahedron Lett., 2001, 42, 639.
13 N. Kuhnert and T. N. Danks, Green Chem., 2001, 3, 98.
14 (a) B. Wathey, J. Tierney, P. Lidstrom and J. Westman, Drug Discov.

Today, 2002, 7, 373; (b) M. Larhed and A. Hallberg, Drug Discov.
Today, 2001, 6, 406.

15 J. L. Krstenansky and I. Cotterill, Curr. Opin. Drug Discov. Dev., 2000,
4, 454.

16 P. He, P. D. I. Fletcher and S. J. Haswell, Proceedings of Conference and
Workshop on Micro Total Analytical and Chemical Systems, April 7–9,
2003, Hull, UK.

17 G. A. Lord, D. B. Gordon, P. Myers and B. W. King, J. Chromatogr., A,
1997, 768, 9.

L a b C h i p , 2 0 0 4 , 4 , 3 8 – 4 1 4 1



      

Stereoselective alkylation of an Evans auxiliary derivative within
a pressure-driven micro reactor

Charlotte Wiles,a Paul Watts,*a Stephen J. Haswella and Esteban Pombo-Villarb

a Department of Chemistry, The University of Hull, Cottingham Road, Hull, UK HU6 7RX
b Novartis Institute for BioMedical Research, WSJ-386.07.15, CH4002, Basel, Switzerland

Received 8th January 2004, Accepted 8th March 2004
First published as an Advance Article on the web 17th March 2004

A simple technique for the diastereoselective alkylation of a
metal stabilised enolate is demonstrated within a
pressure-driven micro reactor whereby enhanced
diastereoselectivities were obtained compared to batch.

Introduction
The preparation of compounds with specific stereochemistry is of
great interest to pharmaceutical companies, as often one enantio-
mer exhibits biological activity whereas the other may be inactive
or even harmful. One approach is to start with an enantiomerically
pure material and to ensure that all steps in the synthesis retain their
stereochemistry; this can however be extremely difficult. Alter-
natively a chiral auxiliary, such as those employed by Evans et al.,1

can be used in order to prepare enantiomerically pure compounds.
Using this approach, many examples of synthetically important
compounds have featured in the literature including the synthesis of
thiorphane2 (enkephalinase inhibitor) and vancomycin (an antibi-
otic used to the treat multi-drug resistant infections).3

Owing to the predictable thermal and mass transportation
properties observed within the laminar flow environment of a micro
reactor, one of the main advantages associated with miniaturisation
is reactor control.4,5 In traditional large-scale reactor vessels,
fluctuations in temperature are difficult to correct as any alterations
made take time to have an effect on the system as a whole. In
comparison, changes on the micro scale are observed almost
immediately.5 Along with increasing the rate of diffusive mixing,
decreasing the reactor dimensions also results in an inherently high
surface to volume ratio, enabling heat generated by exothermic
reactions to be dissipated rapidly.6 As a result of the uniform reactor
conditions obtained, a high degree of reaction control is observed.
With these factors in mind, micro reaction technology is of
particular interest to the pharmaceutical industry, where long term
objectives include the desire to perform multiple functions such as
synthesis, screening, detection and biological evaluation on a single
integrated device, resulting in an overall reduction in the time taken
to discover new lead compounds and transfer them to production.

Previous work has demonstrated the preparation of a range of
synthetically useful compounds,7 demonstrating many of the
advantages associated with the miniaturisation of chemical synthe-
sis, including: reduced reaction times, enhanced conversions and
the ability to continuously purify reaction products.8 With these
factors in mind, we extended our investigation of C–C bond
forming reactions within a micro reactor9 to incorporate diaster-
eoselective synthesis (Scheme 1).10

Experimental
Micro reactor methodology

The micro reactor described herein was purchased from Micro
Chemical Systems Ltd. (Hull, UK) and consisted of a two-layer
borosilicate glass device with ceramic fittings (Macor) located over
each of the etched micro channels (152 mm (wide) 3 51 mm (deep)
3 2.3 cm (long)).

As Fig. 1 illustrates, PTFE or fused silica tubing (178 mm od 3
2.5 cm) was attached to the micro reactor using PEEK microtight
fittings (Upchurch Scientific); subsequent attachment to a gas-tight
syringe (Hamilton) resulted in a pressure-tight connection. The
advantage of this attachment technique compared to the use of glue/
resins11 is that should any blockages occur within the tubing, the
device could be disassembled and new tubing fitted. Also, if glue
were used, degradation of the connection would result after
prolonged contact with organic solvents i.e. CO2–solvent bath. To
accommodate the alkylation of 4-methyl-5-phenyl-3-propionylox-
azolidin-2-one 1, a PEEK microtee (Upchurch Scientific) con-
nector was incorporated into the system, enabling 3 inputs and an
output (Fig. 2). The magnitude of flow was controlled using two
displacement pumps (MD-1001, Bioanalytical Systems Inc.)
capable of delivering fluid at flow rates of 1–100 ml min21. All
micro reactions were conducted over a period of 20 min to ensure
a sufficient volume of product was generated for analysis by GC-
MS (Varian GC (CP-3800) coupled to a Varian MS (2000), 30 m
CP-Sil 8 column (Phenomenex), injector temperature 200 °C,
helium flow rate 1 ml min21, oven temperature 60 °C for 1 min then

Scheme 1 Alkylation of N-acyl oxazolidinone 1 to afford diastereomers 3
and 4.

Fig. 1 Schematic of the connectors used to interface the micro reactor to
a displacement pump.
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ramped to 270 °C at 25 °C min21). Reaction products were
determined via the comparison of retention times and spectra with
those obtained from a series of synthetic standards. Analysis of the
crude reaction mixtures by GC-MS enabled the proportion of
product to be determined with respect to residual starting material
i.e. % conversion.

Results and discussion
Using methodology established by Evans et al.,1 the enolate of
4-methyl-5-phenyl-3-propionyloxazolidin-2-one 1 was alkylated
using benzyl bromide 2, to afford diastereomers 3 and 4 in an
overall yield of 68% and a ratio of 85 : 15 (3 : 4) (Scheme 1).

Having successfully prepared a series of synthetic standards at
2100 °C, the reaction was subsequently repeated at room
temperature (25 °C) and 278 °C in order to investigate the effect of
reaction temperature on product diastereoselectivity. As expected,
performing the reaction at room temperature is undesirable as both
diastereoselectivity and conversion are poor (Table 1). This
observation is attributed to the decomposition of a large proportion
of the N-acyl oxazolidinone enolate 5 and subsequent alkylation of
the anion 6 to afford 3-benzyl-4-methyl-5-phenyloxazolidin-2-one
7 (Scheme 2). Although performing the reactions at 278 °C
initially appears advantageous as a greater conversion to product is
obtained, compared with reactions conducted at 2100 °C, reduced
diastereoselectivity and increased enolate decomposition is ob-
served. Consequently, all further investigations were carried out at
2100 °C.

Due to the excellent thermal and mass transportation properties
observed within micro fluidic devices, it was postulated that

product diastereoselectivity could be further improved as a result of
conducting the reaction in a micro reactor.

Although many reactions have been demonstrated within micro
reactors at temperatures ranging from 4 °C to 300 °C,6 few authors,
with the exception of Yoshida and Schwalbe,12 report reactions
performed at reduced temperatures. Using the following experi-
mental procedure, the preparation of diastereomers 3 and 4 was
investigated within a pressure-driven system; a standard solution of
NaHMDS 8 (0.5 M) in anhydrous THF was added from syringe A
at 50 ml min21, a solution of 4-methyl-5-phenyl-3-propionylox-
azolidin-2-one 1 (0.5 M) in anhydrous THF was added from syringe
B at 50 ml min21 and a solution of benzyl bromide 2 (0.5 M) in
anhydrous THF was added from syringe C at 50 ml min21 (Fig. 2).
In order to maintain the reactor temperature, the micro reactor was
placed within a CO2–ether bath and the reaction products collected
at room temperature. To ensure the results obtained were
representative of the reaction occurring within the micro fabricated
device, the reaction products were collected in a stirred vial where
they were quenched immediately. Using this approach, the chiral
enolate 5 was formed within the central micro channel and
subsequently reacted with benzyl bromide in the microtee to afford
diastereomers 3 and 4, in 31% conversion and a ratio of 94 : 6 (3 :
4). Reducing the flow rates to 20 and 10 ml min21 respectively
enabled the effect of residence time on product conversion and
diastereoselectivity to be investigated. As Table 2 illustrates, as the
flow rate was decreased, both product conversion and diaster-
eoselectivity increased enabling diastereoselectivities > 91 : 9 to be
obtained.

Using the aforementioned approach, the diastereoselective
synthesis of ((2AS, 4R, 5S)-3-(2A-methyl-3A-phenylpropionyl)-
4-methyl-5-phenyloxazolidin-2-one 3 was demonstrated in a micro
reactor whereby diastereoselectivities of > 91 : 9 (3 : 4) were
obtained compared to 85 : 15 in batch. Although the technique
remains unoptimised at 10 ml min21, increased conversions of up to
10% were obtained when using the pressure-driven system
compared to traditional batch techniques, demonstrating 41%
conversion to diastereomers 3 and 4. The fact that unreacted N-acyl
oxazolidinone 1 was detected by GC-MS (59%) indicates in-
complete enolate formation rather than decomposition, therefore by
increasing the residence time within the initial part of the device, it
is proposed that conversion could be further increased. The
technique is also advantageous as no decomposition product 7 was
observed when performing the reaction in a micro reactor compared
with > 10% in batch. These observations are attributed to the ability
to accurately control both residence time and temperature of the
reaction mixture within the micro fluidic device.

Conclusions
In summary, we have demonstrated a simple technique for the
diastereoselective alkylation of metal stabilised enolates using a
pressure-driven micro reactor at 2100 °C, whereby increased
conversions and diastereoselectivity were observed compared to
batch. Further work is currently under way within our laboratories
to improve the product conversions obtained and demonstrate the
scope of this technique.

Fig. 2 Schematic of the reduced temperature set-up.

Table 1 Effect of reaction temperature on diastereoselectivity in batch

Reaction
temp./°C

Conversion
(%)a(3 + 4) Ratio (3 : 4)

Decomposition
(%)a (7)

25 17 69 : 31 53
278 59 75 : 25 24
2100 31 85 : 15 10
a Determined by GC-MS analysis of reaction mixture after 30 min.

Scheme 2 Decomposition of the enolate 5 to afford by-product 7.

Table 2 Effect of flow rate on product diastereoselectivity and conversion
within a pressure-driven micro reactor

Flow
rate/ml min21

Conversion
(%)a (3 + 4) Ratio (3 : 4)

Decomposition
(%)a (7)

50 31 94 : 6 0
20 38 91 : 9 0
10 41 91 : 9 0
a Conversion and diastereoselectivity based on n = 10.
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Abstract

Suzuki cross-coupling reaction of aryl halides with phenylboronic acid to form biaryls has been used to illustrate the development of a
microwave-based technique capable of delivering heat locally to a solid Pd-supported catalyst located within a continuous flow capillary
reactor. The strong inherent absorption of a thin layer of gold metal on the outside surface of the capillary enabled effective heating to be
carried out in the region of the catalyst, enhancing the rate of reaction to give product yields greater than 70% with catalyst/reactant contact
times of less than 60 s using a hydrodynamically pumped system.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Microwave; Suzuki reaction; Heterogeneous catalysis; Continuous flow capillary reactor

1. Introduction

In recent years the use of emerging techniques such as
microwave heating[1] and miniaturised continuous flow
reactor technology (microreactors) for organic synthesis
[2] has attracted considerable interest, particularly within
the pharmaceutical and fine chemical communities, where
the benefits associated with rate enhancements, higher
yields and greater product selectivity have been reported
[3–5]. The coupling therefore of microwave heating with
a capillary-based flow through reactor, in which chemical
synthesis can be performed, offers the possibility of realis-
ing many of the individual advantages associated with these
two techniques combined into one integrated system. One
obvious problem however with attempting to couple mi-
crowave energy directly into the reactants contained within
a capillary system is the very low absorption and hence
heating that will occur due to the small volumes of material
present[6]. Even for polar species which show (relatively)
strong absorption of microwaves, efficient absorption typ-
ically requires a liquid depth in the order of a cm for
microwaves at 2.45 Gz to be efficiently absorbed. This

∗ Corresponding author. Tel.:+44 1482 465469;
fax: +44 1482 466416.

E-mail address: s.j.haswell@hull.ac.uk (S.J. Haswell).

shortcoming can be overcome by exploiting the absorption
of microwaves by either supported metal catalysts within
the capillary reactor and/or thin metallic films located on
the surface of such a system[6].

In this present study, Suzuki reactions[7] have been
performed using Pd supported on silica and alumina to
demonstrate the utility of the proposed methodology. The
Suzuki reaction (palladium-catalysed cross-coupling of aryl
halides with aryl boronic acids) has now become one of
the most widely used methods for the selective formation
of carbon–carbon bonds, in particular for the formation of
biaryls [7,8], which represent important intermediate ma-
terials in the pharmaceutical and fine chemicals industries.
Such Suzuki reactions are commonly performed using a
homogeneous soluble palladium complex catalyst; however,
recovery of such homogeneous catalysts can prove difficult
at the aqueous work-up stage[9]. Solid Pd-supported cat-
alyst has been successfully used for Suzuki reactions and
showed comparable or better activity than soluble palla-
dium complexes[10–12]. Developing a methodology based
on a heterogeneous catalyst in a continuous flow capillary
reactor-type operation offers many advantages over ho-
mogeneous batch-based methods. These include effective
product isolation from the catalysts and improved control
of the catalyst–reactant contact time leading to more rapid
optimization of both product selectivity and yield. In addi-

0926-860X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.apcata.2004.05.042
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tion, the solid-phase catalysts which are only required in mg
quantities, can be readily tested under reaction conditions
and are easily recovered for reuse if required.

In this work we demonstrate that the proposed methodol-
ogy offers controlled localised microwave heating of reac-
tants in a continuous flow capillary reactor leading to sig-
nificant enhancements in the rate of reaction to give high
product yields with catalyst/reactants contact times of less
than 60 s.

2. Experimental

The experimental setup is shown schematically inFig. 1.
The flow reactor consisted of a U-shaped glass capillary
of inner diameter 800�m, outer diameter 1.2 mm and to-
tal length 138 mm. The capillary was mounted within the
cavity of a Discover microwave system (CEM Ltd.) which
is capable of delivering 0–300 W of microwave power at
2.45 GHz. The microwave cavity was fitted with an infrared
sensor which was aligned so as to monitor the temperature of
the external surface of the lower part of the U-shaped capil-
lary. The capillary was connected via two two-way connec-
tors and PTFE tubing to an external syringe pump (Harvard
PHD 2000). The catalyst particles (355–420�m, selected
by sieving) were loaded in the U-tube and prevented from
moving along the tube by insertion of a glass rod (outer ra-
dius 300 mm) at the end of the catalyst bed. Reactant solu-
tion, containing an aryl halide (0.1 M), phenylboronic acid
(0.12 M), base (0.25 M) in a solvent mixture consisting of
75 vol.% dimethylformamide (DMF) in water, was pumped
through the reactor using the syringe pump. For the differ-
ent pump flow rates, the residence times of the solutions
within the catalyst bed were directly measured by timing
the movement of the liquid front during first filling. As re-
quired, the bottom section of the U-tube (15 mm length)
was sputter-coated with gold to the required thickness us-
ing a SEMPREP 2 sputter Coater (Nanotech Ltd.). During
a reaction run, product samples were collected after the re-
quired flow period, weighed and a known amount of dode-

Fig. 1. Schematic diagram of the setup for microwave-assisted coupling
reactions.

cane was added as an internal standard. Samples were treated
with 1 M aqueous NaOH to remove unreacted PBA, the re-
maining organic material was then extracted, washed three
times with distilled water, collected and dried over MgSO4.
Treated samples were analysed for biaryl product plus ben-
zonitrile and biphenyl side products using a GC (Shimadzu
GC-17A) equipped with a capillary column (CP SIL 8 CB,
30 m length, Chrompack). The GC column temperature was
held initially at 70◦C for 4 min, ramped at 20◦C/min to
reach 240◦C which was then held for 12 min. Conversions
were calculated from GC data by determining the quantity
of aryl halide present in the collection vial after reaction.
Overall mass balances were checked using the GC data for
the product and were correct within a few percent.

The reagents and solvents 4-bromobenzonitrile (BBN,
Aldrich, 99%), 4-bromnitrobenzol (BNB, Aldrich, 99%),
4-bromobenzaldehyde (BBA, Aldrich, 99%), 4-iodoanisole
(IA, Aldrich, 98%), 4-iodotoluene (IT, Aldrich, 99%),
phenylboronic acid (PBA, Aldrich, 97%), dodecane
(Aldrich, >99%), N,N-dimethylformamide (DMF, Fluka,
>99%), dichloromethane (DCM, Fisher, >99%), MgSO4
(Fisher, >99%), K2CO3 (Lancaster, >99%) and NaOH
(BDH, 98%) were used without further purification. The
catalysts Pd supported on silica (Pd/SiO2) and alumina
(Pd/Al2O3) were supplied by Johnson Matthey and con-
tained 2 wt.% Pd for the Pd/SiO2 and 5 wt.% Pd for the
Pd/Al2O3.

3. Results and discussion

Experiments were initially carried out to evaluate an ap-
propriate catalyst and base for the proposed reaction. For
this, two solid catalysts (Pd/SiO2 and Pd/Al2O3) and two
bases (NaOH and K2CO3) were selected for the coupling
reaction of BBN with PBA to form 4-cyanobiphenyl (CBP).
As seen fromTable 1, the product yield when using Pd/SiO2
and K2CO3 as a base increases with temperature up to ap-

Table 1
Evaluation of the catalyst support and appropriate base for the coupling
reaction of 4-bromobenzonitrile and phenylboronic acid

Catalyst Base MW power
(W)

IR sensor
temperature (◦C)

Yield (%)

Pd/SiO2 K2CO3 0 Room temperature 0
Pd/SiO2 K2CO3 50 46 14
Pd/SiO2 K2CO3 150 66 37
Pd/SiO2 K2CO3 170 80 26
Pd/SiO2 NaOH 150 66 0 (83a)
Pd/Al2O3 K2CO3 60 55 59
Pd/Al2O3 K2CO3 90 80 99b

Reaction mixture consisting of 4-bromobenzonitrile (0.1 M), phenyl-
boronic acid (0.12 M), base (0.25 M) in a DMF (75 vol.%)/H2O (25 vol.%)
mixed solvent was pumped continuously through the capillary reactor at
0.04 ml min−1. The solution–catalyst contact time was 15 s. The gold film
used was 15 nm thick and 8 mg of catalyst was used.

a Benzonitrile is only product.
b Containing 9% biphenyl and 15% benzonitrile.
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Fig. 2. Images of Pd/SiO2 before (a) and after (b) microwave irradiation. Aggregation of the catalyst particles are clearly seen in image (b) which in
turn deactivates the catalyst.

proximately 37% at 66◦C and then decreases to about 26%
as the temperature is increased to around 80◦C. At this
higher temperature, aggregation of Pd/SiO2 catalysts was
observed and this is attributed to the condensation of SiO2
under basic condition which deactivates the catalyst (see
Fig. 2). Such condensation between alumina particles was
not observed when using the Pd/Al2O3-supported catalyst.
In addition, measurements of the microwave-induced heat-
ing of the catalyst alone indicated that the Pd/Al2O3 catalyst
absorbed microwaves better than the Pd/SiO2 catalyst giving
a higher local temperature at the catalyst surface. As a result,
Pd/Al2O3 catalyst was found to give a 59% product yield at
an IR sensor temperature of 55◦C rising to 75% at 80◦C,
showing a greater reactivity for the Pd/Al2O3-supported cat-
alyst as obtained using the Pd/SiO2. It can also be seen from
Table 1that when NaOH (0.25 M) was used as the base the
undesired product benzonitrile (through debromination) at
83% conversion was generated. This result indicates that the
use of a strong base, such as NaOH, leads to the debromina-
tion of 4-bromobenzonitrile to give an undesired by-product.
The carbonate (pKa = 10.3) however is clearly a sufficiently

Table 2
Evaluation of the heating mode and time on the coupling reaction of 4-bromobenzonitrile and phenylboronic acid

Heating method Flow (�l min−1)/contact time (s) MW power (W) IR sensor temperature (◦C) Yield (%)

Room temperature 0.01/60 0 25 0
Oil bath 0.04/15 0 65 1
Oil bath Bulka/1200 0 100 61
MW heating no Au film 0.04/15 250 58–60 37
MW heating no Au film 0.01/60 250 58–60 43
MW heating plus gold coating 0.04/15 60 55–63 59
MW heating plus gold coating 0.01/60 90 55–63 91b

Reaction mixture consisting of 4-bromobenzonitrile (0.1 M), phenylboronic acid (0.12 M), K2CO3 (0.25 M) in a DMF (75 vol.%)/H2O (25 vol.%) mixed
solvent was pumped continuously through the capillary reactor. The gold film used was 15 nm thick and 8 mg of Pd/Al2O3 catalyst was used.

a Bulk reaction.
b Containing 5% biphenyl and 12% benzonitrile.

strong base to form the C6H5–B(OH)3− intermediate re-
quired for cross-coupling to give the desired product (pKa
of PBA = 8.8). Based on this initial evaluation, further in-
vestigations focused on using Pd/Al2O3 as the catalyst with
K2CO3 as a base.

The results summarized inTable 2show a comparison
of heating methods and the corresponding effect of con-
tact time on product yield. The data show that no product
conversion is detected at room temperature and that heat-
ing the capillary reactor by immersion in an isothermal oil
bath at 65◦C produced almost no product. Increasing the
oil bath temperature to 100◦C with a contact time of 1200 s
gave a 61% yield of the product. When the capillary reac-
tor was heated using microwave absorption (250 W) by the
alumina-supported catalyst only (i.e. without the presence
of a gold metal film) a temperature of around 59◦C was
determined by the IR sensor focused on the external capil-
lary reactor surface at the lowest point of the U-tube and a
37% product yield was obtained for a contact time of 15 s.
This yield was improved to 43% for a contact time of 60 s.
Clearly, the localized temperature at the catalyst surface is
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Table 3
Comparison of activities on replicated reuse of Pd/Al2O3 catalyst on the
Suzuki reaction of 4-bromobenzonitrile and phenylboronic acid using a
capillary without gold coating

Reuse of Pd/Al2O3 Power (W) Temperature (◦C) Yield (%)

1 250 60 43
2 250 62 42
3 250 64 41
4 250 64 42

Reaction mixture consisting of 4-bromobenzonitrile (0.1 M), phenyl-
boronic acid (0.12 M), K2CO3 (0.25 M) in a DMF (75 vol.%)/H2O
(25 vol.%) mixed solvent was pumped continuously through the capillary
reactor and 8 mg of Pd/Al2O3 catalyst was used.

hard to estimate under these conditions as it is simultane-
ously cooled by the reagent flow and heated by microwave
absorption into (mainly) the Pd/Al2O3 catalyst. Finally when
the microwave energy was absorbed by both the catalyst
and a gold film situated on the outside of the capillary in
the region of the catalyst zone a more efficient absorption
of microwaves occurred enabling the microwave power to
be reduced from 250 W, as used in the case of the catalyst
alone, to less than 100 W. Under these conditions a temper-
ature of around 59◦C was obtained together with a 59%
yield of product for contact time of 15 s rising to 91% for
a contact time of 60 s. It can be clearly seen that the best
product yield is obtained at relatively low microwave power
when microwave absorption by both the catalyst and gold
coating is used. Due to the coupled effects of reagent flows,
energy absorption and conduction, it is difficult to estimate
the localized temperature within the reaction zone. On the
basis that the product conversion is an effective measure of
the localized temperature experienced by the reaction (i.e.
the microwave effect is purely thermal), the data inTable 2
suggest that microwave absorption into both catalyst support
and gold film is both effective and efficient in focusing heat-
ing energy into the small reaction zone within the capillary
reactor. It is also seen that, as expected, increasing contact
time between catalyst and reactants improves the product
yield. The stability of Pd/Al2O3 was also investigated and
the deactivation of the catalyst was not observed over a short
number of runs (Table 3).

To demonstrate the applicability of the proposed method-
ology for the rapid evaluation of a catalyst, a range of dif-
ferent aryl halides were evaluated. The results presented in
Table 4indicate that deactivated substrates are more reac-
tive than activated substrates and give correspondingly high
product yields. This is consistent with a mechanism in which
electron-withdrawing groups favour oxidative addition of
aryl halides to a Pd(0) species[7]. This set of results clearly
demonstrates the advantages that the proposed methodol-
ogy offers in terms of high throughput synthesis, where pure
products can be generated in high yields with a catalyst con-
tact time of less than 1 min.

Table 4
Product conversion for a range of aryl halides reacted in the capillary
flow reactor

Aryl halide MW power (W) Yield (%)

X R

Br NO2 150 74
Br CN 90 59
Br CHO 150 54
I OCH3 250 32
I CH3 150 30

Reaction mixture consisting of aryl halide (0.1 M), phenyl boronic acid
(0.12 M), K2CO3 (0.25 M) in a DMF (75 vol.%)/H2O (25 vol.%) mixed
solvent was pumped continuously through the reactor at 0.04�l min−1.
The solution–catalyst contact time was 15 s. The gold film was 15 nm
thick and 8 mg of Pd/Al2O3 catalyst was used. The sensor temperature
was approximately constant at 50± 5◦C.

4. Conclusions

We have demonstrated that the controlled heating of a re-
action can be achieved using selective microwave absorption
by both a catalyst within a capillary channel and a gold film
placed on the outside surface of a capillary reactor. Using
a heterogeneously catalysed Suzuki reaction to demonstrate
the utility of the proposed methodology, catalyst, base, sub-
strate, heating and flow effects could be evaluated quickly
and effectively. In this particular work a Pd/Al2O3 catalyst
used in conjunction with a K2CO3 base was found to give
over 70% yield of the product in 15 s using 150 W of mi-
crowave power. Whilst a Suzuki-type reaction was used to
illustrate the methodology, the results clearly point the way
to developing a wider range of rapid chemical evaluation
methods and process based on capillary flow reactor tech-
nology.
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Abstract—Using a series of silica-supported bases, we demonstrate the synthesis of eight condensation products within an EOF-based flow
reactor; in all cases, high yields (O99%) and product purity are obtained.
q 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Increased demand for the rapid preparation of small
molecule libraries has led to renewed interest in the
development of clean and efficient techniques for the
synthesis of organic compounds. With this in mind, the
miniaturisation of reaction technology is of particular
interest to the pharmaceutical industry, where long term
objectives include the desire to perform multiple functions
such as synthesis, detection, screening and biological
evaluation within a single integrated device, resulting in
an overall reduction in the time taken to discover new lead
compounds and put them into production.1 To date,
numerous compounds have been successfully synthesised
within micro fabricated devices with many groups demon-
strating advantages over traditional batch techniques such as
greater reaction control, leading to increased conversions,
selectivities and reduced reaction times.2 Although many
groups have begun the task of transferring synthetic
methodology from batch to micro reactors, few have
addressed the problems associated with product purification
in continuous systems.3 In order to tackle these problems,
we were interested in the use of solid-supported reagents.4
1.1. Solid-supported reagents

Compared to solid-phase techniques,5 where reaction
intermediates are immobilised and cannot be fully charac-
terised until cleaved from the support, the use of solid-
supported reagents means that reaction products remain in
solution, enabling reaction progress to be monitored. As the
technique couples the advantages of both solid and solution-
0040–4020/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tet.2004.07.006
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phase synthesis, the use of solid-supported reagents means
that excess reagent can be employed in order to drive the
reaction to completion, while the reagent can be easily
removed from the reaction mixture. With the obvious
similarities to solid-phase synthetic methodology, polymers
have found widespread use in the preparation of solid-
supported reagents;6,7 other materials however include
zeolites,8 clays9 and silicas.10 Unlike certain polymers,
silica exhibits no swelling in organic solvents and is
thermally, chemically and mechanically stable; conse-
quently, its use as a support is becoming more widespread.
Due to the non-porous nature of the support, functionalisa-
tion is limited to the surface and as a result, reaction rate is
not limited by reagent diffusion whilst enabling controlled,
reproducible loading. In order to prevent any undesirable
adsorption of materials onto the silica, any unfunctionalised
silanol groups are end-capped. With this in mind, we were
interested in investigating the incorporation of silica-
supported reagents for continuous synthesis in a minia-
turised flow reactor.

1.2. Knoevenagel condensation

The Knoevenagel reaction is defined as the condensation of
an aldehyde or ketone with compounds that possesses an
active methylene group. The reaction is brought about using
organic bases such as primary or secondary amines.11 The
active methylene groups employed include nitro, cyano and
acyl groups and in most cases, two groups are required in
order to provide sufficient activation. As Scheme 1
illustrates, the primary product formed is the unsaturated
product although, in some cases, further reaction may take
place with a second molecule of the activated methylene
compound resulting in a Michael addition to afford the bis
product. With careful selection of the starting materials,
enantioselective12 and diastereoselective13 condensation
Tetrahedron 60 (2004) 8421–8427



 

Scheme 1. General scheme illustrating the reaction of activated methylenes and aldehydes with a functionalised silica gel 1.
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products may be obtained. The main disadvantage associ-
ated with the Knoevenagel condensation is that the reactions
do not proceed to completion and require purification to
remove the organic base and its salt. Many alternatives
exist, including acid catalysed condensations,14 dry grind,15

the use of microwave irradiation,16 zeolites,17 aluminium
oxides18 and the use of amino functionalised polymers19 and
silica gels.20

It was therefore proposed that by incorporation of a series of
supported bases into a micro-fabricated device, that product
purity could be increased while simultaneously maintaining
the advantages associated with miniaturisation. Firstly, in
order to compare the use of supported reagents within a flow
reactor with traditional batch techniques, the reactions were
initially performed in batch using both silica-supported and
solution phase bases.
Figure 2. Graph illustrating the rate of conversion when employing
2. Results and discussion

As Scheme 1 illustrates, treatment of an activated methylene
with a base 1 in the presence of an aldehyde, results in the
preparation of an unsaturated product (Fig. 1).
Figure 1. Synthetic targets for preparation in a miniaturised device.
Prior to investigating the incorporation of a silica-supported
base within a flow reactor, using the preparation of 2-cyano-
3-phenyl acrylic acid ethyl ester 2 as a model reaction, the
rate of reaction was compared to a solution phase base at
room temperature. As Figure 2 illustrates, compared to
piperazine 3, the rate of conversion is markedly reduced
when 3-(1-piperazino)propyl-functionalised silica gel 1 is
employed.
solution-phase organic bases compared with solid-phase bases.
Having demonstrated the successful synthesis of 2-cyano-3-
phenyl acrylic acid ethyl ester 2 using 3-(1-piperazino)prop-
yl-functionalised silica gel 1, the next step was to
investigate reagent longevity. As Figure 3 illustrates,
recycling the reagent results in a significant decrease in
conversion to 2-cyano-3-phenyl acrylic acid ethyl ester 2.
As the reaction is base catalysed and the reagent is end-
capped to prevent fouling, the increase in reaction time was
attributed to a loss of reagent as a result of recycling. In
order to confirm this, the reaction was again investigated
Figure 3. Graph illustrating the effect of recycling a solid supported reagent

on the rate of conversion.



Figure 4. Graph illustrating the effect of base amount on the rate of

conversion.

Figure 6. Schematic illustrating the principle of electroosmotic flow.
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using varying amounts of 3-(1-piperazino)propyl-functio-
nalised silica gel 1 (0.05–0.0125 mmol). As Figure 4
illustrates, as the quantity of base employed is decreased,
the reaction time required increases, confirming the
reduction in reaction rate is due to reagent loss. Having
demonstrated the ability to recycle 3-(1-piperazino)propyl-
functionalised silica gel 1, the next step was to demonstrate
its use in a micro fabricated device.

In order to evaluate the use of silica-supported reagents
within an EOF-based system, a miniaturised flow reactor
was investigated (Fig. 5). This approach not only enabled
the reagents to be packed with ease but also provided a
relatively inexpensive, versatile system. Although examples
of pressure-driven systems have been reported within the
literature, owing to its simplicity, the technique of
electroosmotic flow (EOF) is demonstrated. The technique
is advantageous as it is simple to use, requires no
mechanical parts, enables reproducible pulse-free flow and
most importantly, with respect to packed systems, generates
minimal back-pressure.21 As Figure 6 illustrates, when an
ionisable surface such as glass, quartz or Teflon, comes in
contact with a suitable solvent system, the surface is
neutralised with a diffuse layer of positive ions from the
bulk liquid. A proportion of the counterions are adsorbed
onto the surface, resulting in the formation of an immobile
layer, and the remaining positive ions form a transient
Figure 5. Schematic of the reaction set-up used for the evaluation of solid-

supported reagents.
double layer. Application of an electric field causes the
double layer to move towards the most negative electrode,
inducing bulk flow within the microchannel.

To perform a reaction, the starting materials are passed over
a silica-supported reagent using EOF, reacted for a specified
time, collected in the product reservoir and analysed using a
chromatographic technique. As Figure 5 illustrates, 5 mg of
3-(1-piperazino)propyl-functionalised silica gel 1 (4.75!
10K3 mmol) was packed into a borosilicate glass capillary
(500 mm!3 cm) and in order to prevent loss of the reagent,
micro porous silica frits were placed at either end.22 The
capillary was then primed with MeCN to remove any air,
ensuring the formation of a complete circuit, and the
capillary attached to two glass reservoirs. The reagents were
manipulated through the device via the application of a
voltage to the platinum electrodes placed in the reagent
reservoirs. As Figure 7 illustrates, a 1:1 mixture of
benzaldehyde 4 and ethylcyanoacetate 5 (40 ml, 1.0 M) in
MeCN was placed in reservoir A and MeCN in reservoir B
(40 ml). Application of 333 and 0 V cmK1 resulted in the
mobilisation of the reaction mixture through the packed bed
at a flow rate of 0.5 ml minK1.

After 20 min, the reaction products were collected in
reservoir B, diluted with MeCN and analysed by GC-MS,
whereby 98.3% conversion to 2-cyano-3-phenyl acrylic acid
ethyl ester 2 was obtained with respect to residual
benzaldehyde 4 (Fig. 8). Consequently, in order to
demonstrate the use of the aforementioned device for the
continuous synthesis of 2-cyano-3-phenyl acrylic acid ethyl
ester 2, the reactor was run continually over a period of
4.75 h (14 runs), whereby 0.025 g (0.124 mmol, 98.9%) of
product 2 was prepared. As Table 1 illustrates, reproducible
conversions of greater than 98% were obtained demonstrat-
ing device stability and reagent longevity. After analysis by
GC-MS, the reaction products were collected and concen-
trated in vacuo, the crude product was then analysed by
NMR. As Figure 9 illustrates, NMR confirms the successful
Figure 7. Schematic of the preparation of 2-cyano-3-phenyl acrylic acid

ethyl ester 2 in an EOF-based miniaturised device.



Table 1. Table illustrating device reproducibility over 4.7 h

Run No. Conversion (%)

1 98.3
2 98.5
3 98.3
4 98.3
5 98.4
6 99.2
7 99.1
8 99.1
9 100.0
10 99.6
11 99.3
12 100.0
13 100.0
14 99.2

MeanZ99.1%, % RSDZ0.65

Figure 8. Chromatogram illustrating the synthesis of 2-cyano-3-phenyl

acrylic acid ethyl ester 2 within a micro reactor (98.3% conversion).

Figure 9. 13C NMR of 2-cyano-3-phenyl acrylic acid ethyl ester 2 synthesised u
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synthesis of 2-cyano-3-phenyl acrylic acid ethyl ester 2 in
high purity within a micro fabricated device without the
need for further purification. Having demonstrated the
ability to synthesise 2-cyano-3-phenyl acrylic acid ethyl
ester 2, the technique was repeated using 4-bromobenzal-
dehyde 6, 3,5-dimethoxybenzaldehyde 7, 4-benzyloxyben-
zaldehyde 8, to afford the respective condensation products
9, 10 and 11 in 99.5, 94.7 and 95.1% conversion
respectively (Table 2).

Having successfully demonstrated the preparation of an
array of condensation products, the technique was extended
to the synthesis of 2-benzylidene malononitrile 12. Using
the aforementioned methodology, a 1:1 mixture of mal-
ononitrile 13 and benzaldehyde 4 (40 ml, 1.0 M) in MeCN
was placed in reservoir A and MeCN in reservoir B (40 ml).
As malononitrile 13 exhibits a greater electroosmotic
mobility cf. ethylcyanoacetate 5, the applied field was
sing a micro fabricated device.



Table 2. Summary of the conversions obtained in a micro fabricated device
using 3-(1-piperazino)propyl-functionalised silica gel 1

Product No. Applied Field
(V cmK1)

Flow Rate
(ml minK1)

Conversiona

(%)

2 333 0.5 99.1
9 333 0.3 99.5
10 333 0.3 94.7
11 333 0.5 95.1
12 167 1.0 96.9
14 167 0.5 96.3
15 167 0.7 97.8
16 167 1.0 99.7

a R10 replicates were performed for each compound.

Table 3. Comparison of the conversions obtained for the synthesis of 2-
cyano-3-phenyl acrylic acid ethyl ester 2 using silica-supported bases 1, 17,
18 and 19

Base Applied field
(V cmK1)

Flow rate
(ml minK1)

Conversiona

(%)

1 333 0.5 99.1
17 333 0.35 99.4
18 333 .35 100.0
19 333 0.80 99.3

a R10 replicates were performed for each compound.
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reduced in order to obtain comparable flow rates. Appli-
cation of 167 and 0 V cmK1 resulted in the mobilisation of
the reaction mixture through the packed bed, at a flow rate
of 1.0 ml minK1, resulting in 96.9% conversion to 2-
benzylidene malononitrile 12. This was subsequently
repeated using 4-bromobenzaldehyde 6, 3,5-dimethoxybenz-
aldehyde 7, 4-benzyloxybenzaldehyde 8, to afford 2-(4-
bromobenzylidene)-malononitrile 14 (96.9%), 2-(3,5-
dimethoxybenzylidene)-malononitrile 15 (96.3%) and
2-(4-benzyloxybenzylidene)-malononitrile 16 (97.3%)
respectively (Table 2). Again, 1H and 13C NMR spectra
were obtained for all compounds synthesised within the
device demonstrating excellent product purity. In all cases,
no by-product formation was observed by GC-MS or NMR
spectroscopy. The technique was subsequently repeated
using the reagents; 3-(dimethylamino)propyl-functionalised
silica gel 17 (1.50 mmol N gK1), 3-aminopropyl-functiona-
lised silica gel 18 (1.00 mmol N gK1) and 3-(1,3,4,6,7,8-
hexahydro-2H-pyrimido[1,2-a]-pyrimidino)-propyl-func-
tionalised silica gel 19 (2.4 mmol N gK1) (Fig. 10) whereby
99.4, 100 and 99.3% conversion to 2-cyano-3-phenyl
acrylic acid ethyl ester 2 were obtained.

Previous work by Macquarrie et al.,23 demonstrated the use
of a 3-aminopropyl-functionalised silica surface in a heated,
pressure-driven, aluminium micro reactor. Operating the
device at 98 8C enabled 70% conversion of a 1:1
ethylcyanoacetate 5 and benzaldehyde 4 to 2-cyano-3-
phenyl acrylic acid ethyl ester 2. Compared to the work
described herein, this approach is disadvantageous as
solvent-free techniques are only suitable for the preparation
of low viscosity compounds. Also, the elevated reaction
temperatures employed, compromises device simplicity.
This investigation therefore focussed on the preparation of
an array of condensation products at room temperature,
within an EOF-based micro fabricated device (Table 3).
Figure 10. Schematic of 3-(dimethylamino)propyl-functionalised silica gel

17, 3-aminopropyl-functionalised silica gel 18 and 3-(1,3,4,6,7,8-hexahy-

dro-2H-pyrimido[1,2-a]pyrimidino)propyl-functionalised silica gel 19.
Using four silica-supported bases, 3-(1-piperazino)propyl-
functionalised silica gel 1, 3-(dimethylamino)propyl-func-
tionalised silica gel 17, 3-aminopropyl-functionalised silica
gel 18 and 3-(1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-
a]pyrimidino)propyl-functionalised silica gel 19, enabled
the synthesis of an array of condensation products in
excellent conversions when the device was operated at flow
rates of !1.0 ml minK1. This technique is therefore suitable
for the rapid synthesis of small quantities of compound for
biological screening or the preparation of larger quantities
by scaling-out.24 The ability to prepare pure compounds in
sufficient quantities to obtain structural information is also
advantageous as it negates the need to prepare synthetic
standards, whilst demonstrating the preparation of com-
pounds of analytical purity. Compared to standard batch
techniques employing solid supported reagents, the use of a
continuous flow reactor is advantageous as reagents can be
recycled without any loss upon filtration, resulting in more
consistent conversions over extended periods of operation
(Table 1 cf. Fig. 3). Localised concentration gradients
enable reactions to be driven to completion without the need
to employ large quantities of reagent, that is, 5 mg (4.75!
10K4 mmol) in a micro reactor enables conversions in
excess of 95% to be attained in minutes compared with
O95 h in batch (Fig. 4, 0.0125 mmol).
3. Conclusions

In conclusion, we have demonstrated the successful
incorporation of a series of silica-supported bases within
an EOF-based micro-fabricated device, enabling the
synthesis and characterisation of eight condensation pro-
ducts. Using the methodology described herein, further
studies are currently underway within our laboratories to
extend both the type of reagent and support employed,
enabling more complex syntheses to be demonstrated.
4. Experimental

4.1. Materials and methods

All materials (analytical grade) were purchased from
Aldrich and were used without purification. All NMR
spectra were recorded as solutions in deuteriochloroform
(CDCl3) using tetramethylsilane (TMS) as an internal
standard. The spectra were recorded on a Joel GX400
spectrometer and the chemical shifts are given in parts per
million (ppm) with coupling constants given in Hertz (Hz).
The following abbreviations are used to report NMR data;
sZsinglet, dZdoublet, tZtriplet, br sZbroad singlet, mZ
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multiplet and C0Zquaternary carbon. Gas chromatography-
mass spectrometry (GC-MS) was performed using a Varian
GC (CP-3800) coupled to a Varian MS (2000) with a CP-Sil
8 (30 m) column (Phenomenex) and ultra high purity helium
(99.999% Energas) carrier gas. Samples were analysed
using one of the following methods; Method A: injector
temperature 250 8C, helium flow rate 1.0 ml minK1, oven
temperature 60 8C for 1.0 min and then ramped to 270 8C at
35 8C minK1, with a 3.0 min filament delay or; Method B:
injector temperature 250 8C, helium flow rate 1.0 ml minK1,
oven temperature 60 8C for 1.0 min and then ramped to
270 8C at 20 8C minK1, with a 3.0 min filament delay.

4.2. Batch reactions

4.2.1. General procedure for the solution-phase synthesis
of Knoevenagel condensation products in batch. Piper-
azine 3 (0.09 g, 0.1 mmol) was added to a stirred solution of
activated methylene (1.0 mmol) and aldehyde (1.0 mmol) in
anhydrous MeCN (10 ml mmolK1). After stirring overnight,
the reaction mixture was concentrated in vacuo prior to the
addition of dilute HCl (50 ml, 0.1 M) and the reaction
products extracted into DCM (3!50 ml). The combined
extracts were dried (MgSO4) and concentrated in vacuo,
subsequent recrystallisation from DCM/hexane afforded the
respective condensation product.

4.2.2. General procedure for the solid-phase synthesis of
Knoevenagel condensation products in batch. 3-(1-
Piperazino)propyl-functionalised silica gel 1
(1.9 mmol N gK1, 200–400 mesh) (0.10 g, 0.1 mmol) was
added to a stirred solution of activated methylene
(1.0 mmol) and aldehyde (1.0 mmol) in anhydrous MeCN
(10 ml mmolK1). After stirring overnight, the reaction
mixture was filtered and the filtrate concentrated in vacuo
to afford the respective condensation product.

4.3. Micro-scale methodology

The reactions described herein were carried out using a
single capillary device, as illustrated in Figure 5, with
capillary dimensions of 500 mm i.d.!3.0 cm. To hold the
supported reagent in place, micro porous silica frits were
placed at either end of the capillary.22 To mobilise reagents
by EOF, platinum electrodes (0.5 mm o.d.!2.5 cm) were
placed within the reagent reservoirs and voltages applied
using a Paragon 3B high-voltage power supply (HVPS),
capable of applying 0–1000 V to four pairs of outputs
(Kingfield Electronics). Automation of the HVPS was
achieved using an in-house LabVIEWe program. To enable
the results obtained to be attained using devices of different
dimensions, voltages are reported as applied fields (V cmK1),
that is, voltage/capillary length. To monitor the progress of
the reaction, experiments were conducted over a period of
20 min, after which, the product reservoir was analysed by
GC-MS, whereby comparison of the amount of product with
respect to residual aldehyde enabled the percentage
conversion to be determined. In order to obtain NMR data
on the compounds synthesised in the flow system, the
reactors were operated continuously for 3–5 h, after which
the reaction products were concentrated in vacuo and the
crude compound analysed.
4.3.1. 2-Cyano-3-phenyl acrylic acid ester 225. (0.0253 g,
98.9%) as a white solid; dH 1.41 (3H, t, JZ7.0 Hz,
CH2CH3), 4.39 (2H, q, JZ7.0 Hz, CH2CH3), 7.53 (3H, m,
Ar), 7.99 (2H, m, Ar) and 8.26 (1H, s, CH); dC 14.2 (CH3),
62.8 (CH2), 103.1 (C0CN), 115.5 (CN), 129.3 (2!CH),
131.0 (2!CH), 131.5 (C0), 133.3 (CH), 155.1 (CH) and
162.5 (CO); m/z (EI) 202 (MCC1, 70%), 201 (100), 172
(80), 156 (90), 128 (75), 102 (55), 77 (50) and 51 (50); GC-
MS retention time (Method A) RTZ6.63 min.

4.3.2. 3-(4-Bromophenyl)-2-cyano acrylic acid ethyl ester
926. (0.0118 g, 99.5%) as a white solid; dH 1.40 (3H, t, JZ
7.3 Hz, CH2CH3), 4.39 (2H, q, JZ7.3 Hz, CH2CH3), 7.65
(2H, d, JZ8.7 Hz, Ar), 7.86 (2H, d, JZ8.7 Hz, Ar) and 8.19
(1H, s, CH); dC 14.2 (CH3), 62.9 (CH2), 103.7 (C0CN),
115.3 (CN), 128.3 (C0Br), 130.3 (C0), 132.3 (2!CH), 132.7
(2!CH), 153.6 (CH) and 162.3 (CO); 281 (MCC1, 90%),
280 (45), 279 (100), 251 (25), 200 (20), 154 (10), 127 (25),
100 (20) and 76 (20); GC-MS retention time (Method B)
RTZ10.84 min.

4.3.3. 3-(3,5-Dimethoxyphenyl)-2-cyano acrylic acid
ethyl ester 1027. (0.0109 g, 99.5%) as a white solid; dH

1.40 (3H, t, JZ7.0 Hz, CH2CH3), 3.85 (6H, s, 2!OCH3),
4.39 (2H, q, JZ7.0 Hz, CH2CH3), 6.65 (1H, m, Ar), 7.15
(2H, m, Ar) and 8.17 (1H, s, CH); dC 14.2 (CH3), 55.7 (2!
OCH3), 62.8 (CH2), 103.4 (C0CN), 106.2 (CH), 108.6 (2!
CH), 115.6 (CN), 133.1 (C0), 155.2 (CH), 161.1 (2!C0)
and 162.5 (CO); 262 (MCC1, 20%), 261 (100), 189 (55),
161 (25) and 77 (10); GC-MS retention time (Method A)
RTZ8.06 min.

4.3.4. 3-(4-Benzyloxyphenyl)-2-cyano acrylic acid ethyl
ester 11. (0.0211 g, 99.1%) as a cream solid (Found C,
74.51; H, 5.77; N, 4.62. C19H17O3N requires C, 74.25; H,
5.58; N, 4.56%); dH 1.39 (3H, t, JZ7.3 Hz, CH2CH3), 4.37
(2H, q, JZ7.3 Hz, CH2CH3), 5.15, (2H, s, CH2), 7.00 (2H,
d, JZ8.7 Hz, Ar), 7.40 (5H, m, Ar), 7.99 (2H, d, JZ8.7 Hz,
Ar) and 8.17 (1H, s, CH); dC 14.2 (CH3), 62.5 (CH2), 70.4
(C0CH2), 99.5 (C0), 115.6 (2!CH), 124.6 (CN), 127.5 (2!
CH), 128.4 (CH), 128.8 (2!CH), 133.7 (2!CH), 135.8
(C0), 154.4, (CH), 162.9 (OC0) and 163.1 (CO); 308 (MCC
1, 5%), 307 (20), 91 (100) and 65 (20); GC-MS retention
time (Method B) RTZ12.35 min.

4.3.5. 2-Benzylidene-malononitrile 1225. (0.0154 g, 100%)
as a pale yellow solid; dH 7.55 (2H, m, Ar), 7.64 (1H, m,
Ar), 7.79 (1H, s, CH) and 7.91 (2H, m, Ar); dC 83.0 (C0),
112.6 (CN), 113.7 (CN), 129.7 (2!CH), 130.8 (2!CH),
131.0 (C0), 134.7 (CH) and 159.9 (CH); 155 (MCC1,
20%), 154 (100), 127 (20) and 76 (10); GC-MS retention
time (Method A) RTZ5.84 min.

4.3.6. 2-(4-Bromobenzylidene)-malononitrile 1428.
(0.0349 g, 99.9%) as a pale yellow solid; dH 7.69 (2H, d,
JZ8.4 Hz, Ar), 7.72 (1H, s, CH) and 7.77 (2H, d, JZ
8.4 Hz, Ar); dC 83.6 (C0), 112.3 (CN), 113.5 (CN), 129.7
(C0Br), 130.0 (C0), 131.8 (2!CH), 133.1 (2!CH) and
158.4 (CH); 235 (MCC1, 70%), 234 (100), 233 (95), 232
(90), 153 (25) and 77 (10); GC-MS retention time (Method
B) RTZ9.65 min.

4.3.7. 2-(3,5-Dimethoxybenzylidene)-malononitrile 1525.
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(0.0240 g, 99.2%) as a yellow solid; dH 3.84 (6H, s, OCH3),
6.70 (1H, m, Ar), 7.03 (2H, m, Ar) and 7.69 (1H, s, CH); dC

55.7 (2!OCH3), 83.2 (C0), 107.3 (CH), 108.3 (2!CH),
112.7 (CN), 113.7 (CN), 132.4 (C0), 160.1 (CH) and 161.3
(2!C0OCH3); 215 (MCC1, 25%), 214 (100), 186 (55),
171 (20), 155 (20), 142 (15), 114 (10) and 76 (10); GC-MS
retention time (Method A) RTZ7.50 min.

4.3.8. 2-(4-Benzyloxybenzylidene)-malononitrile 1629.
(0.0235 g, 99.6%) as a pale yellow solid; dH 5.17 (2H, s,
CH2), 7.08 (2H, d, JZ9.0 Hz, Ar), 7.39 (5H, m, Ar), 7.64
(1H, s, CH) and 7.90 (2H, d, JZ9.0 Hz, CH); dC 70.6 (CH2),
78.8 (C0), 113.3 (CN), 114.4 (CN), 116.0 (2!CH), 124.2
(C0), 127.5 (2!CH), 128.6 (CH), 128.9 (2!CH), 133.5
(2!CH), 135.5 (C0), 158.8 (CH) and 163.9 (OC0); 261
(MCC1, 5%), 260 (5), 114 (10) and 91 (100); GC-MS
retention time (Method B) RTZ11.97 min.
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Abstract

We have demonstrated that peptides may be prepared in quantitative conversion in a micro reactor by reaction of the pentafluorophenyl
(PFP) ester derivatives of protected amino acids. It was found that performing these reactions in a micro reactor operating under electrokinetic
control resulted in an increase in reaction efficiency compared with the traditional batch method. By addition of an electrode to batch
reactions, we propose that the enhancement in reaction rate is due to an electrochemical effect.
© 2003 Elsevier B.V. All rights reserved.

Keywords: Pentafluorophenyl ester; Micro reactor; Electrokinetic flow

1. Introduction

Micro reactors generally consist of a series of intercon-
necting channels formed in a planar surface, in which small
quantities of reagents are manipulated[1,2]. To perform a
chemical reaction, reagents are brought together in a laminar
or slug flow diffusive mixing regime and are allowed to react
for a specified time in a controlled region of the reactor. The
ability to manipulate reagent concentrations and reaction in-
terfaces in both space and time within the channel network
provides a level of reaction control, which is not attainable
in traditional bulk reactors. The spatial and temporal con-
trol of reactions in the chemically intensive environment of
micro reactors, coupled with the features of very small reac-
tion volumes and high surface interactions has been demon-
strated to give faster reactions and improved product yields,
with greater product selectivity compared with conventional
bench top methodology[3–12].

To illustrate the principles of electroosmotic flow (EOF)
[13], one can consider a micro channel fabricated from a
material having negatively charged functional groups on the
surface. If a liquid, displaying some degree of dissociation,
is brought into contact with the surface, positive counterions
will form a double layer. Application of an electric field
causes this layer to move towards the negative electrode, thus
causing the bulk liquid to move within the channel (Fig. 1).

∗ Corresponding author. Tel.:+44-1482-465471;
fax: +44-1482-466416.
E-mail address: p.watts@hull.ac.uk (P. Watts).

Importantly, when using EOF plugs of fluid are transported
without significant hydrodynamic dispersion, which is not
the case with hydrodynamic pumping.

When operating micro reactors under electrokinetic con-
trol, two unique processes occur which influence the re-
action properties that are fundamentally different to those
associated with bulk reactions. The first mechanism relates
to properties associated with the electroosmotic and elec-
trophoretic mobilities of solvents and individual species,
which in addition to offering excellent spatial and temporal
control, enables localised thermal, electric field and con-
centration gradients to be generated in pre-defined sections
of a channel network. The second process is more specifi-
cally associated with the presence of an electrical field and
relates to the possibility of performing electrochemically
based processes within a micro reactor channel.

In order to exploit more fully the electrochemical effects
within the channels of a micro reactor, operating under elec-
trokinetic control, high voltages (typically up to 1500 V)
need to be applied across electrodes placed in the reagent
reservoirs. The conductivities for common solvents are of
the order of 500�S cm−1, with the result that the electrical
resistances of the channel sections are typically of the order
of tens of megaohms. Hence, nearly all the voltage drop
occurs within the channel of the reactor. This has the conse-
quence that the voltage drop across the electrode–solution
interface is usually very small and may or may not be
sufficient to drive an electrochemical reaction. The micro
reactor situation is therefore very different to the usual
electrochemical cell in which a small voltage (e.g. 2 V) is

1385-8947/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cej.2003.11.023
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Fig. 1. Principle of electroosmotic flow.

mainly localised across the electrode–solution interfaces in
a cell where the resistance of the intervening solution is low
[14,15]. Experimental observations when using micro reac-
tors show that electrochemical reactions can be induced at
high voltages, particularly when the resistance of the chan-
nel section between the electrodes is relatively low. Thus,
at low operating voltages when electrochemical effects are
absent, the progress of chemical reactions in micro reactors
are controlled solely by the localised concentrations. At high
operating voltages, additional effects due to electrochemical
processes may be present. In this paper, we report the effect
of reaction rates when performed in micro reactors operating
under electrokinetic control. It should be noted that Yoshida
and coworkers[16,17]have recently reported electrochemi-
cal reactions in micro reactors, however, they hydrodynami-
cally pumped the reactants through an electrochemical cell.

2. Experimental

The borosilicate glass micro reactors used in this work
were prepared using standard fabrication procedures de-
veloped at Hull[18]. The reactions were carried out in a
T-shaped micro reactor with approximate channel dimen-
sions of 200 mm×50�m and outer dimensions of 20 mm×
20 mm×25 mm. Micro porous silica frits were placed within
the channels in order to minimise hydrodynamic effects
[19]. Prior to synthesis, the micro reactor channels were
primed with anhydrous solvent to remove air and moisture
from the channels and the micro porous silica frits. Platinum
electrodes were placed in each of the reservoirs of the micro
reactor and an external voltage was applied to the channels
inducing electroosmotic flow of the reagents. The power sup-
ply was manufactured by Kingfield Electronics (Sheffield,
UK) and was controlled using LabVIEWTM software.

The reactions were conducted at room temperature for a
period of 20 min, in order to acquire sufficient volume of
product to determine the conversion of the reaction. Reaction
products were determined by HPLC via comparison with re-
tention times and spectra with those obtained from synthetic
standards. Analysis was achieved by high performance liq-
uid chromatography (Jupiter C18 10�m, 4.6 mm×250 mm,
mobile phase composition: 0.1% trifluoroacetic acid in water

and 0.1% trifluoroacetic acid in acetonitrile, using a gradient
system of 30% aqueous to 70% aqueous over 20 min, with
a flow rate of 2.5 ml min−1 at room temperature). Product
conversions were based on the amount of pentafluorophenyl
(PFP) ester remaining in the sample.

3. Results

We have recently demonstrated that the multi-step syn-
thesis of peptides may be performed within micro reactors
[20,21]. In a series of examples we demonstrated that pep-
tide bonds were produced in quantitative conversion in much
shorter periods of time when prepared in the micro reactor
environment in comparison to batch reactions. Furthermore,
when reactions involving�-amino acids were conducted less
racemisation was observed compared with batch reactions
and this is attributed to the enhanced speed of the reactions
[22]. In this paper, we report a more detailed study on the
aforementioned observations.

In at batch reaction between pentafluorophenyl ester1
and amine2 we found that dipeptide3 was produced in
46% yield, usingN,N-dimethylformamide (DMF) as solvent
(Scheme 1).

In a micro reactor a standard solution of the pentafluo-
rophenyl ester of Fmoc-�-alanine1 (50�l, 0.1 M) in anhy-
drous DMF was added to reservoir A, a solution of amine
2 (50�l, 0.1 M) was placed in reservoir B and anhydrous
DMF (40�l) was placed in reservoir C, which was used to
collect the products of the reaction (Fig. 2). Platinum elec-
trodes were placed in each of the reservoirs (A and B pos-
itive, C ground) and an external voltage was applied to the
channels inducing electroosmotic flow of the reagents. The
reactions were conducted at room temperature for a period
of 20 min, in order to acquire sufficient volume of product
to determine the conversion of the reaction by HPLC. It was
found that using continuous flow of both reagents in the
micro reactor, where reservoir A was maintained at 700 V
and reservoir B was maintained at 600 V, dipeptide3 was
produced in 100% conversion in 20 min. This represented
a significant increase in conversion compared with the tra-
ditional batch synthesis, for which 46% yield was obtained
in 24 h.
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Scheme 1. Preparation and reaction of PFP esters.
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Fig. 2. Schematic of micro reactor manifold.

We were interested to observe that the reaction between
pentafluorophenyl ester1 and amine2 appeared to be much
faster in a micro reactor than when performed in batch. How-
ever, batch reactions are generally performed at much higher
concentrations than in micro reactors. In order to make
meaningful comparison between rates of reaction we mon-
itored the conversion of pentafluorophenyl ester1 (200�l,
0.1 M) and amine2 (200�l, 0.1 M) into peptide3, at the
same concentration as used in the micro reactor studies. It
can be seen fromFig. 3, that the bulk reaction is very slow
with approximately 60% conversion to product in approx-
imately a week. The data suggests that in 20 min, the du-
ration of a micro reactor reaction, only 10% conversion to
dipeptide should be obtained.

In an attempt to further understand the enhancement in
rate of reaction the pentafluorophenyl ester1 (200�l, 0.1 M)
and amine2 (200�l, 0.1 M) were again mixed, but in this
case a 10 V electrode and a ground electrode were placed in
the reaction mixture. The two electrodes were approximately
5 mm apart. It can be seen fromFig. 3, that the electrodes
have the effect of enhancing the rate of reaction such that
90% conversion was obtained in under 4 h. The data also
illustrates that less than 30% conversion was observed in
4 h when the electrodes were absent. This implies that the
enhancement in rate of reaction is due to an electrochemical
phenomenon.

It should be emphasised that the voltage was set at 10 V
in order to produce a current (ca. 5�A) similar to that ob-
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Scheme 2. Batch reaction to study reaction kinetics.
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Fig. 3. Reaction of PFP ester1 (0.1 M) with amine2 (0.1 M) in a batch
reaction at room temperature, with and without electrodes.

served within the micro reactor situation. Nevertheless, the
reaction conducted within the micro reactor, operating un-
der electrokinetic control, still appears to be even faster than
the batch reaction performed under electrochemical control.
This can be attributed to the effect of increased diffusional
mixing within the micro reactor environment.

To illustrate that rate enhancement was always ob-
served in such reactions the pentafluorophenyl ester4 of
Fmoc-l-�-homo phenylalanine was reacted with amine2 to
prepare a synthetic sample of dipeptide5 in 35% yield in a
batch reaction (Scheme 2). The reaction was subsequently
investigated in the micro reactor. A solution of the pentaflu-
orophenyl ester4 in anhydrous DMF (50�l, 0.1 M) was
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Fig. 4. Conversion of PFP ester4 (0.1 M) to dipeptide5 in a batch
reaction at room temperature.
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Fig. 5. Graph of pentafluorophenyl ester1 concentration during the reac-
tion to produce dipeptide5.

added to reservoir A, a solution of amine2 (50�l, 0.1 M)
was placed in reservoir B and anhydrous DMF was placed
in reservoir C (40�l) to collect the product of the reaction.
It was found that using continuous flow of both reagents,
where the ester4 was maintained at 900 V and the amine2
was maintained at 600 V, dipeptide5 was produced in 100%
conversion in a 20 min period. Again this represented a
significant increase in conversion compared with the batch
reaction.

We monitored the conversion of pentafluorophenyl ester4
into peptide5, where 0.1 M solutions of reagents were mixed
in a batch reaction. It can be seen fromFig. 4, that the batch
reaction is very slow with approximately 70% conversion to
product in 500 h. The data inFig. 4 was subsequently used
to calculate how the concentration of the pentafluorophenyl
ester4 changes during the reaction.Fig. 5illustrates that the
reaction is indeed second order as expected, which implies
that no other chemical species are involved in the reaction.

4. Conclusions

We have demonstrated that peptide bonds may be pre-
pared in high conversion from pre-activated derivatives of

amino acids such as pentafluorophenyl esters. It was found
that performing these reactions in the micro reactor resulted
in an increase in the reaction efficiency over the traditional
batch method. By addition of an electrode to batch reactions
we have demonstrated that the enhancement in rate of reac-
tion is due to an electrochemical phenomenon. Subsequent
analysis of amine2 showed that the compound was actually
the trifluoroacetate salt rather than the free amine as origi-
nally thought. It is proposed that the salt is converted into
the free amine at the electrode, consequently the more reac-
tive amine leads to a faster reaction. Nevertheless, the reac-
tion is still faster when performed within the micro reactor
rather than in batch which is attributed to the faster mixing
which occurs within micro fluidic systems.
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Abstract—A T-shaped micro reactor was used for the optimisation of reaction conditions for the enantioselective silylcyanation of
benzaldehyde catalysed by lanthanide–pybox complexes. Compared to a conventional batch procedure, higher conversion was observed
within shorter reaction time. The micro reactor process involving Lu(III) afforded essentially the same enantioselectivity as the batch process
(73 vs 76% ee), whereas the enantioselectivity was lower in the micro reactor for catalysts containing Yb(III) (53 compared to 72%). Ce(III)
provided very low selectivity in both types of processes (1 and 11% ee, respectively). A study of the effect of additives showed that the
enantioselectivity in the Yb catalysed reaction performed in the micro reactor could be increased to 66%, whereas only a minor improvement,
to 78% ee, was observed in the reaction with Lu.
q 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Asymmetric metal catalysis constitutes a powerful method
for the preparation of chiral compounds in enantiomerically
pure form.1 Although highly selective catalysts have been
found for a large number of catalytic processes, the structure
of the catalyst and the reaction conditions usually need to be
optimised for each particular reaction and for each
particular substrate. To achieve this in an efficient manner,
procedures based on combinatorial chemistry and parallel
synthesis techniques involving high throughput screening
are frequently used today.2 As screening of large numbers of
reaction parameters and reaction conditions often requires
large quantities of reagents and consumables, downsizing of
reactions,3 enabling fast screening with minimal consump-
tion of reagents, is desirable. For this reason, various types
of micro reactors have been constructed.4

A micro reactor can consist of sensors, pumps, valves and
mixers, integrating chemistry with mechanics, electronics,
optics and analysis. The mobilisation of the reagents/
solvents within the device is usually achieved by external
0040–4020/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tet.2004.08.080
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pumps (syringe pumps or microfabricated pumps) or by
electroosmosis.5 The use of an electroosmotic flow (EOF) is
well-explored6 and some of the most recent applications
within the field of organic synthesis using EOF are multi-
step syntheses of peptides,7 Wittig reactions8 and aldol
condensations,9 as well as metal catalysed reactions such as
Suzuki couplings.10

Whilst both homogeneous11 and heterogeneous8,12 catalysis
have been performed using micro reactor technology,
asymmetric catalysis has not yet been explored. In this
communication we describe lanthanide catalysed silyl-
cyanations of benzaldehyde performed in a micro reactor
under electroosmotic control. Cyanohydrins are important
building blocks in synthetic organic chemistry as they can
both be incorporated into complex molecules and easily be
transformed into other types of compounds.13 We selected a
relatively robust cyanohydrin synthesis, a process catalysed
by lanthanide(III) complexes of 2,6-bis(oxazolin-2-yl)-
pyridine (pybox)14 derivatives.15 In a micro reactor, where
the mobilisation of the reagents was achieved by EOF,
reaction parameters such as applied voltage, reagent
concentrations, reaction time and catalyst loading were
optimised. The effect of additives on the conversion and the
enantioselectivity was also studied. The results obtained
using the micro reactors were compared to those obtained
using the conventional batch technique.
Tetrahedron 60 (2004) 10515–10520
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2. Results and discussion

The enantioselective addition of trimethylsilyl cyanide to
benzaldehyde in the presence of 2–8 mol% of 2,6-bis(4-(R)-
phenyloxazolin-2-yl)pyridine and LnCl3 to yield a scalemic
mixture of a chiral silylated cyanohydrin, with the (R)-
enantiomer as the major product (Scheme 1), was carried
out in a micro reactor.
Scheme 1. Enantioselective addition of trimethylsilyl cyanide to
benzaldehyde.
A T-shaped borosilicate micro reactor, operating in a
continuous mode using electroosmotic flow, with two inlets
(A and B, Fig. 1) and one outlet (C), was employed for the
catalytic reactions. Voltages were applied between A (Cve)
and C (Kve), and B (Cve) and C (Kve). The reaction
volumes used were 100 mL.
A B

C

Figure 1. A schematic of the micro reactor consisting of two inlets (A and
B) and one outlet (C).
The enantioselectivity of the catalytic reaction studied
varied with the reaction conditions. The value reported in
the literature for reactions employing YbCl3, 89% ee,15

could not be repeated by us; in our hands merely 84% ee was
observed.16 To facilitate analysis of the product and to avoid
clogging, non-optimal reaction conditions were used for
initial reactions in the micro reactor. Suitable conditions
were found with more concentrated solutions and a lower
Table 1. Results collected during optimisation of experimental conditions of the

Catalyst loading Concentration of reagent Collection after 3
Voltage: A, B

2 mol% 1.84 mmol per mL solvent 12 mL
A: 240 V
B: 440 V

4 mol% 1.84 mmol per mL solvent 13 mL
A: 280 V
B: 390 V

8 mol% 1.84 mmol per mL solvent 12 mL
A: 270 V
B: 400 V
amount of the catalyst (1.84 mmol of benzaldehyde per mL
acetonitrile compared to 0.2 mmol/mL and 1–8 mol%
catalyst instead of 10 mol%). Under these conditions
52–53% ee was achieved (Table 1). The results obtained
were compared to those of the analogous reactions run
under conventional batch conditions using the same
concentration of reagents. Reactions performed in the
micro reactor resulted in ee values about 10–20% lower
than those achieved in batch reactions, whereas the
reactivity was similar or even higher in the micro reactor
process. The results of the catalytic reaction were rather
insensitive to the amount of catalyst loading, permitting a
decrease of the amount of catalyst down to 2 mol% without
any significant decrease in reactivity (Table 1).

To explore the usefulness of the micro reactor for
optimising the reaction conditions, the effect of additives
on the selectivity and reactivity of the catalytic reaction was
studied. It was found that each additive (Yb:additive molar
ratio 1:1) influenced reactions run in the micro reactor and
under conventional conditions in a similar manner, although
lower selectivity was always found for the micro reactor
reactions. Of the additives employed, only tritylamine had a
positive effect on the enantioselectivity affording the
product with 66 and 81% ee in micro reactor and batch
processes, respectively, compared to 53 and 72% ee for
reactions without any additive (Chart 1).

The silylcyanation is known to be catalysed by pybox
complexes with other lanthanides as well, although amongst
the elements investigated, Yb was found to result in highest
enantioselectivity.15 A correlation between the ionic radius
of the lanthanide ion and the enantioselectivity has been
observed in a related catalytic procedure.17 We therefore
decided to study reactions with Ce(III), with larger ionic
radius than Yb(III), and also Lu(III), having a smaller ionic
radius. These ions were not previously tested in this
catalytic reaction. CeCl3 was found to result in only low
enantioselectivity, 11% in a batch process and only 1% ee in
the micro reactor. In contrast, we were pleased to find that a
catalyst prepared from LuCl3 afforded the product with 76%
ee in the batch reaction and with only slightly lower
enantioselectivity in the micro reactor process (73% ee).
The conversions in the Ce and Lu catalysed reactions in the
micro reactor were lower (82 and 89%, respectively) than
that in the Yb catalysed process.

In order to study whether higher conversion in the Lu
catalysed reaction could be achieved, the reaction
Yb catalysed reaction within the micro reactor

0 min; Conversion. I for batch; II
for micro reactor

Ee; I for batch; II for micro
reactor

I: 99% I: 70%
II: 95% II: 52%

I: 92% I: 72%
II: 98% II: 53%

I: 100% I: 72%
II: 99% II: 52%



Chart 1. The influence of additives on the enantioselectivity of the YbCl3 catalysed reaction. All reactions were carried out in acetonitrile at room temperature
using 1.2 equiv TMSCN, 8 mol% pybox ligand, 4 mol% YbCl3 and 4 mol% of the additive. 1: No additive; 2: Tritylamine; 3: Neomenthol; 4: L-Menthol; 5:
R-(K)-2-Butanol; 6: Diethyl ether; 7: Sparteine; 8: R-1-Ethylphenylamine; 9: Methanol; 10: Ethanol; 11: Water; 12: tert-Butanol. The ee was determined by
GC analysis using a chiral column (Chiraldex, G-TA).

C. Jönsson et al. / Tetrahedron 60 (2004) 10515–10520 10517
conditions were optimised by varying the voltages. Each
reaction was run for 30 min. The highest conversion was
achieved when the applied voltages were 140 V on inlet A
and 220 V on inlet B (97%) (Chart 2). Higher voltages
resulted in lower conversion. The conversion achieved in
batch reaction using the same stock solutions was 87% after
30 min.

In order to achieve further optimisation, the effect of
additives was studied for the Lu catalysed reaction
(Chart 3). In contrast to the situation with Yb(III), the
enantioselectivity in the Lu(III) catalysed reaction was not
improved by the addition of tritylamine or additives such as
N-oxides and phosphine oxides, which are known to
Chart 2. Results collected during optimisation of experimental conditions of the L
in acetonitrile at room temperature using 1.2 equiv TMSCN, 8 mol% pybox ligan
enhance the selectivity for related reactions.18 Addition of
D-menthol resulted in a slight improvement of the enantio-
selectivity (to 78% ee).

In order to verify that the catalytic reaction really occurred
in the channel of the micro reactor and not in the outlet
reservoir, some further experiments were performed. In the
first experiment, the results from a batch reaction performed
under conditions mimicking those in the outlet reservoir
were compared to the results obtained using the micro
reactor system. The standard solutions (4 mol%) used in the
batch reaction were diluted three times since, when the
reaction mixture in the micro reactor reaches the outlet
reservoir, it is mixed with an additional 20 mL of acetonitrile
u catalysed reaction within the micro reactor. All reactions were carried out
d and 4 mol% LuCl3.



Chart 3. The influence of additives on the enantioselectivity of the LuCl3 catalysed reaction. All reactions were carried out in acetonitrile at room temperature
using 1.2 equiv TMSCN, 8 mol% pybox ligand, 4 mol% LuCl3 and 4 mol% of the additive. 1: No additive; 2: L-Menthol; 3: D-Menthol; 4:
N,N-Dimethylaniline N-oxide; 5: Pyridine N-oxide; 6: Tritylamine; 7: Neomenthol; 8: R-(K)-2-Butanol; 9: (K)-Sparteine; 10: R-(C)-1-Ethylphenylamine;
11: S-(K)-1-Ethylphenylamine; 12: Triphenylphosphine oxide; 13: Dimethylphenylphosphine oxide; 14: THF; 15: Diethyl ether. The ee was determined by
GC analysis using a chiral column (Chiraldex, G-TA).
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and the collection in that reservoir is between 8 and 15 mL
(i.e. a total volume of 28–35 mL). In batch, this resulted in a
conversion of 37% after 30 min, as compared to conversions
around 98% within the same period of time in the micro
reactor, indicating that the catalytic reaction indeed occurs
in the channels of the micro reactor.

In the second experiment the reaction time in the outlet
reservoir of the micro reactor was increased. The reaction
mixture was run through the micro reactor channels for a
period of 10 min, after which the flow was halted and the
reaction mixture was allowed to stand for an additional
20 min in the outlet reservoir. GC analyses directly after
halting the flow and 20 min later showed the conversions to
be around 91 and 93%, respectively. Running the batch
reaction for 10 min resulted in 45% conversion. These
results provide further indication that the reaction indeed
takes place in the channel network. In addition, if the
reaction had occurred in the outlet reservoir, the reaction
outcome would not have been influenced by the applied
voltages.

The fact that the selectivity was lower for the Yb catalysed
reaction performed in the micro reactor than for batch
reactions run under the same conditions, may be due to
several reasons. Slow diffusion of the lanthanide complex or
decomposition of the chiral ligand may be reasons for the
low enantioselectivity observed, although this should have
influenced the Lu catalysed reaction in a similar manner.
Another reason could be that Yb, which is known to be quite
oxophilic,19 binds to oxygen in the silicon oxide surface of
the channels, thereby forming achiral ytterbium complexes
which may catalyse a non-enantioselective reaction to give
racemic product. This assumption is in agreement with
recent investigations showing lutetium to be less oxophilic
than ytterbium,20 explaining why the selectivity for the Lu
catalysed reaction was less affected by the conditions in the
micro reactor.
3. Conclusions

In this study we have shown that it is possible to use a flow-
through micro reactor for asymmetric catalysis employing a
homogenous chiral metal complex and that EOF can be used
to pump relatively large metal complexes within a micro
reactor device. It was demonstrated that the catalytic
reaction indeed takes place in the channels of the micro
reactor and not in the collection reservoir. The reactivity
achieved using optimal micro reactor operating conditions
was higher than that observed in analogous batch reactions.
Lower enantioselectivity was observed for the Yb catalysed
reaction in the micro reactor than for that of a similar batch
reaction. Finally, it was demonstrated that a flow-through
micro reactor could be used for screening of additives,
making this type of micro reactor a promising tool for
optimisation studies.
4. Experimental

4.1. General

The micro reactor used in this study was fabricated in
borosilicate glass following a standard procedure developed
at Hull University.10,21 A T-shaped micro reactor design with
three reservoirs, two inlets (A and B) and one outlet
(C, Fig. 1), with approximate channel dimensions of 100!
50 mm and outer dimensions of 20!20!25 mm was used.
The chemicals used were purchased from Aldrich or Strem,
or prepared according to literature procedures. In order to trap
the metal complexes, all reaction mixtures were passed
through a plug of silica, using dry acetonitrile as eluent, prior
to analysis. Conversions were determined by GC/MS and the
enantiomeric excesses by GC (Chiraldex, G-TA (gamma
cyclodextrin trifluoroacetyl), 30 m!0.25 m).22

4.1.1. Synthesis of 2,6-bis(4-(R)-phenyloxazolin-2-
yl)pyridine. (R)-Phenylglycinol (4.85 g, 35.4 mmol) and
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dimethyl 2,6-pyridine dicarboxylate (3.45 g, 17.7 mmol)
were heated at 120 8C for 16 h. Tosyl chloride (6.8 g,
34.8 mmol), Et3N (10 mL), and CH2Cl2 (20 mL) were
added. The reaction mixture was refluxed for 20 h. The
reaction mixture was diluted with CH2Cl2 (20 mL), washed
with water, dried (MgSO4), and the solvent was evaporated.
The product was purified by recrystallisation from ethanol.
Yield: 92%. Spectral data were in accordance with those
previously published.23

4.2. General procedure for preparation of standards
solutions

In order to allow simultaneous addition of reagents into the
separate inlets, two standard solutions, S1 and S2, were
prepared: S1: Phenyl-pybox (25 mg, 0.068 mmol, 4 mol%)
was added to anhydrous LnCl3 (0.034 mmol) in dry
acetonitrile (0.22 mL) and the mixture was stirred for 1 h
at rt. Benzaldehyde (86.25 mL, 0.85 mmol) was then added
and the solution was finally cooled to 0 8C. S2: TMSCN
(136.3 mL, 1.02 mmol) was dissolved in dry acetonitrile
(0.22 mL) and the solution was cooled to 0 8C. The standard
solutions could be used for 2–3 days without any loss of
activity of the catalytic complex, in agreement with the
previous observations.12 For the additive study, 4% of the
selected compound was added to S1 1 h before use.

4.3. General procedure for batch reaction

Equal amounts of standard solutions S1 and S2 were added
to a dry round-bottomed flask. The reaction mixture was
allowed to warm to rt while stirring under air for 10–30 min
before analysis.

4.4. General procedure for micro reactor based reaction

The channels of the micro reactor were primed with dry
acetonitrile prior to the addition of standard solutions S1 and
S2, (50 mL of each) to reservoirs A and B, and the addition
of dry acetonitrile (20 mL) to the collection reservoir,
C. EOF was generated by applying appropriate voltages to
platinum electrodes (A and B ranging from 150 to 750 V,
C set to ground) placed in each reservoir using a power
supply supplied by Kingfield electronics, Sheffield.
Reactions were performed over a 10–30 min period in
order to ensure that a sufficient volume of the reaction
product was present in reservoir C for analysis. The micro
reactor was primed with dry acetonitrile prior to each
experiment in order to remove any residue from the system.
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Abstract:
At present, the aims of the investigations with microchemical
processing devices are changing from simply proving feasibility
for one chemical reaction towards more in-depth scientific
studies and industrial piloting. In this way, large data sets are
gathered, providing multifaceted information on the topic. To
enable industrial exploitation of the technology, future inves-
tigations should aim to complete the economic evaluation of
the methodology for plant engineering. Hence, commercially
oriented studies have to be undertaken, not with the aim to
further broaden the scope of information, but rather to achieve
a new system-oriented level of know-how. Since this involves
the interaction of many parties with many different skills, it is
a bridging function that is needed to bring the vast amount of
findings documented to a compact format and to compare it to
the state of the art in the chemicals-producing industry.
Accordingly, this contribution reviews many chemical reactions
carried out in either credit-card-sized microdevices or in larger
microflow processing tools for reasons of screening/analysis and
organic synthesis/industrial piloting, respectively. Quantities
which characterize the process itself, the product on a molecular
and supramolecular level, and the downstream processing are
compared for both microreactor and conventional processing,
benchmarking the performance of microflow devices at minute
and large throughput levels.

Introduction
Microchannel process devices gain interest not only for

academic investigations but also for uses in the chemical
industry.1-9 MEMS (microelectromechanicalsystems)-based
chips with a microchannel architecture in one plane serve
for chemical screening or analysis (Figure 1); precision-
engineered microflow devices having a three-dimensional

(3D) microchannel architecture are used for lab-scale de-
velopment or organic synthesis, as the investigations may
refer to the process itself or the material to be produced,
respectively. Pilot operation and production with chemical
microprocessing apparatus is not directly evident for a large
number of cases since the companies involved keep this as
secret as possible. However, the increasing practice can be
deduced from the growing number of industrial patents, the
larger number of industrial participants at microreactor
conferences, and the increasing sales of the supplier com-
panies in the field. This feeling that the business is expanding
steers the foundation of platforms worldwide which promotes
a breakthrough in the microreaction technology.

However, the way to achieve this is not clear at present.
Hence, in the future, probably a multitude of processing
solutions will cope with the tasks, which differ in scale as
the most distinctive feature (themultiscale concept). This
includes the simple numbering up of microchannels, done
preferentially in an internal manner, mesoscale processing,
preferably by process intensification (PI) equipment, or even
using conventional equipment. Concerning the first approach,
one has to be aware that the first large-capacity devices such
as microflow mixers and heat exchangers have been reported,
achieving liquid throughputs in the m3 h-1 range.10-14

However, newcomers still consider the technique to be
inscrutable, due to its interdisciplinary nature, and fear
unforeseen consequences of an abrupt change in their way
of processing, when switching from large batch tanks to
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Figure 1. Stages of microreaction technology.

Organic Process Research & Development 2004, 8, 422−439

422 • Vol. 8, No. 3, 2004 / Organic Process Research & Development 10.1021/op0341770 CCC: $27.50 © 2004 American Chemical Society
Published on Web 02/28/2004



smaller continuous-flow devices (see also the Conclusions
of this article and Table 27). Nobody wants to take the lead
on his own; thus, the situation can be described as “wait-
and-see”. While more and more decision makers believe in
the performance of the microprocessing devices themselves
and do not consider the technology to be immature any more,
they ask at the same time for a complete picture of the
processing, i.e., including a detailed engineering design and
economics calculation (Figure 2).

For such a comprehensive view, initially all performance
data are required. Most initial investigations were concerned
with comparing selectivity and space-time yields, thus
proving the feasibility of carrying out a chemical reaction
in a microchannel. When the devices changed from scientists’
playthings to accepted professional processing tools, this led
to further requests on more in-depth data, e.g., with regard
to loss of catalyst during longer runs, spectra and morphology
of crystallites, and product purity. Besides specification on
molecular quantities, information on supramolecular proper-
ties was now desired. Having raised commercial interest in
this way, one nowadays is faced with questions on outlining
a whole production process scenario, e.g., regarding the
impact of other processing operations (i.e., separation),
energy efficiencies of the process, consequential costs for
equipment, process controllability and safety, overall profit-
ability of the process and multipurpose flexibility. This
includes such detailed aspects as how using the microreactor
affects and simplifies downstream separation or how much
this may help to decrease the amount of coolant water, for
instance. It therefore stands to reason that we need more

information and preferably more qualified data on micro-
reactor processing, the latter being based on existing
knowledge of chemical processes in industry. Accordingly,
qualified data should first of all allow benchmarking of
microreactor information.

After five years of intensive research with now more than
1000 publications (among them about 450 peer-reviewed)
microreactor benchmarking can be done with regard to the
following: (1) the reaction/process, (2) the product proper-
ties, and (3) the impact on downstream processing (Figure
2). These issues will be addressed in this publication;
however, giving an economic calculation or details on the
plant engineering behind the technique is out of the scope
of this paper.

Typical parameters which can be derived from the
reaction/process are the experimental protocol of an organic
reaction (e.g., temperature or reaction time), performance
parameters of the process (e.g., selectivity or space-time
yield), product features (e.g., isomer ratios or particle size
distribution), and finally features of downstream processing
(e.g. energy efficiency or safety measures) (Figure 3).

In the following sections, the benchmarking of these
parameters will be discussed for microreactor vs conventional
processing. It will be given as a short text for each reaction
and will be summarized as a table, comparing the perfor-
mance data of a microreactor with those of traditional
chemical apparatus. The reactions are put into two classes,
one referring to small-scale applications and one to lab- and
pilot-scale synthesis. The first class have flow rates typically
up to several milliliters per hour, and the flow rates of the

Figure 2. Contents of the present publication.
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latter range from several milliliters per hour up to several
tens of liters per hour (Table 1).

Microreactors Used for Small-Scale Applications: Liquid
Reactions

Peptide Synthesis.Peptides and peptide-related molecules
are present in many pharmaceutically important compounds,
and consequently, the pharmaceutical industry is particularly
interested in developing improved methodology for their
preparation.

Watts et al. have recently demonstrated multistep peptide
synthesis in a borosilicate glass microreactor operating under
electrokinetic control.16,17The authors evaluated their device
using a carbodiimide coupling reaction of Fmoc-â-alanine
with an amine to give the dipeptide (Scheme 1). When
stoichiometric quantities of the reagents were used, ap-
proximately 10% conversion to the dipeptide was achieved.
By using two equivalents of DCC however, an increase in

conversion to 20% was observed, and by applying a stopped-
flow technique (2.5 s injection length with stopped-flow for
10 s), the conversion of the reaction was further increased
to approximately 50%. Using five equivalents of DCC, a
conversion of up to 93% for the dipeptide was obtained using
the stopped-flow technique described, as summarized in
Table 2.

The authors also demonstrated that the dipeptide could
be prepared from preactivated carboxylic acids.16,17 They
report that the reaction of the pentafluorophenyl (PFP) ester
of Fmoc-â-alanine with the amine gave the dipeptide
quantitatively in 20 min (Scheme 2). This represented a
significant increase in yield compared with the traditional
batch synthesis, where only a 60% yield was obtained in
120 h.

(10) Schubert, K.; Brandner, J.; Fichtner, M.; Linder, G.; Schygulla, U.; Wenka,
A. Microscale Thermophys. Eng.2001, 5, 17.

(11) Löb, P.; Drese, K. S.; Hessel, V.; Hardt, S.; Hofmann, C.; Lo¨we, H.; Schenk,
R.; Schönfeld, F.; Werner, B.Chem. Eng. Technol.2003. In press.

(12) Haynes, B. S.; Wegeng, R. S. InTopical Conference Proceedings; IMRET
6, 6th International Conference on Microreaction Technology, AIChE
Spring National Meeting, March 11-14, 2002, New Orleans, LA; American
Institute of Chemical Engineers: New York, NY, 2002; pp 223-237.

(13) Edge, A. M.; Pearce, I.; Phillips, C. H. InProceedings of 1st International
Conference on Process Intensification for the Chemical Industry; Green,
A., Ed.; BHR Group Conference Series, Vol. 38, pp 175-189; Professional
Engineering Publishing Ltd., 1997.

(14) Information about Atotech’s heat exchanger can be found on the homepage
(http://www.atotech.com) or in a patent: Breuer, N.; Meyer, H. (Atotech
Deutschland GmbH). WO 98/37457, Priority: February 20, 1997.

(15) T: temperature,p: pressure,c: concentration,t: reaction time,Q̇: flow
rate, X: conversion, S: selectivity, Y: yield, STY: space-time yield, ee:
enantiomeric excess,Z/E: isomers with a CdC-bond,Mh w: weight-average
molecular weight,D50: median particle diameter,S2: mean square radius
of gyration.

(16) Watts, P.; Wiles, C.; Haswell, S. J.; Pombo-Villar, E.; Styring, P.Chem.
Commun.2001, 990.

(17) Watts, P.; Wiles, C.; Haswell, S. J.; Pombo-Villar, E.Tetrahedron2002,
58, 5427.

Figure 3. Parameters suitable for benchmarking of microreactors.15

Scheme 1. Dipeptide synthesis withâ-amino acids

Scheme 2. Dipeptide synthesis with activatedâ-amino
acids
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Table 1. Summary of the published parameters and properties of organic reactions in microreactors
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Having demonstrated that peptide bonds could be suc-
cessfully formed using a microreactor, the authors then found
that they could extend the methodology to the preparationof
longer-chain peptides.18 Using the microreactor, the Dmab
ester of Fmoc-â-alanine was reacted with one equivalent of
piperidine or 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) to
give the free amine in quantitative conversion. This is in
comparison to the solid-phase peptide synthesis where 20%
piperidine in DMF is frequently employed. The authors then
reacted the amine in situ with a pentafluorophenyl ester
derivative to give the dipeptide (Scheme 3) in 96% overall
conversion.

Having shown that more complex peptides could be
produced by removal of theN-protecting group, the authors
then demonstrated that they could remove the Dmab ester
using hydrazine.18 The reaction of the Dmab ester with one
equivalent of hydrazine gave quantitative deprotection to
afford the carboxylic acid (Scheme 4). This is in comparison

to the solid-phase peptide synthesis where 2% hydrazine in
DMF is generally used to effect deprotection.

The authors have further extended the approach to the
synthesis of tripeptides. Reaction of a pentafluorophenyl ester
with an amine formed a dipeptide, which was reacted with
DBU to effect Fmoc deprotection. The amine was then
reacted in situ with another equivalent of the pentafluo-
rophenyl ester to prepare the tripeptide in 30% overall
conversion (Scheme 5). The approach clearly demonstrates
that intermediates may be generated in situ and used in

subsequent reactions. Although in the above examples the
intermediates are relatively nontoxic, it is postulated that the
approach may be used to generate highly toxic reagents in
situ, consequently, this is an approach that one would like
to use in a large-scale synthesis.

Synthesis of peptides containingR-amino acids is far more
problematic as a result of racemization. Having demonstrated
that peptide bonds could be successfully formed when using
a borosilicate glass microreactor, the authors then investigated
racemization in a model compound, namelyR-phenylbutyric
acid.19 Reaction of the pentafluorophenyl ester ofR-2-
phenylbutyric acid (0.1 M concentration) withR-methyl-
benzylamine gave the product in quantitative conversion with
4.2% racemization (Scheme 6). Significantly this was less

racemization than observed in the batch reaction at the same
concentration and temperature. The reduced level of race-
mization was attributed to the reduced reaction times
observed within the microreactors.

Furthermore, the authors have reported that it is possible
to purify the reaction mixture within the microreactor by
exploiting the differential electrophoretic mobilities of the
individual components of the reaction mixture.20

Suzuki Reaction.Heterogeneous catalysis is of significant
industrial importance for the synthesis of fine chemicals and
pharmaceuticals. However, to isolate the product it is
necessary to remove the catalyst from the reaction mixture,
which further complicates the procedure. Consequently,
microreactors involving the use of immobilized catalysts
represent a method to overcome this problem.

Greenway et al. have demonstrated the Suzuki reaction
within a borosilicate glass microreactor in which electro-
osmotic flow was used as the pumping mechanism.21 The

(18) Watts, P.; Wiles, C.; Haswell, S. J.; Pombo-Villar, E.; Styring, P. InTopical
Conference Proceedings; IMRET 5, 5th International Conference on
Microreaction Technology, AIChE Spring National Meeting; Matlosz, M.,
Ehrfeld, W., Baselt, J. P., Eds.; Springer-Verlag: Berlin, 2001; pp 508-
519.

(19) Watts, P.; Wiles, C.; Haswell, S. J.; Pombo-Villar, E.Lab Chip2002, 2,
141.

(20) George, V.; Watts, P.; Haswell, S. J.; Pombo-Villar, E.,Chem. Commun.
2003, 2886.

Table 2. Benchmark of the microreactor

microreactor batch reactor

1. DCC coupling reactions (5 equiv)
reaction time 20 min 24 h
conversion up to 93% 92%

2. active ester coupling reaction
reaction time 20 min 120 h
conversion 100% 60%

3. deprotection chemistry (DBU or hydrazine)
reaction time 20 min (1 equiv) several hours (100 equiv)
conversion 100% 100%

Scheme 3. Methodology for the preparation of
longer-chain peptides

Scheme 4. Deprotection by hydrazinolysis

Scheme 5. Synthesis of tripeptides

Scheme 6. Racemization control experiment
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catalyst, 1.8% palladium on silica, was immobilized between
microporous silica frits prepared from potassium silicate and
formamide. The boronic acid derivative was reacted with
an aryl bromide to give a 68% conversion to cyanobiphenyl
at room temperature within the microreactor (Scheme 7).

Traditionally, tetrahydrofuran (THF) is used as the solvent
in this reaction; however, as has been found with many
organic solvents, THF has very low natural EOF properties,
and for this reason it was mixed with water (75:25) for use
in these experiments. The yields obtained were comparable
with those from Suzuki reactions on a batch scale using
homogeneous catalysis. Importantly, there were negligible
levels of the palladium catalyst in the product, demonstrating
the environmental benefits of the technology (Table 3).

One of the interesting observations of the reaction was
that, unlike conventional Suzuki reactions, an additional base
was not required. Although the exact reason for this is
unclear, it is postulated that the electric field may be
sufficient to cause ionization of the water at the metal surface.
It is feasible that the hydroxide formed in this way may be
sufficient to perform the function of the conventional base.

Kumada-Corriu Reaction. In another example of
heterogeneous catalysis, O’Sullivan et al. have recently
investigated the Kumada-Corriu reaction in a pressure-
driven microreactor.22 The reactor was constructed by placing
a plug of catalyst into a length of polypropylene tubing. A
syringe pump was used to drive a premixed solution
containing equimolar quantities of the aryl halide and
Grignard reagent through the reactor.

The authors reactedp-bromoanisole with phenylmagne-
sium bromide, in the presence of the nickel catalyst which
was supported on Merrifield resin, to give 4-methoxybi-
phenyl (Scheme 8). When the reaction was conducted in the

microreactor, an enhanced reaction rate was observed
compared to that of the batch reactions (Table 4). Since the

concentrations were the same in the both cases, the authors
postulated that the dimensions of the microreactor were solely
responsible for the enhanced rate of reaction.

Aldol Reaction. Carbanion chemistry is one of the most
common methods of C-C bond formation used in the
pharmaceutical industry. In such reactions, large volumes
of highly pyrophoric bases are frequently employed. In many
cases the selectivity of the reaction is temperature dependent;
consequently, microreactors have a considerable attraction
for these reactions because the reactor enables excellent
temperature control of the reaction.

Wiles et al. have recently demonstrated the use of silyl
enol ethers in the aldol reaction within a borosilicate glass
microreactor operating under electrokinetic control.23 Quan-
titative conversion of the silyl enol ethers toâ-hydroxy-
ketones was observed in 20 min compared to traditional batch
systems, where quantitative yields were only obtained when
extended reaction times of up to 24 h were employed (Table
5). One example involved the treatment of the TMS enol

ether with tetra-n-butylammonium fluoride (TBAF) to gener-
ate the tetra-n-butylammonium enolate in situ, followed by
condensation withp-bromobenzaldehyde to give theâ-hy-
droxyketone in 100% conversion (Scheme 9).

Michael Addition. Another example of enolate-type
chemistry performed within a microreactor has been reported
by Wiles et al.24 The authors reported the preparation of
enolates from a series of 1,3-diketones using an organic base

(21) Greenway, G. M.; Haswell, S. J.; Morgan, D. O.; Skelton, V.; Styring, P.,
Sensors Actuators B2000, 63, 153.

(22) Haswell, S. J.; O’Sullivan, B.; Styring, P.Lab Chip2001, 1, 164.
(23) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E.Lab Chip2001, 1,

100.
(24) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E.Lab Chip2002, 2,

62.

Scheme 7. Suzuki coupling

Table 3. Benchmark of the microreactor

microreactor batch reactor

reaction time 6 s 8 h
conversion 68% 60%
solvent water/THF (1:3) THF

Scheme 8. Kumada-Corriu reaction

Table 4. Benchmark of the microreactor

microreactor batch reactor

reaction time 10 min 25 h
conversion 60% 70%

Table 5. Benchmark of the microreactor

microreactor batch reactor

reaction time 20 min 24 h
conversion 100% 100%

Scheme 9. Aldol reaction
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and their subsequent reaction with a variety of Michael
acceptors to afford 1,4-addition products within a microre-
actor (Scheme 10).

When using a continuous flow of the reagents, 15%
conversion to the adduct was observed. The authors,
however, demonstrated enhancements in conversions through
the application of the stopped-flow technique. This procedure
involved the mobilization of reagents through the device for
a designated period of time, using an applied field, and the
flow was subsequently paused by the removal of the applied
field, prior to reapplying the field. Using the regime of 2.5
s on and 5 s off, the conversion to the product was improved
to 34%, while lengthening the stopped-flow period to 10 s,
resulted in a further increase to 100% (Table 6). The authors

proposed that the observed increase in conversion, when
using the technique of stopped-flow, was due to an effective
increase in residence time within the device and hence an
increase in the diffusive mixing of the reagent streams.

Enamine Synthesis.Sands and co-workers have recently
reported the preparation of enamines within a microreactor.25

Enamines are traditionally prepared under Dean and Stark
conditions, where the ketone and secondary amine are heated
to reflux in toluene. These conditions remove the water from
the reaction to produce the equilibrium-dependent enamine;
however, it is difficult to perform the reaction on a large
scale. To remove the water from the reaction by distillation
it is necessary to use a high-boiling point solvent and to heat
the reaction at typically 120°C, which clearly requires large
amounts of energy.

By using a borosilicate glass microreactor operating under
electrokinetic control cyclohexanone was reacted with pyr-
rolidine using methanol as the solvent to form the enamine
(Scheme 11) in 42% conversion at room temperature (Table

7), rather than at the elevated temperatures discussed above.
To assist in removing the water, one equivalent of DCC was
used in the reaction. Clearly, the use of methanol as solvent

at room temperature, compared with the traditional condi-
tions, represents a more environmentally friendly procedure.
In this case also, the electrophoretic mobility of the product
is thought to be greater than that of water, thus enabling
product separation in situ. Consequently exploitation of the
individual electrophoretic mobilities of the individual reac-
tants and products enables control of the thermodynamics
of the reaction.

Hantzsch Reaction. Industrially, special equipment is
required when performing large-scale reactions at elevated
temperature, such as reflux condensers. Consequently, the
ability to use microreactors at elevated temperatures using
the scale-out principle is of commercial interest.

Garcia-Egido et al. have demonstrated the synthesis of a
series of 2-aminothiazoles using a Hantzsch reaction within
a microreactor.26 During the experiments the T-shaped
microreactor was heated to 70°C using a Peltier heater,
which was aligned with the channels, and the heat generated
by the device was applied to the base of the microreactor.
Reaction of anR-bromoketone with a thiourea derivative,
using NMP as solvent, resulted in the preparation of an
aminothiazole in 85% conversion (Scheme 12 and Table 8).

A range of aminothiazole derivatives were prepared using
alternativeR-bromoketones as starting materials.

Dehydration Reactions. Wilson and McCreedy have
reported the use of a microreactor to perform the dehydration
of alcohols using a sulfated zirconia catalyst.27 The micro-
reactor was fabricated from a glass plate, which was etched
using photolithography. A PDMS top block, with predrilled
holes to act as reservoirs for the reagents, was then aligned

(25) Sands, M.; Haswell, S. J.; Kelly, S. M.; Skelton, V.; Morgan, D.; Styring,
P.; Warrington, B.Lab Chip2001, 1, 64.

(26) Garcia-Egido, E.; Wong, S. Y. F.; Warrington, B. H.Lab Chip2002, 2,
31.

(27) Wilson, N. G.; McCreedy, T.Chem. Commun.2000, 733.

Scheme 10. Michael addition

Table 6. Benchmark of the microreactor

microreactor batch reactor

reaction time 20 min 24 h
conversion 100% 89%

Scheme 11. Enamine synthesis

Table 7. Benchmark of the microreactor

microreactor batch reactor

reaction time 20 min not reported
(probably several hours)

conversion 42% not reported
temperature 25°C 120°C

Scheme 12. Hantzsch reaction

Table 8. Benchmark of the microreactor

microreactor batch reactor

reaction time 30 min not reported
conversion 85% up to 99%
temperature 70°C 70°C
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with the channel geometry. To introduce the catalyst into
the microreactor, it was dusted over the surface of the PDMS
face before the base plate was joined to the top plate. This
process immobilized the catalyst, while simultaneously
increasing its surface area. The overall effect was to produce
a catalytically active wall of the microchannel. A heater,
fabricated from Nichrome wire, was also immobilized in the
PDMS top plate. Pumping was produced with a syringe
pump, and the products were analyzed by gas chromatog-
raphy (GC). The conversion of hexan-1-ol to hex-1-ene was
between 85 and 95%, and no additional products were
detected (Scheme 13). This yield is extremely good when

compared to the 30% expected for the industrially used
process (Table 9).

The reaction was also applied to ethanol. At a reaction
temperature of 155°C and using a syringe pump at a flow
rate of 3µL min-1, the product was found to contain 68%
ethene, 16% ethane, and 15% methane, together with trace
amounts of ethanol. When electroosmotic pumping was used,
the flow rate obtained was between 0.9 and 1.1µL min-1 at
a field strength of 200 V cm-1. The only detectable product
was methane, indicating that the reaction had progressed
beyond dehydration to complete cracking of the ethanol.
Additionally, trace amounts of methanol were present in the
product. It is proposed that the slow flow rate of the
electroosmotic pumping method results in longer residence
times in the reactor, thus offering a significant advantage
over the syringe pump. Electroosmotic flow (EOF), however,
cannot be applied to all reactions because organic reactants,
such as hexanol, exhibit no natural EOF under an applied
potential.

Hydrolysis and Transglycosylation ofâ-D-Galactopy-
ranoside Derivatives.Two enzyme-catalyzed reactions were
carried out in a microchip reactor by Kanno et al. At first
p-nitrophenyl-â-D-galactopyranoside was hydrolyzed with a
â-galactosidase fromEscherichia coli(Scheme 14) and a

transgalactosylation of ap-nitrophenyl-2-acetamide-2-deoxy-
â-D-glucopyranoside was carried out (Scheme 15).28

As a microreactor, a mechanically fabricated microchip
made of PMMA was used. The chip consisted of a two-
plate assembly. One plate featured the microchannels having
a cross section of 200µm × 200 µm and length of 40 cm,
and the second plate covered the microchannel. The micro-
chip is designed for contacting two liquids, whereas the
mixing is realized by a micro Y-piece. For temperature
control a hot plate is used.

For the hydrolysis, thep-nitrophenyl-â-D-galactopyrano-
side solution and the enzyme solution were pumped into the
microchip using microsyringes with identical flow rates
(severalµL min-1). The microchannel was maintained at 37
°C. After leaving the microchip, the reaction mixture was
quenched into hot water to inactivate the enzyme. The
resulting raw product was analyzed by LC-MS. For the
second experiment, the transgalactosylation, the purep-ni-
trophenyl-â-D-galactopyranoside solution was replaced by
a mixture ofp-nitrophenyl-â-D-galactopyranoside and nitro-
phenyl-2-acetamide-2-deoxy-â-D-glucopyranoside.

Due to different flow rates, the residence times of the
reaction mixture inside the microchip were varied. It was
found that the hydrolysis ofp-nitrophenyl-â-D-galactopyra-
noside (Scheme 14) in the microchip was 5 times faster than
in a batch reactor. According to this, a higher conversion
was determined by the use of the microchip reactor (Table
10). Although the reaction rate of the transgalactosylation

(Scheme 15) is comparably low, an acceleration of the latter
could be detected in the case of the microchip reactor.

Microreactors Used for Lab- and Pilot-Scale Synthesis:
Liquid or Liquid/Liquid Reactions

Diazotization and Diazo Coupling.Previous publications
refer to various process conditions. Salimi-Mososavi et al.
conducted diazotization reactions under EOF, while Wootton

(28) Kanno, K.; Maeda, H.; Izumo, S.; Ikumo, M.; Takeshita, K.; Tashiro, A.;
Fujii, M. Lab Chip2002, 2, 15.

Scheme 13. Dehydration of alcohols

Table 9. Benchmark of the microreactor

microreactor batch reactor

reaction time 20 min not reported
conversion 85-95% 30%

Scheme 14. Hydrolysis of
p-nitrophenyl-â-D-galactopyranoside

Scheme 15. Transglycosylation of â-D-galactopyranoside

Table 10. Comparison of the microchip reactor with
respect to a microtest tube concerning the hydrolysis and
transgalactosylation ofâ-D-galactopyranoside derivatives

microchip reactor
(continuous)

microtest tube
(batch)

1. hydrolysis
reaction rate 5 times faster than batch
conversion 0.16 (after 8 min) 0.01 (after 8 min)

2. transgalactosylation
reaction rate faster than batch
conversion 0.04 (after 11 min) 0.01 (after 10 min)
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et al. used a microreactor operating under hydrodynamic flow
conditions for a similar reaction (Table 11, No. 1-4).29,30

In comparison, Hisamoto et al. realized the azo chemistry
using phase-transfer synthesis in a glass microchip (Table
11, No. 5).31 A first attempt to transfer a microreactor-based
azo-pigment process from lab scale into a pilot-plant process
was described by Wille et al. (Table 11, No. 6).32

Whereas the experimental results obtained within micro-
chip reactors based on EOF were not compared with those
from batch experiments, the publication referring to the glass
microchip published by Hisamoto et al. provides such
information (Table 11, No. 5).31 The latter reactor consisted
of a microchannel (cross section: 250µm × 100 µm,
length: 3 cm) fabricated on a glass chip. The contacting of
the two phases was realized by a micro Y-piece on the chip,
which ensured the formation of a stable two-phase flow
consisting of two lamellae.

To determine the efficiency of the glass-chip reactor
(Table 11, No. 5) the diazo coupling was carried out in the
microreactor and a glass vessel (diameter: 3.5 cm). In the
first case syringe pumps were used to realize a total flow
rate of 10 µL min-1 for each phase. The macro-scale
benchmark test using a glass vessel was carried out with 10
mL of both phases and different stirring conditions. The
product was analyzed by reversed phase HPLC.

Using the glass-chip reactor (Table 11, No. 5) it was found
that the conversion is close to 100% within 2.3 s, whereas
the strongest stirring of the glass vessel leads to ap-
proximately 80% conversion after 10 min (Table 12). This
is in accordance with the specific interface surface area of
the microreactor, which is twice as high as that of the glass
vessel. Furthermore, the high conversion in connection with
the short reaction time demonstrates that the phase-transfer

conditions in the glass-chip reactor were instrumental in
suppressing the formation of the bis-azo product, a literature-
known side reaction.

As a microreactor for the lab-scale and pilot-plant azo-
pigment process (Table 11, No. 6) the standard laboratory
reactor CYTOS provided by CPC, Germany was used.32 The
latter was stacked-plate units comprising of mixing and
reaction zones, as well as including an integrated heat
exchanger. For the pilot plant a numbering-up concept by
connecting three reactors in parallel was realized.

The laboratory-scale reactor (Table 11, No. 6) was used
with flow rates of 20 and 80 mL min-1, leading to residence
times of several seconds. In the case of the pilot plant the
total flow rate was increased up to 500 mL min-1, resulting
in an output of 10 t a-1. All experiments were carried out at
laminar flow as well as isothermal conditions. Although
preliminary experiments have indicated that the diazotization
and the pigmenting step can also be carried out in a
microreactor, only the results of the diazo coupling are
described. The coupling of two azo pigments, one red and
one yellow, were investigated. In the case of the first one, a
homogeneous diazo solution was used, and a pigment
suspension was formed in the course of the reaction. In
contrast, the yellow pigment was synthesized starting with
a suspended diazo solution which resulted also in a suspended
pigment solution.

Concerning the red pigment synthesized in a lab-scale
reactor (Table 11, No. 6) an increased brightness and
transparency were determined, which were mainly based on
a smaller particle size of the pigments. Even better results
were achieved for the yellow pigment, whose color strength
was increased by up to 139% (Table 13). For the latter

pigment, a particle size less than 250 nm was found which
is significantly smaller compared with that from the batch
process (598 nm).

A further reduction of the particle sizeD50 down to 90
nm was achieved by applying the yellow pigment process
to the pilot-scale microreactor. Due to the smaller particles,

(29) Salimi-Moosavi, H.; Tang, T.; Harrison, D. J.J. Am. Chem. Soc.1997,
119, 8716.

(30) Wootton, R. C. R.; Fortt, R.; de Mello, A. J.Lab Chip2002, 2, 5.
(31) Hisamoto, H.; Saito, T.; Tokeshi, M.; Hibara, A.; Kitamori, T.Chem.

Commun.2001, 2662.
(32) Wille, C.; Autze, V.; Kim, H.; Nickel, U.; Oberbeck, S.; Schwalbe, T.;

Unverdorben, L. InTopical Conference Proceedings; IMRET 6, 6th
International Conference on Microreaction Technology, AIChE Spring
National Meeting, March 11-14, 2002, New Orleans, LA; American
Institute of Chemical Engineers: New York, NY, 2002; pp 7-17.

Table 11. Diazo coupling in various microreactors

entry ref R1 R2 R3 R4 R5 R6 R7

1 25 NO2 H H H H NMe2 H
2 26) H H H naphthyl H OH
3 26 H Me H naphthyl H OH
4 26 H H Me naphthyl H OH
5 27 NO2 H H OH H OH Me
6 28 substituents not disclosed

Table 12. Diazo coupling in a strong stirred vessel as
benchmark for the glass microchip

glass microchip strong stirred glass vessel

conversion ∼100% 80%
reaction time 2.3 s ∼10 min
interfacial area 80 cm-1 40 cm-1

Table 13. Comparison of the diazo coupling in the
microreactor (lab-scale) with respect to the traditional batch
reactor

microreactor
red pigment

microreactor
yellow pigment

color strength 119% 139%
brightness 5 steps glossier 6 steps glossier
transparency 5 steps

more transparent
6 steps

more transparent
particle size:

D50 (σ)
(not given) <250 nm (1.5)/batch:

598 nm (2.0)
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the color strength of the pigments was increased by up to
149%.

Nitration of Aromatics. Previously investigated reactions
refer to the nitration of naphthalene, by Antes et al.33,34

(Scheme 16, No. 1), of benzene and toluene (Scheme 16,

No. 2) by Burns et al.,35,36 and substituted aromatic com-
pounds (Scheme 16, No. 3) by Dummann et al.37

Antes et al. used three micromixers which were connected
to tubular reactors (PTFE capillary of length: up to 150 cm)
(Scheme 16, No. 1). The micromixers were based on different
mixing principles such as multilamination (interdigital mi-
cromixer, Institut für Mikrotechnik Mainz GmbH, Germany
(IMM)), split-recombine (silicon-based micromixer, Univer-
sity of Ilmenau, Germany), and T-piece mixing (glass
micromixer, mgt mikroglas technik Mainz, Germany (mgt)).

The nitrations (Scheme 16, No. 1) were carried out at
-10 to 50 °C using gaseous dinitrogen pentoxide as a
nitration agent, or at 30°C using fuming HNO3 diluted in
dichloromethane. Typical residence times were in the range
of 15-45 s using a flow rate of 1 mL min-1. After a
quenching and an extraction step, the product composition
was determined by HPLC and GC analysis.

If gaseous dinitrogen pentoxide was used for the nitration
(Scheme 16, No. 1), the highest conversion was achieved
by the interdigital micromixer, resulting in dinitrated naph-
thalene as the main product. By applying fuming nitric acid
as the nitration agent, the selectivity changed to the mono-

substituted product, whereas the highest yield was obtained
using the glass microreactor. Overall, the results indicate that
the selectivity was sensitive to the reaction conditions as well
as to which microreactor was used. A brief comparison of
these results with those from batch processes is given in
Table 14.

To generate a liquid/liquid slug flow various T-pieces
(i.d.: 0.5 or 0.8 mm) connected to a capillary reactor (i.d.:
127, 178, or 254µm; length: 45-135 cm)35,36and Y-pieces
(inner diameter: 0.5-1 mm) connected to a capillary reactor
(i.d.: 0.5-1 mm, length: 1-8 m)37 were used (Scheme 16,
Nos. 2 and 3). The latter reactor featured a heating jacket,
which allowed isothermal operation of the reactor.

The nitrations of benzene and toluene35,36 (Scheme 16,
Nos. 2 and 3) were carried out in a temperature range of
60-90 °C using different ratios of nitric acid and sulfuric
acid (H2SO4: 70-85 wt %) as nitration agents, and different
acid/organic solution ratios (2:1 to 7:1). The nitration studies
published by Dummann et al. were carried out with mixtures
of concentrated sulfuric and nitric acid as a nitration agent
and various undisclosed substrates.37 An isothermal capillary
reactor was used to realize reactions temperatures in a range
of 60-120°C. The reactor was operated at 4 bar using total
flow rates in the range of 9-36 mL h-1. A GC was used for
the analysis.

For the nitration of benzene and toluene (Scheme 16, Nos.
2 and 3) it was found that the reaction rate could be increased
by several parameters, e.g. a smaller inner diameter of the
tube implying a better mass transfer, a higher sulfuric acid
ratio, and a low acid/organic solution ratio. If two of the
experiments were compared with patent data, it can be seen
that the capillary reactor-based process is competitive (Table
15).35,36 Especially the high reaction rate in the case of the
capillary reactor promises room for improvement if smaller
inner diameters are used.

By investigating the nitration reaction in a capillary
reactor, Dummann et al. confirmed the published reaction
mechanism, which explains the detection of two by-products,
a dinitrated and a phenolic one. Further experiments at 60
and 120°C outline that the amount of by-products can be
decreased at lower temperatures. The use of various flow
rates show that the by-product composition can be affected
by the flow velocity.37

Nitration of Urea Derivatives. Due to application of
nitratedN,N′-dialkyl ureas as new energetic plasticizers, the
nitration step was investigated in two microreactors by Antes
et al.33,38,39 It was found that the direct nitration ofN,N′-
diethyl urea resulted in a mixture of mono- and dinitro

(33) Antes, J.; Tuercke, T.; Marioth, E.; Schmid, K.; Krause, H.; Loebbecke,
S.Topical Conference Proceedings; IMRET 4, 4th International Conference
on Microreaction Technology, AIChE Spring National Meeting, March
5-9, 2000, Atlanta, GA; American Institute of Chemical Engineers: New
York, NY, 2000; pp 194-200.

(34) Löbbecke, S.; Antes, J.; Tu¨rcke, T.; Marioth, E.; Schmid, K.; Krause, H.
In Proceedings of the 31st International Annual Conference ICT: Energetic
Materials-Analysis, Diagnostics and Testing, June 27-30, 2000, Karlsruhe,
Germany.

(35) Burns, J. R.; Ramshaw, C.Trans. Inst. Chem. Eng.1999, 77, 206.
(36) Burns, J. R.; Ramshaw, C. InTopical Conference Proceedings; IMRET 4,

4th International Conference on Microreaction Technology, AIChE Spring
National Meeting, March 5-9, 2000, Atlanta, GA; American Institute of
Chemical Engineers: New York, NY, 2000; pp 133-140.

(37) Dummann, G.; Quitmann, U.; Gro¨schel, L.; Agar, D. W.; Wo¨rz, O.;
Morgenschweis, K.Catal. Today2003, 79-80, 433.

Table 14. Nitration of naphthalene in a batch reactor as
benchmark for the microreactor

microreactor batch reactor

typical reaction temperature
for nitrations using N2O5

30 °C -50 to-20 °C

product ratio:
1,5-dinitro:1,8-dinitro

1:2.8 1:3.6

product ratio:
1-mono-nitro:2-mono-nitro

32:1 20:1

Scheme 16. Nitration reactions carried out in different
microreactors
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derivatives (Scheme 17, No. 1), which is in accordance to
the batch process. Furthermore, a new two-step route to the
dinitrated products using thiourea derivatives as the starting
compounds was described (Scheme 17, No. 2).

The silicon-based microreactors described in the former
section “nitration of aromatics” were used. The nitration was
carried out at defined temperatures between 0-20 °C using
various nitrating agents such as nitric acid, mixtures of nitric
and sulfuric acid, and dinitrogen pentoxide. PTFE capillaries
of different lengths were used as residence time loops to
realize different reaction times (0.6-82 s).

In accordance with the batch process, the nitration ofN,N′-
diethyl urea in a microreactor resulted in a mixture of
mononitro and dinitro derivatives (Scheme 17, No. 1). In
comparison, the nitration of corresponding thioureas was
successfully carried out in a two-step procedure, resulting
at first in the mononitro urea derivative with nearly 100%
selectivity (Scheme 17, No. 2). By a second nitration step
the respective dinitro derivative was obtained. The latter
process was transferred to a batch process using sodium
nitrate and sulfuric acid as a nitrating agent, and similar
results were achieved, albeit the heat management could be
more easily realized in a microreactor setup.

Phenylboronic Acid Formation. The formation of phen-
ylboronic acid by Grignard addition of phenylmagnesium
chloride to trimethyl borate was investigated in three
micromixers by Hessel et al. and Koch et al. (Scheme 18).40,41

To ensure a fast mixing of the substrate solutions, both
were contacted by various micromixers. Two mixers made
of glass and stainless steel respectively, featured an inter-

digital channel structure and a geometric focusing section
to generate a multilamellae flow with thin lamellae. The third
micromixer was based on the split-recombine principle of
fluid lamellae and was made of stainless steel. As residence
time loops, different tubular reactors were applied. In a
typical lab-scale setup the glass micromixer40 was connected
to a PTFE tube (length: 70 cm, i.d.: 2 mm). The caterpillar
mixer40 was used with various stainless steel tubular reactors
of 100 cm length (i.d.: 0.7-21.2 mm), resulting in residence
times in the range of 1-120 s. The flow rates were chosen
with respect to the micromixer.42 The temperature range was
varied between-12 up to 50°C. Analogous investigations
were carried out by Koch et al. using the stainless steel
micromixer.41 The reaction temperature was varied in the
range of-20-30 °C, and residence times between 5 and
180 s were realized by applying different flow rates.

The best results for each microreactor are listed in Table
16. It was found that the experimental setups based on
micromixers provided higher yields than the batch process
using traditional laboratory glassware. Furthermore, the
amount of the disubstituted by-product can be decreased from
11% (batch process) down to 0.6% in the case of the stainless
steel micromixer.41 Besides a detailed analysis of by-
products, also the fouling in the microstructured devices was
addressed by Hessel et al.40 It was found that the glass mixer
can be operated for 15 min only as long as deposition of a
white precipitate was visible.

In addition, it is reported that, by achieving high purity
of the crude product (99.2%), downstream processing could
be considerably facilitated. The previously required distil-

(38) Antes, J.; Tuercke, T.; Marioth, E.; Schmid, K.; Krause, H.; Loebbecke,
S. In Topical Conference Proceedings; IMRET 4, 4th International
Conference on Microreaction Technology, AIChE Spring National Meeting,
March 5-9, 2000, Atlanta, GA; American Institute of Chemical Engi-
neers: New York, NY, 2000; pp 194-200.

(39) Löbbecke, S.; Antes, J.; Tu¨rcke, T.; Marioth, E.; Schmid, K.; Krause, H.
In Proceedings of the 31st International Annual Conference ICT: Energetic
Materials-Analysis, Diagnostics and Testing, June 27-30, 2000, Karlsruhe,
Germany.

(40) Hessel, V.; Lo¨we, H.; Hofmann, C.; Scho¨nfeld, F.; Wehle, D.; Werner, B.
In Topical Conference Proceedings; IMRET 4, 4th International Conference
on Microreaction Technology, AIChE Spring National Meeting, March
5-9, 2000, Atlanta, GA; American Institute of Chemical Engineers: New
York, NY, 2000; pp 39-54.

(41) Koch, M.; Wehle, D.; Scherer, S.; Forstinger, K.; Meudt, A.; Hessel, V.;
Werner, B.; Löwe, H. (Clariant GmbH). DE 10140857, Frankfurt, Prior-
ity: August 21, 2001.

(42) Flow rates: glass mixer: 3.3-25 mL min-1, caterpillar mixer: 23-167
mL min-1.

Table 15. Comparison of the performance of the micro T-piece/capillary reactor with published patent data concerning the
nitration of aromatics

type of nitration process inlet/°C outlet/°C H2SO4/wt % conversion/% by-product/ppm time/s rate/min-1

traditional equipment 80 128 60.6 89.5 1000 120 0.9
traditional equipment 80 134 65.2 99.1 2090 120 2.1
traditional equipment 95 120 69.5 90.0 1750 25 4.6
T-piece and 178µm capillary 90 90 77.7 94.0 4600 24.4 5.9
T-piece and 178µm capillary 90 90 72.2 60.7 <1000 26.1 1.6

Scheme 17. Nitration of N,N′-dialkyl urea derivatives

Scheme 18. Grignard addition to trimethyl borate and the
consecutive hydrolysis step
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lation step is not needed anymore; instead, purification can
be performed by crystallization or extraction. The latter two
processes are favorably performed at room temperature,
while distillation requires an additional energy supply,
rendering the whole process more costly.

Sonogashira Coupling.The coupling reaction was based
on a transition metal-catalyzed conversion of aryl halides
and monosubstituted acetylenes to disubstituted acetylenes.
A copper-free catalyst for this reaction was found by
Fukuyama et al. (Scheme 19).43 The latter was used in the

connection with an ionic liquid as the solvent to realize a
continuous catalyst recycling system.

The coupling reaction was carried out in an interdigital
micromixer having a microstructured mixing device (30
microchannels, width: 40µm, depth: 200µm) to generate
a multilamellae flow. Furthermore, a T-shaped tubular reactor
made of glass (length: 40 mm, i.d.: 2 mm) was used.

The low flow rates of 1.7µL min-1 for both the substrate
solution containing the aryl halide and the acetylene and the
Pd-catalyst dissolved in an ionic liquid was realized by
syringe pumps. After the liquids were contacted at 110°C,
the reaction mixture was extracted, and the yield was
determined by GC analysis.

Concerning catalyst recycling, the results indicate that the
microflow system provides yields nearly equal to those of
the batch setup using traditional glassware (20 mL round-
bottomed flask) (Table 17). In contrast a continuous process

based on a T-shaped tubular reactor resulted in a low
conversion of the substrate.

Formation of Polyacrylates. A radical polymerization
of acrylates was investigated by Bayer et al. (Scheme 20).44,45

Since fouling limited the continuous polymerization process
of a lab-scale tubular reactor, investigations were carried to
enhance the homogenization of the monomer and initiator
by a micromixer.

The setup for polymerization consisted of a tubular reactor
(i.d.: 5-20 mm, length: 23-60 m) with static mixers inside
and a premixing device. For the latter a Sulzer SMX or a
mixer array, a numbering-up version of the stainless steel
interdigital micromixer from IMM comprising 10 mixing
units, was used.

The polymerization of acrylates was carried out with
various monomers and initiators (preferential ratio 9:1) which
were not disclosed. As typical reaction conditions, a reaction
temperature up to 150°C and a pressure up to 16 bar were
mentioned. The flow rate was adjusted in the range of 6-8
kg h-1 which resulted in a typical residence time of 40 min.
The molecular weight distribution was determined by size
exclusion chromatography.

In comparison to the Sulzer SMX, it was found that the
use of a micromixer array as a premixing device led to an
important improvement of the polymerization process. Due
to an enhancement of the mixing of monomer and initiator,
no molecular weights>6 × 104 g mol-1 were found, which
prevented fouling inside the tubular reactor (Table 18).

Addition of Organometallic Reagents.The addition of
organometallic reagents to carbonyl compounds was the
target reaction of Krummradt et al. (Scheme 21).46 The
investigations included the optimization of process param-
eters using various micro- and ministructured devices.

For the lab-scale experiments the micromixer array from
IMM comprising 10 mixing units which generate a multi-

(43) Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I.Org. Lett.
2002, 4, 1691.

(44) Bayer, T.; Pysall, D.; Wachsen, O. InTopical Conference Proceedings;
IMRET 3, 3rd International Conference on Microreaction Technology,
AIChE Spring National Meeting; Ehrfeld, W., Ed.; Springer-Verlag: Berlin,
2000; pp 165-170.

(45) Pysall, D.; Wachsen, O.; Bayer, T.; Wulf, S. (Axiva GmbH). DE 19816886
C1, Priority: April 17, 1998.

(46) Krummradt, H.; Koop, U.; Stoldt, J. InTopical Conference Proceedings;
IMRET 3, 3rd International Conference on Microreaction Technology,
AIChE Spring National Meeting; Ehrfeld, W., Ed.; Springer-Verlag: Berlin,
2000; pp 181-186.

Table 16. Comparison of the Grignard addition using different microreactors and traditional laboratory glass ware

interdigital glass
mixer40

caterpillar
mixer40

stainless steel
interdigital micromixer41

traditional
glass ware41

yield: PhB(OH)2 83%a 89%a 95%b 83%b

by-product yield: Ph2B(OH) 1.4% 0% 0.6% 13.8%
temperature 22°C 10°C 20°C 20°C
residence time 8 s 10 s 5 s not given

a Determined by HPLC.b Isolated yield.

Scheme 19. Pd-catalyzed coupling of iodo benzene and
phenyl acetylene

Table 17. Comparison of a microflow system with respect
to a batch process in traditional laboratory glass ware
concerning the Sonogashira coupling

microflow
system/%

batch
process/%

yield of the first run 93 96
yield of the second run 83 80

Scheme 20. Radical polymerization of acrylates
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lamellae flow was applied. Due to the deposition of solids
inside the microreactor a ministructured mixing unit was
designed and used for the pilot-scale experiments. Finally a
numbering-up concept containing five minireactors was
realized for the production process.

The process optimization was carried out with the
micromixer-array-based lab-scale setup. Two flow rates of
6.7 and 33.3 mL min-1 were used at different temperatures
in the range of-10 to -40 °C and at various substrate
concentrations.

The best results for the lab-scale experiments were
obtained at a temperature of-10 °C using the higher flow
rate. A comparison of this result with those from other
experiments carried out in a flask, a stirred vessel, and in
the minireactors is summarized in Table 19. It is evident
that the continuously operating micro- and ministructured
reactors result in much higher yields than the batch reactor.
This was enabled by shorter reaction times which prevented
side reactions and more efficient heat management by a larger
surface/volume ratio.

Although the yield gained by the ministructured mixer
was a little bit smaller than that of the micromixer, the
minimixer was applied to the production process. Besides
the still high surface/volume ratio and the short residence
time, the latter device could better face the fouling issue.

Cumene Hydroperoxide Rearrangement.The synthesis
of phenol and acetone by means of the acid-catalyzed
rearrangement of cumene hydroperoxide was described in a
patent by Weber et al. (Scheme 22).47

To contact the cumene hydroperoxide and the catalyst
solution a multichannel reactor made of stainless steel was
used. After splitting both feed streams into a multitude of
reaction channels, two channels, one from each stream, were
rejoined again. A typical cross section of the microchannels
was 100µm × 5000 µm. The dimensions of the cooling

channels of the integrated heat exchanger also had a depth
of 500µm and a width of 5000µm. Referring to the volume
of the reaction channels, the specific heat-transfer area
amounted to 10000 m2 m-3, which ensured sufficient heat
transfer even if the cooling circuit failed.

The experiments were carried out with technical solution
of 67 wt % cumene hydroperoxide and sulfuric acid as the
catalyst. The catalyst feed stream was adjusted until the
residual cumene hydroperoxide content was reduced to 1 wt
%.

In the case of the microreactor the amount of high-boiling
substances in the product stream was reduced down to 0.1
wt %. Conventional processing at a recycle ratio of 17
resulted in 0.21 wt % high-boiling substances (Table 20).

Methylation of Aromatics. The methylation of substi-
tuted aromatics was carried out by Wo¨rz using tertiary
methylamine (Scheme 23).48 Since this process is proprietary,
the nature of the substituents was not disclosed.

The reactor used for the methylation consisted of three
parts. At first, both substrates were contacted in a short
tubular pre-reactor (i.d.: 1 mm). Subsequently, the product

(47) Weber, M.; Tanger, U.; Kleinloh, W. (Phenolchemie GmbH & Co. KG).
WO 01/30732, Priority: October 22, 1999.

(48) Wörz, O. InTopical Conference Proceedings; IMRET 5, 5th International
Conference on Microreaction Technology, AIChE Spring National Meeting;
Matlosz, M., Ehrfeld, W., Baselt, J. P., Eds.; Springer-Verlag: Berlin, 2001;
pp 377-386.

Table 18. Comparison of premixers concerning the polymerization of acrylates

micromixer Sulzer SMX

molecular weight distribution 2× 102-6 × 104 g mol-1 2 × 102-7 × 106 g mol-1

modality of the distribution bimodal trimodal
fouling not found fouling because of high-weight molecules

Table 19. Comparison of various reactors concerning the addition of organometallic reagents to carbonyl compounds

reactor type
surface/volume
ratio/m2 m-3 T/°C residence time yield/%

flask (0.5 L) (lab-scale) 80 -40 0.5 h 88
stirred vessel (6 m3) (production-scale) 4 -20 5 h 72
micromixer (lab-scale) 10000 -10 <10 s 95
minimixer (pilot-scale) 4000 -10 <10 s 92
5 parallel minimixer (production-scale) 5× 4000 -10 <10 s 92

Scheme 21. Addition of organometallic reagents to
carbonyl compounds

Scheme 22. Acid-catalyzed rearrangement of cumene
hydroperoxide

Table 20. Rearrangement of cumene hydroperoxide in a
traditional tubular reactor as benchmark for the
microreactor

microreactor traditional tubular reactor

yield 0.5% higher than the
traditional process

high-boiling
substances

0.12 wt % 0.21 wt %

recycle ratio 2 17
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stream was divided into two parts, and both partial streams
were guided into a micromixer array (microchannels: 40µm)
provided by IMM to ensure a complete homogenization.
Third, a tubular postreactor (i.d.: 1 mm) completed the
reaction. The methylation was conducted at 0°C and was
completed within a total residence time of 6 s.

Compared with a former investigated semi-batch process,
an equal yield of 95% was achieved by the micromixer-based
setup (Table 21). However, two major advantages were

achieved: the reaction temperature was increased from-70
°C (semi-batch) up to 0°C, and the reaction time was
diminished from 15 min down to 6 s.

Oxidation of Ethanol to Acetic Acid. The synthesis of
acetic acid by the highly exothermic oxidation of ethanol
was investigated by Kraut et al. (Scheme 24).49 The reaction

was catalyzed by ferric nitrate using hydrogen peroxide as
the oxidant.

As a microdevice a modular microreactor composed of
micromixers and microreactors was used. The latter were
built as cross-flow heat exchangers. The section for the
reactants consisted of 169 channels with a cross section of
150 µm × 300 µm and a length of 6 cm. The section used
for the thermo fluid featured 1960 channels with a cross
section of 150µm × 300 µm and a length of 1.8 cm.

The experiments were performed using flow rates between
0.2 to 0.9 kg h-1 ethanol, 0.015 to 0.05 kg h-1 catalyst
solution containing aqueous solutions of 1 mol L-1 ferric
nitrate and 1 mol L-1 acetic acid, and 0.3 to 4 kg h-1

hydrogen peroxide solution (35%). The reactants were mixed
successively by micromixers and passed through a series of
four reaction modules (ignition, reaction, quenching) with
cross-flow guided thermo fluids. The inlet temperatures of
the modules were set to 70-115°C. To prevent boiling, the

pressure was adjusted in the range of 3-5 bar. Analysis was
performed by in-line NIR flow-cell measurement.

As summarized in Table 22, a yield and a selectivity of

>99% was obtained. On the basis of temperature measure-
ments of the thermo fluids and the mass throughput a power
output of 2.8-3.1 kW was found which is in good ac-
cordance with the theoretical value of 3.13 kW. A benchmark
of the microreactor-based setup and a continuous stirred tank
reactor for this oxidation process is given in Table 22.

Microreactors Used for Lab- and Pilot-Scale Synthesis:
Gas/Liquid and Gas Reactions

Side-Chain Chlorination of Alkyl Aromatics. The side-
chain chlorination of toluene-2,4-diisocyanate was investi-
gated by Ehrich et al. in terms of a photochemical reaction
(Scheme 25).50 The reaction was started by irradiation to
generate chlorine radicals from gaseous chlorine.

The nondispersive gas/liquid contacting of the photochlo-
rination was carried out in a falling film microreactor
comprising a vertically orientated reaction plate with 32
microchannels (width: 600µm, depth: 300µm, length: 66
mm). The latter was used to generate a small liquid film.
Furthermore, the microreactor featured an integrated heat
exchanger for heating and a quartz window to allow an
irradiation of the microchannels by an external light source.

The flow rates of the reactants were adjusted in the range
of 14 to 56 mL min-1 for the chlorine and 0.12 to 0.57 mL
min-1 for the solution of toluene-2,4-diisocyanate in tetra-
chloroethane. The latter resulted in residence times of 4.8-
13.7 s. By the use of an integrated heat exchanger, the reactor
was held at a temperature of 130°C. The raw product was
analyzed by GC.

The highest conversion (81%) was obtained at the highest
residence time. Furthermore, it was found that the amount
of unidentified by-products was increased at higher residence
times. In contrast, the amount of product resulting from an
electrophilic chlorination reaction (by-product) was dimin-
ished. Hence, the best result was achieved at a residence

(49) Kraut, M.; Nagel, A.; Schubert, K. InTopical Conference Proceedings;
IMRET 6, 6th International Conference on Microreaction Technology,
AIChE Spring National Meeting, March 11-14, 2002, New Orleans, LA;
American Institute of Chemical Engineers: New York, NY, 2002; pp 352-
356.

(50) Ehrich, H.; Linke, D.; Morgenschweis, K.; Baerns, M.; Ja¨hnisch, K.Chimia
2002, 56, 647.

Scheme 23. Methylation of aromatics by
tertiarymethylamines

Table 21. Methylation of aromatics in a semi-batch process
as benchmark for the micromixer-based process

micromixer-based process semi-batch process

yield 95% 95%
temperature 0°C -70 °C
reaction time 6 s 15 min

Scheme 24. Synthesis of acetic acid by catalytic oxidation
of ethanol

Table 22. Oxidation of ethanol in a continuous stirred tank
as benchmark for the microreactor

microreactor continuous stirred tank

residence time 3 s 1760 s
pressure 3-5 bar atmospheric
conversion >99% 30-95% (oscillating)
selectivity >99% >99%
reaction volume 3 cm3 2900 cm3

throughput 4300 cm3 h-1 5930 cm3 h-1

space-time yield 500 h-1 0.7-2.0 h-1

Scheme 25. Photo chlorination of toluene-2,4-diisocyanate
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time of 8.9 s, resulting in a conversion of 55% and a
selectivity of 80%. In comparison, a traditional glass vessel
resulted in a conversion of 65%, but the selectivity of the
desired product was reduced down to 45% (Table 23).

Chlorination of Acetic Acid. The synthesis of monochlo-
roacetic acid by the chlorination of acetic acid in the presence
of acetyl chloride was described by Wehle et al. (Scheme
26).51

The reaction was carried out in a microreactor comprising
different microstructured plates for the flow distribution and
gas/liquid contacting. Typically, the reaction channels had
a width of 1000µm and depth of 300µm. An integrated
heat exchanger ensured an appropriate heat management.

The conversion of acetic acid with chlorine was carried
out at 170-190 °C. At a pressure of 4-6 bar chlorine gas
was passed into the reactor in a co-current or counter-current
direction. The chlorine flow rate was adjusted such that the
chlorine content of the waste stream was smaller than 0.1%.
A typical liquid flow rate of 50 g min-1 was chosen.

Compared to the traditional process, which required a
further crystallization step to remove the unwanted 3.5%
dichloroacetic acid, the amount of this by-product could be
decreased down to 0.01% using the microreactor-based
process. Due to the stacked plate design a numbering up
approach could be easily realized by assembling two reactors.
The latter resulted in a yield of 85% for the monochloroacetic
acid with 0.1% of the dichloro product (Table 24).

Fluorination of Aromatics. A microbubble column,52-54

a falling film microreactor,52-54 and a silicon-based micro-

channel reactor55,56were used by Ja¨hnisch et al. and de Mas
et al., respectively, for the direct fluorination of toluene. In
both reactors the fluorination was carried out with elemental
fluorine diluted in a nitrogen carrier gas, and pure or
dissolved toluene (Scheme 27, No. 1). Furthermore, Cham-

bers et al. demonstrated the fluorination of 4-nitrotoluene
and 2,4-dinitrotoluene (Scheme 27, No. 2).57

Jähnisch et al. demonstrated the fluorination in two
microreactors made of stainless steel. The microbubble
column was composed of a dispersion device which ensured
a uniform distribution of the gas and liquid flow to the
reaction plate with a number of microchannels (width: 50
µm and depth: 50µm or width: 300µm, depth: 100µm).
For cooling, integrated heat exchangers were located on both
sides of the reaction plates. The falling film microreactor
featured a microstructured plate having 300µm wide and
100 µm deep channels. A thin film of several 10µm
thickness was generated by means of gravity forces. de Mas
et al. used a microreactor made by silicon microfabrication
having two microchannels with a triangular cross section
(width: 435µm, depth: 305µm, length: 2 cm). The inner
volume of the reactor amounted to 2.7µL. Chambers et al.
fabricated a channel reactor, composed of nickel block with
three parallel 0.5 mm wide and 0.5 mm deep channels
covered by plastic plate. An integrated heat exchanger
beneath the reaction channels allowed an adequate temper-
ature control.

When using the microbubble column and the falling film
microreactor the experiments were conducted at-50 to 15
°C, using liquid flow rates of 185-327µL min-1 and molar
fluorine ratios from 0.2 to 2 equiv. The product mixture was
analyzed by GC.

(51) Wehle, D.; Dejmek, M.; Rosenthal, J.; Ernst, H.; Kampmann, D.;
Trautschold, S.; Pechatschek, R. DE 10036603 A1, Priority: July 27, 2000.

(52) Jähnisch, K.; Baerns, M.; Hessel, V.; Ehrfeld, W.; Haverkamp, W.; Lo¨we,
H.; Wille, C.; Guber, A.J. Fluorine Chem.2000, 105, 117.

(53) Jähnisch, K.; Baerns, M.; Hessel, V.; Haverkamp, V.; Lo¨we, H.; Wille, C.
In Proceedings of the 37th ESF/EUCHEM Conference on Stereochemistry,
April 13-19, 2002, Bu¨rgenstock, Switzerland.

(54) Hessel, V.; Ehrfeld, W.; Golbig, K.; Haverkamp, V.; Lo¨we, H.; Storz, M.;
Wille, C.; Guber, A.; Ja¨hnisch, K.; Baerns, M. InTopical Conference
Proceedings; IMRET 3, 3rd International Conference on Microreaction
Technology, AIChE Spring National Meeting; Ehrfeld, W., Ed.; Springer-
Verlag: Berlin, 2000; pp 526-540.

(55) de Mas, N.; Gu¨nther, A.; Schmidt, M. A.; Jensen, K. F.Ind. Eng. Chem.
Res.2003, 42, 698.

(56) de Mas, N.; Jackman, R. J.; Schmidt, M. A.; Jensen, K. F. InTopical
Conference Proceedings; IMRET 5, 5th International Conference on
Microreaction Technology, AIChE Spring National Meeting; Matlosz, M.,
Ehrfeld, W., Baselt, J. P., Eds.; Springer-Verlag: Berlin, 2001; pp 60-67.

(57) Chambers, R. D.; Holling, D.; Spink, R. C. H.; Sandford, G.Lab Chip
2001, 1, 132.

Table 23. Photochlorination in a glass vessel as benchmark
for the falling film microreactor

falling film
microreactor

glass
vessel

reaction time 8.9 s 30 min
space-time yield 401 mol L-1 h-1 1.3 mol L-1 h-1

conversion 55% 65%
selectivity (product) 80% 45%
selectivity (by-product) 5% 54%

Scheme 26. Chlorination of acetic acid

Table 24. Comparison of the microcapillary reactor with
respect to a traditional bubble column concerning the
chlorination of acetic acid

microcapillary
reactor

microcapillary
reactor
(2×)

bubble
column

flow rate 50 g min-1 100 g min-1

yield:
monochloroacetic acid

90% 85% 85%

by-product yield:
dichloroacetic acid

<0.05% <0.1% 3.5%

Scheme 27. Direct fluorination of aromatics
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As a typical distribution of monofluorinated isomers a
ortho:meta:para ratio of 5:1:3 was found. The experimental
results with the highest yields are listed in Table 25. Both
microreactors exceed the results gained by laboratory bubble
column (volume: 20 mL), whereas the better results were
achieved by the falling film microreactor.

The experiments of de Mas et al. were conducted at room
temperature and nearly atmospheric pressure using flow
velocities of 1.4 m s-1 for gas flow and 5.6× 10-3 m s-1

for the liquid flow. The fluorine ratio was varied from 1 to
5 equiv. The best result is given in Table 25.

Chambers et al. applied flow rates of 50 and 100µL min-1

for the dissolved substrate, and typically 10 mL min-1 for
the fluorine/nitrogen mixture (10%). The reaction tempera-
ture was set to 5°C. In the fluorination of 4-nitrotoluene a
conversion of 40% was achieved. GC analysis resulted in a
purity of 70%. The fluorination of 2,4-dinitrotoluene resulted
in a conversion of 44%, whereas the purity amounted to 78%.

Fluorination of Non-aromatics. The fluorination of non-
aromatics, namely the fluorination of 1,3-dicarbonyl com-
pounds, the fluorination of sulfur trifluoride derivatives and
the perfluorination of alkanes (Scheme 28) was also inves-
tigated by Chambers et al.57,58

The reactions were carried out in a single-channel reactor
having a 0.5 mm wide and 0.5 mm deep channel covered
by a plastic plate. A numbered-up version with three parallel
channels was fabricated to demonstrate the scale-up pos-
sibilities. In both cases an integrated heat exchanger beneath
the reaction channel ensured the temperature control.

The experiments were conducted typically at 5°C using
liquid flow rates in the range of 4.2-83.3 µL min-1. A
mixture of 10% fluorine in nitrogen (typical flow rate: 10
mL min-1) was used as the gaseous reactant.

It was demonstrated that the single-channel reactor
provided conversions up to 98% (Scheme 28: R1 ) OEt,
R2 ) H, R3 ) CH3), whereas the three-channel device gave
lower conversions up to 59% (Scheme 28: R1 ) OEt, R2 )
H, R3 ) CH3). The fluorination of the sulfur trifluoride
derivative led to a crude product which contained the
pentafluorinated product in a ratio of 56%. The perfluorinated
alkane was obtained with a purity of 70%.

Hydrogenation of Aromatic Nitro Compounds. The
hydrogenation of aromatic nitro compounds, e.g.,p-nitro-
toluene and nitrobenzene, was investigated by Fo¨disch et
al.59,60 (Scheme 29, R) Me) and by Yeong et al.61,62

respectively (Scheme 29, R) H).

Födisch et al. used a stack of microstructured platelets
which had 6× 14 channels having a width of 300µm, a
depth of 700µm, and a length of 400µm. The aluminum
platelets were anodically oxidized, and palladium was
deposited using an electrochemical or chemical method. The
reactor housing was used either with the stack of platelets
or without this stack as a conventional fixed bed reactor.

Hydrogenation experiments were carried out at 70°C and
20 bar. As a liquid reactant a 10%p-nitrotoluene solution
in 2-propanol was used. To increase the conversion the
reaction mixture was partly recycled in the loop reactor. In
the case of the microreactor the recycle ratio was set to 43%.
The residence time amounted to 280 s.

The experimental results illustrate that the chemical
deposition of palladium resulted in a more efficient catalyst

(58) Chambers, R. D.; Spink, R. C. H.Chem. Commun.1999, 10, 883.

(59) Födisch, R.; Hönicke, D.; Xu, Y.; Platzer, B. InTopical Conference
Proceedings; IMRET 5, 5th International Conference on Microreaction
Technology, AIChE Spring National Meeting; Matlosz, M., Ehrfeld, W.,
Baselt, J. P., Eds.; Springer-Verlag: Berlin, 2001; pp 470-478.

(60) Födisch, R.; Reschetilowski, W.; Ho¨nicke, D. InProceedings of the DGMK-
Conference on the Future Role of Aromatics in Refining and Petrochemistry;
Erlangen, Germany, 1999; pp 231-238.

(61) Yeong, K. K.; Gavriilidis, A.; Zapf, R.; Hessel, V.Catal. Today2003, 81,
641.

(62) Yeong, K. K.; Gavriilidis, A.; Zapf, R.; Hessel, V.Chem. Eng. Sci.
Manuscript submitted.

Table 25. Direct fluorination in a laboratory bubble column as benchmark for a microbubble column, a falling film
microreactor, and silicon-based microchannel reactor

microbubble
column52

falling film
microreactor52

laboratory bubble
column52

silicon-based
microchannel reactor55

temperature -15 °C -16 °C -17 °C rt
fluorine ratio 0.54 equiv 2.0 equiv 1.0 equiv 2.5 equiv
conversion 26% 76% 34% 58%
yield 11% 28% 8% 14%
selectivity 42% 37% 22% 24%

Scheme 28. Direct fluorination of nonaromatics

Scheme 29. Hydrogenation of aromatic nitro compounds
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than the electrochemical deposition. In the first case using a
recycle ratio of 43 a nearly quantitative conversion (98%)
of p-nitrotoluene in combination with ap-toluidine selectivity
of 100% was achieved in the microchannel reactor (Table
26). If the microchannel reactor is compared at smaller

recycle ratios with a conventional fixed bed catalyst or with
coated aluminum wires, it turned out that the conversion of
the microreactor is lower. The latter was ascribed to an
unequal distribution of gas and liquid in the microchannels.

Yeong et al. demonstrated the hydrogenation of nitroben-
zene in a falling film microreactor. To generate a thin liquid
film the reactor was equipped with a microstructured plate
having 64 parallel, 300µm wide, 100µm deep, and 65 mm
long channels. The temperature control was ensured by an
integrated heat exchanger which is located behind the
reaction plate. For a visual inspection of the liquid film, e.g.
measuring the film thickness, the reactor housing was
equipped with an inspection glass. Experiments were con-
ducted at 60°C and 1-6 bar pressure using liquid flow rates
in the range of 0.2-3 mL min-1. The analysis was carried
out with a GC.

Because the liquid flow rate affected the thickness of the
liquid film and the residence time, a dependency of the
nitrobenzene conversion on liquid flow rate and the hydrogen
pressure was ascertained. The best conversions greater than
85% were obtained at low flow rates of 0.5 mL min-1.
Furthermore, different catalyst preparation methods (Pd
sputtering, UV-decomposition, wet impregnation, incipient
wetness) were compared in long-term experiments, whereas
the catalyst prepared by incipient wetness retained a nearly
stable activity.

Hydrogenation Reactions.The use of gas-phase reac-
tions in organic synthesis is problematic as a result of the
difficulties associated with the safe handling of gaseous
reagents. In addition, many such reactions are generally
extremely exothermic, and it is difficult to control the
temperature of such reactions when performed on a large
scale. Microreactors have considerable attraction for such
processes because there is only a small amount of reactants
in the reactor at any given time. The microreactor enables
excellent temperature control of the reaction as well as an
opportunity for scale-up, by the simultaneous use of many
such reactors.

Hönicke and co-workers have reported the gas-phase
partial oxidation of cyclic dienes, to their corresponding

monoalkenes, over palladium and ruthenium/zinc catalysts.63

The microreactors consisted of aluminium wafers, with
mechanically etched channels, which were activated by
anodic oxidation to obtain a porous oxide layer, which was
used as the catalyst support. Impregnation of an organic
solution of palladium(II) acetylacetonate resulted in micro-
channels consisting of an 18µm thick layer of 0.18% Pd
catalyst. The wafers were then stacked in a stainless steel
housing to form a microreactor consisting of 672 micro-
channels for a stream of reagents to pass through. The authors
used the device to investigate the hydrogenation of 1,5-
cyclooctadiene to cyclooctene (Scheme 30). The diene was

vaporized and mixed with hydrogen before being passed
through the microreactor at a temperature of 150°C. By
increasing the residence time of the reaction from 35 to 115
ms the authors reported that the conversion increased from
75 to 99.5%. Although the increased residence time resulted
in increased quantities of cyclooctane being formed, the
selectivity of cyclooctene decreased from 99.5 to 98% under
these conditions.

The authors used the same device to investigate the
hydrogenation ofc,t,t,1,5,9-cyclododecatriene to cyclododecene
derivatives (Scheme 31). At a temperature of 150°C, a

selectivity of 85-90% was reported, where the conversion
was approximately 90%. The selectivity of this reaction was
lower than the previous example because of the formation
of the by-products. It was demonstrated, however, that there
was a selectivity advantage of the microreactor compared
to that of a fixed-bed reactor.

The catalytic hydrogenation of benzene was also inves-
tigated (Scheme 32), but complete reduction to cyclohexane

was observed to take place when using the Pd catalyst.63

(63) Dietzsch, E.; Ho¨nicke, D.; Fichtner, M.; Schubert, K.; Weissmeier, G.
Topical Conference Proceedings; IMRET 4, 4th International Conference
on Microreaction Technology, AIChE Spring National Meeting, March
5-9, 2000, Atlanta, GA; American Institute of Chemical Engineers: New
York, NY, 2000; pp 89-99.

Scheme 30. Hydrogenation of cyclooctadiene

Scheme 31. Hydrogenation of cyclododecatriene

Scheme 32. Hydrogenation of benzene

Table 26. Comparison of a microchannel reactor with
respect to a fixed bed reactor concerning the hydrogenation
of aromatic nitro compounds

conversion/
%

residence
time/s

recycle
ratio

p-nitrotoluene
flow/geometric
surface area/
g h-1 cm-2

microchannel reactor 98 280 43 0.013
microchannel reactor 58 85 21 0.045
fixed bed 85 90 21 1.7× 10-6

coated aluminum wires 89 260 21 0.045
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The authors reported that hydrogenation of benzene to
cyclohexene was accomplished using a microreactor system
consisting of a ruthenium/zinc catalyst, which was incorpo-
rated into the microreactor using the same methodology, but
the conversions were reported to be low (ca. 10%), with a
maximum selectivity of 36%).

Conclusions
A large range of reactions have been carried out in

microflow devices with success, among them many of the
famous and industrially relevant organic processes. It is
necessary to significantly change the experimental protocol
of such reactions in order to adapt them to the needs of
chemical microprocess engineering. Most prominent, the
residence time of reactions has been notably shortened,
usually by orders of magnitude, with the result that formerly
hour-long processes may now be completed within seconds
(Table 27).

Since this task cannot be accomplished for every process
by improving mass and heat transfer on its own (and
undoubtedly can fail for some reactions), operation at higher
temperatures is mandatory for some organic reactions in
microreactors. This increase in reaction temperature may
have other desired implications. When performing formerly
cryogenic processes at ambient temperature, this may notably
reduce energy costs. Typically, reactions may be carried out
at temperatures up to 50°C higher than done in a conven-
tional way (albeit examples with larger gaps are still
possible). Reactant concentrations (and pressure in the case
of processing gaseous species) may be maintained or even

increased; however, to avoid fouling in the tiny microchan-
nels a slight reduction in concentration is generally advised.
The sample volumes are nowadays flexible in a surprisingly
large range when using microflow devices, and many systems
are commercially available.

The microreactor benchmarking was described above in
a multifaceted manner. The discussion was grouped per
reaction. It is difficult at this stage to draw general, at best
deductive, conclusions. Each chemical process and each
company demands unique profiles and specifications. In
addition, the data set is far from being complete. A more
in-depth scenario is provided in a more extended volume,
but still cannot give top-down conclusions.2 As one of the
most striking facets it is very clear that microreactors give
rise to a number of increases in selectivity and conversion,
albeit the unsuccessful examples are not reported in open
literature. It is also evident that by good mixing other
parameters can be improved, such as the molecular weight
of a polymer or the size, morphology, and distribution of a
powder. There could be more “facets” added to this list; this
information was largely given in the main section of this
article and does not need to be repeated. In this sense, it is
intended for this article to give the general information and
to provide an overall impression of the field.

Finally, all this information must be used to build plants
with microflow devices and to profit from the new technol-
ogy. Otherwise the technology will stay at a level of an
“innovation”, “plaything”, or whatever. Since the learning
curve is large, the market is conservative, and the tool is
not the solution to anything, it becomes increasingly apparent
that “micro” should be only placed where it is needed and
not where it may be technically feasible. To determine the
“need”, benchmarking with documentation and analysis is
the proper way. Finally, a market has to be served and the
tool has to be brought into application.
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Table 27. Comparison of process parameters in batch and
microreactors with exemplary citations

parameter
batch

quantity
microreactor

quantity
exemplary
citations

concentrated cb cmr ) cb (<cb) 40, 41
temp Tb Tmr ) Tb + x × 10 °C a 34, 40, 46
time tb tmr , tb 23, 46, 50
pressure pb pmr ) pb (>pb) 41, 49
volume Vb Vmr , Vb (Vmr . Vb) 49, 52

a x ) 1-5.
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This tutorial review describes how micro reactors are being applied to synthetic chemistry covering

a wide range of applications, from the preparation of nanograms of material for drug discovery

and screening to the multi-tonne production of fine chemicals. This article explores how

miniaturisation may revolutionise chemical synthesis and demonstrates that products are

generated in higher yield and purity compared to the equivalent bulk reactions, in much shorter

periods of time.

Introduction

In their simplest form, micro reactors consist of a network of

micron-sized channels (typical dimensions are in the range 10–

500 mm) etched into a solid substrate.1 For synthetic chemistry,

the channel networks are connected to a series of reservoirs

containing chemical reagents (or products) to form the

complete device or ‘chip’. Reagents can be brought together

in a specific sequence, mixed and allowed to react for a

specified time in a controlled region of the channel network

using various pumping techniques; including electrokinetic

(electroosmotic and electrophoretic) or hydrodynamic pump-

ing. For electrokinetically-driven systems, electrodes are

placed in the appropriate reservoirs to which specific voltage

sequences can be delivered under automated computer

control.2 This control offers a simple but effective method of

moving and separating reactants and products within a micro

reactor, without the need for moving parts. In comparison,

hydrodynamic pumping uses conventional, or micro-scale

pumps (notably syringe pumps) to manoeuvre solutions

around the channel network, however this technique has the

disadvantage of requiring either large external pumps or the

complex fabrication of small moving parts within the device.

To date, research in the area has confirmed that micro

reactor methodology is applicable to performing both gas and

liquid phase reactions. From the work cited in this review

article, the low-volume spatial and temporal control of

reactants and products in a laminar flow diffusive mixing

environment, in which distinctive thermal and concentration

gradients exist, offers a novel method for chemical manipula-

tion and product generation. Often, reactions performed

within a micro reactor invariably generate relatively pure

products in high yield, in comparison to the equivalent bulk

reactions, in much shorter times and in sufficient quantities to

perform full structural characterisation. One of the immediate

and obvious applications is therefore in drug and process

discovery, where the generation of compounds with either

different reagents or under variable conditions is an essential

factor. In addition, the opportunity to establish optimal

chemical processes is an exciting capability of the technology,*P.Watts@hull.ac.uk
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which could be integrated with appropriate analytical instru-

mentation. An interesting twist to the chemistry reported is not

just the opportunity to separate reactants and products in real

time, but also the ability to manufacture and use reagents

in situ; an important issue when using highly toxic or explosive

reagents, for example. In short, micro reactors are new, safe

and more atom efficient tools with which to generate molecules

and to increase our knowledge of complex chemical processes.

In this review, a brief description of the fabrication and

operation of micro reactors is outlined, followed by a detailed

description of the types of reaction that have been performed

in micro reactors and the benefits observed.

Fabrication of micro reactors

A number of materials such as silicon, quartz, glass, metals

and polymers have been used to construct micro reactors.1

Depending on the material used, a range of channel micro-

fabrication methods such as photolithography, hot embossing,

powder blasting, injection moulding and laser micro forming

are available.1,3 However, the most important considerations

for synthetic applications include chemical compatibility with

the substrate, as well as the ease and reproducibility of

fabrication. Furthermore if electrokinetic pumping is required

special surface characteristics are essential as detailed below.

Another issue which should be considered when in situ analysis

is required is the compatibility of the material with the

detection method to be used.

For organic chemistry glass is the most popular choice since

it allows electroosmotic flow (EOF) with many common

solvents, it is chemically inert, enables the use of visible light

detection methods and fabrication procedures are well

established. For glass micro reactors, photolithographic

fabrication of channel networks is performed as shown

schematically in Fig. 1.4,5 Firstly, the channel network is

designed and printed using suitable computer drawing soft-

ware and a film negative of the desired final size is prepared by

photoreduction to form the optical mask. Recent instrumental

advances of this process also enable the direct production of

the mask from computer drawings.6 Commercially available

borosilicate glass photolithographic plates (typically a few mm

in thickness) coated with a thin metal layer (normally

chromium) plus an upper layer of positive photoresist (0.5–

2.0 mm depth) are used for channel network fabrication. The

pattern of the required network of interconnecting channels is

transferred from the optical mask to the photoresist layer.

After light exposure, the photoresist is developed and

removed, together with the chromium layer, to reveal the

areas of glass to be etched. The channels are then etched using

a mixture of 1% HF and 5% NH4F in water at typically 65 uC,

resulting in an etch rate of approximately 0.5 mm min21.

During the etching process, it is important that the system is

well agitated to ensure a consistent supply of etchant to the

surface.

The base plate containing the etched channel network must

next be sealed by bonding to an upper plate containing pre-

drilled holes which act as reservoirs (or connecting conduits)

for reagents and products. The most common method of

bonding the two pieces of glass is thermal bonding at typically

575 uC for a few hours, using either a conventional or

microwave furnace.4,5 A photograph of an all-glass device

produced by this method is shown in Fig. 2. For good thermal

bonding, it is important to ensure that both glass types have

the correct thermal softening and expansion properties. In

addition, the surfaces to be bonded must be clean and flat.

Importantly, the advantage of using thermal bonding to seal

the device is that no adhesives are required, as these are not

generally resistant to organic solvents and reagents.

If hydrodynamic pumping is required it is possible to

thermally bond ceramic HPLC-type adaptors to the glass

device (Fig. 3) or use commercially available quartz capillaries.

Connecting syringe pumps to such devices is relatively easy

and enables the reactor to be incorporated with a HPLC

system, for example. This type of micro reactor is ideal for

reaction optimisation.

Of all the fabrication media, perhaps metal is the most

robust in terms of engineering requirements and more

specifically, micro mixers have been constructed and applied

in chemical processing. This subject is extensively reviewed in

ref. 1. However in the authors’ experience, chemists generally

prefer to use glass reactors if possible.

Operation of micro reactors

For a newcomer to the field of micro reactor technology, the

easiest way to operate a device is by hydrodynamic

control, using syringe pumps to manoeuvre solutions

around the channel network. However, this approach has the

Fig. 1 Photolithographic fabrication of micro reactors.
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disadvantage of requiring either large external pumps or the

complex fabrication of small moving parts within the reactor

itself. It should also be emphasised that although this

approach is relatively easy if reacting just two solutions, it

becomes far more complex to accurately control the fluidics

when introducing more than three reagents into the device; in

these situations much more care is required when designing the

exact dimensions of the reactor channels.

A more elegant way of pumping solutions around a channel

network is by electroosmotic flow (EOF),7 using voltage

sequences applied via electrodes placed within the reagent

reservoirs. This method has several significant advantages over

hydrodynamic based pumping methods,8 as it can be easily

miniaturised as no moving parts are involved and the

required voltage sequences can be readily applied under

automated computer control. For a glass micro reactor, the

channel wall-solution interface normally has a negative charge,

arising from ionisation of surface groups, which are immobile.

This immobile surface charge attracts a diffuse layer (of

thickness in the order of nm) of mobile, oppositely charged

counterions in the solution adjacent to the channel wall

(cations for a negatively-charged glass channel wall). As shown

schematically in Fig. 4, application of an electric field along the

channel length causes the nm thick layer of mobile cations to

move towards the more negative electrode, which drags all of

the intervening solution in the bulk of the channel with it. An

important feature of EOF is that the liquid velocity is constant

across the channel, except in the nm thick regions of the diffuse

layer of counterions very close to the wall. Unlike EOF,

pressure-driven flow produces a parabolic velocity profile with

high velocities in the channel centre and slow velocities near to

the wall, giving rise to increased blurring of reagent zones

along a channel length.8

It should be stressed that for EOF to be achieved, polar

solvent types need to be used. The EOF fluid velocity veof is

given by eqn. (1)2

veof~{
Eee0f

g
(1)

where E is the electric field (voltage divided by electrode

separation), e is the relative dielectric constant of the liquid, e0

is the permittivity of free space, f is the zeta potential of the

channel wall–solution interface and g is the liquid viscosity.

Consequently it can be deduced that solvents which possess a

high dielectric constant (i.e. polar solvents) and low viscosity

(g) will have a higher flow rate, as illustrated in Table 1 and

Fig. 5.

It can be seen from Fig. 5, that the solvent flow rate is

directly proportional to the field strength applied; as a result

the flow rates within the channels can be easily controlled.

Clearly this limitation prevents non polar solvents such as

hexane and dichloromethane from being used in EOF

Fig. 2 A glass micro reactor suitable for electrokinetic control. The

electrodes may either be placed in the reservoirs from above or may be

fabricated into the base of the device.

Fig. 3 A glass micro reactor fitted with ceramic HPLC adaptors.

Fig. 4 Voltage-driven movement of the diffuse layer of cations

adsorbed at the negatively charged channel wall (left-hand Figure)

produces a flat EOF velocity profile across the channel except within

the nm thick diffuse counterion layer (right-hand Figure).

Table 1 Relationship between magnitude of EOF and solvent properties

Solvent Dielectric constant Viscosity/cP Polarity index/P Flow rate/ml min21

MeCN 37.5 (20 uC) 0.38 5.8 5.30
DMF 36.7 (25 uC) 0.92 6.4 1.67
EtOH 24.6 (25 uC) 1.10 5.2 0.90
THF 7.58 (25 uC) 0.55 4.0 1.00

This journal is � The Royal Society of Chemistry 2005 Chem. Soc. Rev., 2005, 34, 235–246 | 237



controlled micro reactors, however research is currently

underway to use combined hydrodynamic and EOF driven

systems to overcome this problem.

It should however be emphasised, that under EOF control,

charged solutes move with an electrophoretic velocity in

addition to the electroosmotic velocity of the solvent. An

elegant example of this was demonstrated by Fletcher et al.

who reacted Ni2+ ions (from Ni(NO3)2) with pyridine-2-azo-

p-dimethylaniline (PADA) within an EOF based micro reactor

to produce a [NiPADA]2+ complex.9 The authors reacted

2mM Ni2+ with 2mM PADA, which in a batch reaction would

produce product (assuming a 100% conversion) of 1 mM

concentration; however within the micro reactor they report

that the product was produced in 12 mM concentration. The

explanation for this is that the positively charged Ni2+ ions

move with a higher electrophoretic velocity than the neutral

PADA molecules, hence the Ni2+ ions move through the

PADA solution, leading to preconcentration of the product

within the channel.

Reactions performed in micro reactors

The following section reviews a number of chemical reactions

that have been performed within micro reactors to date. The

review is divided into two sections on how micro reactor

technology may be used to make small quantities of product

for use in the drug discovery process and secondly how micro

reactor methodology may be applied to large scale chemical

manufacture.

Small scale manufacture

The success of pharmaceutical companies resides largely on the

synthesis and screening of novel chemical entities representa-

tive of the universe of drug-like compounds, which may be of

the order of 10200 compounds or about 1040 chemotypes; and

to optimise selected leads to marketable drugs. In an industry

where development costs are extraordinarily high and attrition

rates from lead generation onwards are about 98%, careful

lead selection and ruthless pressure to shorten optimisation

cycle times are therefore critical for survival. In addition to this

diligence, new technology that would enable a cost-neutral

upward step-change in the number of lead candidates (and

thus choice of a better lead with enhanced therapeutic effects

and reduced side effects) and optimisation speed (to reduce

time to market and extend patent life) would provide a distinct

competitive advantage. A microchannel system also provides a

potential separation column and a non-turbulent environment

for partition between solvents. Integration of a micro reactor

device, via purification to one of the many highly sensitive

microchannel-based biological assay systems is not only

possible, but may also address many of the industries’

potential requirements. Apart from the greatly reduced

reaction times demonstrated for the micro reactors, handling

times to assay and chemical reagent costs are virtually

eliminated. This paradigm is shown diagrammatically in Fig. 6.

In lead optimisation using conventional batch technology,

validation and optimisation of reactions tends to be the rate-

limiting step. Based on the model described in Fig. 6 however,

it can be seen that if the biological assay was replaced by an

analytical measurement and the conditions not the reagents are

varied, then reaction optimisation could be easily carried out.

In a move to achieve this aim, Garcia-Egido et al. have

recently reported the synthesis of a combinatorial library of

pyrazoles within a glass micro reactor operated using

hydrodynamic control.10 A T-shaped micro reactor was used

to react seven 1,3-dicarbonyl compounds 1 with three

hydrazine derivatives 2 to produce a library of twenty-one

pyrazoles 3 (Scheme 1). The automated system consisted of an

autosampler to introduce the reagents into the chip, a HPLC

pump to move the reagents through the micro reactor and a

dilution system to enable a small sample to be diverted to an

LC-MS instrument for analysis. Other than in a few cases most

of the pyrazoles were obtained in 99% conversion, but clearly

the chromatography step allowed the reaction mixtures to be

purified to produce analytically pure compounds. The final

step would be to couple the output of the chromatography

Fig. 5 Flow rates within a micro reactor for a range of common solvents.
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column to a miniaturised bioassay system to enable in situ

screening to be performed.

Although the above system is excellent in achieving

combinatorial synthesis for the desired application, cynics

argue that the overall system is hardly miniaturised; the micro

reactor itself is tiny but the overall system is still composed of

large bench top instrumentation. This is where EOF-based

systems are potentially advantageous (as long as the solvent

and/or reagents move by EOF) as external pumps are not

necessary and purification could be achieved using on-chip

electrophoretic separation rather than using large external

instrumentation (such as the HPLC described above); it should

be pointed out that the concept of miniaturisation started in

analytical chemistry and separations using this technology are

well established.11

In a move to develop an EOF based system, Watts et al.

have demonstrated the first example of multi-step synthesis in

a micro reactor where they have used the micro reactors in

peptide synthesis.12–14 The authors demonstrated that the

dipeptide could be prepared from pre-activated carboxylic

acids. They report that the reaction of the pentafluorophenyl

(PFP) ester of Boc-b-alanine 4 with the amine 5 (Dmab is 4-

[N-(1-(4,4-dimethyl-2,6-diococyclohexylidene)-3-methylbutyl)-

amino]benzyl) gave the dipeptide 6 quantitatively in 20 min

(Scheme 2). This represented a significant increase in yield

compared with the traditional batch synthesis, where only a

50% yield was obtained in 24 h. The authors then used the

methodology to consecutively react alternative pentafluoro-

phenyl esters and amines to produce a library of peptides.13

Although the dipeptide bond forming reactions produced

the dipeptide in 100% conversion based on consumption of the

pentafluorophenyl ester, the product was still contaminated

with residual amine as well as pentafluorophenol, the by-

product of the reaction. George et al.15 have reported that the

dipeptide may be separated from the reaction mixture using

the device in Fig. 7, where the reaction mixture is collected in

the ground reservoir during the synthesis and then the peptide

is purified by electrophoresis and collected in reservoir D.

Hence this methodology enables the synthesis and separation

to be efficiently conducted within an integrated micro reactor

without the need to have large peripheral equipment attached.

However, further research is still needed to investigate

integration of bioassay devices to this type of system.

Having demonstrated that peptide bonds could be success-

fully formed using a micro reactor; the authors then extended

the methodology to the preparation of longer-chain peptides.

Using the micro reactor, the Dmab ester of Fmoc-b-alanine 7

was reacted with one equivalent of piperidine or 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) to give the free amine

5 in quantitative conversion. This is in comparison to solid

phase peptide synthesis where 20% piperidine in DMF is

frequently employed, which demonstrates the atom efficiency

of reactions performed within the devices. The authors then

reacted the amine in situ with the pentafluorophenyl ester 4 to

give the dipeptide 6 (Scheme 3) in 96% overall conversion.13

Having shown that more complex peptides could be

produced by removal of the N-protecting group, the authors

then demonstrated that they could remove the Dmab ester

using hydrazine. The reaction of the Dmab ester 7 with one

equivalent of hydrazine resulted in quantitative deprotection,

to afford the carboxylic acid 8 (Scheme 4). This is in

comparison to the solid phase peptide synthesis where 2%

hydrazine in DMF is generally required to effect complete

Scheme 1

Fig. 6 Integration of a micro reactor with a biological assay system.

Scheme 2
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deprotection.13 From an environmental perspective the use of

stoichiometric quantities of reagents in such reactions is clearly

desirable, furthermore it makes the reaction mixtures easier to

purify as excess reagents are eliminated.

The authors have further extended the approach to the

synthesis of tripeptides, such as 12.13 Reaction of pentafluor-

ophenyl ester 9 with amine 5 formed dipeptide 10, which was

reacted with DBU to effect Fmoc deprotection. The amine 11

was then reacted in situ with another equivalent of penta-

fluorophenyl ester 9 to prepare tripeptide 12 in 30% overall

conversion (Scheme 5). The approach clearly demonstrates

that intermediates may be generated in situ and used in

subsequent reactions. Although in the above examples the

intermediates are relatively non-toxic, it is postulated that the

approach may be used to generate highly toxic or explosive

reagents in situ, that one would rather not use in organic

synthesis.

Having demonstrated that peptide bonds could be success-

fully formed when using a micro reactor, the authors then

investigated racemisation in peptide bond forming reactions

derived from a-amino acids.16 Reaction of the pentafluor-

ophenyl ester of (R)-2-phenylbutyric acid 13, at 0.1M

concentration, with a-methylbenzylamine 14, gave the product

15 in quantitative conversion with 4.2% racemisation

(Scheme 6). Importantly this represented less racemisation

than observed in the batch reaction at the same concentration

and temperature. The reduced level of racemisation was

attributed to the reduced reaction times observed within the

micro reactors.

While investigating different types of reactions within micro

reactors, in order to expand the range of reactions that may be

Scheme 3

Scheme 4

Scheme 5

Scheme 6

Fig. 7 Micro reactor design for simultaneous synthesis and separation of dipeptide.
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performed within such devices, various interesting results have

been reported and these are discussed below.

Skelton and coworkers have reported the application of

micro reactors for the Wittig reaction.17,18 The authors used

the micro reactor to prepare the cis- and trans-nitrostilbene

esters 16 and 17 using the Wittig reaction (Scheme 7). A

number of features such as stoichiometry and stereochemistry

were investigated. When two equivalents of the aldehyde 19 to

the phosphonium salt 18 were used in the reaction, a

conversion of 70% was achieved. The micro reactor demon-

strated an increase in reaction efficiency of 10% over the

traditional batch synthesis. The reaction stoichiometry was

subsequently reduced to 1 : 1, but using a continuous flow of

reagents, as above, the conversion was poor (39%). The

conversion was increased to 59% using an injection technique,

where slugs of the phosphonium salt 18 were injected into a

continuous flow of the aldehyde 19. The research was further

extended to investigate the stereochemistry of the reaction. The

ratio of isomers 16 and 17 was controlled by altering the

voltages applied to the reagent reservoirs, which in turn

affected the EOF and electrophoretic mobility of the

individual reagents, meaning that the stoichiometry of the

mixture was different. The variation in the external voltage

subsequently altered the relative reagent concentrations within

the device, producing cis/trans ratios in the region 0.57 to 5.21.

In comparison, the authors report that, when a traditional

batch synthesis was performed based on the same reaction

time, concentration, solvent and stoichiometry, a cis/trans

ratio of approximately 3 : 1 was observed in all cases. This

demonstrated that significant control was possible in a micro

reactor compared with batch reactions.

Sands and coworkers19 reported the preparation of enam-

ines in a micro reactor. Enamines are traditionally prepared

under Dean and Stark conditions, where the ketone and

secondary amine are heated to reflux in toluene. These

conditions remove the water from the reaction to produce

the equilibrium-dependent enamine. Using the micro reactor,

cyclohexanone 20 was reacted with pyrrolidine 21 to form the

enamine 22 in 42% conversion at room temperature

(Scheme 8). Clearly the use of methanol as solvent at room

temperature, compared with the traditional Dean–Stark

conditions, represents a more environmentally friendly proce-

dure. In this case, the electrophoretic mobility of the product is

thought to be greater than that of water, so enabling in situ

separation of the by-product, which drives the equilibrium

forward.

Carbanion chemistry is one of the most common reactions

used in organic synthesis, however large quantities of heat are

frequently generated which means that careful control of the

temperature, to prevent by-product formation, is required.

Hence, micro reactors have a considerable attraction for these

reactions because the reactor enables excellent temperature

control of the reaction. Wiles et al.20 have demonstrated the

use of silyl enol ethers in the aldol reaction within a micro

reactor. Quantitative conversion of the silyl enol ethers to

b-hydroxyketones was observed in 20 min compared to

traditional batch systems, where quantitative yields were only

obtained when extended reaction times of up to 24 h were

employed. One example involved the treatment of the TMS

enol ether 23 with tetra-n-butylammonium fluoride (TBAF),

to generate the tetra-n-butylammonium enolate 24 in situ,

followed by condensation with p-bromobenzaldehyde 25 to

give the b-hydroxyketone 26 in 100% conversion (Scheme 9). It

should be emphasised that the air sensitive enolate was

generated in situ within a sealed micro reactor and only had

a lifetime of a few seconds before it was reacted with the

aldehyde, consequently it was found that the reaction could be

conducted on the open bench top without any problems.

Wiles et al.21 have also reported the preparation of the

enolates from a series of 1,3-diketones using an organic base

and their subsequent reaction with a variety of Michael

acceptors such as 27 to afford 1,4-addition products within a

micro reactor (Scheme 10). When using a continuous flow of

the reagents 27 and 28, 15% conversion to the adduct 30 was

observed, compared with 56% when the diketone 29 was

reacted with 27 forming the Michael adduct 31. The authors,

however, demonstrated enhancements in conversions through

the application of the stopped flow technique. This procedure

involved the mobilisation of reagents through the device for a

Scheme 7

Scheme 8

Scheme 9

Scheme 10
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designated period of time, using an applied field, and the flow

was subsequently paused by the removal of the applied field,

prior to re-applying the field. Using the regime of 2.5 s on and

5 s off, the conversion to the product 30 was improved to 34%,

while lengthening the stopped flow period to 10 s, resulted in a

further increase to 100%. This was compared to the prepara-

tion of 31, in which the regime of 2.5 s on and 5 s off resulted in

an increase in conversion to 95%. The authors propose that the

observed increase in conversion, when using the technique of

stopped flow, was due to an effective increase in residence time

within the device. This approach clearly shows the ease by

which reactions can be optimised within micro reactors.

Furthermore, in batch reactions it was found that a significant

amount of by-product arose from reaction of the base with the

Michael acceptor, however because the reagents were intro-

duced sequentially within the micro reactor this was not

observed.

Industrially, special equipment is required when performing

large-scale reactions at elevated temperature. However,

Garcia-Egido et al.22 have demonstrated the synthesis of

2-aminothiazoles using a Hantzsch synthesis within a heated

micro reactor. The paper represents the first example of a

heated reaction using an organic solvent within a glass micro

reactor under EOF conditions. During the experiments the

T-shaped micro reactor was heated to 70 uC using a Peltier

heater. Reaction of a-bromoketone 32 with thiourea 33, using

NMP as solvent, resulted in the preparation of aminothiazole

34 in up to 85% conversion (Scheme 11).

Jenson et al.23 have reported photochemical reactions within

micro reactors. The reactor was fabricated by bonding a

patterned silicon wafer to a quartz wafer, the advantage of this

fabrication technique being that the quartz substrate allows

reaction and detection using UV light of lower wavelengths

than permitted by glass substrates. The authors investigated

the pinacol reaction of benzophenone 35 in propan-2-ol

(Scheme 12). The reaction is known to follow a radical

reaction pathway and it is reported that the longer the

residence time of the reaction, the greater the conversion to

benzopinacol 36. The authors report that there was no

detectable product formation for flow rates .10 ml min21.

With reduced flow rates (corresponding to larger residence

times) the conversion improves because the amount of light

absorbed increases, and there is therefore sufficient time for

the excited species to diffuse and react with the benzophenone.

The authors report conversions of up to 60% when using flow

rates of 4 ml min21.

Wootton et al.24 also report the ease of photochemistry to

generate singlet oxygen in situ within a micro reactor. The

technique allows the generation of singlet oxygen without the

inherent dangers of forming large quantities of potentially

explosive oxygenated solvents. The singlet oxygen was formed

within the reactor channel by irradiation with a 20 W, 6 V

tungsten lamp. The authors then used the aforementioned

conditions to convert a-terpinene 37 into ascaridole 38

(Scheme 13) in greater than 80% conversion. For safety,

nitrogen degassing of the product mixture was undertaken as

soon as the solution was collected, hence avoiding accumula-

tion of oxygenated solvents.

Hisamoto and coworkers25 have described the first example

of a phase transfer reaction in a micro reactor. These authors

have successfully conducted a phase transfer diazo coupling

reaction in which a solution of 5-methylresorcinol 39 in ethyl

acetate was reacted with an aqueous solution of 4-nitrobenze-

nediazonium tetrafluoroborate 40 to form the azo dye 41

(Scheme 14). Syringe pumps were used to move the reagents

around the reactor manifold and the authors report that the

product was isolated in 100% yield and greater than 95%

purity as a result of the phase transfer conditions. This

example of phase transfer illustrates that the extraction of

compounds into the bioassay system discussed earlier (Fig. 6)

is indeed feasible.

Several research groups have developed micro reactors for

electrochemical synthesis. Löwe et al.26 reported a micro

reactor in which electrodes were fabricated within the flow

channels and the system was used for the conversion of

4-methoxytoluene 42 to 4-methoxybenzaldehyde 43

(Scheme 15). By experimentally varying the voltage the

selectivity was increased to 86% with a conversion of 88%.

Scheme 11

Scheme 12

Scheme 13

Scheme 14

Scheme 15
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In contrast to the batch reaction it was possible to perform the

reaction without a supporting electrolyte which makes product

isolation easier.

Similarly, Suga et al.27,28 have developed micro reactors for

the generation of highly reactive acyliminium ions which could

be reacted with nucleophiles to produce C–C bonds. The

reactor was cooled to 278 uC using integrated cooling

channels. For example heterocycle 44 was converted into

carbocation 45 in situ within the reactor before being reacted

with nucleophile 46 to produce alkylated product 47

(Scheme 16). The micro reactor was used to produce a library

of compounds in greater than 60% yield and in higher

selectivities than in batch reactions.

Greenway et al. have demonstrated the Suzuki reaction

within a micro reactor.29 This represented an example of

heterogeneous catalysis where 1.8% palladium on silica was

placed in the central channel of the device. The catalyst was

immobilised between microporous silica frits. The micro

reaction was optimised using flow injection analysis principles,

producing a conversion of 67% of cyanobiphenyl 48 at room

temperature. The flow injection method allowed the periodic

injection of the aryl halide 49 into a continuous flow of the

phenylboronic acid 50 (Scheme 17). Traditionally, tetrahy-

drofuran (THF) is used as the solvent in this reaction, however

as has been found with many organic solvents THF has very

low natural EOF properties and for this reason, it was mixed

with water (75 : 25) for use in the reaction. The yields obtained

were comparable with Suzuki reactions on a batch scale using

homogeneous catalysis. Importantly, there were negligible

levels of the palladium catalyst in the product, which was

demonstrated using inductively coupled-mass spectrometry

(ICP-MS), this illustrating that the catalyst was not leaching

from the reactor.

One of the interesting observations of the reaction was that,

unlike conventional Suzuki reactions, an additional base was

not required. Although the exact reason for this is not clear, it

is postulated that the electric field may be sufficient to cause

ionisation of the water at the catalyst surface. It is feasible that

the hydroxide formed in this way may be sufficient to perform

the function of the conventional organic or inorganic base.

As an extension to the above work, He et al. have reported

the same Suzuki reaction in a micro reactor which was placed

within a microwave cavity.30 In this case the authors report

that the conversion was increased from 67% to 99%. The

authors report that in order to get effective heating of the

catalyst, a 10 nm thick layer of gold was placed under the

catalyst bed. The authors used the device to prepare a range of

biaryls in greater than 70% conversion.

Kanno et al.31 have reported the use of enzymes within

micro reactors operated by hydrodynamic pumping.

Hydrolysis of p-nitrophenyl-b-D-galactopyranoside 51 was

conducted using a b-galactosidase enzyme from E. coli to

produce sugar 52 in quantitative conversion (Scheme 18). The

reactor was maintained at 37 uC using a hot plate. It was found

that the hydrolysis of p-nitrophenyl-b-D-galactopyranoside

within the micro reactor was five times faster than in a batch

reactor. The paper also reports the transgalactosylation of a

p-nitrophenyl-2-acetamide-2-deoxy-b-D-glucopyranoside using

an enzymatic reaction.

Micro reactors are also showing a significant level of interest

in the evaluation of catalysts. Dietzsch and coworkers32 have

reported the gas phase hydrogenation of cyclic dienes, to their

corresponding monoalkenes, over a variety of catalysts. The

micro reactors consisted of aluminium wafers, with mechani-

cally-etched channels, which were activated by anodic oxida-

tion to obtain a porous oxide layer, which was used as the

catalyst support. For example, impregnation of an organic

solution of palladium(II) acetylacetonate resulted in micro-

channels consisting of an 18 mm thick layer of 0.18% Pd

catalyst. The wafers were then stacked in a stainless steel

housing to form a micro reactor consisting of microchannels

for a stream of reagents to pass through. The authors used the

device to investigate the hydrogenation of 1,5-cyclooctadiene

53 to cyclooctene 54 (Scheme 19). The diene 53 was vaporised

and mixed with hydrogen, before being passed through the

micro reactor at a temperature of 150 uC. By increasing the

residence time of the reaction from 35 to 115 ms the authors

report that the conversion increased from 75 to 99.5%.

Although the increased residence time resulted in increased

quantities of cyclooctane 55 being formed, the selectivity of

cyclooctene 54 decreased from 99.5 to 98% under these

conditions. A microstructured mesh micro reactor has been

reported by de Bellefon and co-workers for use in catalyst

screening experiments.33

Wagner et al.34 have reported the use of micro reactors in

the preparation and growth of colloidal gold nanoparticles.

Critically it was demonstrated that such particles could be

handled in microfluidic channels without causing

blockages. The authors report that the size distribution of

Scheme 16

Scheme 17

Scheme 18

Scheme 19
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the nanoparticles may be readily controlled by simply altering

the flow rates of the solutions through the channel.

Similarly Takagi et al.35 have used micro reactors in the

preparation of titania nanoparticles. Mixing of tetraisoprop-

oxide and aqueous isopropanol solutions within a micro

reactor enabled the preparation of mono-modal spherical

particles of titania with a narrow size distribution. The authors

reported that it was possible to prepare particles in the size

range of 40–150 nm depending on the size of the micro reactor

channels used.

Large scale manufacture

Current production technology is based on the scaling-up of

successful laboratory scale reactions by firstly constructing a

pilot plant, followed by a final increase in scale to enable

production. This approach is however fundamentally flawed as

at each stage changes are made to the overall surface to volume

ratio of the reactors, which in turn affects mass and heat

transfer processes. These variations in reactor conditions

therefore result in changes to the process, meaning that it is

necessary to evaluate the process and reoptimise it at each

stage of scale up. Consequently the route from bench to large

scale production is both costly and time consuming. It is

therefore postulated that through the application of micro

reactor technology, the transfer from laboratory to production

would be both rapid and cost effective as processes would

initially be optimised on a single device and in order to increase

the production capacity more devices would be employed; a

technique referred to as numbering up or scale out. With the

number of techniques amenable to mass production increas-

ing, the commercial availability of parallel reactors is starting

to be realised. Along with the ability to reduce the transfer

time between initial discovery and production, the scale out

approach is also advantageous as it enables access to an array

of features not commonly used in traditional scale out

approaches, such as reduced reaction times and the ability to

work in the explosive limit.

From a production perspective, the scale out approach is

advantageous as it enables changes in production volume by

simply increasing or decreasing the number of devices

employed, therefore meeting the customer demand. Also

through the use of generic reactor designs custom syntheses

could be performed with relative ease. Compared to a

production plant whereby reactors are configured for a single

function, this flexibility is both advantageous and cost

effective. In principle, all the reactions discussed in the

previous section are suitable for scale out if required, but for

illustrative purposes two specific examples are discussed in

detail.

The diazotization of aromatic amines is an industrial process

of great importance, however the dangers of diazotization are

well known. The explosive nature of diazonium salts necessi-

tates extreme care; hence the low volume associated with micro

reactors affords a safe route to perform such reactions.

As a ‘micro reactor’ for the lab-scale diazo synthesis the

standard laboratory reactor CYTOS produced by CPC,

Germany was used.36 This was constructed from stacked units

comprising of mixing and reaction zones, as well as an

integrated heat exchanger. To make larger quantities of

product the scale-up concept of connecting three reactors in

parallel was realized. The laboratory-scale reactor was used

with flow rates of 20 ml min21 and 80 ml min21 leading to

residence times of several seconds. In the case of the pilot plant

the total flow rate was increased up to 500 ml min21 resulting

in an output of 10 t per year. Other industrial scale reactions

using similar equipment have been reported in the literature.37

The use of elemental fluorine in organic synthesis is

problematic as a result of the difficulties associated with the

safe handling of gaseous fluorine. In addition, fluorination

reactions are generally extremely exothermic and it is difficult

to control the temperature of such reactions when performed

on a large scale. Micro reactors have considerable attraction

for direct fluorination processes because there is only a small

amount of fluorine in the reactor at any given time. The micro

reactor enables excellent temperature control of the reaction as

well as an opportunity for scale up, by the simultaneous use of

many such reactors.

Chambers and Spink38,39 have reported the use of micro

reactors for the fluorination and perfluorination of organic

compounds using elemental fluorine. A nickel or copper micro

reactor was used for the investigation and the liquid reactants

and solvents were introduced into the reaction chamber via a

syringe using a syringe-pump. Fluorine, in a nitrogen carrier

gas, was introduced from a cylinder using a mass-flow

controller. The liquid–gas mixing proceeded via cylindrical

flow (sometimes called annular flow), where the liquid forms

an outer cylinder coating the reactor surface with the gas

flowing through the centre. This flow regime has enormous

benefits in that it provides very large surface-to-volume ratios

for the liquid phase, producing a very efficient reaction over a

short distance. The products were trapped in a tube, which was

cooled with either a salt/ice bath (0 uC) or an acetone/carbon

dioxide bath (278 uC). The fluorination of b-dicarbonyl

compounds proceeded with a high efficiency using 10%

fluorine in nitrogen at 5 uC and with formic acid as the

solvent. Ethyl acetoacetate 56 was fluorinated in 99%

conversion to give ethyl 2-fluoroacetoacetate 57 while ethyl

2-chloroacetoacetate 58 was fluorinated in 90% conversion,

yielding ethyl 2-chloro-2-fluoroacetoacetate 59 (Scheme 20).

Importantly, under these conditions, no perfluorination of the

substrates was observed, with only the monofluorinated

derivatives being isolated. The authors report that the bulk

fluorination of ethyl 2-chloroacetoacetate 58 gives only a low

conversion to 59,40 illustrating that the flow system is more

Scheme 20
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efficient. This illustrates the catalytic effect of the fluorinated

metal surface.

Sulfur pentafluoride derivative 60 was prepared in 75% yield

by the reaction of the disulfide 61 with 10% fluorine in

nitrogen, using acetonitrile as the solvent (Scheme 21).

Similarly, treatment of the trifluoride 62 with fluorine gave

sulfur pentafluoride derivative 63 in 44% yield.

Perfluorination reactions were found to require an addi-

tional heating stage for the reaction to go to completion. The

reaction of the tetrahydrofuran derivative 64 with 50% fluorine

in nitrogen at 280 uC gave the perfluorinated compound 65 in

91% yield (Scheme 22). In conventional reactions, cobalt

trifluoride would be used to perfluorinate hydrocarbons.41

Some of the reactions carried out by the authors, however,

required much lower temperatures than would be expected if

this compound was used.

Jensen et al. have also demonstrated the direct fluorination

of aromatic compounds in a micro reactor, a process difficult

to perform on a conventional scale.42 The reactor was

fabricated from silicon and capped with Pyrex using anodic

bonding. The surfaces of the reactor, which were in contact

with the reagents, were coated with a nickel film using a metal

deposition technique. The authors have used the micro reactor

in the fluorination of toluene 66 at room temperature

(Scheme 23). Using methanol as the solvent, the authors

report an 80% conversion to give the monofluorinated

toluenes. The substitution pattern of the ortho-67, meta-68

and para-69 isomers was determined to be 4:1:2 by GC.

Conclusions

Micro reactor chemistry is currently showing great promise as

a novel method on which to build new chemical technology

and processes in which the reactions generally produce the

desired product in higher yield and purity, in shorter periods of

time, compared with traditional batch reactions. The technol-

ogy is still in its early development and it would be

presumptuous to expand too far on the potential applications

that micro reactors will find, but some early trends are clear.

One of the immediate and obvious applications is in

combinatorial chemistry and drug discovery, where the

generation of compounds with different reagents or under

variable conditions is an essential factor. Perhaps more

intriguing, is what new angles micro reactors bring to reaction

chemistry and these are only now just emerging. For example,

extending the heterogeneous catalyst work already described

one can see how immobilised or supported reagents could be

placed within a device to impart functionality to a reaction

whilst maintaining spatial and temporal control.

In addition, a microchannel system also provides a potential

separation column and integration of a micro reactor device to

one of the many highly sensitive microchannel-based biologi-

cal assay systems may therefore not only be possible, but may

also address some of the pharmaceutical industries’ potential

requirements. Apart from the greatly reduced reaction times

demonstrated for the micro reactors, handling times to assay

and chemical reagent costs may be virtually eliminated. Other

emerging areas for the technology include catalyst screening

and nanoparticle production.

Reactions within the micro reactors are found to be more

atom efficient, which is of significant environmental impor-

tance as this reduces the quantities of raw materials required

and minimises waste. Furthermore, the technology allows the

temperature of reactions to be controlled, enabling reactions to

be conducted safely, where explosion may be observed if the

reaction was conducted on a batch scale. This is where scale

out to produce large volumes of products is advantageous.
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Technology for Modern Chemistry, Wiley-VCH, 2000.

2 P. D. I. Fletcher, S. J. Haswell, E. Pombo-Villar, B. H. Warrington,
P. Watts, S. Y. F. Wong and X. Zhang, Tetrahedron, 2002, 58,
4735.

3 M. Madou, Fundamentals of Microfabrication, CRC Press, Boca
Raton, 1997.

4 T. McCreedy, TrAC, 2000, 19, 396.
5 T. McCreedy, Anal. Chim. Acta., 2001, 427, 39.
6 See: www.screen.co.uk.
7 P. D. I. Fletcher, S. J. Haswell and V. N. Paunov, Analyst, 1999,

124, 1273.
8 P. H. Paul, M. G. Garguilo and D. J. Rakestraw, Anal. Chem.,

1998, 70, 2459.
9 P. D. I. Fletcher, S. J. Haswell and X. Zhang, Lab Chip, 2002, 2,

102.
10 E. Garcia-Egido, V. Spikmans, S. Y. F. Wong and

B. H. Warrington, Lab Chip, 2003, 3, 73.

Scheme 21

Scheme 22

Scheme 23

This journal is � The Royal Society of Chemistry 2005 Chem. Soc. Rev., 2005, 34, 235–246 | 245



11 R. E. Oosterbroek and A. van den Berg, Lab-on-a-Chip:
Miniaturised Systems for (Bio)Chemical Analysis and Synthesis,
Elsevier, Amsterdam, 2003.

12 P. Watts, C. Wiles, S. J. Haswell, E. Pombo-Villar and P. Styring,
Chem. Commun., 2001, 990.

13 P. Watts, C. Wiles, S. J. Haswell and E. Pombo-Villar,
Tetrahedron, 2002, 58, 5427.

14 P. Watts, S. J. Haswell and E. Pombo-Villar, Chem. Eng. J., 2004,
101, 237.

15 V. George, P. Watts, S. J. Haswell and E. Pombo-Villar, Chem.
Commun., 2003, 2886.

16 P. Watts, C. Wiles, S. J. Haswell and E. Pombo-Villar, Lab Chip,
2002, 2, 141.

17 V. Skelton, G. M. Greenway, S. J. Haswell, P. Styring,
D. O. Morgan, B. Warrington and S. Y. F. Wong, Analyst,
2001, 126, 7.

18 V. Skelton, G. M. Greenway, S. J. Haswell, P. Styring,
D. O. Morgan, B. Warrington and S. Y. F. Wong, Analyst,
2001, 126, 11.

19 M. Sands, S. J. Haswell, S. M. Kelly, V. Skelton, D. O. Morgan,
P. Styring and B. H. Warrington, Lab Chip, 2001, 1, 64.

20 C. Wiles, P. Watts, S. J. Haswell and E. Pombo-Villar, Lab Chip,
2001, 1, 100.

21 C. Wiles, P. Watts, S. J. Haswell and E. Pombo-Villar, Lab Chip,
2002, 2, 62.

22 E. Garcia-Egido, S. Y. F. Wong and B. H. Warrington, Lab Chip,
2002, 2, 170.

23 H. Lu, M. A. Schmidt and K. F. Jenson, Lab Chip, 2001, 1, 22.
24 R. C. R. Wootton, R. Fortt and A. J. de Mello, Org. Process Res.

Dev., 2002, 6, 187.
25 H. Hisamoto, T. Saito, M. Tokeshi, A. Hibara and T. Kitamori,

J. Chem. Soc., Chem. Commun., 2001, 2662.
26 K. Jahnisch, V. Hessel, H. Lowe and M. Baerns, Angew. Chem. Int.

Ed., 2004, 43, 406.

27 S. Suga, M. Okajima, K. Fujiwara and J. Yoshida, J. Am. Chem.
Soc., 2001, 123, 7941.

28 J. Yoshida and S. Suga, Chem. Eur. J., 2002, 8, 2651.
29 G. M. Greenway, S. J. Haswell, D. O. Morgan, V. Skelton and

P. Styring, Sens. Actuators B, 2000, 63, 153.
30 P. He, S. J. Haswell and P. D. I. Fletcher, Lab Chip, 2004, 4,

38.
31 K. Kanno, H. Maeda, S. Izumo, M. Ikuno, K. Takeshita,

A. Tashiro and M. Fujii, Lab Chip, 2002, 2, 15.
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Abstract

We describe a method of monitoring temperature within a continuous flow capillary reactor (800�m, outer diameter 1.2 mm and total
length 138 mm) by measuring the change in electrical conductivity of a solution undergoing heating due to interaction with microwave energy.
The method has been used to determine the extent of microwave heating as a function of liquid flow rate for solvents of differing microwave
absorption properties. Deposition of gold metal on the outside surface of a glass capillary reactor was found to improve the efficiency of the
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icrowave heating process. The alkylation of 2-pyridone with benzyl bromide, performed in DMF solution containing 0.01N NaBr,
sed to illustrate the suitability of the proposed methodology for monitoring the reaction temperature.
2004 Elsevier B.V. All rights reserved.

eywords:Continuous flow capillary reactor; Microwave heating; Organic synthesis; Thermal measurement

. Introduction

In recent years, the use of microwave-based heating in or-
anic synthesis has proved to be a popular methodology[1]

eading to numerous examples in which significant reduc-
ions in reaction times and enhancements in product conver-
ions and selectivity are possible[2–4]. Interestingly, most
f the work reported to date has been a batch rather than
ow through technique and the opportunity of combining
icrowave heating with a capillary based flow reactor could
ffer an attractive route to high throughput reaction evalu-
tions. In developing such methodology, however, two im-
ortant issues need to be address. Firstly obtaining a direct

emperature measurement from within a reacting solution,
hich can be difficult using conventional methods such as

hermocouples and optical probes and secondly achieving
ontrollable efficient heating of a capillary reactor using a
icrowave field. Whilst the use of current monitoring has

∗ Corresponding author. Tel.: +44 1482 465469; fax: 44 1482 466416.

previously been used to determine the average tempe
of a buffer in electrokinetic systems[5,6], its application to
hydrodynamically pumped microwave heated capillary
tem has not been reported. In addition to current me
ment a number of optical temperature monitoring techni
have been reported, in which thermal measurements or
ing have been obtained through the use of a tempera
dependent fluorophores added to the system[5,6]. Whilst
this approach overcomes the spatial limitation of the
rent measurement approach, which will only give an ave
determination of temperature, the necessity to image
rophore emission from a reaction medium and their rem
from products would be a severe disadvantage for che
synthesis applications.

In this paper, we describe an electrical conductivity (
method for in situ temperature monitoring within a go
coated capillary flow reactor under microwave irradiat
The method has been used to measure the microwave
ing characteristics of different solvents as a function of
rate within a capillary flow reactor and to monitor therm
E-mail address:s.j.haswell@hull.ac.uk (S.J. Haswell). conditions during a reaction. To illustrate the relevance of

925-4005/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.snb.2004.07.013
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Fig. 1. Schematic diagram of the capillary flow reactor fitted within the
microwave cavity showing the positions of the IR temperature sensor and
the electrodes 1–4 used to monitor the different temperature values.

this proposed methodology, the alkylation of 2-pyridone with
benzyl bromide has been used.

2. Experimental

The experimental set-up is shown schematically inFig. 1.
The flow reactor consisted of a U-shaped glass capillary of in-
ner diameter 800�m, outer diameter 1.2 mm and total length
138 mm. The capillary was mounted within the cavity of a
Discover microwave system from CEM. This provided mi-
crowave radiation of 2.45 GHz and total power in the range
0–300 W, which was incident on the lower section of the
U-shaped capillary. The microwave cavity was fitted with
an infrared sensor, which was aligned so as to monitor the
temperature of the external surface of the lower part of the
U-shaped capillary. The capillary was connected via two,
two-way connectors and PTFE tubing to an external syringe
pump (Harvard, model PHD 2000). The two-way connec-
tors were fitted with two Pt wire electrodes (0.4 mm outer
diameter), which are labelled 1–4 inFig. 1. Measurement
of the conductivity between electrodes 1 and 2 was used
to determine the temperature of the inlet tube section, be-
tween electrodes 3 and 4 for the outlet section and between
electrodes 2 and 4 for the average temperature of the main
U e dif-
f Kerr
6 and
1 val-
u own
c g to
t ts of
t 1%
a cord-
i of the
c

cor-
r were

measured as a function of temperature using a PTI-18 con-
ductivity meter fitted with a conventional dip-cell. Solutions
were thermostatted to±0.1◦C using a Grant LTD6 circula-
tory thermostat.

Water was purified by reverse osmosis and by pas-
sage through a Milli-Q reagent water system. The solvents
dimethylformamide (DMF, Lancaster, 99%) andN-methyl
formamide (NMF, Lancaster, 99%), NaBr (Fisher Chemi-
cals, 99%) and KCl (BDH, AnalaR grade) were used without
further purification. Immediately prior to microwave heating
experiments, test solutions were degassed by briefly boiling
under reduced pressure with ultrasound treatment. This was
done to avoid bubble formation within the capillary.

The outer surface of the capillaries were coated with metal
using a SEMPREP 2 Sputter Coater (Nanotech Ltd.). The ar-
eas not requiring coating were masked off with tape before
placing on a water-cooled table within the vacuum chamber.
Metal was sputtered in an atmosphere of argon at a pressure
of 200 mTorr and an HT current of 20 mA being applied to
the metal target. These settings were kept constant for all
the coatings described here. The coating thickness was con-
trolled at the time of sputtering; for example, 90 s sputtering
was estimated to yield a thickness of 10–12 nm and 180 s
produced a thickness of 20–22 nm. Both sides of the capil-
laries were coated by sputtering once, turning the capillary
o

M,
L 5 M,
L aBr
a 000)
t adi-
a ting
z d by
t g.
T glass
v do-
d an-
d ove
u ane
( with
d ,
9 and
a C-
1 m
l was
6
c
r ld
f
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e mi-
c n the
o

-shaped section. The conductance values between th
erent electrode pairs were measured using a Wayne
430A precision component analyser operating at 40 Hz
0 V. Conductance values were converted to conductivity
es using calibration measurements (with solutions of kn
onductivity values) of the cell constants correspondin
he different capillary sections. Repeated measuremen
he cell constants were found to be reproducible within
nd showed good agreement with values calculated ac

ng to the measured lengths and cross-sectional areas
apillary sections.

In order to convert measured conductivities into the
esponding temperatures, the solution conductivities
ver and sputtering a second time.
For the alkyltion reaction, 2-pyridone solutions (0.5

ancaster, 98+%) was premixed with benzyl bromide (0.
ancaster, 99%) in a DMF solution containing 0.01N N
nd pumped using a syringe pump (Harvard PHD 2

hrough the U-capillary reactor heated by microwave irr
tion. The residence times of the solutions within the hea
one defined by the gold coating were directly measure
iming the movement of the liquid front during first fillin
he products from each reaction run were collected in a
ial for a period of 90 s, weighed and a known amount of
ecane (10�l, Aldrich, 99+%) was added as an internal st
ard. Samples were treated with distilled water to rem
nreacted 2-pyridone and extracted with dichlorometh
Fisher, AR). The extract was then washed three times
istilled water, collected and dried over MgSO4 (Fisher
9+%). Samples were then analysed for benzyl bromide
lkylation product using a GC instrument (Shimadzu G
7A) equipped with a capillary column (CP SIL 8 CB, 30

ength, Chrompack). Pressure of carrier gas (helium)
00 kPa and injector temperature was set to 280◦C. The GC
olumn temperature was held initially at 70◦C for 4 min,
amped at 20◦C/min to reach 240◦C, which was then he
or 12 min.

. Results and discussion

Initial measurements were made to establish a suitabl
rowave absorbent film that could easily be deposited o
utside surface of the glass capillary reactor. FromTable 1, it
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Table 1
Temperatures measured on the external capillary surface using the IR sensor
for different metal films under MW irradiation

Metal Sensor temperature (◦C) Resistivity (�� cm)

Carbon 66 1375
Platinum 98 10.6
Gold >200 2.3

NMF is used as solvent and flow rate 0.1 ml min−1. The thicknesses of metal
films were all 20 nm. MW power was 50 W and heating time 20 s.

can be seen that, for the same MW power and film thickness,
the measured temperatures based on the integrated instru-
ment IR sensor were in the order Au > Pt > C. This ranking
sequence correlates with the electrical conductivities of the
materials, i.e., the more conducting the better the MW ab-
sorption and the higher the temperature reached. Therefore,
gold was selected for producing heating patch films.

Plots of conductivity versus temperature for 0.01 M NaBr
solutions in water, DMF and NMF are shown inFig. 2. Over
this temperature range, the relationship is virtually linear and
the fitted values of slopes and intercepts of the plots were used
to convert measured conductivity values to the corresponding
temperatures.

Conductance values recorded for a liquid flowing in the
capillary during microwave irradiation were converted to
conductivity (using the measured cell constants) and then to
temperature (using the calibration data ofFig. 2). As noted
previously, conductance measured between electrodes 1 and
2 gives the inlet temperature, electrodes 3 and 4 give the out-
let temperature and electrodes 2 and 4 provide the average
liquid temperature over the length of capillary within the mi-
crowave cavity. An additional temperature value provided by
the IR sensor reading corresponds to the temperature on the
external surface of the lowest part of the capillary.

Steady-state values of the four different temperatures are
p a-
t er
w of the

F aBr
s

Fig. 3. Plots of temperature (average, outlet, inlet and sensor) vs. liquid
flow rate for (a) DMF, (b) water and (c) NMF in uncoated capillaries with a
microwave power of 50 W.

different plots can be explained as follows. Firstly, the in-
let temperature is unaffected by the microwaves and simply
remains constant at the external, ambient temperature. The
temperature of the outlet is low at slow flow rates as the liquid
cools in the long travel time between the microwave irradia-
tion zone and the outlet. Increasing the flow rate corresponds
to less time for cooling and also less exposure time to the
incident microwaves. The net result of these competing ef-
fects is that the outlet temperature passes through a maximum
value with increasing flow rate. The average temperature
lotted versus liquid flow rate for 0.01 M NaBr in DMF, w
er and NMF inFig. 3(a–c). The incident microwave pow
as 50 W. For each solvent, the characteristic shapes

ig. 2. Calibration plots of conductivity vs. temperature for 10 mM N
olutions in the three solvents.
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(i.e., the average over the capillary length between elec-
trodes 2 and 4) behaves similarly except that the flow rate
corresponding to the maximum temperature is shifted. The
sensor temperature, measured in the microwave zone, de-
creases monotonically with increasing flow rate due to the
decrease in exposure time of the flowing liquid to the incident
microwaves.

For fixed sample geometry and microwave incident in-
tensity, the heating rate of a sample depends on the density
ρ, heat capacityCp and the dielectric lossε′′ of the sample
according to[7]:

dT

dt
∝ ε′′

ρCp
(1)

For the three solvents shown inFig. 3, the densities and
heat capacities are similar and hence, to a first approxima-
tion, the relative heating rates are proportional toε′′. For a
microwave frequency of 2.45 GHz, the values ofε′′ at room
temperature are approximately 6, 9 and 75 for DMF, water
and NMF, respectively[8–10]. FromFig. 3, the correspond-
ing values of maximum temperature rise (�Tmax is taken to
be the maximum average temperature minus the inlet tem-
perature) are 8, 12 and 37◦C, respectively. It can be seen
that the microwave heating correlates withε′′, highly polar
solvents such as NMF couple strongly with microwaves and
h MF.
H ich
a ting
( wer)
i ata
o W
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t
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t e
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Fig. 4. Temperature (average, outlet, inlet and sensor) vs. liquid flow rate
for NMF with microwave power of 10 W in a capillary coated with a gold
film of 20 nm thickness and 50 mm length.

non-polar solvents showing virtually no microwave absorp-
tion at 2.45 GHz, the heating efficiency will be zero.

Microwave absorption efficiency can be greatly improved
by coating the outer surface of the capillary with gold.Fig. 4
shows the temperature plots versus flow rate for NMF within
a capillary coated with gold (20 nm thickness, coated length
50 mm) with a microwave power of 10 W. In the absence of
gold coating (Fig. 3a), the�Tmaxis approximately 37◦C for a
microwave power of 50 W. FromFig. 4, the�Tmax is approx-
imately 47◦C for a microwave power of only 10 W. From the
measured temperature value, the gold coating has increased
the microwave power absorption efficiency to approximately
10%.

The alkylation reaction of 2-pyridone with benzyl bromide
was carried out to domenstrate the suitability of the proposed
methodology to monitor online the reaction temperature un-
der microwave heating in a continuous flow capillary reactor.
FromTable 2it can be seen that whilst no product was de-
tected at room temperature, under the same flow conditions
and with microwave irradiation, with and without the pres-
ence of a gold film, product was produced. Measurement of
the average reaction temperature, determined by the conduc-
tivity measured between electrodes 2 and 4, was found to give
eating much more than weakly polar solvents such as D
owever, it is important to note that even for solvents, wh
bsorb microwaves very strongly, the efficiency of the hea
i.e., the power absorbed relative to the total incident po
n this type of micro-flow system is very low. From the d
f Fig. 3for NMF, a maximum of only approximately 0.5

s converted into heat in the liquid, i.e., only about 1% of
otal microwave power.

Higher temperatures can be achieved by using highe
rowave powers. For the relatively-weakly absorbing D
he�Tmax increases from 8◦C at 50 W incident microwav
ower to 16◦C at 100 W and 21◦C at 150 W. For the dif

erent powers, it remains true that the overall efficienc
onverting the microwave energy to heat is lower for D
han for the stronger absorbing NMF (discussed above)

able 2
lkylation of 2-pyridone with benzyl bromide in a continuous flow cap

eating method Flow (ml min−1)/
residence time (s)

MW
tem

T 0.05/48 0/2
W heating, no Au coating 0.05/48 2
W heating plus gold coatinga 0.05/48 22

eaction mixture consisting of 2-pyridone (0.5 M), benzyl bromide (0.5
eactor.
a Gold coating was of 10 nm thickness and 5 cm length.
actor under microwave (MW) heating

(W)/IR sensor
re (◦C)

Measured temperature (◦C) Yield (%)

Outlet Average

22 22 0
91 70 19

92 70 29

NaBr (0.01 M) in a DMF solvent was pumped continuously through thary
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a similar value to that obtained using the IR sensor probably
the external capillary surface. However, the outlet tempera-
ture, determined by the conductivity measured between elec-
trodes 3 and 4, indicated that the actual temperatue within the
reaction zone inside the capillary was higher than determined
by the IR sensor or the average conductivity measurements.
The presence of a localised hot zone within the capillary
reactor, particularly when using the gold film, is confirmed
by a higher yield of product even when no apparent differ-
ence in the average (sensor and current) was observed due to
significant thermal loss between the reaction zone and outlet.
Whilst this result demonstrates the limitation of the proposed
technique to obtain spatial measuerements, the technique was
found to be comparable in usefulness to the current IR sen-
sor and offered the opportunity to monitor an output value
within the capillary reactor, which is not curently possible
with existing methodology.

4. Conclusions

Conductivity measurements of electrolyte solutions can
be used to monitor the mean temperatures of the solvent and
reaction matrix within different sections of a capillary under
microwave irradiation. The temperatures achievable are de-
pendent on the microwave power, the flow rate and the mag-
n for
s GHz
m yp-
i n
e the
e can
b cies,
a nts in
t
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Abstract—Through incorporating a series of polymer-supported acid catalysts into a miniaturised EOF-based flow reactor, we demonstrate a
clean and efficient technique for the protection of aldehydes as their respective dimethyl acetal. In addition, we also report the acid catalysed
deacetalisation of 11 dimethyl acetals to their respective aldehyde. In all cases, the compounds described are obtained in high yield (O95%)
and excellent purity (O99%) without the need for further product purification.
q 2005 Elsevier Ltd. All rights reserved.
1. Introduction

As a result of increasing environmental pressure, the
chemical industry as a whole are exploring many routes to
improve both the cleanliness and efficiency of many
synthetic processes. One such approach is the application
of micro reaction technology, which enables reactions to be
performed more rapidly, efficiently and selectively than
traditional batch-scale reactions. Although many groups
have demonstrated the advantages of synthesising small
organic compounds in micro fabricated devices, few have
addressed the problems associated with purification of
reaction products prepared using continuous flow systems.1

In order to address this, we recently investigated the use of
silica-supported catalysts in a micro fabricated device
whereby analytically pure products were synthesised.2

Compared to solid-phase techniques,3 where reaction
intermediates and products cannot be fully characterised
until they are cleaved from the support, the use of solid-
supported reagents is advantageous as reaction products
remain in solution thus enabling the reaction to be
monitored with time.4 Additionally, as the supported
reagent can be easily removed from the reaction mixture,
excess amounts can be employed in order to drive the
reaction to completion. Although solid-supported reagents
have many advantages over their solution phase counter-
parts, one main limitation is the support degradation that
occurs as a result of stirring or shaking. Therefore by
0040–4020/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tet.2005.03.082

Keywords: Acetals; Micro reactor; Deprotection.
* Corresponding author. Tel.: C44 1482 465471; fax: C44 1482 466416;

e-mail: p.watts@hull.ac.uk
performing reactions in continuous flow reactors, such as
the one described herein, the support material undergoes
minimal physical degradation, resulting in extended reagent
lifetime and system reproducibility.5–7

Automation of this technique would therefore, enable the
high-throughput synthesis of analytically pure compounds,
suitable for the fine chemical industry or combinatorial
applications. With these factors in mind, we propose that by
incorporating a series of solid-supported acid catalysts into
miniaturised flow reactors, problems such as corrosion of
reactor vessels, generation of acidic waste and the inability
to recover/recycle the catalyst can be addressed. In order to
demonstrate the advantages associated with the proposed
technique, the acid catalysed synthesis of dimethyl acetals
and their deprotection was investigated.
1.1. Acid catalysed acetalisation

Acetals are one of the most common carbonyl protecting
groups, prepared by the treatment of aldehydes (or ketones)
with alcohols (or orthoformates) in the presence of an acid
catalyst (Scheme 1). Although triflic acid and p-toluene-
sulfonic acid are generally used, other catalysts include
ferric chloride,8 ammonium nitrate9 rhodium(III) com-
plexes10 and ethanolic hydrogen chloride.11 In addition,
numerous examples of solid-supported acid catalysts have
been applied to the synthesis of acetals, these include,
Amberlite resin,12 Amberlyst-15 (dry),13 polymer-sup-
ported lanthanides,14 and Nafion-H.15,16 As Scheme 1
illustrates, hydrolysis of an acetal with an aqueous acid,
affords the respective carbonyl compound. Consequently, as
Tetrahedron 61 (2005) 5209–5217



Scheme 1. Schematic illustrating the acid catalysed acetalisation of an aldehyde.

C. Wiles et al. / Tetrahedron 61 (2005) 5209–52175210
neither the forward or reverse reaction is base catalysed,
acetals are frequently employed as protecting groups.
Figure 2. Schematic illustrating the principle of electroosmotic flow for a
1.2. How are reactions performed?

To conduct a reaction, the starting materials are passed over
a solid-supported reagent or catalyst and the reaction
products are collected at the outlet (Fig. 1). The reaction
mixture is then analysed by GC–MS whereby conversion of
starting material to product is determined. If any residual
starting material is observed the reaction is repeated, this
time passing the reagents over the support at a slower flow
rate, thus having the effect of increasing the reagents
residence time within the reactor. When successfully
optimised, the devices are operated continuously in order
to prepare sufficient quantity of product for analysis by
NMR spectroscopy and if required, elemental analysis.
Using this approach, work-up is extremely simple, consist-
ing of concentrating the reaction product in vacuo followed
by analysis. By optimising the flow rate, and hence
residence time within the reactor, it is possible to obtain
complete conversion of starting materials to product in a
single pass through the device (Scheme 3).
Figure 1. Schematic illustrating the use of solid-supported catalysts in a
continuous flow reactor.

negatively charged glass surface.

Equation 1. Determination of electroosmotic flow (EOF) velocity.24
1.3. Pumping mechanism

Although examples of pressure-driven micro fluidic systems
have featured widely in the literature,17 owing to its
simplicity, the evaluation of polymer-supported acid
catalysts was carried out using electroosmotic flow (EOF).
The advantages of using this approach are, it is simple to
use, requires no mechanical parts, enables reproducible
pulse-free flow, generates minimal back-pressure, can alter
both the direction and magnitude of flow and can be easily
automated. Of the many positive features associated with
the use of EOF, in this case, the generation of minimal
backpressure and reproducible flow are the most important.
1.4. Principle of electroosmotic flow

When an ionisable surface such as glass,18 quartz19 or
teflon,20 comes in contact with a suitable solvent system, the
surface is neutralised with a diffuse layer of positive ions
from the bulk liquid. A proportion of the counterions are
adsorbed onto the surface resulting in an immobile layer and
the remaining ions form a transient double layer (Fig. 2).
Application of an electric field causes the double layer to
move towards the oppositely charged electrode, inducing
bulk flow within the channel/capillary.
As electrokinetic flow is a surface phenomenon, the
physical properties of the fluid have a direct bearing on
the flow rates observed (Eq. 1), consequently the technique
is typically employed for polar, low viscosity solvent
systems. In addition, in order to preserve the diffuse double
layer, the solutions must be OpH 2. Below this, no EOF is
observed as an immobile layer replaces the diffuse positive
ions. Consequently, performing reactions that require acidic
reagents can be problematic, in order circumvent this
problem we recently demonstrated an alternative approach
to the synthesis of esters21 and McCreedy et al.22 reported
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the use of a sulphated zirconia catalyst for the dehydration
of alcohols. More recently, Crocker et al.23 reported the use
of amine functionalised electrokinetic micro pumps for the
mobilisation of acidic solutions (0.1% TFA in H2O/MeCN)
whereby nl minK1 flow rates were obtained. Therefore, by
incorporating polymer-supported acids into micro fabri-
cated devices, we are able to conduct reactions that
otherwise could not be performed efficiently within EOF-
based devices.
2. Results and discussion

2.1. Synthesis of dimethyl acetals using Amberlyst-15

Amberlyst-15 (dry) 1 is a sulfonic acid based cation
exchange resin that has been widely employed for the
preparation of acetals, ketals, tetrahydropyranyl ethers and
enol ethers.25 Using the synthesis of dimethoxymethyl
benzene 2 as a model reaction, we investigated the use of
Amberlyst-15 1 in a micro fabricated device (Scheme 2).
Scheme 2. General scheme illustrating the acid catalysed synthesis of
dimethoxymethyl benzene 2 using Amberlyst-15 1.

Scheme 3. Deacetalisation of dimethoxymethyl benzene 2 using
Amberlyst-15 1.

Figure 4. Schematic illustrating the manifold set-up used for the synthesis
of dimethyl acetal 2 in an EOF-based micro reactor.

Table 1. Illustration of system stability over 15 runs for the synthesis of
dimethoxymethyl benzene 2

Run No. Conversion (%)

1 100.0
2 99.58
3 99.68
4 99.83
5 99.87
6 99.69
7 99.65
8 99.75
9 99.70
10 99.74
11 99.71
12 99.63
13 99.90
14 100.0
Using EOF, the starting materials are passed over
Amberlyst-15 1, the reaction mixture is then collected at
the outlet and analysed by GC–MS. As Figure 3 illustrates,
Amberlyst-15 1 (dry) (2.5 mg, 1.05!10K2 mmol) was
packed into a borosilicate glass capillary (500 mm!
3.0 cm) and held in place using micro porous silica frits.26

The capillary was then primed with MeCN to remove any
Figure 3. Schematic of the reaction set-up used for the evaluation of the
polymer-supported acid catalysts.
air, ensuring the formation of a complete circuit, and the
capillary attached to two glass reservoirs. The reagents were
manipulated through the device via the application of a
voltage to the platinum electrodes placed in the reagent
reservoirs. As Figure 4 illustrates, benzaldehyde 3 and
trimethylorthoformate 4 (40 ml, 1.0 and 2.0 M, respectively)
in MeCN was placed in reservoir A and MeCN in reservoir
B (40 ml). Application of 333 and 0 V cmK1 respectively,
resulted in the mobilisation of the reaction mixture at a flow
rate of 1.75 ml minK1. After 10 min, the reaction products
were collected from reservoir B, diluted with MeCN, and
analysed by GC–MS, whereby 100% conversion to
dimethoxymethyl benzene 2 was obtained with respect to
residual benzaldehyde 3. In order to demonstrate both
system reproducibility and the continuous synthesis of
dimethoxymethyl benzene 2, the reaction was repeated a
further 14 times (2.5 h), whereby conversions of O99.6%
were obtained (Table 1). After analysis by GC–MS, all
reaction products were collected and concentrated in vacuo,
to afford dimethoxymethyl benzene 2 as a pale yellow oil
(0.025 g, 96.6%). In order to confirm product purity, the
crude reaction mixture was analysed by NMR spectroscopy,
whereby no residual aldehyde was observed.
15 99.80

MeanZ99.8%, % RSDZ0.13
In summary, we have synthesized 0.165 mmol of
dimethoxymethyl benzene 2 using 1.05!10K2 mmol of
Amberlyst-15 1. This result not only demonstrates the
successful incorporation of supported acids into an EOF-
based device, but also the ability to recycle the supported
reagent (O16 times) without any loss of activity. Although
the activity of Amberlyst-15 1 is also retained in batch, this
approach is advantageous as macroreticular resins are
difficult to recycle due to support degradation observed as
a result of mechanical agitation; therefore limiting the
number of times they can be recycled. In order to confirm
that the observed reaction was due to the presence of a solid-
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supported acid catalyst and not as a result of conducting the
reaction in an electric field, the reaction was repeated in the
absence of a catalyst.

Again, using the experimental set-up illustrated in Figure 3,
unfunctionalised polystyrene beads (2% cross-linked with
divinylbenzene) were packed into the device. A mixture of
benzaldehyde 3 and trimethylorthoformate 4 (40 ml, 1.0 and
2.5 M, respectively) in MeCN was placed in reservoir A
and MeCN in reservoir B (40 ml). Application of 100 and
Table 2. Summary of the conversions obtained for the synthesis of dimethyl ace

Product Flow rate (ml minK1) Conversiona (%)

2

1.75 99.77

5

1.00 99.92

6

1.60 99.78

7

2.00 99.64

8

1.40 99.83

9

0.60 99.86

10

0.35 99.70

11

2.00 99.88

12

0.50 99.84

13

1.30 99.65

a R15 replicates were performed for each compound.
0 V cmK1, respectively, resulted in the mobilisation of the
reaction mixture at a flow rate of 1.75 ml minK1.27 After
10 min, the reaction products from reservoir B were diluted
with MeCN and analysed by GC–MS, whereby no acetal
formation was detected. Having confirmed that the reaction
was due to the catalytic activity of the Amberlyst-15 1, we
went on to investigate generality of the technique, preparing
dimethyl acetals 5–13 (Table 2). In all cases, no measurable
by-products were observed by GC–MS or NMR
spectroscopy.
tals 2,5–13

RSD (%) Yield (%)

0.13 96.6

0.22 96.8

0.15 98.0

0.90 97.5

0.26 95.2

0.08 95.3

0.15 98.13

0.93 97.5

0.24 98.4

0.29 95.4



Table 4. Summary of the conversions obtained for the synthesis of dimethyl
acetals using polymer supported p-toluenesulfonic acid 15

Product Flow rate
(ml minK1)

Conversiona

(%)
RSD (%) Yield (%)

2 1.10 99.80 0.20 96.8
5 0.30 99.86 0.27 96.0
6 1.40 99.85 0.19 97.6
7 0.79 99.93 0.21 95.9
8 1.00 99.77 0.21 98.3
9 0.70 99.74 0.12 95.8
10 0.60 99.64 0.25 95.7
11 5.00 99.87 0.17 97.8
12 1.00 99.85 0.15 94.9
13 1.70 99.70 0.11 98.5

a R15 replicates were performed for each compound.
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2.2. Other supported acid catalysts

Having demonstrated the successful incorporation of
Amberlyst 15 1 into an EOF-based miniaturised flow
reactor, the investigation was extended to the use of
ytterbium (III) polystyrylsulfonate 14 and polymer
supported p-toluenesulfonic acid 15.

Using the aforementioned methodology, 2.5 mg of
ytterbium (III) polystyrylsulfonate 14 (2.0!10K3 mmol)
was packed into a micro fabricated device. Again, a solution
of benzaldehyde 3 and trimethylorthoformate 4 (40 ml, 1.0
and 2.5 M, respectively) in MeCN was placed in reservoir A
and MeCN in reservoir B (40 ml). Application of 333 and
0 V cmK1 respectively, resulted in mobilisation of the
reaction mixture at 0.40 ml minK1 (Table 3). After 10 min,
the reaction products were collected, diluted with MeCN
and analysed by GC–MS; whereby 99.7% conversion to
dimethoxymethyl benzene 2 was observed. The reaction
was repeated a further 14 times, whereby 0.010 g (94.7%) of
dimethoxymethyl benzene 2 was obtained. Due to the
slower flow rate observed with catalyst 14 cf. Amberlyst-15
1, less product is prepared over the same period of time
(0.010 g cf. 0.025 g) however the catalyst is recycled O32
times. The catalyst was subsequently evaluated for the
synthesis of dimethyl acetals 2, 5–13 whereby conversions
of greater than 99.7% and yields greater than 94.9% were
obtained (Table 3).
Table 3. Summary of the conversions obtained for the synthesis of dimethyl
acetals using ytterbium (III) polystyrylsulfonate resin 14

Product Flow rate
(ml min-1)

Conversiona

(%)
RSD (%) Yield (%)

2 0.40 99.72 0.13 94.7
5 0.40 99.96 0.06 98.8
6 0.28 99.97 0.08 96.3
7 0.52 99.92 0.05 96.8
8 0.40 99.87 0.15 97.7
9 0.40 99.72 0.06 97.2
10 0.70 99.88 0.03 98.7
11 0.55 99.83 0.08 95.5
12 0.95 99.83 0.12 98.6
13 0.90 99.64 0.14 96.1

a R15 replicates were performed for each compound.
Finally, polymer-supported p-toluenesulfonic acid 15
(2.5 mg, 5.3!10K3 mmol) was evaluated, whereby again
conversions of greater than 99.7% with respect to residual
aldehyde were obtained for dimethyl acetals 2, 5 and 13
(Table 4).

2.3. Deacetalisation

One of the most important aspects of protecting a functional
group is the ability to cleanly and efficiently remove it
without affecting other moieties within the molecule. As
previously mentioned, the hydrolysis of acetals, to afford
their respective carbonyl derivative, is promoted in the
presence of aqueous acids such as hydrochloric,28 sulfuric,29

acetic30 and p-toluenesulfonic acid.31 However, more
recently, supported acids such as Amberlyst-15 1 have
been reported as efficient catalysts for the transformation
whereby excellent yields were obtained.32 In addition,
Amberlyst-15 1 has been shown to hydrolyse isomerisable
acetals with no detectable epimerisation compared to 20%
when aqueous HCl was employed. With this in mind, the
investigation was extended to the deacetalisation of a series
of dimethyl acetals to afford their respective aldehyde in the
presence of Amberlyst-15 1.

In order to investigate the deacetalisation, a solution of
dimethoxymethyl benzene 2 (40 ml, 1.0 M) in MeCN was
placed in reservoir A and MeCN in reservoir B (40 ml).
Application of 167 and 0 V cmK1 respectively, resulted in
mobilisation of the reaction mixture through the packed-bed
at 0.40 ml minK1 (Table 5). After 10 min the reaction
products were collected, diluted with MeCN and analysed
by GC–MS; whereby 100% conversion to benzaldehyde 3
was observed with respect to residual dimethoxymethyl
benzene 2. The reaction was repeated a further 14 times,
whereby 0.011 g (94.8%) of benzaldehyde 3 was obtained.
The procedure was subsequently repeated for the remaining
nine dimethyl acetals, affording the respective aldehydes in
greater than 99.7% conversion and 94.8% yield (Table 5).

In addition to demonstrating the deacetalisation of acetals 2,
5–13, we extended the investigation to look at the in situ
regeneration of volatile reagents (Scheme 4). Using
commercially available bromoacetaldehyde dimethyl acetal
25, the synthesis of bromoacetaldehyde 26 was investigated
using Amberlyst-15 1 in an EOF-based flow reactor.
Bromoacetaldehyde dimethyl acetal 25 (40 ml, 1.0 M) in
MeCN was placed in reservoir A and MeCN (40 ml)
in reservoir B. Application of 167 V cmK1 resulted in
mobilisation of bromoacetaldehyde dimethyl acetal 25 at a
flow rate of 0.25 ml minK1. After 10 min, the reaction
mixture was analysed by GC–MS, whereby 100% conver-
sion of dimethyl acetal 25 to bromoacetaldehyde 26 was
obtained. Compared to the standard batch approach, this
technique is advantageous as it enables us to regenerate
what is a volatile compound at the point of use, therefore
enabling more efficient reactions to be performed.
3. Conclusions

Compared to standard batch techniques, the approach
described herein, is advantageous as supported reagents
can be recycled without the need for filtration, resulting in
more consistent results between reactions. Also, the absence
of stirring or shaking greatly reduces mechanical degra-
dation of the reagent, enabling the catalyst to be employed



Table 5. Summary of the conversions obtained for the deacetalisation of dimethyl acetals 2, 5–13 and 25 using Amberlyst-15 1

Product Flow rate (ml minK1) Conversiona (%) RSD (%) Yield (%)

3

0.50 100.0 0.00 94.8

16

1.00 99.85 0.10 99.5

17

0.65 100.0 0.00 99.3

18

0.80 99.93 0.03 99.0

19

0.80 99.71 0.08 97.2

20

0.50 99.81 0.01 98.6

21

0.30 99.93 0.03 99.6

22

0.53 100.0 0.00 99.7

23

0.50 99.85 0.19 97.7

24

0.55 99.99 0.02 98.5

26

0.25 100.0 0.00 —

a R15 replicates were performed for each compound.

Scheme 4. Synthesis of bromoacetaldehyde 26 using A-15 1.
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for longer. In addition, the formation of localised concen-
tration gradients enable reactions to be driven to completion
without the need to employ large quantities of supported
catalyst (typically !2.5 mg is used). Consequently, reac-
tion conditions can be optimised rapidly enabling small
quantities of analytically pure compounds to be prepared in
min; alternatively, larger quantities of materials can be
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synthesised by simply operating numerous reactors in
parallel.33 Applying the methodology described herein,
further studies are currently underway within our laboratories
to extend both the type of reagent and support employed,
enabling more complex syntheses to be evaluated.
4. Experimental

All solvents were purchased as puriss grade (R99.5%) over
molecular sieves (H2O!0.005%) from Fluka and unless
otherwise stated reagents purchased from Sigma-Aldrich
and Lancaster were used as received. Ytterbium (III)
polystyrylsulfonate resin 14 (0.8 mmol gK1) was purchased
from Novabiochem. Ytterbium (III) polystyryl sulfonate
resin 14, polymer bound p-toluenesulfonic acid 15
(2.0 mmol gK1) and Amberlyst-15 1 (4.2 mmol gK1) were
ground and sieved (Endcotts) to afford 38 and 75 mm
particles. All NMR spectra were recorded as solutions in
deuteriochloroform (CDCl3) using tetramethylsilane (TMS)
as an internal standard. The spectra were recorded on a Joel
GX400 spectrometer and the chemicals shifts given in parts
per million (ppm) with coupling constants given in Hertz
(Hz). The following abbreviations are used to report NMR
data; sZsinglet, dZ doublet, tZtriplet, br sZbroad singlet,
mZmultiplet and C0Zquaternary carbon. Elemental
analyses were performed using a Fisons Carlo Erba
EA1108 CHN analyser. Gas Chromatography–mass spec-
trometry (GC–MS) was performed using a Varian GC (CP-
3800) coupled to a Varian MS (Saturn 2000) with a CP-Sil 8
(30 m) column (Zebron ZB-5, Phenomenex) and ultra high
purity helium (99.999%, Energas) carrier gas. Samples were
analysed using the following method; injector temperature
250 8C, helium flow rate 1.0 ml minK1, oven temperature
50 8C for 4 min and then ramped to 270 8C at 30 8C minK1,
with a 3.0 min filament delay.

4.1. Micro-scale methodology

The reactions described herein were carried out using a
single capillary device, as illustrated in Figure 3, with
dimensions of 500 mm (i.d.)!3.0 cm (length). To hold the
polymer-supported reagent in place, micro porous silica frits
were placed at either end of the capillary.26 To mobilise
reagents by EOF, platinum electrodes (0.5 mm o.d.!
2.5 cm) were placed within the reagent reservoirs and
voltages applied using a Paragon 3B high-voltage power
supply (HVPS), capable of applying 0–1000 V to four pairs
of outputs (Kingfield Electronics). Automation of the HVPS
was achieved using an in-house LabVIEWe program. To
enable the results obtained to be achieved using devices of
different capillary dimensions, voltages are reported as
applied fields (V cmK1) that is voltage/capillary length. To
monitor the progress of the reaction, experiments were
conducted over a period of 10 min, after, which the contents
of the product reservoir was analysed by GC–MS.
Comparison of the amount of product with respect to
residual aldehyde enabled the percentage conversion to be
determined. In order to obtain NMR data of the compounds
synthesised in the flow system, the reactor was operated
continuously for 2.5–3.5 h (depending on the observed flow
rate). After, which the reaction products were collected,
concentrated in vacuo, dissolved in CDCl3/TMS and
analysed by NMR spectroscopy. In some cases, the products
were subjected to elemental analysis.

4.1.1. Dimethoxymethyl benzene 2.34 (0.025 g, 96.6%) as
a pale yellow oil; dH (400 MHz, CDCl3) 3.33 (6H, s, 2!
OCH3), 5.40 (1H, s, CH), 7.37 (3H, m, 3!Ar) and 7.45 (2H,
m, 2!Ar); dC (100 MHz, CDCl3) 52.7 (OCH3), 103.2 (CH),
126.7 (2!CH), 128.2 (2!CH), 128.5 (CH) and 134.5 (C0);
153 (MCC1, 2%), 152 (3), 151 (5), 122 (10), 121 (100), 77
(30) and 51 (10); GC–MS retention time RTZ8.03 min.

4.1.2. 1-Bromo-4-dimethoxymethyl benzene 5.35

(0.034 g, 96.8%) as a colourless oil; dH (400 MHz,
CDCl3) 3.49 (6H, s, 2!OCH3), 5.30 (1H, s, CH), 7.69
(2H, d, JZ8.7 Hz, 2!Ar) and 7.76 (2H, d, JZ8.7 Hz, 2!
Ar); dC (100 MHz, CDCl3) 50.9 (2!OCH3), 102.3 (CH),
129.8 (C0Br), 131.0 (2!CH), 132.5 (2!CH) and 135.1
(C0); 232 (MCC1, 5%), 201 (100), 200 (90) and 77 (15);
GC–MS retention time RTZ8.78 min.

4.1.3. 1-Chloro-4-dimethoxymethyl benzene 6.35

(0.044 g, 98.0%) as a pale yellow oil; dH (400 MHz,
CDCl3) 3.31 (6H, s, 2!OCH3), 5.37 (1H, s, CH), 7.34 (2H,
d, JZ8.7 Hz, 2!Ar) and 7.40 (2H, d, JZ8.7 Hz, 2!Ar);
dC (100 MHz, CDCl3) 52.6 (2!OCH3), 102.3 (CH), 128.2
(2!CH), 129.5 (2!CH), 134.3 (C0Cl) and 136.7 (C0); 187
(MCC1, 2%), 185 (3), 157 (30), 165 (20), 155 (100) and 75
(20); GC–MS retention time RTZ9.05 min.

4.1.4. 1-Cyano-4-dimethoxymethyl benzene 7. (0.042 g,
97.5%) as a pale yellow oil (Found C, 68.00; H, 6.11; N,
7.88. C10H11O2N requires C, 67.78; H, 6.26; N, 7.90%); dH

(400 MHz, CDCl3) 3.33 (6H, s, 2!OCH3), 5.45 (1H, s,
CH), 7.58 (2H, d, JZ8.3 Hz, 2!Ar) and 7.67 (2H, d, JZ
8.3 Hz, 2!Ar); dC (100 MHz, CDCl3) 52.7 (2!OCH3),
101.8 (CH), 117.7 (CN), 118.7 (C0CN), 127.6 (2!CH),
132.1 (2!CH) and 143.2 (C0); 178 (MCC1, 2%), 177 (2),
176 (5), 146 (100) and 75 (10); GC–MS retention time RTZ
9.66 min.

4.1.5. 2-Dimethoxymethyl naphthalene 8. (0.080 g,
95.2%) as a pale yellow oil (Found C, 77.21; H, 7.16;
C13H14O2 requires C, 77.20; H, 6.98%); dH (400 MHz,
CDCl3) 3.37 (6H, s, 2!OCH3), 5.56 (1H, s, CH), 7.50 (2H,
m, 2!Ar), 7.61 (2H, m, 2!Ar), 7.94 (2H, m, 2!Ar) and
8.34 (1H, m, Ar); dC (100 MHz, CDCl3) 52.8 (2!OCH3),
103.2 (CH), 124.4 (CH), 126.1 (2!CH), 126.2 (CH), 127.7
(CH), 128.1 (CH), 128.3 (CH), 133.4 (C0), 133.5 (C0) and
135.5 (C0); 203 (MCC1, 3%), 201 (5), 172 (20), 171 (100),
126 (5) and 75 (10); GC–MS retention time RTZ10.70 min.

4.1.6. 4-Dimethoxymethylbenzoic acid methyl ester 9.36

(0.018 g, 95.3%) as a pale yellow oil; dH (400 MHz, CDCl3)
3.33 (6H, s, 2!OCH3), 3.90 (3H, s, OCH3), 5.44 (1H, s,
CH), 7.53 (2H, d, JZ8.3 Hz, 2!ArH) and 8.05 (2H, d, JZ
8.3 Hz, 2!ArH); dC (100 MHz, CDCl3) 52.2 (COOCH3),
52.7 (2!OCH3), 102.4 (CH), 126.8 (2!Ar), 129.5 (2!
Ar), 130.2 (C0), 143.0 (C0COOCH3) and 166.9 (CO); 211
(MCC1, 2%) 210 (1), 179 (100) and 77 (5); GC–MS
retention time RTZ10.21 min.

4.1.7. 1-Benzyloxy-4-dimethoxymethyl benzene 10.
(0.200 g, 98.1%) as a pale yellow oil (Found C, 74.32; H,
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7.23; C16H18O3 requires C, 74.40; H, 7.02%); dH (400 MHz,
CDCl3) 3.31 (6H, 2!OCH3), 5.06 (2H, s, OCH2), 5.14 (1H,
s, CH), 7.07 (2H, d, JZ8.7 Hz, 2!Ar), 7.39 (5H, m, 5!Ar)
and 7.83 (2H, d, JZ8.7 Hz, 2!Ar); dC (100 MHz, CDCl3)
52.6 (2!OCH3), 70.3 (OCH2), 103.1 (CH), 114.5 (2!CH),
127.9 (2!CH), 128.6 (2!CH), 128.7 (2!CH), 136.9 (C0),
158.9 (C0O); 259 (MCC1, 1%), 258 (2), 257 (3), 228 (25),
227 (100), 91 (5) and 75 (15); GC–MS retention time RTZ
12.48 min.

4.1.8. 2-Dimethoxymethyl-5-nitrothiophene 11.35

(0.039 g, 97.5%) as a pale yellow oil; dH (400 MHz,
CDCl3) 3.50 (6H, s, 2!OCH3), 5.61 (1H, s, CH), 7.71 (1H,
d, JZ4.2 Hz, Ar) and 7.97 (1H, d, JZ4.2 Hz, Ar); dC

(100 MHz, CDCl3) 52.7 (2!OCH3), 98.8 (CH), 124.5
(CH), 128.4 (CH), 149.8 (C0) and 151.2 (C0NO2); 203 (MC,
1%), 202 (5), 187 (10), 172 (100), 157 (10), 142 (10), 97 (5)
and 75 (%); GC–MS retention time RTZ10.23 min.

4.1.9. 1-Dimethoxymethyl-3,5-dimethoxybenzene 12.
(0.030 g, 98.4%) as a colourless oil (Found C, 62.52; H,
7.41. C11H16O4 requires C, 62.25; H, 7.60%); dH (400 MHz,
CDCl3) 3.34 (6H, s, 2!OCH3), 3.80 (6H, s, 2!OCH3),
5.30 (1H, s, CH), 6.43 (1H, t, JZ2.2 Hz, 2!Ar) and 6.62
(2H, d, JZ2.2 Hz, 2!Ar); dC (100 MHz, CDCl3) 52.9 (2!
OCH3), 55.4 (2!OCH3), 100.8 (CH), 103.1 (CH), 104.5
(2!CH), 140.5 (C0) and 160.7 (2!C0OCH3); 213 (MCC
1, 5%), 212 (20), 182 (100), 134 (5) and 75 (5); GC–MS
retention time RTZ10.32 min.

4.1.10. 3,3-Dimethoxypropenyl benzene 13.36 (0.022 g,
95.4%) as a yellow oil; dH (400 MHz, CDCl3) 3.38 (6H, s,
2!OCH3), 4.96 (1H, d, JZ4.9 Hz, CH), 6.16 (1H, dd, JZ
4.9, 16.0 Hz, CHCH(OCH3)2), 6.72 (1H, d, JZ16.0 Hz, Ar)
7.30 (2H, m, 2!Ar), 7.43 (2H, m, 2!Ar) and 7.57 (1H, m,
Ar); dC (100 MHz, CDCl3) 52.8 (2!OCH3), 102.9 (CH),
126.8 (2!CH), 128.5 (2!CH), 129.1 (CH) and 133.6 (C0);
179 (MCC1, 3%), 178 (20), 177 (15), 147 (100), 115 (10)
and 77 (5); GC–MS retention time RTZ9.56 min.

The purity of aldehydes 3, 16–24 synthesized in the
miniaturized flow reactor was determined based on the
comparison of GC–MS data with that obtained for
commercially available standards.

4.1.11. Benzaldehyde 3. (0.011 g, 94.8%) as a colourless
solid; 107 (MCC1, 20%), 106 (15), 105 (100), 77 (25) and
51 (20); GC–MS retention time RTZ6.87 min.

4.1.12. 4-Bromobenzaldehyde 16. (0.027 g, 99.5%) as a
white solid; 186 (MCC1, 20%), 185 (100), 184 (75), 157
(15), 155 (15), 77 (20) and 50 (25); GC–MS retention time
RTZ9.51 min.

4.1.13. 4-Chlorobenzaldehyde 17. (0.014 g, 99.3%) as a
white solid; 142 (MCC1, 20%), 141 (98), 140 (50), 139
(100), 110 (10) and 77 (10); GC–MS retention time RTZ
8.18 min.

4.1.14. 4-Cyanobenzaldehyde 18. (0.015 g, 99.0%) as a
colourless solid; 132 (MCC1, 15%), 131 (20), 130 (100),
103 (7), 102 (45), 76 (20) and 50 (20); GC–MS retention
time RTZ8.85 min.
4.1.15. 2-Naphthaldehyde 19. (0.018 g, 97.2%) as a white
solid; 157 (MCC1, 25%), 156 (75), 155 (100), 128 (10),
127 (15), 126 (20) and 102 (5); GC–MS retention time RTZ
10.16 min.

4.1.16. Methyl-4-formylbenzoate 20. (0.012 g, 98.6%) as a
pale orange solid; 165 (MCC1, 50%), 164 (55), 163 (50),
133 (100), 105 (25) and 77 (10); GC–MS retention time
RTZ9.46 min.

4.1.17. 4-Benzyloxybenzaldehyde 21. (0.013 g, 99.6%) as
a white solid; 213 (MCC1, 100%), 212 (74), 107 (10) and
91 (25); GC–MS retention time RTZ11.98 min.

4.1.18. 5-Nitro-2-thiophenecarboxaldehyde 22. (0.017 g,
99.7%) as a pale yellow solid; 158 (MCC1, 75%), 157 (70),
156 (80), 141 (100), 127 (25), 112 (20), 99 (45), 98 (50), 71
(40) and 55 (25); GC–MS retention time RTZ9.38 min.

4.1.19. 3,5-Dimethoxybenzaldehyde 23. (0.015 g, 97.7%)
as a white solid; 167 (MCC1, 25%), 166 (100), 135 (25), 79
(10) and 64 (15); GC–MS retention time RTZ9.75 min.

4.1.20. trans-Cinnamaldehyde 24. (0.010 g, 98.5%) as a
yellow oil; 133 (MCC1, 10%), 132 (40), 131 (100), 103
(55), 77 (45) and 50 (25); GC–MS retention time RTZ
8.98 min.

4.1.21. Bromoacetaldehyde 26. 125 (MCC1, 5%), 124
(4), 123 (7), 96 (100), 95 (25), 94 (100), 81 (25), 80 (2), 79
(25), 42 (30); GC–MS retention time RTZ2.69 min.
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Abstract

The electrochemical reduction of 4-nitrobenzylbromide is studied in N,N-dimethylformamide solution in the presence and in the
absence of intentionally added supporting electrolyte. By conventional voltammetry it is shown that an ECE-type reaction occurs
with formation of the dimer 4,4 0-dinitrodibenzyl irrespective of the presence of supporting electrolyte. Next, a micro-gap flow cell is
characterised and employed for the preparative electro-reduction in the absence of supporting electrolyte. Excellent yields of the
dimer are obtained and explained based on a self-propagation mechanism.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Micro-flow cell; 4-Nitrobenzylbromide; Electro-reduction; Platinum
1. Introduction

Preparative electrochemistry can provide a clean and
versatile method for the synthesis of organic compounds
as the addition of electrons to or the removal of elec-
trons from neutral organic substrates can be activated
under relatively mild reaction conditions. As the elec-
trons are not bound to a reagent, the pollution of the
environment by spent reagents can be minimised. How-
ever, the common use of supporting electrolytes in elec-
tro-synthesis has been a problem in realizing such clean
processes because the recovery of the supporting electro-
lyte may create problems and can be costly. Whilst solid
polymer electrolyte membranes [1] have been developed
for electrolyte-free electrolysis, an approach based on
micro-fluidic systems could prove particularly attractive
for electro-organic synthetic methods [2a]. Indeed indus-
trial processes do already employ cells with relative
1388-2481/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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small interelectrode gap (�1 mm) [2l] in order to mini-
mise energy losses.

Recently, micro-gap flow cell devices have received sig-
nificant research interest [2] because of the small anode–
cathode gap, high electrode surface area to volume ratio,
a uniform current distribution, and the continuous pro-
duction of products. In the thin-gap flow cell geometry,
working and counter electrodes can be placed facing each
other and the inter-electrode gap is typically in the range
of a few tens up to approximately 500 lm. This electrode
geometry reduces the total value of the ohmic resistance
of a cell by orders of magnitude compared to those ob-
served in conventional cells. Therefore, it is possible to
eliminate the need for supporting electrolyte depending
on the residual intrinsic conductivity of the organic sol-
vents. Electrode processes which by definition involve
charge carrier formation and transport may be regarded
as ‘‘self-supported’’ as long as the inter-electrode distance
is similar to the diffusion layer thickness. The elimination
of supporting electrolyte in turn reduces costs and in some
cases simplifies the chemistry. This methodology also
opens up the possibility to couple processes at anode

mailto:s.j.haswell@hull.ac.uk
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and cathode to give new reaction pathways in ‘‘paired’’
organic electro-syntheses [2b]. The control of reaction
conditions can be readily achieved via the reaction
parameters potential, current density, and residence time.

Many types of thin-gap flow cells have been proposed
for electro-organic synthesis including the segmented
thin-gap flow cell [2c], multisectioned porous electrode
flow-through cell [2f,2g,2i,2j], the coplanar interdigita-
ted micro-band electrode cell [2k], and the miniaturized
parallel channel electrochemical reactor [2d,2h]. How-
ever, all of these approaches have involved the use of
supporting electrolytes or relatively low conversion
without intentionally added supporting electrolyte
[2d,2h]. Recently, Yoshida and coworkers [2a] reported
a flow-through porous thin-gap electrode micro-reactor
permitting operation without supporting electrolyte.
The control of the applied potential in this reactor was
however a problem due to the ohmic drop in the current
flow direction which results in a natural tendency for
current density to be concentrated in the portion of
the porous electrode nearest the counter electrode [2g].
This non-uniformity in the current distribution can have
a considerable impact on the process feasibility and per-
formance. Marken and coworkers [2e] reported a
micro-gap flow cell for the reduction of tetraethylethyl-
enetetracarboxylate also allowing operation without
supporting electrolyte. Relatively low flow rates
(1.9 ll/min) were necessary to obtain high yields of the
product. Whilst the electro-synthesis approach in the ab-
sence of intentionally added supporting electrolyte has
received only limited attention to date, its ability to de-
liver clean electro-organic syntheses is attractive in terms
of green chemical methodology and timely in view of the
recent surge in micro-reactor synthesis applications.

In the present study, the electrochemical reduction of
4-nitrobenzylbromide [3a,3b] is chosen to demonstrate
the utility of the proposed methodology. This reaction
is studied first by cyclic voltammetry in the presence
and in the absence of intentionally added electrolyte
and then at conventional and micro-gap flow cell elec-
trodes. Electro-synthetic reactions under optimised con-
ditions in N,N-dimethylformamide (DMF) in the
absence of intentionally added supporting electrolyte
are shown to give very high yields of the dimeric prod-
uct, 4,4 0-dinitrobibenzyl. The reaction was carried out
in a preparative micro-gap flow cell by simply pumping
the starting material 4-nitrobenzylbromide dissolved in
DMF through the cell and isolation of the product by
solvent evaporation.
2. Experimental

The cyclic voltammetric (CV) experiments were car-
ried out with an Autolab PGSTAT30 system (Eco
Chemie, The Netherland) in both a conventional
three-electrode cell and in micro-gap flow cells. In this
work electrolyte (0.1 M n-Bu4NBF4) was added to assist
in interpreting the voltammograms produced. For the
conventional cell, either a Pt disc (diameter 0.5 mm) or
a Pt micro-disc (diameter 0.025 mm) were used as the
working electrode, a Pt wire and silver wire (both diam-
eter 0.1 mm) were used as the counter and the reference
electrode, respectively. In some experiments an Ag|AgCl
(3 M KCl) electrode (Cypress Systems, USA) was used
as the reference electrode and externally placed up-
stream near the inlet of the micro-gap flow cell. For
the micro-gap flow cell, two equally sized Pt foils
(squares of 5 mm width and length, 0.05 mm thickness)
were used for the working and the counter electrodes. A
Harvard PHD 2000 syringe pump was used to pump
solution flow through the cell system at controlled flow
rate. The diffusion coefficients in DMF (at 22 ± 2 �C)
for ferrocene, 4-nitrobenzyl bromide and 4,4 0-dinitro-
bibenzyl were determined independently by steady state
micro-electrode voltammetry at a 25 micrometer diame-
ter Pt disc electrode [2e] (estimated error ±5%) and by
comparison with the literature value for ferrocene in
DMF [4]. The diffusion coefficients were found to be
1.0 · 10�9 m2 s�1 for ferrocene, 1.0 · 10�9 m2 s�1 for
4-nitrobenzyl bromide, and 0.83 · 10�9 m2 s�1 for 4,4 0-
dinitrodibenzyl.

The micro-gap flow cells were easy and convenient to
build by simply clamping all components together with a
suitable spacer. As shown in Fig. 1, the cell consisted of
two glass plates (3 cm length, 2 cm width, 6 mm thick-
ness) forming the bottom and top with two holes con-
necting PEEK tubes (i.d. 0.24 mm) which acted as the
flow inlet and outlet. Two equally sized Pt foils (5 mm
width and length, 50 lm thickness, Goodfellow Cam-
bridge Limited, purity 99.99%) were used as working
and counter electrodes and a PTFE spacer (BOH-
LENDER GmbH, Germany) with rectangular window
(3 mm width and 19 mm length) generated the reaction
flow cell. A small amount of silicone adhesive sealant
(Ambersil Ltd., UK) was used for sealing the outside
area around glass and the Pt foil to avoid leakage. PTFE
spacers with thicknesses of 120 and 250 lm were em-
ployed. After assembly, the cell height was calibrated
by flowing a solution of 1 mM ferrocene in 0.1 M
NBu4BF4-DMF and analysing the limiting current Ilim

with the expression I lim ¼ 0.925nFc DA
h

� �2=3ðV fÞ1=3. In this
expression, n is the number of electrons transferred per
reacting molecule, D denotes the diffusion coefficient,
A is the electrode area, Vf is the volume flow rate, and
h is the cell half height. For the two spacers the inter-
electrode distance was found to be 2h = 160 lm and
2h = 320 lm.

The electrochemical reduction of 4-nitrobenzyl bro-
mide was chosen to test the proposed micro-gap flow
cell configuration in the presence and absence of
supporting electrolyte. During typical reaction runs,



Fig. 1. Schematic representation of the micro-gap flow cell.
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Fig. 2. Cyclic voltammograms in 0.1 M n-Bu4NBF4-DMF at scan rate
of 80 mV/s, the concentration is 3 mM for 4-nitrobenzyl bromide,
2.5 mM for 4,4 0-dinitrobibenzyl and 3.0 mM for 4-nitrotoluene.
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product samples were collected in a cooled (0 �C) prod-
uct vial for a duration of 5 min. Samples were analysed
by GC/MS (Varian 2000) equipped with a capillary col-
umn (CP SIL 8CB, 30 m length, Chrompack). The GC
column temperature was held initially at 70 �C for
4 min, ramped at 20 �C/min to reach 240 �C which
was then held for 12 min. The internal standard method
was used for the quantitative determination of product
yields with decane as an internal standard added to
the reactant solution prior to reaction.

The reagents 4-nitrobenzyl bromide (Aldrich, 99%),
4-nitrotoluene (Aldrich, 99%), 4,4 0-dinitrodibenzyl (Al-
drich, >80%), tetrabutylammonium tetrafluoroborate
(Aldrich, 99%) and ferrocene (Aldrich, 99%) were used
without further purification. The solvents used were
N,N-dimethylformamide (DMF, Fluka, P99%, stored
over molecular sieve, H2O 6 0.01%) and tetrahydrofu-
ran (THF, Fluka, 99.5). DMF was further dried over
molecular sieve 3A (Lancaster, 1–2 mm beads) for 72 h
prior to use and kept in a desiccator [5]. THF was puri-
fied by distilling with sodium and benzophenone prior to
use. All solutions were degassed with argon (Pureshield
Argon, BOC gases, UK) before measurements.
3. Results and discussion

The cyclic voltammetric (CV) behaviour of 4-nitroben-
zyl bromide, 4,4 0-dinitrodibenzyl and 4-nitrotoluene in
DMF with 0.1 M n-Bu4NBF4 as the supporting electro-
lyte has been investigated and data are shown in Fig. 2.
4-NBB exhibits two cathodic peaks (processes P1 and
P2) near �0.89 and �1.2 V on the cathodic sweep. After
reversal of the potential scan direction at �1.5 V, only
one oxidation wave corresponding to the re-oxidation
of the product is seen at �1.07 V. By comparison of 4-
nitrobenzyl bromide CV characteristics with those of
the two possible products of the cathodic process (4,4 0-
dinitrobibenzyl and 4-nitrotoluene), the final product
for cathodic reduction of 4-nitrobenzyl bromide is deter-
mined to be the dimer 4,4 0-dinitrodibenzyl (see Fig. 2).
This result was confirmed by GC/MS analysis of the
products. It is interesting to note that in spite of the lower
diffusion coefficient for 4,4 0-dinitrodibenzyl and the lower
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concentration a similar peak current is detected. The rea-
son for this effect is the two-electron nature of this reduc-
tion process (P2) leading to the formation of the dianion
4,4 0-nitrobibenzyl2� (vide infra).

In order to determine the overall number of electrons
involved in the cathodic processes, CV experiments
using a Pt micro-disc working electrode were performed
in DMF solution containing 2 mM 4-nitrobenzyl bro-
mide and 2 mM ferrocene (added as a standard) with
0.1 M n-Bu4NBF4 (see Fig. 3(a)). The electrochemical
oxidation of ferrocene is well known to be a diffusion
controlled reversible single electron transfer process.
The data clearly show that 4-nitrobenzyl bromide is re-
duced initially to the anion radical in a one-electron step
(the limiting current is consistent with that for ferrocene
oxidation). Then the bromide anion is rapidly lost to
give the neutral nitrobenzyl radical intermediate. The
fact that the loss of bromide ion from the anion radical
is rapid is demonstrated by the absence of the anodic
wave corresponding to the re-oxidation of the 4-nitrob-
enzyl bromide anion radical (see Fig. 2). The 4-nitroben-
zyl radical then dimerizes to form 4,4 0-dinitrodibenzyl
which at sufficiently negative potential is further reduced
to its dianion (P2). As a result, the reduction of 4-nitrob-
enzyl bromide is governed by the ECE-type mechanism
which is presented as follows:

BrCH2C6H4NO2
e-

(BrCH2C6H4NO2)-E:

(BrCH2C6H4NO2)- (CH2C6H4NO2).  + Br-

1/2(CH2C6H4NO2)2

C:

1/2(CH2C6H4NO2)2
e-

1/2(CH2C6H4NO2)2-
2E:
Fig. 3. Cyclic voltammograms in DMF for the reduction of 2 mM
4-nitrobenzyl bromide and the oxidation of 2 mM ferrocene added as a
reference at scan rate of 20 mV/s at a 25 lm diameter Pt micro-disc
working electrode: (a) with 0.1 M n-Bu4NBF4, (b) without n-Bu4NBF4.
Interestingly, this CV experiment can also be per-

formed in the absence of supporting electrolyte. As
shown in Fig. 3(b), a typical sigmoidal voltammetric re-
sponse is seen for both ferrocene oxidation and 4-NBB
reduction. No changes in the limiting current and in
the mechanism in the absence of supporting electrolyte
are seen for both reactions compared to the presence
of supporting electrolyte (Fig. 3(a)). The potential for
the reduction of 4-nitrobenzyl and of 4,4 0-dinitrodiben-
zyl appear at only slightly more negative potentials.

Next, CV experiments for the reduction of 1 mM 4-
nitrobenzyl bromide and oxidation of 1 mM ferrocene
(added as a reference) in 0.1 M n-Bu4NBF4-DMF were
carried out in a micro-gap flow cell with exposed area
A = 12.5 mm2 and cell height 2h = 160 lm. Typical
hydrodynamic voltammograms are shown in Fig. 4(a)
as a function of flow rate. The plot of limiting current
for the 4-NBB reduction against the cube root of the flow
rate (Fig. 5(a)) indicates that the experimental limiting
currents are approximately consistent with diffusion con-
trol (linearly dependent on V 1=3

f ). When these experi-
ments were conducted using the thicker spacer to
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Fig. 4. Cyclic voltammograms for the reduction of 1 mM
4-nitrobenzyl bromide and the oxidation of 1 mM ferrocene added
as a reference in 0.1 M n-Bu4NBF4-DMF at scan rate of 10 mV/s
detected with different flow rate over flow cell with (a) the exposed area
of 12.5 mm2 and electrode-gap of 160 lm and (b) the exposed area of
15 mm2 and electrode-gap of 320 lm.



Fig. 5. Plot of limiting current versus cube root of the flow rate with
(a) the exposed area of 12.5 mm2 and electrode-gap of 160 lm and (b)
the exposed area of 15 mm2 and electrode-gap of 320 lm. Square:
experimental limiting current; bold line: theoretical limiting current for
the diffusion only case which was calculated with Eq. (1); dashed line:
the theoretical limiting current for diffusion with feedback [6].
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create a flow cell with electrode area A = 15 mm2 and cell
height 2h = 320 lm, the voltammetric behaviour
(Fig. 4(b)) is seen to be similar to that observed in the
thinner spacer flow cell. Well-defined limiting currents
are detected while the traces between forward and back-
ward scan become widened a little and the limiting cur-
rent is found to be smaller than that observed with the
thinner gap cell. At a lower flow rate of 20 ll/min, the
CV response becomes similar to typical stationary CV re-
sponses. The experimental limiting currents are also con-
sistent with diffusion control, as seen in Fig. 5(b).

The diffusion controlled limiting current under flow
conditions in a channel flow cell may be given in the fol-
lowing equation:

I lim ¼ 0.925nFc
DA
h

� �2=3

ðV fÞ1=3; ð1Þ

where Ilim is the limiting current, n refers to the number
of electrons transferred at the electrode, F is Faraday
constant (96,485 C/mol), A is the exposed area of the
working electrode, D and c refer to the diffusion coeffi-
cient and the concentration of reactant in the solution,
h and Vf refer to half cell height and volume flow rate.
Theoretical lines based on this equation are shown in
Fig. 5. The deviation to higher currents in particular
for the thinner spacer suggests a small contribution from
‘‘feedback’’ currents due to reactants diffusing between
anode and cathode. For efficient electrolysis these cur-
rents have to be minimised.

For stirred solution voltammetry, the limiting current
at a uniformly accessible electrode may be expressed in
terms of the Nernst diffusion layer thickness, d, as given
in the following equation:

I lim ¼
nFDAc

d
. ð2Þ

The diffusion layer thickness is an important param-
eter and may be helpful for identifying coupling phe-
nomena between cathode and anode diffusion layers,
which can have implications for chemical reaction
occurring in electrochemical cells. By combining Eqs.
(1) and (2) the diffusion layer thickness within the mi-
cro-gap flow cell can be determined. The new equation
(3) shows that the diffusion layer thickness is linearly
dependent on the inverse cube root of volume flow rate.
(It has to be emphasised that for channel flow systems
the diffusion layer thickness d gradually increases to-
ward the trailing end of the electrode and the condition
of uniform accessibility is not fulfilled.)

d ¼ 1.081ðDAÞ1=3ðhÞ2=3ðV fÞ�1=3. ð3Þ

It is interesting to consider the case in which the two dif-
fusion zones start to couple. In this case, the d value is
set to the inter-electrode distance. The flow rate corre-
sponding to this case is found to be 1.4 ll/min for the
160 lm gap cell and 0.8 ll/min for the 320 lm gap cell.
These values are in agreement with results from Eq. (4)
[2e] giving flow rates of 1.1 and 0.7 ll/min, respectively.
All experiments carried out here are conducted under
conditions of weak coupling where ‘‘feedback’’ currents
between the anode and cathode become detectable but
do not lead to significant efficiency losses.

V diffusion–FB
f � DA

8h
. ð4Þ

Next, synthetic experiments were conducted in order to
isolate and identify products and to optimise yields for
the reductive dimerisation of 4-nitrobenzyl bromide.
The electrochemical reduction of 4-nitrobenzyl bromide
was conducted in preparative cells with electrode area of
45 mm2 and with electrode-gaps of 160 and 320 lm
without the addition of an electrolyte. A two-electrode
configuration was used for preparative experiments with
10 mM 4-nitrobenzyl bromide in DMF being continu-
ously pumped through the cell at a constant applied cur-
rent. The applied potential required about 4–10 V for
limiting current conditions corresponding to currents
of 0.6–2.5 mA. For preparative electrolysis, the dimer
4,4 0-dinitrodibenzyl is the principle product but small
amount of the monomeric product 4-nitrotoluene were
also observed. The formation of this product can be ex-



Table 1
Preparative electrolysis in micro-flow cells with two-electrode geometry for the reduction of 10 mM 4-nitrobenzyl bromide in DMF without
intentionally added supporting electrolyte

Entry Electrode gap
(lm)

Current
(mA)

Flow rate
(ll/min)

Residence
time (s)

Conversion
(%)

Product distribution
R–R R–H

1 160 0.8 20 22 99 68 32
2 160 1.3 40 11 95 69 31
3 320 0.6 20 44 70 93 7
4 320 1.2 20 44 91 91 9
5 320 0.6 40 22 58 94 6
6 320 2.5 40 22 92 91 9
7a 320 2.5 40 22 100 76 24

The potential was adjusted to allow the current flow to be consistent with the second plateau for the reduction process.
a Co-solvents DMF and THF were used in the ratio of 3–1.
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plained by the formation of the neutral radical 4-nitrob-
enzyl bromide which abstracts hydrogen atom from the
solvent after failing to find a reaction partner for dimer-
isation. Table 1 summarizes the conversion and product
distribution for a range of conditions. It can be seen that
the conversion and product distribution are strongly
dependent on the electrode gap, the flow rate and the ap-
plied current. For the 160 lm gap cell (entries 1 and 2), a
conversion of more than 90% can be obtained with more
than 30% 4-nitrotoluene being produced. The applied
voltage was 4.0 V for producing a current of 0.8 mA
with a flow rate of 20 ll/min and 4.8 V for producing
1.3 mA current at a flow rate of 40 ll/min. The current
efficiency calculated based on Faraday�s Law is more
than 80% in these cases. However, the increased catho-
dic formation of the monomeric product suggests some
degree of interference from the anode reaction. It is very
likely that products formed at the anode, e.g., protons,
will interfere with the process at the cathode in particu-
lar further downstream where the diffusion layer overlap
becomes more significant.

For the 320 lm gap cells (entries 3–6), higher voltages
were required to obtain sufficiently high conversions
(>90%). Interestingly, more than 90% of the dimer prod-
uct 4,4 0-dinitrodibenzyl are obtained in these cases.
When a co-solvents containing DMF and THF (THF
is well known to be a source of hydrogen atoms in H-
abstraction reactions [7]) in 3:1 ratio was used (entry
7), the amount of monomeric product 4-nitrotoluene
obtained increased to 20–30%. This implies that the H-
atom abstraction process is competing with the dimeri-
sation. Under the conditions used here, the residence
time in the cell was found to be in the range of 11–
44 s for the starting materials to be completely con-
verted. It is surprising that a good balance can be found
between efficiency losses due to ‘‘feedback’’ currents and
efficiency losses due to incomplete reaction. This can be
explained by the fact that the 4,4 0-dinitrodibenzyl dian-
ion produced at the cathode can react (even in the solu-
tion) to produce more of the anion radical [8] as
indicating below
1=2ðCH2C6H4NO2Þ2�2 þ BrCH2C6H4NO2

� 1=2ðCH2C6H4NO2Þ2 þ ðBrCH2C6H4NO2Þ�

Therefore, this reaction may be regarded as ‘‘self-prop-
agating’’ (the dimeric dianion triggers the formation of
more product) and the formation of the dimeric product
becomes highly efficient. A more detailed study of reac-
tion layer for ECE process, the diffusion layer and the
current density across the cell will be required to fully
understand the processes in the cells.
4. Conclusion

We have demonstrated that the electrochemical
reduction of 4-nitrobenzyl bromide can be conducted
efficiently in a micro-gap flow cell and in the absence
of intentionally added supporting electrolyte. The dimer
is the principle product of the reaction but the tendency
to form the monomeric product 4-nitrotoluene increases
with decreasing inter-electrode gap. The ‘‘self-propagat-
ing’’ nature of the overall process contributes to the
clean formation of high yields of the dimer product
4,4 0-dinitrodibenzyl.
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Abstract—Over the past 5 years, interest in the miniaturisation of chemical synthesis has grown rapidly, however in order to facilitate
transfer of the technology from its current position as a research tool to industrial applications, a core understanding of the challenges
associated with transferring reactions from the macro to the micro domain is required. This paper therefore aims to broach this problem by
investigating the application of micro reactors to a range of commonly employed synthetic reactions including acylation, aldol, alkylation,
1,4-conjugate addition (Michael addition) and the Knoevenagel condensation. Comparison of the results obtained with traditional batch
techniques enable us to highlight some of the advantages associated with micro reaction technology.
q 2005 Elsevier Ltd. All rights reserved.
  
1. Introduction

Although less common than their analytical counterparts,1

miniaturised devices capable of performing chemical
synthesis, termed micro reactors, have recently received
widespread interest from both industry and academia. The
desire to miniaturise synthetic reactions has been driven by
a need for greater process control, not only as a means of
increasing product purity and plant productivity, but also
reactor safety.2,3 With these factors in mind, the micro
reactor group at Hull have successfully demonstrated the
application of miniaturised systems to a range of solution
phase chemistries, contributing greatly to the initial
evaluation of micro reactors for synthetic applications.4,5

This paper follows a series of communications and aims to
illustrate, in detail, the challenges associated with the
transfer of reactions from the macro to the micro domain,
laying the foundations necessary for the ultimate goal of
performing novel synthetic procedures in micro fabricated
devices.6–11

In this context, we define a micro reactor as a device that
contains a series of interconnecting channels with cross-
sectional dimensions in the range of 10–500 mm. Depending
on the end use of the device, a range of substrates have been
employed, these include; silicon, glass, quartz, ceramics,
polymers and metals.12 However, due to its compatibility
with organic solvents, high mechanical strength,
0040–4020/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tet.2005.08.076
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temperature resistance and optical transparency, borosili-
cate glass is the chosen substrate for the work described
herein. As Figure 1 illustrates, the devices consist of a
borosilicate glass base plate, containing an etched channel
network, and a top block through which reagents are
delivered. Thermal bonding of the two layers affords a
sealed micro reactor, with typical dimensions of 2.5 cm!
2.5 cm!2.0 cm for electroosmotic devices13 and 2.5 cm!
2.5 cm!0.6 cm for pressure driven applications. Using a
suitable pumping mechanism, reagents are brought together
within the micro channels, where they are reacted for a
specified period of time, prior to collection and analysis. In
order to manipulate reagents and products within micro
fabricated devices accurate pumping mechanisms are
Tetrahedron 61 (2005) 10757–10773
Figure 1. Exploded view of borosilicate glass micro reactors for (a)
electroosmotic and (b) pressure-driven applications.



Table 1. Summary of the flow rates obtained for a series of commonly
employed organic solvents

Applied field
(V cmK1)

Average flow rate (ml minK1)a

MeCN THF DMF EtOH

417 5.30 1.00 1.67 0.90
311 4.08 0.73 1.50 0.70
208 3.00 0.45 1.33 0.50
104 1.90 0.17 1.17 0.30

a R10 measurements were made at each applied field.
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required, these are loosely categorised as either mechanical
or non-mechanical.14

1.1. Non-mechanical pumping

In the early 1990’s, Manz and co-workers15 described the
use of electrokinetic flow in a miniaturised flow injection
system, a concept further investigated by Dasgupta et al.16

Harrison and co-workers17 later applied the principle to the
mobilisation of fluorescein labelled amino acids in a glass
reactor manifold, whereby valve-less control of fluid at a
T-shaped intersection was observed. In comparison to the
use of mechanical micro pumps, field induced flow is
advantageous as the electric field acts as a pump and a valve,
enabling both the direction and magnitude of flow to be
controlled.18

1.1.1. Scope and limitations of electrokinetic flow.
Electrokinetic flow comprises of two physical effects;
electroosmotic flow (EOF), which is responsible for the
velocity of the solvent system as a whole, and electrophor-
etic flow (EPF), which is an additional velocity effect
experienced by charged species within the solvent system.
As Figure 2 illustrates, when an ionisable surface such as
glass, quartz or Teflon comes into contact with a suitable
solvent system, the surface is neutralised with a diffuse layer
of positive ions from the bulk liquid.12 A proportion of the
counterions are adsorbed onto the surface, resulting in the
formation of an immobile layer, and the remaining positive
ions form a transient double layer. Application of an electric
field causes the double layer to move towards the most
negative electrode, inducing bulk flow within the micro
channel.

Although the use of EOF has been well documented within
the literature, the manipulation of fluid within open channel
networks is inherently irreproducible due to hydrodynamic
pressure effects.19 Consequently, in order to obtain
reproducible controlled flow, it is important to ensure that
non-uniformities in velocity profile (that arise as a result of
different reservoir heights) are excluded or minimised. One
such approach is the fabrication of micro porous silica frits
(MPS frits) within the micro channels.20 The porous silica
structure acts to reduce the cross sectional area of the micro
channel in a specific region, therefore minimising pressure
effects while maintaining EOF.21 Alternatively, Fletcher et
al.22 recently reported the fabrication of a series of narrow
channels (restrictions) at strategic points within the main
channel network, thus providing the necessary regions of
resistance. Clearly, compared to the use of micro porous
silica frits, the fabrication of restrictions is more amenable
to the large-scale manufacture of micro fluidic devices.
Figure 2. Schematic illustrating the principle of electroosmotic flow.
neof ZK
E330

z

h
(1)

neofZelectroosmotic flow velocity, EZapplied field, 3Z
relative dielectric constant of the fluid, 30Zthe permittivity
of free space, zZzeta potential and hZviscosity.

Equation 1. Determination of the electroosmotic flow velocity.23

While EOF has generally been associated with the
manipulation of aqueous systems for analytical appli-
cations,23 we have more recently demonstrated the
mobilisation of polar solvent systems such as MeOH and
DMF.24 With this in mind, the flow rates of a series of
common organic solvents were investigated over a range of
applied fields (V cmK1) (Table 1 and Fig. 3). As Table 2
illustrates, the electroosmotic flow rate is largely deter-
mined by the dielectric constant, polarity and viscosity of
the solvent system (Eq. 1).25 Consequently, the technique is
restricted to the use of solvents such as alcohols,
tetrahydrofuran, dimethylformamide, acetonitrile and
aqueous systems.

1.2. Mechanical pumping

Most mechanical or reciprocating pumps are based on the
movement of a piston or membrane, resulting in the delivery
of fluids or gases in discrete aliquots. Due to the wide array
of primary sources actuation of a membrane can be achieved
using a variety of techniques including piezoelectric26 and
shape memory alloys.27 As the pumping mechanism is
independent of the device material any fluid can be
mobilised, the flow is however, often pulsed (exceptions
have been demonstrated28). Alternatively, external displa-
cement pumps such as syringe pumps have found wide-
spread use, at a research level, due to their ability to
deliver stable, bi-directional flow. The main challenge
Figure 3. Graph illustrating the relationship between flow rate and applied
field for a range of organic solvents.



Figure 4. Schematic illustrating the (a) traditional, versus (b) miniaturised
approaches to mass production.

Table 2. Relationship between the magnitude of EOF and the physical
properties of a range of common organic solvents

Solvent Dielectric
constant

Viscosity
(cP)

Polarity
index (P)

Flow rate
(ml minK1)

MeCN 37.50 (20 8C) 0.38 5.8 5.30
DMF 36.71 (25 8C) 0.92 6.4 1.67
EtOH 24.55 (25 8C) 1.10 5.2 0.90
THF 7.58 (25 8C) 0.55 4.0 1.00
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associated with the use of displacement pumps is obtaining
low dead volume, leak free connections between the pump
and device.29 The mechanism is currently very cumbersome
resulting in a system whereby the pumps dwarf the device.
The low tolerance to particulates also results in the
generation of high back-pressure within the system. In
addition, the control of multiple inputs represents a
challenge, as careful balancing of the flow rates and internal
pressures is required.30 Consequently, we believe that
electrokinetic pumping is advantageous as it enables us to
obtain reproducible, pulse-free, low flow rates without the
generation of high back-pressures. As the pumping
mechanism requires no moving parts, the technique is
simple to use and free from component wear and tear
making it ideal for the continuous manipulation of fluid
within miniaturised systems. Therefore, unless otherwise
stated, electroosmotic flow is employed for the manipu-
lation of reagents and reaction products within the micro
fabricated devices described herein.
Scheme 1. Illustration of the reaction diversity exhibited by an enolate.
1.3. Advantages of miniaturisation

Current production technology is based on the scale-up of
successful bench-scale processes to a pilot plant, followed
by a final increase in scale to achieve mass production. This
approach is however fundamentally flawed as at each stage
of scale-up, reactor modifications result in changes to the
surface to volume ratio, which in turn have a profound effect
on the thermal and mass transportation properties of the
reaction. As a result of these variations, it is often necessary
to re-optimise the process at each stage of scale-up;
consequently the route from bench to production is both
costly and time-consuming. It is therefore proposed that
through the application of micro reaction technology, the
transfer of reactions from the laboratory to production will
be both rapid and cost effective as processes would initially
be optimised on a single device and in order to increase
production capacity, more devices would be employed.3

Therefore instead of the traditional approach of scaling-up
the reactor vessel, the approach of scale-out or numbering-
up would be employed (Fig. 4).

From a production perspective, the scale-out approach is
advantageous as it enables changes in production volume to
be met by simply increasing or decreasing the number of
devices employed, therefore meeting customer demand.
Additionally, the use of generic reactor designs, such as
those described herein, would enable custom syntheses to be
performed with relative ease. Compared to a production
plant where reactors are generally configured/optimised for
a single function, this flexibility is both advantageous and
cost effective. In addition, the predictable thermal and mass
transportation properties observed within a laminar flow
environment result in increased reactor control.2 In
traditional large-scale reactor vessels, fluctuations in
temperature and concentration are difficult to rapidly
address as any alterations made take time to have an effect
on the system as a whole. Along with increasing the rate of
mixing, decreasing the reactor dimensions results in an
inherently high surface to volume ratio. Consequently, heat
generated by exothermic reactions can be dissipated rapidly,
reducing the likelihood of thermal runaway or hot spot
formation. As a result of the uniform reactor conditions
obtained, extended reaction times are no longer required in
order to obtain high conversions, resulting in fewer, but
more often, no side reactions.2,6
2. Results and discussion

As a result of the importance of enolate chemistry in the
pharmaceutical industry, the synthesis of 1,3-diketones,
b-hydroxyketones, a,b-unsaturated ketones and 1,4-
addition products (Scheme 1), has been used to demonstrate
the key advantages associated with micro reaction technol-
ogy, these include; rapid reaction optimisation, reduced
reaction time, enhanced conversions, reduced by-product
formation, in-situ generation of reactive intermediates and
the ability to synthesise compounds that require no further
purification.



Table 3. Comparison of the conversions obtained for the acylation of silyl
enol ethers in batch and in a micro reactor

Product no. Conversion (%) Applied field (V cmK1)

Batch Micro reaction

4 100.0 100.0 333, 455, 333 and 0
5 95.0 100.0 417, 318, 476 and 0
9 100.0 100.0 375, 455, 405 and 0
10 100.0 100.0 208, 409, 357 and 0

 

Figure 5. Schematic of the reactor manifold used for the synthesis of
benzoic acid 1-phenylvinyl ester 4.
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2.1. The regioselective acylation of silyl enol ethers7,8

The preparation and subsequent acylation of enolates is a
fundamental transformation used in organic synthesis; their
ambident nature however, allows the formation of bonds at
either the carbon or the oxygen. This often results in the
undesirable formation of a mixture of both O- and
C-acylated products, which can prove difficult to separate,
resulting in low yields.31 Consequently, a large amount of
work has been undertaken in order to explore and
understand those reaction conditions that promote the
regioselective acylation of enolates; that is, the nature of
the counterion, reaction temperature, solvent; stoichiometry
of reagents, order of reagent addition and type of acylating
reagent employed.32

Although careful selection of the aforementioned conditions
has been shown to influence reaction regioselectivity, many
of the 1,3-diketones prepared remain contaminated with
small amounts of O-acylated product.33 With this in mind,
we recently demonstrated a simple technique for the
regioselective synthesis of 1,3-diketones, free from any
competing O-acylation or diacylation products. The
procedure involved regeneration of enolates from silyl
enol ethers34 using a catalytic quantity of ‘anhydrous’ tetra-
n-butylammonium fluoride (TBAF) 1, followed by acyla-
tion using acyl halides (1 h) or acyl cyanides (24 h).8 Using
this approach, a-substituted ketones were found to give
C-acylated products when treated with either acyl halides or
cyanides, whereas non a-substituted ketones reacted to give
O-acylation with acyl halides and C-acylation with acyl
cyanides. Based on these findings, the catalytic desilylation
approach was further investigated within an EOF-based
micro reactor.7

Prior to performing an EOF-based micro reaction it is
important to consider what reagent concentration, flow rate
(a function of applied field) and length of experiment to use.
As one of the aims of micro reaction technology is to
synthesise compounds more efficiently, the use of higher
reagent concentrations is desirable as this enables a greater
quantity of product to be synthesised in a shorter time;
consequently the limiting factor is reagent solubility
(Section 2.5.2). When employing EOF, the flow rate is
dependant on both the applied field and the physical
properties of the reagents; as a result applied fields vary to
ensure that equal flow of reagents is obtained from all
reservoirs. Finally, the length of experiment is chosen in
order to obtain a sufficient quantity of product for off-line
analysis by GC–MS and does not reflect the residence time
of reagents within the micro reactor channel; unless
otherwise stated reactions are performed for 20 min.

In order to perform the acylation reaction, solutions of
‘anhydrous’ TBAF 1 (40 ml, 0.1 M), benzoyl fluoride 2
(40 ml, 1.0 M) and trimethyl(1-phenylvinyloxy)silane 3
(40 ml, 1.0 M) in anhydrous THF were placed in reservoirs
A, B and C, respectively, (Fig. 5). The reagents were then
manipulated within the device, using the following applied
fields 333, 455, 333 and 0 V cmK1 (to reservoirs A, B, C and
D, respectively), and the reaction products collected in
reservoir D. Analysis of the reaction mixture by off-line
GC–MS showed that 100.0% conversion of silyl enol ether
3 to benzoic acid 1-phenylvinyl ester 4 had occurred and
crucially, no C-acylated 5 or diacylated products were
detected. Having successfully demonstrated the micro-scale
synthesis of benzoic acid 1-phenylvinyl ester 4, the
kinetically slower C-acylation reaction (24 h in batch) was
investigated.

Substitution of benzoyl fluoride 2 with benzoyl cyanide 6
(40 ml, 1.0 M) enabled the synthesis of 1,3-diphenylpro-
pane-1,3-dione 5 to be investigated using the same micro
reactor manifold. Manipulation of the reagents using 417,
318, 476 and 0 V cmK1, resulted in 100.0% conversion of
the enol ether 3 to 1,3-diphenylpropane-1,3-dione 5, again
no competing O-acylated 4 or diacylated products were
observed. The generality of the technique was subsequently
demonstrated using trimethyl(1-phenyl-propenyloxy)silane
7 and cyclohex-1-enyloxy(trimethylsilane) 8 to afford
2-methyl-1,3-diphenylpropane-1,3-dione 9 and 2-benzoyl-
cyclohexanone 10, respectively. Again, all standard sol-
utions were prepared in anhydrous THF and the reagents
introduced into the reactor as follows; ‘anhydrous’ TBAF 1
(40 ml, 0.1 M) in reservoir A, acylating reagent (40 ml,
1.0 M) in reservoir B, the enol ether (40 ml, 1.0 M) in
reservoir C and the reaction products collected in reservoir
D. Manipulation of the reagents using the applied fields
reported in Table 3 resulted in 100.0% conversion to the
respective 1,3-diketone. In summary, we have demonstrated
a simple, regioselective technique for the acylation of an
array of tetra-n-butylammonium enolates in an EOF-based
micro reactor (Table 3); demonstrating an approach, which
is clearly suited to the generation of combinatorial libraries.
2.2. The synthesis of b-hydroxyketones using silyl enol
ethers9

Having successfully demonstrated the use of silyl enol
ethers as enolate precursors with respect to regioselective
acylation, the investigation was extended to incorporate the
synthesis of b-hydroxyketones. In the mid 1970’s, Noyori



Table 4. Summary of the conversions obtained for the synthesis of b-
hydroxyketones 11 and 13 in batch and a micro reactor

Product no. Conversion (%) Applied field (V cmK1)

Batch Micro reaction

11 80.0 100.0 375, 409, 381 and 0
13 93.0 1.0 417, 341, 333 and 0
13 93.0 100.0 333, 455, 333 and 0

Figure 6. Schematic of the micro reactor manifold used for the synthesis of
3-(4-bromophenyl)-3-hydroxy-1-phenylpropan-1-one 11.
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et al.35 demonstrated the aldol reaction of silyl enol ethers as
a means of circumventing the dehydration step frequently
associated with the aldol condensation. As the resulting
b-hydroxyketone is a versatile synthon finding application
for example in the synthesis of natural products derived
from polyketide biosynthetic pathways, we investigated
their synthesis in an EOF-based micro reactor.

The synthesis of 3-(4-bromophenyl)-3-hydroxy-1-phenyl-
propan-1-one 11 was investigated using anhydrous THF as
the solvent system. As Figure 6 illustrates, ‘anhydrous’
TBAF 1 (40 ml, 0.1 M) was placed in reservoir A,
4-bromobenzaldehyde 12 (40 ml, 1.0 M) was placed in
reservoir B and trimethyl(1-phenylvinyloxy)silane 3 (40 ml,
1.0 M) in reservoir C. Manipulation of the reagents using
375, 409, 381 and 0 V cmK1 resulted in 100.0% conversion
of the silyl enol ether 3 to 3-(4-bromophenyl)-3-hydroxy-1-
phenylpropan-1-one 11. Using the aforementioned pro-
cedure, the reaction was subsequently repeated using
cyclohex-1-enyloxy(trimethylsilane) 8 (40 ml, 1.0 M),
whereby application of 417, 455, 476 and 0 V cmK1

resulted in only 1.0% conversion of the enol ether 8 to
2-[(4-bromophenyl)-hydroxymethyl]cyclohexanone 13.
Upon altering the applied fields to 417, 341, 333 and
0 V cmK1, and hence increasing reagent residence time
within the device, the conversion to product 13 was
increased to 100.0% wrt residual enol ether 8. As Table 4
illustrates, compared to traditional batch techniques,
enhancements in conversion were obtained as a result of
performing the reactions within a micro reactor; in the case
of 3-(4-bromophenyl)-3-hydroxy-1-phenylpropan-1-one 11,
an increase of 20.0% was observed. Along with a reduction
in reaction times, the technique is highly desirable as no
dehydration products were detected.
 

Scheme 2. Preparation of trimethyl(1-phenylvinyloxy)silane 3 using ETSA
14/TBAF 1.
2.2.1. Alternative silylation technique. The use of
preformed enolates, in the form of silyl enol ethers,36,37

has allowed us to successfully demonstrate the regeneration
and subsequent reaction of a series of enolates within a
micro reactor (Sections 2.1 and 2.2). This approach can
however be disadvantageous when base sensitive molecules
are employed as poor conversions result in products often
contaminated with inorganic salts.38 In order to circumvent
these problems, many groups have investigated mild and
efficient alternatives.39,40 Nakamura and co-workers41

demonstrated the use of ethyltrimethylsilylacetate (ETSA)
14 and ‘anhydrous’ TBAF 1 for the O-silylation of
ketones and alcohols under nearly neutral conditions. As
Scheme 2 illustrates, TBAF 1 acts catalytically with the
only by-product of the reaction being ethyl acetate.
Consequently, this approach was of particular interest as
the reaction conditions are mild and no inorganic residues
are formed during the reaction.

Prior to transferring the technique to a micro reactor, the
synthesis of trimethyl(1-phenylvinyloxy)silane 3 was
investigated in batch. Reaction of ETSA 14 and acetophe-
none 15 in the presence of ‘anhydrous’ TBAF 1 (0.1 equiv)
afforded 56.2% conversion to enol ether 3 after only 20 min.
Surprisingly however, after 2 h only 6.0% trimethyl(1-
phenylvinyloxy)silane 3 remained; an observation that is
attributed to competing desilylation and protonation of the
tetra-n-butylammonium enolate. Obviously when perform-
ing the reaction in batch, the limited lifetime of the enol
ether is disadvantageous, however by transferring the
reaction to a micro reactor we believed that the spatial
control obtained would enable us to synthesise the enol
ether, generate the tetra-n-butyl ammonium enolate and
react it to afford the desired product in high conversion.

In order to demonstrate the technique, the synthesis of
trimethyl(1-phenylvinyloxy)silane 3 and its subsequent
reaction to afford benzoic acid 1-phenylvinyl ester 4, was
selected as a model reaction. A premixed solution of
acetophenone 15 and ETSA 14 (40 ml, 1.0 M) in anhydrous
THF was placed in reservoir A, a solution of ‘anhydrous’
TBAF 1 (40 ml, 0.1 M) in THF in reservoir B and a solution
of benzoyl fluoride 2 (40 ml, 1.0 M) in THF in reservoir C.
Manipulation of the reagents using 417, 417 and 0 V cmK1,
resulted in 100.0% conversion of acetophenone 15 to
product 3, demonstrating the potential of this technique for
the in-situ synthesis of silyl enol ethers and their subsequent
reaction within the micro fluidic device.
2.3. Michael addition6

Following the successful synthesis of a series of b-hydro-
xyketones, 1,3-diketones and O-acylated ketones within an
EOF-based micro reactor, we were interested in extending



 

  

Scheme 3. Synthesis of Michael adducts 17, 21 and 23 using
diisopropylethylamine 16.

 

Figure 7. Schematic of the micro reactor manifold used for the synthesis of
(E)-4-acetyl-5-oxohex-2-enoic acid ethyl ester 17.
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the investigation to include the preparation of 1,3-diketone
enolates. In order to demonstrate their synthetic utility, a
series of 1,4-conjugate additions were investigated
(Scheme 3). With the extensive range of donor and acceptor
compounds featured within the literature serving to
demonstrate the synthetic scope associated with the Michael
reaction,42,43 the investigation concentrated on the reaction
of 1,3-diketones (donor) and a,b-unsaturated carbonyl
compounds (acceptor). As the protons of 1,3-dicarbonyl
compounds are relatively acidic (MeCNpKBHC 9–13),
deprotonation was achieved using the organic base
diisopropylethylamine 16.

Prior to investigating the reactions within a micro reactor,
synthetic standards of the target products were synthesised.
(E)-4-Acetyl-5-oxohex-2-enoic acid ethyl ester 17 was
prepared in 89.0% yield via the dropwise addition of 2,4-
pentanedione 18 to a stirred solution of ethyl propiolate 19
and diisopropylethylamine 16 in absolute EtOH. Analysis of
the product by 1H NMR, indicated that the Michael adduct
17 formed was predominantly the trans isomer (O99.0%
selectivity). With this in mind, the reaction was sub-
sequently repeated using 1-phenylbutane-1,3-dione 20 to
afford (E)-4-benzoyl-5-oxohex-2-enoic acid ethyl ester 21
in 77.0% yield and diethyl malonate 22 to give (E)-4-
ethoxycarbonylpent-2-enedioic acid ethyl ester 23 in 82.5%
yield. The generality of the technique was examined using
the alkenic acceptor methyl vinyl ketone 24, whereby
3-acetylheptane-2,6-dione 25 was obtained in 91.0% yield
(Scheme 4).

Using absolute EtOH as the solvent system, the synthesis of
(E)-4-acetyl-5-oxohex-2-enoic acid ethyl ester 17 was
investigated in a micro reactor (Fig. 7). Diisopropylethyla-
mine 16 (40 ml, 5.0 M), 2,4-pentanedione 18 (40 ml, 5.0 M)
and ethyl propiolate 19 (40 ml, 5.0 M) were manipulated
within the device using 417, 318, 333 and 0 V cmK1. Off-
line analysis of the reaction mixture showed 56.0%
conversion of 2,4-pentanedione 18 to (E)-4-acetyl-5-
oxohex-2-enoic acid ethyl ester 17, with the remaining
44.0% being unreacted starting material 18. This was
subsequently increased to 95.0% by employing stopped
flow (Flow Regime B) (for a detailed discussion of flow
regimes see Section 4.2.2). The increase in conversion was
 

Scheme 4. Synthesis of 3-acetylheptane-2,6-dione 25 using diisopropyl-
ethylamine 16.
originally attributed to an increase in diffusive mixing
between the reagent streams,6 this is however, unlikely as
micro-scale reactions are often regarded as being rate
limited, not diffusion limited.2 As both reactions were
performed over the same period of time, the observed
increase in conversion is attributed to an increase in
residence time within the micro reactor.

Based on these initial observations, the synthesis of (E)-4-
benzoyl-5-oxohex-2-enoic acid ethyl ester 21 was sub-
sequently investigated using absolute EtOH as the solvent
system. Standard solutions of diisopropylethylamine 16
(40 ml, 5.0 M), ethyl propiolate 19 (40 ml, 5.0 M) and
1-phenylbutane-1,3-dione 20 (40 ml, 5.0 M) were manipu-
lated within the device using the following applied fields,
417, 318, 333 and 0 V cmK1. Employing Flow Regime A
resulted in 15.0% conversion of 1-phenylbutane-1,3-dione
20 to (E)-4-benzoyl-5-oxohex-2-enoic acid ethyl ester 21,
with the remaining 85.0% being unreacted diketone 20.
Again, application of a stopped flow regime (Flow Regime
B) resulted in an increase in conversion to 34.0%, which
was further increased to 100.0% by employing a longer
period of stopped flow (Flow Regime C). The technique was
further exemplified using the synthesis of (E)-4-ethoxycar-
bonylpent-2-enoic acid ethyl ester 23, whereby Flow
Regime A (417, 386, 381 and 0 V cmK1) resulted in
40.0% conversion to product 23 compared to 100.0% as a
result of employing Flow Regime B.

Having successfully demonstrated a number of conjugate
additions using the alkynic acceptor ethyl propiolate 19, the
synthesis of 3-acetylheptane-2,6-dione 25 was subsequently
investigated using methyl vinyl ketone 24 (Scheme 4).
Using absolute EtOH as the solvent system, diisopropyl-
ethylamine 16 (40 ml, 5.0 M), 2,4-pentanedione 18 (40 ml,
5.0 M) and MVK 24 (40 ml, 5.0 M) were manipulated
within the device (417, 455, 476 and 0 V cmK1) and the
reaction products collected in reservoir D. As a result of
employing Flow Regime A, 13.0% conversion to product 25
was obtained, this was further increased to 96.0%
conversion as a result of employing Flow Regime B
(Table 5).

To summarise, using the Michael addition as a model
reaction, we have demonstrated the ability to rapidly
optimise reactions by employing a range of flow regimes
in an EOF-based micro reactor. In addition, it must also be
noted that as a result of the increased reaction control
obtained within the micro fluidic device, no by-products
were detected; compared to batch, where a competing



Table 5. Comparison of the effect of flow regime on conversion to Michael
adduct in an EOF-based micro reactor

Product no. Conversion (%)

Flow regime A Flow regime B Flow regime C

17 56.0 95.0 —
21 15.0 34.0 100.0
23 40.0 100.0 —
25 13.0 96.0 —

Figure 8. Schematic illustrating the silica-supported bases investigated.
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reaction between the base 16 and the Michael acceptor 19
was frequently observed.44

2.4. The use of solid-supported bases for the synthesis of
analytically pure condensation products10

Due to the widespread pharmaceutical interest in the
Knoevenagel condensation (Scheme 5), we investigated
the synthesis of a,b-unsaturated compounds in an EOF-
based micro reactor. As the reactions are base catalysed, one
of the main disadvantages is that the reaction products
require purification in order to remove the organic base and
its salt. With this in mind, we proposed that by incorporating
a series of supported bases (Fig. 8) into a micro fabricated
device, product purity could be increased while simul-
taneously maintaining the advantages associated with
reaction miniaturisation. In order to evaluate the use of
supported reagents within an EOF-based system, a
miniaturised flow reactor was designed (Fig. 9). This
approach not only enabled reagents to be packed with
ease but also provided a relatively inexpensive, versatile
system. Using the set-up illustrated in Figure 9, 5 mg of
3-(1-piperazino)propyl-functionalised silica gel 26 (4.75!
10K3 mmol) was packed into a borosilicate glass capillary
(500 mm!3.0 cm) and micro porous silica frits placed at
both ends, the capillary was then placed between two glass
reservoirs. A 1:1 mixture of benzaldehyde 27 and ethyl
cyanoacetate 28 (40 ml, 1.0 M) in MeCN was placed in
reservoir A and MeCN in reservoir B (40 ml).

Application of 333 and 0 V cmK1 resulted in the mobilis-
ation of the reaction mixture through the packed bed at a
flow rate of 0.5 ml minK1. Operating the device continually
for 4.75 h (14!20 min runs) resulted in the synthesis of
0.025 g (0.124 mmol, 98.9%) of 2-cyano-3-phenyl acrylic
acid ethyl ester 29. The ‘crude’ reaction products were then
analysed by NMR spectroscopy to confirm product purity.10

The generality of the technique was subsequently investi-
gated using 4-bromobenzaldehyde 12, 3,5-dimethoxybenz-
aldehyde 30 and 4-benzyloxybenzaldehyde 31. As Table 6
illustrates, the respective condensation products 32, 33, and
34 were obtained in O95.0% conversion. In addition, we
investigated the condensation of malononitrile 35 with the
aforementioned aldehydes to afford condensation products
Scheme 5. General scheme illustrating the use of a functionalized silica gel
26, in the Knoevenagel condensation.
36 (96.9%), 37 (96.3%), 38 (97.8%) and 39 (99.7%),
respectively.

Using the synthesis of unsaturated ketone 29 as a model
reaction, we also investigated the use of other supported
bases, namely; 3-(dimethylamino)propyl-functionalised
silica gel 40, 3-aminopropyl-functionalised silica gel 41
and 3-(1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]-pyrimi-
dino)propyl-functionalised silica gel 42 (Fig. 8) whereby
99.4, 100.0 and 99.3% conversion to the desired product
2-cyano-3-phenyl acrylic acid ethyl ester 29 was observed.
Compared to standard batch techniques, the approach
described is advantageous as the supported reagents can
be recycled with ease, enabling more consistent results to be
obtained. In addition, the generation of localised concen-
tration gradients enables reactions to be driven to
completion without the need to employ large quantities of
catalyst. In summary, we have demonstrated the successful
incorporation of a series of silica-supported bases within an
EOF-based device, enabling the synthesis and characteris-
ation of eight condensation products whereby no additional
product purification was required.

2.5. Enolate alkylation

Following the successful preparation of a range of 1,3-
diketone enolates using both solution phase and solid-
supported organic bases, the next step was to evaluate the
preparation of enolates directly from ketones such as
acetophenone 15. This was firstly demonstrated using
organic peralkylated polyaminophosphazene bases (Section
2.5.1) and secondly using inorganic bases (Section 2.5.2–
2.5.3).

2.5.1. Phosphazene bases. Over the past 30 years, research
has been undertaken in order to increase the inherent
strength (pKBHC) of organic bases45 and although a few
examples are commercially available, such as heptamethyl-
isobiguanide,46 however they were not well received by
synthetic chemists.47 The field was however transformed in
the early 1990’s by Schwesinger and co-workers48,49 with
Figure 9. Schematic of the reaction set-up used for the evaluation of solid-
supported reagents, in a miniaturized system.



Table 6. Summary of the conversions obtained in a micro fabricated device
using 3-(1-piperazino)propyl-functionalised silica gel 26

Product no. Applied field
(V cmK1)

Flow rate
(ml minK1)

Conversiona

(%)

29 333 0.5 99.1
32 333 0.3 99.5
33 333 0.3 94.7
34 333 0.5 95.1
36 167 1.0 96.9
37 167 0.5 96.3
38 167 0.7 97.8
39 167 1.0 99.7

a R10 replicates were performed for each compound.

Table 8. Comparison of the proportion of by-product formed in batch and a
micro reactor for the alkylation of cyclohexanone 49

Base Conversion ratio 47:48a

Batch Micro reaction

P2-t-Bu 45 40.0:7.0 84.0:0.0
P4-t-Bu 46 15.0:40.0 N/A

a Remainder is unreacted starting material.
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the synthesis of a series of strong, uncharged bases, termed
peralkylated polyaminophosphazenes or simply phospha-
zenes (Fig. 10).50 Compared to traditional organic bases
such as diisopropylethylamine 16 and 1,8-diazabicy-
clo[5.4.0]undec-7-ene (DBU) 43, the peralkylated phospha-
zene bases demonstrate a dramatic increase in basicity, of
between 14.9 and 30.6 pKBHC units, representing base
strengths more commonly associated with inorganic bases
such as n-butyllithium 44 (Table 7).51

In order to demonstrate enolate formation within a micro
reactor, the synthesis of 2-benzylcyclohexanone 47 was
selected as a model reaction (Scheme 6). As a means of
identifying any advantages associated with the miniaturisa-
tion of this technique, the reaction was initially performed in
batch. As Table 8 illustrates, despite the fact that
2-benzylcyclohexanone 47 was successfully synthesised
Figure 10. General structure of a series of peralkylated polyamino-
phosphazenes bases.

Table 7. Comparison of base strength as a function of charge delocalization
for a range of organic bases

Base MeCNpKBHC Charge declocalisation

DBU 43 24.3 2
P1-t-Bu 26.9 5
P2-t-Bu 45 33.5 9
P3-t-Bu 38.6 13
P4-t-Bu 46 42.6 17

 

Scheme 6. Preparation of 2-benzylcyclohexanone 47 using P2-t-Bu 45.
using both P2-t-Bu 45 and P4-t-Bu 46, the reaction mixtures
were found to contain appreciable amounts of the
dialkylated product 2,2-dibenzylcyclohexanone 48. With
this in mind, we investigated the synthesis of 2-benzylcyclo-
hexanone 47 in an EOF-based micro reactor.

Using anhydrous THF as the solvent system, cyclohexanone
49 (40 ml, 0.25 M) was placed in reservoir A, P2-t-Bu 45
(40 ml, 0.25 M) in reservoir B and benzyl bromide 50 (40 ml,
0.25 M) in reservoir C (Fig. 11). The reagents were
mobilised within the device using the following applied
fields, 417, 455, 476 and 0 V cmK1 and the reaction
products collected in anhydrous THF (40 ml) at reservoir
D. Analysis of the reaction products by GC–MS illustrated
84.0% conversion to product 47 (with respect to residual
cyclohexanone 49) demonstrating a significant increase in
conversion compared to that obtained in batch (44.0%). The
technique also proved advantageous as no dialkylation
products 48 were detected when the reaction was performed
in a micro reactor. This observation is attributed to the
reduced reaction times employed in a micro reactor, i.e. the
reaction mixture is removed from the reactor and quenched
prior to the 2nd alkylation. The spatial control obtained
within such a device therefore enabled by-product for-
mation to be eliminated, enabling the synthesis of
uncontaminated products.52

In spite of the array of examples featured within the
literature, chemists remain hesitant to employ phosphazene
bases, in preparative scale reactions, due to their cost
(typically £21 gK1). To some extent, this has been
addressed by the availability of polymer-supported deriva-
tives, which enable their efficient separation and recovery
from a reaction mixture.53 Incorporation of these supported
bases into a micro fabricated device (Section 2.4) would
enable the continuous synthesis of base free reaction
products coupled with enhanced reaction control.

In summary, using the synthesis of 2-benzylcyclohexanone
47 as a model reaction, we have demonstrated significant
Figure 11. Schematic of the reactor manifold used for the synthesis of 2-
benzylcyclohexanone 47.



Figure 12. Optical microscope image of a blocked micro channel, caused
by the precipitation of an inorganic base.

   
 

Figure 13. Typical reactor manifold used for the determination of inorganic
base flow by EOF.

 

Figure 14. Schematic illustrating the reaction set-up used for moisture/air
sensitive micro reactions.
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enhancements in conversion compared to batch, i.e. 84.0%
cf. 40.0%, along with significantly enhancing product
selectivity. In addition, the use of phosphazene bases
enabled us to demonstrate the synthesis of previously
inaccessible carbanions within an EOF-based micro reactor.

2.5.2. Inorganic bases. Although we have described
numerous techniques for the preparation of enolates within
a micro reaction environment, we are yet to discuss their
preparation using inorganic bases. Again, the synthesis of
2-benzylcyclohexanone 47 was used as a model reaction
for the investigation of the following bases; lithium
bis(trimethylsilyl)amide 51, sodium bis(trimethylsilyl)
amide 52, potassium bis(trimethylsilyl)amide 53, sodium
tert-butoxide 54, potassium tert-butoxide 55, lithium tert-
butoxide 56, lithium 2,2,6,6-tetramethylpiperidine 57,
lithium diisopropylamide 58, lithium phenoxide 59, sodium
methoxide 60 and sodium ethoxide 61.

Due to their inherent ionic nature, many reagents used in
organic synthesis are largely insoluble in non-polar organic
solvents. In this case, the relative insolubility of inorganic
bases within solvents such as THF, DMF and MeCN (0.05–
1.0 M) proved problematic, as blockage formation within
the micro channels resulted in retardation of EOF (Fig. 12).
These observations were initially surprising as Skelton et
al.54 had previously demonstrated the use of NaOMe 60 in
MeOH, within an EOF-based device, for the synthesis of a
range of stilbenes. The mobilisation of NaOMe 60 was
inferred via the generation of a purple coloured intermediate
(ylide) within the micro channel and the subsequent off-line
detection of the respective stilbene ester. We however
postulate that the base was successfully mobilised as a result
of its enhanced solubility within the polar solvent system
employed. Consequently, in order to further investigate the
mobilisation of inorganic bases by EOF, a means of
ensuring greater solubility was required.

2.5.3. Enhanced base solubility using crown ethers. In
1967, Pedersen et al.55 demonstrated the complete dissol-
ution of potassium permanganate in benzene by employing
a stoichiometric quantity of the cyclic ether, 18-crown-6 62.
A phenomenon that was later attributed to the separation of
the metal ion from its associated ions, rendering the salt
soluble in the non-polar media. With this in mind, we
postulated that by solvating inorganic bases with their
respective crown ether, increased solubility could be
achieved; enabling their electro osmotic mobilisation in
solvents such as THF. In order to evaluate this approach, we
again used the preparation of 2-benzylcyclohexanone 47 in
THF as a model reaction. As Figure 13 illustrates, a solution
of cyclohexanone 49 and benzyl bromide 50 (40 ml, 1:1)
was placed in reservoir A and a solution of base and crown
ether (40 ml, 1:1) was placed in reservoir B. The reagents
were manipulated within the device using 417, 455 and
0 V cmK1 and the reaction products collected in reservoir C.
As the aim of the investigation was to rationalise the
problems associated with the mobilisation of inorganic
bases by EOF, at this stage, the detection of 2-benzylcy-
clohexanone 47 (and the respective crown ether) by GC–MS
was considered indicative of base mobilisation. Conse-
quently, conversions and optimised reaction conditions are
not provided. In accordance with the literature, 18-crown-6
62 was investigated for potassiated bases, 15-crown-6 63 for
sodiated bases and 12-crown-4 64 for lithiated bases.55

Using the aforementioned methodology, 0.5–1.0 M sol-
utions of KHMDS 53, NaOtBu 54 and KOtBu 55 were
successfully mobilised by EOF. Extension of the technique
to NaHMDS 52, LiOtBu 56 and LiHMDS 51 however,
proved problematic as over the course of the micro reaction,
the contents of reservoir B became turbid, resulting in the
partial blockage of the micro channel; an observation
attributed to decomposition of the base. In order to prevent
base decomposition, the reagent reservoirs were covered
with a series of PTFE bungs, as illustrated in Figure 14.
Using this approach, reagent turbidity was prevented,
enabling the successful mobilisation of NaHMDS 52 and
LiOtBu 56 by EOF.56 In contrast, no electrokinetic flow was
observed for LiHMDS 51; with all solutions forming a
gelatinous precipitate within the reagent reservoir and micro
channel.

Due to the widespread application of the base sodium
hydride 65, its mobilisation by EOF was also investigated,
however as NaH 65 is not strong enough to provide
complete deprotonation of cyclohexanone 49, the benzyla-
tion of phenol 66 was employed as a model reaction
(Scheme 7). Using either anhydrous THF or MeCN as the
solvent system, NaH 65 and 15-crown-5 63 (40 ml, 0.5 M)
were placed in reservoir A, phenol 66 (40 ml, 0.5 M) in
reservoir B and benzyl bromide 50 (40 ml, 0.5 M) in
reservoir C (Fig. 15). The reagents were manipulated within
the micro reactor using applied fields, 417, 455, 476 and



 
 

Figure 15. Schematic illustrating the reaction manifold used for the
synthesis of benzyloxybenzene 67.

Scheme 7. Synthesis of benzyloxybenzene 67 using NaH 65.

 

Scheme 8. Diastereoselective alkylation of 4-methyl-5-phenyl-3-propionyl
oxazolidinone 68.
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0 V cmK1 (500, 588, 769 and 0 V cmK1 when employing
MeCN) and the reaction products collected in reservoir D.
The detection of benzyloxybenzene 67 and 15-crown-5 63
was indicative of base mobilisation. In summary, as a result
of increasing inorganic base solubility, by the addition of a
stoichiometric quantity of crown ether, we have success-
fully demonstrated the electrokinetic mobilisation of six
inorganic bases and their subsequent use for the synthesis of
2-benzylcyclohexanone 47 (Table 9).

2.6. Diastereoselective alkylation11

The preparation of compounds with specific stereochem-
istry is of great interest to pharmaceutical companies as
often one enantiomer exhibits biological activity whereas
the other may be inactive or even harmful. With this in
mind, one such approach for the synthesis of enantiomeri-
cally pure compounds is the use of chiral auxiliaries.57

Based on initial observations by Skelton et al.,54 where
product stereoselectivity was found to be influenced as a
result of synthesising a series of stilbene esters in a micro
reactor, the effect on reaction diastereoselectivity was of
interest. In order to investigate the factors that affect product
diastereoselectivity, the reactions were initially performed
in batch, enabling the preparation and characterisation of
synthetic standards (Scheme 8). Using methodology
established by Evans et al.58 the enolate of 4-methyl-5-
phenyl-3-propionyloxazolidinone 68 was alkylated, using
Table 9. Mobilisation of inorganic base/crown ether complexes by EOF

Base Crown ether Applied field
(V cmK1)

EOF

KOtBu 55 18-Crown-6 62 417, 455 and 0 #
KHMDS 53 18-Crown-6 62 417, 455 and 0 #
NaOtBu 54 15-Crown-5 63 417, 455 and 0 #
NaHMDS 52 15-Crown-5 63 417, 455 and 0 #
NaH 65 15-Crown-5 63 417, 455, 476 and 0 #
NaH 65a 15-Crown-5 63 500, 588, 769 and 0 #
LiOtBu 56 12-Crown-4 64 417, 455 and 0 #
LiHMDS 51 12-Crown-4 64 417, 455 and 0 !

a Performed in anhydrous MeCN.
benzyl bromide 50, to afford diastereomers 69 and 70 in an
overall yield of 68.0% and a ratio of 85:15 (69:70) (at
K100 8C). Although Evans et al.69 report greater diastereo-
selectivities, in practise they are difficult to reproduce. With
this in mind, it was postulated that due to the excellent
thermal and mass transportation properties observed within
micro fluidic devices, product diastereoselectivity, and
reaction reproducibility, could be improved as a result of
conducting the reaction in a micro reactor.

Although many reactions have been demonstrated within
micro reactors at temperatures ranging from 4 to 300 8C,59

few authors with the exception of Yoshida60 and Schwalbe,2

report reactions performed at reduced temperatures. Using
the following experimental procedure, the synthesis of
diastereomers 69 and 70 was investigated within a pressure-
driven system; a standard solution of NaHMDS 52 (0.5 M)
in anhydrous THF was added from syringe A (50 ml minK1),
a solution of 4-methyl-5-phenyl-3-propionyloxazolidinone
68 (0.5 M) in anhydrous THF was added from syringe B
(50 ml minK1) and a solution of benzyl bromide 50 (0.5 M)
from syringe C (50 ml minK1). In order to maintain the
reactor temperature, the device was submerged within a
CO2–ether bath and the reaction products collected at room
temperature (Fig. 16). To ensure results obtained were
representative of reactions occurring within the micro
fabricated device, the reaction products were quenched
upon collection. Using this approach, the chiral enolate was
formed within the central micro channel and reacted with
benzyl bromide in the microtee, to afford diastereomers 69
and 70 in 31.0% conversion and a ratio of 94:6 (69:70). In
order to increase the conversion obtained, the flow rate was
firstly reduced to 20 ml minK1 and finally to 10 ml minK1,
resulting in an increase in conversion to 38.0% and 41.0%
respectively. Most importantly however, the observed
diastereoselectivity increased to from 94:6 to 99:1
 
  

 
  

Figure 16. Schematic of the reaction set-up used for the evaluation of
reduced temperature micro reactions.



Table 10. Effect of flow rate on product diastereoselectivity and conversion
in a pressure-driven micro reactor

Flow Rate
(ml minK1)

Conversion (%) Ratio (69:70) Decomposition
71 (%)

50 31 94:6 0
20 38 99:1 0
10 41 99:1 0
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(Table 10). Although these results represent initial
observations and currently remain unoptimised, compared
to traditional batch techniques the approach described is
advantageous as no decomposition products, 3-benzyl-4-
methyl-5-phenyloxazolidin-2-one 71 and 4-methyl-5-
phenyloxazolidin-2-one 72, were detected. We attribute
this observation to the ability to accurately control both
residence time and temperature of the reaction mixture
within the micro fluidic device.

Consequently we propose that by either increasing the
residence time within the device or reducing the reagent
concentrations, that product conversion could be further
increased. In summary, we have demonstrated a simple
technique for the diastereoselective alkylation of a metal
stabilised enolate, using a pressure-driven micro reactor at
K100 8C, whereby increased diastereoselectivity was
observed compared to batch.
3. Conclusions

In order to demonstrate the application of micro reaction
technology to chemical synthesis, the preparation and
reaction of enolates was selected as it enabled a range of
reactions to be investigated while maintaining a common
element, i.e. deprotonation followed by nucleophilic
substitution. Due to initial problems encountered with the
mobilisation of inorganic bases by EOF, the use of
preformed enolates, in the form of silyl enol ethers, was
investigated. Using this approach, a series of tetra-n-
butylammonium enolates were prepared using anhydrous
TBAF 1 and subsequently reacted to afford 1,3-diketones,
phenyl vinyl esters and b-hydroxyketones. The technique
was subsequently extended to the use of organic bases
whereby the Michael addition and alkylations were
employed as model reactions. In addition, we demonstrated
the synthesis of two carbanions using solid-supported
organic bases and their subsequent reaction in the
Knoevenagel condensation. Based on these observations,
the use of inorganic bases was reinvestigated, this time
enhancing base solubility by the addition of a stoichiometric
quantity of crown ether, resulting in their successful
electrokinetic mobilization. Inorganic bases were also
successfully employed in a pressure-driven system demon-
strating the diastereoselective alkylation of an Evans
auxiliary derivative.

In conclusion, using the preparation and reaction of
carbanions and enolates, we have demonstrated numerous
advantages associated with micro reaction technology
including; rapid reaction optimization, reduced reaction
times, enhanced conversions, reduced by-product formation
and the ability to generate reagents in-situ, whilst
demonstrating some of the challenges associated with
performing organic synthesis within micro fabricated devices.
4. Experimental procedures

4.1. Materials and methods

All materials (analytical reagent grade) were obtained from
commercial suppliers and unless otherwise stated were used
without further purification. Sodium hydride 65 (60%
dispersion in mineral oil) was washed free of any mineral
oil using n-hexane, to afford the purified reagent as a pale
grey solid. Column chromatography was performed using
Kieselgel silica gel 60 (Fluka) as the solid support and
compounds eluted using mixtures of ethyl acetate and
n-hexane of varying polarity. Thin-layer chromatography
was carried out using Kieselgel 60, HF254 aluminium
backed TLC plates (Merck), with mixtures of ethyl acetate
and hexane as eluent. Visualisation was achieved using one
of the following methods: exposure to short wave ultra
violet light (l 254 nm), or; development in an aqueous
potassium permanganate (0.5%) and sodium carbonate
(2.5%) solution, followed by heating with a hot air gun.

All NMR spectra were recorded as solutions in deuterio-
chloroform (CDCl3) using tetramethylsilane (TMS) as an
internal standard. The spectra were recorded on a Jeol
GX400 spectrometer and the chemical shifts given in parts
per million (ppm) with coupling constants in Hertz (Hz).
The following abbreviations are used to report NMR data:
sZsinglet, dZdoublet, tZtriplet, qZquartet, dtZdoublet
of triplets, mZmultiplet and C0Zquaternary carbon.
Elemental analyses were performed using a Fisons Carlo
Erba EA1108 CHN analyser. Infra-red spectra were
recorded (4000–600 cmK1) using a Perkin Elmer Paragon
1000 FT-IR spectrometer and peaks (nmax) reported in
wavenumbers (cmK1). Gas-Chromatography–Mass Spec-
trometry (GC–MS) was performed using a Varian GC (CP-
3800) coupled to a Varian MS (2000) with a CP-Sil 8 (30 m)
column (Phenomenex) and ultra high purity helium (99.999%,
Energas) carrier gas. Samples were analysed using one of the
following methods. Method A. Injector temperature 200 8C,
helium flow rate 1 ml minK1, oven temperature 50 8C for
4 min then ramped to 250 8C at 30 8C minK1, with a 3 min
filament delay. Method B. Injector temperature 200 8C, helium
flow rate 1 ml minK1, oven temperature 50 8C for 1 min then
ramped to 250 8C at 30 8C minK1, with a 3 min filament delay.
Method C. Injector temperature 250 8C, helium flow rate
1 ml minK1, oven temperature 60 8C for 1 min then ramped to
270 8C at 35 8C minK1, with a 3 min filament delay and.
Method D. Injector temperature 250 8C, helium flow rate
1 ml minK1, oven temperature 60 8C for 1 min then ramped to
270 8C at 20 8C minK1, with a 3 min filament delay. All
known compounds prepared had spectroscopic data con-
sistent with the literature.

The electroosmotic micro reactions described herein were
carried out using in-house fabricated borosilicate glass
micro reactors with channel dimensions of 350 mm (wide)!
53 mm (deep). In order to minimise the effect of pressure
gradients within the micro channels, micro porous silica
frits were placed within the channels.29 To mobilise
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reagents by EOF, platinum electrodes (0.5 mm o.d.!
2.5 cm) were placed within the reagent reservoirs and
voltages applied using a Paragon 3B high voltage power
supply (capable of applying 0–1000 V to four outputs)
(Kingfield electronics, Sheffield, UK). Automation of the
HVPS using an in-house LabVIEWe program enabled
complex sequences of voltages to be investigated. To enable
the results obtained to be applied to devices of different
dimensions, voltages are reported as applied fields (V cmK1),
i.e. voltage/channel length. Prior to commencing an
electroosmotic micro reaction, the micro channels were
filled with anhydrous solvent in order to remove air from the
micro porous silica frits and to ensure a complete circuit is
formed.

The pressure driven micro reactions were performed using a
device purchased from Micro Chemical Systems Ltd (Hull,
UK), which consisted of a two layer borosilicate glass
device with ceramic fittings (Macor) located over each of
the etched micro channels (152 mm (wide)!51 mm (deep)).
PTFE tubing (178 mm o.d.!2.5 cm (Supelco)) was attached
to the micro reactor using PEEK microtight fittings
(Upchurch Scientific); subsequent attachment to a gas-
tight syringe (Hamilton) resulted in a pressure tight
connection. In order to employ three input solutions and a
single output, a PEEK microtee (Upchurch scientific) was
incorporated into the system. The magnitude of flow was
controlled using two displacement pumps (MD-1001,
Bioanalytical Systems Inc.) capable of delivering fluid at
flow rates of 1–100 ml minK1. To monitor the progress of
both EOF and pressure-driven micro reactions, experiments
were conducted over a period of 20 min, after which the
product reservoir was analysed by GC–MS, whereby
comparison of the amount of residual starting material
enabled the progression of the reaction to be determined.
4.2. Micro-scale methodology
4.2.1. Typical procedure for an electroosmotic micro
reaction. After priming with THF, a standard solution of
‘anhydrous’ TBAF 1 (40 ml, 0.1 M) in anhydrous THF was
placed in reservoir A, a solution of benzoyl cyanide 6 (40 ml,
1.0 M) in anhydrous THF was placed in reservoir B and a
solution of trimethyl(1-phenylvinyloxy)silane 3 (40 ml,
1.0 M) in anhydrous THF was placed in reservoir C. The
reaction products were manipulated within the device by
applying an electric field to the platinum electrodes placed
in each reservoir. In this case, the following applied fields
were employed, 417, 318, 476 and 0 V cmK1. The reaction
products were collected in reservoir D, in anhydrous THF
(40 ml), over a period of 20 min and analysed off-line by
GC–MS. The progress of the reaction was subsequently
determined by calculating the proportion of starting material
converted to product (% conversion); 100% conversion to
1,3-diphenylpropane-1,3-dione 5 was observed in this case.
4.2.2. Electroosmotic flow regimes. Flow Regime A:
Application of a constant applied field is referred to as
continuous flow (unless otherwise stated this flow regime
was employed); Flow Regime B: In this case, the field is
applied for 2.5 s and no field for 5 s, the steps are
subsequently cycled over a period of 20 min; Flow Regime
C: As for Flow Regime B, with an applied field for 5 s and
no field for 10 s.

4.3. Batch reactions

4.3.1. ‘Anhydrous’ tetra-n-butylammonium fluoride 1.
Tetra-n-butylammonium fluoride trihydrate (TBAF$3H2O)
73 was dried over phosphorus pentoxide under vacuum
(10 mmHg) for 48 h to afford ‘anhydrous’ TBAF 1 as a
gelatinous, colourless solid.

4.3.2. General procedure 1: synthesis of silyl enol ethers.
The ketone in THF (2 ml per mmol) was added dropwise to
a stirred solution of LiHMDS 51 (1.1 equiv) in THF (10 ml
per mmol) over a period of 30 min at room temperature. The
resulting solution was stirred for a further 15 min prior to
the addition of chlorotrimethylsilane 74 (1.0 equiv) in THF
(1 ml per mmol). In order to remove any residual inorganic
material, the reaction mixture was concentrated in vacuo
and the residue dissolved in DCM (5 ml per mmol). The
reaction mixture was then filtered and the filtrate concen-
trated in vacuo to afford the silyl enol ether, which was
stored at K10 8C and used without further purification.

4.3.3. General procedure 2: acylation using acyl halides.
The silyl enol ether in anhydrous THF (2 ml per mmol) was
added dropwise to a stirred solution of ‘anhydrous’ TBAF 1
(0.1 equiv) and acyl halide (1.0 equiv) in anhydrous THF
(10 ml per mmol) under N2, over a period of 30 min. After
stirring for a further 30 min, the reaction mixture was
concentrated in vacuo prior to the addition of dilute NaOH
(50 ml, 0.1 M). The reaction products were extracted into
ethyl acetate (3!50 ml) and the combined organic extracts
were dried (MgSO4), prior to concentrating in vacuo. The
product was subsequently purified by silica gel
chromatography.

4.3.4. General procedure 3: acylation of using acyl
cyanides. The silyl enol ether in anhydrous THF (2 ml per
mmol) was added dropwise to a stirred solution of
‘anhydrous’ TBAF 1 (0.1 equiv) and acyl cyanide
(1.0 equiv) in anhydrous THF (10 ml per mmol) under N2,
over a period of 30 min. After stirring overnight, the
reaction mixture was concentrated in vacuo prior to the
addition of dilute NaOH (50 ml, 0.1 M). The reaction
products were extracted into ethyl acetate (3!50 ml) and
the combined organic extracts were dried (MgSO4), prior to
concentrating in vacuo. The product was subsequently
purified by silica gel chromatography.

4.3.5. General procedure 4: aldol reaction of silyl enol
ethers. The silyl enol ether in anhydrous THF (2 ml per
mmol) was added dropwise to a stirred solution of
‘anhydrous’ TBAF 1 (0.1 equiv) and 4-bromobenzaldehyde
12 (1.0 equiv) in anhydrous THF (10 ml per mmol) under
N2, over a period of 30 min. After stirring overnight, the
reaction mixture was concentrated in vacuo prior to the
addition of distilled water (50 ml). The reaction products
were extracted into ethyl acetate (3!50 ml) and the
combined organic extracts were dried (MgSO4), prior to
concentrating in vacuo. The product was subsequently
purified by silica gel chromatography.
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4.3.6. General procedure 5: Michael addition. The 1,3-
diketone in absolute EtOH (4 ml per mmol) was added to a
stirred solution of Michael acceptor (1.0 equiv) and
diisopropylethylamine 16 (2 equiv) in absolute EtOH
(5 ml per mmol) and the reaction mixture stirred overnight.
The reaction mixture was concentrated in vacuo and
subsequently purified by silica gel chromatography to afford
the respective product.

4.3.7. General procedure 6: Knoevenagel condensation.
3-(1-Piperazino)propyl-functionalised silica gel 26
(1.9 mmol N gK1, 200–400 mesh) (0.10 g, 0.1 mmol) was
added to a stirred solution of activated methylene
(1.0 mmol) and aldehyde (1.0 mmol) in anhydrous MeCN
(10 ml per mmol). After stirring overnight, the reaction
mixture was filtered and the filtrate concentrated in vacuo to
afford the respective condensation product.

4.3.8. Trimethyl(1-phenylvinyloxy)silane 3.8 The reaction
was carried out in accordance with general procedure 1
using acetophenone 15 (0.50 g, 4.13 mmol), LiHMDS 51
(0.77 g, 4.58 mmol) and chlorotrimethylsilane 74 (0.39 ml,
4.13 mmol) to give trimethyl(1-phenylvinyloxy)silane 3
(0.79 g, 98.0%) as a pale yellow oil; GC–MS retention time
(Method A) RTZ8.55 min.

4.3.9. Benzoic acid 1-phenylvinyl ester 4.8 The reaction
was carried out in accordance with general procedure 2
using trimethyl(1-phenylvinyloxy)silane 3 (0.10 g,
0.52 mmol), TBAF 1 (0.014 g, 0.05 mmol) and benzoyl
fluoride 2 (0.06 ml, 0.52 mmol) to afford benzoic acid
1-phenylvinyl ester 4 (0.12 g, 99.0%) as a pale yellow oil;
GC–MS retention time (Method A) RTZ11.36 min.

4.3.10. 1,3-Diphenylpropane-1,3-dione 5.8,61 The reaction
was carried out in accordance with general procedure 3
using trimethyl(1-phenylvinyloxy)silane 3 (0.10 g,
0.52 mmol), TBAF 1 (0.02 g, 0.05 mmol) and benzoyl
cyanide 6 (0.07 g, 0.59 mmol) to afford 1,3-diphenylpro-
pane-1,3-dione 5 (0.11 g, 98.0%) as a white solid; GC–MS
retention time (Method A) RTZ12.67 min.

4.3.11. Trimethyl(1-phenylpropenyloxy)silane 7.8,62 The
reaction was carried out in accordance with general
procedure 1 using propiophenone 75 (1.00 g, 7.48 mmol),
LiHMDS 51 (1.37 g, 8.21 mmol) and chlorotrimethylsilane
74 (1.04 ml, 7.48 mmol) to give trimethyl(1-phenylprope-
nyloxy)silane 7 (1.47 g, 96.0%) as a pale yellow oil; GC–
MS retention time (Method A) RTZ8.92 min.

4.3.12. Cyclohex-1-enyloxy(trimethylsilane) 8.8,37 The
reaction was carried out in accordance with general
procedure 1 using cyclohexanone 49 (1.00 g,
10.20 mmol), LiHMDS 51 (1.88 g, 11.22 mmol) and
chlorotrimethylsilane 74 (0.95 ml, 10.20 mmol) to afford
cyclohex-1-enyloxy(trimethylsilane) 8 (1.60 g, 93.0%) as a
pale yellow oil; GC–MS retention time (Method A) RTZ
7.40 min.

4.3.13. 2-Methyl-1,3-diphenylpropane-1,3-dione 9.8,61

The reaction was carried out in accordance with general
procedure 2 using trimethyl(1-phenylpropenyloxy)silane 7
(0.10 g, 0.48 mmol), TBAF 1 (0.013 g, 0.05 mmol) and
benzoyl fluoride 2 (0.07 ml, 0.48 mmol) to afford 2-methyl-
1,3-diphenylpropane-1,3-dione 9 (0.11 g, 96.0%) as a pale
yellow oil; GC–MS retention time (Method A) RTZ
11.67 min.

4.3.14. 2-Benzoylcyclohexanone 10.8,63 The reaction was
carried out in accordance with general procedure 2 using
cyclohex-1-enyloxy(trimethylsilane) 6 (0.10 g, 0.59 mmol),
TBAF 1 (0.0015 g, 0.06 mmol) and benzoyl fluoride 2
(0.06 ml, 0.59 mmol) to give 2-benzyloxycyclohexanone 10
(0.12 g, 99.0%) as a white solid; GC–MS retention time
(Method A) RTZ11.20 min.

4.3.15. 2-Benzoylcyclohexanone 10.8,63 The reaction was
carried out in accordance with general procedure 3 using
cyclohex-1-enyloxy(trimethylsilane) 8 (0.10 g, 0.59 mmol),
TBAF 1 (0.0015 g, 0.06 mmol) and benzoyl cyanide 6
(0.08 g, 0.59 mmol) to give 2-benzyloxycyclohexanone 10
(0.11 g, 94.0%) as a white solid; GC–MS retention time
(Method A) RTZ11.20 min.

4.3.16. 3-(4-Bromophenyl)-3-hydroxy-1-phenylpropan-
1-one 11.64 The reaction was carried out in accordance
with general procedure 4 using trimethyl(1-phenylvinyloxy)
silane 3 (0.09 g, 0.48 mmol), TBAF 1 (0.013 g,
0.048 mmol) and 4-bromobenzaldehyde 12 (0.09 g,
0.48 mmol) to afford 3-(4-bromophenyl)-3-hydroxy-1-phe-
nylpropan-1-one 11 (0.13 g, 87.0%) as a white crystalline
solid; GC–MS retention time (Method A) RTZ14.71 min.

4.3.17. 2-[(4-Bromophenyl)hydroxymethyl]cyclohexa-
none 13.65 The reaction was carried out in accordance with
general procedure 4 using cyclohex-1-enyloxy(trimethyl-
silane) 7 (0.11 g, 0.65 mmol) and 4-bromobenzaldehyde 12
(0.12 g, 0.65 mmol) to afford 2-[(bromophenyl)hydroxy-
methyl]cyclohexanone 13 (0.16 g, 94.0%) as a cream solid;
dH 1.31 (1H, m, CH), 2.33 (1H, m, CH), 1.51 (1H, m, CH),
1.71 (1H, m, CH), 1.86 (3H, m, 3!CH), 2.08 (1H, m, CH),
2.33 (1H, m, CHOH), 7.69 (2H, d, JZ6.8 Hz, Ar) and 7.74
(2H, d, JZ6.8 Hz, Ar); dC 24.8 (CH2), 27.0 (CH2), 27.7
(CH2), 30.7 (CH2), 42.6 (CH), 67.9 (CHOH), 127.5 (2!
CH), 128.6 (2!CH), 131.4 (C0), 140.4 (C0Br) and 191.1
(CO); 267 (MCC1, 15%), 266 (60), 264 (55) and 185 (100);
GC–MS retention time (Method A) RTZ12.45 min.

4.3.18. (E)-4-Acetyl-5-oxohex-2-enoic acid ethyl ester 17.
The reaction was carried out in accordance with general
procedure 5 using 2,4-pentanedione 18 (0.50 g, 5.00 mmol),
diisopropylethylamine 16 (1.29 g, 10.00 mmol) and ethyl
propiolate (0.49 g, 5.00 mmol). The reaction mixture was
concentrated in vacuo and subsequently purified by silica
gel chromatography. Elution with 7% ethyl acetate in
hexane afforded (E)-4-acetyl-5-oxohex-2-enoic acid ethyl
ester 17 (0.88 g, 89.0%) as a colourless oil. (Found C, 60.78;
H, 7.25, C10H14O4 requires C, 60.60; H, 7.12%); ymax/cmK1

1667, 1703, 1740 and 2970; dH 1.34 (3H, t, JZ7.0 Hz,
CH2CH3), 2.13 (6H, s, CH3), 4.24 (2H, q, JZ7.0 Hz,
CH2CH3), 4.24 (1H, JZ7.0 Hz, COCHCO), 5.74 (1H, d,
JZ16.9 Hz, CH) and 7.39 (1H, d, JZ16.9 Hz, CH); dC 14.3
(2!CH3), 18.5 (CH2CH3), 61.6 (CH2CH3), 61.8
(COCHCO), 125.4 (CH), 141.8 (CH), 165.4 (2!CO) and
203.5 (CO2); 199 (MCC1, 15%), 198 (27), 181 (20), 153
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(30), 124 (100) and 109 (20); GC–MS retention time
(Method B) RTZ10.21 min (trans).

4.3.19. (E)-4-Benzoyl-5-oxohex-2-enoic acid ethyl ester
21. The reaction was carried out in accordance with general
procedure 5 using 1-phenylbutane-1,3-dione 20 (0.25 g,
1.54 mmol), ethyl propiolate 19 (0.15 g, 1.54 mmol) and
diisopropylethylamine 16 (0.40 g, 3.00 mmol). The reaction
mixture was concentrated in vacuo and subsequently
purified by silica gel chromatography. Elution with 5%
ethyl acetate in hexane afforded (E)-4-benzoyl-5-oxohex-2-
enoic acid ethyl ester 21 (0.31 g, 77.0%) as a pale yellow
oil. (Found C, 69.48; H, 6.42, C15H16O4 requires C, 69.22;
H, 6.20%); ymax/cmK1 1183, 1676, 1721 and 2929; dH 1.34
(3H, t, JZ7.3 Hz, CH2CH3), 1.96 (3H, s, CH3), 4.23 (3H, m,
CH2CH3 and COCHCO), 5.47 (1H, d, JZ16.8 Hz, CH),
7.69 (1H, d, JZ16.8 Hz, CH), 7.70 (1H, m, Ar), 7.80 (2H,
m, Ar) and 7.93 (2H, m, Ar); dC 14.2 (CH3), 19.1 (CH2CH3),
60.7 (CH2CH3), 96.7 (COCCO), 125.2 (CH), 128.6 (2!
CH), 128.7 (2!CH), 129.7 (CH), 135.2 (C0), 142.9 (CH),
165.5 (CO), 195.8 (CO) and 204.2 (CO2); 261 (MCC1,
10%), 260 (15), 181 (40) and 105 (100); GC–MS retention
time (Method C) RTZ12.45 min.

4.3.20. (E)-4-Ethoxycarbonylpent-2-enedioic acid ethyl
ester 23. The reaction was carried out in accordance with
general procedure 5 using diethyl malonate 22 (0.50 g,
3.10 mmol), ethyl propiolate 19 (0.30 g, 3.10 mmol) and
diisiopropylethylamine 16 (0.80 g, 6.20 mmol). The
reaction mixture was concentrated in vacuo and sub-
sequently purified by silica gel chromatography. Elution
with 5% ethyl acetate in hexane afforded (E)-4-ethoxycar-
bonylpent-2-enedioic acid ethyl ester 23 (0.60 g, 82.5%) as
a colourless oil; dH 1.29 (9H, t, JZ7.4 Hz, 3!CH2CH3),
4.19–4.27 (7H, m, 3!CH2CH3 and COCHCO), 5.88 (1H, d,
JZ16.4 Hz, CH) and 7.28 (1H, d, JZ16.4 Hz, CH); dC 18.6
(3!CH2CH3), 61.5 (3!CH2CH3), 64.0 (COCHCO), 123.5
(CH), 143.0 (CH), 169.1 (2!CO) and 203.5 (CO2); 259
(MCC1, 5%), 258 (15), 257 (50), 255 (95), 227 (100), 212
(80), 182 (23), 167 (50), 109 (40) and 81 (15);GC–MS
retention time (Method B) RTZ10.85 min.

4.3.21. 3-Acetylheptane-2,6-dione 25. The reaction was
carried out in accordance with general procedure 5 using
2,4-pentanedione 18 (0.50 g, 5.00 mmol), methyl vinyl
ketone 24 (0.35 g, 5.00 mmol) and diisopropylethylamine
16 (1.29 g, 10.00 mmol). The reaction mixture was
concentrated in vacuo and subsequently purified by silica
gel chromatography. Elution with 10% ethyl acetate in
hexane afforded 3-acetylheptane-2,6-dione 25 (0.77 g,
91.0%) as a colourless oil; dH 2.08 (2H, dt, JZ7.0,
7.0 Hz, CH2), 2.10 (3H, s, CH3), 2.20 (6H, s, CH3), 2.46
(2H, t, JZ7.0 Hz, CH2CO) and 3.39 (1H, t, JZ7.0 Hz,
COCHCO); dC 29.3 (2!CH3), 30.0 (CH3), 37.9 (CH2), 40.5
(CH2CO), 66.9 (COCHCO), 204.2 (2!CO) and 207.1
(CO); 171 (MCC1, 5%), 170 (1), 153 (15), 128 (25), 110
(20), 95 (40) and 43 (100); GC–MS retention time (Method
B) RTZ8.79 min.

4.3.22. 2-Cyano-3-phenyl-acrylic acid ethyl ester 29.66

The reaction was carried out in accordance with general
procedure 6 using benzaldehyde 27 (0.106 g, 1.00 mmol),
ethyl cyanoacetate 28 (0.113 g, 1.00 mmol) and 3-(1-
piperazino)propyl functionalised silica gel (0.100 g,
0.10 mmol) to afford the product 29 (0.195 g, 97.0%) as a
white crystalline solid; GC–MS retention time (Method C)
RTZ6.63 min.

4.3.23. 2-Benzylcyclohexanone 47.67 Cyclohexanone 49
(0.50 g, 5.10 mmol) in THF was added dropwise to a stirred
solution of KOtBu 55 (0.63 g, 5.61 mmol) in THF (100 ml)
over a period of 30 min to afford a yellow enolate solution.
The reaction mixture was stirred for a further 15 min prior to
the addition of benzyl bromide 50 (0.61 ml, 5.10 mmol).
After stirring overnight, the reaction mixture was concen-
trated in vacuo and the residual oil dissolved in ethyl acetate
(50 ml) and washed with distilled water (50 ml). The
aqueous layer was further extracted using ethyl acetate
(2!50 ml) and the combined organic extracts dried
(MgSO4) and concentrated in vacuo. Purification was
achieved by silica gel chromatography, whereby elution
with 2.5% ethyl acetate in hexane afforded 2-benzylcyclo-
hexanone 47 (0.85 g, 89.0%) as a pale yellow oil; GC–MS
retention time (Method C) RTZ10.36 min.

4.3.24. 2,2-Dibenzylcyclohexanone 48.68 Cyclohexanone
49 (0.25 g, 2.60 mmol) in THF (10 ml) was added dropwise
to a stirred solution of KOtBu 55 (0.63 g, 5.61 mmol) in
THF (100 ml) over a period of 30 min to afford a yellow
enolate solution. The reaction was stirred for a further
15 min prior to the addition to the addition of benzyl
bromide 50 (0.61 ml, 5.10 mmol). After stirring overnight,
the reaction mixture was concentrated in vacuo and the
residual oil dissolved in ethyl acetate (50 ml) and washed
with water (50 ml). The aqueous layer was further extracted
using ethyl acetate (2!50 ml) and the combined organic
extracts and the combined organic extracts dried (MgSO4).
Purification was achieved by silica gel chromatography,
whereby elution with 20% ethyl acetate in hexane afforded
2,2-dibenzylcyclohexanone 48 (0.71 g, 85.0%) as a yellow
oil; GC–MS retention time (Method A) RTZ14.50 min.

4.3.25. Benzyloxybenzene 67.69 NaH 65 (0.13 g,
5.33 mmol) in THF (10 ml) was added dropwise to a stirred
solution of phenol 66 (0.50 g, 5.32 mmol) in THF (50 ml)
and stirred for 5 min prior to the addition of benzyl bromide
50 (0.63 ml, 5.32 mmol). After stirring overnight, the
reaction mixture was concentrated in vacuo and the residue
diluted with DCM (50 ml) prior to washing with dilute
sodium hydroxide (50 ml, 0.1 M). The aqueous layer was
further extracted using DCM (2!50 ml) and the combined
organic extracts dried (MgSO4) and concentrated in vacuo.
Purification was achieved by silica gel chromatography,
whereby elution with 11% ethyl acetate in hexane afforded
benzyloxybenzene 67 (0.70 g, 71.0%) as a pale yellow oil;
GC–MS retention time (Method A) RTZ10.14 min.

4.3.26. 4-Methyl-5-phenyloxazolidin-2-one 71.70 Diphe-
nyl carbonate 76 (10.60 g, 49.49 mmol), (1S, 2R) (C)
norephedrine hydrochloride 77 (8.44 g, 44.97 mmol) and
anhydrous potassium carbonate 78 (6.84 g, 49.49 mmol)
were stirred at 100 8C for 6 h. The reaction mixture was
subsequently cooled to 70 8C, methanol (100 ml) was added
and the mixture heated to reflux for a further 30 min. The
reaction mixture was concentrated in vacuo and subjected to
an aqueous work up. The product was dissolved into DCM
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(1!150 ml) and the organic layer washed with sodium
hydroxide (2!150 ml, 1.0 M) and hydrochloric acid (2!
150 ml, 1.0 M). The organic extract was subsequently dried
(MgSO4) and concentrated in vacuo to afford 4-methyl-5-
phenyloxazolidin-2-one 71 (5.96 g, 75.0%) as an analyti-
cally pure light brown solid, which was used without further
purification; GC–MS retention time (Method B) RTZ
8.54 min.

4.3.27. 4-Methyl-5-phenyl-3-propionyloxazolidin-2-one
68.71 n-Butyllithium 44 in hexane (4.97 ml, 2.5 M,
12.43 mmol) was added dropwise to a stirred solution of
4-methyl-5-phenyloxazolidin-2-one 71 (2.00 g, 11.30 mmol)
in THF (50 ml) under N2. The solution was maintained at
K78 8C for 30 min prior to the addition of propionyl
chloride 79 (1.96 ml, 22.47 mmol) and the reaction mixture
warmed to room temperature and stirred overnight. The
reaction mixture was concentrated in vacuo and subjected to
an aqueous work up. The organic layer was neutralised
using sodium hydrogen carbonate and the product extracted
into DCM (3!50 ml), the combined organic extracts were
dried (MgSO4) and concentrated in vacuo. Purification of
the residue by silica gel chromatography (9% ethyl acetate
in hexane) afforded the title compound 68 (2.58 g, 98.0%)
as a pale yellow gum; GC–MS retention time (Method B)
RTZ8.82 min.

4.3.28. (2 0S,4R,5S)-2-(2 0-methyl-3 0-phenylpropionyl-4-
methyl)-5-phenyloxazolidin-2-one 69.58 NaHMDS 52
(2.63 ml, 1.0 M, 2.63 mmol) was added dropwise to a
stirred solution of 4-methyl-5-phenyl-3-propionyloxazoli-
din-2-one 68 (0.50 g, 2.15 mmol) in THF (50 ml) under N2

at K78 8C, the enolate was formed over a period of 20 min
prior to the addition of benzyl bromide 50 (0.31 ml,
2.60 mmol). The reaction mixture was maintained at
K78 8C for 40 min prior to quenching with distilled water
(10 ml). The reaction mixture was concentrated in vacuo
and subjected to an aqueous work up. The reaction products
were extracted into DCM (4!50 ml), dried (MgSO4) and
concentrated in vacuo to afford a pale yellow oil.
Purification was achieved by silica gel chromatography
(10% ethyl acetate in hexane) to afford the diastereomer 69
(0.48 g, 59.0%) as a pale yellow oil; GC–MS retention time
(Method B) RTZ12.16 min.

4.4. Micro-scale reactions10

4.4.1. 2-Cyano-3-phenyl acrylic acid ester 29.66 White
solid (0.025 g, 98.9%); GC–MS retention time (Method C)
RTZ6.63 min.

4.4.2. 3-(4-Bromophenyl)-2-cyano acrylic acid ethyl ester
32.72 White solid (0.012 g, 99.5%); GC–MS retention time
(Method D) RTZ10.84 min.

4.4.3. 3-(3,5-Dimethoxyphenyl)-2-cyano acrylic acid
ethyl ester 33.73 White solid (0.011 g, 99.5%); dH 1.40
(3H, t JZ7.0 Hz, CH2CH3), 3.85 (6H, s, 2!OCH3), 4.39
(2H, q, JZ7.0 Hz, CH2CH3), 6.65 (1H, m, Ar), 7.15 (2H, m,
Ar) and 8.17 (1H, s, CH); dC 14.2 (CH3), 55.7 (2!OCH3),
62.8 (CH2), 103.4 (C0CN), 106.2 (CH), 108.6 (2!CH),
115.6 (CN), 133.1 (C0), 155.2 (CH), 161.1 (2!C0) and
162.5 (CO); 262 (MCC1, 20%), 261 (100), 189 (55), 161
(25) and 77 (10); GC–MS retention time (Method C) RTZ
8.06 min.

4.4.4. 3-(4-Benzyloxyphenyl)-2-cyano acrylic acid ethyl
ester 34. (0.021 g, 99.1%) as a cream solid (Found C, 74.51;
H, 5.77; N 4.62, C19H17O3N requires C, 74.25; H, 5.58; N,
4.56%); dH 1.39 (3H, t, JZ7.3 Hz, CH2CH3), 4.37 (2H, q,
JZ7.3 Hz, CH2CH3), 5.15, (2H, s, CH2), 7.00 (2H, d, JZ
8.7 Hz, Ar), 7.40 (5H, m, Ar), 7.99 (2H, d, JZ8.7 Hz, Ar)
and 8.17 (1H, s, CH); dC 14.2 (CH3), 62.5 (CH2), 70.4
(C0CN), 77.8 (CH2O), 99.5 (C0), 115.6 (2!CH), 124.6
(CN), 127.5 (2!CH), 128.4 (CH), 128.8 (2!CH), 133.7
(2!CH), 135.8 (C0), 154.4, (CH), 162.9 (OC0) and 163.1
(CO); 308 (MCC1, 5%), 307 (20), 91 (100) and 65 (20);
GC–MS retention time (Method D) RTZ12.35 min.

4.4.5. 2-Benzylidene-malononitrile 3666 Pale yellow solid
(0.015 g, 100%); GC–MS retention time (Method C) RTZ
5.84 min.

4.4.6. 2-(4-Bromobenzylidene)-malononitrile 37.74 Pale
yellow solid (0.035 g, 99.9%); GC–MS retention time
(Method D) RTZ9.65 min.

4.4.7. 2-(3,5-Dimethoxybenzylidene)-malononitrile 38.66

Yellow solid (0.024 g, 99.2%); GC–MS retention time
(Method C) RTZ7.50 min.

4.4.8. 2-(4-Benzyloxybenzylidene)-malononitrile 39.75

Pale yellow solid (0.024 g, 99.6%); GC–MS retention
time (Method D) RTZ11.97 min.
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Self-Supported and Clean One-Step Cathodic
Coupling of Activated Olefins with Benzyl
Bromide Derivatives in a Micro Flow Reactor**
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Stephen J. Haswell*

Electrosynthesis offers a clean and versatile method for the
generation of anion and cation radical intermediates.[1] The
addition of electrons to, or the removal of electrons from,
neutral organic substrates can be achieved under relatively
mild reaction conditions and may lead to powerful electro-
synthetic strategies. A possible role of electrosynthesis in
“green chemistry” has been highlighted by several authors,[2]

particularly in combination with the recently emerging
microreactor technology.[3a–c] Microreactors have numerous
practical advantages including safe operating, easy modula-
tion, and easy scale-up for industrial production when
compared with batch reactors.[3d,e] The combination of
electrosynthesis with microreactors has made electrochemis-
try more accessible even in the absence of electrolyte.[4]

In synthetic chemistry, C�C-bond-formation processes
are of considerable importance and new methods are
constantly sought with the aim of obtaining clean, simple,
and efficient synthetic routes. Herein, we describe a C�C-
bond-formation method based on the electro-reductive
coupling of activated olefins and benzyl bromide derivatives.
The coupling products such as 2-benzyl succinic acid dimethyl
ester are important classes of compounds owing to their utility
as intermediates in the synthesis of important targets such as
natural antibiotics,[5a] pyrrolidines,[5b] metalloproteinase inhib-
itors,[5c] inhibitors towards human leukocytes,[5d] cephalo-
taxine,[5e] and monoesters of alkylated succinic acids.[5f]

Several methods have been reported[5b,g,h] for this class of
compounds, most of which involve multi-step processes and
require the presence of metal catalysts. Alternatively, a
photochemical procedure based on electron transfer to a
photo-sensitizer has been proposed for the coupling of
methylbenzene and dimethylsuccinate,[5i] but the method
resulted in a complex mixture of reaction products. In
contrast, the process described herein is based on a clean
one-step cathodic coupling process carried out under micro-

reactor flow through conditions to generate higher yields of
products when compared with conventional synthetic meth-
ods. Considerable benefits of the novel electrochemical
process are 1) simple operation, 2) no need for chemical
reagents or electrolytes, 3) simple work-up, and 4) a surpris-
ingly high yield.

Initially, the coupling of dimethyl fumarate with benzyl
bromide was selected for study by cyclic voltammetry experi-
ments. Both dimethyl fumarate and dimethyl maleate are
known to be reduced in one-electron processes, both leading
to the dimethyl fumarate radical anions as the intermediate
followed by slow hydrodimerization.[6] The reduction of
benzyl bromide is usually found to be chemically irreversible
leading to the formation of dibenzyl products. The one-
electron reduction of benzyl bromide proceeds through the
benzyl radical intermediate. The two-electron reduction of
benzyl bromide to give a benzyl carbanion may occur at
sufficiently negative potentials, at mercury pool electrodes,[7]

or in the presence of electrophilic reagents such as protons.
Figure 1A shows typical (conventional) cyclic voltammo-
grams for the reduction of benzyl bromide (curve a), dimethyl
fumarate (curve b), and dimethyl fumarate in the presence of
benzyl bromide (curve c). The reduction of dimethyl fumarate
occurs as a reversible one-electron process. In the presence of
benzyl bromide, the peak current of the reduction wave for
dimethyl fumarate remains and the re-oxidation wave after
reversal of the scan direction completely disappears. A
complete loss of the anodic peak reveals a rapid chemical
reaction of the dimethyl fumarate radical anion with benzyl
bromide. From the peak current in Figure 1A (and based on
additional microelectrode experiments, see Supporting Infor-
mation), the process can be identified as a one-electron
process. As will be shown below, on a longer time scale during
the course of electrolysis, transfer of a second electron occurs
and is attributed to a further unidentified processes.

During the main electrode reaction, the interaction of the
primary fumarate radical anion and benzyl bromide is
believed to lead to rapid C�C coupling. The coupling,
followed by loss of bromide, occurs only if a sufficient driving
force for this process is available. The parameter DE (E1=2 ,df �
E1=2 ,bb) describes the potential difference for the reduction of
the dimethyl fumarate (df) and for benzyl bromide (bb) and is
obtained here as an approximate measure of the energy
balance in the intermolecular electron transfer. If DE
becomes too high, the energy for the C�Br bond heterolysis
will be insufficient.

Preparative microreactor electrolyses were conducted in a
flow cell (see Figure 2) to isolate and identify products by
using GC/MS as well as 1H and 13C NMR spectroscopy and to
optimize yields for the coupling of dimethyl fumarate (or
dimethyl maleate) with benzyl bromide. The solution con-
taining 5 mm dimethyl fumarate (or dimethyl maleate) and
5 mm benzyl bromide in DMF (N,N-dimethylformamide) was
continuously pumped through the cell in which two platinum
electrodes with a working area of 45 mm2 were positioned
with an inter-electrode gap of 160 mmor 320 mm. The coupling
reactions were conducted galvanostatically and product
samples were collected in a product vial for 5 min. Table 1
summarizes the conversion and product distribution for the
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range of conditions employed in this study. Both conversion
and product distribution are strongly dependent on the
electrode gap, the flow rate, and the applied current. For a
320-mm inter-electrode gap (Table 1, entries 1 and 2), 47%

and 77% conversion to the desired coupling product can be
achieved with significant homo-coupling side products. An
increase in current was found to enhance only homo-
dimerization of the olefin or benzyl bromide. For an inter-
electrode gap of 160 mm (Table 1, entries 3–7), relatively
lower voltages (4–4.4 V) were required to obtain sufficiently
high levels of conversion (> 95%). Interestingly, unwanted
dimerization of olefins was found to be less than 2% plus a
very small amount of toluene (from debromination of benzyl
bromide) and no dimerization of benzyl bromide was
detected. The best result obtained was 98% of 2-benzyl
dimethylsuccinate with only 2% of the homo-dimer tetra-
methyl butanetetracarboxylate and toluene at a flow rate of
10 or 15 mLmin�1 (Table 1, entries 5 and 6, respectively). At
higher flow rates, the possibility of homo-dimerization of the
olefin was observed (Table 1, entry 7).

This electrochemical procedure was also scaled up in a
“parallel” microreactor cell containing two equally sized sets
of electrodes. Again, dimethyl fumarate was completely
converted to give the cross-coupling product 2-benzyldime-
thylsuccinate with only 2% of olefin dimer and toluene. In
this case, a volumetric flow rate equivalent to 30 mLmin�1 (i.e.
15 mLmin�1 A 2 flow cells) was achieved, which is double the
flow rate of the single cell and hence producing twice the
quantity of the product in a given time. Other benzyl bromide
derivatives such as 4-methoxybenzyl bromide, 4-methylben-
zyl bromide, 4-bromobenzyl bromide, 4-iodobenzyl bromide,
and 1-phenylethyl bromide were also examined for coupling
reactions with dimethyl fumarate using the samemicroreactor
as that used in entry 3 in Table 1. All preparative electrolyses
gave excellent yields (94%) of cross-coupling products with
very small amount of olefin dimer and debrominated
products (Table 1, entries 8–12). The formation of bromine
due to oxidation of bromide was not observed presumably
owing to the limited overlap of diffusion layers within the flow
cell. Current efficiencies for all processes are typically 40–
50%. These data suggest that overall two moles of electrons
are consumed for each mole of product formed by electrol-
ysis. Cyclic voltammetry data (short time scale) do not show
evidence for the transfer of the second electron. However, the
time scale for the electrolysis process is different and the
second electron transfer may occur in the later stages of the
process, for example, involving solvent.

From the results obtained, it can be seen that the presence
of benzyl bromide suppresses olefin hydrodimerization,
indicating that the reaction between olefin radical anion
and benzyl bromide is fast. The neutral benzyl radical
intermediate,[4d] which is short-lived[8] and known to either
dimerize (to give bibenzyl) or to abstract a hydrogen atom to
produce toluene,[9] appears to be an unlikely free intermedi-
ate. The absence of bibenzyl and only a small amount of
toluene indicate fast direct coupling of the dimethyl fumarate
radical anion with benzyl bromide. Scheme 1 describes a
plausible reaction pathway. The mild conditions employed
during electrolysis are consistent with a one-electron pathway,
and a related transition metal complex mediated reduction of
benzyl bromide also has been shown to proceed through a
one-electron pathway.[10] However, in this particular study it is
not clear whether the final step proceeds through a second-

Figure 1. A) Cyclic voltammograms (scan rate 10 Vs�1) obtained at a
platinum disc electrode (diameter 0.5 mm) immersed in 0.1m

nBu4NBF4/DMF for: a) 3 mm benzyl bromide, b) 3 mm dimethyl
fumarate, and c) 3 mm dimethyl fumarate in the presence of 3 mm

benzyl bromide. The parameter DE when compared to the energy for
heterolytic C�Br bond fission allows the driving force for the reaction
to be assessed (see text). B) Plot of the yield of the R1–R2 coupling
product (see Table 1) versus the gap in halfwave potential for:
1) dimethyl fumarate/benzyl bromide, 2) dimethyl fumarate/4-bromo-
benzyl bromide, 3) dimethyl fumarate/1-phenylethylbenzyl bromide,
4) fumaronitrile/benzyl bromide, 5) dimethyl fumarate/4-methoxyben-
zyl bromide, 6) fumaronitrile/4-bromobenzyl bromide, 7) maleic anhy-
dride/bisbromomethylbenzene, 8) maleic anhydride/benzyl bromide.

Figure 2. Schematic representation of the C�C coupling reaction
during electrosynthesis in a microreactor. A flow of reagents through a
rectangular duct with the working and counter electrodes facing each
other results in the formation of products.
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electron transfer process or not and this will require further
study.

Further coupling reactions between fumaronitrile and
benzyl bromides as well as between maleic anhydride and 1,2-
bis(bromomethyl)benzene were investigated. Formally equiv-
alent (but more laborious and less effective) conventional
synthetic reactions have been described in the literature, for
example, a photochemical process in the presence of organ-
ometallic catalysts for the coupling of benzyl bromide with
fumaronitrile,[11] a sacrificial zinc approach,[12a] a photochem-
ical approach,[12b] and a direct Diels–Alder reaction[12c,d] for
coupling of maleic anhydride with dibromides. Interestingly,
in a flow microreactor cell excellent yields (> 93%) for
coupling of fumaronitrile and bromides (Table 1, entries 13–
15) and 84% yields for coupling of maleic anhydride and

1,2-bis(bromomethyl)benzene
(Table 1, entry 16) can be obtained.

For the proposed mechanism,
the differences between the approx-
imate reduction halfwave potentials
for the olefin and benzyl bromide,
DE, may be understood as part of a
thermodynamic cycle.[13] It is
observed that conversion is depen-
dent on the reduction potential
difference DE. For the coupling
reaction of dimethyl fumarate and
benzyl bromide with DE of 0.7 Vup
to 100% conversion can be ach-
ieved, and for the coupling reaction
of dimethyl fumarate and 4-
methoxybenzyl bromide with DE
of 1.1 V 91% conversion are
obtained at a flow rate of 15
mLmin�1 under the same conditions.
It is also observed that coupling
reactions of benzyl chloride with
dimethyl fumarate, and that of
maleic anhydride with all benzyl
bromide derivatives (DE> 1.2 V)
except 1,2-bis(bromomethyl)ben-

zene (DE= 1.1 V) fail to produce any cross-coupling prod-
ucts. The benzyl bromides are recovered unreacted. A
schematic plot of maximum yield versus DE (Figure 1B)
suggests a threshold of DE� 1.1 V for successful coupling.
This value is in approximate agreement (DE is slightly high
due to uncertainty in half wave potential for the benzyl
bromide reduction) with the value expected for dissociation
of the C�Br bond: DE= 0.85 V (the gas phase bond energy
for benzyl bromide is Do = 82 kJmol�1).[14]

We have demonstrated that clean microreactor-based
electrosyntheses in the absence of supporting electrolyte are
feasible even with very simple cell geometries. The height of
the microfluidic cell and the flow rate have been shown to be
crucial for the minimization of unwanted side products and
optimization of yields. More work will be required for a better
understanding of the spatial distribution of reagents, the
electron transfer process in microreactor systems, as well as
for the optimization and scale up of processes in the
microreactor cell. For an energy-efficient use of microreactor
electrosynthesis, the resistive losses during electrosynthesis
will need further investigation and better electrode designs
may help in optimizing the efficiency of the process. It is very
likely that clean one-step electrosynthetic coupling processes
in microfluidic reactors are applicable for a wider range of
reactions.

Experimental Section
Cyclic voltammetric (CV) experiments were carried out with an
Autolab PGSTAT30 system in a conventional three-electrode cell and
in the presence of supporting electrolyte. A Pt disc (diameter
0.5 mm), a Pt wire, and a silver wire (both diameter 0.1 mm) were
used as the working electrode, the counter electrode, and the

Table 1: Data for the preparative electrolysis of activated olefins in the presence of benzyl bromides in a
micro flow cell without intentionally added supporting electrolyte.[a]

No. I [mA] Olefin R2-Br Flow Conv. [%][b] Distribution [%]
R1 R2 [mL min�1] R1-R2 others[c]

1 0.6 dimethyl maleate benzyl 20 47 89 11
2 1.5 dimethyl maleate benzyl 20 77 70 30
3 0.6 dimethyl maleate benzyl 10 100 98 2
4 0.6 dimethyl maleate benzyl 15 100 98 2
5 0.6 dimethyl fumarate benzyl 10 100 98 2
6 0.6 dimethyl fumarate benzyl 15 100 98 2
7 0.6 dimethyl fumarate benzyl 20 100 94 6
8 0.6 dimethyl fumarate 4-methoxybenzyl 10 100 94 6
9 0.6 dimethyl fumarate 4-methylbenzyl 10 100 94 6

10 0.6 dimethyl fumarate 4-bromobenzyl 10 100 99 1
11 0.6 dimethyl fumarate 4-iodobenzyl 10 100 99 1
12 0.6 dimethyl fumarate 1-phenylethyl 10 100 98 2
13 0.5 fumaronitrile benzyl 10 100 96 4
14 0.5 fumaronitrile 4-methylbenzyl 10 100 93 7
15 0.5 fumaronitrile 4-bromobenzyl 10 100 95 5
16 0.3 maleic anhydride dibromide 10 82 84 16[d]

[a] Olefin 5 mm, halide 5 mm, solvent DMF; the electrode gap is 320 mm for entries 1 and 2, and 160 mm
for entries 3–16. [b] Conversion was determined based on the quantity of olefin before and after reaction
using n-decane as an internal standard. [c] Other products result from dimerization of olefin and
debromination of benzyl bromides; no dimerization of benzyl bromides is detected except for entry 2.
[d] Other side products are 1,2-dimethylbenzene and 2-methylbenzyl bromide.

Scheme 1. Plausible mechanistic reaction pathway for the C�C
coupling process.
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reference electrode, respectively. For preparative microreactor elec-
trolyses, a Harvard PHD 2000 syringe pump was used to pump the
reaction solution containing olefin (5 mm) and benzyl bromide (5 mm)

in DMF without the addition of electrolyte through the microreactor
cell in which two platinum foil electrodes with a working area of
45 mm2 were positioned with an inter-electrode distance of 160 mm
and 320 mm.[4d] All reactions were conducted galvanostatically and
product samples were continuously collected 5 times and each run
took 5 min. Reactions were analyzed by GC (Shimadzu GC-17 A,
FID, column CPSIL8) using decane as an internal standard. The
replicate analysis shows RSD less than 5%. The products were also
identified using 1H and 13C NMR spectroscopy (Jeol GX400) in
CDCl3 as well as mass spectrometry (Varian 2000).
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Self-Supported and Clean One-Step
Cathodic Coupling of Activated Olefins
with Benzyl Bromide Derivatives in a
Micro Flow Reactor Currently coupled : A clean microreactor-

based electrosyntheses in the absence of
supporting electrolyte is demonstrated
and shown to feature very simple cell
geometries. As exemplified for the cou-
pling reaction of various olefins with

benzyl bromides, the height of the
microfluidic cell and the flow rate are
crucial for the minimization of unwanted
side products and optimization of yields
(see picture).
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Clean and selective oxidation of aromatic alcohols using
silica-supported Jones’ reagent in a pressure-driven flow reactor

Charlotte Wiles, Paul Watts* and Stephen J. Haswell

The Department of Chemistry, Faculty of Science and the Environment, The University of Hull, Cottingham Road,

Hull HU6 7RX, United Kingdom

Received 18 April 2006; revised 12 May 2006; accepted 24 May 2006
Abstract—By exploiting the high surface to volume ratio obtained within continuous flow reactors, we are able to oxidise selectively
an array of primary alcohols to either the aldehyde or carboxylic acid, depending on the flow rates employed, demonstrating a
degree of reaction control unattainable in traditional stirred reactors.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. Schematic illustrating the flow reactor used for the selective
oxidation of primary alcohols.
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The selective oxidation of primary and secondary alco-
hols to aldehydes and ketones is a fundamental synthetic
transformation1 that can be achieved using a plethora of
reagents; of these, chromium(VI) reagents are among
the most efficient. The synthetic utility of the technique
is however often marred by concomitant over-oxidation,
leading to the formation of complex reaction mixtures.
In addition, chromium(VI) based reagents are largely
viewed as being undesirable, due to the generation of
toxic residues and acidic waste-water. To address the
problem of chromium contamination, numerous sup-
ported analogues have been developed enabling the
spent oxidising agent to be filtered from the reaction
products;2 in addition, the use of a co-oxidant enables
the oxidising agent to be recycled.3 The complete re-
moval of such materials from reaction products can,
however, prove problematic due to mechanical degrada-
tion of the support as a result of prolonged stirring/agi-
tation. In addition, the use of solid-supported oxidising
agents can require long reaction times4 and elevated
reaction temperatures,5 whilst being low-yielding.6

With this in mind, continuous flow reactors have found
use as powerful synthetic tools enabling operational
flexibility, reduced reaction times and system automa-
tion, resulting in a technique that is suitable for both
high-throughput synthesis and lead generation. The
main drawback of the technique, however, is how to
purify the reaction products prepared in continuous
0040-4039/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tetlet.2006.05.157
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flow systems. By coupling the advantages associated
with solid-supported reagents with those of flow reac-
tion methodology, the problems associated with reagent
321

Scheme 1. Schematic illustrating the oxidation of benzyl alcohol 1 to
afford benzaldehyde 2 and benzoic acid 3.
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Figure 2. Gas chromatograms and mass spectra illustrating the products synthesised in (a) a stirred batch reactor, (b) a flow reactor operated at
650 ll min�1 and (c) a flow reactor operated at 50 ll min�1.

Table 1. Summary of the results obtained for the oxidation of an array of primary alcohols, using silica-supported Jones’ reagent 4, in a flow reactor

Entry Primary alcohol Flow rate
(ll min�1)

Product distribution

Aldehydea (%) Carboxylic acida (%)

1 Benzyl alcohol 1 650 100 (99.1)b 0
50 0 100 (99.6)

2 3,5-Dimethoxybenzyl alcohol 650 100 (99.5) 0
50 0 100 (99.3)

3 4-Bromobenzyl alcohol 650 100 (99.0) 0
50 0 100 (98.3)

4 4-Chlorobenzyl alcohol 650 100 (99.3) 0
50 0 100 (99.4)

5 4-Cyanobenzyl alcohol 650 100 (98.5) 0
50 0 100 (99.0)

6 Methyl-4-formylbenzyl alcohol 650 100 (99.2) 0
50 0 100 (99.6)

7 4-Methylbenzyl alcohol 650 100 (99.2) 0
50 0 100 (95.6)

8 4-Benzyloxybenzyl alcohol 650 100 (99.5) 0
50 0 100 (99.8)

9 4-Aminobenzyl alcohol 650 100 (100) 0
50 0 100 (99.8)

10 4-Dimethylaminobenzyl alcohol 650 100 (99.3) 0
50 0 100 (99.6)

11 Biphenyl-4-yl methanol 650 100 (99.7) 0
50 0 100 (99.5)

12 (5-Nitrothiophen-2-yl)-methanol 650 100 (99.8) 0
50 0 100 (99.7)

13 2-Benzyloxybenzyl alcohol 650 100 (99.7) 0
50 0 100 (99.8)

14 2-Naphthalen-2-yl-methanol 650 100 (99.9) 0
50 0 100 (99.9)

15 4-Acetylbenzyl alcohol 650 100 (99.8) 0
50 0 100 (99.8)

a n = P15.
b The number in parentheses represents the % isolated yield.

5262 C. Wiles et al. / Tetrahedron Letters 47 (2006) 5261–5264
recovery/recycle are readily overcome enabling the
continuous synthesis of compounds in both high purity
and excellent yield.
Building on our recent syntheses of analytically pure
a,b-unsaturated compounds7 and dimethyl acetals in
continuous flow reactors,8 we report herein the prelimin-



Table 2. Summary of the results obtained for the oxidation of
secondary alcohols, using silica-supported Jones’ reagent 4, in a flow
reactor

Entry Secondary alcohol Conversiona

(%)
Yieldb

(%)

1 1-Phenylpropan-1-ol 100 100
2 1-Phenylethanol 100 100
3 1-(4-Aminophenyl)ethanol 100 98.8
4 Diphenylmethanol 100 99.6
5 1-(4-Iodophenyl)ethanol 100 99.6
6 1-(4-Nitrophenyl)ethanol 100 100
7 1-(4-Hydroxyphenyl)ethanol 100 99.3
8 1-Phenylbutan-1-ol 100 100
9 1-(4-Methylphenyl)ethanol 100 99.5

10 1-(4-Bromophenyl)ethanol 100 99.2
11 1,3-Diphenylpropan-1-ol 100 100
12 1-(4-Chlorophenyl)ethanol 100 99.0
13 Cyclopentanol 100 99.2
14 Cyclohexanol 100 100
15 2-Methylcyclohexanol 100 99.7

a n =P15.
b Flow reactor operated at 650 ll min�1.
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ary results obtained for the selective oxidation of pri-
mary (and secondary) alcohols in a pressure-driven flow
reactor (Fig. 1).

As Scheme 1 illustrates, when a primary alcohol 1 is oxi-
dised, precautions must be taken to ensure that the de-
sired aldehyde 2 is not further oxidised to the
corresponding carboxylic acid 3. In practice, this can
be achieved by distillation of the aldehyde as it forms,
this technique is however restricted to molecules of
low molecular weight.

We therefore proposed that by conducting the reaction
in a continuous flow reactor, where the residence time
of a reagent can be carefully controlled, selective oxida-
tion of the primary alcohol could be achieved. In addi-
tion to the obvious advantage of enhanced product
selectivity, in the case of acidic oxidants, such as Jones’
reagent (H2CrO4), the use of silica-supported analogues
proves advantageous as heavy metal contamination of
the product is avoided, as even in its reduced form,
the chromium residues are retained by the support.9 Un-
like previous examples where EOF-based flow reactors
have been employed,10 due to solvent incompatibilities
with the supported oxidising agent 4,� a simple pres-
sure-driven system was constructed.

In order to perform a flow reaction, 0.150 g
(0.150 mmol) of silica-supported Jones’ reagent 4 was
packed into a borosilicate glass flow reactor (0.3 cm
(i.d.) · 3.0 cm (length)) and a solution of benzyl alcohol
1 (0.01 M in DCM) pumped through the reactor, using a
syringe pump (Harvard Apparatus), at the desired flow
rate. The reaction products were collected from the reac-
tor outlet at 1 min time intervals and analysed by GC–
MS (number of samples (n) = P15). After chromato-
graphic analysis, the reaction products were combined,
concentrated in vacuo, the ‘crude’ product dissolved in
CDCl3 and analysed by NMR spectroscopy; all known
compounds prepared had spectroscopic data consistent
with the literature. In order to confirm product purity
and reagent 4 stability, the reaction products were also
analysed by ICP-MS; whereby 66.9 · 10�5% w/w Cr
was detected in all samples.

As Figure 2b illustrates, when operating the flow reactor
at 650 ll min�1, providing a reagent residence time of
9.7 s,11 over-oxidation to benzoic acid 3 was successfully
prevented and quantitative conversion of benzyl alcohol
1 to benzaldehyde 2 was obtained.

Interestingly, when the reactor was operated at
300 ll min�1 (residence time = 21 s), the reaction prod-
ucts contained a mixture of unreacted starting material
1, benzaldehyde 2 and benzoic acid 3, replicating the
�When the flow reactions were performed using water, acetonitrile,
tetrahydrofuran or diethyl ether as the reaction solvent, chromium
release was observed (determined by a distinct orange colouration of
the product stream). In comparison, when performing the reaction in
dichloromethane, no colouration of the reaction products was
observed (confirmed by ICP-MS analysis of the product stream,
66.9 · 10�7% w/w Cr).
lack of reaction control exhibited in the stirred, batch
reactor (Fig. 2a). However, by further reducing the flow
rate to 650 ll min�1 (residence time = P126 s), quanti-
tative conversion to the carboxylic acid 3 was observed
(Fig. 2c). Having demonstrated the ability to synthesise
selectively either benzaldehyde 2 or benzoic acid 3 in
excellent yield and purity (Table 1), the reaction was re-
peated using an array of substituted primary alcohols.
As illustrated in Table 1, excellent selectivity was ob-
tained for all primary alcohols investigated; impor-
tantly, no functional group incompatibilities were
observed.

In order to demonstrate the versatility of the aforemen-
tioned methodology, a series of secondary alcohols was
subsequently oxidised within the flow reactor. As Table
2 illustrates, in all cases, quantitative conversion of the
alcohol to the respective ketone was observed, affording
all products in excellent yield and purity; again no sub-
strate dependancy was observed.

Finally, the oxidation of aliphatic primary alcohols (C2–
C8) was investigated; however, in all cases leaching of
oxidising agent from the silica support was observed
(indicated by colouration of the reaction products), an
observation that was attributed to an increase in the
polarity of the reactant stream, compared to that ob-
served for the primary aromatic alcohols. Consequently,
this particular supported oxidising agent is limited to the
oxidation of aromatic alcohols in a flowing system; this
could however be overcome by the use of covalently
bound oxidising agents.

Owing to the unique reaction conditions obtained as a
result of incorporating supported reagents into continu-
ous flow reactors, we have demonstrated the ability to
oxidise selectively an array of primary alcohols to their
respective aldehydes (residence time = 9.7 s) or carbox-
ylic acids (residence time = 126 s), depending on the
flow rate employed (Table 1).
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Using this approach, we have successfully synthesised 15
aromatic aldehydes and their respective carboxylic
acids, along with the oxidation of 15 secondary alcohols;
in all cases, excellent yields and product purities were
obtained, irrespective of functionality (Table 2).

In conclusion, the strategy employed herein provides a
route to product selectivity and system reproducibility
that is unobtainable in traditional stirred or shaken
reactors. With these factors in mind, further investiga-
tions are currently underway within our laboratories
to explore the use of co-oxidants, enabling the solid-sup-
ported oxidising agent to be recycled.
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Research Article

A microfluidic-based system for analysis of
single cells based on Ca21 flux

A microfluidic format-based system has been developed for in situ monitoring of the
calcium flux response to agonists using Chinese hamster ovary (CHO) cells. The assay
is based on measuring the fluorescent intensity of the calcium-sensitive indicator,
Fluo-4 AM, and was performed in a modified glass chip channel, whose surface was
functionalised using a silanisation method with 3-aminopropyltriethoxysilane (APTS)
(enabling the cells to be immobilised on the channel surface). CHO cells calcium flux
response was measured for different agonists over a range of concentrations. Cells
and reagents were introduced into the chip in a continuous flow as a series of plugs in a
given sequence.

Keywords: Calcium flux / CHO K-1 cells / Fluorescent measurement / Microfluidics /
Lab-on-a-chip DOI 10.1002/elps.200600390

1 Introduction

The development of miniaturised microfluidic systems for
chemical and/or biochemical analysis based on the so-
called ‘Lab-on-a-Chip’ concept has witnessed consider-
able growth over the last decade [1–5]. Such micro-
systems represent the ability to ‘shrink’ conventional
bench chemical systems to a size of a few square centi-
metres with major advantages of speed, performance,
integration, portability, sample/solvent quantity, automa-
tion, hazard control and cost. These merits are important
for a variety of applications in analytical chemistry, bio-
chemistry, clinical diagnosis, medical chemistry and
industrial chemistry [6, 7]. Consequently, numerous
micro-total analysis systems (m-TAS) and microreactor
systems have been developed, and many more are cur-
rently under investigation [4].

Currently, the on-chip analysis of biological systems is
attracting great interest with particular emphases being
placed on the manipulation of cells and cell-based analy-
ses [8–17]. Among the variety of cell-based bioassays
that are possible, methods for determining calcium flux
have been popular (calcium being an important cellular
messenger [12, 18] whose mechanistic pathways have
been intensively studied in pharmacology [19–25]). The

calcium flux assay is normally carried out by measuring
the change in light intensity of a calcium-sensitive fluo-
rescent dye which is preloaded into the cell [26]. Visible
light-excitable indicators are commonly used, which
generally exhibit a few tens- to a hundred-fold increase in
fluorescence emission intensity upon binding Ca21, with-
out a significant shift in wavelength [26].

In this study, a new format of microfluidic-based system
has been developed for the in situ monitoring of Chinese
hamster ovary (CHO) cell’s calcium flux response to ago-
nists by measuring the fluorescent intensity of the cal-
cium-sensitive indicator, Fluo-4 AM. The modification of
the chip channel surface using a silanisation method,
enabled CHO cells to be immobilised on the channel sur-
face for in situ fluorescence monitoring of their response
to different agonists present at a range of concentrations.

2 Materials and methods

2.1 Microfluidic chip fabrication

Figure 1 shows the chip used which consists of a circular
chamber with two inlet channels and one outlet channel.
The depth for all the channels was 50 mm, with a width of
150 mm. The diameter of the analysis chamber was
600 mm, providing a total working volume of 0.0141 mL.

The microchip was produced according to published
procedures [27, 28] with minor adaptations. Briefly, the
channel network was fabricated based on a photolitho-
graphic fabrication method. The channel network was
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Figure 1. (a) Example of chip with tubing and on–off valves connected, and (b) outline of chip channel network.

first designed using AutoCAD LT 2005 drawing software
(Autodesk, Farnborough GU14 6FG, UK). A film negative
of the desired fluidic network was then prepared by a
commercial photo mask manufacturer (J. D. Photo Tools,
Oldham OL8 1EZ, UK) to form the optical mask. B-270
glass photolithographic plates (thickness of 3 mm) coated
with a thin chromium metal mask layer, plus an upper
layer of positive photoresist, supplied by Telic (Telic
Company, Valencia, CA, USA), were used for channel
network fabrication. With UV exposure, the pattern of
interconnecting channels was transferred from the optical
mask to the photoresist layer which was then developed
and removed, together with the chromium layer, to reveal
the channel areas of glass to be etched. The channels
were etched using a mixture of 1% w/w HF and 5% w/w
NH4F in water at 657C for 15 min, resulting in an etch
channel network with a depth of 50 mm.

The base plate containing the etched channel network
was sealed by thermally bonding an upper glass plate
(also 3 mm thick) containing predrilled holes (diameter
1.5 mm) in order to link the ends of the channels with
tubing. The upper plate was aligned with the channel ge-
ometry. Bonding was aided by placing a 90-g block of
stainless steel on the upper plate.

2.2 Microchannel surface modification

To carry out cell-based bioassay at the single cell level,
the immobilisation of cells at the desired location is
important. The most commonly used method to either
improve or prevent the adhesion of cells on the substrate

is to coat the substrate surface with appropriate agents
[29]. In this experiment, the glass microchannel surface
was treated with a solution of 2% v/v 3-aminopropyl-
triethoxysilane (APTS) (99%, Sigma-Aldrich Company
Ltd, Dorset, UK) in acetone in the presence of a trace
(0.1%) of water (which was sufficient to catalyse the sur-
face modification process). The modification was carried
out by continuously flowing APTS solution through the
channel at a flow rate of 10 mL/min for 10 min at room
temperature. The microchannels were then rinsed by
continuously flowing distilled water at a flow rate of 20 mL/
min for 5 min and dried by blowing N2 through the channel
network. It has been reported that the chemical reaction
between the glass surface and the silanisation reagent
allows amino groups to be linked by covalent bonds to
the silicon atoms of the glass, leaving the glass surface
positively charged, which in turn enhances the adhesion
of cells which are generally negatively charged [29].

2.3 Cell culture and assay reagents

CHO-K1 (Chinese hamster ovary, Cricetulus griseus)
cells were supplied by ATCC/LGC Promochem (ATCC®

No. CCL-61™, LGC Promochem, Middlesex, UK). The
cells were cultured routinely in DMEM/F-12 medium
without L-glutamine (Cat. No. 21331–020, Invitrogen Ltd.,
Paisley, UK), which was supplemented with fetal bovine
serum (Cat. No. 16000–044, Invitrogen Ltd.) to a final
concentration of 10%, and L-glutamine (Cat. No. 25030–
032, Invitrogen Ltd.) to a final concentration of 4 mM. An
incubator was used at 377C supplying 5% CO2. The
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concentration of cells used in loading the chips during
this experiment was in the range of 7.56106 cells/mL.

A wash solution consisting of a modified Tyrodes buffer
was used to wash the cells and to prepare the dye labelling
and test solutions. The Tyrodes buffer was composed of
145 mM NaCl, 2.5 mM KCl, 10 mM HEPES, 10 mM D-glu-
cose and 1.2 mM MgCl2. CaCl2 (99.5%, BDH AnalaR,
150 mM dissolved in Tyrodes buffer) and probenecid
Sigma; (98%, 0.834 M dissolved in 1 M NaOH aqueous
solution) were then added to Tyrodes giving final con-
centrations of 1.5 mM and 2.5 mM for CaCl2 and probene-
cid, respectively. The dye labelling solution was made by
adding Fluo-4 AM solution (1 mM Fluo-4 AM in DMSO,
Invitrogen Molecular Probes, F14217) into wash solution
giving a final concentration of 2 mM. Ionomycin test solu-
tions were made by adding ionomycin stock (1 mM in
DMSO) into wash solutions for desired concentrations.
Ionomycin was obtained from Calbiochem (Cat.
No. 407952, Calbiochem of EMD Biosciences, San Diego,
CA, USA) and DMSO from Sigma-Aldrich (99%, P/N.
D2650). The UTP (uridine triphosphate) test solutions were
made by adding UTP stock (1 mM dissolved in ddH2O) into
wash solutions for desired concentrations. UTP was
obtained from Sigma-Aldrich (90%, P/N. U6875).

2.4 Instrumentation and image analysis

An Axiovert S100 inverted microscope (Carl Zeiss, Hert-
fordshire, UK) using both transmission and fluorescent
optics coupled with a monochrome CCD digital camera
(C4742–95–12NRB, Hamamatsu Photonics, Hertford-
shire, UK) was used to obtain both conventional micro-
graphs and digital videos of the microchip. An AQM
Hamamatsu ORCA I software (Kinetic Imaging, Notting-
ham, UK) was used for image acquisition and analysis. By
selecting areas (cells) in successive video images, a light
intensity profile versus time was obtained. Since the
excitation and emission wavelengths of Fluo-4 AM were
494 and 516 nm respectively [26], a Chroma blue filter set
(P/N. 11001, Chroma Technology Corp, Rockingham,
USA) was selected which consisted of an Exciter D470/
40, an Emitter E515LP and a beam splitter Dichroic
495DCLP.

Two KDS 200 syringe pumps (KD Scientific Inc., Holliston,
MA, USA) were used to deliver cells in suspension and
test solutions. ETFE (ethylene tetrafluoroethylene) poly-
mer tubing with an inner diameter of 250 mm (P/N. 1529),
on–off valves (P/N. P-782) and appropriate fittings and
connectors, all obtained from Upchurch (Upchurch Sci-
entific Inc., Oak Harbor, WA, USA), were used for plumb-
ing to link the chip and the syringes.

3 Results and discussion

3.1 Labelling and loading cells on chip

Labelling ofcells with a fluorescentprobe isnormally carried
out by suspending cells in a labelling solution for a pre-
determined period of time. In this study, after centrifugation
and washing with the wash solution for removing the media,
cells were resuspended in 1 mL of the 2 mM Fluo-4 AM
labelling solution and kept at room temperature in the dark.
After about 30 min, it was found that adequate fluorescent
Ca21 probes had been taken into cells for detection.

Labelled cells were loaded on chip by introducing a plug
of cells contained in the labelling solution which was in-
serted and carried by a stream of wash solution (30 mL/
min) into the chip. Once a steady state of cell stream was
obtained in the circular chamber area, all the three on–off
valves (Fig. 1a) were closed at the same time. This
allowed cells to settle down and become immobilised on
the channel surface of the chip after a period of 30 min at
room temperature in the dark.

It was noted that this procedure allowed cells to be dis-
tributed evenly on the bottom of the chamber where they
remained due to electrostatic forces (Fig. 2a). It was also
observed that the cell attachment on surface was strong
enough to resist the shear force produced by flowing in
either the wash solution or test solution at a flow rate of
5 mL/min.

It should be noted that, in microfluidic systems with cells
attached on the surface, some level of flow rate optimi-
sation is required since it can clearly influence the envi-
ronment around the cells and may cause them to be
washed off the surface due to shear stress effects. At
slow flow rates, the low linear velocity will require longer
time periods for the reagent to completely fill the circular
chamber. As a result, cells in different positions within the
chamber will experience exposure to reagents at signifi-
cantly different times. Increasing flow rates in order to
shorten the fill time will, however, increase the shear
stress effect experienced by the cells, which in turn may
affect their physical and/or biochemical behaviour [30].
Shear stresses are generally measured as the ratio of the
shearing force to the area over which it is applied. For the
etched channels which have an approximately rectan-
gular crosssection [28], the shear stress under laminar
flow conditions can be expressed as [30–32]

t ¼ 6mQ

wd2 (1)

where t is the shear stress in dyne/cm2, m is the fluid vis-
cosity in dyne?s?cm22 or poise, Q is the volumetric flow
rate in cm3/s and w and d are the flow path width and
depth in cm, respectively.
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Figure 2. CHO cells loaded on chip in (a) bright-field view and (b) fluorescent view.

When the system was operated at a flow rate of 5 mL/min,
the time for the fluid to fill the circular chamber was esti-
mated to be 0.17 s, subjected to an assumption of plug
flow conditions. By using Eq. (1), the shear stress was
determined to be in the range of 13.9 dyne/cm2 (at both
the inlet and outlet channels) dropping to 3.5 dyne/cm2 (at
the largest crosssection of the chamber). Since only a few
cells were close to the channel entrance/exit, most of the
cells in the central area of the chamber were subjected to
a relatively low shear stress (less than 10 dyne/cm2) at
which no significant effects were expected [30].

3.2 In situ monitoring of calcium flux response

After the cells were immobilised on the chip, the stimula-
tion reagent (ionomycin or UTP) was introduced into the
chip at a flow rate of 5 mL/min via the reagent inlet chan-
nel. The video recorder was started at the same time with
a scan rate of one frame/s under the fluorescent condi-
tions. Figure 2b shows a snap of the fluorescent image
where a weak transmission light was also applied for a
better visibility of the channel network.

Upon the introduction of the ionomycin solution, an
increase in the fluorescent intensity for almost all cells
present was observed. Fluorescent signals were record-
ed and plotted versus time. Ten cells were selected ran-
domly over the view filed for data acquisition (Fig. 3). It
should be noted that the fluorescent curves have been
normalised for comparison. It can be seen that the fluo-

rescent intensity achieved its maximum and then
declined gradually. A similar trend was found for both
ionomycin concentrations of 20 mM (Fig. 3a) and 160 mM
(Fig. 3b), except that the peak height and the time needed
for reaching the peak were different.

It has been reported previously that the calcium indicator,
Fluo-4 AM, exhibits a relatively high fluorescence emis-
sion and the fluorescent intensity is proportional, within a
certain range, to the concentration of Ca21 which results
from the cells’ response to a variety of stimuli [24, 26]. In
this case, when the commonly used calcium flux-evoking
stimulus was introduced, it triggered the so-called store-
regulated calcium uptake (SRCU) process [12, 33–35].
When ionomycin permeated into CHO cells it caused
cells to release Ca21 from internal stores into the cytosol
and the released Ca21 would quickly combine with the
calcium indicator, Fluo-4 AM. The reason for the signal
decline following its maximum is unclear, although it is
possible that an efflux of Ca21and/or the calcium indicator
from the cell may occur, which in turn will reduce the flu-
orescent signal observed in the cell [36].

It was also observed that of the 50 cells in the view field
(Fig. 2), ca. 10% did not show significant calcium flux re-
sponse to the stimulation, suggesting that ca. 90% of the
cell population were viable under the conditions used.
The data shown in Fig. 3 were based on the calcium flux
response from ten responding cells and the average re-
sponse is shown as the black solid curve in Fig. 3. An
error range of 610% of the average is also shown in the
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Figure 3. Fluorescent intensity as a function of time when ionomycin at two concentration levels of (a) 20 mM and (b)
160 mM was introduced into a chip by continuous flow. The black solid curve in the middle shows the average fluorescent
intensity of ten cells, while the other two thick solid curves define the error range of 610% of the average.

figure (the two red solid curves). It can be seen that for
both ionomycin concentrations there were about two out
of ten cells beyond the defined error range. This obser-
vation indicated that the proposed method can give a
reasonably reliable statistical analysis based on signal cell
measurements. The analysis also showed that a small
number of cells, ten in this case, can still provide a statis-
tic result with reasonable confidence, 90%, which is likely
to be improved if more cells are analysed.

To ensure an even concentration distribution of the
reagent over the circular chamber is achieved within a
short time period (estimated to be approximately 0.17 s at
a flow rate of 5 mL/min), the flow pattern was examined by
flowing in a fluorescent dye solution (10 mM resorufin
aqueous solution) via the reagent inlet channel. It was
observed that the solution was distributed over more than
90% of the chamber area within 200 ms, where the lowest
concentration point was close to the entrance of the cell
inlet channel (about 100 mm away from the entrance).
Based on Fick’s law [37], a water molecule takes approx-
imately 500 ms to cross a distance of 50 mm (where
the self-diffusion coefficient of water at 257C is
2.3061029 m2/s) [38], suggesting that the fluidic compo-
nent will become homogeneous in the chamber within
one second.

3.3 Effects of varying agonist concentration

Using the same in situ monitoring method under identical
fluidic conditions, the effect of agonist concentration on
calcium flux was examined at different ionomycin con-
centration levels. The results are illustrated in Fig. 4. It can

be seen that with higher agonist concentrations the cor-
responding fluorescent intensity became notably higher.
The relationship between the calcium flux response and
the agonist concentration is also plotted (inset in Fig. 4).

A four-parameter logistic model has frequently been used
in biochemical and biomedical studies for the correlation
between stimulation and response [39–43]. This model
was also used for fitting the experimental data shown in
Fig. 4.

y ¼ A� D

1þ ðx=CÞB
þ D (2)

where y is the calcium flux fluorescent response (arbitrary
unit) and x is the stimulant agonist concentration (mM). A
and D are the lower and upper asymptotes, B is the slope
of the curve and C is the central point of the linear portion
of the curve. By fitting the experimental data to the four-
parameter logistic model, the best-fit of the four parame-
ters have been found to be 269.4, 1.9, 67.1 and 5762.2,
respectively. It is believed that the four parameters in this
model are related to certain physical and/or biochemical
factors in the process [41], and as such the model is
commonly used to obtain the IC50 or EC50 values in drug
testing (IC50 represents the concentration of a drug that is
required for 50% inhibition in vitro, whereas EC50 repre-
sents the plasma concentration required for obtaining
50% of a maximum effect in vivo [44]. However, to define
the correlation in this system, further study is required.

It was also observed that different times were required to
reach the maximum fluorescent intensity for different
concentration stimuli, whilst a higher concentration of

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com



5098 X. Zhang et al. Electrophoresis 2006, 27, 5093–5100

Figure 4. Average fluorescent
intensity as a function of time for
five ionomycin concentrations,
and (inset) the relationship be-
tween the fluorescent intensity
peak height and concentration
where the solid curve is the
best-fit using a four-parameter
logistic model.

ionomycin gave a faster response. This was due to the
effect of agonist concentration on both mass transfer (as
diffusion into or within the cell) and/or its interaction within
the cell. With a higher agonist concentration, the overall
reaction was accelerated. This acceleration can, in turn,
result in the release of calcium in a shorter time frame.

3.4 Comparison of effects of different agonists

It has been reported that the addition of UTP can also
elicit rapid increases in Ca21 in CHO cells and this was
attributed to calcium mobilisation from intracellular stores
and calcium entry across the plasma membrane [21]. In
this study, using the same procedure as for the ionomycin
test, a UTP solution with a concentration of 80 mM was
used to measure the calcium flux response. Figure 5
shows the comparison of the two agonists at the same
concentration measured under identical conditions. It can
be seen that both curves show a similar trend, except that
the UTP gave a stronger stimulation than ionomycin. It
has been reported that UTP could induce calcium flux
responses similar to ionomycin [45] although the cellular
reaction mechanism was thought to be different [46].

Since it is of interest to investigate the effect from different
stimuli simultaneously or in a given sequence [45–47], the
proposed microfluidic-based system could provide the
possibility to apply different stimulation test solutions to a
selected area of cells in a controllable manner, i.e., simul-
taneously or as a series of plugs in a given sequence

without mechanically disturbing cells. Future studies will
investigate both (i) the historical effects of having pre-
viously exposed the cell to other agonists, on any given
response, being measured; and (ii) longer term effects
due to the mechanical effects of flow (shear-stress) on
stretch receptors within the CHO cell.

4 Concluding remarks

The proposed microfluidic-based format for in situ mon-
itoring of calcium flux in CHO cells has been shown to
give rapid response to two agonists, namely ionomycin
and UTP, by measuring the fluorescent intensity of the
calcium-sensitive indicator, Fluo-4 AM. The chip channel
surface was modified using a silanisation method
enabling CHO cells to be immobilised through electro-
static affinity on the channel surface for further analysis.
Since the microfluidic-based system allowed reagents to
be introduced into the chip in a continuous flow format, it
exhibited the ability of introducing different stimulation
test solutions as a series of plugs in a given sequence
without mechanically disturbing the immobilised cells. In
addition, the microscope-based imaging system allowed
measurements to be carried out on single cells but due to
statistical limitations a mean of ten cell results was used in
this study. On the other hand, there are some limitations
associated with this system. For example, it can only be
used for examining cells over a short time period (min-
utes) in order to minimise the loss of the specific signalling
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Figure 5. Comparison of cal-
cium flux response to ionomycin
and UTP.

ability. During the image acquisition, the position of the
specific cell needs to remain stationary. Furthermore, as a
general requirement, a robust system needs a reasonably
high level of automation.
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A microfluidic based device has been developed for the continuous separation of polymer

microspheres, taking advantage of the flow characteristics of systems. The chip consists of an

asymmetric cavity with variable channel width which enables continuous amplification of the

particle separation for different size particles within the laminar flow profile. The process has been

examined by varying the sample inlet position, the sample to media flow rate ratio, and the total

flow rate. This technique can be applied for manipulating both microscale biological and colloidal

particles within microfluidic systems.

1. Introduction

The development of miniaturized micro chemical systems

based on the so-called ‘‘Lab-on-a-Chip’’ concept has witnessed

an explosive growth over the last decade.1–3 Such micro

systems represent the ability to ‘‘shrink’’ conventional bench

chemical systems to a size of a few square centimetres with

major advantages of speed, performance, integration, port-

ability, sample/solvent quantity, automation, hazard control,

and cost. These merits are important for a variety of

applications in analytical chemistry, biochemistry, clinical

diagnosis, medical chemistry and industrial chemistry.4,5 New

research fields of microfluidics, microreaction technology,

micromixing, microheat exchanging and microseparation have

now spun off from conventional chemistry and chemical

technology. As a result, numerous micro-total-analysis-sys-

tems (m-TAS) and micro reactor systems have been developed,

and more are still under investigation.3

Sorting and separating of microparticles and biological cells

has been an area of particular interest to a number of

industrial and academic research groups as it represents an

important step in many chemical and biological processes. A

range of techniques have been reported for the separation of

such particles which have included mechanical sieving,

sedimentation, and so-called elution-based separation.6–9 The

mechanical sieving and sedimentation methods are generally

used to separate relatively large particles (.1 mm), whilst

elution-based techniques allow separation of particles in a

smaller size range. Examples of those techniques include

hydrodynamic chromatography, size exclusion chromatogra-

phy and electrophoretic techniques. In addition, field-flow

fractionation (FFF) which is based on the introduction of an

external force field has attracted some recent interest in the

field of microfluidics. Since this method was pioneered by

Giddings in 1960’s,7 it has been used to separate a range of

samples including polymers, biological macromolecules, syn-

thetic and environmental particles, and living cells.8 This

technique has been proved being efficient and also flexible for

different reagents by choosing appropriate external force

fields, and new methods based on the same principle are still

being developed.6 In recent years, alongside the continuing

development of miniaturized total analytical systems (m-TAS)

and micro reactor systems, effort has been made to separate

micro-litre sample amounts of suspensions of particles and

cells in Lab-on-a-Chip micro devices.9–15 Most of the studies

involved the use of external force fields including dielectric

(polarisability),9 acoustic,10 magnetic,11 thermal,12 optical13,14

and centrifugal15 forces. Clearly, the requirement of external

forces increases the complexity of the device and may limit the

application for some specific reagents such as biological

samples. Consequently, researchers have been paying attention

to the development of physical methods (without external

forces) by making use of the laminar flow profile inside

microchannels.16–19 In these systems, particles are carried by

the laminar flow stream and the designed flow profile along

the microchannel can be used to enhance the separation

further.

In this study, we develop a new format of microfluidic based

device for the continuous separation of microspheres. The chip

consists of an asymmetric cavity with a variable channel width

which enables continuous amplification of the separation of

particles in different sizes along the laminar flow profile. The

main design and operation parameters of the process have

been examined.

2. Experimental

2.1. Materials

Water was purified by reverse osmosis and by passage through

a Milli-Q Reagent Water System (Millipore, Watford, UK).

Polystyrene latex microspheres with diameters of 10 mm and

25 mm were manufactured by Alfa Aesar, A Johnson Matthey

Company (Ward Hill, MA, USA), and were supplied as

2.5 wt% dispersion in water. HISTOPAQUE1-1119, supplied

by Aldrich (Poole, Dorset, UK), was a solution containing

aDepartment of Chemistry, The University of Hull, Hull, United
Kingdom HU6 7RX. E-mail: S.J.Haswell@Hull.ac.uk;
Fax: +44 (0) 1482 466410; Tel: +44 (0) 1482 465469
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polysucrose and sodium diatrizoate, adjusted to a density of

1.119 g cm23. This medium was generally used to separate a

range of viable mononuclear cells from the plasma by

centrifugation which facilitates the mononuclear cells to form

a distinct layer at the plasma-HISTOPAQUE1 interface.20 In

this study Histopaque1-1119 was used to adjust the fluid

density to minimize the microparticles sedimentation during

flowing. The fluid media was prepared by mixing water with

Histopaque1-1119, which was calculated to produce a desired

density of 1.05 g cm23 to match the polymer particle density.

2.2. Microdevice design and fabrication

Fig. 1 shows the outline of the chip design. The channel

network consists of an asymmetric cavity with 3 inlet and

3 outlet channels. The key parameters for the chip design are

shown in the figure. The depth for all the channels was 68 mm.

The microchip was fabricated according to published proce-

dures21 with minor adaptations. The chip consisted of a

polymer sheet with microchannels fabricated on the surface

and a glass sheet to act as a cover plate.

To fabricate the channels a silicon mould was first

constructed onto which the polydimethylsiloxane (PDMS)

was poured and cured. The silicon mould was fabricated using

the inductively coupled plasma (ICP) STS2 process. A silicon

wafer was first cleaned in acetone for 10 min with ultrasonica-

tion and then rinsed under a stream of de-ionised water for

5 min followed by drying under a stream of nitrogen. The

wafer was then spin-coated with a layer of adhesion promoter

(hexamethyldisilane, HMDS), followed by coating AZ4562

positive tone photoresist at 4000 rev min21 for 30 s resulting in

about 6 mm thick polymer film. The wafer was baked at 90 uC
for 120 s, and once cooled, the photoresist layer was patterned

by a 25 s exposure to a photomask. The channel network

patterns was thus transferred into he photoresist.

In all cases, the photomask, a negative photo film, was

produced by drawing the channel designs using AutoCAD

(Autodesk, Farnborough, Hampshire, UK) software and then

transferring onto to a polyester film. After exposure, the wafer

was developed in AZ400K developer solution (1 : 4 v/v in

water) for approximately 2 min and rinsed in water. Once

dried under a stream of nitrogen, the exposed silicon was

etched under the following conditions: SF6, 130 sccm; C4F8,

85 sccm; O2, 10 sccm; APC, 74%; pressure, 33 mTorr; power,

600 W coil, 12 W platen; temperature, 20 uC, which gave an

etch rate of 2.2 mm min21.

After etching, the remaining photoresist was stripped in

acetone, and then the silicon wafer was mounted onto to a

glass support to improve its robustness. Finally, the silicon

mould was silanized by placing the wafer in a petri dish with a

few drops of HMDS overnight in order to aid the removal of

the moulded PDMS sheet.

In order to make a moulded PDMS sheet, PDMS (Sylgard

184 Silicone Elastomer, manufactured by Dow Corning,

Midland, Michigan, USA) was mixed in a 1 : 10 v/v ratio of

curing agent to base oligomers and poured over the silicon

mould. This was left for 1 h to allow the sample to degas, and

was then baked in an oven at 75 uC for 2 h. Once cooled the

PDMS structure was peeled away from the mould. Fluid

access holes were then punched through the PDMS sheet

(thickness: 4 mm) with a modified gauge 21 syringe needle,

resulting in interconnect holes with a diameter of approxi-

mately 500 mm. The chips were then cleaned in ethanol with

ultrasonication for 5 min followed by a rinse in water and

drying under a stream of nitrogen. The cross section of the

micro channels produced using this method has been found to

be nearly rectangular.21

To seal the microfluidic structure, a glass cover plate

(thickness: 1.5 mm) was bonded to the PDMS sheet. Before

bonding both the PDMS and glass were exposed in the ICP

Fig. 1 Micrograph of the chip design and the channel network which is fabricated on a PDMS sheet with 6 interconnect holes, and the PDMS

sheet is bonded to a glass cover.
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system for 10 s (power, 100 W coil, 5 W platen; 100% O2,

100 sccm; APC, 91. 5%; pressure, 80 mTorr). After exposure,

the two surfaces were brought into contact and were allowed

to rest to enable bonding to proceed, and the device was ready

for use.

2.3. Instrumentation and image analysis

An Axiovert S100 inverted microscope (Carl Zeiss, Welwyn

Garden City, Hertfordshire, UK) using transmission optics

coupled with a monochrome CCD digital camera (Hamamatsu

C4742-95-12NRB) was used to obtain both conventional

micrographs and digital videos of the microchip which was

placed horizontally on the microscope stage above the

objective lens. Thus, the look direction in all the images

obtained from this microscope is from the bottom of the

microfluidic chip. The microscopic video images were then

analyzed using IrfanView software. By tracking a particle in

successive video images a velocity vector was obtained. Two

KDS 200 syringe pumps (KD Scientific Inc., Holliston, MA,

USA) were used to deliver the media and the sample

containing microparticles. PEEK polymer tubing and con-

nectors (Upchurch Scientific Inc., Oak Harbor, WA, USA)

were used for plumbing to link the chip and the syringes.

3. Results and discussion

3.1. Flow characterisation

Whilst flow characteristics within channels with given channel

widths under pressure driven flow has been intensively studied,

the flow pattern and velocity profile within an asymmetric

cavity still need to be characterised in order to demonstrate the

separation principle and optimise the operation conditions.

This was carried out by flowing media containing particles

within the cavity at a given flow rate, and then tracking the

flowing particles in successive video images taken at given time

intervals (100 ms).

Fig. 2 shows the polymer microspheres (dia. 10 mm) flowing

in the asymmetric cavity when the particles were carried by

media and introduced via the middle inlet, with no additional

fluid flow from either the left or right inlet. The input flow rate

was maintained at 1.375 ml min21. It can be seen that the

particles were dispersed evenly within the media, in which they

were flowing. To visualise the flow pattern five particles

(marked in Fig. 2 (a)) were tracked as they progressed within

the cavity producing results illustrated by Fig. 2 (b). It should

be noted that the co-ordinate shown in the figure (and

thereafter) are in accordance with that in the original digital

image where the origin is at the top-left corner. From Fig. 2 (b)

it can be seen that, as expected, the flow pattern in general

follows the cavity shape. Specifically, when the particles were

flowing in the x direction, the distance between them was

increased across the y direction. This observation is indicative

that particles can be separated within the asymmetric cavity

based on the nature of the laminar flow field, given the

appropriate particle position at the cavity entrance. The

unique feature of this separation is its continuous amplifica-

tion along the cavity, which suggests that a high resolution of

separation can be reached.

Focused on the five particles chosen, the behaviour of the

flow velocity within the cavity was also examined, and a flow

velocity profile was obtained by locating each particle at a

given time. Fig. 2 (c) shows that when the five particles are

assumed to start flowing at the same time and position, and the

time interval between the dashed lines is 100 ms. The main

features of the flow velocity profile can be summarized as

follows:

(i) The flow velocity decreases along the cavity, which is

reflected by the reducing distance between the dashed lines.

This decrease in the linear flow velocity is mainly due to the

increase in the cross section area as it becomes wider along the

flow direction;

(ii) A deformed symmetric parabolic flow velocity profile

was created under pressure driven flow conditions, where the

fluid/wall boundary velocity tends to be zero and the velocity

maxima is obtained in the channel centre. This is generally in

line with the observation obtained in a symmetric cross section

channel.22 However, the two sidewalls in the asymmetric cavity

are neither symmetric nor in parallel, and it is this irregularity

that results in the parabolic flow velocity profile to be

deformed;

Fig. 2 Polymer microspheres (dia. 10 mm) flowing, carried by the media within the asymmetric cavity (a) where five particles are chosen, marked

with different symbols accordingly for obtaining the flow pattern (b), and the flow velocity profile (c) by tracking particles in successive video

images. Two solid curves define the cavity area.
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(iii) The deformation of the parabolic flow profile was

pronounced along the cavity, a fact that was likely to be

related to the development state of the flow profile. Generally,

when the fluid enters a channel or pipe it needs a certain time

period to develop the flow field because of the ‘‘entrance

effect’’23 mainly caused by the sudden change of the channel

geometry. Once developed, a parabolic velocity profile is

obtained in the case of a symmetric straight channel. As can be

seen in the asymmetric cavity, the cavity geometry is

continuous changing that the flow within the entire cavity is

underdeveloped, or continuously developing. As a result, the

parabolic feature becomes more significant with flowing

towards the wider area.

3.2. Effects of particle sample inlet positions

As discussed above, as the particles of different sizes contained

in a stream of media were placed in appropriate positions in

the flow field they can be separated continuously following the

flow profile, thus the initial entry position of the particle is

important for separation. Fig. 3 diagrammatically shows the

principle of the separation at the entry section where a

relatively narrow stream of media containing particle mixture

is introduced along the left sidewall and the rest channel is

occupied by media without particles. When the left side stream

is narrow, all of the particles can be forced to flow along the

channel sidewall. In that case, particles in different sizes are

passively placed in different distances between the spheres

centre and the sidewall according to their diameters. This

distance difference also forces the particles into different

flowing tracks; the smaller being close to the sidewall and

the larger, farther away, which consequently initialises the

separation. While the laminar flow continues within the horn-

shape cavity the separation is further amplified.

Fig. 4 (a) shows an example micrograph taken during the

separation where the media containing particles was intro-

duced via the left inlet at a flow rate of 1 ml min21 and the

media without particles via the middle and right inlets at a

total flow rate of 2.75 ml min21 in total. It can be seen that the

particles were flowing within the laminar flow field in different

tracks according to their sizes and were being separated

continuously along the flow direction. It also shows that the

flow pattern, flow velocity and separation effect are all agreed

with that described and discussed previously for the expected

observations.

Yamada et al.17 has studied the particle separation based on

a different principle within a chip with a suddenly enlarged

channel linked to a much narrower neck, which suggested that

the ‘‘pinched’’ entrance section is then key to the separation

results. In contrast, in our study, it was not necessary for the

entrance channel to be small as long as the fluid stream that

contains the particle mixture was narrow enough to position

the particles at a different distance from the sidewall.

Based on the analysis and observation, the separation

principle should also apply when the particle-containing media

is introduced via the right inlet along the smaller curved

sidewall. In this case, the flowing track which carries the

smaller particles is expected to be close to the sidewall

(Fig. 4 (b)). In contrast, when the particle-containing media

enters the cavity via the middle inlet while the media without

particles are flowing along both sides, this separation effect

was lost (Fig. 4 (c)).

To quantitatively compare the effect of the inlet positions of

the particle sample, a relatively large number of particles were

analysed statistically to obtain their position in y direction

when they passed across the detection line, the dashed line

Fig. 3 The principle of the particle separation.

Fig. 4 Micrographs of the separation process when (a) the media with particles was introduced from the left inlet whilst the media without

particles entered via both middle and right inlets, (b) the media with particles was introduced from the right inlet whilst the media without particles

entered via both middle and left inlets, and (c) the media with particles was introduced from the middle inlet whilst the media without particles

entered via both left and right inlets. The dashed line (x = 1277.3 mm) shows a reference for detection.
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shown in Fig. 4. The results are summarized in Table 1, which

shows that the best separation was obtained when the particle

sample was introduced via the left inlet. An average distance of

201 mm between large and small particles was created when

they passed across the reference line (x = 1277.3 mm). The right

inlet introduction of the particle sample can also result in

separation but to a much lesser extent. As discussed above, this

was mainly due to the relatively smaller change of flow field

compared to that near the big curved sidewall. No significant

separation was found when the particle sample was delivered

through the middle inlet.

3.3. Effects of varying flow rate ratio

It has been demonstrated that a narrow stream of particle-

containing media is essential to initialise the separation by

placing the particles in different flow tracks according their

sizes. That can be created by changing the channel width of the

asymmetric cavity entrance (which is impractical once the chip

is fabricated). An operational way to reach this condition is to

change the flow rate ratio, i.e., the flow rate of the media

containing particles compared to the flow rate of the media

without particles. This variation of flow rates in turn changes

the effective width of the stream of particle-containing media.

Table 2 summarizes the results obtained for a range of flow

rate ratios between 0.250 : 1 and 0.875 : 1 when the particle

sample was introduced via the left inlet and the media without

particles was delivered via both middle and right inlets. The

overall flow rate of the three streams was kept at a constant of

3.75 ml min21. The flow rate of the media containing particle

sample was varied from 0.75 to 1.75 ml min21 while the other

two inlets were controlled in a range of 3.0 to 2.0 ml min21 in

total. The average separated distance between large and small

particles was plotted as a function of flow rate ratio in Fig. 5.

It can be seen that the separation was significantly affected by

the flow rate ratio. In general, a better separation was obtained

when the flow rate ratio was decreased. That effect was

enhanced when the ratio was below 0.4 : 1, which was reflected

on the dramatic increase in the average distance between the

big particles and the smalls.

By varying flow rate ratios, R, the width of the particle

carrier stream, Wcarr, is altered according to the following

equation.

Wcarr~
R

1zR
Wchan (1)

where Wchan is the entrance channel width of 87 mm. As can be

seen from Fig. 5, there is a critical flow rate ratio of 0.4 : 1

which corresponds to the carrier stream width of 24.86 mm.

This is in good agreement with the larger particle diameter of

25 mm, suggesting that a minimum particle-containing stream

width, which is equal to the big particle diameter, should be

maintained in order to obtain a separation.

It was also observed that the flow rate ratio had a more

significant effect on the small particles travelling distance in y

direction. When the width of the particle-containing stream

Table 1 Comparison of separation results for particles introduced via different inlets

Distance from upper sidewalla/mm

Left inlet Middle inlet Right inlet

d10b d25c d10b d25c d10b d25c

Mean/mm 1227.7 1026.7 649.3 614.1 141.4 298.2
Range (¡)/mm +169.9 +57.9 +106.5 +122.5 +113.0 +128.7

2159.0 2175.2 2235.2 2113.8 2110.6 2174.7
Separationd/mm 201.0 35.1 2156.7
a Particles distance from the small curved sidewall in y direction when passing across the reference line (x = 1277.3 mm) shown in Fig. 4.
b Particles in a diameter of 10 mm. c Particles in a diameter of 25 mm. d Average distance between d10 and d25 particles when passing across
the reference line.

Table 2 Comparison of separation results for different flow rate ratios (0.250 : 1–0.875 : 1) of media with particles to media without particles

Distance from upper sidewall/mm

0.250 : 1 0.364 : 1 0.500 : 1 0.667 : 1 0.875 : 1

d10 d25 d10 d25 d10 d25 d10 d25 d10 d25

Mean/mm 1283.3 807.9 1381.7 1180.8 1268.2 1145.0 1130.1 1029.0 1097.3 1014.4
Range (¡)/mm +136.7 +62.8 +169.9 +57.9 +98.3 +33.0 +338.5 +101.1 +505.4 +125.3

2131.5 290.5 2159.0 2175.2 261.4 224.5 2214.0 284.1 2254.6 279.0
Separation/mm 475.3 201.0 123.1 101.1 83.0

Fig. 5 Average separated distance between big and small particles as

a function of flow rate ratio.
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was increased, the small particles contained in that stream also

spreaded in a wider area compared to the larger ones, which

again was reflected on changes in both the small particles

distance from the lower sidewall and their covering range (see

the maximum and minimum ranges in Table 2).

3.4. Effects of total flow rates

At a constant flow rate ratio of 0.364 : 1 (media with particles

relative to media without particles) while the particle sample

was introduced via the left inlet, the effect of varying total flow

rate was also examined. The total flow rate was controlled at

three levels of 2.80, 3.75 and 5.60 ml min21. The results are

compared in Table 3.

It can be seen that the influence of the total flow rate on the

separation was insignificant, which indicated that the flow

profile remained unaltered with the change of total flow rates

under the experimental conditions. Thus, a higher total flow

rate can be operated to obtain a high throughput without the

cost of separation efficiency. This observation is in line with

that obtained by Yamada et al.17

It was also interesting to note from Table 3 that the large

particles were moving towards the large circle sidewall. This

was reflected by an increase in the distance to the small circle

sidewall, from 1009.7 to 1068.7 mm, when the total flow rate

was increased from 2.813 to 5.625 ml min21. The change was

likely due to the centrifugal effect with a higher velocity flow

along the curved cavity which, however, still needs more

investigation.

4. Conclusions

A microdevice has been designed and fabricated with an

asymmetric cavity. This device has been used to separate

polymer microspheres of two sizes, 10 and 25 mm. The process

is based on the microfluidic profile within the asymmetric

cavity, which can amplify the separation in a continuous

manner along the flow profile. The results showed that the

introduction of the particle sample via the left inlet along the

large circle sidewall gave the best separation. It was also found

that a narrower stream width of particles gave a better

separation which can be obtained by varying the flow rate

ratio, but a minimum particle-containing stream width equal

to the large particle diameter should be maintained in order to

obtain a reasonable separation. No significant effect of total

flow rate on the separation result was observed which however

suggested that a higher sample throughput is reachable.

This technique can in principle be applied for manipulating

both microscale biological and colloidal particles within

microfluidic systems.
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This study demonstrates the importance of the hydrody-
namic environment in microfluidic systems in quantitative
cellular assays using live cells. Commonly applied flow
conditions used in microfluidics were evaluated using the
quantitative intracellular Ca2+ analysis of Chinese hamster
ovary (CHO) cells as a model system. Above certain
thresholds of shear stress, hydrodynamically induced
intracellular Ca2+ fluxes were observed which mimic the
responses induced by chemical stimuli, such as the
agonist uridine 5′-triphosphate tris salt (UTP). This effect
is of significance given the increasing application of
microfluidic devices in high-throughput cellular analysis
for biophysical applications and pharmacological screen-
ing.

Cell-based assays have been performed in a variety of sectors
in the life sciences, particularly those associated with biotechnol-
ogy and the pharmaceutical industries. Many cellular assays use
intact cells to obtain functional information on cell signaling
pathways as well as kinetic data related to drug absorption,
metabolism, and toxicity. In recent years there have been rapid
developments in cell-based assays in microfluidic systems, par-
ticularly in the area of lab-on-a-chip, enabling the efficient analysis
of complex biological phenomenon within microscale systems.1

Clearly, the generation of quantitatively reliable information on-
chip, which is a true reflection of the cell’s response to a drug or
an analyte, remains an important challenge within the biophar-
maceutical industry.

To date, microfluidic devices have been constructed to study
either single-cell or population responses to a variety of factors
such as exposure to agonists, electrical stimulation, or variations
in the solution composition that may be quiescent or flowing. In
general, hydrodynamic forces (or shear stresses) are more
significant within microfluidic systems,2 compared to open qui-
escent microtiter plates. Several studies have already shown that

shear stress can have a range of effects dependent on both the
cell type and the local hydrodynamic environment.3-7 For example,
the severity of shear stress can influence the metabolism of
hepatocytes3 and the morphology and metabolism of shear-
sensitive endothelia cells.6,7 Outside of the microfluidic environ-
ment shear stress has also been found to modulate ion channel
(i.e., K+, Ca2+) activation in mechanosensitive cell types, such as
endothelial cells8 and bone cells.9 Furthermore, it has been
observed that Ca2+ flux is modulated in artificially constructed
bilayers by changes in shear stress.10 This latter observation
suggests that similar variations in Ca2+ flux may exist even for
cell types that are generally regarded as non-mechano-sensitive,
when they are subjected to the fluid flow regimes found in
microfluidic devices where moderate to high shear stresses can
readily exist.

The importance of having an understanding of the fundamental
reasons behind variations in cellular-based Ca2+ flux can be
appreciated since Ca2+ is generally regarded as a universal
intracellular messenger, regulating a diverse range of processes,
such as gene transcription, muscle contraction, and cell prolifera-
tion,11 with localized changes reported in a variety of diseases.12

As a consequence, Ca2+ measurement is now one of the most
important validation assays in high-throughput drug screening in
the pharmaceutical industry.13 To date, however, there has only
been limited published work on the measurement of intracellular
Ca2+ in microfluidic or lab-on-a-chip systems, with examples of
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such work focusing on excitable chondrocyte cells14,15 and the
myocyte cells.16-18 Fundamental studies to evaluate on-chip
intracellular Ca2+ analysis as a reliable method for general
biophysical and pharmacological screening applications are less
well represented in the literature, especially when a non-mechano-
sensitive cell type is used.

In order to ascertain whether Ca2+ fluxes are induced when
non-mechano-sensitive cells are subjected to different shear
stresses in a microfluidic environment, we conducted a quantitative
evaluation of variations in Ca2+ flux within Chinese hamster ovary
(CHO) cells (generally regarded as a non-mechano-sensitive cell)
immobilized from a loaded cell suspension. Here, immobilized cells
differ from adherent cells in that the latter are cultured and then
spread over a substrate. One pragmatic reason for immobilizing
the cell within the channel is that the process fixes its position,
thereby helping with signal tracking (intracellular Ca2+ levels will
change in both space and amplitude over fast time scales11).

This Ca2+ flux was measured using the Ca2+ sensitive fluores-
cence indicator, and experiments were performed within a
platform comprising a microfluidic manifold clamped to a prepre-
pared substrate. This allowed the manifold to be sterilized and
substrates chemically modified prior to integration. The particular
silane and collagen surface modifications described below were
found to provide an effective means to both immobilize cells on-
chip and maintain their viability.

MATERIALS AND METHODS
Cell Culture. All cell culture media and serum were supplied

by Invitrogen Corporation. The CHO cell line was supplied from
GSK. CHO cells were cultured in 25 cm2 tissue culture flasks at
37 °C in a humidified atmosphere with 5% CO2/95% air. The cells
were incubated in DMEM/F12 medium supplemented with 10%
fetal calf serum and 4 mM L-glutamine. All chemicals were
supplied by Sigma Limited (Poole, U.K.), unless otherwise
indicated.

Cells were grown to near confluence in the culture flasks and
then suspended with 0.05% trypsin-EDTA solution. The concen-
tration of suspended cells was determined using a hemeocytom-
eter, before being introduced into the microfluidic chip. The
viability of cells was determined using the 0.4% trypan blue
solution. An average measurement of the percent viable cells in
four randomly selected fields of view was used as a measure of
cell viability.

Cell Loading and Immobilization. Cells in suspension at a
concentration of about 2.5 × 106 cells/mL were pumped into a
microfluidic channel at a flow rate of 1 µL/min. Once in the
channel, they were left undisturbed for 30 min to allow attachment
to the channel surface. Subsequently, unattached cells were
washed away at a flow rate of 1 µL/min. Adhesion experiments
were performed to investigate the density of attached cells over
a range of shear stresses, starting at low flow rates and then
increasing. During a given measurement, a continuous flow was

maintained for 2 min, during which time the chip was imaged in
situ. This was followed by a 1 min quiescent period, before
retesting the cells at a higher flow rate (inducing progressively
higher shear stresses). In all cases, the maximum Reynolds
number was less than 0.1, indicating that flow was laminar in
nature.

Images were taken at the center of the channels, away from
the side walls, to ensure the full development of the flow profile.
Cell number and morphology in the field of view were recorded
in real time using bright-field phase contrast microscopy. Cell
densities attached on the surfaces were determined by dividing
the number of cells left in the field of view after each step by the
surface area of the field of view.

Intracellular Ca2+ Flux. In order to quantitatively evaluate
the intracellular Ca2+ level, a well-established fluorescence inten-
sity measurement using Fluo-4 AM Ca2+ indicator dye was
employed in this study.19 This involved labeling cells with the dye
and subsequently monitoring any change in fluorescence intensity
as the cells responded to shear stress.

Cell Labeling. The Ca2+ fluorescent dye solution comprised 2
µM Fluo-4 AM (Invitrogen Molecular Probes) in a Tyrode buffer.
The Tyrode buffer was prepared from a stock containing 145 mM
NaCl, 2.5 mM KCl, 10 mM HEPES, 10 mM D-glucose, 1.2 mM
MgCl2, pH 7.4. Final concentrations of 2.5 mM probenecid and
1.5 mM CaCl2 were added shortly before the buffer was used.
Suspended cells were centrifuged and washed with the Tyrode
buffer at 100g for 5 min to remove the medium. They were
resuspended in the labeling buffer to a concentration of ∼2.5 ×
106/mL and incubated at 37 °C for 10 min.

Signal Recording. Fluorescence imaging was used to record
the change of intracellular Ca2+ level using the Fluo-4 AM labeled
cells. The labeled suspended CHO cells were loaded into microf-
luidic channels and left undisturbed in darkness for 30 min to
allow further incorporation of the dye into cells and for cell
attachment to the substrate surface to occur. It was found that
such a labeling procedure provided a strong fluorescence signal
from within cells. Importantly, the cell-permeable Fluo-4 AM ester
fluoresces only after it enters the cells, giving low background
signals.19 After this 30 min incubation, Tyrode buffer was then
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Figure 1. Comparison of immobilized cell densities on differently
modified microfluidic channels at both low (black) and elevated shear
stresses (gray). Statistical results of three independent experiments
for each condition. The seeding density was 2.5 × 106 cells/mL.

7140 Analytical Chemistry, Vol. 79, No. 18, September 15, 2007



flowed across the attached cells at successively higher rates, which
gave an increase in shear stress. At each flow rate, continuous
flow was maintained for 6 min during which time three different
intracellular regions were recorded for 2 min each. After each
recording, the cells were maintained in quiescent buffer for 1 min,
before performing the next measurement at a higher flow rate.

Data Acquisition and Analysis. Both transmission and
fluorescent images were recorded using a Zeiss Axiovert inverted
fluorescence microscope coupled to a monochrome cooled CCD
digital camera (Andor iXon, Andor Technology). A filter set,
containing an exciter D475/40, an emitter E510, and a beam
splitter Dichroic 495, was used for the fluorescence imaging. The
intensity of the excitation light was adjusted using neutral density
filters (OD ) 1) to minimize photobleaching of the dye. Real-
time fluorescence recordings were made for 3 min at a rate of 10
frames per second with a nominal gain of 200. Confocal images
were recorded using a Zeiss LSM 510 Meta confocal system with
488 nm argon ion laser using a ×63 oil immersion lens. Z-stacks
were recorded to measure cell size in three dimensions.

The fluorescence intensity of whole discrete individual cells
was obtained using the Andor iQ1.4 image software. The maxi-

mum responding amplitude (simplified as response) was calcu-
lated accordingly: The cell’s response was expressed as (Fpeak -
F0)/F0 × 100%, where Fpeak is the peak fluorescence intensity and
F0 the baseline.19 For all the measurements, fluorescence intensity
was background subtracted using the fluorescence intensity of
an adjacent cell-free region. The baseline fluorescence intensity
(F0) was taken as an average initial value over 10 s before applying
either shear stress or UTP solutions.

RESULTS AND DISCUSSION
The overall aim of this work was to assess the potential use of

microfluidics as a reliable method for high-throughput cellular
functional assay. In order to provide a suitable platform for such
a study, it was necessary to design a device capable of accurately
and reliably testing cell responses under different flows and
different chemical stimuli. The particular requirements of this
study, included the generation of statistically meaningful informa-
tion, the creation of uniform, well-controlled flow profiles around
cell, and the production of a disposable device (or disposable cell-
contact part) to reduce the potential for contamination. The
resulting microfluidic platform (Supporting Information Figure S1)

Figure 2. Shear-stress-induced intracellular Ca2+ transient measured from spherical suspended cells. Transmitted light image (A) and fluorescent
images (B and C) of cells in the center of the 500 µm wide microfluidic channel. The fluorescent image (B) represents background in the
absence of any flow, while the fluorescent image (C) shows one cell (cell 1) responding to shear stress at 9.3 dynes/cm2 16 s after the onset
of flow. During the 2 min of recording, five cells respond to the shear stress (each is surrounded by a square, and the sequence is shown in the
Supporting Information). The Ca2+-sensitive fluorescent dye Fluo-4 was used to indicate intracellular Ca2+ flux. (D) Corresponding relative
fluorescence unit profile of the responding cells in (C), showing the temporal (transient) nature and magnitude of the response. For the purpose
of comparison, the relative fluorescence unit was plotted after subtraction of the particular quiescent baseline fluorescence unit to an individual
cell. Panel E shows a representative example of the recovery of the response of cells after shear stress was resumed in the second run. A
representative profile of cell 1 in (C) is shown.
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was then used to assess the effect of commonly used hydrody-
namic conditions on quantitative intracellular Ca2+ cellular assay.

Microfluidic Device Design and Fabrication. The microf-
luidic device developed for this study is shown in Supporting
Information Figure S1, parts A and B. The substrate was modified
using a biocompatible adhesion matrix to increase the likelihood
of cell attachment and enhance viability. The sealing mechanism
maintained the integrity of this adhesion matrix layer in the
microchannel. Leakage from the chip was tested using a colored
dye, and it was found that the device formed in this way remained
robust even with shear stresses of 120 dynes/cm2 (Supporting
Information video 1). Note: none of the experiments using cells
as discussed below involved shear stresses that exceeded 10
dynes/cm2, as calculated from eq 1.

Many reported microfluidic devices for cellular assays have
channels 10-100 mm wide and less than 50 mm high,20 leading
to shear stresses in the range of many tens of dynes/cm2 even
with low flow rates of 2 µL/min. The actual shear stress on such
cells may, in fact, be even higher due to a high cell radius/channel
height ratio.21 In general, rapid on-chip cellular measurement
requires a sufficiently fast flow rate for cell or reagent delivery.
To take into account both the speed of the reagent delivery and
the resultant shear stress, hydrodynamic conditions that lead to
low shear stresses of less than 10 dynes/cm2 were assessed in
this study.

To estimate hydrodynamic mechanical loading on the cells,
the effects of cell topology and microchannel design were also
taken into account. Gaver and Kute have previously demonstrated
that the actual mechanical stress on an attached round-shaped
cell was significantly greater than that experienced in a cell-free
system when the ratio of cell size to channel height (R/H) was
over 0.25.21 Lu et al. found that when R/H ) 0.16, the average
shear stress on a nonflat cell was comparable to that of an empty
channel.22

In this study, after cell attachment for 30 min, the mean
diameter of CHO cells (from base membrane to cell top) was
∼10.5 µm, as determined by confocal microscopy. The channel
height of the chips chosen for this study was 140 µm (R/H <
0.1), so avoiding any amplification of mechanical stress (as
predicted by others21,22). In other words, when R/H is very small,
the shear stress on the cell is equivalent to the wall shear stress.

The wall shear stress, which takes into account both flow rate
and the geometry of chips, was used in the study as the nominal
mechanical loading on cells, according to eq 1:22

where τ is shear stress (dynes/cm2), υ is liquid viscosity (g/cm‚
s), ν is linear velocity (cm/s), and h is the flow channel height.
As illustrated in eq 1, increases in flow rate lead to a proportional
increase in shear stress for fixed geometry systems.

Surface Modification for Cell Immobilization. When using
unmodified glass substrates to construct the base of microfluidic

channels, it was found that few cells attached, even at a low flow
rate of 1 µL/min and high loading density of 1 × 107 cells/mL.
Modification with collagen and APTS silane was used to enhance
cell attachment. The surface modification process was optimized
off-chip (Supporting Information). Initial attachment of CHO cells
on the modified surfaces was examined by plating the substrates
for 30 min with serum-free CHO suspended cells at a seeding
density of 2.5 × 106 cells/mL, followed by rinsing with serum-
free culture medium. Attachment densities were higher on the
collagen-treated surface compared to untreated glass. It was
observed that such an enhancement was significantly higher on
a surface treated with collagen at concentrations >0.4 mg/mL,
Supporting Information Figure S2A, although there was no
significant further enhancement at higher concentrations. Over-
night incubation of the attached cells with serum-free culture
medium also showed an enhancement in cell growth after the
collagen treatment (Supporting Information Figure S2B), sug-
gesting the role of an improved biocompatible extracellular matrix.
An off-chip-modified substrate was used to construct the device,
since this provided a flexible way of integrating different surface

(20) Andersson, H.; van den Berg, A. Sens. Actuators, B 2003, 92, 315-325.
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K. F. Anal. Chem. 2004, 76, 5257-5264.

τ ) - 12υν
h

(1)

Figure 3. Shear-induced Ca2+ flux as a function of shear stress.
(A) Figure shows the dependence of responding population to the
shear stress; panel B shows the amplitude as a function of shear
stress. The flow rates and the corresponding shear stresses were
shown on the top and the bottom of the x-axis, respectively. The error
bar is the standard error (n ) 270).

7142 Analytical Chemistry, Vol. 79, No. 18, September 15, 2007



functionalizations with microfluidics. No leakage was found over
the range of shear stresses investigated.

The densities of attached cells in the resultant microchannels
under various hydrodynamic conditions were investigated, and
the results are shown in Figure 1. After initial loading of cells at
a low shear stress of ∼0.6 dyn/cm2, cell attachment densities
increased by 2 orders of magnitude on an APTS silane treated
substrate, and by an additional factor of 2 on a collagen-treated
substrate, in comparison to that obtained on an unmodified glass
substrate. More than half of the cells attached on the APTS silane
treated surface were lost at a shear stress of ∼9.3 dynes/cm2,
whereas most (>95%) cells on the collagen-treated surface
remained. However, both cell attachment density and adhesion
strength were enhanced if the APTS silane treated surface was
first primed with a serum containing culture medium. This latter
modification achieved a similar performance to that of a collagen-
treated surface and is possibly due to the adsorption of soluble
proteins, such as fibronectin (or other attachment factors) onto
the positively charged APTS silane modified glass surface.23 Both
collagen and serum-APTS silane treatment of microchannels
promoted rapid cell attachment and enhanced immobilization
density, allowing statistical studies to be made.

Intracellular Ca2+ Flux Induced by Shear Stress. Reliable
functional information can only be obtained from viable cells. The
viability of cells on the collagen-modified surface under the highest
shear stress of ∼9.3 dynes/cm2 was found to be over 96%, which
was virtually identical to that determined before loading (96.7 (
0.6%). We found that even a brief exposure to low levels of shear
stress induced an intracellular Ca2+ flux in the CHO cells, although
no gross morphological changes were observed. A representative
series of fluorescence images of shear-induced Ca2+ flux of CHO
cells at 9.3 dynes/cm2 are shown in Figure 2, parts Band C. After
the onset of the flow, a fraction of the cells start to respond,

resulting in transients (∼20 s) of high levels of intracellular Ca2+

concentration, as indicated in the fluorescence intensity profile
(Figure 2D). The Ca2+ flux within each of the cells was different
with respect to its point of initiation, its amplitude, and the
frequency of oscillation of its response (details shown in Support-
ing Information video_2). No cell responded when the fluid flow
was stopped. In some cases, cells were found to respond to
stimulation when the same, or an increased, shear stress was
resumed, although the amplitude of the response was always
reduced, Figure 2E.

Characteristics of Shear-Induced Intracellular Ca2+ Flux.
To understand the nature of shear-induced intracellular Ca2+ flux
and the relationship of cell response to shear stress, further
statistical studies were carried out over a range of shear stress
from 0.01 to 9.3 dynes/cm2. The use of either serum-APTS silane
modified or collagen-modified substrates for the construction of
chips gave rise to a high density of attached suspended cells (∼40
to ∼50 cells in a field of view of 200 × 200 µm2).

Six different regions comprising over 270 cells were recorded
to permit a statistically meaningful evaluation which showed that
there was a threshold for shear-induced intracellular Ca2+ transi-
tion of CHO cells whether attached on serum-APTS silane treated
surfaces (>0.31 dynes/cm2) or on collagen-treated surfaces (>3.1
dynes/cm2), as shown in Figure 3A. In both cases there was a
clear trend showing that the percentage of the cell population that
was responding increased with increased shear stress, although
the amplitude of the responses varied. This latter variation was
constant over the range of shear stress studied, once the Ca2+

response was triggered. In addition, cells attached on a serum-
APTS silane treated surface had a higher percentage of responding
population than those on the collagen-treated surface, even though
cell densities attached on both surface types were similar (Figure
3B).

(23) Steele, J. G.; Dalton, B.; Johnson, G.; Underwood, P. Biomaterials 1995,
16, 1057-1067.

Figure 4. (A) Fluorescence confocal images show the different degree of attachment of two cells, 15 min after loading onto the substrates.
Cells were washed and loaded with 2 µM calcein AM for fluorescence imaging. The images were taken on the plane near the substrate. The
contact area that cells forms with the substrate is indicated by the fluorescence intensity. The large difference in the contact area of two cells
indicates an inherent heterogeneity in cell attachment. The heterogeneity persists for at least 2 h. (B) Time series of bright-field images showing
cell movement due to high shear stress (9.3 dynes/cm2). The white star indicates the moving cell. In both (A) and (B), surfaces had been treated
with serum-APTS silane. The white arrow indicates flow direction.
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The intracellular Ca2+ transition can be activated through a
variety of mechanisms, such as ligand-gated ion channels or via
membrane depolarisation.11 In this series of experiments, there
were no chemical stimuli present, and the observed shear-induced
intracellular Ca2+ flux in a nonexcitable CHO cell may therefore
be directly related to mechanically triggered channel opening11

due to membrane depolarization. Using confocal microscopy, we
found that the extent of cell attachment (measured as the “in
contact” surface area) on the same chip showed a degree of
variability, ranging from ∼10 to 110 µm2. A z-slice taken at the
level of the substrate revealed the area of attachment, and a
representative example is shown in Figure 4A. At low levels of
shear stress, on both collagen and serum-ATPS treated surfaces,
no sign of cell movement or distortion was observed in any cells
in the field of view. At higher levels of shear stress (i.e., 9.3 dynes/
cm2) those less firmly attached cells were moved in the direction
of flow and cell membranes showed visible deformation (as shown
in Figure 4B). This may explain the increased population of
responding cells with increasing shear stress, although deforma-
tion did not necessary lead to intracellular Ca2+ release, as shown
in Figure 2 and the Supporting Information video_2.

The observed quantitative difference in shear-induced intrac-
ellular Ca2+ flux for cells attached on serum-APTS silane treated
and collagen-treated microchannels also suggested a possible
influence of focal adhesion strength, as illustrated in a number of
other studies.24,25 Undoubtedly, the biophysical mechanisms
responsible for these observations are complex and will form the
basis of future studies. However, the phenomenon clearly dem-
onstrates the high probability of hydrodynamic influence on
cellular functionality, even for cells that are generally regarded
as being nonmechanically sensitive, such as CHO cells.

Implications of Shear-Induced Intracellular Ca2+ Flux. It
is well-known that the presence of chemical stimuli, such as
uridine 5′-triphosphate tris salt (UTP), can induce intracellular
Ca2+ flux. Figure 5 shows a typical intracellular Ca2+ flux in
response to 1 µM UTP (black trace), and the shear-induced
response in the absence of UTP (gray trace). Clearly, these two
responses are similar, suggesting that the shear stress mimics
the responses that can be induced by UTP. The possibility
therefore exists that shear-induced intracellular Ca2+ flux could
bias information in microfluidic assays involving the functional
screening of chemical stimuli (for example, agonists generally
used for activation of ligand-gated ion channels). Careful on-chip
evaluation is therefore essential, in order to ensure that cells are
being assessed under conditions that reveal a genuine response
to the analytes of interests.

CONCLUSIONS
A systematic evaluation of a quantitative functional assay using

immobilized spherical nonmechanically sensitive CHO cells in a
microfluidic system was investigated. The device enabled a high
density of immobilized, viable cells to be analyzed on-chip. By
using intracellular Ca2+ analysis of CHO cells as a model system,
we found that the microenvironment of the microfluidic device,
particularly that of shear stress, could exert a significant influence
on cell functionality. The possibility of this effect leading to biased
information on functional cellular analysis exists. Careful on-chip
assessment is therefore vital in future applications of microfluidics
and lab-on-a-chip in biomedical and pharmaceutical fields. Further
quantification of cell response to agonists (i.e., UTP) on-chip in
comparison with traditional pharmaceutical method is ongoing.
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Figure 5. Comparison of shear-induced Ca2+ flux at a shear stress
of 3.1 dynes/cm2 with agonist UTP (1 µM) induced Ca2+ flux. The
UTP solution was delivered at 2 µL/min (shear stress at 0.4 dynes/
cm2), which was below the threshold of shear stress inducing
intracellular Ca2+ flux. At this shear stress, no Ca2+ flux was observed
in the absence of UTP. Both peaks present similar transient responses
and amplitude, which could lead to biased interpretation (i.e., shear-
induced Ca2+ flux could be mistaken for a UTP-induced effect).
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A simple process for the synthesis of phenyl-2-propanone is

described based on a one-step electrochemical acylation

reaction, involving the direct electroreductive coupling of

benzyl bromides and acetic anhydride in a micro-flow

electrolysis cell, equipped with micro-gap Pt electrodes. The

technique offered yields typically in excess of 80% with

corresponding high levels of product selectivity. The electro-

chemical process was also scaled-up by connecting four

identical micro electrochemical cells in parallel to increase

product throughput.

Phenyl-2-propanone, commonly referred to as P2P, is probably the

most popular intermediate for the manufacture of amphetamine

and methamphetamine,1 and represents a versatile intermediate for

the synthesis of pharmaceuticals, agrochemicals and fragrances.

Due to the relatively simple structure of the compound and

because of its common use,1 a number of synthetic routes for its

production have been developed. Most of these methods require

the presence of a catalyst based on organometallic complexes,2

metal acetates,3 metal halides,4 or Grignard reagents5 to give

overall yields of up to 70%. There remains however scope for

greener and cleaner methods based, for example, on electro-

chemical technology to be more effectively exploited. In 1977,

Shono6 described a novel electrosynthesis process based on the

reduction of benzyl chlorides in the presence of carboxylic acid

chlorides in acetonitrile or N,N-dimethylformamide media, and

using a conventional two compartment cell with a ceramic

diaphragm and 1 M supporting electrolyte. Yields varied between

29 and 73% depending on the starting materials. In 1986, a

patent7a reported a process for the synthesis of P2P by electro-

chemical reduction of benzyl chlorides in the presence of acetic

anhydride using an undivided electrolysis cell equipped with a

sacrificial anode (i.e. Mg, Al, Zn), organic solvent (N,N-

dimethylformamide, acetonitrile, tetrahydrofuran), and supporting

electrolyte to give yields of 55% to 64%. In 1994, this process

was further modified to use the electrochemical arylation of

a-chloroketones with arylhalides in the presence of a catalytic

nickel complex.7c All of these cited electrochemically based

processes suffer, however, from complicated work up and generate

only modest yields.

Micro reactor methodology has been shown to have numerous

practical advantages (when compared with batch reactors),8

including a safe operating environment, good process control,

and the capability to scale-up for industrial production. In

addition electrosyntheses in micro reactors has been shown to

offer higher yields, in the absence of a supporting electrolyte,9

which reduces costly work up and purification steps.

In this present study we describe a simple and clean process for

the synthesis of P2P based on a one-step electrochemical acylation

reaction by direct electroreductive coupling of benzyl bromides

and acetic anhydride in a micro-flow electrolysis cell equipped with

micro-gap Pt electrodes. The reaction occurs in DMF solvent

without supporting electrolyte to generate excellent yields of the

products when compared with conventional synthetic methods.

Notable benefits of this novel electrochemical process include (i)

simple operation, (ii) no need for electrolytes, (iii) minimum

product work-up, and (iv) high yield and selectivity of products.

Initially, the acylation reaction of benzyl bromide with acetic

anhydride was studied by cyclic voltammetry at conventional

Pt-disc (diameter 0.5 mm) and micro Pt-disc electrodes (diameter

25 mm) to establish the reaction mechanism. The electroreduction

of benzyl bromide is chemically irreversible, leading to the

formation of either toluene via a two-electron reduction10 or

dibenzyl formally via a one-electron reduction. Fig. 1 shows cyclic

voltammograms obtained in DMF for (i) the reduction of acetic

anhydride, (ii) the reduction of benzyl bromide, and (iii) the

aDepartment of Chemistry, University of Hull, Hull, UK HU6 7RX.
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Fig. 1 Cyclic voltammograms (scan rate of 0.1 V s21) obtained at a

0.5 mm diameter platinum disc electrode immersed in 0.1 M n-Bu4NBF4–

DMF for (i) 60 mM acetic anhydride, (ii) 3 mM benzyl bromide, and (iii)

3 mM benzyl bromide in the presence of 60 mM acetic anhydride.
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reduction of benzyl bromide in the presence of excess acetic

anhydride.

The irreversible reduction of benzyl bromide (Process 1) occurs

as a two-electron process (see ESI{). In the presence of acetic

anhydride, a new reductive peak appears (Process 2) at more posi-

tive potential position. The peak current for Process 2 increases

with increasing amounts of acetic anhydride (for 15 mM to

60 mM) whilst the peak current for Process 1 gradually decreases.

The overall mechanism remains a two-electron transfer, with

Process 2 being observed only at platinum electrode surfaces and

not at glassy carbon or gold (see ESI{). The ratio of peak currents

for Processes 1 and 2 is scan rate dependent, consistent with a fast

preceding chemical step coupled to electron transfer at the

platinum surface. Acetyl from acetic anhydride is likely to act as

a ‘‘trap’’ for a benzyl anion intermediate formed at the platinum

electrode surface.

Preparative micro reactor electrolysis was conducted in a

rectangular cavity micro-flow cell (see Fig. 2) with products being

determined off-line by using GC/MS and 1H-NMR. The reaction

medium, containing 5 mM benzyl bromide in DMF with varied

amount of acetic anhydride, was continuously pumped through

the cell, in which two platinum electrodes with a working area of

45 mm2 each were positioned with an inter-electrode gap of 160 mm

to produce a 7.2 ml cell volume.

The electro-acylation reactions were conducted galvano-stati-

cally and product samples were collected for a 30 minute period.

Table 1 summarizes the conversion and product distribution for

the range of conditions employed in this study.

From Table 1 it can be seen (Entry 1–4) that the conversion and

product distribution are dependent on the molar ratio of benzyl

bromide to acetic anhydride and the applied current (or potential).

Voltages between 5–5.4 V were required to obtain sufficiently high

levels of conversion (.85%) in most cases. The best result obtained

was 81% of phenyl-2-propanone with 9% of toluene at a flow rate

of 10 ml min21 (corresponding to 43 s contact time, see Entry 4).

Lower ratios of acetic anhydride to benzyl bromide led to the

formation of more toluene (Entry 2–3), and even the formation of

the dibenzyl product (Entry 1).

Other benzyl bromide derivatives such as 1-phenylethyl

bromide, 4-methylbenzyl bromide, 4-methoxybenzyl bromide,

and 4-bromobenzyl bromide were also examined (see Entry 5–8

in Table 1) for the acylation reaction with acetic anhydride. It is

noted that the presence of Br– and CH3O– groups on the benzyl

bromides promote the formation of the debromination products

(see Entry 7–8), compared to CH3– and H– groups. In contrast, in

the presence of an electron donating group (see Entry 5–6) yields

are improved. The formation of bromine due to oxidation of

bromide (as a follow up anodic process) was not observed,

presumably due to the limited overlap of diffusion layers within

the flow cell. The diffusion layer thickness for the process can be

estimated based on eqn (1).

d~

ffiffiffiffiffiffiffiffiffiffiffiffi
DAh2

Vf

3

s
(1)

In this equation the diffusion layer thickness is obtained based

on the diffusion coefficient D, the electrode area A, the half height

of the cell h, and the volume flow rate Vf. For a diffusion

coefficient of 1029 m2 s21 and under conditions employed here, the

diffusion layer thickness is estimated as d = 120 mm, which is

approaching the inter-electrode distance.

Current efficiencies for all processes are typically around 20–

25%, consistent with an overall transfer of 4 electrons per benzyl

bromide, but background currents in the presence of acetic

anhydride are likely to be responsible for the low yield (see Fig. 1).

This observation is consistent with literature reports.7a,b The

electrochemical process was also scaled-up by connecting four

identical micro electrochemical cells in parallel. In this case, a

similar level of product yield was obtained with a four-fold

increase in the quality of the product formation. In summary,

micro-flow electrosynthesis offers a surprisingly simple and

Fig. 2 Schematic representation of the acylation reaction during micro

reactor electrosynthesis. A flow of reagents through a rectangular cavity

with working and counter electrode facing each other results in the

formation of products.

Table 1 Data for preparative electrolysis of benzyl bromides (BB) in the presence of acetic anhydride (AA) in DMF in a micro-flow cell without
intentionally added supporting electrolytea

Entry Current/mA AA/BBb (mol/mol) Conv. (%)c

Distribution (%)

R1 R2 P2Pd DBre

1 0.8 H H 10 87 61 26f

2 0.8 H H 20 85 62 23
3 1.1 H H 20 92 66 26
4 1.1 H H 40 90 81 9
5 1.1 CH3 H 40 93 87 6
6 1.1 H CH3 40 98 96 2
7 1.3 CH3O H 40 99 83 16
8 1.1 Br H 40 73 51 22
a 5 mM benzyl bromides, acetic anhydride concentration as shown in the Table, electrode gap is 160 mm, electrode area 45 mm2, flow rate
10 ml min21 corresponding to 43 s contact time. b Molar concentration ratio. c The conversion was determined based on the quality of benzyl
bromide before and after reaction using n-decane as an internal standard. d P2P represents P2P or its derivatives. e DBr is debromination yield
for benzyl bromides. f Side products include debromination of benzyl bromide (16%) and dimer formation (10%).
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low waste access to phenyl-2-propanone derivatives which is

readily optimized and can be scaled-up. It is very likely that in

future a wider range of chemical processes will be identified

to be suitable for this kind of simple and clean micro-reactor

technology.
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Micro reaction technology offers a safe, controllable and information rich technique suitable for

the long-term production of pharmaceutical agents and fine chemicals. To date however, few of

the syntheses performed using this technology have addressed the problems associated with

product purification. With this in mind, we report herein the incorporation of multiple supported

reagents into EOF-based miniaturized flow reactors for the two-step synthesis of analytically pure

compounds. Using this approach, the successful synthesis of 20 a,b-unsaturated compounds in

excellent yields (.99.1%) and purities (.99.9%) has been achieved, illustrating significant

improvements compared to traditional batch techniques.

1 Introduction

Under increasing environmental and financial pressure, the

chemical industry as a whole has begun exploring numerous

ways of improving both the cleanliness and efficiency of

many synthetic processes. One such approach is the applica-

tion of micro reaction technology, whereby miniaturized

reactor vessels provide controllable, information rich systems

that enable reactions to be performed more rapidly,2

efficiently3 and selectively4 than traditional batch-scale reac-

tions. With these factors in mind, the use of micro reaction

technology is of particular interest to the pharmaceutical

industry where long term objectives include the desire to

perform multiple functions (such as synthesis, detection,

screening5 and biological evaluation) within a single integrated

device, resulting in an overall reduction in the time taken to

discover lead compounds and subsequently transfer them to

production.

Although the past ten years has seen a rapid growth in the

field of micro reaction technology, with many groups

demonstrating the successful synthesis of small organic

compounds,6–11 few have addressed the problems associated

with the purification of reaction products prepared in

continuously flowing systems.12,13 In order to tackle this

problem, we recently demonstrated the incorporation of solid-

supported catalysts into miniaturized flow reactors, where the

advantages of solid-supported catalysts/reagents were coupled

with those of reaction miniaturization.14,15

As solid-supported reagents are designed to work in a

similar manner to their solution phase counterparts, little

reaction optimization is usually required in order to implement

their use.16,17 In comparison to solution phase reagents,

however, the use of solid-supported analogues is advanta-

geous, as they enable reaction products to be isolated with

ease; consequently, supported reagents are often employed in a

large excess in order to drive reactions to completion.

Furthermore, by employing more than one supported reagent

in the same reaction vessel, multiple transformations can be

achieved.18 Although solid-supported reagents clearly have

many advantages over solution phase reagents, drawbacks of

the technique include increased reaction times and mechanical

degradation of the support (as a result of stirring or agitating

the reaction mixture) which can make reagent recovery/

recycling difficult. Consequently, by performing reactions

in flow reactors,19 the supported reagent undergoes

minimal degradation, leading to extended reagent lifetimes,

increased system reproducibility and simplified product isola-

tion (Fig. 1).

In addition, from a production point of view, reaction

miniaturization is advantageous, as syntheses can be readily

transferred from a laboratory scale to mass production with

ease. Using an approach referred to as scale-out or numbering-

up,20,21 reactions are firstly optimized within a single micro

reactor, then, in order to increase production volume, the

number of reactors employed is simply increased. In compar-

ison to current production technology, scale-out is advanta-

geous, as the thermal and mass transportation properties of

the original micro reaction are maintained, facilitating the

rapid transfer of a synthetic route from the laboratory scale

where a single reactor is used, to mass production where

multiple reactors are employed; for this approach to be

Department of Chemistry, University of Hull, Hull, UK HU6 7RX.
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Fig. 1 Schematic illustrating the principle of employing solid-

supported reagents in continuous flow reactors.
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successful, it is important that individual reactors can be

operated reproducibly. This work therefore builds on the

successful base-catalyzed synthesis of a,b-unsaturated com-

pounds14 and the acid-catalyzed synthesis (also deprotection)

of dimethyl acetals,15 by increasing reaction complexity,

enabling multi-step syntheses to be performed. As Scheme 1

illustrates, the proposed reaction sequence involves the acid-

catalyzed deprotection of a dimethyl acetal 1 followed by the

in situ base-catalyzed condensation of the aldehyde 2 with an

activated methylene 3 to afford the respective a,b-unsaturated

compound 4a.22

2 General procedure for the synthesis of
a,b-unsaturated compounds in a flow reactor

A typical procedure for the synthesis of a,b-unsaturated

compounds in a miniaturized flow reactor consisted of passing

a solution of dimethyl acetal and activated methylene (1.0 M

respectively in MeCN) through a solid-supported acid catalyst

(whereby deprotection of the dimethyl acetal afforded the

respective aldehyde) followed by a solid-supported base

catalyst (where the aldehyde and activated methylene con-

densed) to afford the desired a,b-unsaturated compound. The

reaction mixture was subsequently analyzed by GC-MS, and

the conversion of starting materials to product determined, i.e.

% conversion. If any residual starting materials were detected

the reaction was repeated, this time passing the starting

materials over the supported catalysts at a slower flow rate;

thus having the effect of increasing reagent residence time

within the reactor. Once successfully optimized, the devices

were operated for 2.5 h, after which work-up of the reaction

product consisted simply of concentrating the sample in vacuo.

The purity of the ‘crude’ product was subsequently evaluated

by NMR spectroscopy, and, in the case of previously

unreported compounds, elemental analysis performed; in all

cases, no additional product purification was found to be

necessary.

In order to mobilize reagents and products through the

packed bed, electroosmotic flow (EOF) was selected as the

pumping mechanism as it is simple to use, provides

reproducible pulse-free flow, enables both the magnitude

and direction of flow to be altered with ease and generates

minimal back-pressure; an important feature with respect to

the use of solid-supported reagents.23 While EOF is widely

associated with the manipulation of aqueous systems,

more recently it has been applied to polar organic systems

such as MeOH, MeCN and DMF.24 In comparison to

mechanical pumping techniques, electroosmotic systems are

advantageous as they consist simply of the flow reactor and a

power supply; automation of the system therefore enables the

reaction set-up to be housed within a fume-cupboard and

operated remotely.

2.1 Experimental set-up used for the evaluation of solid-

supported reagents in miniaturized flow reactors

In order to evaluate the use of multiple supported

reagents within an EOF-based system for the synthesis of

a,b-unsaturated ketones (Scheme 1), a series of miniaturized

flow reactors were constructed. As previously demon-

strated,14,15 reactions were performed using a single

capillary borosilicate glass reactor, as illustrated in Fig. 2,

with capillary dimensions of 500 mm (i.d.) 6 3.0 cm

(length). To hold the solid-supported reagents in place, a

micro porous silica frit (MPS frit)25 was placed at one end

of the capillary and the Amberlyst-15 5 (2.5 mg,

0.105 mmol) dry packed against it, the acid catalyst 5 was

then held in place with another MPS frit positioned in 1.5 cm

along the capillary (Fig. 2). The silica-supported base 6 (2.5 mg,

4.25 6 1023 mmol) was subsequently dry packed up to

the second MPS frit, which was again held in place by a

third MPS frit. The packed capillary was subsequently

primed with MeCN to remove any air, ensuring the

formation of an electrical circuit. A leak-tight connection

between the packed capillary and the borosilicate glass

reagent reservoirs was achieved using PTFE thread seal

tape (75 mm 6 12 mm 6 12 m). To mobilize reagents

by EOF, platinum electrodes (500 mm (o.d.) 6 2.5 cm

(length)) were placed within the reservoirs and voltages

applied using a Paragon 3B high-voltage power supply

(HVPS), capable of applying 0 to 1000 V to four pairs

of outputs (Kingfield Electronics, UK); automation of

the HVPS was achieved using LabView2 software.

Typical applied fields ranged from 167 to 333 V cm21;

enabling flow rates of between 0.40 and 1.05 ml min21 to be

achieved.26

3 Results and discussion

3.1 Synthesis of 2-cyano-3-phenyl acrylic acid ethyl ester 4a

Using the set-up illustrated in Fig. 2 and 3, a solution of

dimethoxymethyl benzene 1 and ethyl cyanoacetate 3 (40.00 ml,

1.0 M in MeCN) was placed in reservoir A and MeCN

(40.00 ml) in reservoir B. Application of 333 V cm21 to

the solution in reservoir A and 0 V cm21 to reservoir

Scheme 1 General reaction scheme illustrating the multi-step synth-

esis of an a,b-unsaturated compound 4a.

Fig. 2 Schematic illustrating the use of two solid-supported catalysts

in an EOF-based continuous flow reactor.
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B (ground electrode) resulted in the electroosmotic

mobilization of reagents 1 and 3 through the packed bed at

a rate of 0.50 ml min21 (throughput of 6.0 mg h21). After

10 min, the reaction products collected from reservoir B

were analyzed by GC-MS, confirming that 99.98%

conversion to 2-cyano-3-phenyl acrylic acid ethyl ester 4a

had occurred.27

In order to demonstrate the reproducibility of the experi-

mental set-up, the reaction was repeated a further 14 times

(2.5 h in total), resulting in an average conversion of 99.99%

(Table 1, % RSD = 3.5 6 1023, n = 15). After analysis by GC-

MS, the reaction products were combined and concentrated

in vacuo to afford 2-cyano-3-phenyl acrylic acid ethyl ester 4a

as a white solid (0.0150 g, 99.40%). In order to confirm

product purity, the ‘crude’ product 4a was analyzed by NMR

spectroscopy; whereby no residual starting materials 1, 2 and

3, or by-products, were detected.

To confirm that the observed reaction was in fact

attributed to the presence of both acid and base catalysts

within the flow reactor, the synthesis of 2-cyano-3-phenyl

acrylic acid ethyl ester 4a was evaluated in the absence of

Amberlyst-15 5 and 3-(1-piperazino)propyl-functionalized

silica gel 6. Firstly, the base catalyst 6 was replaced with

silica gel (Kieselgel 60), and a 1 : 1 mixture of dimethyl

acetal 1 and ethyl cyanoacetate 3 mobilized through the

reactor at a flow rate of 0.50 ml min21; after 10 min, the

reaction products were diluted with MeCN and analysed by

GC-MS. As expected, the reaction products only contained

benzaldehyde 2 (due to acid catalyzed deprotection of

dimethyl acetal 1) and ethyl cyanoacetate 3; importantly

no 2-cyano-3-phenyl acrylic acid ethyl ester 4a was detected.

The effect of the acid catalyst 5 was subsequently investi-

gated by replacing Amberlyst-15 5 with polystyrene beads

(2% cross-linked with divinylbenzene), again the stock

solution was passed through the polystyrene beads and

3-(1-piperazino)propyl-functionalized silica gel 6; analysis of

the reaction products confirmed that the starting materials 1

and 3 remained unchanged.

Finally, the reaction was repeated using polystyrene beads

and silica gel; again, as expected, analysis of the reaction

products confirmed that no reaction had occurred. In

summary, it was concluded that the observations presented

in Table 1 are in fact attributed to the acid-catalyzed

deprotection of dimethoxymethyl benzene 1, followed by the

base-catalyzed condensation of benzaldehyde 2 and ethyl

cyanoacetate 3 to afford 2-cyano-3-phenyl acrylic acid ethyl

ester 4a; and importantly, not as a result of performing the

reaction in an electric field.

In order to compare the efficiency of miniaturized flow

reactors with traditional batch techniques, the synthesis of

2-cyano-3-phenyl acrylic acid ethyl ester 4a was subse-

quently performed using the traditional one-pot approach.

In brief, 3-(1-piperazino)propyl-functionalized silica gel 6

Fig. 3 Schematic illustrating the multi-step synthesis of 2-cyano-3-

phenyl acrylic acid ethyl ester 4a in an EOF-based miniaturized flow

reactor.

Table 1 Illustration of system stability over 15 runs (2.5 h) for the
synthesis of 2-cyano-3-phenyl acrylic acid ethyl ester 4a

Run no. Conversion (%)a

1 99.98
2 99.99
3 99.99
4 99.99
5 99.99
6 99.99
7 99.99
8 99.99
9 99.99

10 99.99
11 99.99
12 99.99
13 99.99
14 99.98
15 99.99
Mean = 99.99%, % RSD = 3.5 6 1023

a Calculated with respect to residual aldehyde 2

Fig. 4 Gas chromatograms illustrating the complete conversion of

(a). dimethoxymethyl benzene 1 and ethyl cyanoacetate 3 to (b).

2-cyano-3-phenyl acrylic acid ethyl ester 4a within a miniaturized flow

reactor.
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(2.5 mg, 4.25 6 1023 mmol) and Amberlyst-15 5 (2.5 mg,

1.05 mmol) were added to a solution containing dimethoxy-

methyl benzene 1 (0.011 g, 0.075 mmol) and ethyl

cyanoacetate 3 (0.08 g, 0.075 mmol) in MeCN (75.0 ml)

(1.0 M respectively) and stirred for 2.5 h. In order to

monitor the progress of the reaction, aliquots of the reaction

mixture (1.0 ml in 100.0 ml MeCN) were analyzed every

10 min, by GC-MS. As Fig. 5 illustrates, after 30 min

complete deprotection of dimethoxymethyl benzene 1 to

benzaldehyde 2 was achieved, however even after a further

1.5 h only 2.9% conversion to 2-cyano-3-phenyl acrylic acid

ethyl ester 4a had occurred. In comparison, by performing

the reaction in a miniaturized flow reactor, with a residence

time of 1.0 min, 0.015 g (0.075 mmol, 99.40%) of 2-cyano-3-

phenyl acrylic acid ethyl ester 4a was synthesized in excellent

purity over the same 2.5 h period. In addition, by employing

scale-out methodology, the quantity of material synthesized

can be increased by simply employing an array of reactors in

parallel.

The observed reduction in reaction time can be partly

explained by the formation of localized concentration

gradients within the flow reactor, as although only small

quantities of catalyst are employed (2.5 mg per reagent),

when the starting materials are passed through the reactor

they are, in fact, exposed to a large excess of catalyst. In

addition, within a packed reactor, the diffusion distance

between any starting materials and the supported catalyst is

greatly decreased compared to within traditional stirred

reactors; consequently, conversions .99% can be achieved in

minutes, in contrast with .24 h in a traditional stirred reactor.

Furthermore, compared to the one-pot approach, the pre-

paration of packed columns is also advantageous, as the

supported catalysts remain spatially resolved (Fig. 2) enabling

their reuse either separately or in alternative reaction

sequences.

3.2 Synthesis of a,b-unsaturated compounds in an EOF-based

miniaturized flow reactor

Using the synthesis of 2-cyano-3-phenyl acrylic acid ethyl ester

4a as a model reaction, the advantages associated with

incorporating multiple supported catalysts into miniaturized

flow reactors have been clearly illustrated. As a means of

demonstrating the versatility of this technique, the investiga-

tion was extended to demonstrate the reactions of

substituted aldehydes. Again, Amberlyst 15 5 and 3-(1-

piperazino)propyl-functionalized silica gel 6 were employed

as the catalysts, enabling the synthesis of a,b-unsaturated

ketones 4a to 4j in excellent yield (Table 2). The generality of

the technique was further investigated, employing malononi-

trile 7 as the activated methylene, and, as Table 3 illustrates,

a,b-unsaturated compounds 8a to 8j were again synthesized

in excellent yields (.99.2%). Evaluation of the resulting

‘crude’ products by GC-MS and NMR spectroscopy once

more confirmed that all products were synthesized in

analytical purity without the need for additional purification

steps.

3.3 Catalyst turnover

As previously mentioned, when employing solid-supported

reagents, in either stirred or shaken reactor vessels, degrada-

tion of the support material can lead to problems with

reagent recovery and reuse; as a means of overcoming this

problem, we investigated the use of miniaturized

continuous flow reactors. Using this approach, a combinator-

ial array of a,b-unsaturated compounds were synthesized in

excellent yield and purity (Tables 2 and 3), whereby separation

of the reaction products from the supported catalyst was

achieved with ease. With this in mind, our attention turned to

assessing the recyclability of the supported catalysts employed

in the aforementioned device. In order to ascertain the

technique’s efficiency, the same 2.5 mg portions of

Amberlyst-15 5 and 3-(1-piperazino)propyl-functionalized

silica gel 6 were used for the synthesis of all 20 a,b-unsaturated

compounds. As illustrated by Table 4, this equates to the

synthesis of 2.13 mmol of a,b-unsaturated product using only

1.05 6 1022 mmol of acid 5 and 4.25 6 1023 mmol of base 6,

demonstrating catalyst turnovers of 203 and 501 times,

respectively. Most importantly, over the course of the

investigation, no sign of reagent degradation or reduced

reaction efficiency was observed; consequently, the flow

reactor will be employed in further studies. Notably, although

the catalysts remain active in a traditional stirred reactor, to

perform 20 separate syntheses using the same portion of

catalytic material (5 mg in total) would be unfeasible due to

difficulties associated with the filtration and recovery of small

quantities of supported material.

In summary, by incorporating multiple solid-supported

catalysts into a miniaturized flow reactor an array of

a,b-unsaturated compounds have been synthesized in excellent

yield and purity without the need for additional, off-line,

purification steps. In addition, we have demonstrated the

ability to recycle solid-supported catalysts, enabling reaction

reproducibility that is currently unobtainable in traditional

stirred/shaken reactors (Table 4).

Fig. 5 Graph illustrating the progress of a two-step reaction using the

one-pot approach.
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Table 2 Summary of the conversions obtained for the synthesis of a,b-unsaturated ketones 4a to 4j using Amberlyst-15 5 and 3-(1-
piperazino)propyl-functionalized silica gel 6 in a miniaturized flow reactor

Product Flow rate/ml min21 GC-MS purity (%)a Yield (%)

0.50 (1.00)b 99.99 (3.0 6 1023)c 99.40 (0.0150)d

0.80 (0.63) 99.99 (1.2 6 1023) 99.76 (0.0338)

0.65 (0.77) 99.99 (1.25 6 1023) 99.56 (0.0227)

0.84 (0.60) 99.99 (8.0 6 1024) 99.65 (0.0284)

0.84 (0.60) 99.99 (8.0 6 1024) 99.80 (0.0298)

0.65 (0.77) 100.00 (0.0) 99.68 (0.0253)

0.48 (1.04) 99.99 (2.6 6 1024) 99.10 (0.0219)

0.75 (0.67) 99.99 (6.0 6 1024) 99.65 (0.0234)

0.55 (0.91) 99.99 (8.0 6 1024) 99.53 (0.0213)
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0.89 (0.56) 99.99 (2.5 6 1023) 99.30 (0.0284)

a GC-MS conversion determined with respect to residual aldehyde. b the number in parentheses represents the period of time, in min, that the
starting materials are in contact with each supported reagent. c the number in parentheses represents the RSD, whereby n = 15. d the number
in parentheses represents the isolated yield in g.

Table 2 Summary of the conversions obtained for the synthesis of a,b-unsaturated ketones 4a to 4j using Amberlyst-15 5 and 3-(1-
piperazino)propyl-functionalized silica gel 6 in a miniaturized flow reactor (Continued )

Product Flow rate/ml min21 GC-MS purity (%)a Yield (%)

Table 3 Summary of the conversions obtained for the synthesis of a,b-unsaturated compounds 8a to 8j using Amberlyst-15 5 and 3-(1-
piperazino)propyl-functionalized silica gel 6 in a miniaturized flow reactor

Product Flow rate/ml min21) GC-MS purity (%)a Yield (%)

0.53 (0.94)b 99.99 (7.0 6 1024)c 99.42 (0.0121)d

0.95 (0.53) 99.99 (5.0 6 1024) 99.36 (0.0312)

0.65 (0.77) 99.99 (4.6 6 1024) 99.40 (0.0179)

0.83 (0.60) 99.99 (7.0 6 1024) 99.55 (0.0222)

0.84 (0.60) 99.99 (2.6 6 1023) 99.22 (0.0255)

0.67 (0.75) 99.99 (1.06 6 1024) 99.53 (0.0211)

0.40 (1.25) 100.00 (0.0) 99.36 (0.0155)
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3.4 Catalyst screening

Having demonstrated the ability to continuously synthesize an

array of a,b-unsaturated compounds within an EOF-based

flow reactor, the investigation was extended to look at the use

of other solid-supported acids and bases. As illustrated in

Table 5, nine combinations of polymer-supported acids

(Amberlyst-15 5, polymer-supported p-toluenesulfonic acid 9

and ytterbium polystyrylsulfonate(III) 10) and silica-supported

bases (3-(1-piperazino)propyl-functionalized silica gel 6,

3-(dimethylamino)propyl-functionalized silica gel 11 and

3-(1,3,4,6,7,8-hexahydro-2H-pyrimidino)propyl-functionalized

silica gel 12) were packed into a series of miniaturized flow

reactors (Fig. 6).

In order to evaluate these catalyst combinations, the

synthesis of 2-cyano-3-phenyl acrylic acid ethyl ester 4a was

again selected as the model reaction. To perform a reaction, a

solution of dimethoxymethyl benzene 1 and ethyl cyanoace-

tate 3 (40 ml, 1.0 M in MeCN) was placed in reservoir A and

MeCN (40 ml) in reservoir B; application of 333 and 0 V

cm21, respectively, resulted in mobilization of the reagents

through the packed-bed at flow rates in the range of 0.4 to

0.5 ml min21 (Table 5). All reaction products were

subsequently analyzed by GC-MS after 10 min (¢99.99%

conversion w.r.t. residual benzaldehyde 2) and the reactors

operated for a total of 2.5 h (15 runs) per catalyst

combination. In all cases, concentration of the reaction

products in vacuo afforded 2-cyano-3-phenyl acrylic acid

ethyl ester 4a as a white crystalline solid (¢99.26% yield).

These results not only demonstrate the generality of the

technique with respect to the nature of catalyst used but also

the support material employed.

4 Conclusions

In conclusion, we have demonstrated a simple and efficient

technique for the incorporation of multiple supported

reagents into miniaturized flow reactors, resulting in a

system suitable for the continuous flow synthesis of

analytically pure compounds; using this approach,

20 a,b-unsaturated compounds (4a–4j and 8a–8j) were

synthesized in near quantitative yield and purity via a two-

step synthesis.

Compared to standard batch techniques, the application of

miniaturized flow reactors proved advantageous, as it is

possible to synthesize compounds in high yield and purity

without the need for additional purification steps.

Furthermore, the ease with which supported reagents are

Fig. 6 Schematic illustrating the reaction set-up used to screen the

solid-supported catalysts.

Table 4 Illustration of reagent recycling demonstrated in a miniaturized EOF-based flow reactor

Supported reagent/mmol Product/mmol Turnover number

Amberlyst-15 5 1.05 6 1022 2.13 203
3-(1-Piperazino)propyl-functionalized silica gel 6 4.25 6 1023 2.13 501

1.04 (0.48) 100.00 (0.0) 99.90 (0.0263)

0.50 (1.00) 99.99 (5.6 6 1024) 99.66 (0.0177)

1.05 (0.50) 99.99 (2.5 6 1024) 99.62 (0.0319)

a GC-MS conversion determined with respect to residual aldehyde. b the number in parentheses represents the period of time, in min, that the
starting materials are in contact with each supported reagent. c the number in parentheses represents the RSD, whereby n = 15. d the number
in parentheses represents the isolated yield in g.

Table 3 Summary of the conversions obtained for the synthesis of a,b-unsaturated compounds 8a to 8j using Amberlyst-15 5 and 3-(1-
piperazino)propyl-functionalized silica gel 6 in a miniaturized flow reactor (Continued )

Product Flow rate/ml min21) GC-MS purity (%)a Yield (%)
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recycled provides reaction reproducibility unobtainable in

traditional stirred or shaken reactor vessels. In addition, the

formation of localized concentration gradients within the flow

reactor enables reactions to be driven to completion more

rapidly than in stirred/shaken reactors, a point clearly

illustrated in Fig. 4.

Consequently, whether milligrams of a compound are

required for biological evaluation or tonnes for the production

of fine chemicals, the flexibility associated with micro reaction

technology enables these differences in scale to be bridged with

ease.
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The electro-reductive coupling of activated olefins and benzyl bromide derivatives has been selected

to compare the performance of single and multiple channel (scaled-out) micro-gap electrochemical

flow reactors. Two working electrode configurations were evaluated; in the first a single set of

electrodes was used in conjunction with a multiple flow manifold to give two and four separate flow

channels; in the second independent electrodes were used within the same flow manifold. Problems

with shunt currents and Joule heating in the first configuration meant that only the second

configuration was reliable, giving results comparable to those obtained for the single flow cell.

Excellent yields of the coupling products such as 2-benzyl-succinic acid dimethyl ester and derivatives

were obtained. This demonstrates micro reactor scale-out for unsupported electrosyntheses.

Introduction

Electrosynthesis offers a potentially clean and versatile

methodology for the generation of anion and cation radical

intermediates in organic synthesis under relatively mild reaction

conditions.1 At present, however, the main disadvantage of

using micro reactor based methodology is the low quantities of

product produced. In order to overcome this problem, whilst

maintaining the practical and chemical advantages, the concept

of scale-out can be employed.2 Scale-out systems have included

multisectioned flow-through porous electrodes,2a coplanar

platinum interdigitated microband electrodes2b and a mini-

aturized parallel plate electrochemical cell.2c However, all of

these cited electrochemical cells have involved the use of

supporting electrolytes or relatively low conversion without

intentionally added supporting electrolyte.

In this note, the electro-reductive coupling of activated

olefins and benzyl bromide derivatives has been selected to

compare the performance of single and multiple channel

micro-gap flow reactors.3

Experimental

Construction of micro-gap flow electrochemical cells

The details of constructing a single channel electrochemical cell

have been described previously.4 In brief, a single channel cell

consisted of two glass plates (3 cm length, 2 cm width, 6 mm

thickness) in which two holes are drilled in the top plate to

enable PEEK tubes (id 0.24 mm) to be connected in order to

allow inlet and outlet flow. Two equally sized Pt foils (4 mm

width and 15 mm length, 50 mm thickness, Goodfellow

Cambridge Limited, purity 99.99%) were used as the working

and counter electrodes, and two PTFE spacers (120 mm thick,

Bohlender GmbH, Germany) with a rectangular flow reaction

zone (3 mm width and 15 mm length) were used to produce

the single channel cell with a working area of 45 mm2 and

inter-electrode distance of 160 mm. Scaling out systems were

made with multiple channels and using two distinct cell con-

figurations. In the first configuration, a single set of electrodes

was used in conjunction with a multiple flow manifold to give

two (see Fig. 1(a)) and four separate flow channels. In the

second configuration, independent electrodes were used within

the same flow manifold (see Fig. 1(b)). In the first configura-

tion, the electrode width was 8 mm and 16 mm for making

two channels and four channels, respectively. In the second

configuration, each channel was built by using the same

procedures as that for making single cells (see above).

The electrochemical coupling of an activated olefin with benzyl

bromide

For electrosynthesis in single reaction channel cells, the

procedure described previously4 was employed. For 2 and 4

independent reaction channel cells, each cell was connected in

parallel linkage and each circuit consisted of a power supply

(BPS4000, CALEX Electronics Ltd.), an ammeter and a

voltmeter (TTi1906 Computing Multimeter, RS Components).

A solution containing 5 mM activated olefin and 5 mM benzyl

bromide in DMF (N,N-dimethylformamide, Fluka, 99%, stored

over molecular sieve, H2O ¡ 0.01%, which was further dried

over molecular sieve 3A (Lancaster, 1–2 mm beads) for 72 h

prior to use and kept in a desiccator5) was continuously pumped

(Harvard PHD 2000 syringe pump) through the reaction cell in

which two platinum electrodes with a working area of 45 mm2

were positioned with an inter-electrode gap of 160 mm (see

Fig. 2). During typical electrosynthesis runs, product samples

were collected in a vial from each channel for 5 min in order to

obtain sufficient material for subsequent GC/MS analysis. The

conditions for GC/MS analysis and identification of products

using 1H and 13C NMR analysis were described previously.4a

Resistance measurements (80 mA, 6430A Precision component

analyzer, Wayne Kerr) for independent sets of electrodes were

performed and indicate that each cell has resistance of typically

1.5 kV (for DMF/5 mM benzylbromide/5 mM dimethylfuma-

rate) and the total resistance for 2 and 4 parallel connections is

750 V and 375 V, respectively. The total resistance for ten cells in
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bDepartment of Chemistry, University of Bath, Bath, UK BA2 7AY.
E-mail: s.j.haswell@hull.ac.uk

TECHNICAL NOTE www.rsc.org/loc | Lab on a Chip

This journal is � The Royal Society of Chemistry 2007 Lab Chip, 2007, 7, 141–143 | 141



parallel connection would be 150 V, compared to 170 V total

resistance for ten cells in series connection reported for a similar

system.2a However, resistance effects under no electrolyte

conditions are complicated and the current distribution within

individual cells may have effects on the local resistance.

Results and discussion

Initially, experiments were conducted for the coupling of an

activated olefin with benzyl bromide at constant current

(under conditions employed here constant current and

constant potential modes give essentially the same results) in

the absence of intentionally added supporting electrolyte in a

single channel cell at 10 ml min21 flow rate of reactant solution.

Under these conditions voltages of typically 4–4.4 V (applied

between working and counter electrodes) are applied to

maintain a current of 0.6 mA. Table 1 summarizes the typical

product yields. It can be seen that sufficiently high levels of

product (yield .93%) can be obtained. Interestingly, it was

noted that the unwanted dimerization of olefins was occurring

to an extent of less than 2%. A very low amount of toluene

(from debromination of benzyl bromide) was observed and no

dimerization of benzyl bromide was detected. No obvious

detrimental anode processes occurred at the counter electrode

(i.e. the oxidation of bromide ions formed during the coupling

reaction to produce bromine, was minimal4a).

In order to further explore the reactant flow within the

micro reactor, we estimate the average residence time and the

approximate inter-diffusion time for reactants travelling

between the two electrodes. At a flow rate of 10 ml min21,

the residence time and the average linear velocity are about

43 s and 0.35 mm s21, respectively. Using the Einstein–

Smoluchowski equation6 (ddiff~
ffiffiffiffiffiffiffiffi
2Dt
p

; ddiff = distance travelled

by diffusion, D = diffusion coefficient, t = time) the diffusion time

across the electrode gap is estimated as typically 12–13 s. This

suggests that inter-diffusion is possible. High conversion is

probably due to effective inter-diffusion of the dimethylfumarate

radical anion and benzyl bromide, and reactive electron transfer

between the dimethylfumarate radical anion and benzyl bromide.4a

To further evaluate the scale out methodology, the same

coupling reactions were conducted using double and quadruple

Fig. 1 Schematic representation of scale out of micro-gap flow cell

showing (a) a single pair of electrodes and (b) independent electrode

configuration for a multiple double flow system. The arrows show

reagent flow direction.

Fig. 2 Schematic representation of the C–C coupling reaction during

micro reactor electrosynthesis. A flow of reagents through a

rectangular duct with working and counter electrode facing each other

results in the formation of products.

Table 1 Data for preparative electrolysis of activated olefins in the presence of benzyl bromides in a micro flow cell without intentionally added
supporting electrolytea

Entry
Olefin R2–Br

Cell Flow/ ml min21 Yield (R1–R2) (%)bR1 R2

1 Dimethylfumarate Benzyl Single 10 98
2 Dimethylfumarate 4-Methoxybenzyl Single 10 94
3 Dimethylfumarate 4-Methylbenzyl Single 10 94
4 Dimethylfumarate 4-Bromobenzyl Single 10 99
5 Dimethylfumarate 1-Phenylethyl Single 10 98
a Olefin is 5 mM, halide is 5 mM, solvent is DMF, electrode gap is 160 mm, voltage is 4–4.4 V to maintain constant current of 0.6 mA. b Yield
was determined using GC based on the quantity of the product after reaction using n-decane as an internal standard. Side products include
dimerization of olefin and debromination of benzyl bromides, no dimerization of benzyl bromides is detected.
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micro-gap flow cells (see Fig. 1). The individual flow rates for

each of the quadruple cells were measured and found to vary

by less than 5% compared to each other and the single channel

device. The cells were operated in two distinct configurations

as described in the experimental section. It is important to

stress that the two and four parallel flow cells used allowed the

geometry, flow rate, and applied potentials of the previously

optimised single flow cell to be maintained. Using the double

and quadruple micro-gap flow cells the coupling reactions

were carried out using both electrode configurations and the

results are summarised in Table 2. Comparison with Table 1

indicates that the double and quadruple flow cells show the

same level of product yield as that obtained with the single cell

under the same conditions. However, volumetric flow rates

equivalent to 20 ml min21 (i.e. 10 ml min21 6 2 flow cells) and

40 ml min21 (i.e. 10 ml min21 6 4 flow cells) could be achieved.

This demonstrates that scale-out can be achieved without

loss of performance compared to that obtained for a single

cell. The performance however of the quadruple flow cell

configured with only one set of electrodes was poor

(configuration 1, Entry 16 in Table 2). This is due presumably

to shunt currents (localised resistance changes) and a

pronounced Joule heating effect.2d These problems lead to

the generation of bubbles and disruption to the flow. No such

problems were observed in the second configuration with

electrode current individually controlled.

Conclusions

In this preliminary scale-out study, it has been demonstrated

that electrosynthesis in a multi-channel micro-gap electro-

chemical flow cell is possible in the absence of intentionally

added supporting electrolyte. The micro flow electrochemical

reactor can be easily multiplexed to generate a number of

parallel flow cells (scale-out) which offer the performance of

the single cell whilst increasing the volumetric throughput

of the system.
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Table 2 Data for preparative electrolysis of activated olefins in the presence of benzyl bromides in a double micro flow cell and multiple cells
without intentionally added supporting electrolytea

Entry
Olefin R2–Br

Cellb
Electrode/reactor
numberc Flow/d ml min21

Product (R1–R2) yield (%)

R1 R2 Cell-1 Cell-2 Cell-3 Cell-4

1 Dimethylfumarate Benzyl D 1/2 20 98 97 — —
2 Dimethylfumarate 4-Methoxybenzyl D 1/2 20 93 94 — —
3 Dimethylfumarate 4-Methylbenzyl D 1/2 20 93 94 — —
4 Dimethylfumarate 4-Bromobenzyl D 1/2 20 99 99 — —
5 Dimethylfumarate 1-Phenylethyl D 1/2 20 98 97 — —
6 Dimethylfumarate Benzyl M2 2/2 20 98 98 — —
7 Dimethylfumarate 4-Methoxybenzyl M2 2/2 20 94 94 — —
8 Dimethylfumarate 4-Methylbenzyl M2 2/2 20 94 95 — —
9 Dimethylfumarate 4-Bromobenzyl M2 2/2 20 99 99 — —

10 Dimethylfumarate 1-Phenylethyl M2 2/2 20 98 98 — —
11 Dimethylfumarate Benzyl M4 4/4 40 98 98 97 98
12 Dimethylfumarate 4-Methoxybenzyl M4 4/4 40 93 94 93 94
13 Dimethylfumarate 4-Methylbenzyl M4 4/4 40 95 93 94 93
14 Dimethylfumarate 4-Bromobenzyl M4 4/4 40 99 98 99 99
15 Dimethylfumarate 1-Phenylethyl M4 4/4 40 98 97 97 98
16 Dimethylfumarate Benzyl Q4e 1/4 40 70 20 30 65
a Olefin is 5 mM, halide is 5 mM, solvent is DMF, electrode gap is 160 mm. For the double cell (D) experiments, voltage was 3.5–4 V to
maintain constant current of 0.6 mA. For multiple cell experiments (M), each cell has similar voltage value to the single cell in order to
maintain a constant current of 0.6 mA. b When using the double cell geometry, a single electrode was divided into two single flow cells. In
multiple cell geometry, two and four independent electrodes were used for generating 2 (M2) and 4 (M4) parallel flow cells. c The values
present the number of electrode and reactor used in the cell configuration. d The flow value represents the total flow rate. e The quadruple
flow cell with a single electrode (configuration 1).
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By employing a series of reactions we demonstrate the use of

electroosmotic flow as a continuous pumping mechanism

suitable for semi-preparative scale synthesis, affording an array

of small organic compounds, of analytical purity, with yields

ranging from 0.57–1.71 g h21.

One of the slowest steps associated with lead compound generation

is the efficient synthesis and purification of small organic

compounds, in particular those used to introduce diversity into

combinatorial libraries. At present, the majority of synthetic

transformations performed in research laboratories employ

techniques, and glassware, that has remained largely unchanged

for decades. Furthermore, the use of long standing protocols can

mean that such reactions are performed using un-optimised

reaction conditions, the outcome of which is largely operator

dependent. Consequently, when target compounds are identified

and prepared for transfer to production, the synthetic route

frequently requires re-optimization, not only to address changes in

scale, but also to enable the process to be operated under a more

efficient continuous flow regime.

Owing to the pharmaceutical importance of a,b-unsaturated

compounds, we were interested in developing a simple synthetic

technique that would enable the rapid production of gram

quantities of analytically pure material, using continuous flow

methodology. Whilst a range of green approaches have been

investigated for the synthesis of such analogues, the use of water1

or ionic liquids2 as reaction media demands that a formal work-up

be performed in order to isolate, and where possible recycle, the

catalyst. To circumvent this problem, numerous authors have

reported the use of solid-supported bases, which can simply be

filtered from the reaction mixture.3 However, difficulties with the

technique arise due to mechanical degradation of the support

upon prolonged stirring, or shaking, of the reaction mixture in a

batch mode.

In the late 1980s, Venturello and co-workers4 reported the

Knoevenagel condensation under continuous flow, using a vertical,

double jacketed glass column packed with aminopropyl function-

alised silica gel. Reactions were performed by simply placing a

solution of aldehyde and activated methylene at the top of the

column, where it passed through the catalyst under gravity (as in

a liquid chromatographic process). Collection of the reaction

mixture at the outlet, followed by evaporation of the solvent

system, afforded the desired product and any unreacted starting

materials. Although this technique illustrated advantages asso-

ciated with continuous flow syntheses, namely the ease of product

isolation and catalyst recycle, the technique employed large

volumes of solvent (30 ml mmol21) and provided no control over

flow rate. This inability to readily alter a reagent’s residence time

led to incomplete product conversions when less reactive analogues

were employed, resulting in the need for additional off-line

purification. To address this shortfall, continuous flow techniques

have evolved to employ pressure-driven flow (in the form of

HPLC or displacement pumps), enabling the rate at which

reagents pass through the packed beds to be controlled.5 Using this

approach, an array of synthetic transformations have been

demonstrated including hydrogenations,6 oxidations,7 reductions,8

Diels–Alder reactions,9 Suzuki couplings10 and Michael addi-

tions,11 culminating in the ability to perform automated multi-

step syntheses, as illustrated by Ley and co-workers12 for the

synthesis of (¡)-oxomaritidine. Whilst the aforementioned

examples serve to illustrate the versatility of continuous flow

systems, in order for the technique to become more widely adopted

problems such as irreproducible flow (especially at low flow rates),

back-pressure generation and cumbersome operating systems,

need to be addressed.

Having recently demonstrated the ability to synthesise milligram

quantities of analytically pure compounds in a series of

miniaturised electroosmotic flow (EOF) based reactors,13 we were

interested in exploring methodologies capable of increasing the

throughput of the system. One option was to scale-out the

technique, i.e., increase the number of optimised micro-reactor

units employed, while an alternative approach was to simply

increase the size of the catalyst bed.

To date, EOF has largely found use as a pumping mechanism

for the manipulation of nl to ml quantities of material within

micron-sized capillaries and channel networks.14 However, as the

volumetric flow rate is largely dependent upon the cross-sectional

area of a channel, increasing the size of the channel enables the

flow rate to be readily increased. As such reactions are diffusion

limited, increasing the size of a reaction channel can be detrimental

to reaction efficiency as it leads to inefficient mixing. This is,

however, not the case when employing packed catalyst beds, as

the diffusion distance between the liquid phase and the solid-

supported catalyst, or reagent, remains the same irrespective of

the overall bed size. Unlike simple pressure-driven systems where

packed-bed size is limited by a reactor’s tolerance to pressure,

electroosmotic systems generate minimal back-pressure and

therefore have the potential to be scaled-up with ease. In addition,

the absence of mechanical pump drivers greatly reduces the

footprint of the reaction set-up, which simply consists of a power

supply (16 cm (w) 6 6 cm (d) 6 27 cm (l)) and a flow reactor
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(6 cm (w) 6 1 cm (d) 6 6 cm (l)). Automation of the system also

enables the reactors to be operated remotely from a safe working

distance, reducing the amount of valuable fume cupboard space

required. Using this approach, we investigated the ability to scale-

up our previously optimised reaction set-up which employed a

0.5 mm (id) capillary to a 3.0 mm (id) capillary, the results of

which are reported herein.

As Fig. 1 illustrates, the reaction set-up employed consists of a

borosilicate glass capillary (3.0 mm (id), 3.0 cm (length)), fritted at

both ends to retain the solid-supported reagent, attached to two

borosilicate glass reagent reservoirs via rubber stoppers (No. 9,

Suba Seal). To perform a reaction, the packed-bed is primed with

anhydrous acetonitrile (MeCN) (to form a complete electrical

circuit) and platinum electrodes (0.25 mm (od) 6 2.5 cm (length))

are then placed in reservoirs A and B, respectively. A solution of

starting material is then placed in reservoir A and an aliquot of

solvent placed in reservoir B. The reaction mixture is subsequently

passed through the packed-bed by application of a positive voltage

to reservoir A (167 to 300 V cm21) and the reaction products

collected in reservoir B (0 V cm21). Unless otherwise stated,

reactions are carried out for 10 min, after which the contents of

reservoir B are removed and analysed, off-line, by GC-MS. Once

optimised, the reactors are operated continuously for a period of

1 h (2.5 h in some instances), the reaction products collected,

concentrated in vacuo and the crude product dissolved in CDCl3
prior to purity evaluation by NMR spectroscopy.

To assess the reactor’s performance, we firstly investigated

the incorporation of silica-supported piperazine (0.100 g,

1.70 mmol g21) into the packed-bed, demonstrating the

Knoevenagel condensation of two activated methylenes with a

series of aldehydes (Table 1). Employing an applied field of

200 V cm21, a pre-mixed solution of aldehyde and activated

methylene (both 1.0 M in anhydrous MeCN) was placed in

reservoir A and passed through the packed-bed at flow rates in the

range from 48.3 to 62.1 ml min21, depending on the aldehyde

employed. In all cases, optimised reaction conditions afforded the

desired a,b-unsaturated product (trans-isomer only) in excellent

product purity (.99.9%) and yield (.98.8%), demonstrating

reactor stability over ¢15 runs. To further demonstrate the

feasibility of operating such reactors continuously, the syntheses of

3-(4-bromophenyl)-2-cyanoacrylic acid ethyl ester and 2-(4-brom-

benzylidene)malononitrile were investigated over an extended 2.5 h

period, affording 2.30 g (99.4%) and 1.70 g (99.8%) of analytically

pure material, respectively.

Based on the results presented in Table 1, it can be seen that the

use of continuous flow reactors not only leads to enhanced

product purity but also to a dramatic reduction in reaction time,

affording near quantitative yields with residence times in the

range of 0.15–0.19 min.{ The generality of the technique was

subsequently evaluated by incorporating polymer supported

diazabicyclo[2.2.2]octane (1.45 mmol N g21), 3-(dimethylamino)-

propyl (1.50 mmol N g21), 3-aminopropyl (1.70 mmol N g21)

and 3-(1,3,4,6,7,8-hexahydro-2H-pyrimido[1.2.1]-pyrimidino)pro-

pyl (2.40 mmol N g21) functionalised silica gels into the flow

reactor, whereby 3-(4-bromophenyl)-2-cyano-3-phenylacrylic acid

ethyl ester was obtained in excellent yield and purity (.99.0%).

Compared with the gravity-based system reported by Venturello

and co-workers,4 the approach described here is also advantageous

as it represents a significant reduction in solvent usage, requiring

only 1 ml mmol21 of product, cf. 30 ml mmol21. In addition, as

the products synthesised are obtained in excellent purity, no

subsequent off-line chromatographic purification is needed, further

reducing the environmental burden associated with the technique.

In addition to the base-catalysed syntheses discussed, the study

also investigated the feasibility of performing acid catalysed

reactions in such continuous flow systems. Based on our previous

experience of solid-supported acid catalysts, the synthesis of

dimethyl acetals was selected as a model reaction. In brief,

reactions were performed by mobilising a pre-mixed solution of

aldehyde and trimethylorthoformate (1.0 M and 2.5 M, respec-

tively, in MeCN) through a packed bed, containing Amberlyst-15

(0.075 g, 0.315 mmol), upon application of 300 and 0 V cm21, to

reservoirs A and B respectively. Again, the reaction products were
Fig. 1 Schematic illustrating the reaction set-up used for the continuous

flow synthesis of small organic compounds by EOF.

Table 1 Summary of the results obtained for the synthesis of
a,b-unsaturated compounds in an EOF-based continuous flow reactor
(unless stated otherwise, all reactions were conducted for 1 h)

R1 R2 R3 R4 Flow rate21 Conv. Yield
/ml min (%)a /g

H H H CO2Et 62.0 99.9 0.75
(99.7)b

H CO2Me H CO2Et 56.1 100.0 0.87
(99.8)

OMe H OMe CO2Et 50.1 99.9 0.78
(99.9)

H OBn H CO2Et 51.1 99.9 0.94
(99.7)

H Br H CO2Et 55.1 99.9 2.30c

(99.4)
H H H CN 62.1 99.9 0.57

(99.4)
H CO2Me H CN 60.4 99.9 0.76

(98.8)
OMe H OMe CN 55.7 100.0 0.71

(99.2)
H OBn H CN 48.4 99.9 0.75

(99.4)
H Br H CN 48.3 100.0 1.70c

(99.8)
a n = 15. b Number in parentheses represents % yield. c Reaction
conducted for 2.5 h.
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collected at 10 min intervals and analysed off-line by GC-MS.

Once optimised, reactions were operated continuously for 1 h and

the products isolated by evaporation of the reaction solvent: the

purity of the ‘crude’ material was subsequently evaluated by NMR

spectroscopy. Employing flow rates in the range of 111.0–

139.0 ml min21 resulted in optimal conversion of an array of

aldehydes to their respective dimethylacetal (Table 2), obtaining

greater product purity compared with analogous batch reactions.

This observation is attributed to the unique reaction conditions

attained within continuous flow reactors, which enable reaction

products to be removed from the reactor prior to, in this

case, competing acid-catalysed deprotection occurring. Again,

extended operation was demonstrated for the synthesis of

1-bromo-4-dimethoxymethylbenzene, affording a space time

yield of 1.46 g h21. Furthermore, system generality was

demonstrated via the incorporation of additional solid-supported

Lewis acid catalysts, including silica-supported sulfonic acid

(1.50 mmol g21), polymer supported para-toluene sulfonic acid

(2.00 to 3.50 mmol g21), ytterbium polystyryl sulfonate(III)

(0.80 mmol g21), whereby excellent yields and purities were

obtained in all cases.

Based on the data presented herein it can be concluded that the

catalysts remain active over prolonged periods of time, enabling

catalytic turnovers in excess of 247 times to be attained (Table 3).

The scope of the technique was subsequently extended to

evaluate the feasibility of performing continuous flow, multi-step

syntheses. As Fig. 2 illustrates, the model reaction selected

involved an acid-catalysed acetal deprotection, followed by a

base-catalysed condensation, of the in situ generated aldehyde with

ethylcyanoacetate, to afford 3-(4-bromophenyl)-2-cyanoacrylic

acid ethyl ester. To perform a reaction, a pre-mixed solution of

1-bromo-4-dimethoxymethylbenzene and ethylcyano acetate

(1.00 M in MeCN) was placed in reservoir A and pumped

through a packed-bed containing Amberlyst-15 (0.036 g,

0.151 mmol) and silica-supported piperazine (0.050 g,

0.085 mmol). By ensuring that each step of the reaction proceeds

to completion, multiple reaction steps can be performed in

series, without the need to purify the reaction intermediates.

Consequently, operation of the reactor at an optimised flow rate of

54.9 ml min21 afforded 3-(4-bromophenyl)-2-cyanoacrylic acid

ethyl ester in excellent purity (100.0% by GC-MS) with a system

throughput of 0.926 g h21.

From the examples presented, it can be seen that EOF is a

versatile pumping technique that affords accurate, pulse-free

reagent delivery, enabling reactions to be readily optimised.

Furthermore, the ease with which the supported reagents are

recycled provides reaction reproducibility and catalyst lifetimes

unobtainable in traditional agitated reaction systems.

Full financial support provided by the EPSRC (C.W.) (Grant

No. GR/S34106/01) is gratefully acknowledged.
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Table 2 Synthesis of dimethylacetals in a wide bore, EOF-based,
continuous flow reactor (unless stated otherwise, all reactions were
conducted for 1 h)

Starting material
Flow rate/
ml min21

Conv.
(%)a Yield/g

Benzaldehyde 139.0 100.0 1.26 (99.2)b

4-Cyanobenzaldehyde 124.0 99.8 1.31 (99.2)
4-Chlorobenzaldehyde 120.0 99.9 1.33 (99.5)
4-Benzyloxybenzaldehyde 111.0 99.9 1.71 (99.7)
3,5-Dimethoxybenzaldehyde 112.0 99.9 1.42 (99.4)
2-Naphthaldehyde 126.0 99.9 1.52 (99.8)
Methyl-4-formylbenzoate 121.0 99.9 1.52 (99.4)
5-Nitro-2-thiophenecarboxaldehyde 123.0 99.9 1.50 (99.8)
trans-Cinnamaldehyde 113.0 99.9 1.20 (99.4)
4-Bromobenzaldehyde 105.0 99.6 3.64 (99.7)c

a n = 15. b Number in parentheses represents % yield. c Reaction
conducted for 2.5 h.

Table 3 Evaluation of the catalytic activity of an acid and a base
catalyst employed within the EOF-based flow reactor

Catalyst/
mmol

Product/
mmol

Turnover
number

Silica-supported piperazine 0.17 42.00 247
Amberlyst-15 0.32 80.71 256
a Based on the data presented herein (catalysts remain active).

Fig. 2 Schematic illustrating the multi-step synthesis of 3-(4-bromophe-

nyl)-2-cyanoacrylic acid ethyl ester in an EOF based, continuous flow

reactor.
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Abstract—By optimizing a reagent’s residence time within a packed-bed reactor, it is possible to overcome selectivity issues fre-
quently encountered in stirred reaction vessels. This important feature is demonstrated for the chemoselective protection of 4-acet-
ylbenzaldehyde whereby 1-[4-1,3-dithian-2-yl-phenyl]ethanone is obtained in excellent yield and purity. In addition, the generality of
the technique is highlighted via the protection of numerous aldehydes and ketones affording the respective thioacetal/ketal in excel-
lent yield (>99.1%) and purity (>99.9%), with space–time yields in the range of 0.44–1.10 g h�1.
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1. General reaction scheme illustrating the protection of
carbonyl moieties as their respective 1,3-dithiolane (n = 1) or 1,3-
dithiane (n = 2).
1,3-Dithianes are versatile reagents employed in the for-
mation of C–C bonds, with the conjugate addition of
lithiated 1,3-dithianes to a,b-unsaturated ketones, alde-
hydes, esters, and lactones widely reported in modern
organic synthesis.1 Additionally, S,S-acetals form an
important class of carbonyl protecting groups that,
unlike their respective oxygen containing analogues,
are hydrolytically stable and tolerant to a wide pH
range.2 Due to their overwhelming stability to an array
of reaction conditions, deprotection is not easily
achieved. Consequently, many approaches have been
reported with reagent selection determined by the sensi-
tivity and stability of the particular substrate.

Owing to the synthetic utility of 1,3-dithianes and 1,3-
dithiolanes, many techniques have been described for
their preparation based on the condensation of a car-
bonyl compound with the respective dithiol (Scheme
1). To promote the reaction, an array of Lewis or Bron-
sted acid catalysts have been reported including zinc or
magnesium triflate,3 titanium tetrachloride,4 boron tri-
fluoride,5 and lithium perchlorate,6 frequently in con-
junction with an excess of dithiol (0.1–5.0 equiv).
Subsequent purification is therefore required, not only
to remove the excess thiolating agent, but also the acid
catalyst, prior to performing subsequent reaction steps.
0040-4039/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tetlet.2007.08.027
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The use of heterogeneous catalysts, such as Amberlyst-
15 (A-15) 1,7 natural kaolinitic clay,8 silica-supported
p-toluenesulfonic acid9,10 addressed the problem of cat-
alyst recovery, whereby employing a simple filtration at
the end of the reaction enables isolation, and potential
recovery/reuse, of the catalyst. Again, an excess of
dithiol is often employed, demanding additional purifi-
cation steps to be performed. Although solid-supported
reagents and catalysts have many advantages over their
solution phase analogues, one limitation is mechanical
degradation of the support (due to stirring or agitation
of reaction mixtures) which leads to reduced reagent life-
times and difficulties with efficient reagent recycle. Con-
sequently, by performing reactions within continuous
flow reactors,11 such as the one described herein, the
support undergoes minimal mechanical stress, affording
extended reagent lifetimes, along with ease of catalyst
recycling and reproducibility between reactions. Fur-
thermore, automation of the technique offers increased
reaction control, reduced operator dependency and
facilitates rapid reaction optimization.
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Figure 2. Schematic illustrating the continuous flow synthesis of 2-
phenyl-1,3-dithiane 2.

Figure 3. Gas chromatograms illustrating the difference between an
optimized and an unoptimized system for the synthesis of 2-phenyl-
1,3-dithiane 2, under continuous flow.
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In pursuit of an atom efficient technique for the protec-
tion of carbonyl moieties, we investigated the continu-
ous flow synthesis of 1,3-dithianes and 1,3-dithiolanes,
proposing that careful optimization of the reaction
conditions would allow the synthesis and isolation of
analytically pure products, by simply removing the reac-
tion solvent.

To manipulate reactants and products within the flow
reactor, the pumping mechanism selected was electroos-
motic flow (EOF) as compared to pressure-driven (PD)
flow, EOF generates minimal back-pressure; a particu-
larly important feature for packed-bed reactors. EOF
therefore enables reaction systems to be scaled without
being limited by the reactor’s pressure tolerance, a
frequently encountered problem in PD systems. The
technique also enables precise control over flow rate,
as it is not limited by an incremental stepper motor, thus
affording pulse-free flow. In addition, the absence of
mechanical pump drivers reduces the footprint of the
set-up, which simply consists of a power supply. Again,
automation of the system enables remote operation of
the reactors, reducing greatly the amount of valuable
fume cupboard space required to perform such reac-
tions. While EOF has predominantly been employed
as a pumping mechanism within miniaturized reaction
systems for the manipulation of nl quantities of mate-
rial,12 we recently reported its use within a flow reactor
of millimeter dimensions, enabling access to flow rates in
the range of 0.1–500.0 ll min�1.13

As Figure 1 illustrates, the reaction set-up employed
herein consists of a borosilicate glass capillary (3.0 mm
(i.d.) · 30.0 mm (length)), packed with A-15 1 (0.055 g,
0.231 mmol) attached to borosilicate glass reagent reser-
voirs via two rubber septa (No. 9, Suba Seal). To per-
form a reaction, the packed-bed is filled with
anhydrous MeCN (to form a complete electrical circuit)
and a solution containing the reactants is then placed in
reservoir A along with an aliquot of solvent in reservoir
B. Platinum electrodes (0.5 mm (o.d.) · 2.5 cm (length))
are placed in each reservoir and the reaction mixture
pumped through the packed-bed by application of a
positive voltage (50–200 V cm�1) to reservoir A; the
reaction products are subsequently collected in reservoir
B (0 V cm�1) (Fig. 2). Unless otherwise stated optimiza-
tion reactions are performed for 10 min, prior to analy-
B (   ) 
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(2.5 cm x 0.5 mm)

Suba Seals 
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Borosilicate Glass Capillary 
(3 mm x 30 mm) 

Reagent
Reservoir 
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Figure 1. Schematic illustrating the reaction set-up used for the
continuous flow synthesis of 1,3-dithianes and 1,3-dithiolanes.
sis by GC–MS whereby the percentage conversion of
carbonyl compound to product is determined. Once
optimized (Fig. 3), the reactor is operated continuously
for 1 h, after which the reaction products are removed
from reservoir B, concentrated in vacuo and the crude
product dissolved in CDCl3 prior to additional purity
evaluation by NMR spectroscopy.

Using the set-up illustrated in Figures 1 and 2, the reac-
tor’s performance was assessed using the synthesis of 2-
phenyl-1,3-dithiane 2 as a model reaction. Employing an
applied field of 200 V cm�1, a pre-mixed solution of
benzaldehyde 3 and 1,3-propanedithiol 4 (1.0 M, 1:1 in
MeCN) was pumped through the packed-bed at a flow
rate of 63.7 ll min�1 (residence time = 75.4 s) and the
reaction products evaluated every 10 min, off-line by
GC–MS (Fig. 3). Typical reaction data from the optimi-
zation process afforded quantitative conversion of benz-
aldehyde 3 to 2-phenyl-1,3-dithiane 2 (99.992%). In
addition, the reaction reproducibility (5.0 · 10�3%
RSD) obtained over 2.5 h confirms effective recycle of
the acid catalyst, generating 9.42 mmol of product 2
with 0.231 mmol of catalyst; representing a turnover of
41 times, so far.

Having established the ability to perform a model thio-
acetalization under continuous flow conditions, the
next step was to evaluate the generality of the tech-
nique, firstly investigating the protection of an array of
substituted aldehydes as the respective 1,3-dithiane. As



Table 1. Summary of the results obtained for the thioacetalization of
ten substituted aldehydes under continuous flow conditions
(200 V cm�1)

O

HR

HS

SHn
HR

SS
nA-15 1

MeCN

Aldehyde na Flow rate
(ll min�1)

Yieldb

(g)
Yield
(%)

Benzaldehyde 2 63.7 1.96c 99.97
1 63.4 0.69 99.97

4-Bromobenzaldehyde 2 61.4 1.01 99.92
1 61.2 0.96 99.96

4-Chlorobenzaldehyde 2 61.7 0.85 99.91
1 61.9 0.80 99.95

4-Cyanobenzaldehyde 2 65.4 0.87 99.94
1 64.6 0.80 99.96

4-Benzyloxybenzaldehyde 2 61.1 1.10 99.22
1 60.9 1.05 99.93

4-Methylbenzaldehyde 2 69.7 0.88 99.97
1 69.0 0.81 99.93

4-Biphenylcarboxaldehyde 2 63.0 1.02 99.06
1 63.0 0.97 99.97

2-Naphthaldehyde 2 60.4 0.89 99.94
1 60.2 0.84 99.98

2-Furaldehyde 5 2 67.9 0.76 99.92
1 67.5 0.69 99.97

3,5-Dimethoxybenzaldehyde 2 67.9 1.04 99.91
1 67.7 0.982 99.93

a 1,2-Ethanedithiol 6 (n = 1) and 1,3-propanedithiol 4 (n = 2).
b Unless otherwise stated, reactions were performed for 1 h.
c Reaction conducted for 2.5 h.

Table 2. Summary of the results obtained for the protection of
ketones, under continuous flow, as their respective thioketal
(50 V cm�1)

O

R

HS

SHn
R

SS
nA-15 1

MeCN

Ketone na Flow rate
(ll min�1)

Yieldb

(g)
Yield
(%)

Acetophenone 2 41.5 0.52 99.57
1 41.3 0.48 99.96

Propiophenone 2 40.2 0.54 99.97
1 40.3 0.51 99.96

Butyrophenone 2 41.6 0.59 99.90
1 41.6 0.56 99.90

Cyclohexanone 2 42.2 0.47 99.62
1 42.1 0.44 99.98

Benzophenone 2 40.2 0.57 99.81
1 40.1 0.65 99.91

4-Nitroacetophenone 2 40.9 0.63 99.95
1 41.0 0.59 99.95

2-Methoxyacetophenone 2 40.9 0.59 99.93
1 41.9 0.57 99.93

4-Chloroacetophenone 2 40.9 0.60 99.87
1 40.8 0.60 99.91

4-Hydroxyacetophenone 2 42.2 0.57 99.76
1 42.1 0.53 99.83

4-Bromoacetophenone 2 40.2 0.70 99.94
1 40.1 0.66 99.97

a 1,2-Ethanedithiol 6 (n = 1) and 1,3-propanedithiol 4 (n = 2).
b Unless otherwise stated reactions were performed for 1 h.
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Table 1 illustrates, employing a stoichiometric quantity
of dithiol, and an average residence time of 76 s
(�62.9 ll min�1), afforded the respective dithiane, in
excellent yield and purity. Importantly no sign of substi-
tuent effect was observed, with even difficult to protect
compounds such as 2-furaldehyde 5 being reacted with
ease. Furthermore, substitution of 1,3-propanedithiol 4
with 1,2-ethanedithiol 6 afforded the synthesis of 1,3-
dithiolanes in excellent yields and purities, employing
analogous reaction conditions to those previously opti-
mized for the 1,3-dithianes. Compared to a typical batch
reaction, the use of a flow reactor enabled a dramatic
reduction in reaction time, from 24 h to 76 s; an obser-
vation, which is attributed to the high surface-to-volume
ratio obtained between the catalyst and reactants. Fur-
thermore, the use of a closed reaction system, such as
the one described herein, facilitates the efficient reaction
of odorous compounds, affording reaction products of
excellent purity without the need for additional
purification.

As the preparation of thioketals is kinetically less favor-
able than their respective thioacetals, extended reaction
times are frequently employed (24–120 h), along with an
excess of the dithiol or extreme reaction temperatures.7

Based on the encouraging results summarized in Table
1, our investigation progressed on to the protection of
ketones, determining whether the aforementioned
reductions in reaction time were also attainable for the
synthesis of thioketals. Utilizing a comparable technique
to that employed for the thioacetalizations, a pre-mixed
solution of ketone and dithiol (1.0 M, 1:1 in MeCN) was
mobilized through the packed-bed, using an applied
field of 50 V cm�1. As the results in Table 2 demon-
strate, in all cases excellent yields were obtained, with
throughputs in the range of 0.44–0.70 g h�1. Impor-
tantly, no substituent effects were observed, with even
highly substituted ketones, which are normally difficult
to protect, proving facile in this system.

Having demonstrated the different reaction conditions
required to quantitatively protect both aldehydic and
ketonic moieties within a continuous flow reactor, we
investigated the ability to chemoselectively protect an
aldehyde in the presence of a ketone (Scheme 2). Under
reaction conditions previously optimized for the protec-
tion of aldehydes, a pre-mixed solution of 4-acetylbenz-
aldehyde 7 and 1,3-propanedithiol 4 (1.0 M) in MeCN
was mobilized through the packed-bed (200 V cm�1) at
a flow rate of 65.2 ll min�1, affording 1-[4-1,3-dithian-
2-yl-phenyl]ethanone 8 in quantitative yield. Conduct-
ing the reaction under such flow conditions, afforded
superior results compared to those obtained in an
analogous batch reaction, enabling selectivity toward
protection of the formyl group. As Figure 4 illustrates,
in an analogous batch reaction (24 h), incomplete con-
version of 4-acetylbenzaldehyde 7 to the respective 1,3-
dithiane 8 was observed, along with competing di-pro-
tection to afford 2-[4-1,3-dithian-2-yl-phenyl]-2-methyl-
1,3-dithiane 9.
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Scheme 2. Possible reaction products obtained from the protection of
4-acetylbenzaldehyde 7 as its respective 1,3-dithiane 8.

Figure 4. Gas chromatograms illustrating the chemoselectivity
obtained in a flow reactor compared to a traditional stirred reactor.
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Further to the excellent isolated yields obtained when
conducting reactions under continuous flow, an addi-
tional advantage of the technique is the ability to recycle
the solid-supported catalyst with ease. This is illustrated
herein whereby 128.5 mmol of thioacetals and ketals
were synthesized using 0.231 mmol of catalyst, repre-
senting an impressive turnover number of 556, with no
sign of degradation to date. Although A-15 1 is capable
of being turned over this number of times in batch, it is a
difficult undertaking when using traditional reaction
methodology as the catalyst must be filtered from the
reaction mixture in order to be re-used. In addition,
the mechanical degradation that the catalyst undergoes
when used repeatedly increases the difficulties associated
with efficient filtration.

In conclusion, we have developed a simple and efficient
technique that enables the chemoselective protection of
aldehydes, based solely on reactant residence time with-
in a packed-bed reactor.
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Quantitative Comparison between Microfluidic and
Microtiter Plate Formats for Cell-Based Assays
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In this paper, we compare a quantitative cell-based assay
measuring the intracellular Ca2+ response to the agonist
uridine 5′-triphosphate in Chinese hamster ovary cells,
in both microfluidic and microtiter formats. The study
demonstrates that, under appropriate hydrodynamic con-
ditions, there is an excellent agreement between tradi-
tional well-plate assays and those obtained on-chip for
both suspended immobilized cells and cultured adherent
cells. We also demonstrate that the on-chip assay, using
adherent cells, provides the possibility of faster screening
protocols with the potential for resolving subcelluar
information about local Ca2+ flux.

The development of robust methods for high-throughput
screening (HTS) is important for the rapid assessment of a drug’s
activity.1 Traditionally, such measurements, which involve record-
ing the average response of tens of thousands of cells in microtiter
plates, have been performed with automated fluid handling robots.2

Although robotic operation can reduce sample handling errors,
effective washing, evaporation, and relative volumetric errors are
significant concerns in microtiter plate operation, particularly when
the well volume is decreased.3

As a consequence, recently there has been considerable
interest in trying to translate microtiter-based measurements into
microfluidic platforms. Such miniaturized microfluidic systems
can provide better precision in generating sample concentrations
and improved efficiency in washing.4 Chip-based assays also use
smaller numbers of cells, have a low volume of operation (sub-
microliter or nanoliter), and have general flexibility in the control
of hydrodynamic conditions under which the assay is performed.5,6

However, the uptake of microfluidics by the pharmaceutical
industry in cell screening, and its potential to become a versatile
and robust method for pharmacological assessment of new

medicines, relies on the ability to generate comparable quantitative
information on-chip, with respect to that obtained using current
technology (i.e., standard multiwell plates).

Within the pharmaceutical industry, ligand-gated ion channels
represent >40% of the targets for drug discovery. Many of these
channels are modulated by calcium ions, and as such, the
intracellular measurement of Ca2+ flux remains one of the
preferred ways to determine the activity of new drug candidates.7

Building upon this established work, we use the activity of the
agonist, uridine 5′-triphosphate (UTP), which binds to G-coupled
protein receptors and triggers the release of internal Ca2+ from a
cell’s endoplasmic reticulum,8 as a model assay to quantitatively
compare new microfluidic formats with established microtiter plate
assay procedures.

To date, there has been limited work on the measurement of
intracellular Ca2+ in microfluidic systems9-14 and even fewer
fundamental studies that evaluate quantitative on-chip cellular
assays. We have previously demonstrated that commonly applied
hydrodynamic conditions in microfluidics can activate mecha-
nosensitive ion channels leading to an intracellular Ca2+ flux15 (an
observation that has profound implications for assay optimization
on chip, as the local hydrodynamic conditions have the potential
to induce cell responses that mimic pharmacological effects). In
order to demonstrate the broad applicability of chip-based assays
as a HTS assay, it is important that equivalent information can be
obtained in microfluidic systems.

In this paper, we evaluate functional ligand-based ion channel
microfluidic assays using both suspended and adherent cells
(cultured on-chip) and under appropriate hydrodynamic conditions
compare them with traditional microtiter well-plate assays. We
show that measuring Ca2+ flux from low numbers of discrete
single cells, used in the microchannel format, can provide robust
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pharmacological information, which is in excellent agreement with
data obtained from larger populations of cells.

MATERIALS AND METHODS
Cell Culture. The Chinese hamster ovary (CHO)-K1 cell line

was from ATCC (the American Type Culture Collection). CHO
cells were cultured in 25-cm2 tissue culture flasks at 37 °C in a
humidified atmosphere with 5% CO2/95% air. The cells were
incubated in DMEM/F12 medium (Invitrogen) supplemented with
10% fetal calf serum and 4 mM L-glutamine, were grown to near
confluence in the culture flasks, and then were suspended with
0.05% trypsin-EDTA solution. Prior to being introduced into the
microfluidic chip or the microtiter plate, the concentration of
suspended cells was determined using a hemeocytometer. The
viability of cells was determined using 0.4% Trypan Blue solution.

Microfluidic Device Fabrication. We developed a reusable
microfluidic device, which comprised a glass substrate that could
be sealed against a microfluidic gasket, formed by molding a poly-
(dimethylsiloxane) (PDMS) elastomer against a silicon master.
The substrate could be modified prior to assembly to promote
the rapid attachment of a high density of viable cells; see below.
Microchannels were 500 µm wide, 140 µm high, and 15 mm long,
providing a local environment in which we were able to mitigate
against local shear stress, at appropriate flow rates.15

Substrate Modification. The substrate was modified prior to
assembly with collagen to enhance the immobilization of cells,
as described previously.15 These collagen-modified glass substrates
were stored in sterilized foil at 4 °C before being mechanically
sealed against a 5-mm PDMS gasket, to form an enclosed
microfluidic chip. The gasket was sufficiently thick that the
channel geometry did not deform during sealing.

The microfludic devices were connected to a KDS 260 syringe
pump (KD Scientific Inc.) using ethylenetetrafluoroethylene
polymer tubing with an inner diameter of 250 µm. On-off valves
(with appropriate fittings and connectors) obtained from Upchurch
Scientific Inc. were used to control flow. Tests were carried out
with a colored dye solution to show that the chip did not leak
even when using flow rates as high as 400 µL/min.

Well Plate Assay. A traditional measurement of CHO cell’s
response to UTP in a standard microtiter format was used as a
standard reference. Intracellular Ca2+ level was quantified using
Ca2+-sensitive Fluo-4 AM indicator dye.16 Cell labeling and washing
buffers are described in detail in the Supporting Information.
Briefly, 50 µL of a cell suspension (at a concentration of 2 × 106

cells/mL) was seeded per well (∼10 000 cells/well) in a 384-well
plate and incubated overnight at 37 °C in a humidified atmosphere
with 5% CO2/95% air. After removal of the medium, the adherent
cells were washed with the Tyrode buffer and incubated with 50
µL of the Fluo-4 AM labeling buffer for an hour at 37 °C in a
humidified atmosphere with 5% CO2/95% air. The labeling buffer
was then replaced with 40 µL of fresh Tyrode buffer to minimize
the buffering effect of the dye within the cells. Ten seconds after
starting recording the fluorescent intensity of cells, either using
fluorescence microscopy or using a fluorometric imaging plate
reader (FLIPR), 10 µL of UTP test solution (at a range of
concentrations between 10 nM and 10 µM) was added to each

well. The induced changes in fluorescence intensity were recorded
and calculated to reflect the changes in [Ca2+].16,17

On-Chip Assay Using Suspended Cells. On-chip analysis
of suspended cells required their loading and immobilization inside
microfluidic channels, so that they did not move while tracking
rapid changes in intracellular Ca2+ flux. The procedure for labeling
suspended cells was modified from that used for the well plate
assay in order to minimize the adverse effects of long periods of
incubation of cells with dye. Suspended cells were centrifuged at
100g for 5 min to remove the medium and then washed with
Tyrode buffer before being resuspended in the labeling buffer to
a concentration of ∼2.8 × 106 cells/mL. Following incubation at
37 °C for 10 min, the labeled suspended cells were loaded on-
chip at a flow rate of 1 µL/min. Once in the channel, they were
left undisturbed for 10 min to allow attachment to the collagen-
modified channel surface. Any unattached or loosely attached cells
were washed away at a higher flow rate (5 µL/min). UTP agonist
test solutions in Tyrode buffer were then introduced into the
microfluidic platform at the selected flow rates with UTP concen-
trations from 10 nM to 10 µM.

On-Chip Assay Using Adherent Cells. The use of adherent
cells in microfluidics requires on-chip culture. To avoid bacterial
contamination, the valves, connections, and PDMS chips were all
sterilized using 70% ethanol and were then dried prior to assembly.
A sterilized microfluidic device was constructed using a prester-
ilized collagen-modified substrate, as described previously.15 The
microfluidic channel was first primed with sterilized medium.
Freshly harvested cell suspensions at different concentrations
were then pumped into the microfluidic chip at 1 µL/min. Once
in the microchannel, the cells were left undisturbed for 10 min,
before being washed in medium. All operations were performed
in a class II biological laminar hood. The cell-chip (as a closed
system) was then transferred into an incubator at 37 °C in a
humidified atmosphere with 5% CO2/95% air. The system was
continually perfused with medium at a rate of 0.5 µL/min
overnight. Once cells were confluent inside the microfluidic device,
the medium was replaced with Tyrode buffer at a flow rate of 20
µL/min. Finally, the labeling buffer (as above) was introduced
and incubated for 30 min for uniform labeling to occur. After
further washing with Tyrode buffer, cells were challenged with
UTP concentrations over the same range as above.

Data Acquisition and Analysis. Both transmission and
fluorescence images were recorded using a Zeiss Axiovert inverted
fluorescence microscope coupled to a monochrome cooled CCD
digital camera (Andor iXonEM, Andor Technology.). A filter set,
containing an exciter D475/40, an emitter E510, and a beam
splitter Dichroic 495, was used for the fluorescence imaging. The
intensity of the excitation light was adjusted by a neutral density
filter (OD ) 1) to minimize photo bleaching of the dye. Real-time
fluorescence recordings were made for 3 min at a rate of 10
frames/s using an X40 water immersion lens. The CCD field of
view was 200 µm × 200 µm.

In situ fluorescence measurements of the response of adherent
cells in the microfluidic device were carried out using a confocal
microscope (Zeiss LSM 510) with a X63 oil immersion lens and a
488-nm excitation laser. Real-time recordings of the field of view

(16) Takahashi, A.; Camacho, P.; Lechleiter, J. D.; Herman, B. Physiol. Rev. 1999,
79, 1089-1125.

(17) Smart, D.; Jerman, J. C.; Brough, S. J.; Rushton, S. L.; Murdock, P. R.; Jewitt,
F.;. Elshourbagy, N. A.; Ellis, C. E.; Middlemiss, D. N.; Brown, F. Br. J.
Pharmacol. 1999 128, 1-3.
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(202 µm × 202 µm) were made at both 4 frames/s and as line
scans of a single cell recorded at a rate of 0.0075 s/line.

The fluorescence intensity of whole discrete individual cells
was calculated using the Andor iQ1.4 image software. The
maximum responding amplitude (simplified as response) was
calculated as follows; the cell’s response was expressed as (Fpeak

- F0)/F0 × 100%, where Fpeak is the peak fluorescence intensity
and F0 the baseline. All fluorescence measurements were back-
ground subtracted.16 The baseline fluorescence intensity (F0) was
taken as the average background value over 10 s before applying
UTP solutions. All measurements were made in triplicate, and
standard errors are given unless noted.

RESULTS AND DISCUSSION
Studies Involving the Comparison of Cell Populations and

Single Cells. There has been much debate about the relative
merit of the use of single cells, particularly in microfluidic devices,
compared with that of population studies in microtiter plate assays
when evaluating pharmacological responses.18 For example, in a
typical 384 titer plate, up to 10 000 cells may be used per well,
which when incubated overnight will give a confluent layer, as
shown in Supporting Information, Figure S1A. Upon the addition
of an agonist such as UTP, a proportion of the cells respond, as
indicated by an increase in fluorescence intensity (Supporting
information Figure S1B). Using a FLIPR, the average response
of the whole population in a well is obtained and subsequently
used in any data manipulation.17 In our study, a wide range of
UTP concentrations were tested using this procedure in order to
obtain a dose-response curve, as shown in Figure 1A. Subse-
quently, the pEC50 (-log(EC50)) values were determined using
standard sigmoidal curve-fitting methods.17 A mean value of pEC50

from 64 duplicated dose-response experiments (i.e., 16 duplicates
on 4 individual plates) was 6.2, which corresponds to a mean EC50

value of 0.65 µM. This latter value is the concentration of agonist
that provokes a response exactly midway between the baseline
and maximum response. In pharmacological studies, it is used as
a quantitative measure of the agonist’s activity.

The microtiter plate format using a population of cells has
obvious limitations, including the lack of information from
individual cells and a susceptibility to optical artifacts (due to
reagent addition, for example). Moreover, attempts at parallel
quantification are limited by the reproducibility and uniformity of
the cell monolayer in individual wells. Notably, with other types
of cells, i.e., primary cells, a heterogeneous culture is generally
produced, and in these circumstances, the formation of uniform
cell monolayers remains a significant challenge.

In contrast, the microfluidic approach described here provides
the capability to reveal heterogeneous information from individual
cells as well as cell ensembles. In order to understand how many
single cells were needed to produce a comparable measurement
to the traditional microtiter using a cell population assay, we
performed a statistical study using the response of individual
plated CHO cells within a well plate. Using a fluorescence
microscope, the average responses of random selected discrete
cells, in groups of 10-125, were recorded from within the
microtiter well to obtain the dose-response curves and, subse-

(18) Wolff, M.; Joerg Wiedenmann, J.; Nienhaus, J. U.; Valler, M.; Heilker, R.
Drug Discovery Today 2006, 11, 1054-1061.

Figure 1. Population response vs single-cell response in quantita-
tive study. (A) A representative dose-response curve from multi-
well plates using 10 000 cells/well by FLIPR. pEC50 (-log(EC50))
wasdetermined by fitting a sigmoid to the concentration-response
curve (http://www.graphpad.com/curvefit).15 Data were normalized
to the average maximum value. The mean pEC50 from 64 dupli-
cate experiments is 6.20 ((0.03), which corresponds to a mean EC50

value of 0.65 µM. (B) Single-cell study using a range of cell
numbers. The suffix “R” indicates a duplicate measurement. The
acceptable range of the pEC50 in industry equals the mean value
of pEC50 from the FLIPR test 6.2 ((0.5), as indicated by the dotted
lines. Any pEC50 of a single-cell study with its 95% confidence
limit falling into this range was considered reliable. (C) Statistical
analysis of a single-cell study using groups of 20 cells randomly
selected from within the microtiter plate. Error bar is the 95%
confidence limit.
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quently, to determine the pEC50 values. The pEC50 values were
then plotted against the number of individual cells measured and
analysized by a Monte Carlo statistical method, as shown in Figure
1B. The mean pEC50 value of 6.2 from the population study using
10 000 cells was used as a reference. Any pEC50 value whose 95%
confidence limit was within the range of 6.2 ( 0.5 was considered
reliable.19 As shown in Figure 2B, all pEC50 values obtained from
g20 cells were within the accepted range. An analysis of 9 groups
of 20 randomly chosen single cells further demonstrated that all
the obtained pEC50 values fall within the accepted deviation; see
Figure 1C. In summary, the data show that measurements of 20
single cells were sufficient to produce a reliable assay that was
comparable to the standard FLIPR measurement of 10 000 cells
in the well plate format.

On-Chip Quantification Using Suspended Cells. The
introduction of cells into microfluidic devices was generally carried
out from a cell suspension, with cells becoming trapped inside a
device20-22 or flowed-through the device for the purpose of
handling or detection, i.e., flow cytometry. In most cases, the
whole process is rapid, as there is no requirement for culturing
the cells. An aim of this work was to assess the potential for using
suspended cells (without culture) to give a quantitative Ca2+ flux
assay on-chip. Due to the rapid intracellular Ca2+ flux induced by
UTP, it was necessary to immobilize the cells in the microchannel
during signal measurement. The microchannel surface was
therefore first treated with collagen to achieve high immobilization
densities.15 As shown in Supporting Information Figure S2A, up
to 50 single cells (in an area of 0.04 mm2) could be imaged
simultaneously, which allows a random selection of 20 cells for
the analysis. UTP concentrations were delivered rapidly and
uniformly over cells in the microfluidic channel. At a low flow
rate of 2 µL/min (i.e., a fluid velocity of 479 µm/s), it took ∼400
ms to exchange the solution in the field of view of the X40
objective. In the standard well plate, the buffer solution is
quiescent, and the desired UTP concentration at the cell surface
was produced by convective mixing of a small quantity of stock
UTP solution within the bulk solution within the well (normally,
50 µL per well for a 384-well plate). In contrast, microfluidic
delivery of the drug is both quicker and leads to a more uniform
drug distribution across the cell layer. Less than 2 µL of UTP
solution is needed to replace the buffer in the microchannel in
this study. Supporting Information Figure S2B shows how a cell
layer within the microfluidic device responds to 1 µM UTP.

Using the above procedure, quantitative analysis of the
response of CHO cells to a wide range of UTP concentrations
was assessed on-chip and compared with the 384-well plate. The
response of 20 randomly chosen individual cells was measured
using fluorescence microscopy. It was known that cells become
desensitized after the addition of UTP, and as a consequence, in
a microtiter plate it was always necessary to perform parallel
assays. Therefore, in order to directly compare data from the
traditional microtiter plate with the microfluidic devices, we
configured the microchannel as an array of microfluidic structures.

Using these devices, we then compared the UTP dose-response
curves under a variety of hydrodynamic flow conditions.

Initially, a low flow rate of 2 µL/min (shear stress 0.4 dyn/
cm2) was used to deliver UTP. The dose-response curve gener-
ated on-chip showed a sigmoidal relationship, as is commonly

(19) GSK internal publication. Pattrick, N.; Cordingley, H. C. Technology
Development, GlaxoSmithKline Pharmaceuticals, 2006.

(20) Yang, M.; Li, C. W.; Yang, J. Anal. Chem. 2002, 74, 3991-4001.
(21) Khademhosseini, A.; Yeh, J.; Jon, S.; Eng, G.; Suh, K. Y.; Burdick, J. A.;

Langer, R. Lab Chip 2004, 4, 425-430.
(22) Folch, A.; Toner, M. Annu. Rev. Biomed. Eng. 2000, 2, 227-256.

Figure 2. On-chip analysis using suspended cells. (A) A represen-
tative concentration-response curve achieved by parallel on-chip
analysis at a flow rate of 2 µL/min. The response of ∼20 single cells
was averaged for a given concentration. The average pEC50 obtained
from triplicates of on-chip analysis at a flow rate of 2 µL/min is 6.02
( 0.11, which corresponds to a mean EC50 value of 1.0 µM. (B)
Sequential on-chip analysis shows that the cell response can be
regenerated after buffer washing. In both runs, cells were stimulated
with 1 µM UTP. (C) A representative concentration-response curve
achieved by sequential on-chip analysis as in (B) at a flow rate of 2
µL/min. The average pEC50 value from three duplicate experiments
is 5.77 ( 0.10, giving a mean EC50 of 1.7 µM. Data were analyzed
as in Figure 1. The error bars correspond to the standard error.
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obtained in the traditional well-plate assay, Figure 2A. The pEC50

value determined on-chip was 6.02 ( 0.11, which corresponds to
a mean EC50 value of 1.0 µM. To assess the difference between
such a parallel on-chip measurement and the standard FLIPR
measurement, the p-value from a t-test was determined to be 0.45.
This is much greater than that required for the on-chip mean to
be within the 95% confidence limit for the microtiter plate (i.e.,
p-value >0.05).

We also showed that, within the microfluidic format, a rapid
exchange of UTP solution can be readily achieved without
disturbing the immobilized cells, enabling the sequential testing
of the same cells. This is of considerable interest for the
experimentalist wishing to track the dose-response of an indi-
vidual cell to a range of agonist concentrations. Again, using a
flow rate of 2 µL/min to deliver the UTP solutions, it was found
that cells which had become desensitized in a previous test now
responded to the same UTP concentration (Figure 2B), after
Tyrode buffer washing sequences. The dose-response curve
achieved using such sequential UTP/Tyrode washing steps,
starting at a low UTP (10 nM) concentrations and increasing to
10 µM, provided similar quantative information (pEC50 ) 5.77 (
0.10, corresponding mean EC50 ) 1.7 µM) to the traditional well-
plate assay, Figure 2C. When compared to the standard FLIPR
measurement, the p-value is 0.09, which again shows that there
is no significant difference between the means of the two types
of tests.

Importantly, low flow rates were used in the above measure-
ment, since as we have previously shown, shear stress induced
by flow rates over a certain threshold (3.1 dyn/cm2 for the
collagen-modified channel) can induce intracellular Ca2+ flux.15

In this context, it is important to note that when UTP solutions
are delivered at a flow rate of 20 µL/min (shear stress 4.1 dyn/
cm2), Figure 3, the dose-response curve cannot be fitted using
a standard sigmoid relationship. This implies that the hydrody-
namic conditions are influencing the cellular response significantly
possibly through activation of mechano-sensitive channels.

On-Chip Assays Using Adherent Cells. In contrast to using
suspended cells (described above), intra- and intercellular signal-
ing can best be studied using adherent cells, which, when they

form confluent monolayers, generally give stronger and more
uniform signaling. In order to create confluent monolayers of
adherent cells inside a microfluidic channel, it was necessary to
perform on-chip cell culture, a task that has generally been proven
to be difficult as the sterility, the continuous supply of gases, and
of medium all need to be controlled carefully.23 The microfluidic
chip developed in this study, however, not only provides a simple
way to assemble a sterilized chip but also allows for ready diffusion
of gases into the medium, through the PDMS gasket. Low
densities of cells (2 × 106/mL) were sufficient for seeding the
cells inside a collagen-treated microfluidic channel, prior to cell
culture. After overnight perfusion with medium at 0.5 µL/min,
cells developed into a confluent monolayer with almost 100%
viability, Figure 4A.

The effect of shear stress on the on-chip cultured adherent
cells was assessed in the same manner as in the study of the
suspended cells. No shear-induced Ca2+ flux was observed even
at high shear stress of 20 dyn/cm2 (data not shown). In contrast

(23) Yamamura, S.; Kishi, H.; Tokimitsu, Y.; Kondo, S.; Honda, R.; Ramachandra,
S.; Omori, R.; Tamiya, E.; Muraguchi, A. Anal. Chem. 2005, 77, 8050-
8056.

Figure 3. Influence of high shear stress on dose-response curves
for suspended cells. A representative concentration-response curve
from a parallel on-chip analysis at a flow rate of 20 µL/min. The
response of ∼20 single cells was averaged for a given concentration.
Since a sigmoid curve did not fit the data well, an estimation of pEC50

similar to that in Figure 2 was not possible.

Figure 4. On-chip analysis using adherent cells. (A) A monolayer
of adherent cells forms inside the microfluidic channel after 8-h on-
chip perfusion at a flow rate of 0.5 µL/min. (B) A representative
concentration-response curve achieved by sequential on-chip analy-
sis at a flow rate of 20 µL/min. Data were analyzed as in Figure 2.
The average pEC50 value from three duplicate experiments is 6.15
( 0.08, giving a mean EC50 of 0.7 µM.
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to the suspended cells, this lower sensitivity to shear stress of
the adherent cells can be attributed to their well-formed cytosk-
eleton, which may serve to reduce the distortion of the cell
membrane. With the high tolerance of the adherent cells to shear
stress, it was found that substantially higher flow rates could be
used for fast cell screening without compromising the cell
response. For example, an on-chip sequential assay of the adherent
cells in response to UTP was performed in an manner identical
to that study using suspended cells (Figure 2C), but at a higher
flow rate of 20 µL/min (shear stress of 4 dyn/cm2). These assay
conditions substantially shortened the total assay time, and the
pEC50 value from measurements performed in triplicate was 6.15
( 0.08 (n ) 60), Figure 4B. The determined p-value of 0.85 was
substantially higher than the p-values from the on-chip assays
using suspended cells (0.45 and 0.09), suggesting an excellent
comparability between the on-chip assay using adherent cells and
the traditional microtiter-plate method.

On-Chip Monitoring Intracellular Signals Using Adherent
Cells. Confocal analysis of adherent cells on chip was used to
reveal information on the nature of intracellular Ca2+ flux. The
arrival of a 1 µM UTP dose at 20 µL/min and reaching the cell
(arrowed) resulted in a Ca2+ wave which “traveled” within a cell
in the same direction as the flow rate, Figure 5. Control experi-
ments using Tyrode buffer at the same flow rate induced no Ca2+

flux. This phenomenon was further revealed by imaging a line
scan across a cell in the direction of UTP delivery (Figure 5B).
For the purpose of analysis, a line was constructed between two
positions inside the cell, ROI 1 and ROI 2. Four distinct
fluorescence peaks were observed along this line, corresponding
to a succession of Ca2+ waves within the isolated cell, Figure 5C.
The relative fluorescence profile from ROI 2 clearly lags behind
the one from ROI 1, as shown in Figure 5D. This observation
demonstrates the potential of an on-chip assay to resolve local
information at a subcellular level, providing a tool for studying
the mechanism of signal trafficking and cell pathology. Clearly,
the spatial nature of the response would be difficult to observe
using a traditional microtiter plate.

CONCLUSIONS
A systematic evaluation of a quantitative functional assay using

both suspended CHO cells and on-chip cultured cells in a
microfluidic system was investigated. By using intracellular Ca2+

analysis of CHO cells as a model system, we found that it was
possible to show a close correlation between the suspended CHO
cell dose-response for the agonist UTP on-chip and that achieved
in a traditional microtiter plate. The use of adherent cells in
microfluidics demonstrated a lower susceptibility to the influence
of hydrodynamic conditions, providing fast and reliable screening
data when compared with that from microtiter plate. The system
also demonstrated its potential in controlling and revealing
subcellular events.

The outcome of the work quantitatively demonstrated the
promise of microfluidics in HTS applications. Information equiva-
lent to that obtained from the microtiter plate has been achieved
on-chip with a reduced assay volume and smaller amounts of cells.
The precise and multiple delivery of liquid over cells using
microfluidics provides additional opportunity to develop new
assays, for example, in applications where sequential or dynamic
change of cellular microenvironments is difficult to achieve using

Figure 5. On-chip analysis of intracellular Ca2+ wave propagation.
(A) Series of confocal images of intracellular Ca2+ flux propagation
inside a single cell upon delivery of 1 µM UTP solution. The white
arrow indicates the flow direction. The Ca2+ flux peak travels inside
the single cell following the flow direction. (B)-(D) Time course record
of Ca2+ flux along a fixed line across a single cell upon delivery of 1
µM UTP solution. (B) indicates the line position inside the cell. ROI
1 indicates the front end of the cell to the flow direction; ROI 2
indicates the far end. (C) The 4 distinct fluorescence bands demon-
strate Ca2+ waves insides the single cell during the 5-min recording.
(D) Relative fluorescence profiles from ROIs 1 and 2 show the Ca2+

flux arrives at ROI 2 is after that generated at ROI 1.
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microtiter plates. In future, the integration of other microfluidic
subunits (such as valves and diluters) or sensors (electrochemical
or optical) on-chip may further improve sample handling and
analysis, leading to an integrated high-throughput and high-
content cell screen.
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Abstract The integration of a range of technologies
including microfluidics, surface-enhanced Raman scattering
and confocal microspectroscopy has been successfully used
to characterize in situ single living CHO (Chinese hamster
ovary) cells with a high degree of spatial (in three
dimensions) and temporal (1 s per spectrum) resolution.
Following the introduction of a continuous flow of
ionomycin, the real time spectral response from the cell
was monitored during the agonist-evoked Ca2+ flux
process. The methodology described has the potential to
be used for the study of the cellular dynamics of a range of
signalling processes.

Keywords Microfluidics . Chinese hamster ovary (CHO)
cells . Confocal microspectroscopy . Surface-enhanced
Raman scattering (SERS) . Dynamic monitoring

Introduction

The advance of miniaturized microfluidic systems for
chemical and/or biochemical applications based on so-

called Lab-on-a-Chip technology has demonstrated that
such micro systems represent the ability to “shrink”
conventional bench systems to the size of a few square
centimetres with major advantages of speed, performance,
integration, portability, reduced sample/solvent quantity,
automation, hazard control and lower cost [1–6]. These
merits are important for a variety of applications in
analytical chemistry, biochemistry, clinical diagnosis, med-
ical chemistry and industrial chemistry [1, 2]. Consequent-
ly, numerous micro total analysis systems (μ-TAS) and
micro reactor systems have been developed, and many
more are currently under investigation [2].

For the study of cellular and subcellular systems, a wide
range of analytical methods have been used with fluores-
cence techniques being the most common. In addition,
fluorescence-based imaging is a highly attractive method-
ology for the study of organelle dynamics, identifying
subcellular compartments and monitoring biological kinet-
ics [7]. Over the last two decades, Raman spectroscopy has
become an increasingly important technology with ability
to study the biophysics and biochemical processes involv-
ing cells [4, 8–12]. Since Raman spectroscopy is based on
vibrational transitions where frequency shifts are associated
with specific molecular vibrations within the sample of
interest, it enables the identification of polarizable bio/
chemical species, the elucidation of molecular structure and
the investigation of interface reactions, all in a non-
destructive manner. In addition, unlike fluorescence-based
techniques, Raman spectroscopy does not require labelling
dyes and since water is almost Raman “transparent”, the
technique is ideally suited for analysing cell-based biolog-
ical systems. Coupling a Raman spectrometer with a
confocal microscope enables the acquisition of full spectral
information with a high spatial (<1 μm) resolution in three
dimensions. Raman spectroscopy, however, suffers from an
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inherent poor level of sensitivity compared for example to
fluorescence, which can be 12–14 orders of magnitude
more sensitive. As a consequence, despite advances in
detector technologies, the technique can be less than ideal
for the direct detection of intracellular components present
at low concentrations, which may take from a few tens of
seconds to a few minutes for spectral acquisition [12]. With
the unexpected discovery of surface-enhanced Raman
scattering (SERS) by Fleischman et al. [13], Raman
intensity can now be dramatically increased (a factor of
up to 105–1010) with the inclusion of metallic nano
structures either on a substrate surface or in a colloidal
solution [8]. For cellular and subcellular analysis with
SERS, colloid nanoparticles (e.g. silver or gold) are
normally loaded into cells by different means such as
general incubation (fluid-phase uptake) or ultrasonication-
assisted uptake [14, 15]. Due to its chemical inactivity, gold
nanoparticles are generally regarded to be more suitable for
incorporation within living cells [14].

To analyse living cells using Raman spectroscopy, the cells
are usually fixed at a specific location. The most commonly
used method for cell fixation is to seed or grow cells on a
substrate, e.g. a microscope cover slide. Other approaches
such as optical tweezers have also been reported [9].
However, the conventional batch operation in a static system
limits the in situ Raman analysis, especially when a series of
reagent treatments are required. With those limitations in
mind, the development of microfluidic and associated Lab-
on-a-Chip technologies provides unique opportunities for
delivering and immobilizing cells on a microchannel surface,
prior to introducing different reagents with a continuous flow
in a given sequence [3, 4] whilst under spectroscopic
investigation.

In this study, we report the successful integration of a range
of techniques including microfluidics, surface-enhanced
Raman scattering (SERS) and confocal microspectroscopy
which enables in situ characterization of single living CHO
cells with high spatial and temporal resolution. By using the
microfluidic methodology, cells and reagents were intro-
duced into the chip in a continuous flow as a series of plugs
in a given sequence where agonist (ionomycin) evoked
intracellular Ca2+ fluxes and the cell’s real time spectral
response was recorded.

Materials and methods

Confocal Raman microspectroscopy

All Raman spectra were acquired with a LabRam inverted
microscope spectrometer, manufactured by Jobin Yvon Ltd.
Figure 1 shows the schematic of the experimental setup.
The spectrometer was equipped with dual laser sources at

wavelengths of 780 nm (diode laser, 70 mW) and 633 nm
(He–Ne laser, 20 mW), confocal optics, a holographic
transmission grating, and a charge coupled device (CCD)
detector with 1,024×256 pixels. The instrument included a
precision motorized X–Y sample stage for automated
mapping at spatial resolution down to less than 1 μm and
extensive software support (LabSpec 4.18) for data pro-
cessing. In this study, an objective lens of ×50 magnifica-
tion, 17-mm working distance and numerical aperture (NA)
of 0.45 was used (L Plan SLWD 50, Nikon, Japan). This
objective lens was mounted on a PI-721.10 piezo actuator
(Physik Instrumente, Germany) for automatic focussing of
the microscope objective at different depths in the Z
direction enabling 3D mapping. A grating with
1,800 grooves mm−1, a confocal aperture of 300 μm and
an entrance slit of 150 μm were selected for the experi-
ments. The Raman spectrometer wavelength range was
calibrated using the centre frequency of the silicon band
from a silicon sample (520.2 cm−1). Using these conditions,
a typical acquisition time of 1 s was used to collect SERS
spectra from cells within the microchannel.

Microfluidic device fabrication

The microfluidic device was constructed using a manifold
clamping method according to published procedures with
some adaptations [16–18]. The assembly of the device is
illustrated in Fig. 2a. Briefly, the microchip consisted of a
PARAFILM® sheet (thickness 130 μm, American National
Can Company, US) with a channel network and two glass
plates which sandwiched the polymer film. The Y-shaped
channel network (Fig. 2b) cut through the film was 500-μm
wide. The top glass plate (B-270, 25×25×3 mm) had three
holes (diameter 1.5 mm) drilled through at appropriated
positions in order to link the ends of the channels with inlet/

X

Y

Z

Sp
ec

tr
om

et
er

Laser

 Detector  Slit   Lens   Pinhole     Lens 

Mirror

Objective  Lens 
Piezo Actuator

Syringe
Automated
Stage

CCD

Cells

Reagent

Waste

Fig. 1 Schematic of experimental setup

834 Anal Bioanal Chem (2008) 390:833–840



outlet tubing. The bottom glass plate was a thin quartz
coverslip (22×22 mm, Agar Scientific Ltd, UK) which had
a thickness of 250 μm in order to minimise the glass
background during Raman measurements. This sandwich
chip was then clamped using two aluminium frames with
screws. The windows on the frames were designed for
tubing connections (through top frame) and for optical
passage (through bottom frame).

Two KDS 200 syringe pumps (KD Scientific Inc., USA)
were used to deliver cells in suspension and test solutions into
the microchip channel (Fig. 2c). Ethylene tetrafluoroethylene
(ETFE) polymer tubing with an inner diameter of 250 μm,
on–off valves, and appropriate fittings and connectors, all
obtained from Upchurch (Upchurch Scientific Inc., USA),
were used for plumbing to link the chip and the syringes.

Cell culture and assay reagents

CHO-K1 (Chinese hamster ovary, Cricetulus griseus) cells
were supplied by ATCC/LGC Promochem (ATCC® No.
CCL-61™, LGC Promochem, UK). The cells were cultured
routinely in DMEM/F-12 medium without L-glutamine
(Invitrogen Ltd, UK) which was supplemented with fetal
bovine serum (Invitrogen Ltd) to a final concentration of
10%, and L-glutamine (Invitrogen Ltd) to a final concen-
tration of 4 mM. An incubator was used at 37 °C supplying
5% CO2. The concentration of cells used in loading the
chips during this experiment was in the range of 7.5×
106 cells mL−1.

A wash solution consisting of a modified Tyrodes buffer
was used to wash the cells and to prepare the test solution.
The Tyrodes buffer was composed of 145 mM NaCl,
2.5 mM KCl, 10 mM HEPES, 10 mM D-glucose and
1.2 mM MgCl2. CaCl2 (99.5%, BDH AnalaR, 150 mM
dissolved in Tyrodes buffer) and probenecid (98%, Sigma,
0.834 M dissolved in 1 M NaOH aqueous solution) were
then added to the Tyrodes buffer giving final concentrations
of 1.5 mM and 2.5 mM for CaCl2 and probenecid,
respectively. Ionomycin test solutions were made by adding
ionomycin stock (1 mM in DMSO) into wash solutions for
a concentration of 50 μM. Ionomycin was obtained from

Fig. 2 (a) Assembly of micro-
fluidic device and (b) Y-shaped
channel network (channel depth
100 μm, width 500 μm) with
cells loaded (c) for examination
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Calbiochem (Calbiochem of EMD Biosciences, Inc., USA),
and DMSO from Sigma–Aldrich (99%, D2650). The flow
rate for the introduction of ionomycin test solution into the
microchip was 2 μL min−1.

Gold colloid with a particle size of 50 nm (EM.GC50),
suspended in water, was supplied by BBinternational Ltd,
UK. The gold nanoparticles were introduced into cells by a
passive uptake method where the cells were incubated with
gold colloid solution at desired concentration (20% colloid
solution, v/v) and room temperature for 50 mins. Prior to
loading into the microfluidic chip, the cells were washed
with wash solution to remove the culture media and gold
nanoparticles outside cells. The cells were re-suspended in
the wash solution for measurements.

Results and discussion

SERS effects

After loading cells into the microfluidic channel, Raman
spectra were taken from a selected single cell (Fig. 2c). By
using the near-infrared laser excitation (780 nm) the optical
and thermal effects of laser illumination on the living cells
were minimised [19, 20]. In addition, using a near-infrared
laser can significantly reduce the fluorescence interference
background and light scattering from the quartz base plate.
It has been reported that silver or gold nanoparticles with an
individual size in the range of 20–60 nm can yield
significant enhancement of Raman scattering for cellular
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analysis when nanoparticles are introduced into cells [14].
This has been confirmed in this study by using gold
nanoparticles with a size of 50 nm.

Figure 3 shows a typical spectrum (upper) taken from a
cell incubated with gold colloid solution. The spectrum was
recorded in the range from 300 to 2,800 cm−1 with an
acquisition time of 1 s. We observed that with the
introduction of gold nanoparticles the Raman spectra were
clearly detectable under those conditions. For comparison, a
spectrum obtained from a cell incubated in medium without

gold colloid solution is also shown in Fig. 3 (lower). It can
be seen that even though the spectra acquisition time was
increased to 10 s it was still unable to obtain a good quality
spectrum without gold nanoparticles present. This observa-
tion confirmed the significant enhancement of Raman
scattering with the presence of gold nanoparticles which
also enabled a fast spectra acquisition although the exact
mechanism of the SERS enhancement of Raman signals is
not fully understood [21]. The introduction of gold nano-
particles therefore significantly shortened signal acquisition
times mainly owing to the increase in sensitivity which in
turn allowed an array of spectra to be obtained in a
relatively short time period.

Characterization of single living cells by 3D mapping

Using the SERS technique described above it was possible
to obtain spectra from a single living cell which represented
a “fingerprint” from which various chemical constituents in
the cell can be assigned. Combined with an automated
microscope stage which offers spatial resolution (i.e. 1 μm),
mapping of an entire cell area at a specific plane was
carried out. It has been suggested from previous studies that
most of the spectral bands associated with living cells occur
in the range 800–1,700 cm−1 [11, 22, 23], hence this range
was used in this study for mapping. Figure 4a shows an
“image” of Raman spectra obtained from the middle layer
across the single cell by mapping an area of 21×21 μm2

with a spatial step of 1 μm in both X and Y directions. The
mapping provided information on the distribution of
selected bands, as seen in Fig. 4b in the range from 1,290
to 1,370 cm−1, which represent most of the significant
bands associated with DNA and proteins within a cell’s
nucleus and cytoplasm [11, 23].

In general, the Raman spectra of single CHO cells
showed contributions from all its cellular components

Table 1 Band assignment for Raman spectra of CHO cells

Bands
(cm−1)

Assignments

DNA/RNA Proteins Lipids

830 Phosphodiester BkB
[12, 23, 24]

Tyr [12, 23, 24]

895 Phosphodiester
BkB, deoxyribose
[12, 23, 24]

940 ν (C–C),
α-helix
[9, 12, 23]

1,004 Phenylalanine
[9, 12, 23]

1,065 ν (C–O) [12, 23] ν (C–C) chian
[25]

1,126 ν (C–N) BkB
[9, 12, 23]

ν (C–C)
chain
[25]

1,144 Ribose–phosphate
[12, 23]

1,157 Ribose–phosphate
[20, 26]

1,176 T, C, G [9, 12, 23, 24] Phenylalanine
[12, 23]

1,230 C [12, 23, 24]
1,266 Amide III

[25]
δ (C=CH2)
[25]

1,295 δ (CH2)
[25]

1,320 G [24]
1,342 A [12, 23, 24]
1,376 T, A, G [9, 12, 23, 24]
1,448 δ (CH)

[9, 12, 23]
δ (CH)
[9, 12, 23]

1,482 A, G [12, 23, 24]
1,566 Hemoglobin

[25]
1,578 A, G, purine

[12, 23, 24]
1,603 A, C [24]
1,643 Amide I [27]

Abbreviations: BkB DNA sugar–phosphate backbone, Tyr tyrosine,
A adenine, T thymine, G guanine, C cytosine, ν stretching vibrations,
δ deformation vibrations
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including nucleic acids, proteins, lipids and carbohydrates.
Table 1 summarises the band assignment for the Raman
spectra taken from CHO cells based on the published data
[8, 9, 12, 23–27]. Comparison of the spectra taken from
different positions across the cell on an X–Y plane (Fig. 4)
indicated that strong peaks from the nucleus spectrum
corresponding to DNA sugar–phosphate backbone (895 and
1,142 cm−1), and bases G (1,320 and 1,487 cm−1), A (1,420
and 1,578 cm−1), T (1,176 and 1,376 cm−1) and C
(1,420 cm−1) were noticeably reduced in the cytoplasm

and membrane spectra (Table 1). This change was expected
as the nucleus contains high densities of DNA, whilst the
cytoplasm also had significant quantities of RNA contrib-
uting to the corresponding peaks. As expected, the
spectrum taken from membrane area showed significant
peaks corresponding to lipids (1,068 and 1,453 cm−1).

Using the confocal optics of the microscope system, the
chemical concentration distribution in the Z axis at three
levels in the nucleus was examined (Fig. 5) and indicated that
the main peaks positions were generally identical but the
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peak heights were markedly different, indicating a concen-
tration difference. From Fig. 5a significant a peak was
observed at 1,320 cm−1 on the spectrum taken from Z=3 μm
(near to the bottom of the cell) which was assigned to DNA
bases G [23], whilst the peak at 1,450 cm−1 from Z=6 μm
indicated a strong deformation from a C–H stretch in proteins
[8, 12, 23]. Thus, by collecting spectra from different spatial
positions, it provided an approach to build a 3D mapping of
the distribution of chemicals within a single cell.

It should be noted that the spectra taken from different
positions are distinct in terms of both Raman band
amplitudes and band positions. This spectral variation can
be attributed to the native chemical inhomogeneity within a
cell. However, the possibility of non-uniform distribution of
gold nanoparticles within the cell cannot be excluded [15].
In addition, this non-uniform distribution can also take
place during the time-resolved monitoring because dynamic
processes inside the cell can lead to local fluctuations of the
particle densities and hence changes of the spectra. To
further develop this spectroscopic technique for both
qualitative and quantitative analysis, technologies need to
be explored in order to deliver and position nanoparticles
within cells in a controllable format for a uniform
distribution. Nevertheless, it is still possible using this
promising methodology to examine a specific point within
a cell in a dynamic way with time, especially when
applying stimulation, e.g. an agonist, under microfluidic
control conditions.

In situ monitoring of cellular chemical dynamics

Finally, we monitored the chemical dynamics of the cell
when exposed to the agonist ionomycin [3, 28]. After
loading cells into the chip channel, a 40-min period of
settlement was allocated before introducing the ionomycin
solution at a constant flow rate of 2 μL min−1. Whilst
focussed on a region close to the cell nucleus, a series of
spectra were taken at an interval of 1 s in the range from
800 to 1,700 cm−1 (Fig. 6a). It can be seen from the spectra
(Fig. 6b) that most of the peaks corresponding to nucleic
acids, proteins and lipids remain visible with time but the
peak heights vary noticeably, indicating the concentration
change of these compounds. One of the most significant
changes is the appearance of a peak at 1,643 cm−1 which
can be assigned to amide I [27]. The time profile of this
peak (Fig. 6c) reveals the concentration change of amide I
within the cell, showing a similar trend to that of the Ca2+

flux evoked by the agonist ionomycin [3] which is
commonly used in biomedical research to stimulate the
intracellular production of proteins such as interferon [29].
Since amide I contributes spectrally to the Raman spectrum
of interferon, it follows that the in situ monitoring of such
molecules could in future be used to produce characteriza-

tion of protein expression dynamics at subcellular levels.
Clearly, more studies are required in order to understand the
mechanism and cause of the concentration change of amide
I within the cell when exposed to agonist ionomycin.

Conclusions

The SERS technique has been used for characterisation of
single CHO (Chinese hamster ovary) cells with a micro-
fluidic device where gold nanoparticles were introduced
into cells for Raman enhancement. The use of an inverted
microscope optical systems in combination with a charge
coupled device (CCD) detector allows the measurement of
Raman spectra for simultaneous analysis of bio/chemical
species within cells. In addition to a precision automated X–
Y sample stage, the confocal optics provides discrimination
between points of different depths within the cell, enabling
chemical mapping in three dimensions. By using micro-
fluidic methodology, the cell manipulation and reagent
delivery were performed in a controllable manner. By
introducing cells and test reagent into the chip in a
continuous flow as a series of plugs in a given sequence, it
enabled the in situ chemical characterization of single CHO
cells with a high degree of spatial and temporal resolution.
This allows the real time monitoring of the dynamics of the
agonist-evoked Ca2+ flux response. The approach described
has the potential to be used for the study of the spatial
dynamics of a range of intercellular processes.
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Microreactors fabricated with optically transparent inorganic polymers from two types of
precursors using a UV-microimprinting process demonstrated reliable solvent resistance and
capability for performing three model organic synthetic reactions, which were compared with
batch systems and glass based microreactors.

Introduction

During the last two decades, significant development in the
fields of miniaturized systems, so-called microfluidics or lab-
on-a-chip technologies, has been achieved and spread widely
over diverse areas such as bioengineering, optics and electronics.
One of the main driving forces behind such work is the unique
characteristics of microreactors, compared with that of con-
ventional reaction vessels, including a high surface-to-volume
ratio, diffusion dominated mass transfer, and the capability for
spatial and temporal control of reaction reagents and products.1,2

In particular, the high surface-to-volume ratio is beneficial
for heat transfer enhancement allowing one to utilize the full
potential of catalysts during highly endothermic or exothermic
reaction while avoiding formation of high thermal gradients.3 In
addition, the small dimensions of the reactor channel ensure a
short radial diffusion time leading to a narrow residence time
distribution.4 This is advantageous for consecutive processes
since high selectivity to the desired intermediate can be achieved.

Currently, a wide variety of materials, including metal, silicon,
glass and polymers, have been used to fabricate microfluidic
devices, such as microchips or microreactors.5 Silicon has been
used widely in the field of MEMS applications by means of a
semiconductor process with high manufacture costs using dry
and wet etching. In the meantime, polymers such as PDMS
and PMMA have been widely used in a range of microfluidic
systems owing to their convenient and cheap process based on
soft lithography techniques. However, the properties of these
polymers, including low mechanical strength and poor solvent
resistance against most non-aqueous solutions, restrict their
applications in particular for organic reaction systems. Thus,
there has been an increasing need to develop novel materials with
reliable durability for the fabrication of microfluidic devices by
adopting the well-developed facile fabrication process, leading to

aDepartment of Finechemical Engineering, Chungnam National
University, Daejeon, 305-764, South Korea
bBioengineering Group, School of Engineering Sciences, University of
Southampton, Southampton, SO17 1BJ, UK
cDepartment of Chemistry, The University of Hull, Hull, HU6 7RX, UK
dCenter for Ultramicrochemical Process Systems (CUPS), KAIST,
305-701, South Korea

potential replacement of current glass or metal based microflu-
idic devices for versatile applications. We have recently reported
the development of polyvinylsilazane inorganic polymer and the
feasibility for the fabrication of glass-like microchannels and
substrates using a simple and cost effective UV-microimprinting
process which is followed by a sequential photocuring and
thermal cross-linking step.6,7 It has been demonstrated that such
cured polyvinylsilazane exhibits high optical transparency and
organic solvent resistance.

In this paper, we report further the development of mi-
croreactors using two types of commercially available inorganic
polymers, namely polyvinylsilazane and allylhydropolycarbosi-
lane, based on a micro-imprinting lithography fabrication
technique, and their applications for organic synthesis. Three
model organic chemical reactions have been selected; synthesis
of 3,5-dimethylpirazole, exothermic Diels–Alder cyclo-addition
and Knovenagel reaction, which are carried out in commonly
used organic solvents including THF, acetonitrile and DMF. It
is believed that, to our knowledge, this is the first attempt
to demonstrate these organic reactions within polymer-based
microreactors. The microchemical performance of two inorganic
polymer microchannels is preliminarily evaluated in comparison
to those of glass-based microreactors and batch reaction sys-
tems. The results indicate that the novel inorganic polymer-based
microreactors can provide an economic and versatile platform
for both aqueous and non-aqueous chemistry applications.

Materials and methods

The microreactor was fabricated by UV-imprinting techniques
with PDMS (polydimethylsiloxane, Sylgard 184, Dow Corning,
USA) replica molds which were prepared using the conventional
soft lithography method with silicon wafer fabricated with SU-8
photoresist (Microchem, USA) as reported in the literature.8

To fabricate the microreactor, allylhydridopolycarbosilane
(AHPCS, SMP-10 R©, Starfire systems, USA) and polyvinylsi-
lazane (PVSZ, KION VL-20 R©, Clarient, USA) (Fig. 1) with low
viscosity were used directly or with dilution using tetrahydro-
furan (THF, Sigma-Aldrich, USA), depending on the coating
thickness. In addition, 2 wt% of dicumylperoxide (Sigma-
Aldrich, USA) and Irgacure 500 (Ciba Specialty, Japan) as a
thermal and a photo initiator, respectively, were mixed into the

1454 | Lab Chip, 2008, 8, 1454–1459 This journal is © The Royal Society of Chemistry 2008
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Fig. 1 Polymeric structures of (a) allylhydridopolycarbosilane (AH-
PCS) and (b) polyvinylsilazane (PVSZ).

inorganic polymers. The solvent resistance of the cured AHPCS
was investigated by the identical method as reported for cured
PVSZ.6,9 The samples were prepared in the PDMS cast with 1 ×
1 cm (width × length) and 1 mm of thickness and soaked in
the diverse solvents for 24 h. Finally, the swelling ratio, D/Do,
where D and Do are the lateral width of sample in solvent for
24 h and that of the dried sample, respectively, was examined. For
the optical transmittance with the UV-VIS spectrophotometer
(Avantes, Netherland), the inorganic polymer films with ∼10 lm
spun-coated on glass slides and cured at 100–160 ◦C in nitrogen
atmosphere were used. In addition, PDMS films having the same
thickness were prepared as a reference sample. The fabrication
processes of the inorganic polymer derived microchannel was
illustrated in Fig. 2. To prevent the unwanted adhesion between
stamps and inorganic polymers, a mold release agent (Kion
mold release, Clariant, USA), diluted with hexane, was spin-
coated on the PDMS stamp at a spin rate of 2000 rpm for
30 s, which was then baked at 70 ◦C for 5 h and ready for
use. Microchannels were created by placing the stamp with
relief structures (typically 50 lm high and 380∼500 lm wide)
on the viscous inorganic polymer layer which was formed by
dropping the liquid inorganic polymer on a pre-cleaned glass
slide under nitrogen atmosphere. Subjected to a UV exposure
(ELC-4100 UV light system) for 20 min the liquid inorganic

Fig. 2 Schematic fabrication process of inorganic polymer derived
microchannel between glass slides.

polymer was cured and solidified. After peeling off the PDMS
stamp, the patterned microchannel was thermally post-cured for
3 h at either 160 ◦C for AHPCS (polyallylhydridocarbosilane),
or 150 ◦C for PVSZ (polyvinylsilazane) at a heating and cooling
rate of 2.5 ◦C min−1 under nitrogen atmosphere. To close the
microchannel using the same material, a thin polymer film (3–
4 lm) was spin-coated on a top glass slide which was then
gently placed on the patterned structure. A sequential UV
exposure and thermal curing under the identical conditions
described above resulted in an irreversible sealing of the mi-
crochannel. The holes (diameter 1.5 mm) on either side of the
supporting bare glass slides were mechanically drilled through
to connect the microchannel with tubing. Thus, a microreactor
with microchannels (typical dimensions: 500 lm wide, 50 lm
deep, 2–16 cm long) within an inorganic polymer layer which
was sandwiched between two glass slides was fabricated. The
microreactors were then connected to pumping devices via PFPE
tubes (1/16′′ OD, Upchurch, USA). To secure the connection
between the holes on the supporting glass and the tube, a ceramic
sealing (Torrseal, USA) material was used. The morphology
or topography of the fabricated microchannel was determined
by SEM (FE-SEM, XL30SFEG, Philips, Netherland, 5 kV)
and a digital imaging technique (AQM image acquisition
software).10

In order to evaluate the performance of the inorganic polymer
derived microreactors, three organic synthetic reactions (Fig. 3)
were carried out, namely, synthesis of 3,5-dimethylpirazole,
exothermic Diels–Alder cyclo-additions and Knovenagel con-
densation, under different reaction conditions.11,12 All chemicals
used were purchased from Sigma-Aldrich and used without
additional purification. All liquid samples were pressure-driven
into the channel using syringe pumps (KDS 100, KD Scientific
Inc., Holliston, MA, USA) at flow rates in the range 0.67–
60 ll min−1. The quantitative analysis of products was performed
with a GC-MS (Gas chromatography-mass analyzer, Varian GC
(CP-3800) coupled to a Varian MS (2000), USA), capillary
column (DB-35MS, 0.25 lm × 30 m × 0.32 mm) and a
GC-FID (Shimadzu, GC 17A, Japan, capillary column 30 m,
Zebron ZB 5, Phenomenex, USA). Fig. 3 shows the three
reaction schemes. During the reaction of 3,5-dimethylpirazole
synthesis, 0.1 M acetylacetone in THF solution, and 0.1 M
hydrazine monohydrate in THF solution, were introduced into
the Y shaped channel at an equal flow rate ranging from
0.76 to 10 ll min−1 (Fig. 3(a)). For comparison, this reaction
was run within a glass made microreactor having identical
channel design and dimensions. It was also carried out in a
batch format using a glass vial.11–13 The catalyzed Diels–Alder
cycloaddition was performed by flowing in a mixture of 1 mM
of ethylacrylate and 2,3-dimethyl-1,3-butadiene with THF via
one inlet of the Y shaped channel, and a solution of 2.5 mol%
of AlCl3 in THF via the other inlet (Fig. 3(b)), whilst the
temperature of the microreactor was kept constant at 45 ◦C
using a hotplate (Fisher Scientific, USA). The Knovenagel
reaction (Fig. 3(c)) was carried out within an extended Y
channel allowing a longer residence time for reaction where
ethyl cyanoacetate mixed with piperazine (v/v, 10 : 1) in THF
was introduced from one inlet and the benzaldehyde solution
from the other. This was also compared with batch reaction
results.

This journal is © The Royal Society of Chemistry 2008 Lab Chip, 2008, 8, 1454–1459 | 1455
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Fig. 3 Reaction schemes for (a) synthesis of 3,5-dimethylpirazole, (b) Diels–Alder cycloaddition and (c) Knovenagel reaction.

Results and discussion

Solvent resistance and optical transparency

Solvent resistance of the structural material used is an essential
characteristics for developing microfluidic devices applicable
for non-aqueous as well as aqueous mediums. This has been
examined with a range of solvents including water and different
solvents. Table 1 summarises the results with AHPCS samples
cured for 3 h at two temperature levels of 100 ◦C and 160 ◦C. It
was observed that temperature had significant effects on the
solvent resistance performance; samples cured at 100 ◦C showed

Table 1 Solvent resistance test of two inorganic polymers AHPCS and
PVSZ cured at either 100 or 150 ◦C for 3 h

AHPCS PVSZ

N2 cured at
100 ◦Ca, 3 h

N2 cured at
160 ◦Ca, 3 h

N2 cured at
100 ◦Ca, 3 h

N2 cured at
150 ◦Ca, 3 h

Acetone 0.99 1.01 Crack 0.98
Ethanol 1.01 1.00 1.00 1.00
Hexane 1.12 1.02 1.22 1.03
Methanol 1.00 1.00 Crack 1.00
THF Crack 0.99 Crack Crack
Toluene 1.26 0.99 Crack 0.99
Acetonitrile 1.00 1.00 1.00 1.00
DMF 1.00 1.00 1.00 1.00
Water 1.00 1.00 0.97 1.00

a Solvent resistances were evaluated with two inorganic polymers
AHPCS and PVSZ cured at different temperatures. b Numbers listed
in this table refer to experimentally measured swelling ratio = D/Do,
where D and Do are length of cured polymer in solvent and length of
dried cured polymer, respectively.

low resistance to a part of the solvents used and in particular,
cracking in THF. In contrast the samples cured at 160 ◦C for
3 h exhibited good stability in all solvents showing insignificant
defects. This temperature effect can be attributed to the poly-
mer’s chemical structures; a higher temperature was favorable
to form extensive cross-linked structure via hydrosilylation and
dehydro-coupling reaction routes where active Si–H and allyl
functional groups of the AHPCS reacted with the presence of
thermal initiator, dicumyl peroxide.14

Previous studies indicated that the higher dense network
structure with Si–C backbones in AHPCS can provide a stronger
solvent resistance.15 The test with PVSZ samples showed similar
temperature effect; PVSZ cured at a higher temperature of
150 ◦C for 3 h exhibited excellent solvent resistance against
almost all the solvents used except less resistance to THF causing
slight changes in sample dimensions by swelling, subject to 24 h
soaking. This observation was in line with the previous studies
on PVSZ polymers.6 Based on these test results it is suggested
that both AHPCS and PVSZ can be good candidate polymers
in terms of organic solvent resistance, for the fabrication of
microreactors for organic chemical applications owing to the
ceramic characteristics. The wettability of the cured inorganic
polymer was analyzed by contact angle measurement, and
the contact angle with water was noted to be around 101◦,
suggesting a highly hydrophobic nature of the surface as
reported in previous work.6 It might come from the fact that
both AHPCS and PVSZ have been widely used as preceramic
precursors for the preparation of high temperature stable SiC
and SiCN ceramic materials.16,17 It has even been claimed that
the cured PVSZ polymer can act as a thermally protective
coating.15

1456 | Lab Chip, 2008, 8, 1454–1459 This journal is © The Royal Society of Chemistry 2008
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The optical transmittance of the two types of inorganic
polymers coated on glass substrates was measured across the
UV-Visible range under different curing conditions. The results
are depicted in Fig. 4. The measurement from a PDMS sample
is also shown for comparison. It can be seen from Fig. 4 that
both cured inorganic polymers AHPCS and PSVZ showed
a high transmittance (over 90%), which is close to that of
PDMS sample.6 It was observed that the AHPCS samples
cured at a higher temperature (160 ◦C) showed a slightly
lower transmittance which was attributed to its color change
from transparent to yellow tinge. Nevertheless, the optical
transparence of these inorganic polymers is promising for their
applications in the fabrication of microreactors, in particular
when incorporating photo-induced chemistry and/or optical
detections.

Fig. 4 Comparative UV-Vis transmittance of PDMS and inorganic
polymers AHPCS and PVSZ cured at different temperatures.

Microchemical performance of inorganic polymer microchannels

Fig. 5(a) shows the inorganic polymer derived microreactors fab-
ricated with AHPCS and PVSZ with about 80% of production
yields. It is obvious that the inorganic polymer microreactors
on glass slides displayed high optical transparency where the
channel layout can be clearly seen. A cross section of the the
sealed microchannel, taken by SEM, is shown in Fig. 5(b) and
a topographical 3D-image of the microchannel Y-junction is
displayed in Fig. 5(c) showing smooth surface along the overall
channel and homogenous shape with insignificant deformation
from the bonding step.

In order to test the stability of the completed microreactors
fabricated, various solvents were continuously pumped through
the microchannels for several hours in a range of flow rates up to
10 ll min−1. It was confirmed that both types of microreactors
were stable; neither leakage nor damage was observed with 4 h
continuous flow of alcohols and acetone containing red dye
to aid observation. However, THF solvent did cause partial
delamination and leakage in the PVSZ based microreactor
after 1 h running, which corresponded to the swelling observed
(Table 1). On the other hand, the AHPCS based microreactor
was stable as repeatedly used under all solvents given in Table 1.
In addition, the chemical stability was confirmed by analysing
THF solvent which was kept for 1 h in the AHPCS derived
microchannel, using a GC-MS. It should be noted that the
solvent resistance and chemical stability are remarkable in
contrast to that of commonly used PDMS microchannels which
can be operated only under mild aqueous conditions, including
ethanol mixture for a short working period.18 These inorganic
polymer reactors also showed advantages over cylic olefin
copolymer (COC) based plastic microreactors which are not
suitable for non-polar solvents such as hexane or toluene.19,20

Fig. 5 (a) Image of microreactor devices fabricated with AHPCS (upper) and PVSZ (lower), (b) SEM image of the cross-section and (c) topographical
image of the Y-junction using profiler.

This journal is © The Royal Society of Chemistry 2008 Lab Chip, 2008, 8, 1454–1459 | 1457
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Table 2 Synthesis of 3,5-dimethylpirazole with AHPCS derived mi-
croreactor, glass microreactor and batch reactor

Flow rate/ll min−1 Residence time AHPCS(%) Glass(%) Batch,%

10.0 5.0 s 13.6 10.2
5.0 10.0 s 30.4 32.9
0.76 65.7 s 63.6 59.0

5 min 55.3

Synthesis of 3,5-dimethylpirazole

3,5-Dimethylpirazole is a useful pharmaceutical heterocyclic
intermediate in biological research, and there have been at-
tempts to synthesize it using glass based microreactors in THF
medium.11 In this study we performed this reaction within an
AHPCS derived microreactor with Y shaped channel (50 lm
deep, 500 lm wide and 2 cm long). The reaction was also carried
out in a glass based microreactor with identical channels, and
in a batch system for comparison. The experimental results are
summarized in Table 2. It can be seen that in both polymer
and glass microreactors with continuous flow the product
yield remarkably increased when the fluid residence time was
increased. For example, a change in residence time within
AHPCS microreator from 5.0 s to 65.7 s resulted in a yield
jump from 13.6% to 63.6%. This was likely due to the fact that a
longer residence time allowed more time for a better mixing by
diffusion of the two co-flowing reactant streams. In contrast, a
noticeably longer reaction time of 300 s within a batch reaction
vial (ID, 1 cm; volume 1.57 ml), resulted in a yield of only
55.3%. These results indicate that the inorganic polymer derived
microreactors performances were comparable with glass made
microreactors for organic synthesis at room temperature.

Catalyzed Diels–Alder cycloaddition

The Diels–Alder cycloaddition is one of the well studied in
organic chemistry and has been carried out under a variety
of reaction conditions within glass based reactor with both
organic solvents and catalysts involved (Fig. 3(b)). In this
study, the exothermic reaction was performed within a AHPCS
microreactor (Y-shaped channel, 500 lm wide, 50 lm high and,
30 mm long) with THF solvent. Again the result was compared
with that obtained from a batch reactor. The results are shown
in Table 3. It was observed that, similar to the reaction above,
the synthetic yields of product were gradually increased from
68.0 to 82.3 and 100% as the fluid residence time was extended
from 12.5 to 25 and 100 s, respectively. During repeated use

Table 3 Experimental results of Diels–Alder reaction in AHPCS
derived microreactor and batch reactor

Flow rate/ll min−1 Residence time AHPCS(%) Batch(%)

4 12.5 s 68.0
2 25.0 s 82.3
0.5 100.0 s 100

6 h 82.0

for 6 h, the AHPCS microreactor had been preserved with
no mechanical failure or chemical defections, and maintained
reliable microreaction chemistry as listed in Table 3. In contrast,
the bulk batch system performed in a small size vial gave a yield
of only 82.0% in spite of a much longer reaction time of 6 h.
In addition, the polymer microreactor demonstrated a good
thermal performance with insignificant temperature changes
during the exothermal reaction, which is attributed to the high
surface-to-volume ratio enabling a fast heat dissipation from
the reaction fluids to the reactor body. In contrast, a poor
heat transfer in the batch reaction vessel led to a rapid heat-
up of the reactor up to 60 ◦C without delay after the reactants
were mixed. This temperature increase, in turn, affected the
exothermal reaction progress resulting in a lower conversion.

Knovenagel condensation

This reaction was carried out in both PVSZ and AHPCS
microreactors which had identical channel design (Fig. 3(c)) with
a 160 mm long reaction main channel (width: 500 lm, depth:
50 lm). The Knovenagel condensation reaction was investigated
in both microreactors under a wide variety of reaction conditions
in terms of temperature, flow rate and solvent. The experimental
results are summarized in Table 4 for product yields, namely 4-
(4-bromophenyl)-3-ethoxy-2-oxo-but-3-enenitrile.

It was found that the effect of fluid residence time (or flow
rate) was similar to that observed in the two reactions described
above; a longer residence time resulted in a higher yield. This
applied to all the solvents used and all three temperature
levels set. An increase in reaction temperature, in most cases,
showed a higher yield with a given flow rate in most of the
solvents used except insignificant changes in methanol solvent.
It was interestingly noted that the different solvents selected had
significant effects on the reaction. For example, under identical
conditions (flow rate 40 ll min−1 at room temperature) in ACN a
yield of 48.5% was observed whilst a more than doubled figure,
90.1%, was obtained in methanol. It was found that the order
of yields obtained from different kinds of solvents is as follows:

Table 4 Summarized performance of Knovenagel condensation reaction as a function of flow rate, solvent and reaction temperature

Flow rate
(retention time) 5 lL min−1 (30 s) 10 lL min−1 (15 s) 20 lL min−1 (8 s) 40 lL min−1 (4 s)

Temperature Temperature Temperature Temperature

Solvent Material RT 40 ◦C 60 ◦C RT 40 ◦C 60 ◦C RT 40 ◦C 60 ◦C RT 40 ◦C 60 ◦C

Ethanol PVSZ 95.5 98.1 99.5 93.1 96.4 98.2 87.3 95.1 95.0 85.7 94.1 93.8
Methanol 96.8 95.6 — 95.3 94.5 — 91.4 91.4 — 90.1 90.1 —
DMF 70.5 77.5 78.5 63.7 70.8 72.5 56.0 63.5 65.4 51.4 55.8 60.2
ACN 65.0 66.8 70.4 61.7 62.3 65.3 54.2 58.7 61.2 48.5 53.3 56.5
THF AHPCS 89.1 86.3 85.3 80.1
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ethanol > methanol > THF > DMF > ACN. This sequence
is indicative that the effect of solvent is likely due to polarity
differences in different solvents. However, in order to confirm
and further quantify this effect more studies need to be put
forward.

After beginning the experiments, inorganic polymer chip
was monitored over 8 hours to check for defects occurring
from chemical instability. In the case of the PVSZ based
microreactor some delamination showed under THF solvent,
but the one made from AHPCS was preserved without any
leakage of product and deformity of channel shape. These kinds
of experiments were not reported with PDMS or plastic based
microreactor but with glass microreactor. Similarly, when this
reaction was carried out in a batch reactor a lower yield was
obtained; a yield of 50.6% was observed in a bulk reaction vial
(ID = 1 cm, working volume 1.57 ml) with ethanol, despite a
long reaction time of 20 min.

Conclusions

The imprint lithography technique, which has advantages in
terms of low-cost and mass production, has been employed for
the fabrication of inorganic polymer-based microreactors in a
cheap and simple manner. Such microreactors produced by this
technique demonstrated reliable microchemical characteristics
with high optical transparency, strong organic solvent resistance
and stabilities for running organic synthesis reactions. Three
model organic synthetic reactions, namely synthesis of 3,5-
dimethylpirazole, exothermic Diels–Alder cyclo-additions and
Knovenagel condensation have been successfully carried out
under different reaction conditions. It was demonstrated that
the microchemistry performance of the inorganic polymer based
microreactors was well in accordance with that of glass made
microreactors, and both were significantly advantageous over
batch reaction systems. These novel inorganic polymer derived
microreactors proved to be promising for organic microchem-
istry applications.
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Attachment and detachment of living cells on modified microchannel
surfaces in a microfluidic-based lab-on-a-chip system

Xunli Zhang 1, Paul Jones, Stephen J. Haswell ∗
Department of Chemistry, The University of Hull, Hull HU6 7RX, United Kingdom

Abstract

The attachment/detachment of living cells on modified microfluidic channel surfaces has been investigated using a “lab-on-a-chip” system. Cell
attachment was mediated using surface modifications of the microchannel based on three different reagents, namely, 3-aminopropytriethoxysilane
(APTES), glutaraldehyde and collagen, whilst the detachment was carried out by flowing media through the microchannel at increasing flow rates.
All three surface modification methods showed significant improvement for Chinese hamster ovary (CHO) cells’ attachment, compared to that for
an unmodified glass surface. The attachment/detachment of an additional four cell types, namely, T47D, U937, CaCo2 and NCTC 2544 cells, were
also examined using the APTES modified channel surface. The observation of cell deformation suggested that the control of a shear stress within
an optimal range enhances the cell adhesion to the surface. A theoretical model for fitting the measured detachment data is reported based on flow
shear stress and the contribution from both surface adhesion bonds and hydrodynamic viscous stresses. It was demonstrated that the microfluidic
system provided an easy and controllable approach to examine the attachment/detachment of a range of cells on different modified surfaces.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Living cells; Microfluidics; Surface modification; Shear stress; Cell detachment

1. Introduction

The development of miniaturized “lab-on-a-chip” systems
for chemical and/or biological applications has increas-
ingly attracted interest over the last decade [1–5]. Such
microfluidic-based microsystems represent the potential to
“shrink” conventional bench chemical systems to the size of a
few square centimetres with major advantages in terms of speed,
performance, integration, portability, sample/solvent quantity,
automation, hazard control and cost. These advantages are
important for a variety of applications in analytical chem-
istry, biochemistry, clinical diagnosis, medical chemistry and
industrial chemistry [6,7]. Consequently, numerous micrototal-
analysis-systems (�-TAS) and microreactor systems have been
developed, and many more are currently under investigation [4].

For the study of biochemical or biomedical systems involv-
ing living cells, it is often a requirement that cells are delivered
and remain at a desired location for examination and from
where they can subsequently be removed. Our previous studies
have demonstrated that microfluidics allows reagents and parti-

∗ Corresponding author. Tel.: +44 1482 465469; fax: +44 1482 466410.
E-mail address: S.J.Haswell@Hull.ac.uk (S.J. Haswell).

1 Present address: School of Engineering Sciences, University of Southamp-
ton, Southampton SO17 1BJ, United Kingdom.

cles including cells to be manipulated and delivered to desired
locations with programmable sequences within microchannel
networks [5,6,8,9]. The location and then removal of cells from
a given area generally involve an attachment/detachment process
between cells and the substrate surface which can be mediated by
channel geometry and flow rate (shear stress). The attachment
of cells on a surface is normally performed by allowing cells
to settle down without fluidic disturbance for a certain period
of time. In some cases a chemical or biochemical modifica-
tion of either cell surfaces or substrate surfaces can enhance
the adhesion [10]. To remove cells from the substrate surface
appropriate washing solutions are employed to break the bonds
or cellular ‘glue’ that attaches the cells to the substrate and to
each other by using proteolytic enzymes such as trypsin and
dispase [11,12]. Whilst these methods are commonly used for
batch or static operations, the shear stress caused by a fluid flow-
ing along the substrate has been used as an effective approach
to detach cells from the surface [13], which can be operated in
either a continuous-flow or a paused-flow format [14] in a highly
controllable manner [15,16]. The kinetics and mechanics of cell
adhesion on substrate surfaces under shear stresses have been
studied since the 1980s [17,18]. However, most of this work has
been carried out from a mechanical engineering point of view.
For instance, two commonly used models are based on either
peeling-off-adhesive-tape or receptor–ligand-binding processes

1385-8947/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cej.2007.07.054
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[19]. The mechanism, however, of attachment/detachment of
living cells on a substrate surface represents a much more
complicated system especially when the physical–biological
interaction, involving hydrodynamics, adhesion strength and
cell deformation is considered. More recently, research has been
directed towards the interface of biology and material science for
the study of interaction between cells and substrates under physi-
ologically relevant shear stress conditions [20–23]. Furthermore,
some dynamic surfaces using self-assembled monolyers have
been developed allowing real-time control of the presentation
of ligands in order to sequentially release and attach cells to a
substrate [24,25].

In the present study, the attachment/detachment behaviour of
living cells on modified microchannel surfaces has been stud-
ied by exploring the fluidic properties of a microfluidic-based
“lab-on-a-chip” system. The microchannel surface was modi-
fied using three different surface modification reagents, namely,
3-aminopropytriethoxysilane (APTES), glutaraldehyde and col-
lagen to enhance cell adhesion. The attachment/detachment of
Chinese hamster ovary (CHO) cells to these modified surfaces
were investigated. In addition, four other cell types, namely,
T47D (breast tumour cells), U937 (human lymphoma cells),
CaCo2 (human colon adenocarcinoma epithelial cells) and
NCTC 2544 (keratinocytes cells), were also examined using a
silanized channel surface. The deformation of cells under shear
stress within microfluidic channels was also studied. A theoret-
ical model for fitting the experimental data has been developed
by taking account of shear stresses and the contribution from
both surface adhesion bonds and cells deformability.

2. Experimental

2.1. Microfluidic chip fabrication

The microchip was fabricated according to published pro-
cedures [26,27] with minor adaptations. Briefly, the channel
network was fabricated based on a photolithographic fabrication
method. The channel network was designed using AutoCAD LT
2005 drawing software (Autodesk, Farnborough GU14 6FG,

UK). A film negative of the desired final size was then pre-
pared by a commercial photo mask manufacturer (J.D. Photo
Tools, Oldham OL8 1EZ, UK) to form the optical mask. B-270
glass photolithographic plates (thickness of 3 mm) coated with
a thin chromium metal mask layer plus an upper layer of pos-
itive photoresist, supplied by Telic (Telic Company, Valencia,
CA 91355, USA), were used for channel network fabrication.
With UV exposure, the pattern of interconnecting channels was
transferred from the optical mask to the photoresist layer which
was then developed and removed, together with the chromium
layer, to reveal the channel areas of glass to be etched. The chan-
nels were etched by using a mixture of 1% (w/w) HF and 5%
(w/w) NH4F in water at 65 ◦C for 20 min, resulting in an etch
channel network with a depth of 60 �m.

A base plate containing the etched channel network was
sealed by bonding to an upper plate (also 3 mm thick) con-
taining predrilled holes (diameter 1.5 mm) in order to link the
ends of the channels with external tubing. The upper plate was
aligned with the channel geometry and thermally bonded to the
base plate by heating in a conventional furnace at a tempera-
ture of 575 ◦C for 3 h. Thermal bonding was aided by placing
a 90 g block of stainless steel on the upper plate. After bond-
ing, ETFE (ethylene tetrafluoroethylene) polymer tubing with
an inner diameter of 250 �m was inserted into the drilled holes
on the top plate and epoxy glue was used to secure the joint.
On–off valves were connected to the other end of the tubing.
The ETFE tubing (P/N. 1529) and on–off valves (P/N. P-782)
were obtained from Upchurch (Upchurch Scientific Inc., Oak
Harbor, WA, USA).

Fig. 1 shows the chip setup and configuration used, which
consists of a double-T network with two inlet channels and two
outlet channels. The geometry of the channel network is shown
in the micrograph (Fig. 1b). The depth for all the channels was
60 �m.

2.2. Microchannel surface modification

The presence of surface modification to assist in the immobil-
isation of cells was located in a specific area in the microchannel

Fig. 1. (a) Glass chip with tubing and on–off valves and (b) outline of channel network.
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between points E and F (Fig. 1b). Three modification agents
were used, 3-aminopropytriethoxysilane (APTES), glutaralde-
hyde and collagen. In order to modify the selected channel area
on the chip, the modification reagent was directed from B to C
while channels A and D were closed. This flow pattern allows
only the channel section between junctions E and F along the
main channel to be modified.

2.2.1. Silane coating
To silanize the selected area on the microchannel surface, a

solution of 10% (v/v) 3-aminopropyltriethoxysilane or APTS
(99%, Sigma–Aldrich Company Ltd., Dorset SP8 4XT, UK)
in ethanol was infused across the channel B–C at a flow rate of
10 �L min−1 for 30 min. The microchannels were then rinsed by
continuously flowing 60% ethanol followed by DI water, both
at a flow rate of 5 �L min−1 for 30 min. The channel network
was then dried by blowing N2 through.

2.2.2. Glutaraldehyde coating
Following the silanization step, a second layer of glutaralde-

hyde was coated which was obtained from Sigma–Aldrich as
50 wt.% solution in water. To perform the coating, 6% (v/v) glu-
taraldehyde solution in 0.01 M phosphate-buffered saline (PBS,
with 0.0027 M potassium chloride, 0.137 M sodium chloride,
pH 7.4, Fluka) was infused at a flow rate of 5 �L min−1 for
1 h across the selected microchannel section between junctions
E and F along the main channel (Fig. 1b). The microchannels
were then washed by continuously flowing 60% ethanol at a flow
rate of 5 �L min−1 for 30 min. The channel network was then
dried by blowing N2 through.

2.2.3. Collagen coating
Following the silanization and glutaraldehyde coating steps,

a collagen coating was performed on the top of the previ-
ous coatings. The agent was prepared by dissolving 1.0 mg
collagen, type I from calf skin supplied by Sigma–Aldrich,
in 1 mL acetic acid (0.1N) at room temperature, followed
by adjusting pH to 8.3 with 0.1N NaOH. After the solution
was filtered through a 0.2 �m filter, it was infused across the
selected area within the microchannel network at a flow rate
of 15 �L min−1 for 30 min. The channel was then washed by
continuously flowing PBS buffer at a flow rate of 5 �L min−1

for 30 min. The channel network was then dried by blowing N2
through.

2.3. Cell culture

CHO-K1 (Chinese Hamster Ovary, Cricetulus griseus) cells
were supplied by ATCC/LGC Promochem (ATCC® No. CCL-
61TM, LGC Promochem, Middlesex TW11 0LY, UK). T47D,
U937, CaCo2 and NCTC 2544 cells were obtained from the
Medical Research Laboratory of the University of Hull. All cells
were cultured in DMEM/F-12 medium (Cat. No. 21331-020,
Invitrogen Ltd., Paisley PA4 9RF, UK) with a minor modifica-
tion for each cell type according to the published procedures
[15,28–31], respectively. A humidified incubator was used at

37 ◦C supplying 5% CO2 in air. The concentration of cells used
in this experiment was in the range of 7.5 × 106 cells mL−1.

2.4. Instrumentation, image analysis and experimental
procedures

Two KDS 200 syringe pumps (KD Scientific Inc., Holliston,
MA 01746, USA) were used to deliver cells in suspension and
carrier media. ETFE polymer tubing, on–off valves, and appro-
priate fittings and connectors were all obtained from Upchurch
(Upchurch Scientific Inc., Oak Harbor, WA, USA). The vis-
cosity of the media was measured using a modified Ubbelohde
viscometer tube. All the measurements were carried out at room
temperature.

An Axiovert S100 inverted microscope (Carl Zeiss, Hert-
fordshire AL7 1JQ, UK) using both transmission and fluorescent
optics coupled with a monochrome CCD digital camera (C4742-
95-12NRB, Hamamatsu Photonics, Hertfordshire AL7 1BW,
UK) was used to obtain both conventional micrographs and
digital videos of the microchip. AQM Hamamatsu ORCA I soft-
ware (Kinetic Imaging, Nottingham NG8 6PE, UK) was used
for image acquisition and analysis.

To deliver cells to the selectively modified area, channel
surface between junctions E and F (Fig. 1b), cells in suspen-
sion were injected from inlet B to outlet C while channels A
and D were closed. Following the infusion of cells into the
chip all channels were closed in order to allow the cells set-
tle down over a 30 min period without fluidic disturbance. To
measure the cell detachment from the channel surface, the car-
rier media was introduced from channel A to D while channels
B and C remained closed. The flow rate was incrementally
increased, i.e., 1, 2, 5, 10 �L min−1, and after each adjustment
of the flow rate, an additional running period of 2 min was
given to allow the chip to equilibrate at the programmed flow
rate.

At each of the flow rates used two snap images covering the
selected area were taken and subsequently analysed. The cell
detachment was calculated as a percentage of cells removed from
the surface as a result of the induced shear force. After a series
images had been acquired, the cells were counted for the selected
area on the channel surface. The extent of cell detachment from
the channel surface was calculated as a percentage of the initial
cell number (Eq. (1))

detachment (%) = initial cell number − remaining cell number

initial cell number
×100 (1)

3. Results and discussion

3.1. Effects of surface modification on cell
attachment/detachment under shear stress

Shear stresses are generally measured as the ratio of the shear-
ing force to the area over which it acts. For the etched channels
which have an approximately rectangular cross-section [27], the
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Table 1
Summary of experimental conditions and corresponding shear stresses

Fluid viscosity, μ (dyn s cm−2) 0.01045
Channel depth, h (cm) 0.006
Channel width, w (cm) 0.032

Flow rate, Q (�L min−1) Shear stress, τ (dyn cm−2)

0 0
1 0.9
5 4.5

10 9.1
20 18.1
60 54.4
90 81.6

110 99.8
150 136.1
190 172.4
230 208.6
290 263.1
350 317.5

wall shear stress under laminar flow conditions is calculated as
[14,32,33]

τ = 6μQ

wd2 (2)

where τ is the shear stress in dyn cm−2, μ the fluid viscosity in
dyn s cm−2 or P, Q the volumetric flow rate in cm3 s−1 and w and
d are the channel width and depth in cm, respectively. Table 1
summaries the experimental conditions and corresponding shear
stresses calculated using Eq. (2).

Fig. 2 shows the detachment of CHO cells as a function of
shear stress for an unmodified and three modified channel sur-
faces. The results showed that all the modified surface resulted
in a significant retention of cells, compared to the unmodified
surface. It can be seen that, in general, with an increase in shear
stress, induced by increasing flow rate, more cells were detached
from the channel surface. However, when the shear stress was
increased above a certain point the detachment tended to reach

Fig. 2. Detachment percentage of CHO cells from the four types of modified
microchannel surface as a function of shear stress. The solid curves are calcu-
lation results based on the theoretical model, and the error bars show a 95%
confidence.

a stable level indicating that the remaining cells attached to the
surface in a firm manner. More details will be discussed in later
sections in order to understand further about this observed trend.
It was also found that surfaces modified by collagen provided
the strongest attachment.

Generally, any forces between the cell surface and the chan-
nel surface can contribute to the attachment/detachment of
cells, including hydrodynamic viscous forces, electrostatic affin-
ity, chemical bonds and/or biological complex binding. In the
silanization process with APTES, it has been reported that the
chemical reaction between the glass surface and the silanization
reagent allows amino groups to link by covalent bonds to the
silicon atoms of the glass [10], and will leave the glass surface
positively charged. Since the surface of cells is generally charged
negatively, the electrostatic force can enhance the adhesion of
cells to the positively charged channel surface.

Glutaraldehyde has been commonly used to fix cells whilst
preserving their original shape and rendering them rigid [34].
This approach has been used notably for blood cells [35,36].
It has also been used as a pre-treatment for substrate surface
to facilitate further modification [15]. It has been reported that
the cell fixation process can result in an increase in cell’s adhe-
sion to the substrate [37]. In this study, glutaraldehyde was used
to modify the channel instead of the cells’ surface. The results
(Fig. 2) confirm the enhancement of cell adhesion, although its
mechanism remains unclear while some explanation has been
proposed. Burks has found differences in zeta potentials of bac-
teria following glutaraldehyde treatment [35]. Brown et al. [37]
found that glutaraldehyde caused yeast cells to become more
hydrophobic. It is generally accepted however that glutaralde-
hyde can stiffen cells by cross-linking proteins and amino acids
in the peptidoglycan layer [38].

Collagen is present as a major component of the extracellu-
lar matrix in many tissues and can influence cell proliferation,
differentiation and migration [39]. Although the effects from
collagen on cell behaviour are not fully understood, it is clear that
it can be used to enhance the attachment contact or properties of
cell with surface. Based on the biochemistry of collagen, the col-
lagen monomer, tropocollagen, is a rigid rod-shaped molecule
consisting of three polypeptide chains (�-chains) wound around
each other to form a triple helix [40]. It is this particular structure
that plays a big part interacting with the receptors on the cell sur-
face, affecting cell surface glycosyltransferases, and influencing
the mobility of proteins in the plane of the membrane [39].

To detach a cell from the surface by a fluid flow, a certain level
of input fluid energy is required and distributed for two purposes
(a) to overcome the hydrodynamic viscous resistance and (b)
break adhesion bonds on the cell–substrate interface [13]. The
hydrodynamic resistance can be generally treated in a similar
way as for rigid, non-biological particles in fluidics. In con-
trast, the binding system on the cell–substrate interface is more
complicated, as discussed above, which strongly depends on
the cell’s biological behaviour and activities in addition to their
physical properties. Based on these assumptions, a simplified
mathematical model has been used

P = Pmax − (Pmax − P0) e−(τ/a)b (3)
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Table 2
Four parameters obtained by best-fitting the experimental data into the model
for CHO cells on four types of surfaces

Pmax P0 a b

Collagen coating 70.17 1.44 89.13 1.05
Silane coating 74.83 2.96 68.87 1.80
Glutaraldehyde coating 89.24 0.12 85.05 2.01
No coating 101.25 0.02 21.02 1.25

where τ is the shear stress in dyn cm−2, Pmax the highest level
of percentage detachment when high shear stresses are applied,
P0 the initial percentage detachment when the flow starts (being
0 in most cases). a provides a reference shear stress scale and
b, the exponent reflects a threshold for cell removal which is
a combination of contribution from cell–substrate affinity, cells
deformability and hydrodynamic viscous affect. The four param-
eters have been obtained by best-fitting the experimental data,
and are summarized in Table 2.

It is generally assumed that particles are “washed off” sur-
faces as fluid flow rates are increased because the hydrodynamic
force can weaken the adhesion/attachment. This is indeed true
for most of rigid mechanical particles. However, for a range of
biological cells it has been reported that a threshold of fluid
shear stress is required to sustain cell rolling on a substrate
surface [41,42] and a maximum cell attachment is obtained.
This has been mainly attributed to the chemical and/or biolog-
ical bonds between the surfaces, and the deformation of cells
which enlarges the cell–substrate contact area. In this study,
an induction range was also observed, especially for cells with
glutaraldehyde-coated surface (Fig. 2), indicating that cells were
detached at a relatively low rate in the lower shear stress range.
This effect is reflected on the b value in the model (Eq. (3)); a
greater b value is an indication that a higher threshold is required.

3.2. Comparison of different cell types under shear stresses

It has been shown that all of the three surface modification
agents investigated in this study can significantly enhance the
attachment of CHO cells to the microchannel surface with colla-
gen providing the strongest attachment. However as silanization
proved to be the simplest surface modification method, in
practice, it was used in this part of the work to study the attach-
ment/detachment of a further four types of human cells, of
general interest in biomedical research. The measured detach-
ments of cells as a function of shear stress are depicted in Fig. 3.
The calculated results based on the model (Eq. (3)) are also
shown as the solid curves. By best-fitting into the experimen-
tal data the values of the four parameters in the model were
determined and are summarised in Table 3.

It was observed that T47D cells from human breast tumours
showed the strongest attachment to the channel surface whilst,
in contrast, U937 human blood lymphoma cells appeared to be
non-adherent with a lowest threshold. These results are in line
with the general observation where breast cancer cells T47D
are very adherent and tend to spread and attach to other tis-
sues [43], whilst untreated monocytic U937 cells are unable to

Fig. 3. Detachment percentage of five cell types on silanized microchannel sur-
face as a function of shear stress. The solid curves are calculation results based
on the theoretical model, and the error bars show a 95% confidence.

Table 3
Four parameters obtained by best-fitting the experimental data into the model
for four cell types (in addition to CHO cell) on silanized channel surface

Pmax P0 a b

T47D 86.00 0.01 59.64 1.81
NCTC 2544 88.66 0.09 21.43 0.88
CaCo2 94.01 0.00 14.65 0.77
U937 95.54 0.00 2.78 0.64

adhere to glass surfaces [44,45]. The human colon adenocar-
cinoma epithelial cells CaCo2 and skin-derived keratinocytes
cells NCTC 2544 also showed some degree of adherence.

3.3. Cell deformation under shear stresses within
microchannels

As discussed above, in addition to effects from cell–surface
adhesion (chemically, or biologically) and hydrodynamic vis-
cous factors, the deformation of cells under shear stresses is also
important in the attachment/detachment process as it may lead to
artifacts associated with cell differential. Fig. 4 shows a series of
snap images for a single CHO cell within a microchannel under
different conditions. It can be seen that the cell tended to spread
on the surface after a period of settling down (Fig. 4b) and that the
contact area with the surface increased. With a low shear stress
applied (Fig. 4c), the contact area was enlarged further, and an
increase in shear stress enhanced the cell deformation more sig-
nificantly (Fig. 4d). After the flow was stopped the deformation
recovered remarkably quickly (Fig. 4e).

Clearly, under shear stresses in a certain range, the cell
appeared to be more “flat” to the surface aligning along in the
direction of flow, decreasing the encountering cross-section area
in both dimensions. Consequently, this deformation can reduce
the fluid energy to the cell because a flattened cell will influence
less disturbances to the flow and hence smaller shear stresses on
the cell surface. In addition, the cell deformation can result in
a larger contact area between the cell and the substrate surface.
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Fig. 4. Micrographs of a single CHO cell within a microchannel under different flow conditions. (a) The cell was delivered to position by injection flow, (b) followed
by a 40 min settling, then subject to (c) a low shear stress of 11 dyn cm−2 and (d) a high shear stress of 274 dyn cm−2 by flowing in the media, and finally (e) the
shear stress was released by stopping the flow.

It has been found that the contact area between the cell and the
substrate could be nearly doubled under high wall shear stresses
[13]. As a result, a higher shear stress was required to detach the
cell from the surface. The observation of cell deformation under
flow conditions can significantly contribute to the explanation
for the existence of the threshold of shear stress to detach cells
from surfaces. As can be seen from Fig. 5, that when encounter-
ing cross-section area with flow decreased, the contact area or
adherent bonds (Fig. 5b) with substrate increased, so requiring
more energy to detach the cell from the substrate surface.

It was also interesting to note that the cell recovered remark-
ably well from deformation when the shear stress was released
which is probably due to the general surface effect where the cell
tends to keep spherical due to its surface tension. It should be
noted however that biochemical responses to shear stresses can-
not be excluded. Frangos et al. reported that some cell functions
may be modulated by membrane stresses induced by such arti-
facts as blood flow [46]. In addition, a recent investigation on the
influence of hydrodynamic conditions on CHO cells activity in
a microfluidic system found that a shear stress of 3.1 dyn cm−2

can cause a detectable fluorescence signal to be generated associ-
ated with intracellular Ca2+ transition within cells [47]. Clearly,

Fig. 5. Schematic of the cross-section of cells (a) attached on the surface of the
microchannel bottom and (b) subject to a shear stress caused by the laminar
flow.

to distinguish active actions from passive effects on the pro-
cess of cell’s deformation and its recovery, more investigation
is required.

4. Conclusions

The behaviour of attachment/detachment of living cells
on modified microfluidic channel surfaces has been stud-
ied in a “lab-on-a-chip” system for a range of cells with
surfaces modified using different methods. The attachment
was performed by modification of the microchannel surface
using three different surface modification reagents, namely,
3-aminopropytriethoxysilane (APTES), glutaraldehyde and col-
lagen. It was found that surfaces modified by collagen provided
the strongest attachment for CHO cells whilst the silanization
was the simplest method to use practically. The detachment
of other four types of cells, namely, T47D, U937, CaCo2 and
NCTC 2544 cells, were also examined on a silanized channel
surface. The observation of cell deformation suggested that the
application of a shear stress in a certain range could enhance
the cell adhesion to the surface mainly due to the enlargement
of contact area between cells and the microchannel surface. A
theoretical model for fitting the measured detachment data has
been developed by taking account of shear stresses and the con-
tribution from both surface adhesion bonds and hydrodynamic
viscous stresses. It was demonstrated that the microfluidic sys-
tem provided an easy and controllable approach to examine the
attachment/detachment of a range of cells on different surfaces.
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A microfluidic based experimental methodology has been developed that offers a biomimetic
microenvironment in which pseudo in vivo tissue studies can be carried out under in vitro
conditions. Using this innovative technique, which utilizes the inherent advantages of microfluidic
technology, liver tissue has been kept in a viable and functional state for over 70 h during which
time on-chip cell lysis has been repeatedly performed. Tissue samples were also disaggregated
in situ on-chip into individual primary cells, using a collagenase digestion procedure, enabling
further cell analysis to be carried out off-line. It is anticipated that this methodology will have a
wide impact on biological and clinical research in fields such as cancer prognosis and treatment,
drug development and toxicity, as well as enabling better fundamental research into tissue/cell
processes.

Introduction

Traditional in vitro tissue culture as a model of human disease
represents a poor substitute for the in vivo environment,1

often leading to experimental artifacts associated with the
handling and or the presence of adverse culture conditions.2,3

For example, conventional tissue culture methods typically
supply nutrients and growth factors in batches, which then
decrease as metabolism occurs leading to a build-up of waste
products. Hence, the levels of nutrients and waste products vary
considerably in conventional culture methods, which contrasts
with the tightly regulated homeostatic systems in vivo.4–6 Un-
der normal physiological conditions the flow within vascular
capillaries and tissues is known to have Reynolds numbers
<100, resulting in predominantly diffusion based characteristics,
over spatial distances of approximately 100 mm,6,7 within which
cellular metabolite uptake, gaseous exchange and waste removal
occurs.8

Given that the flow and spatial parameters which exist in tissue
are very similar to those of the microfluidic environment, the op-
portunity to carry out continuous perfusion of tissue samples8,9

would seem to offer a more attractive experimental approach
than is currently possible using the turbulent fluidic conditions
present in a standard batch culture system.10 The benefits of
microfluidic techniques for cell/tissue culture that have been
demonstrated previously include laminar flow conditions, small
length scales, large surface to volume ratios, diffusion dominant
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bPostgraduate Medical Institute, University of Hull, Cottingham Road,
Hull, HU6 7RX, UK. E-mail: j.greenman@hull.ac.uk;
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† In honour of Andreas Manz on his retirement as Chair of the Lab on
a Chip Editorial Board.

transport, portability, reusability or disposability and reduced
cost.11,12 In addition, by exploiting the flow conditions present
in a microfluidic device, unprecedented spatial and temporal
control over materials entering and leaving an experimental
system can be achieved.13,14 Accordingly the ability to place
a viable tissue biopsy in a microfluidic device could offer
the opportunity to control, probe and monitor complex cell
functions in diseased and healthy tissue whilst maintaining
in vivo architecture.12,15–17

The use of microfluidic devices to create tissue-like 3D micro-
architectures from cells has already attracted some interest
and have included: hepatocyte arrays, which mimic physiolog-
ical liver mass transport,18 cardiac tissue-like structure with
anisotropic properties,19 modeling of the alveolo–pulmonary
barrier20 and multicellular spheroids established from several
different cell lines.21 In addition, agglomerations of different
established cell lines22,23 have also been used to create tissue-like
constructs in which fibroblasts and hepatocytes are combined
in a gel and allowed to proliferate in a microfluidic chamber for
up to 24 h.24 The encapsulation of AML-12 murine hepatocytes
in agarose hydrogel through which a microfluidic channel has
been formed has also been used to create a synthetic tissue
construct.7

The culture of ex vivo tissue in microfluidic devices has,
however, been far less well documented and is currently restricted
to brain tissue using either a hollow SU-8 microneedle system25

to perfuse 400 mm hippocampal rat brain tissue or a three-layer
polydimethylsiloxane (PDMS) device incorporating medullary
brain slices from neonatal rats.26 Using these approaches cell
viability was found to be lost after 4 h at 36 ◦C in the case of the
SU-8 device, and 3 h in the PDMS system.

In this paper, we describe an innovative approach to study
tissue which exploits the benefits of the microfluidic environment
to create pseudo in vivo conditions in vitro.

1842 | Lab Chip, 2008, 8, 1842–1846 This journal is © The Royal Society of Chemistry 2008
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Experimental

Microfluidic set-up

The microfluidic device was fabricated from glass using pho-
tolithographic and wet etching techniques.27 The overall device
(Fig. 1) consisted of two thermally bonded glass layers of 1 mm
(base layer) and 3 mm (top layer) thickness.

Fig. 1 Microfluidic device used for maintaining and probing tissue
samples. (a) Photograph showing the open microport and connecting
tubing in place and (b) schematic of device.

The top layer included a 3 mm diameter hole into which
a tissue sample was placed and three 1.5 mm diameter inlets
into which tubing was connected, one for the medium/reagent
inlet and two for medium/reagent outlet. These were drilled
using traditional glass drilling techniques. A microport fitting
(Anachem, UK) was attached to the surface of the top glass
layer such that the circular tissue cavity could be sealed using
an English threaded adapter (Anachem, UK). The adapter
was filled with PDMS (Dow Corning, UK) to allow gaseous
exchange to occur.28 The channel network was etched into the
bottom glass layer to produce channels of 190 mm width and
70 mm depth and featured two outlet channels to aid post-tissue
flow. A Baby Bee syringe pump (Bioanalytical Systems Inc., UK)
was connected to the device via 1/16” Tefzel tubing (Anachem,
UK). The entire system was placed in an incubator at 37 ◦C.

Animal and tissue preparation

A male rat (Wistar, B & K Universal Ltd, UK) was used for
all experiments. The animal was fed and watered ad libitum
until anaesthetized (10 ml kg-1 of 10 mM sodium thiopentone,
intraperitoneal) and killed under a Schedule 1 procedure prior
to liver extraction. The liver was immediately sectioned into
pieces approximately 1 cm3 and placed in 1 ml cryovials
(Alpha Laboratories, UK) which were then plunged into liquid
nitrogen.

The microfluidic system was sterilized prior to use by
pumping 70% (v/v) ethanol/water through the device for
15 min at 10 ml min-1 followed by a rinse with autoclaved,
distilled water. The device was then primed with Williams
Media E (WME) (Gibco, UK) supplemented with 1% (w/v)
penicillin/streptomycin (Sigma, UK) at a flow rate of 20 ml min-1

and set in a 37 ◦C incubator. The frozen tissue was removed
from the cryovial, cut into approximately 4 mm3 sized sections,
weighed and placed into the tissue cavity pre-filled with medium.
The ratio of microfluidic chamber to tissue sample volume was

approximately 1 : 0.8. The cavity was sealed using the threaded
adapter and the flow rate reduced to 2 ml min-1. A visual check
was made to ensure no bubbles were trapped in the chamber;
any bubbles observed were removed using a sterile hypodermic
needle. The eluent from both outlets of the microfluidic device
was collected for a period of 30 min and then combined in 0.5 ml
microcentrifuge tubes for analysis.

Analysis

To quantify cell viability a colorimetric cytotoxicity assay
(Cytotoxicity Detection Kit Plus, LDH, Roche, UK) was carried
out following the manufacturer’s protocol with the exception
that all test samples were diluted 1 : 10 prior to analysis. The
results are expressed as an average determined from triplicate
samples.

To assess the functionality of the tissue within the microflu-
idic device production of albumin and urea was investigated.
Albumin levels in the eluent were determined by enzyme-linked
immunosorbant assay (ELISA) (Bethyl Laboratories Inc., USA)
according to the manufacturer’s guidelines. A 96-well flat bottom
ELISA plate (SLS, UK) was coated overnight with primary
sheep anti-rat albumin antibody diluted in 0.05 M carbonate–
bicarbonate buffer, pH 9.6 (Sigma, UK) at 4 ◦C. A wash
solution containing 50 mM Tris, 0.14 M NaCl, and 0.05% (v/v)
Tween 20, pH 8.0 (Sigma, UK) was used after each step. Plates
were subsequently blocked with 50 mM Tris, 0.14 M NaCl,
containing 1% (w/v) Bovine Serum Albumin (BSA) pH 8.0
for 30 min at ambient temperature. The rat serum reference
standards were diluted in 50 mM Tris, 0.14 M NaCl and
0.05% (v/v) Tween 20, pH 8.0 and incubated on the plate
with eluent samples for 1 h. Next, the plates were incubated
with Horse Radish Peroxidase-conjugated detection antibody
1 : 5000 in 50 mM Tris, 0.14 M NaCl and 0.05% (v/v) Tween
20, pH 8.0 for 1 h. Finally, a colorimetric reaction was carried
out by the addition of 50 ml undiluted Tetramethyl benzidine
solution (Sigma, UK). The reaction was stopped with 25 ml
of 2 M sulfuric acid (Sigma, UK) and the absorbances were
measured at l = 450 nm. Urea concentrations in the media were
determined using a colorimetric assay (QuantiChromTM Urea
Assay Kit, BioAssay Systems, USA) carried out following the
manufacturer’s protocol.

To visualise cell architecture following perfusion for up to 70 h
in the microfluidic device the tissue was removed, embedded
on a cork tile covered with Tissue-Tek R© (Sakura, Netherlands)
and plunged immediately in liquid nitrogen cooled 2-methyl
butane solution (Sigma, UK). Frozen sections (12 mm thick)
were cut using a Microm HM505E cryostat. The samples were
fixed with 10% formalin and stained with Hematoxylin and
Eosin (H & E).

For the determination of the long term viability of tissue,
samples were prepared and placed in the microfluidic device as
described above. To induce cell rupture a solution of 10% lysis
buffer (Cytotoxicity Detection Kit Plus LDH) was introduced
(2 ml min-1) for 30 min at 18.5, 21.5 and 24 h; after each exposure
WME was re-introduced into the microfluidic system.

To analyze individual primary cells isolated from tissue held
within the microfluidic device, the tissue was enzymatically
disaggregated. The perfusion method, which was modified from

This journal is © The Royal Society of Chemistry 2008 Lab Chip, 2008, 8, 1842–1846 | 1843
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Bayliss and Skett,29 used Eagle’s Balanced Salt Solution (EBSS)
(Gibco, UK) in place of WME. EBSS flow was sustained for
5 min at 5 ml min-1 to flush WME media from the device and the
sample was then perfused at 2 ml min-1 for 20 min with an 8.3 mM
solution of ethylene glycol bis-(b-aminoethyl ether) N,N,N¢,N¢-
tetra acetic acid (EGTA) (Sigma, UK), to chelate extracellular
calcium. After EGTA treatment the tissue was perfused with
EBSS at 2 ml min-1 for a further 10 min to remove any chelator, as
EGTA is known to inhibit collagenase action. Collagenase (0.48
U ml-1) (Sigma, UK) was dissolved in EBSS (pH 7.4) (2 ml) with
the addition of 0.4 mg trypsin inhibitor (Sigma, UK) and 2 mM
calcium chloride (Sigma, UK). The tissue was then perfused with
this collagenase solution for 2 h at 2 ml min-1. The perfusate was
allowed to drain to waste. Following collagenase treatment the
microfluidic device was removed from the incubator while still
connected to the perfusate system and set on an ice pack. Ice-
cold dispersal buffer containing 10 mM HEPES, 142 mM NaCl,
7 mM KCl, 5% (w/v) BSA in water and adjusted to pH 7.4,
40 mg ml-1 DNase I and 5 mM magnesium chloride (Sigma,
UK) was then perfused through the tissue sample at 500 ml min-1

for 2 min. The enzymatically disaggregated cells were collected
in 1.5 ml micro centrifuge tubes and centrifuged at 100g for
5 min. The supernatant containing cell debris was removed
by aspiration. The cells were resuspended in the dispersal
buffer containing 40 mg ml-1 DNase I and 5 mM magnesium
chloride by gentle swirling of the tube. Centrifugation was
then repeated and a final wash of the cell preparation was
repeated in the absence of DNase I and magnesium chloride.
The cells were then resuspended in WME (1 ml) and main-
tained at 4 ◦C. To quantify cell viability equal volumes of
2% (w/v) Trypan Blue (Sigma, UK) and cell solution were
mixed and the cell count enumerated using a haemocytometer.
Counts were measured in duplicate and the percentage viability
determined.

Calcein AM (Molecular Probes, UK) fluorescence (lex =
494 nm, lem = 517 nm) and 2.04 mM Lavacell (Active Motif,
Belgium) fluorescence (lex = 405, 488 and 532 nm, lem = 610 nm)
were used as a measure of cell function. Non-viable cells were
identified by uptake of propidium iodide (PI) (Sigma, UK) (lex =
536 nm, lem = 617 nm), which stains the nuclei of cells which
have ruptured cell membranes. The in situ imaging of tissue was
carried out using a laser-scanning inverted confocal microscope
(Nikon Eclipse TE2000-E, Nikon) equipped with Helium/Neon
and Argon lasers running Lazershop 2000 software. When
interrogating tissue with fluorescent probes, 10 mM calcein AM
was first perfused through the system (2 ml min-1 for 40 min)
followed by a ten minute flush with EBSS, after which 3.75 mM
PI was pumped through the device (2 ml min-1 for 10 min).
Finally a further EBSS wash of the tissue was carried out prior
to image collection.

A Quant-iTTM PicoGreen R© dsDNA Assay Kit (Invitrogen,
UK) was used to monitor DNA release from tissue samples.
PicoGreen R©(lex = 485 nm, lem = 538 nm) was diluted 1 in
400 in 1¥ Tris EDTA buffer and 50 ml was added to 2 ml of
the tissue media and then fluoresence intensity was measured
using a FLUOstar OPTIMATM plate reader. DNA standards,
10, 5, 2.5, 1.25, 0.625 and 0.312 ng ml-1 were used to generate
a calibration curve. Medium rather than tissue supernatant was
used to determine the level of background fluorescence.

Results and discussion

Establishing on-chip tissue viability and functionality

H & E staining shows retention of normal tissue architecture
and fluorescence imaging using LavacellTM shows cell viability
(Fig. 2). The ability of the tissue biopsy to continue to produce
both albumin and urea (Fig. 3) demonstrated that the fluidic
properties and geometric size of a microfluidic device are
adequate for maintaining tissue viability and function, for at
least 70 h.

Fig. 2 H & E stained cryostat section of tissue before culture in the
microfluidic device (a) and after 71 h (b) using 40¥ magnification.
Brightfield (c) and epi-fluorescence images (d) of rat liver tissue, after
incubation with LavacellTM, following maintenance in a microfluidic
device for 53 h; showing the edge of the tissue distinguished from
background. A 10¥ objective was used.

Fig. 3 Albumin and urea synthesis within a microfluidic device per mg
of liver tissue. Albumin concentration is represented by the continuous
line and urea levels by the dashed line. Breaks in lines signify periods
when samples were not collected and analysed. The mean of replicate
experiments is plotted.

Histomorphology was analysed before and after tissue culture
in the microfluidic device. The fresh-frozen sections were stained
with H & E to visualize changes within the tissue architecture

1844 | Lab Chip, 2008, 8, 1842–1846 This journal is © The Royal Society of Chemistry 2008
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(Fig. 2). Tissue sections taken through the full depth of samples
were analysed for structural changes. The cell nuclei of the
hepatocytes have maintained their rounded appearance, with
little or no shrinkage after 70 h of culture in a microfluidic
device. The cell membranes can be seen in several places, with
the hepatocytes preserving their original hexagonal shape. In
addition there is no discernible loss of the extracellular matrix
between the cells.

Eluents were analysed for the levels of albumin and urea.
Albumin is the most abundant protein in blood plasma and
is produced by hepatocytes. It maintains osmotic pressure of
blood and is a carrier of low water soluble molecules such
as bile salts and free fatty acids. Production of urea is a
cycle of biochemical reactions that, in mammals, only occurs
in hepatocytes. Ammonia, an extremely toxic waste product
has to be converted into a less potent product, urea. The
conversion of ammonia to urea takes five steps; two in the
mitochondria and three in the cytoplasm of hepatocytes. Urea
production has been commonly used as a specific marker of
liver function.30 Preliminary results (Fig. 3) demonstrate that
albumin concentrations vary in a cyclical manner, peaking every
24 h period. Urea concentration, after an initial drop, remained
relatively stable during perfusion up to 71 h.

On-chip cell disaggregation

Following in situ collagenase disaggregation of primary cells
from the tissue, viability was determined using Trypan blue
exclusion. The results indicated that 78% ± 2.4 (n = 3) of
cells were alive which is comparable to values expected from
traditional disaggregation methods.29 A two hour collagenase
disaggregation treatment, which offered a relatively gentle
method of cell removal, resulted in approximately 30 000 cells
being released; based on haemocytometer measurements.

Fluorescent images of tissue, before and after collagenase
disaggregation, were obtained using calcein and propidium
iodide (PI) probes that stain live and apoptotic/necrotic cells
respectively (Fig. 4). The images confirm that both live and
dead cells are removed using this procedure and indicate that
the ‘new’ tissue surface generated has a greater proportion of
live to apoptotic/necrotic cells.

On-chip tissue probing

In order to characterize tissue response to transient exposure to
lysis buffer during prolonged maintenance on-chip, LDH and
Picogreen R© assays were carried out to monitor cell rupture. As
the effect of the lysis buffer is both transient and diffusion-
dependent a series of response peaks for both LDH and double
stranded DNA (Picogreen R©) are observed (Fig. 5).

This response is seen to diminish with repeated exposure to
lysis buffer, due to the tissue mass being reduced as peripheral
layers of cells are removed. In addition it can be seen that within
one hour of probing the tissue, LDH and double stranded DNA
levels return to background. Based on agar plate cultures no
evidence of bacterial contamination of either media or tissue
was found which may have contributed to a false positive
response.

Fig. 4 Fluorescent images of liver tissue after staining with calcein and
propidium iodide (PI). The green fluorescence is caused by retention
of cleaved fluorescent probe, calcein, in the cytosol of viable cells.
The red fluorescence is associated with PI intercalating with DNA
having entered the cells through damaged membranes. Tissue pre-
(a), (c) and post-disaggregation (b), (d) was probed with calcein and
PI respectively. Changes in the tissue edge shape are evident after
enzymatic treatment. Data shown are representative of four independent
experiments. Scanning resolution was 1024 ¥ 1024 using a 4¥ objective.

Fig. 5 LDH release from primary rat liver tissue in a microfluidic
device with transient exposure to lysis buffer. The tissue was exposed
to a continuous flow of lysis buffer for 30 min at 18.5, 21.5 and 24 h
of incubation (indicated by arrows on the figure). After each exposure,
WME was reapplied to the system for a further 2 h to allow tissue
recovery.

Conclusions

Perhaps one of the most innovative aspects of the proposed
methodology is its direct application to primary tissue samples
which offers a unique approach to performing experiments in a
pseudo in vivo environment. This contrasts with work in the field
of tissue engineering which endeavours to construct replicate
tissue micro-architectures.31–33 Accordingly the proposed tissue-
based microfluidic methodology is expected to have a wide
impact on biological and clinical research in fields such as cancer
prognosis and treatment, drug development and toxicity, as
well as enabling better fundamental research into tissue/cell
processes. In addition the direct use of tissue offers a more

This journal is © The Royal Society of Chemistry 2008 Lab Chip, 2008, 8, 1842–1846 | 1845
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clinically relevant experimental system which can potentially
replace less attractive, animal based models.
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a b s t r a c t

A microfluidic chip has been developed to enable the screening of chemicals for environmental toxic-
ity. The microfluidic approach offers several advantages over macro-scale systems for toxicity screening,
including low cost and flexibility in design. This design flexibility means the chips can be produced with
multiple channels or chambers which can be used to screen for different toxic compounds, or the same
toxicant at different concentrations. Saccharomyces cerevisiae containing fluorescent markers are ideal
candidates for the microfluidic screening system as fluorescence is emitted without the need of addi-
tional reagents. Microfluidic chips containing eight multi-parallel channels have been developed to retain
yeast within the chip and allow exposure of them to toxic compounds. The recombinant yeast used was
GreenScreenTM which expresses green fluorescent proteins when is exposed to genotoxins. After exposure
of the yeast to target compounds, the fluorescence emission was detected using an inverted microscope.

Qualitative and quantitative comparisons of the fluorescent emission were performed. Results indicated
that fluorescent intensity per area significantly increases upon exposure to methyl-methanesulfonate, a
well known genotoxic compound.

The microfluidic approach reported here is an excellent tool for cell-based screening and detection
of different toxicities. The device has the potential for use by industrial manufacturers to detect and
reduce the production and discharge of toxic compounds, as well as to characterise already polluted
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environments.

. Introduction

The requirement for toxicity testing of chemical substances
s of growing concern as most manufactured chemical prod-
cts are formulations or mixtures of substances and the toxicity
f each formulation could change depending on particle sizes,
olatility, etc. The new EU REACH (Registration, Evaluation, Autho-
isation and registration of CHemicals) regulations will mean much
ore testing is required, and unless rapid, meaningful screen-

ng tests can be developed, animal testing will inevitably be
sed. Both, in vivo and in vitro bioassays are currently used to
tudy toxic effects in whole organisms or at cell level, respec-

ively.

For toxicity testing, miniaturized systems have many advantages
ncluding small sample and reagent volumes and a biomimetic

icroenvironment within microfluidic systems ideal for microor-
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anism maintenance. Accordingly, the microfludic environment
ith its inherent high surface area-to-volume ratio, provides a tool

hat creates a more in vivo-like cellular microenvironment in vitro
han current methodology offers. The ability to control the spa-
ial distribution within a microfluidic device readily allows for the
solation of single cells or small groups of cells and their inter-
ctions with other stimuli can be monitored (Inoue et al., 2001).
et-etching channel geometries in glass and sealing with elas-

omeric siloxane polymers such as poly-dimethylsiloxane (PDMS)
o generate a PDMS–glass microfluidic chip offers an ideal method
or the prototyping of microfluidic chips as they have low fabrica-
ion costs and good chemical compatibility with most biological
uids. In addition, the integration of optical and/or electrochemi-
al detectors onto the microfluidic system forms a complete device
r “chip” with overall dimensions of a few centimetres (Watts and
aswell, 2005).

A number of elegant microfluidic cell based handling appli-

ations have been described for drug development, tissue
ngineering, molecular diagnostics and biosensors (Cho et al.,
003; MacDonald et al., 2003; Rhee et al., 2004; Zeringue et al.,
004). Microfluidic systems have also been used to analyse sin-
le cells, including bacterial, fungal, yeast and mammalian cells

http://www.sciencedirect.com/science/journal/09565663
http://www.elsevier.com/locate/bios
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ig. 1. Microchips with 8 multi-parallel channels. (a) Glass–glass device and (b) PDM
icrophotography of the channels (40× magnifications).

Tourovskaia et al., 2004; Werdich et al., 2004; Shackman et al.,
004).

Despite the advantages of using yeast (i.e. a robust eukaryotic
ell line) and their widespread use in biotechnology, few microsys-
ems have been developed using yeast. Incorporating cells within
microfluidic device would allow fast high throughput screening

o test different metabolic responses to toxicants/drugs on a cellu-
ar level (e.g. human cell lines) as well as an organismal level (e.g.
easts and bacteria).

Toxicity screening using yeast is widely used for different tar-
et compounds, such as genotoxic chemicals (Cahill et al., 2004)
ndocrine disrupting chemicals (EDCs, Michellini et al., 2005) or
xidative stress factors (de Souza and Geibel, 1999). Recombinant
udding yeast (Saccharomyces cerevisiae) containing fluorescent
arkers such as green or red fluorescent protein (GFP or RFP) are

deal candidates for microscreening, because they fluoresce with-
ut the addition of substrates. GreenScreenTM yeast cells have been
enetically modified to express the GFP whenever the cells repair
amaged DNA. This yeast is being used to simultaneously detect
enotoxicity and cytotoxicity (Cahill et al., 2004). Under genotoxic
onditions, the fluorescence emission increases, whilst cytotoxicity
s determined by a reduction in cell proliferation as compared to an
ntreated control. GreenScreenTM has been employed for screening
oth industrial products and for environmental samples (Gompel
t al., 2005; Knight et al., 2004).

In this paper we describe a simple microfluidic based toxicity
creening test, using glass and polydimethylsiloxane (PDMS)–glass
icrochips with viable recombinant yeast and fluorescence quan-

ification. The device was designed to have a low cost and to be used
y non-experts in small- to medium-sized enterprises to screen
hemicals that had not been previously evaluated for their toxicity
n aquatic environment.

. Materials and Methods

.1. Microchips

Glass (Fig. 1a) and PDMS–glass microchips (Fig. 1b) incorporat-

ng eight 20 mm long parallel channels (40 �m wide and 80 �m
eep) were fabricated by wet-etching the glass using a tech-
ique similar to a previously published method (McCreedy, 2001).
riefly, the design was drawn using autoCAD software and trans-

erred, by a commercial process (J.D. Phototools, Oldham, UK) to

t
G
M
a
f

ss chip on an inverted microscope. (c) Scheme showing the design of the chips. (d)

film photomask. Crown white glass (B270) plates coated with
hrome and photoresist (Telic Co., CA, USA) were contacted with
photomask design and exposed to UV radiation. The plates were

hen treated with photoresist developer followed by chrome etch
olution (Rohm-Haas Ltd., UK). The exposed glass channels were
tched at a rate of 4 �m per minute in a 1% hydrofluoric acid/5%
mmonium fluoride solution at 65 ◦C. After a thorough clean-
ng process, the etched plates were thermally bonded (595 ◦C for
h) to top-plates with drilled access holes. The fabrication of the
DMS–glass microchips used the same methodology as described
bove for the glass base plates. The upper layer of PDMS (5 mm)
as produced by polymerisation and was then hardened for 2 h

t 90 ◦C before being plasma bonded to the 2 mm glass base plate
Fig. 1b).

TFZL tubes (i.d. 1/16 in., Upchurch Scientific) were used to con-
ect the microfluidic channels to pumps and the recombinant yeast
as pumped inside the chambers using a 250/500 �l syringes (SGA)

onnected to the system with a two-way valve. The specific assay
ulture media for keeping the cells alive was then pumped into the
icrofluidic device at a very low flow rate of 0.1 �l min−1 using two

umps (KDS-200CE, kdScientific®).

.2. Recombinant Yeast and Reagents

The GreenScreenTM yeast strains, specialist resuscitation and
ssay media were supplied by Gentronix Ltd. (Manchester, UK). A
NA repair-competent strain of the brewer’s yeast S. cerevisiae was
mployed as the host strain for a reporter of DNA repair activity (the
test” strain). The reporter consisted of a fusion of the DNA damage-
nducible promoter from an endogenous DNA repair gene, RAD54,

ith a gene encoding a yeast enhanced green fluorescent protein
yEGFP). The yeast cells are genetically modified to express a yeast
nhanced GFP under the control of a copy of the promoter from
he native yeast gene RAD54. RAD54 is known to be specifically up
egulated by the cells in response to DNA damage. Thus, on expo-
ure to a genotoxic agent the cells become increasingly fluorescent
s GFP accumulates. A second “control” strain was used to correct
or cellular or test article auto-fluorescence. The control strain con-

ained a disabled reporter plasmid, and thus was unable to express
FP despite being identical to the test strain in every other way.
ethyl methanesulfonate (MMS #M4016) as a genotoxic standard

nd dimethyl sulfoxide (DMSO #D8418) as diluent were purchased
rom Sigma–Aldrich.
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Fig. 2. Recombinant yeast in the chips upon exposure to MMS in DMSO at final concentration of 2% DMSO. (a) Common light microscopy showing yeast in the channels. (b)
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00 �m).

.3. Bioassay and Fluorescence Quantification

Prior to the assay, yeast was grown in 20 ml resuscitation
edia for 72 h in an orbital incubator (200 rpm) at 30 ◦C in order

o reach a stationary phase with a concentration approximately
× 107 cells per ml determined by optical density (OD) in a

pectrophotometer at 620 nm. 100 �l aliquots of the yeast in the
edia were then pumped into each channel. The yeast settled

n the channels and then the culture media (with or without the
ddition of MMS) was passed over the cells at flow rate of approx-
mately 0.1 �l min−1 for 14–16 h at 25 ◦C. Six of the channels (see
ig. 2a) were filled with a test strain of yeast, then two of these
hannels received fresh culture medium containing a high concen-
ration of MMS (0.005%, T++), two received a low concentration
f MMS (0.0002%, T+), and two received the diluent (2% DMSO,
−). The last two channels contained the control strain with the
ow concentration of MMS (C+), thus totalling 8 parallel chan-
els.

After exposure of yeast to MMS, the flow of culture media was
topped and the yeast was excited at 485 nm and the fluores-
ence emission detected at 520 nm under an inverted microscope
Olympus IX71) using a 4× objective (UPLFLN). The induction
f GFP fluorescence was compared to the constitutive expres-
ion of GFP which proceeds in normal, healthy cells as they
aintain DNA integrity. Qualitative analyses were performed by

D-surface plotting (Cell DTM) of the fluorescence (each step = 10
ixels; Fig. 2c). Fluorescence emission was quantified as inten-
ity per area. Ten squares (5000 �m2) were analysed per channel

btaining mean intensity (20 squares per treatment). For each
quare, approximately 200 yeast cells were imaged. Comparisons
f the fluorescence intensity was performed by analyses of vari-
nce (ANOVA) followed by Dunnett’s T3 post hoc test, using SPSS
5.0 software. Genotoxicity was corroborated when significant dif-

s
d
c
u
3

e fluorescence emission. T++, Test strain with high concentration of MMS; T+, low
control strain with low concentration of MMS. Magnification: 40× (bar indicates

erences appeared (p < 0.05) between those cells exposed to MMS
nd those under 2% DMSO only.

. Results

.1. Retention of Yeast in the Microfluidic Device

The microfluidic chip used was designed to carry out bioas-
ays with yeast. Fig. 1 shows that it was possible to perform a
oxicity bioassay by placing the prototype microchip under an
nverted microscope, such that all the channels could be observed
t the same time at 40 times magnification. Both the glass and
DMS–glass microchips were able to retain the cells within the
icrochannels (Fig. 2a). Most of the cells were retained by grav-

ty with some attaching to the walls of the channels while others
oved slowly through the bottom of the channel. For retention

o be achieved, however, only a very low flow rate of the culture
edium (≤0.1 �l min−1) could be used due to the small size of the

east cells, otherwise they were swept out of the system at higher
ow rates. Fluorescence emission could be measured from both
lass and PDMS–glass microchips.

.2. Genotoxicity Bioassay

A genotoxicity bioassay was demonstrated in the microfluidic
hip (Figs. 2 and 3). Qualitative analysis of the fluorescence emis-
ion, using a 3D plot, clearly discriminates the basal fluorescence
mission compared to that developed in exposed cells (Fig. 2c). The

elected area for fluorescence intensity quantification could clearly
ifferentiate the cells exposed to MMS compared to the control
ells. The control strain C+, showed the lowest values in arbitrary
nits of 75.57 ± 15. The test strain exposed to DMSO alone (T−) was
05.18 ± 35, while T+ increased fluorescence to 377.39 ± 64 and T++
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Fig. 3. Fluorescence quantification (mean ± S.D.) of intensity per 5000 �m2. T++,
High concentration of MMS; T+, test strain with low concentration of MMS; T−, test
strain with diluent alone (culture media containing 2% DMSO); C+, control strain
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ith low concentration of MMS. Asterisk (*) denote significant level at p < 0.05 and
sterisks (**) denote significant level at p < 0.001 of exposed to MMS compared to
he control.

resented the largest signal of 730.97 ± 107. The intensity of the flu-
rescence was greatly different when yeasts were exposed to MMS
n high toxicant concentration (p < 0.001) and also at low toxicant
oncentration (p < 0.05, ANOVA, F(3,78) = 334.509) compared to the
ontrol (Fig. 3).

. Discussion

The microfluidic approach described here was found to be an
xcellent tool for cell-based screening to test and detect different
oxic effects. The three-dimensional plot of fluorescence gives a
apid qualitative indication of the effect of the toxic chemical on
he yeast which is useful for the non-expert toxicologist (Fig. 2c).

A key point to make regarding yeast is their robustness com-
ared to bacterial or mammalian cells. These yeast cells are an
ukaryote alternative and possess several advantages over bacte-
ia in microbial biosensor development: they tolerate a wide range
f pH, can survive temperatures from freezing to over 40 ◦C, and
ave a wide tolerance of osmolarity/ionic strength (Walmsley and
eenan, 2000).

The glass microchips are robust and can be sterilised, while the
DMS–glass chips have low cost of production, they are disposable
olymer chips which could be mass produced by using fabrication
echniques such as hot embossing. New designs are being devel-
ped with various channel architectures in order to improve yeast
etention within the channels. In parallel channels, yeast cells are
etained only if the system is running at very low flow rates, and

ompletely sealed to avoid undesired air bubbles.

Cytotoxicity analysis via the number of cells per treatment (i.e.
bsorbance measured at 620 nm) could not be carried out under
he microscope with the current system, although the microfluidic
ystems could be adapted for this toxicity assay. The plan would be
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o build a low cost, dedicated fluorescent and optic system for both
enotoxicity and cytotoxicity.

The data presented in our preliminary tests clearly show the
esponse upon exposure to toxins (Fig. 3) and highlights that such
creening devices based on microfluidics are very promising in
he development of rapid screening tests. Future work involves
ross-validation of the integrated microfluidic system with stan-
ard 96-well plate and fluorescent microplate reader methodology
or genotoxicity.

. Conclusions

A toxicity screening test using fluorescent yeasts was performed
n a microfluidic device. Miniaturization of toxicity screening meth-
ds is a very promising alternative in the future.

The further development of this low cost approach with simple
ptical detection would allow small- to medium-sized enterprises
o comply with the new EU REACH (Registration, Evaluation, Autho-
isation and registration of CHemicals) regulations by allowing
hem to decide whether they require further costly tests. It would
lso have additional applications for environmental monitoring.
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a b s t r a c t

The pressure-driven liquid flow through microtubes was studied in a range of very low Reynolds numbers (<0.15) by

monitoring the pressure change in situ. Cylindrical microtubes with diameters ranging from 50 �m to 500 �m were

examined and two types of tube material, namely PEEK polymer and fused silica were compared. A good linear

relation for the pressure drop versus flow rate was obtained. Apparent deviations between the measured slopes

with those calculated using conventional theory were attributed to uncertainties in the calculated values which

are dominated by the uncertainties in the microtube diameters. It was found that a period of stabilisation time

was required for reaching a steady flow after the syringe pump was switched on/off or to a different flow rate. The

stabilisation time was likely due to the compressibility of the fluid. Insignificant difference between PEEK polymer

and fused silica microtubes in terms of flow resistance was observed. The in-situ measurement of pressure drops
provides a convenient approach for monitoring fluid flow through microtubes and detecting dimensional changes

within microchannels in Lab-on-a-Chip and microreactor systems.

© 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Keywords: Microtube; Laminar flow; Pressure sensor; Liquid flow monitoring

on silicon chips was conducted by Tuckerman and Pease
. Introduction

he increasing interest in the development of miniatur-
zed micro chemical systems has led to the emergence of

icro chemical engineering, a new field of research embrac-
ng microfabrication, microfluidics, microreaction technology,
nd their applications in chemical syntheses and analyti-
al measurements (Viovy, 2007; Schütte et al., 2006; Ehrfeld
t al., 2000; Jensen, 2001; Zhang et al., 2006, 2008). Such
ystems have feature sizes in a range of 1–1000 �m, and reac-
ion channels are usually integrated with microsensors and

icroactuators. In these systems, understanding and control-
ing microfluidics is key to controlling reagent delivery, mixing,
eparation, and heat and mass transfer. In general, most
icrochemical systems studies to date have employed either

lectrokinetic mobilization or hydrodynamic (pressure driven)
umping of reagents. In previous studies we have demon-
trated the successful modelling and control of microfluidics

riven by electrokinetic (i.e. voltage driven electroosmosis and
lectrophoresis) forces for the control of the spatial and tem-

∗ Corresponding author. Tel.: +44 23 8059 8748; fax: +44 23 8059 3016.
E-mail address: XL.Zhang@soton.ac.uk (X. Zhang).
Received 24 October 2007; Accepted 28 June 2008

263-8762/$ – see front matter © 2008 The Institution of Chemical Engi
oi:10.1016/j.cherd.2008.06.007
poral evolution of chemical reactions (Fletcher et al., 2002).
However, to create some complex flow patterns desired by cer-
tain chemical processes in the microreactor channel network,
a pressure-driven flow is required.

There have been a number of studies on the microscale flow
behaviour in the laminar flow regime under pressure-driven
flow conditions. Most of the work has focused on comparing
flows for a range of fluids measured in microchannels of dif-
ferent shapes with predictions based on conventional theory
developed for macroscopic scale pipes (Tuckerman and Pease,
1981; Peiyi and Little, 1983; Wilding et al., 1994; Papautsky et
al., 1999, 2001; Mala and Li, 1999; Brutin and Tadrist, 2003;
Choi et al., 1991; Yu et al., 1995; Pfahler et al., 1990; Xu et
al., 2000; Weilin et al., 2000; Sharp et al., 2000, 2002; Koo and
Kleinstreuer, 2003; Jiang et al., 1995; Spence and Crouch, 1998).
The initial work on microfluidics for an electronic chip cooling
system with water through microchannels fabricated directly
(1981). Following that, a number of studies have been car-
ried out with fluid flows in microchannels or microtubes and

neers. Published by Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/02638762
mailto:XL.Zhang@soton.ac.uk
dx.doi.org/10.1016/j.cherd.2008.06.007
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Table 1 – The specifications of the microtubes used

Inner diameter (i.d.) (�m) Outer diameter (o.d.) (�m) Material Colour Upchurch part number

50 360 PEEK Natural 1570
75 360 PEEK Black 1573

100 360 PEEK Red 1571
150 360 PEEK Yellow 1572
250 1/16′′ PEEK Blue 1531B
500 1/16′′ PEEK Orange 1532

75 360 Fused silica Natural FS-175
some significant disagreements have been observed between
experiments and conventional theory used in macroscale flu-
idics. Peiyi and Little (1983) measured the friction factors for
gas flow in microchannels and found that the measured val-
ues were larger than that predicted by conventional theory
for macroscale pipes. They attributed these differences to the
large relative roughness of the microchannel surface. Similar
increases in friction factors have also been observed by other
researchers (Wilding et al., 1994; Papautsky et al., 1999; Mala
and Li, 1999; Brutin and Tadrist, 2003). Papautsky et al. (1999)
developed a numerical model based on micropolar fluid theory
which augmented the laws of classical continuum mechan-
ics by incorporating the effects of fluid molecules on the
continuum. Their model showed better predictions for water
flows in microchannels than the classical theory. A roughness-
viscosity model was proposed by Mala and Li (1999) to interpret
the experimental results. Brutin and Tadrist (2003) suggested
that a modification of local viscosity due to the fluid ionic cou-
pling with the surface might be accountable for the increase
in friction factors. In the meantime, other researchers have
found that the friction factors were lower than those predicted
by theory (Choi et al., 1991; Yu et al., 1995; Pfahler et al., 1990),
and most of the deviation was attributed to the uncertainty
of the microchannel dimensions. In addition to the effect
from the microscale tubes and errors from channel dimension
determinations, other factors including viscosity variations
due to temperature changes or surface roughness, entrance
effects, and possible geometric non-uniformities, e.g., a con-
traction and/or bend at the inlet to the microchannel, have
been taken into account for the explanation of the deviation
from theory (Papautsky et al., 2001; Xu et al., 2000; Weilin et
al., 2000; Sharp et al., 2002; Koo and Kleinstreuer, 2003). On
the other hand, some experiments have shown good agree-
ments with the conventional theory (Tuckerman and Pease,
1981; Jiang et al., 1995; Spence and Crouch, 1998; Sharp et al.,
2000).

The aim of the present study was to obtain further under-
standing of the behaviour of the liquid flow driven by a syringe
pump under microfluidic conditions. Microtubes with inner
diameters ranging from 50 �m to 500 �m were examined; a
range which is similar to that of microreactor channels. Three
main aspects of the liquid flow were examined. Firstly, the
relationships between pressure drops and flow rates were
examined for the different microtube diameters. Secondly,
we measured the times required to achieve steady flows and
pressure drops when the pump flow rate was altered. This
aspect is particularly relevant to attempting fast switching
of flows between different limbs of a microreactor channel
network, and controlling integrated on-chip valving. Thirdly,

we examined the viability and usefulness of continuous,
in-situ monitoring of the pressure drop across the channel
lengths.
2. Experimental

The experimental apparatus consisted of a syringe pump,
a micropressure sensor, a series of lengths of microtubes
with connectors, and a data acquisition system with PC. The
syringe pump (Model 200, kdScientific Inc., USA) was con-
trolled by the computer using a LabVIEWTM software program
via RS232 serial ports, and can deliver liquid at flow rates
ranging from 0.001 mL/h to 2.203 mL/min with a 1 mL luer-
lock gas-tight glass syringe (i.d. 4.61 mm, SGE, Australia). The
volumetric flow rate was set by the computer via the pump’s
control system and the average volumetric flow rate was con-
firmed by a weighing method.

A miniature threaded pressure sensor (Model EPX-V01-35B,
Entran® Sensors & Electronics, Fairfield, NJ, USA), powered by
a 10 VDC power supply, was used to measure the pressure in a
range of 0–35 bar above atmosphere. The output signal of the
sensor in millivolts (125 mV/FS) was collected by the computer
using a LabVIEWTM software program via the data acquisition
interface card (DAQ Card-6024E, National Instruments, USA).
The data acquisition frequency was set at 20 scans/s, which
were then averaged over every second. The pressure sensor
was connected to the microtube inlet with a P775 MicroTee
(Upchurch Scientific Inc., USA) connector where the outlet of
the microtube was open to atmosphere. The pressure sensor
was zeroed against atmosphere so the pressure measured was
equal to the pressure difference between the microtube inlet
and outlet, which is often referred to as the pressure drop.

The microtubes used in this study were supplied by
Upchurch Scientific Inc., USA, and made of two types of
material, namely PEEKTM (polyetheretherketone) polymer and
fused silica. All the microtube sections examined were cut
to a length of 25 cm for comparison. The specifications of
the microtubes used are summarized in Table 1. MicroTight
Unions (Upchurch P720) were used to directly connect two
pieces of microtube with o.d. 360 �m. For a connection
between o.d. 1/16′′ and o.d. 360 �m tubes a MicroTight Adapter
(Upchurch P770) was used.

Squalane was chosen as the test fluid in this study in view
of its biomedical applications (Allison, 1999; Hilgers et al., 1999;
Shahiwala and Amiji, 2008). Squalane is a linear hydrocarbon
precursor of cholesterol found in many tissues, notably the liv-
ers of sharks (Squalus) and other fishes (Allison, 1999). It has
been used in pharmaceuticals and as a skin lubricant, as an
ingredient in suppositories (Allison, 1999; Hilgers et al., 1999).
In recent years, its applications associated with lipophilic
drug delivery and vaccine studies have increasingly attracted
attention while studies have shown that (squalane) oil-in-
water emulsions can elicit both humoral and cellular immune

responses (Shahiwala and Amiji, 2008). Squalane is generally
considered as a Newtonian fluid (Chaomleffel et al., 2007), and
studies on its viscosity under different conditions have been
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Fig. 1 – Pressure versus time when the flow rate was raised
then lowered step by step for microtubes with different
diameters (Flow rate cycles: PEEK tubes with i.d. 250, i.d.
150 and i.d. 100, 0-2-4-8-16-8-4-2-0 �L/min; PEEK tube with
i.d. 75, 0-2-4-8-12-8-4-2-0 �L/min; PEEK tube with i.d. 50,
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Fig. 2 – Pressure drop as a function of flow rate for

facturer (Table 1, http, 2008b) the uncertainties in P/F were
estimated. Fig. 3 compares measured and calculated P/F val-
-2-4-6-8-6-4-3-0 �L/min).

eported in a number of publications (de Ruijter et al., 1998;
umagai et al., 2007; Ling and Shaw, 2008). The viscosity was

ound to be sensitive to temperature, e.g., 35.6 mPas at 20 ◦C
nd 23.01 mPas at 30 ◦C, and the relationship can be found in
eference (de Ruijter et al., 1998). In this study squalane was
upplied by Aldrich and used without further treatment (http,
008a). All measurements were carried out at 25.0 ◦C.

. Results and discussion

.1. Pressure drops at different flow rates

ressure drops across microtube sections with different diam-
ters were monitored as the flow rate was raised step by
tep and then decreased in steps to investigate the relation-
hip between pressure drops and flow rates. The results are
epicted in Fig. 1.

As the flow rate was raised, in general, the pressure drop
ncreased in response to a higher level and tended to be stable
fter a period of stabilisation time. When the flow rate was
educed step by step the pressure drop also decreased and
ended to reach a lower stable level again after a period of
ime. The pressure drop at the stable level was found to be
eproducible when the flow rate was cycled up and down. Fig. 2
hows the relation of the pressure drop at the stable level to
he flow rate for microtubes with different inner diameters in

flow rate range of 0–16 �L/min. It can be seen from Fig. 2
hat the pressure drop across a length of microtube increases
inearly with flow rate.

Pressure-driven fluidics on macroscale has been exten-
ively studied and the well-known Hagen–Poiseuille equation
or laminar flow in a circular pipe can be represented by

P

F
= 128�L

�D4
(1)

hen the Reynolds number, Re, is in the laminar flow range,
e = Du�

�
< 2000 (2)
microtubes with different diameters.

where P is the pressure drop across a length L of pipe with an
inner diameter D, F is the volumetric flow rate, u is the average
linear velocity, � is the fluid viscosity, and �, the fluid den-
sity. Under the experimental conditions in the present study,
the Reynolds number is below 1 indicating that the flow is
restrictively in the laminar flow range.

In agreement with Eq. (1), the measured pressure drop
increases linearly with flow rate (Fig. 2) for all tube diame-
ters tested. However, calculated values of the slopes of the
plots of Fig. 2 (i.e. P/F) using Eq. (1) and the microtube man-
ufacturers’ values for the inner diameters deviate from the
measured values of P/F. In previous studies similar deviations
have been observed (Wilding et al., 1994; Papautsky et al., 1999,
2001; Mala and Li, 1999; Brutin and Tadrist, 2003; Choi et al.,
1991; Yu et al., 1995; Pfahler et al., 1990; Xu et al., 2000; Weilin
et al., 2000; Sharp et al., 2002; Koo and Kleinstreuer, 2003) and a
range of models (mainly based on surface roughness and non-
uniform fluid viscosities very close to channel walls) have been
developed to account for the observations. Here we note that
(P/F)∝ D−4 and so a relatively small fractional uncertainty in D
leads to a large uncertainty in the calculation of P/F. Using
the tube inner diameter tolerances specified by the manu-
Fig. 3 – Comparison of calculated and measured log[P/F] for
microtubes with different inner diameters.
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Fig. 5 – Pressure versus time when the flow rate was raised
and then lowered step by step for the microtube with inner
diameters of 50 �m and 150 �m (Flow rate cycles: i.d. 50 �m
tube, 0-2-4-6-8-6-4-3-0; i.d. 150 �m tube,
0-2-4-8-16-8-4-2-0 �L/min). The gray dash lines show the
measured data and the black solid curves are the best-fits
22 chemical engineering researc

ues with the estimated uncertainties and it can be seen that
the apparent discrepancies are all within the estimated uncer-
tainties. However, possible contributions to the deviation due
to departures from non-circularity of the microtube cannot be
excluded even it is unlikely to determine that along the entire
tube length. Although the uncertainties are relatively large,
particularly for the smaller tube diameters, there is no signif-
icant evidence for special microscale fluidic behaviour in this
case.

3.2. Effects of changing pumping conditions

It has been seen from Fig. 1 that a stabilisation period prior to
reaching a steady state flow always existed after the pump was
switched on/off or to a different flow rate. This phenomenon
was also observed by other researchers and generally believed
to be the time for reaching a pressure equilibration in the
whole flow system including the syringe used (Weilin et al.,
2000; Spence and Crouch, 1998). Clearly, this introductory
time is problematic for control and change of flow condi-
tions in an instantaneous way, where special flow patterns
such as slugs or pulses of reagents are usually required in
microreactor systems or integrated on-chip valving is being
used.

Fig. 4 shows the pressure changes at different flow rates
when the pump was switched on for 5 min and then off where
a PEEK tube with an inner diameter of 75 �m was used. It
can be seen from the figure that the variation of the stabilisa-
tion time became more significant as the pump was switched
on/off with different flow rate settings and, consequently, the
pressure in the flow system was altered. It is found that the
relation of the introductory time � to the pressure can be rep-
resented by

P = P0 + �P

[
1 − Exp

(
− t − t0

�

)]
(3)

where P0 is the pressure at time t0 when the pumping condi-

tions are altered, i.e., on/off or changing flow rates. �P is the
pressure difference between two adjacent stable pressure lev-
els. By fitting the measured pressure profiles to this model,

Fig. 4 – Pressure versus time at different flow rates for PEEK
tubing with an inner diameter of 75 �m when the pump
was switched on/off. The gray dash lines show the
measured data and the black solid curves are the best-fits
to the model described in the text.
to the model.

the introductory time � for different flow rate was obtained.
The best-fit results are shown in Fig. 4 as the solid curves.
This model was also applied to the experimental data shown
in Fig. 1 where the pressure corresponding to the flow rate
was cycled up and down. The solid curves in Fig. 5 show two
examples of the best-fit results for the microtubes with inner
diameters of 50 �m and 150 �m.

In general, the volume of most fluids varies in response to
the pressure change at a given temperature and this thermo-
physical property of fluids is referred to as its compressibility
Ccomp. The effect of compressibility on the flow stability is
believed in most cases to be negligible in macroscale liquid
flow systems where a relatively high volumetric flow rate
is applied. In microscale flow systems, however, the volume
variation due to pressure change could result in significant
variation in the instant flow rate for the liquid flow. Thus, the
stabilisation time for reaching a steady state flow is likely to
be the relaxation time for building a pressure equilibration in
the whole liquid flow system, and the relaxation time � can be
represented by

� = �V

Fmean
= �PCcompV

Fmean
(4)

where �V is the volumetric variation due to a pressure change
�P. V is the volume of the whole liquid flow system and Fmean,
the mean volumetric flow rate during the pressure change.
Although the volume of the whole liquid system is varying
during the liquid flow it is possible to determine the sys-
tem volume in a short period of time with a known flow
rate setting. Based on the results shown in Figs. 4 and 5 for
the relaxation time, the best fitting of the liquid compress-
ibility could be obtained according to Eq. (4). Fig. 6 shows
the relation of the relaxation time � versus �PV/Fmean. The
best-fit value for the liquid compressibility Ccomp is found
to be 2.3135 × 10−4 bar−1 under the experimental conditions.
Although the deviation is relatively big, this result is in rough
agreement with the compressibility of other hydrocarbons
that is typically on the order of 10−4 to 10−5 bar−1 at a tem-

perature of 25 ◦C (Lide, 2003).
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Fig. 6 – Relaxation time � versus (�PV/Fmean).

.3. Comparison of PEEK polymer and fused silica
icrotubes

he effect of material properties in particular the surface
oughness of tubes on pressure drops was found to be impor-
ant under turbulent flow conditions but insignificant under
aminar flow conditions in macroscale tubes. In the laminar
ow regime on microscale, the assumption that the effect

rom the tube material is negligible in terms of flow resis-
ance is still under discussion in the literature (Peiyi and Little,
983; Wilding et al., 1994; Papautsky et al., 1999; Mala and Li,
999; Brutin and Tadrist, 2003; Jiang et al., 1995; Spence and
rouch, 1998; Sharp et al., 2000). In this present study, two

ypes of microtubes, which are commonly used in microre-
ctor research laboratories, made of either PEEK polymer or
used silica were compared for different flow rates where the
wo microtubes were cut to a same length. The results are
llustrated in Fig. 7. It can be seen from the figure that insignif-
cant difference between the two types of material in terms of
ressure drop was observed.

This insignificance was also observed by Brutin and Tadrist
2003), and they suggested that with small Reynolds number
f less than 100 the effect from the surface roughness on the
ressure drop was negligible although this effect was found
otable on the transition from laminar to turbulent regime.
n the other hand, Mala and Li (1999) observed the depen-

ence of the flow behaviour on the material of the microtubes,
here fused silica microtubes required higher pressure gra-

ig. 7 – Comparison of pressure drops for a same length of
icrotubes made of PEEK polymer and fused silica.
design 8 7 ( 2 0 0 9 ) 19–24 23

dients compared to the stainless steel microtubes under the
same conditions. The effect of the roughness on the surface
of microchannels was also believed, by Peiyi and Little (1983)
and Papautsky et al. (1999), to be the cause of deviations of the
pressure drop from the conventional theory prediction.

3.4. Monitoring of liquid flow through a series of
microtubes

As noted above, the measured pressure drop for liquid flow
is very sensitive to the tube diameter and this can give rise to
apparent discrepancies between microfluidics and macroscale
theory. However, if there are no complications due to rough
surfaces, measuring the pressure drop can provide a sensitive
and non-destructive method of estimating the dimensions of
channel sections. During the filling of an empty microtube, the
measured pressure drop increases in proportion to the filled
length and the pressure drop per unit of filled length depends
on the channel cross section dimensions in the section of
interest.

To investigate this aspect, we have monitored the pressure
drop as a function of time as squalane is pumped at a con-
stant volumetric flow rate though a series of three connected
tube sections of different dimensions. The three sections were
26.5 cm of 250 �m i.d., 11 cm of 500 �m i.d. and 44 cm of 150 �m
i.d. The time needed for the liquid to fill each section is given
by

t = L

u
= L�D2

4F
(5)

For a fixed flow rate of 15 �L/min, the tube section filling times
are 52 s, 86 s and 31 s respectively and 26 s, 45 s and 15.5 s for
a flow rate of 30 �L/min. Fig. 8 shows the pressure drop as
a function of time along the three pieces of microtubes with
inner diameters of 250 �m, 500 �m and 150 �m, respectively. It
can be seen that the plot clearly indicates the changes in tube
dimensions experienced by the moving liquid front. It is also
seen that the plot scales as expected with the set volumetric
flow rate. Using Eqs. (1), (3) and (4), the curve of pressure versus
time was calculated and is compared with the measured data
in Fig. 8. The agreement is good indicating that the relaxation
time considerations derived initially for changing pump flow
rates also apply to considerations of time dependent changes

in hydrodynamic resistance to flow. Thus, the measurement of
pressure drop along a microtube could be used for in-situ mon-
itoring of liquid passing through the microtube. Moreover, if

Fig. 8 – Pressure drop versus time for a series of three
pieces of tubes with different diameters.
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the sensitivity and accuracy of the sensor and data acquisition
system are high enough, a change in the microchannel dimen-
sion could be detected with a sudden pressure variation.

4. Conclusions

The liquid flow driven by a syringe pump within microtubes
in a range of very low Reynolds numbers (< 0.15) was inves-
tigated by monitoring the pressure change in situ. Cylindrical
microtubes with diameters ranging from 50 �m to 500 �m were
examined and two types of tube material, namely PEEK poly-
mer and fused silica were compared. A good linear relation
for the pressure drop versus flow rate was obtained. Apparent
deviations between the measured slopes with those calculated
using conventional theory were attributed to uncertainties in
the calculated values which are dominated by the uncertain-
ties in the microtube diameters. It was found that a period of
stabilisation was required for reaching a steady flow after the
syringe pump was switched on/off or to a different flow rate.
The stabilisation time was likely due to the compressibility
of the fluid. These relatively long stabilisation times (tens of
seconds, contrasting sharply with ms flow switching times by
electrokinetic pumping) have implications for pressure-driven
flow control in Lab-on-a-chip microreactor applications where
interconnecting tubing or on-chip pumping/valving is used. By
comparing the two types of microtubes made of either PEEK
polymer or fused silica, insignificant difference was found
between the two types of material in terms of flow resis-
tance. This approach of in-situ monitoring of pressure drop in
microchannel liquid flow systems provides a simple and effec-
tive means of monitoring the liquid flow and can be used as a
non-destructive method to characterize the local dimensions
of the channel sections. Conversely, the method would also
enable the detection of viscosity changes in specific channel
sections. In addition to miniaturizing viscosity measurements
of pure liquids, viscosity changes would enable in-situ detec-
tion of diverse processes such as protein denaturation and
emulsion instability.
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In addition to their high affinity for inorganic cations, crown ethers have been shown to efficiently se-
quester ammonium ions, forming a stable adduct via hydrogen bonding. Using this principle, several
authors have reported the use of crown ethers as protecting groups for amines however to date, their
widespread use has been somewhat precluded by the difficulties associated with removal of the crown
ether from the resulting reaction mixture. In order to address this problem, we report the preparation of
an immobilized 18-crown-6 ether derivative and its incorporation into a flow reactor, demonstrating the
ability to use and recycle the reagent for the chemoselective O-acylation and alkylation of bifunctional
compounds such as 4-(2-aminoethyl)phenol and 4-nitrophenol.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

When conducting the synthesis of polyfunctionalized molecules
it is often necessary to render one or more of the functionalities
within the molecule temporarily inert in order to allow the selec-
tive reaction of another group. This process is achieved by
appending a blocking group, which is stable to the reaction con-
ditions under investigation whilst being readily removed; such
a moiety is termed as a protecting or protective group.1 While the
use of protecting groups has enabled access to a vast library of
complex molecules over the years, by removing functional group
incompatibilities, their use can be disadvantageous as the in-
troduction and removal of such groups generates additional syn-
thetic steps. This can lead to increased costs and contribute to
reductions in overall yield, along with the need to perform complex
purifications in order to remove any protecting group residues from
the final material. Furthermore, the deprotection strategy must be
carefully selected in order to ensure that the product is obtained in
the desired form i.e. as the free functionality or as a salt.
N
R +

H

H
H

O
O
O

OO

Cl

O
O

O

OO
K+

Cl
1.1. The use of crown ethers in organic synthesis

In addition to the propensity of crown ethers to form complexes
with metal ions (Liþ, Naþ, Kþ, Rbþ, Csþ) and promote solubility in
non-polar media, Pederson2 also reported their ability to form
complexes with ammonium ions (R–NH3

þ). Further work by
All rights reserved.
Bushmann and Mutihac3 compared the degree of ammonium ion
complexation with various functionalized and un-functionalized
crown ethers, concluding that 18-crown-6 ethers afforded superior
complexation cf. to smaller crown ethers. As depicted in Figure 1,
unlike metal ions, the ammonium ion is held above the cavity of the
crown ether in a tetrahedral configuration via hydrogen bonding4

with stabilization achieved due to distribution of the positive
charge on the ammonium ion over the hydrogen atoms. The geo-
metry of the complexed ammonium ion also leaves the remainder
of the molecule unhindered and available to take part in sub-
sequent reactions as demonstrated by Kunishima et al.4b

In the early 1990s, Mascagni and Hyde5 exploited this phe-
nomena for the synthesis of peptides and oligomers, proposing that
the non-covalent nature of the interaction between the crown
ether and the ammonium ion would provide a mild protection
strategy for amines. Employing dibenzo-18-crown-6 ether (DB-18-
c-6) and an array of alanine salts (HCl, TFA and p-TSA), the effect of
solvent polarity on a coupling reaction was evaluated. During this
investigation it was observed that tosylate salts formed the most
stable complexes (p-TSA>TFA>HCl) and that complex stability in-
creased with decreasing solvent polarity; an observation that was
O
O

Figure 1. Schematic illustrating the modes of complexation observed for ammonium
ions versus metal ions with 18-c-6 ether.
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Scheme 2. Schematic of the covalent protecting group strategy employed to syn-
thezise tyramine acetate TFA salt 11.
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attributed to a reduction in competition between solvation of the
cation and coordination by the crown ether.5 Consequently, sub-
sequent coupling reactions were performed in DCM and found to
afford the desired complexed tripeptide in 80% yield, with the re-
mainder comprising of mixed oligomers; the formation of which
was attributed to partial decomplexation of the peptide during the
reaction.6 The authors subsequently reported the decomplexation
of another tripeptide using aq KCl, exploiting the crown ethers af-
finity for metal ions to force out the ammonium ion and leaving the
crown ether complexed with potassium, as depicted in Figure 1.
Although this approach demonstrated the key components of
a protecting group strategy, namely the ability to protect an amino
acid, perform a coupling reaction and deprotect the resulting
peptide, the use of stoichiometric quantities of crown ether proved
disadvantageous due to difficulties associated with its removal
from the reaction product. As such, isolation of the peptide, re-
generation of the crown ether cavity and subsequent re-use of the
crown ether were not demonstrated by the authors.

Based on the preliminary observations made by Mascagni
et al.5,6 it was proposed that the preparation of an immobilized 18-
crown-6 ether derivative would facilitate the process of amine
deprotection, along with product isolation and subsequent crown
ether regeneration. With this in mind, our aim was to develop
a non-covalent protecting group strategy using an immobilized 18-
crown-6 ether derivative and combine it with continuous flow
methodology, developed within our group, to demonstrate efficient
O-acetylation/alkylation of substituted 1� amines.
2. Results and discussion

Owing to the highly basic and nucleophilic nature of an amine
group, protection is essential in reactions such as acylations and
alkylations. This is illustrated for the bifunctional compound tyra-
mine 1, which contains both aromatic alcohol and aliphatic amine
functionalities. As depicted in Scheme 1, failure to protect the
amine group and direct the reaction to the phenolic group upon
treatment of tyramine 1 with NaH 2 (1.0 equiv) and acetyl chloride
3 (1.2 equiv) results in a complex mixture containing the desired
tyramine acetate (4-(2-aminoethyl)-phenyl acetate) 4 (23%), along
with tyramine N-acetate (N-[2-(4-hydroxyphenyl)ethyl]-acet-
amide) (12%) 5, tyramine diacetate (acetic acid 4-(2-acetylami-
noethyl)-phenyl ester) (20%) 6 and residual starting material 1
(45%).
1

OH

O

O

H2N

4

OH

H2N

H
N

H
N

O-Acylation

Cl

O

3
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2

22
O

2
O

NaH  2

Scheme 1. Schematic illustrating the potential reaction products obtained when
acetylating tyramine 1.
In order to benchmark the developed non-covalent protecting
group strategy against existing covalent approaches, the acety-
lation of tyramine 1 was subsequently performed using the acid
labile tert-butoxycarbonyl (Boc) protecting group. As depicted in
Scheme 2, the reaction sequence firstly involved the protection of
tyramine 1, using di-tert-butyl dicarbonate 7 in the presence of
NaHCO3 8, which afforded the intermediate Boc-tyramine 9 as
a white solid (93% yield). Subsequent acylation, with acetyl
chloride 3 (1.2 equiv) in the presence of NaH 2 (1.0 equiv) affor-
ded the desired Boc-tyramine acetate 10 as a pale yellow gum
(69% yield).
Although the use of a protecting group afforded a chemo-
selective route to the O-acetylation of tyramine 4, in addition to
increasing the number of reaction steps employed in the synthetic
pathway, removal of the protecting group proved problematic,
affording a mixture of tyramine acetate TFA salt 11 (69%), tyramine
TFA salt 12 (16%) and Boc-tyramine acetate 10 (15%) as determined
by HPLC. In an analogous manner to the direct acetylation of ty-
ramine 1 (Scheme 1), the use of a protecting group afforded
a complex reaction mixture, largely due to problems associated
with the efficient removal of the Boc-protecting group. Further-
more, in order to isolate the desired tyramine acetate 4 it was
necessary to free-base the TFA salt 11 thus incurring additional
reaction steps.
2.1. Evaluation of immobilized crown ethers as non-covalent
protecting groups

In order to evaluate the use of an immobilized crown ether as
a protecting group, preliminary investigations were conducted
using the commercially available di-tert-butylcyclohexano-18-
crown-6 ether on an inert chromatographic support
(0.37 mmol g�1) (Eichrom Technologies, France). To assess the po-
tential of di-tert-butylcyclohexano 18-c-6 as a non-covalent pro-
tecting group, the ability of the material to complex tyramine HCl
13 and subsequently decomplex tyramine 1 was firstly in-
vestigated. This was achieved by stirring the crown ether with ty-
ramine HCl 13 in MeOH, prior to filtration, under suction, to remove
any uncomplexed tyramine HCl 13. To confirm sequestration had
occurred, the immobilized complex was treated with methanolic
KCl 14, to induce decomplexation, and the resulting filtrate ana-
lyzed by HPLC. Initial results were pleasing and detection of tyr-
amine 1 confirmed the ability of the material to complex tyramine
HCl 13 and release tyramine 1 from the crown ether cavity. To
demonstrate re-use of the supported crown ether, the cavity was
regenerated and the above procedure repeated; unfortunately,
upon analysis of the filtrate no tyramine 1 was detected. Employing
a fresh portion of the solid-supported crown ether again confirmed
sequestration of tyramine HCl 13 and release of the amine 1. It was
therefore postulated that during the regeneration step the crown
ether, which was only adsorbed onto the solid support, leached
from the support and therefore could not be efficiently recycled or
employed in a continuous system.
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2.1.1. Preparation of an immobilized crown ether
To address if desorption of the crown ether was the problem, we

evaluated the covalent immobilization of three 18-crown-6 ether
derivatives and subsequently evaluated the materials towards the
sequestration of ammonium salts under continuous flow. With this
in mind, several immobilization techniques were employed, with
starting materials including diamino-dibenzo-18-crown-6 ether
and carboxybenzo-18-crown-6 ether to afford crown ethers 15 and
16, respectively, as depicted in Figure 2.

Unfortunately, due to the increased ring strain observed as
a result of immobilization, neither material was able to complex
ammonium ions, a process, which is reliant on hydrogen bonding
(Fig. 1), however, both materials successfully sequestered potas-
sium permanganate (0.12 mmol g�1 and 0.98 mmol g�1, re-
spectively) confirming the presence of active crown ether moieties.

Owing to the reliance of ammonium ion complexation on hy-
drogen bonding (Fig. 1), it is imperative for the immobilized crown
ether to be free of strain in order to form a stable complex. With this
in mind, a further attempt was made to prepare a covalently bound
18-crown-6 ether with no ring strain, this was achieved by
employing aminomethyl-18-crown-6 ether (AM-18-c-6) 17 as
a precursor. As Scheme 3 illustrates, treatment of carbxoypolys-
tyrene 18 with thionyl chloride 19 afforded the immobilized acid
chloride 20, to which was added Et3N 21 followed by AM-18-c-6 17
to afford immobilized AM-18-c-6 22.
H
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Toluene
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O
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5
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Scheme 3. Synthetic protocol employed for the covalent immobilization of AM-18-c-6
17 to carboxypolystyrene 18.

Table 1
Elemental analyses illustrating the efficient complexation and decomplexation
achieved using immobilized crown ether 22

Polymeric material N (%) N (mmol g�1)

Blank 18 0.00 0.00
Immobilized AM-18-c-6 22 0.52 0.37
Complexed 0.97 0.69
Decomplexed 0.52 0.37

Omnifit
Connector

Borosilicate Glass Capillary
(3 mm i.d. x 50 mm length)

PTFE Tubing
(800 µm i.d.)

Figure 3. Schematic of the continuous flow reactor used herein for the evaluation of
an immobilized crown ether 22.
To evaluate the materials ability to sequester ammonium
ions, the crown ether 22 was stirred at room temperature in
a methanolic solution of tyramine HCl 13, filtered under suction
and washed with MeOH prior to treatment with methanolic KCl
14 to release any complexed tyramine HCl 13 as the free amine
1. Analysis of the filtrate by HPLC confirmed the presence of
tyramine 1 and elemental analysis of the crown ether 22,
coupled with sequestration of KMnO4 followed by ICP-MS
analysis, confirmed the material to have a loading of
0.37 mmol g�1.
Having identified the presence of active crown ether cavities on
the solid-support 22, the ability to recycle the material was sub-
sequently investigated, with removal of the potassium cation ach-
ieved using methanolic acetic acid 23. Once successfully
regenerated, the cycle was repeated a further four times and unlike
the commercially available di-tert-butylcyclohexano-18-c-6, all
subsequent cycles yielded tyramine 1, with an 11.4% RSD (n¼5)
(Scheme 4).
Although the material was able to be recycled, illustrating the
robustness required for continuous processing, the irreproducible
quantities of tyramine 1 recovered were still undesirable. In order
to identify the origin of any irreproducibility, an aliquot of immo-
bilized crown ether was taken at each stage of the process and
subjected to elemental analysis. As Table 1 illustrates, the decom-
plexation step was found to be 100% efficient and as such, the
gradual decrease in the proportion of tyramine 1 recovered was
attributed to loss of immobilized crown ether 22 upon filtration
and washing.
2.1.2. Continuous flow evaluation of crown ether
In order to address the irreproducibility associated with

the batch process and develop an efficient, re-useable system for
the non-covalent protection of amines, the incorporation of the
immobilized crown ether into a continuous flow reactor was
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Figure 4. SILICA AM-18-c-6 24 prepared via the acid chloride.

Table 2
Evaluation of complex stability to a series of common organic solvents (n¼5)

Solvent Stability of complex (%)

Tyramine HCl 13 Tyramine TFA 12 Tyramine p-TSA 25

Acetone 100 100 100
Methanol 100 100 100
Ethanol 100 100 100
Dichloromethane 100 100 100
Diethyl ether 100 100 100
Hexane 100 100 100
Toluene 100 100 100
Water 100 100 100
Acetonitrile 100 100 100
Tetrahydrofuran 100 100 100
DMF 18 34 44
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investigated. It was proposed that such an approach would enable
material 22 to be recycled with ease as solutions of the various
reactants would be pumped through crown ether 22 in order to
conduct the desired reaction step; thus removing the main source
of error observed thus far, loss of material upon filtration.

As Figure 3 illustrates, the flow reactor comprised of a borosili-
cate glass capillary (50 mm (length)�3 mm (i.d.)) packed with
w0.15 g of immobilized crown ether 22. Reactant solutions were
passed through the reactor using a syringe pump and reaction
products collected in a sample vial prior to off-line analysis by
HPLC.7 To increase the reproducibility of the technique further,
reactants were introduced into the system via a Rheodyne valve
(200 mL sample loop).

Employing a solvent stream of MeOH, tyramine HCl 13 (0.3 M,
6.0�10�2 mmol) was introduced into the flow reactor, containing
immobilized AM-18-c-6 22 (0.15 g, 5.6�10�2 mmol) at a flow rate
of 100 mL min�1. Decomplexation was again achieved using KCl 14
in MeOH (0.3 M, 6.0�10�2 mmol) and the column purged with 5%
acetic acid 23 in MeOH to regenerate the crown ether 22. Using this
approach, 0.35 mmol g�1 of tyramine 1 was released with an RSD of
4.3% (n¼10), demonstrating a dramatic increase in reproducibility
cf. the 11.4% obtained in batch.

While the use of MeOH was found to be ideal for complex for-
mation, decomplexation and cavity regeneration, the solvent is not
suitable for the reactions under investigation herein. As such, a se-
ries of alternative solvents were investigated, these included DMF,
THF, DCM and MeCN. Unfortunately, when this series of common
organic solvents were employed, the immobilized AM-18-c-6 22
was observed to swell, leading to blockages within the reactor and
inconsistencies in the volume of solution passing through the
packed bed at any one time. This observation was attributed to the
low degree of crosslinking within the carboxypolystyrene 18 (1%
DVB) employed as a solid support and was confirmed by packing
the reactor with polystyrene crosslinked with 2% DVB whereby no
swelling was observed. Regrettably, carboxypolystyrene 18 was not
available with a higher degree of crosslinking and as such, 3-car-
boxypropyl functionalized silica gel was evaluated as an alternative,
non-swelling support material.

2.1.3. Preparation and evaluation of SILICA AM-18-c-6
Having successfully immobilized AM-18-c-6 17 onto carboxy-

polystyrene 18 via the acid chloride, an analogous approach was
employed for the derivatization of 3-carboxypropyl functionalized
silica gel, as depicted in Figure 4, affording a loading of
Reactant/Solvent

Scheme 5. Set-up used to evaluate the stability of tyramine HCl 13,
0.16 mmol g�1. Prior to performing a reaction, material’s 24 stability
to DMF, THF, DCM and MeCN was evaluated and unlike immobi-
lized crown ether 22, all solvents were able to be pumped through
the reactor at 100 mL min�1 with no sign of swelling or restricted
flow over a period of 8 h. Having demonstrated the materials sta-
bility, its ability to complex tyramine HCl 13 and release tyramine 1
was evaluated. Employing a solvent stream of MeOH, tyramine HCl
13 (0.12 M, 2.4�10�2 mmol) was introduced into the flow reactor,
containing SILICA AM-18-c-6 24 (0.15 g, 2.4�10�2 mmol) at a flow
rate of 100 mL min�1. Decomplexation was again achieved using KCl
14 in MeOH (0.12 M, 2.4�10�2 mmol) and the column washed with
5% acetic acid 23 in MeOH to regenerate the crown ether 24. Using
this approach, a loading of 0.16 mmol g�1 was obtained, which was
in agreement with ICP-MS analysis performed on the respective
potassium complex.

2.1.4. Evaluation of complex stability
Once complexed, it was important to determine how stable the

ammonium salt was to various solvents and reactants that may be
employed in the derivatization of the complexed material. To en-
sure the investigation provided general conclusions for this non-
covalent protecting group strategy, three ammonium salts were
investigated (tyramine HCl 13, then tyramine TFA 12 and finally
tyramine p-TSA 25). As before, complexation was achieved by
injecting a 200 mL plug of the tyramine salt under investigation
(0.12 M, 2.4�10�2 mmol) into a continuous MeOH stream
(100 mL min�1) (Scheme 5), which ensured complete washing of the
resin prior to evaluating the stability of the complex under the
selected reaction condition, followed by decomplexation with KCl
14 in MeOH (0.12 M, 2.4�10�2 mmol) and analysis by HPLC (Tables
2–5).

2.1.4.1. Solvent stability. To determine the stability of the ammo-
nium salts of tyramines 12, 13 and 25, each solvent illustrated in
Table 2 was pumped through the reactor at 100 mL min�1 for 5 min
prior to analysis of the reactor effluent by HPLC; all solvents were
evaluated five times and the average resulted is presented. With the
NHO

3

O
O

O

O

O

+

O

OH

H3N

X

Tyramine 1

X = Cl, CO2CF3, CH3C6H5SO3

TFA 12 and p-TSA 25 salts to an array of reactants and solvents.



Table 3
Summary of the stability of tyramine HCl 13, TFA 12 and p-TSA 25 to a variety of
common amines in MeOH (n¼5)

Amine pKb Stability of complex (%)

13 12 25

3� Et3N 21 11.06 100 100 100
3� DIEA 10.50 48 54 69
3� N-Methylpiperidine 10.08 51 53 68
3� TMEDA 26 6.10 0 0 0
3� Lutidine 6.75 100 100 100

2� Diethylamine 11.09 27 48 89
2� Piperazine 9.82 37 47 57
2� Piperidine 11.22 40 54 81
2� Diisopropylamine 11.05 57 61 73
2� Dimethylamine 10.73 50 58 69

1� Aniline 4.63 27 58 78
1� Benzylamine 9.33 50 64 73
1� 2-Phenylethylamine 9.58 39 61 53
1� 3-Phenylpropylamine 9.68 49 57 63

Table 4
Stability of tyramine HCl 13 complexed SILICA AM-18-c-6 24 when exposed to
a plethora of common reactants

Substrate type Compound Stability of complex (%)

Cation/anion KOH 0
Cation/anion NaOH 0
Cation/anion LiOH 0

Cation/anion KCl 0
Cation/anion NaCl 0
Cation/anion LiCl 0

Cation/anion K2CO3 46
Cation/anion Na2CO3 0
Cation/anion Li2CO3 50

Reactant Acetyl chloride 3 100
Reactant Acetic anhydride 26 100
Reactant DMAP 47
Reactant DCC 45
Reactant EDCI 50
Reactant Methyl iodide 27 0

Acid TFA 38 100
Acid HCl 100
Acid Acetic acid 23 100
Acid Sulfuric acid 100

Table 5
Summary of the ammonium salts evaluated under continuous flow and their ability
to form complexes with SILICA AM-18-c-6 24

Effect Amine Complexation (%)

Cation Tyramine p-TSA 25 100
Cation Tyramine TFA 12 100
Cation Tyramine HCl 13 100
No cation Tyramine 1 0

Free amine Aniline 0
Free amine Benzylamine 0
Free amine 2-Phenylethylamine 0
Free amine 3-Phenylpropylamine 0

Chain length Aniline HCl 100
Chain length Benzylamine HCl 100
Chain length Phenylethylamine HCl 100
Chain length Phenylpropylamine HCl 100
Chain length 4-Aminophenol HCl 35 100

Steric L-b-Alanine benzyl
ester HCl 29

0

Steric (S)-(�)-2-Amino-3-phenyl-1-propanol HCl 30 0

Functionality Benzamide HCl 31 0

G.P. Wild et al. / Tetrahedron 65 (2009) 1618–16291622
exception of DMF, the complexes were found to be stable to all
solvents investigated and interestingly, the proportion of tyramine
1 displaced by DMF ranged from 66 to 82% depending on the am-
monium salt under investigation. The results from this study herein
suggest therefore that the basic nature of DMF induces decom-
plexation, thus removing the protecting capacity of the crown ether
and potentially resulting in undesirable reaction of the free amine
functionality. Mascagni and Hyde5a also observed this trend, p-
TSA>TFA>HCl, suggesting that stability increased as a function of
cation conjugation.

2.1.4.2. Complex stability in the presence of amines. In addition to
the use of organic solvents, many reactions that require the pro-
tection of amine functionalities involve the use of compounds
containing other amine moieties; as such it was important to
identify, which of those reagents were compatible with the pro-
tecting group strategy under investigation. Using the aforemen-
tioned complexation strategy, the effect of an array of amines
(0.12 M, 2.4�10�2 mmol) on the complex stability was in-
vestigated, with the data presented in Table 3 highlighting an
obvious trend of increased complex stability towards 3� amines;
with 1� amines causing the greater degree of destabilization. This
general trend of complex stability, 1�<2�<3�, has some obvious
exceptions such as lutidine and Et3N 21, which have no destabi-
lizing effect, an observation that is attributed to their steric bulk.
As a result, however, these bases may be useful as reagents in
future reactions, such as in the deprotonation of the phenolic
moiety in the model reaction.

Interestingly, N,N,N0,N0-tetramethylethylenediamine 26 (TMEDA)
was found to afford quantitative decomplexation for all three salts
12, 13 and 25; an observation that compares favourably with re-
ports by Hyde et al.5b who found diisopropylethylamine (DIEA)
induced decomplexation of an ammonium salt. In comparison to
TMEDA 26, however, DIEA afforded only 31–52% decomplexation,
depending upon the salt employed. As such, the advantages of
TMEDA 26 as a decomplexation agent are discussed in Section
2.1.5.

2.1.4.3. Stability to common reactants and by-products. Further to
investigating the complex stability to possible bases and solvents, it
was also important to consider other reagents common to synthetic
reactions that require the protection of amines. Table 4 illustrates
the stability of the tyramine HCl 13 complexed with SILICA AM-18-
c-6 24 when exposed to a plethora of possible reactants (0.12 M,
2.4�10�2 mmol) such as those used for peptide couplings, acety-
lations and methylations.

Common reagents for acylation (acetyl chloride 3, acetic anhy-
dride 27) and alkylation (methyl iodide 28) were observed to have no
destabilizing effect, however, reagents employed in coupling re-
actions such as DMAP, DCC and EDCI were all found to cause varying
degrees of decomplexation. This is an observation that would go
some way towards explaining the poor reaction control reported by
Mascagni et al.,5 as upon deprotection, the amino acid could take
part in random solution phase couplings to afford oligomers.

Entries 1–9 (Table 4) were investigated for the purpose of
gaining further understanding into the decomplexation process as
well as identifying possible reagents for use in future reactions; all
solutions evaluated were saturated in MeOH. Of the three metal
salts investigated, lithium was found to have the least affinity for
the 18-c-6 ether due to its small cation size, followed by sodium. In
addition to decomplexation, potassium hydroxide was found to be
unsuitable for use with the solid-supported crown ether 24 as it
was found to cleave AM-18-c-6 17 from the support (confirmed by
ICP-MS analysis). In comparison to the metal alkoxides, carbonates
are weaker inorganic bases, which exhibit relatively poor dissoci-
ation in solution, resulting in a lower concentration of available
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Scheme 6. Schematic illustrating the reaction steps used to evaluate the synthesis of tyramine acetate 4 under continuous flow.
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metal ions, which leads to the observed increase in complex
stability.

In addition, acid catalyzed reactions are also commonly
employed and thus a range of acids, which are known to remove
inorganic ions from crown ether cavities, were tested for their
effect on ammonium complex stability, this time focusing on the
tyramine HCl 13 complex as it had been shown to be the least
stable of the three salts evaluated thus far. As Table 4 illustrates,
it was pleasing to see that the acids evaluated were found to
have no effect on the complex stability and thus could be
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employed as reactants alongside this non-covalent protecting
group strategy.

2.1.4.4. Generality of complexation. Recognizing the need for the
technique to N-protect compounds other than tyramine 1, a gen-
eral study was undertaken in order to evaluate factors such as
OH
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Scheme 8. Summary of the protocol employed for the continuous fl
chain length, steric hinderance, as well as the effect of counterions.
Again MeOH was used as the reaction solvent (100 mL min�1), re-
actant concentrations of 0.12 M (2.4�10�2 mmol) were employed,
methanolic KCl 14 (0.12 M, 2.4�10�2 mmol) afforded decom-
plexation and the reaction products were analyzed off-line by
HPLC.

Table 5 summarizes the results obtained and confirms initial
observations whereby no complexation is observed for free amines.
In keeping with previous findings the HCl salts of all amines
investigated, independent of chain length or aromaticity, were
found to complex efficiently. The issue of steric hinderance on
complexation was also evaluated, employing L-b-alanine benzyl
ester HCl 29 and (S)-(�)-2-amino-3-phenyl-1-propanol HCl 30, in
both cases no complexation was observed. Benzamide HCl 31 also
failed to complex due to resonance effects experienced by the
carbonyl group, which reduces hydrogen bonding between the
crown ether and results in the formation of an unstable complex.

2.1.5. The selective acetylation of tyramine
Having successfully developed a supported crown ether 24 ca-

pable of sequestering ammonium ions and subsequently evaluated
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the stability of the complex to a range of common reaction condi-
tions, the final step of the investigation was to perform a reaction
on the exposed phenolic moiety. When conducting the acetylation
of tyramine in batch, NaH 2 was employed as the base (Scheme 1),
however, when employing a crown ether as the protecting group,
the presence of sodium is undesirable due to its ability to deprotect
the amine (Table 4), consequently Et3N 21 and acetic anhydride 27
were selected suitable as reactants for the transformation.

With this in mind, Scheme 6 summarizes the proposed reaction
sequence for the continuous flow acetylation of tyramine 1, com-
prising of N-protection (step (a)), followed by O-acetylation (step
(c)), deprotection (step (e)) and crown ether regeneration (step (g))
all punctuated with solvent wash (steps (b), (d), (f) and (h)). Upon
evaluation of the reaction under continuous flow, it was disap-
pointing to observe that analysis of the reaction products obtained
from step (c) (Scheme 6), afforded only tyramine 1
(2.4�10�2 mmol). Therefore, in order to promote the acetylation
(step (c)), a range of flow rates (10–200 mL min�1), hence reaction
times, were subsequently investigated; unexpectedly all flow rates
failed to prepare the desired product 4. Based on this observation it
was postulated that the THF flush performed between reaction
steps was not removing MeOH from the reactor prior to the in-
troduction of the acetylating reagents and hence the volume of THF
was increased (from 1 mL to 2 mL), however, all subsequent re-
actions failed, yielding only un-reacted tyramine 1
(2.4�10�2 mmol).

As Mascagni5 and the work conduct within our laboratory had
shown analogous reactions to be possible in the solution phase, the
only remaining explanation for the reaction failing was an in-
teraction between the reagents and the solid-support itself,
resulting in either quenching or adsorption of the reactants. Con-
sequently, the SILICA AM-18-c-6 24 was treated with imidazole 32
and chlorotrimethylsilane 33 in MeCN to afford trimethylsilane
(TMS) end-capped SILICA AM-18-c-6 34 (Scheme 7), rendering the
support hydrophobic (represented as a white sphere around the
solid support).8

The TMS modified material 34 was subsequently filtered,
washed with acetone and oven dried prior to packing into the flow
in THF
@ 100 µl min-1

36

(c)

(d)
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N

Scheme 9. Schematic illustrating the consecutive reaction steps r
reactor (0.15 g, 2.4�10�2 mmol). At this stage, the reaction se-
quence illustrated in Scheme 6 was repeated, affording 42% con-
version to tyramine acetate 4 and 58% un-reacted tyramine 1;
quantified via internal standardization with biphenyl. Although
a proportion of the N-protected tyramine had been successfully
acetylated and no N- or di-acetylation was observed, the detection
of un-reacted tyramine 1 was again attributed to the presence of
residual MeOH, owing to its use as a reaction solvent for the
complexation and decomplexation steps ((a) and (e)). Conse-
quently, all efforts to remove MeOH from the process were,
therefore, investigated.

To achieve this, two approaches were investigated, the first in-
volved exploring an alternative decomplexation strategy as KCl 14
was found to be insoluble in THF. As Table 3 illustrates, TMEDA 26
(0.12 M, 2.4�10�2 mmol) was shown to quantitatively decomplex
all three salts evaluated and owing to its increase solubility in THF
cf. KCl 14 it provided an alternative means of decomplexation (%
RSD¼4.4 (n¼5)). Furthermore, by employing an organic base, the
regeneration steps (f), (g) and (h) illustrated in Scheme 6 became
unnecessary as TMEDA 26 destabilized the complexed amine
without residing within the cavity, thus reducing the reaction cycle
to complexation, reaction and decomplexation. Using the modified
decomplexation strategy, the reaction was repeated and found to
afford 63% conversion to tyramine acetate 4 and 27% residual ty-
ramine 1. At this stage, the complexation step (a) was the only
methanolic step remaining, which proved necessary due to the
insolubility of tyramine HCl 13 in non-polar solvents. To circumvent
this, tyramine TFA 12 was employed, which was found to be ex-
tremely soluble in THF, alongside TMEDA 26 as illustrated in
Scheme 8. Using the refined protocol, complete removal of MeOH
from the reaction enabled 100% conversion of tyramine TFA 12 to
tyramine acetate 4, affording 2.4�10�2 mmol reaction�1 (4.3 mg)
(Scheme 8).

2.1.6. Further reactions of N-protected compounds
Having demonstrated the ability to complex a bifunctional

compound and selectively O-acetylate it under continuous flow
(Scheme 8), the next step of the investigation was to evaluate the
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generality of the protecting group strategy. With the ability to
complex other bifunctional compounds previously illustrated
(Table 5), this prompted us to investigate the acetylation of
4-aminophenol. Once again, the use of MeOH as a complexation
solvent for 4-aminophenol HCl 35 (0.12 M, 2.4�10�2 mmol) was
found to be problematic, affording only 84% conversion to 4-ami-
nophenyl acetate. Replacing MeOH with THF and employing the
protocol depicted in Scheme 8, quantitative conversion to 4-ami-
nophenyl acetate was obtained, again affording a throughput of
2.4�10�2 mmol reaction�1.

2.1.6.1. Alkylations. Having acetylated two bifunctional com-
pounds, the scope of the technique was extended to the O-alkyl-
ation of tyramine TFA 12 and 4-aminophenol HCl 35, to afford the
respective methyl esters. However, unlike the acylations, where
a pre-mixed solution was employed to achieve deprotonation and
acetylation, the reagents selected for the alkylation, namely methyl
iodide 28 and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) 36,9,10

could potentially react together. As such, the steps were performed
separately, as illustrated in Scheme 9, employing DBU 36 (0.12 M,
2.4�10�2 mmol) in THF at 100 mL min�1, followed by methyl iodide
28 (0.12 M, 2.4�10�2 mmol) in THF at 100 mL min�1. Decom-
plexation was again achieved using TMEDA 26 and analysis of the
reaction products by HPLC confirmed quantitative conversion of
tyramine TFA 12 to 2-(4-methoxyphenyl)ethylamine.

Using analogous reaction conditions to those reported for the
alkylation of tyramine 1, the methylation of 4-aminophenol HCl 35
(0.12 M, 2.4�10�2 mmol) was investigated and afforded 100%
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conversion of the starting material to 4-methoxyphenylamine 37
(2.4�10�2 mmol) (Scheme 10), with no N-methylation or di-
methylation observed.

In addition to the generality observed for both the complex
formation and subsequent reaction of the protected compounds, it
must be noted that a full 12 months after the initial investigation
was performed, the alkylation of 4-aminophenol HCl 35 was re-
peated using the same aliquot of TMS SILICA AM-18-c-6 34 and
found to afford analogous results, demonstrating long term sta-
bility of the immobilized crown ether 34.

3. Conclusions

Owing to the complex nature of conventional covalent pro-
tecting group chemistry, it was the aim of this work to devise a non-
covalent protecting group strategy, which would enable the facile
N-protection of bifunctional compounds, thus removing the se-
lectivity issues associated with the reaction of bifunctional amines.
18-Crown-6 ethers have been shown to efficiently complex am-
monium salts and examples of reactions employing these com-
plexes have been reported within the literature. Application of the
technique to the protection of amines was, however, limited due to
problems largely associated with the removal of the crown ether
from the resulting reaction product. It was, therefore, proposed that
through the immobilization of an 18-crown-6 ether derivative, that
many of the issues that have prevented adoption of this technique
could be overcome.

Having investigated a range of immobilization strategies and
crown ether derivatives, it was found that the covalent immobili-
zation of AM-18-c-6 17 onto 3-carboxypropyl functionalized silica
gel (0.16 mmol g�1) combined the properties of efficient complex-
ation and suitability for use in a continuous flow reactor. Using the
aforementioned material, a plethora of ammonium salts were
complexed (Table 5) and their stability to a wide range of solvents
(Table 3) and reactants (Table 4) was evaluated.

Once the scope and limitations of the operating conditions had
been evaluated, reaction of the complexed tyramine salt was per-
formed and found to afford the selective O-acetylation, providing
an efficient route to the synthesis of tyramine acetate 4 cf. the la-
borious route required when employing covalent protecting groups
(Scheme 2). Having demonstrated the quantitative conversion of
tyramine TFA salt 12 to the free tyramine acetate 4, the in-
vestigation was extended to O-alkylation, demonstrating again
the selective synthesis of 2-(4-methoxyphenyl)ethylamine in
quantitative conversion, with no sign of competing di-alkylation or
N-alkylation products. The generality of the technique was sub-
sequently explored using 4-aminophenol HCl 35, which enabled
the facile synthesis of 4-aminophenyl acetate and 4-methoxy-
phenylamine 37 in quantitative yield, respectively. In all cases, the
free amine was afforded and products were obtained in higher
purity than those prepared using conventional N-protecting group
strategies.

In summary, the work described herein presents a broad in-
vestigation into the viability of immobilized crown ethers as a re-
placement for traditional covalent N-protecting group chemistry
and combines their use with continuous flow technology to afford
a technique that has potential for future automation.

4. Experimental section

4.1. Reagents and materials

Unless otherwise stated, the chemicals employed herein were
used as received and purchased from Sigma Aldrich, Acros and
Avocado. Where available, reactions were performed using puriss
grade solvents, which were stirred over molecular sieves (<0.005%
H2O) (Fluka, UK), with the exception of DCM and tert-butanol,
which were of laboratory grade (Fisher Scientific, UK). All chro-
matography employed HPLC grade solvents (Fisher Scientific) and
purified water (5 MU cm�1) was prepared by reverse osmosis and
ion exchange using a water purifier (Elgast, UK) fitted with an
Option 4 cartridge. PTFE tubing (1/1600 o.d.�800 mm i.d.), femal
luers 10–32 (Tefzel), 1/1600 unions (Tefzel), o-rings (Viton), gas-tight
syringes (5 mL and 10 mL, Hamilton, UK) and Omnifit connectors
employed for the flow reactor system were sourced from Supelco
(UK) and Kinesis (UK). Borosilicate glass capillary (3 mm i.d.)
(Duran�, UK) was cut into the desired 50 cm lengths and flame
polished.

4.2. Instrumentation

Nuclear magnetic resonance (NMR) spectra were recorded at
room temperature as solutions in either deuterated chloroform
(CDCl3) or deuterated MeOH (CD3OD) using TMS as the internal
standard. All spectra were recorded on a Jeol GX400 spectrometer
and the chemical shifts given in parts per million (ppm) with
coupling constants in hertz (Hz). Elemental analyses were per-
formed using a Fisons (UK) Carlo Erba EA1108 analyser, with
measurements repeated until concurrent data was obtained, typi-
cally n¼2. Matrix-Assisted Laser Desorption Ionization (MALDI)-
Mass Spectrometry was performed using a Bruker Reflex 4
instrument operated in reflector mode. Inductively Coupled
Plasma-Mass Spectrometry (ICP-MS) measurements were made at
257.61 nm and 766.49 nm using a Perkin Elmer (UK) Optima
5300DV instrument. Melting points were obtained using a Stuart
Scientific (UK) SMP10 apparatus and are reported uncorrected.
High Performance Liquid Chromatography (HPLC) data was
obtained using a Jasco (UK) modular system comprising of a LV-
1580-03 solvent selector, a DG-1580-53 degasser, two PU-1580
pumps, an HG-1580-32 mixer, a UV-1575 detector and an AS-1555
autosampler. Analytical measurements were made using a Jupiter
10 mm C18, 300 A (250�4.60 mm) column (Phenomenx, UK). Re-
agents and solutions were delivered to the continuous flow reactor
using a Harvard syringe pump (UK) capable of delivering liquids at
flow rates ranging from 0.1 to 1000.0 mL min�1 based on a 5 mL
gas-tight syringe. Where necessary, aliquots of reactants were
introduces into the continuous flow reactor using a Rheodyne
injector valve, model 7125 (Supelco, UK).

4.3. HPLC method

Using a gradient elution at a flow rate of 1.5 mL min�1, the
aqueous portion of the mobile phase was decreased from 60% to
40% over a period of 7 min and then maintained at 40% for the
remaining 30 min of the method. Both the organic phase (MeOH)
and aqueous phases contained 0.1% TFA. An injection volume of
20 mL was employed and biphenyl used as the internal standard.

4.4. Preparation of silica gel immobilized aminomethyl-18-
crown-6 ether 24

Thionyl chloride 19 (0.37 mL, 5.11 mmol) was added to a stirred
solution of oven dried 3-carboxypropyl functionalized silica gel
(1.06 g, 1.6 mmol g�1, 200–400 mesh) in toluene (20 mL) and the
reaction mixture heated to reflux for 3 h. The resulting silica sup-
ported acid chloride was concentrated in vacuo to afford a free
flowing white solid, which was subsequently redispersed in tolu-
ene (20 mL), prior to the addition of 2-aminomethyl-18-crown-6
ether 17 (0.50 g, 1.70 mmol), followed by triethylamine 21 (0.26 mL,
1.86 mmol). The reaction mixture was stirred overnight, under N2,
prior to filtration under vacuum. The supported crown ether 24 was
then washed (H2O, acetone and DCM) and oven dried, at 90 �C, to
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afford a free flowing white powder (1.08 g, 72.2%); ICP-MS
0.162 mmol g�1.

4.5. Silanisation of SILICA AM-18-c-6 24 to afford TMS SILICA
AM-18-c-6 34

Imidazole 32 (1.36 g, 20.00 mmol) and chlorotrimethylsilane 33
(2.51 mL, 20.00 mmol) were added to a stirred solution of SILICA
AM-18-c-6 24 (0.50 g, 0.16 mmol g�1) in MeCN (10 mL) under N2.
After stirring at room temperature for 1 h, the reaction mixture was
filtered under suction and washed with MeCN (20 mL), acetone
(20 mL) and DCM (20 mL) prior to oven drying at 60 �C to afford
a free flowing white powder 34.

4.6. Flow reactor set-up

As illustrated in Figure 3, the syringe driver was interfaced to
inlet 2 of the Rheodyne valve (7125) using a series of commercially
available connectors and a length of PTFE tubing (800 mm i.d.). In-
terconnects were made between the PTFE tubing and the luer lock
gas-tight syringes using a female to male 10–32 (Tefzel) luer, a 1/
1600 union (Tefzel) and a 1/1600 HPLC connector (PEEK). The flow
reactor comprised of a borosilicate glass capillary (50 mm
(length)�3 mm (i.d.)), packed with w0.15 g of the immobilized
crown ether under investigation, the inlet of which was connected
to the Rheodyne valve via outlet 3. The stainless steel sample loop
(200 mL) was positioned across outlets 1 and 4, with excess re-
actants diverted to waste via outlet 6 of the valve and reaction
products collected in a sample vial (1.5 mL) at the reactor outlet.

4.7. General flow reaction protocol

Prior to performing a flow reaction, the solvent under in-
vestigation (THF, MeOH or DCM) was driven through the packed-
bed reactor at 100 mL min�1 to waste.

4.7.1. Crown ether complexation
To prepare the immobilized crown ether complex, the sample

loop was filled with a solution of the ammonium salt under in-
vestigation (200 mL) with the valve in the load position. Once filled,
the valve was turned to the inject position and the solvent stream
diverted through the sample loop and the ammonium salt pumped
through the packed bed at 100 mL min�1 and the reactant stream
diverted to waste.

4.7.1.1. Acetylation of the ammonium complex. To acetylate the
immobilized crown ether complex, a pre-mixed solution of acetic
anhydride 27 and Et3N 21 (200 mL) in THF was pumped through the
reactor at 100 mL min�1, which facilitated both deprotonation of the
phenolic moiety and the subsequent acetylation in a single step.
THF was then pumped through the system for 2 min, prior to ini-
tiating decomplexation.

4.7.1.2. Alkylation of the ammonium complex. To alkylate the
immobilized crown ether complex, a solution of DBU 36 (200 mL) in
THF was pumped through the reactor at a flow rate of 100 mL min�1,
followed by THF for 2 min prior to the introduction of the alkylating
agent (200 mL) in THF at 100 mL min�1. This process was found to
enable deprotonation of the phenolic moiety and subsequent al-
kylation; throughout this step, the reaction products were diverted
to waste.

4.7.2. Decomplexation of the immobilized product
The decomplexing agent, KCl 14 in MeOH (200 mL) or TMEDA 26

in THF (200 mL), was pumped through the packed bed at a flow rate
of 100 mL min�1 and at this point, the reactant stream was diverted
from waste to sample collection; the reaction products were ana-
lyzed off-line by HPLC.

4.7.3. Regeneration of the immobilized crown ether
In the cases where KCl 14 in MeOH was employed for the

decomplexation step, the immobilized crown ether cavity was
regenerated using methanolic acetic acid 23 (200 mL, 5% v/v). In this
case, the reactor effluent was again diverted to waste and the sys-
tem purged with the reaction solvent for 2 min prior to repeating
the aforementioned steps.

4.8. Flow synthesis of 4-(2-aminoethyl)phenyl acetate 4

Using the general flow procedure detailed above, tyramine ac-
etate 4 was synthesized under continuous flow. To achieve this,
tyramine TFA 12 (200 mL, 0.12 M, 2.4�10�2 mmol), in THF, was in-
troduced into a continuous stream of THF (100 mL min�1) via
a Rheodyne valve. To ensure the tyramine salt 12 had passed
through the system containing TMS SILICA AM-18-c-6 34 (0.15 g,
2.4�10�2 mmol) before introducing additional reactants, THF was
pumped through the system for 2 min. Reaction of the phenolic
moiety was achieved via introduction of a pre-mixed solution of
acetic anhydride 27 and Et3N 21 (200 mL, 0.12 M, 2.4�10�2 mmol) at
a flow rate of 100 mL min�1. The system was again purged with THF
(2 min), prior to initiating decomplexation using TMEDA 26
(200 mL, 0.12 M, 2.4�10�2 mmol), in THF, at 100 mL min�1. At this
point the solvent stream was diverted from waste to sample col-
lection and the reaction products collected prior to off-line analysis
by HPLC; whereby comparison with a synthetic standard10 (HPLC,
tR¼6.3 min) confirmed quantitative conversion of tyramine TFA 12
to 4-(2-aminoethyl)phenyl acetate 4 with a throughput of
4.3�10�2 g reaction�1 (2.3�10�2 mmol).

4.9. Flow synthesis of 4-aminophenyl acetate

Using the general flow protocol detailed above, 4-aminophenyl
acetate was synthesized under continuous flow. To achieve this, 4-
aminophenol HCl 35 (200 mL, 0.12 M, 2.4�10�2 mmol), in THF, was
introduced into a continuous stream of THF (100 mL min�1) via
a Rheodyne valve. To ensure salt 35 had passed through the system
before introducing additional reagents, THF was pumped through
the system for 2 min. Reaction of the phenolic moiety was achieved
via introduction of a pre-mixed solution of acetic anhydride 27 and
Et3N 21 (200 mL, 0.12 M, 2.4�10�2 mmol) at a flow rate of
100 mL min�1. The system was purged with THF (2 min) prior to
initiating decomplexation using TMEDA 26 (200 mL, 0.12 M,
2.4�10�2 mmol), in THF, at 100 mL min�1. At this point the solvent
stream was diverted from waste to sample collection and the re-
action products collected prior to off-line analysis by HPLC. Com-
parison with a synthetic standard (HPLC, tR¼3.2 min) confirmed
quantitative conversion of 4-aminophenol HCl 35 to 4-amino-
phenyl acetate, with a throughput of 2.3�10�2 mmol reaction�1.

4.10. Flow synthesis of 2-(4-methoxyphenyl)ethylamine

Using the general flow procedure detailed above, tyramine TFA 12
(200 mL, 0.12 M, 2.4�10�2 mmol) in THF was introduced into a con-
tinuous THF stream (100 mL min�1) via a Rheodyne valve. To ensure
tyramine salt 12 had passed through the system containing TMS
SILICA AM-18-c-6 34 (0.15 g, 2.4�10�2 mmol), before introducing
further reagents, THF (100 mL min�1) was pumped through for 2 min.
The first of the reaction steps incorporated a 200 mL plug of DBU 36
(0.12 M, 2.4�10�2 mmol), followed by methyl iodide 28 (200 mL,
0.12 M, 2.4�10�2 mmol); both of which were passed through the
flow reactor at 100 mL min�1, facilitating the deprotonation of the
phenolic moiety and methylation in consecutive steps. Again 2 min
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was allowed before initiating decomplexation via a 200 mL plug of
TMEDA 26 (0.12 M, 2.4�10�2 mmol) at 100 mL min�1. At this point,
the solvent stream was diverted from waste to sample collection and
the reaction products analyzed off-line by HPLC (tR¼6.1 min)
whereby 100% conversion to 3-(4-methoxyphenyl)ethylamine was
obtained (2.3�10�2 mmol reaction�1).

4.11. Flow synthesis of 4-methoxyphenylamine 37

4-Aminophenol HCl 35 (200 mL, 0.12 M, 2.4�10�2 mmol) in THF
was introduced into a continuous THF stream (100 mL min�1) via
the Rheodyne valve. To ensure 4-aminophenol salt 35 has passed
through the system containing TMS SILICA AM-18-c-6 34 (0.15 g,
2.4�10�2 mmol), before introducing further reagents, THF
(100 mL min�1) was pumped through the reactor for 2 min. The
reaction steps firstly incorporated a 200 mL plug of DBU 36 (0.12 M,
2.4�10�2 mmol), followed by methyl iodide 28 (200 mL, 0.12 M,
2.4�10�2 mmol); both of which were pumped at a flow rate of
100 mL min�1, facilitating the deprotonation and methylation of the
complexed phenolic derivative. Again, 2 min was allowed before
initiating decomplexation via a 200 mL plug of TMEDA 26 (0.12 M,
2.4�10�2 mmol). At this point the solvent stream was diverted from
waste to sample collection and the reaction products analyzed off-
line by HPLC, affording 100% conversion with a throughput of
2.4�10�2 mmol reaction�1; HPLC, tR¼5.7 min.
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A 1.5 lL ion exchange chromatography column to accommodate resins used for biophar-
maceutical processing has been designed to produce breakthrough curves and to quantify
dynamic and maximum protein binding capacities. Channels within a glass chip were fabri-
cated using photolithography and isotropic etching. The design includes a 1 cm long micro-
fluidic column in which compressible, polydispersed porous agarose beads (70 lm mean
diameter) were packed using a keystone method where particles aggregate in a narrow
channel. The depth of the column is such that two bead layers exist. The fabrication tech-
nique used forms Cartesian geometries as opposed to circular cross sections found in stand-
ard columns. The voidage was therefore higher than standard values when measured by 3D
confocal microscopy. In conjunction with microscopic techniques, the column allows visual-
ization of events within the bed such as adsorption profiles that would otherwise be difficult
to observe. In this work, the binding of fluorescently labeled protein during isocratic loading
was used to generate breakthrough from the microcolumn. Useful breakthrough curves were
achieved using mobile phase velocities from 60 to 270 cm h�1. Calculated dynamic binding
capacities were compared well with previously published data on conventional scale col-
umns. The microfluidic chromatography column described here thus allows study of process
scale chromatography behavior at scales 20,000 times smaller than in current practice. The
work described in this article is representative of the proof of principle of a potentially
powerful tool for the generation of microfluidic process bed data for the biopharmaceutical
industry. VVC 2009 American Institute of Chemical Engineers Biotechnol. Prog., 25: 277–285,
2009
Keywords: microfluidic, protein breakthrough, ion exchange

Introduction

Ion exchange chromatography is the most ubiquitous
unit operation in the bioprocessing sector. The procedure
is based upon electrostatic interactions. A charged station-
ary phase will interact, bind, and separate an oppositely
charged macromolecule such as a protein or DNA present
in the mobile phase. Cation exchange occurs where the
stationary phase is negatively charged and the macromole-
cule in the mobile phase is positively charged.1,2 An im-
portant parameter to assess column performance, when

considering this type of chromatographic operation is
breakthrough or frontal chromatography, i.e., the process
where the column becomes saturated with solute. Large-
scale columns are usually run to maximize yield by reduc-
tion of losses during loading as determined from the
breakthrough curve.2

The biopharmaceutical sector is a rapidly expanding busi-
ness in which increased competition is placing pressure on
companies to improve purification process performance.3 In
addition, there is also a growing variety of stationary phase
materials now available from suppliers. Pharmaceutical com-
panies frequently have limited time and material to make a
full assessment of suitable resins for a given purification
process. Microfluidic technologies allow for a thorough
investigation of the experimental space using minimal

Additional Supporting Information may be found in the online ver-
sion of this article.
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amounts of protein. In addition to adsorbent type, any num-
ber of parameters such as the buffer type, pH, flow rate, etc.,
may be investigated.4 This is possible by employing the par-
allel architecture of microfluidic systems to increase through-
put. Moreover, events can be visualized within the bed that
would be difficult to observe using larger scale systems such
as adsorption profiles across the bed. Additionally, confocal
microscopy may be used to determine bead packing structure
using glass microfluidic chips.

A number of approaches to microscale chromatography
operation and evaluation have been described in the liter-
ature. An automated microscale system using adsorbents
located in robot pipette tips, for example, has been cre-
ated reducing the scale of the chromatographic step by
1,000 times from the laboratory scale. This was exempli-
fied for virus-like particle purification.5 Another system
involves confocal microscopy6 of individual beads in a
batch manner to measure diffusion of a protein into a
porous bead and relating the information obtained to
frontal chromatography behavior. Shallow bed chromatog-
raphy systems can also be used to estimate chromato-
graphic parameters. A column containing 5–10 lL of
polymeric beads is connected to a valve allowing the
interchanging of buffers or samples from different reser-
voirs.7 All these studies have produced impressive results,
however, none truly operates as a chromatography col-
umn in the conventional sense.

Equally, although research into microfluidic chip-based
chromatography is extensive, there has been little concern
for the evaluation of neither preparative chromatography
beads nor operation under the conditions found in conven-
tional scale columns. Packed chromatography microchips
have been fabricated using a variety of beads and methods
including hydrodynamic chromatography,8 shear-driven chro-
matography,9 and electrochromatography.10–12 In many of
the analytical technologies, nonporous incompressible silica
beads are used with diameters ranging from 1.5 to 4 lm
(although Blom et al.8 used polymeric based beads). Process
scale ion exchange beads due to the mode of use are usually
porous and compressible beads with larger diameters ranging
from 30 to 150 lm. These beads are used as they are able to
operate at relatively high flow rate ranges and low pressures
and can tolerate low levels of particulates that may be
encountered in a process stream.

When using beads in microfluidic channels, the simplest
method for packing involves using a chemical, such as la-
tex13 for an ion exchange chromatography system or octa-
decyl coating for electrochromatography,10 to bond the beads
to create an open-tubular format. Other options are specifi-
cally designed for electrochromatography, in which the
beads are pumped in using an electroosmotic pumping sys-
tem into a weir where the beads settle.12 Using electric cur-
rents with agarose, porous beads may destabilize the matrix
and possibly destroy them.14

In this work, a novel microfluidic method for quantifying

protein breakthrough, frontal adsorption chromatography
using standard preparative scale beads (ion exchange) in a

glass microchip is described. A 1.5 lL chromatography col-

umn was packed with preparative beads, and breakthrough

curves at varying linear velocities were recorded using fluo-

rescence detection. This microfluidic system allows for the

visualization of beads within the column, which aids a more

detailed understanding of the binding phenomena controlling
larger scales of operation.

Materials and Methods

Materials

All chemicals were purchased from Sigma-Aldrich (Dor-
set, UK) apart from the fluorescein-5-isothiocyanate (FITC)
which was purchased from Invitrogen (Paisley, UK) and
were of the highest purity available. The chromatography
resin, Sulfopropyl (SP) Sepharose Fast Flow, was bought
from GE Healthcare UK (Buckinghamshire, UK). All tubing,
the connectors, and the MilliGAT pump were purchased
from Presearch (Hampshire, UK). All buffers were prepared
using analytical-grade water (Millipore, Watford, UK).

Design of the chip

The microchip was fabricated according to published pro-
cedures15 with minor adaptations. Briefly, the channel net-
work was fabricated based on a photolithographic fabrication
method. The channel network was designed using AutoCAD
LT 2005 software (Autodesk, Farnborough, UK). A film neg-
ative of the desired final size was then prepared by a com-
mercial photo mask manufacturer (J.D. Photo Tools,
Oldham, UK) to form the optical mask. B-270 glass photoli-
thographic plates (thickness of 3 mm) coated with a thin
chromium metal mask layer plus an upper layer of positive
photoresist, supplied by Telic (Telic Company, Valencia,
CA), were used for channel network fabrication. With UV
exposure, the pattern of interconnecting channels was trans-
ferred from the optical mask to the photoresist layer, which
was then developed and removed, together with the chro-
mium layer, to reveal the channel areas of glass to be etched.
The channels were etched by using a mixture of 1% (w/w)
HF and 5% (w/w) NH4F in water at 65�C for 15 min, result-
ing in an etch channel network with a depth of �50 lm.

The base plate containing the etched channel network was
sealed by bonding to an upper plate (also 3-mm thick) con-
taining predrilled holes (diameter 360 lm) to link the ends
of the channels with tubing. The upper plate was aligned
with the channel geometry and thermally bonded to the base
plate by heating in a furnace at 575�C for 3 h. Thermal
bonding was aided by placing a 90 g block of stainless steel
on the upper plate.

Figure 1a displays a schematic diagram of a single chan-
nel in the chip, and Figure 1b shows a picture of a chip with
four parallel microfluidic chromatography columns. The col-
umn dimensions were 10 mm � 1 mm � 0.15 mm, whereas
the input and output channel dimensions were 15 mm �
0.2 mm � 0.075 mm. The column was limited to these
dimensions due to fabrication specifications, whereas the
dimensions of the input channel ensured there was limited
dead volume. Connections were made using 125 lm Teflon
FEP Tubing (Presearch) between the injection valve and the
chip. To seal the tubing in place, epoxy resin (Sigma-
Aldrich) was used.

Packing the chip

The packing procedure involved dilution of a 20% (v/v)
slurry of matrix in 20% (v/v) ethanol in analytical-grade
water. The beads were sieved using 38 and 106 lm sieves
(VWR Leicestershire, UK) since larger beads block the
channels and smaller beads may block the entrance and exit
of the chip. SP Sepharose Fast Flow sieved and unsieved
was then compared with Jupiter 300 silica high-performance
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liquid chromatography beads (Phenomenex, Cheshire, UK)
and their size distribution determined by laser light scattering
using a Malvern Mastersizer (Malvern Instruments, Worces-
tershire, UK).

A 2 mL plastic syringe with an adapted micropipette tip
was used to ensure a sealed connection between the syringe
and the tip and equally between the tip and the drilled hole.
This was used to pack the microfluidic column. The matrix
was manually pressurized into the packing chamber using
the drilled hole in the center of the microfluidic column (see
Figure 1a), until it fills over a 5 minute time interval. Liquid
was then allowed to flow out of the inlet and outlet channels,
the resin then keystoned inside the chip. Keystoning is where
matrix particles will aggregate in narrow channels due to
tapered columns, or as in this case differences in depths
within columns.16 The difference in depths ensured that the
matrix particles remained in place without the need for a
frit. The packing inlet was sealed by using a plastic rod spe-
cifically designed for the hole. To clean and dry the chip
channel, the syringe can be used to suck air from all holes.
The quality of the packed microfluidic column was then
checked using a Leica DMRA2 microscope (Leica Microsys-
tems, Milton Keynes, UK) and QWin Software to ensure
that there was no resin particles that blocked the inlet and
outlet channels.

Fluid handling

Figure 2 displays a schematic diagram of the experimental
setup used in this work. A MilliGAT pump was employed

for the purpose of pumping all liquid through a motorized
injection valve and into the chip. The pump was able to
accurately pump from 0.6 to 600,000 lL min�1 and could
accurately deliver at 10 nL volumes suitable for this work.

A small internal volume Rheodyne Valve 7010 (0.5 mm
ID) was used for all the chromatography work while 500 lL
PEEK tubing was used as an injection loop. The injection
volume could be readily varied by changing the size of the
sample loop. There is a motorized actuator that allowed sim-
ple insertion of the liquid into the connecting tubing from
the chip.

Preparation of fluorescently labeled lysozyme

The preparation of fluorescently labeled lysozyme was
performed using the manufacturer’s instructions with slight
modifications. Briefly, a solution of 3 mg mL�1 of lysozyme
(14.6 kDa, pI 11.017) was prepared in 0.1 M sodium bicar-
bonate buffer pH 9. 10 mg mL�1 of fluorescein-5-isothiocya-
nate (FITC) (excitation wavelength: 494 nm and emission
wavelength: 520 nm) was dissolved in dimethyl sulfoxide
(DMSO). A molar ratio 0.5:1 (derived from labeling experi-
ments of varying molar ratios) was added to the lysozyme
mixture and left to bind for 1 h. Fluorescently labeled lyso-
zyme was dialyzed into 0.05 M Tris buffer pH 8. The con-
centration of labeled lysozyme was then analyzed by taking
readings at 280 and 494 nm using a spectrophotometer
(Thermo Fisher Scientific, Basingstoke, UK). Equation 1 was
used to determine the concentration18:

Figure 1. (a) Schematic diagram of a single microfluidic column as used in this work, where (x) is the input into the column, (y) is the
microcolumn, and (z) is the outlet of the column, while (b) is a photograph of a chip with four parallel columns (x and z,
inlet and exit channels) are etched to a depth of 75 lm, y (the microcolumn) is etched to a depth of 150 lm).

SP Sepharose Fast Flow beads are packed into the middle chamber using a syringe containing 20% (v/v) bead solution in 20% (v/v) ethanol in ana-
lytical grade water. Dashed lines in (b) indicate sections of the channel that relate to the dimensions in (a).
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c ¼ ðA280 � ð0:3� A494ÞÞDF� m

e
(1)

where c is the concentration of fluorescently labeled lyso-
zyme, A is the absorbance, DF is the dilution factor, 0.3 is
a correction factor used to offset any dye absorption at
280 nm based on the manufacturer’s instructions, m is the
molecular weight of lysozyme, and e is the molar absorptiv-
ity of the protein (37,900 M�1 cm�1), which was also vali-
dated experimentally.

On-chip fluorescence detection

Leica QWin software was used for all image analysis. To
facilitate fluorescence quantification, the integration time
(the resolution time of the image analyzer) was adjusted
depending on the level of fluorescent lysozyme. A time-
interval program was developed to record the average fluo-
rescence intensity in the outlet channel every 3 s in order to
produce the necessary concentration–time data for break-
through analysis.

Confocal microscopy and voidage calculation

The packed microfluidic column was also subjected to
confocal microscopy imaging.19,20 A Leica DMI confocal
microscope recorded 35 depth images over a 1-mm2 area.
VolocityTM software (Improvision, Coventry, UK) was then
used to render the pictures into a three-dimensional image.
The voidage, eb (the percentage of empty space between the
packing) is defined as follows:

eb ¼ Vb � Vc

Vb

(2)

where Vb is the volume of empty bed and Vc is the total vol-
ume of the packing. The volume of the empty bed was cal-
culated from the dimensions shown in Figure 1. The total
volume of the packing was calculated from counting the
number of beads in three recorded areas, averaging the num-
ber, and was then multiplied by the average measured bead
volume.

Microfluidic column breakthrough measurements

A 1.5 lL microfluidic column packed with SP Sepharose
Fast Flow was equilibrated with five column volumes (CV)
of 0.05 M sodium phosphate buffer pH 5.5 (start buffer).
1 mg mL�1 total lysozyme solution (0.8 mg mL�1 unlabeled
lysozyme and 0.2 mg mL�1 fluorescently labeled lysozyme
in the same buffer) was pumped isocratically at linear veloc-
ities of 60, 150, 220, and 270 cm h�1 (1.33, 3.67, 5.33, and
6.67 lL min�1, respectively) calculated for the microfluidic
column packed bed by using the cross-sectional area at that
point. Breakthrough was monitored as described in the ‘‘On-
chip fluorescence detection’’ section. Once breakthrough was
achieved, the column was cleaned, removing the resin pres-
ent and repacked with fresh resin. Alternatively, another
channel was packed for use.

To measure the influence of the dead volume within the
system and quantify diffusion effects, a nonbinding solution
of 1 mg mL�1 lysozyme in 0.05 M Tris pH 8 was pumped
through a microfluidic column containing Quaternary amine
(Q) Sepharose Fast Flow (GE Healthcare) isocratically at
270 cm h�1. The peak was monitored using the Leica QWin
Image Analyzer. The appearance of the first shoulder of the
peak was the maximum amount of dead volume and diffu-
sion within the system. This volume was then subtracted
from all the volumes of the breakthrough curves.

Dynamic protein binding capacity was calculated at 5, 10,
and 100% breakthrough. All data were normalized in terms
of c/c0, where c is the concentration of effluent material at
each time point and c0 is the highest value of recorded efflu-
ent concentration. Equation 3 displays the calculation used
to find the capacity (Q)21:

Q ¼
Min � Vretained

R c0
cin
dc

� �

Vbeads

� em
es

(3)

where Min is the total protein mass into the column, Vretained

and Vbeads are the volume retained through the system and
the volume of the beads packed in the column, respectively,
and es and em are the voidages in a standard column and
in the microfluidic column, respectively. The voidage was
normalized in this way to allow comparison with larger
scale published results. Data presented are the average of at
least three breakthrough curves determined at different flow
rates.

Figure 2. Schematic diagram of the experimental setup.

A highly accurate MilliGAT pump was used to pump 0.05 M sodium phosphate pH 5.5 into a motorized injector valve and then into the chip.
500 lL of 1 mg mL�1 lysozyme (20% (v/v) was fluorescently labeled) in buffer was injected into the inlet stream using the injector valve. 15 cm of
125 lm of Teflon FEP tubing connected the injector valve to the drilled hole for the inlet channel and was sealed using epoxy resin. The nomencla-
ture used is the same as in Figure 1, where (x) is the inlet line, (y) is the microcolumn, and (z) is the outlet of the column.
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Results and Discussion

Determination and assessment of the voidage of the packed
microcolumn

The microfluidic columns were packed as described in
the ‘‘Packing the chip’’ section. SP Sepharose Fast Flow is a

polydispersed matrix. It has a volume-average particle diam-
eter of 90 lm, although the actual range is between 10 and
150 lm (see Figure 3a). The averaged bead diameters after
sieving were measured to be 70 lm with a d10 of 40 lm and
a d90 of 100 lm using laser light scattering. The difference
between a standard nonporous HPLC resin and the sieved

Figure 3. (a) Size distributions showing the difference between nonporous beads commonly used in analytical HPLC and the prepara-
tive scale SP Sepharose Fast Flow beads (sieved and unsieved). (b) Photograph of the packed SP Sepharose Fast Flow sieved
beads from a two-dimensional perspective using a standard light microscope.

Figure 4. Confocal microscope images of the microfluidic packed bed in a three-dimensional plane.

(a) Planar perspective, (b) a 45� angle from the top of the bed, (c) a side image of the top of the bed, and (d) a 45� angle of the end of the bed.
These images provide additional insight into the structure of the bed clearly showing voids that contribute to the increased voidage of the bed when
compared with larger scale columns. Supporting information Figure 1 displays a video of the packed microcolumn.
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and unsieved process resins are also shown in Figure 3a.
The nonporous resin is a monodispersed matrix with an aver-
age particle diameter of 5 lm. This variation between non-
porous and porous resins provides evidence toward the
complexity of packing the larger porous beads.

Figure 3b displays a two-dimensional photograph of the
packing of the sieved SP Sepharose Fast Flow beads. There
is clearly more than one layer of beads. The standard method
to assess the quality of chromatography packing is to inject
a pulse of a noninteracting solute through the column.22 As
the volume of the adjacent equipment was 2 lL, compared
with the volume of the packed bed which is 1.5 lL, volumes
of injected solutes would become overly dispersed producing
long tails that were problematic to analyze. The peak pro-
duced was not Gaussian and therefore could not be analyzed

using the standard method. Instead, the bed was subjected to
confocal microscopy to provide an understanding of the
three-dimensional arrangement of beads.

Figure 4 shows the confocal microscopy images of the
same microfluidic packed bed over a 1-mm2 area.
Two layers of packing are clearly seen. Voids that were not
visible using standard two-dimensional photography were
made more apparent. Aggregation can also occur which may
be due to electrostatic charges and differences due to sizes.
As bead diameters may be as large as 150 lm, they may
block smaller beads from packing into specific areas of
the bed, therefore producing voids and increasing the voi-
dage of the bed.

These voids affect the overall column voidage as
described in the ‘‘Confocal microscopy and voidage

Figure 5. Fluorescent light microscope images displaying flow distribution and binding of fluorescently labeled lysozyme to SP
Sepharose Fast Flow at the end of the column at a mobile phase velocity of 270 cm h21.

The white lines indicate the walls of the column. The white arrow present in image (a) shows the direction of flow, while the labels correspond to
those present in Figure 1 where (y) is the packed column and (z) is the outlet of the column. There is initially binding down one wall of the bed,
shown in (b) and (c), but by 30 min binding occurs throughout the entire cross-section of the bed.
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calculation’’ section. In standard chromatography columns,
the bed voidage is usually estimated to be between 0.3 and
0.4,23 as the column contains at least tens of bead layers and
is of a circular geometry. However, the microfluidic packed
bed described here has a rectangular cross section and princi-
pally only contains two bead layers. Based on Eq. 2, the voi-
dage in the microfluidic packed bed described here was
estimated to be 0.55. This value is substantially higher than
standard values suggesting that the voids resulting from
packing a column of only a bilayer in depth may have an
effect on the measurement of breakthrough.

Flow characteristics of the mobile phase through the
packed column

The quality of the packing of the microfluidic column will
inevitably affect the quality of the measured breakthrough
curve. Figure 5 displays the stages of breakthrough at the
fastest linear velocity, 270 cm h�1. The images show some
channeling of the solute to the left-hand side of the micro-
fluidic column during the initial stages of breakthrough. In a
purely plug flow system, mobile phase material would parti-
tion into the stationary phase evenly throughout the column
culminating in an even signal emanating from the column
that would be picked up using the detector. In this column,
especially at the two faster linear velocities, there appears to
be some deviation from idealized plug flow. This phenom-
enon is expected to produce shallower breakthrough curves
in a 15-cm column. Holland et al.24 developed MRI scans of
a column (1.60 cm ID and 2.5 cm height) with bead diame-
ters ranging between 15 and 70 lm. Nonideal conditions
were observed in their case as well, implying that there is a
lack of plug flow present even at this larger scale.

Reproducibility of protein breakthrough curves

Figure 6 indicates the reproducibility of 1 mg mL�1 lyso-
zyme breakthrough experiments in the form of the normal-
ized concentration as a function of the volume retained for
triplicate experiments. The curves are slightly shallower than
would be expected, as explained in the ‘‘Determination and
assessment of the voidage of the packed microcolumn’’ sec-

tion, due to channeling of flow at the bed outlet. The three
curves can be considered to be reproducible. The average
maximum capacity calculated for this column based on a
voidage of 0.55 (see Eq. 3) was 110.7 mg mL�1 matrix with
a relative standard deviation of 10.5%. This variation is low
enough to validate the method for binding capacity
qualification.

Breakthrough at varying linear velocities

Figure 7 displays representative lysozyme breakthrough
curves at different linear velocities. The two faster flow rates
display different profiles to the slower flow rates. Experi-
ments at velocities less than 150 cm h�1 took a long time
and were difficult to reproduce. This could be due to the
increased importance of the wall effects at the longer resi-
dence times. However, good, reproducible data were
obtained at the highest flow rates. The maximum capacities
produced are still comparable with other studies, as shown in
Table 1. This may be due to the fact that some of the devia-
tions from ideality exist at the larger scale but are more diffi-
cult to visualize, but can be detected using a microfluidic
device.24

There are a number of important issues underpinning the
reproducibility and accurate quantification when using the
microfluidic column. First, the packed column is highly de-
pendent on the cleanliness of the channel area. Any small
material including dust may affect the flow behavior, which
may lead to dispersed material and hence lengthened break-
through curves.28 Additionally, over repeated breakthrough
curve determination, using the same resin, protein can foul
the microfluidic channels as well as the tubing causing
blockages.29 To avoid this problem, the column was
repacked after each breakthrough; however, this brought sep-
arate challenges. As only two bead layers were in evidence
inside the column, each column when repacked may provide
a different packing structure, which is potentially a source of
variability in the breakthrough profile. Wall support is in evi-
dence within the microfluidic column that would not be
available at a larger scale because of the presence of the
bilayer of beads. Natural compression observed in larger col-
umns may not be present within this microfluidic column.

Figure 6. Reproducibility of lysozyme breakthrough curve
determination based on three runs at 270 cm h21

using three separately packed columns.

The graphs represent normalized lysozyme elution concentra-
tion as a function of time. The average maximum dynamic
binding capacity calculated is 110.7 mg mL�1 matrix with a
relative standard deviation of 11%.

Figure 7. Lysozyme breakthrough curves at a range of linear
velocities.

The load time for breakthrough volume to reach 250 lL
(180 CV) for the velocities 60, 150, 220, and 270 cm h�1 was
190, 70, 50, and 35 min, respectively, implying that equilib-
rium would not be reached for the faster velocities.6
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Methods to improve packing reproducibility are therefore of
interest.

An additional issue was the nonspecific binding that
occurred between the mobile phase containing lysozyme and
the channel walls. Additionally, the large surface area per-
mits more nonspecific binding than other geometries at a
larger scale. Nonspecific binding may affect and alter the
signal produced for breakthrough; however, the amount of
protein that bound to the channel walls was minimal in com-
parison with the breakthrough curves. The flow distribution
pictures in Figure 5 display little evidence of nonspecific
binding, as fluorescence would be viewed as bound to the
walls and external to the beads. However, this extra fluores-
cence is not present in these images.

Quantification of dynamic binding capacities at each linear
velocity and comparison with published results

Table 1 displays all calculated dynamic binding capacities
for each linear velocity measured using Eq. 3. The maximum
capacity varies between 96 and 175 mg mL�1 matrix,
whereas at 10% of the dynamic capacity, the variation is
between 50 and 145 mg mL�1 matrix, in which the slower
flow rates present higher capacities. This latter trend is
viewed as a standard observation in previous literature.27

Additionally, Table 1 displays comparisons with previously
published data. At 220 cm h�1 there is a larger error due to
reasons explained in ‘‘Breakthrough at varying linear veloc-
ities’’ section as well as due to the increasing residence time.
For SP Sepharose Fast Flow beads in this system, the 220 cm
h�1 run appears to show differing levels of mass transfer
occurring over repeated breakthroughs. This may indicate that
this flow rate is highly sensitive to these effects.

The measured maximum capacity is close in absolute value
to that published from Hasim and Chu.26 Their study uses a
linear velocity of 245 cm h�1, and a model is used for the
estimation of parameters based on experimental breakthroughs.
Skidmore et al.,25 however, used parameters from batch studies
to fit a modeled breakthrough profile to a breakthrough curve
produced using a 2 mL column. Both studies used short col-
umns from 2 to 5 cm in length. As explained previously, chan-
neling is likely to be present in such short lengths of columns.
Values at 10% dynamic binding capacity are recorded around
60 mg mL�1 matrix compared with 110 mg mL�1 matrix
quoted by Staby et al.27 The column used for their work had a
length of 10 cm, which would be reflected in an improved
breakthrough curve. In addition, channeling should decrease

when compared with the smaller lengths of column. Generally,
the difference between the published data collected on the
breakthrough of lysozyme and the measured data presented is
small.

Conclusion

The microfluidic chromatography system described here
represents the current limit of scale down for process chroma-
tography. It enables the generation of breakthrough curves and
thereafter the calculation of the maximum protein binding
capacities as well as dynamic binding capacities that are vital
parameters for bioprocess design. The system also allows for
the visualization of events within a packed chromatography
bed that are not possible at larger scales. The chip system
does not possess a conventional geometry for a chromatogra-
phy system, as there is a Cartesian geometry and contains
only a bilayer of beads. The voidage calculated from confocal
microscopy images is 0.55 when compared with a standard
column which has a voidage of 0.3–0.4. However, the system
has been shown to work effectively over a range of linear
velocities irrespective of the voidage and geometry. Maximum
capacities calculated were recorded to be in the range of 95–
170 mg mL�1 matrix. These values were found to be close to
those published previously. To extend the utility of the micro-
fluidic chromatography system for the bioprocess industry,
future work will examine the system’s ability to produce a
chromatographic separation. The work described in this article
is representative of the proof of principle of a potentially
powerful tool for the generation of microfluidic process bed
data for the biopharmaceutical industry.
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and DNA clean-up/extraction using gel-supported reagents in a microfluidic
device
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A silica monolith used to support both electro-osmotic pumping (EOP) and the extraction/elution of

DNA coupled with gel-supported reagents is described. The benefits of the combined EOP extraction/

elution system were illustrated by combining DNA extraction and gene amplification using the

polymerase chain reaction (PCR) process. All the reagents necessary for both processes were supported

within pre-loaded gels that allow the reagents to be stored at 4 �C for up to four weeks in the

microfluidic device. When carrying out an analysis the crude sample only needed to be

hydrodynamically introduced into the device which was connected to an external computer controlled

power supply via platinum wire electrodes. DNA was extracted with 65% efficiency after loading lysed

cells onto a silica monolith. Ethanol contained within an agarose gel matrix was then used to wash

unwanted debris away from the sample by EOP (100 V cm�1 for 5 min). The retained DNA was

subsequently eluted from the monolith by water contained in a second agarose gel, again by EOP using

an electric field of 100 V cm�1 for 5 min, and transferred into the PCR reagent containing gel. The eluted

DNA in solution was successfully amplified by PCR, confirming that the concept of a complete self-

contained microfluidic device could be realised for DNA sample clean up and amplification, using

a simple pumping and on-chip reagent storage methodology.
Introduction

Microfluidic devices, which form the basis of ‘lab on a chip’

applications, not only offer many sample handling advantages

but also hold the potential for developing truly portable, auto-

mated devices through process and systems integration.1,2 In

addition, due to their relatively low cost, the possibility of

producing versatile yet disposable devices is a distinct advantage

for clinical and forensic applications.3–5 In order to produce

reliable and robust microfluidic based devices, the integration of

pumps, detectors, together with separation and other on-chip

processes remains challenging.

Accordingly work relating to the integration of sample clean

up, extraction, PCR amplification and separation/detection onto

a single chip has attracted considerable interest. Easley et al. for

example have described a fully integrated genetic analysis system

incorporating each of these steps, for the rapid screening of

infectious pathogens, using hydrodynamic pumping to move

samples and reagents around the device.5 A similar system was

also reported by Liu et al. in which rapid short tandem repeat

typing for forensic purposes was reported.6 The development of

a hand held integrated system for the rapid detection of the avian

influenza virus H5N1, has been described by Pipper et al. using
aDepartment of Chemistry, The University of Hull, Cottingham Road,
Kingston upon Hull, HU6 7RX, UK; Fax: +01482 466410; Tel: +01482
465475
bPostgraduate Medical Institute, The University of Hull, Cottingham
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ac.uk; Fax: +01482 466410; Tel: +01482 465469
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a system that enables the purification and pre-concentration of

RNA for real-time PCR to be carried out.7 In terms of

commercial systems, the GeneXpert� System produced by

Cepheid offers a fully integrated automated commercial system

for nucleic acid analysis.

One of the main obstacles however in developing a fully

integrated device is the high degree of control required when

attempting to move a sample from one area or process to another

on a single device. Differences for example in the depths and

widths of channels and chambers, which might be necessary to

accommodate the various processes required, can cause changes

in hydrodynamic pressure and alter the fluidic flow profile.

Introducing a system of valves and barriers has met with some

success but the system becomes complex and the loss of analyte

and reagents on surfaces can become significant.8–10 In addition,

the control of both forward and back pressure in devices of

different channel geometries especially when a solid support may

be present can prove challenging. Grover et al. discussed some of

the problems associated with using valves and micro pumps in

integrated systems,10 and Vilkner et al. compiled a review dis-

cussing developments in micro total analysis systems (mTAS),

including methods of non-mechanical micro-pumping, e.g. elec-

tro-kinetic micro-pumps.11

Hydrodynamic based micro-pumping and electro-kinetic

movement in integrated microfluidic devices have been well

reported in the literature as a method for fluidic manipulation.12–16

Gui et al. for example discuss an electro-osmotic pumping

mechanism for a continuous flow PCR chip. In this relatively easy

to operate system the authors showed greater potential for
This journal is ª The Royal Society of Chemistry 2009
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integration over hydrodynamic pumping.17 EOP was induced

across a parallel silica based monolith which prevented the solu-

tion pumped across the monolith from flowing backwards due to

hydrodynamic forces, generating a flow of approximately 0.6 ml

min�1.18 Kim et al. have reported the use of a borosilicate glass and

low ion density liquids to achieve much higher flow rates,19 whilst

Reichmuth et al. describe the use of a zwitterionic additive, tri-

methylammoniopropane sulfonate (TMAPS), to enhance the

performance of the EOP and reported a three-fold increase in flow

rate.20 This increase in performance allows for the potential to

reduce voltage and power requirements, thus facilitating the

development of portable hand held integrated micro total

analytical systems. These and other novel methods to control the

flow of an integrated PCR device have been reviewed by Zhang

et al.21,22 who discuss the advances and trends in micro pumps,

micro valves and micro mixers within PCR microfluidic chips,

over the last decade.

A further difficulty encountered, however, when trying to

develop a lab on a chip device is the introduction of reagents in

a timely and cost effective manner. One possible solution could

be to introduce them mechanically at the time of manufacturing,

however this raises the issue of how to maintain the integrity of

the reagents during long periods of dormancy, a particular

problem with PCR reagents. Klatser et al. developed and com-

mercialised a stabilised freeze-dried PCR mix which included all

the components used in a PCR reaction suitable for this purpose,

claiming stability for a year at �20 �C and 4 weeks at 4 �C.23 In

addition commercially available ‘PCR pellets’ have been devel-

oped where the necessary PCR reagents are contained within a 1

ml gel bead (REAX� MASTERMIX 25 PCR Beads, Q Chip Life

Science, Q Chip Ltd, Cardiff MediCentre, Heath Park, Cardiff,

Wales, UK), to which only the addition of water and the DNA

sample is required to create the reaction solution. These pellets

have been shown to be stable for three months when stored at

4 �C, and for two months when stored at room temperature.

In this paper we report on the development of an approach

which addresses both the pumping and reagent storage issues

through the use of a silica monolith for EOP coupled with the

presence of preloaded capillary channels containing stabilized

reagents within a gel matrix, designed for DNA extraction and

PCR amplification. This work represents the first steps towards

the development of a self-contained, integrated DNA extraction,

amplification and analysis system.
Fig. 1 (a) Schematic and photograph (b) of the integrated chip

capable of DNA clean up, extraction, PCR amplification and capillary

electrophoretic separation; B–F indicates the positioning of platinum

electrodes.
Experimental

Reagents

Low melting point agarose gel (gelling point of 36 �C), guanidine

hydrochloride, ethidium bromide and EDTA were purchased

from Sigma Aldrich (Poole, Dorset, UK). Tris(hydroxymethyl)

aminomethane was purchased from Fisher Scientific UK Ltd

(Loughborough, Leicestershire, UK). The standard electropho-

resis grade agarose gel, deoxyribonucleotide triphosphates

(dNTPs), 10� NH4 buffer, bovine serum albumin (BSA), and

magnesium chloride were all purchased from Bioline Ltd (The

Edge Business Centre, London, UK). The Hot Start Taq DNA

polymerase, GoTaq�, was purchased from Promega (Hamp-

shire, UK). The forward and reverse D16S539 (Forward;
This journal is ª The Royal Society of Chemistry 2009
50-ACTCTCAGTCCTGCCGAGGT-30, Reverse; 50TGTGTG-

TGCATCTGTAAGCATG-30, product size of 300–360 base

pairs) and Amelogenin (Forward; 50-CCCTGGGCTCTGT-

AAAGAATAGTG-30, Reverse; 50-ATCAGAGCTTAAA-

CTGGGAAGCTG-30, product size of 106 base pairs)

oligonucleotide primers were ordered to specification from

MWG Biotech (Ebersberg, Germany). The DNA template was

extracted from a sample provided by a volunteer, using

a QIAamp� DNA Micro Kit, (Qiagen House, West Sussex,

UK). The silica based monolith was manufactured from potas-

sium silicate (9% K2O, 21% SiO2) purchased from Prolabo

(Merck, supplied by VWR International Ltd), and formamide

(98%) purchased from Avocado Research Chemicals Ltd

(Morecambe, UK). Quant-iT� PicoGreen� dsDNA Assay kit

used to quantify eluted DNA was purchased from Invitrogen Ltd

(Paisley, Scotland, UK). Other chemicals used were of analytical

grade and all solutions were prepared with deionised water

(Millipore Ltd, Livingston, UK).
Instrumentation

Experimentation was performed in a microfluidic device (Fig. 1),

wet etched in borosilicate glass and fabricated in-house.24 The

electric potentials for EOP were generated using a Paragon 3B

power supply unit (0–1000 V DC), custom built by Kingfield

Electronics Ltd (Chesterfield, Derbyshire, UK). The power

supply was controlled using LabView software (version 5.0),

written and supplied by National Instruments Corporation Ltd

(Newbury, Berkshire, UK). Platinum wire, diameter 500 mm,

acted as electrode contacts and was supplied by Johnson

Matthey (London, UK). Hydrodynamic pumping was
Lab Chip, 2009, 9, 1596–1600 | 1597
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performed using a KDS200 Syringe Infusion Pump (Kd Scien-

tific, Holliston, Massachusetts, USA).

The PCR reagents stability was tested by performing PCR

amplification in a TECHNE TC-312 Thermal Cycler (Barlo-

world Scientific, Bibby Scientific Ltd, Staffordshire UK). For

qualitative analysis, the resulting PCR products were separated

by agarose slab gel electrophoresis in which 115 V was applied

for 45 min, using a Horizontal Electrophoresis tank, SCIE PLAS

with MD-250N OmniPAC MIDI power supply (SCIE PLAS,

Warwickshire, UK). After staining with 0.5 mg ml�1 ethidium

bromide the separated products were visualised using a UV

transilluminator (Syngene, Synoptics Ltd, Cambridge, UK). The

DNA extracted by EOP elution was also quantified using

a POLARStar OPTIMA plate reader (BMG LABTECH Ltd,

Aylesbury, UK), used in conjunction with the Quant-iT�
PicoGreen� dsDNA Assay kit.
Preparation of microfluidic device

The silica EOP/extraction monolith, formed in the hexagonal

structure of the chip (Fig. 1), was manufactured from a 10 : 1

ratio of potassium silicate and formamide mixture and allowed

to cure at 95 �C for 12 hours. The monolith was then activated by

hydrodynamic pumping 1� TE buffer at a flow rate of 5 ml min�1

for 30 minutes. The agarose wash delivery gel was made by

dissolving low melting point agarose gel in deionised water to

give a concentration of 3% (w/v) (0.0030 g agarose in 100 ml

deionised water) and heated to 75 �C.

Once the gel was formed and still molten, 100 ml of 80%

ethanol and 20% 1 M sodium chloride solution was added. The

gel was then introduced into the wash delivery gel channel at port

B where it solidified trapping the ethanol wash.

The wash receiver gel was prepared by dissolving low

melting point agarose gel in deionised water to produce

a concentration of 0.75% (w/v), and heated to 75 �C for 10

minutes after which it was injected into the wash receiver gel

channel through port C whilst still molten, then allowed to

cool. A 0.75% (w/v) elution gel was similarly prepared and

injected into the elution gel channel through port F whilst still

molten, and allowed to cool.

The optimal PCR gel was prepared by dissolving low melting

point agarose gel in deionised water to produce a concentration

of 1.5% (w/v), and heated to 75 �C for 10 minutes. Once the gel

was formed and whilst still molten the PCR reagents were added

(1 � NH4 buffer, 1.5 mM BSA, 1 mM forward primer, 1 mM

reverse primer, 200 mM dNTPs, 1.5 mM MgCl2 and 1 Unit of

GoTaq�) and mixed. The PCR gel was then injected into the

PCR chamber through port D whilst still molten and on cooling

the gel retained the PCR reagents.

Once all channels were filled with gel-supported reagents

platinum wire electrodes were secured in place at ports B–F and

the chip was then ready for operational use.
Fig. 2 Flow rates achieved for EOP movement of ethanol solution in gel

across a silica monolith at increasing field strengths, compared to that

obtained for ethanol free solution.
DNA collection and loading

DNA was extracted from buccal cells collected from the cheek of

a volunteer, quantified, and diluted to create a standard

concentration of 5 ng ml�1. DNA standard solution (5 ml) was

then mixed with 120 ml of guanidine hydrochloride and loaded
1598 | Lab Chip, 2009, 9, 1596–1600
hydrodynamically on to the monolith through the sample inlet A

and out to channel C using a flow rate of 5 ml min�1.
DNA sample wash

To remove any cellular debris introduced during the DNA

sample loading process, an ethanol wash across the monolith was

performed. An evaluation of applied electric fields (50–200 V

cm�1 across electrodes placed at ports B and C) was performed to

establish the optimum EOP movement of the ethanol sodium

chloride solution in the gel (Fig. 2). The optimum electric field

was determined as that which enabled the fastest flow rate of

solution whilst incurring minimal gel damage (i.e. where the

physical structure of the gel began to deteriorate), which was

found to be 100 V cm�1.
DNA elution into PCR reagent gel

In order to establish the optimal EOP conditions for eluting the

washed DNA by water contained within the elution gel held in

the elution gel channel, a range of applied voltage sequences

between electrodes F to D were investigated (Table 1). It was

found that an electric field of 100 V cm�1 across electrodes D and

F for 5 minutes gave optimal results. The experiments were

performed on an ice block to maintain the integrity of the PCR

reagents. Once the EOP movement was complete, the PCR gel

was removed from the channel by pressure injection, collected

and amplified in a thermal cycler. The resulting products were

separated by slab agarose gel electrophoresis and observed using

the UV transilluminator.
PCR gel stability

The same method described above was used to prepare PCR

reagent gels of differing reagent and gel concentrations in order

to determine the most appropriate conditions to facilitate

successful PCR amplification, whilst maintaining reagent

stability. The short and long term stability of the optimal reagent

gel was also investigated by storing the PCR gel for known

periods of time at room temperature and at 4 �C.
This journal is ª The Royal Society of Chemistry 2009
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Table 1 Summary of the voltage sequences to control the elution of
DNA from a silica monolith into a PCR reagent gela

Electrode D Electrode E Electrode F Time

Sequence 1 Ground 50 V cm�1 50 V cm�1 5 min
Sequence 2 Ground 100 V cm�1 100 V cm�1 10 min
Sequence 3 Ground 50 V cm�1 50 V cm�1 5 min

50 V cm�1 Ground Ground 20 s
Sequence 4 Ground 100 V cm�1 100 V cm�1 5 min

100 V cm�1 Ground Ground 20 s
Sequence 5 Ground — 100 V cm�1 5 min

100 V cm�1 — Ground 10 s
Sequence 6 Ground — 100 V cm�1 10 min

100 V cm�1 Ground — 10 s
Sequence 7 Ground — 100 V cm�1 5 min

100 V cm�1 Ground — 10 s

a Sequences 3–7 are two step processes, incorporating a reverse shunting
step. (Refer to Fig. 1 for electrode positions in relation to sequence)
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Results and discussion

DNA sample wash

In order to prepare the DNA sample for PCR amplification,

cellular debris trapped in the monolith pores after the loading

process, was washed away using the ethanol solution stored in

the wash gel channel by applying an electric field of 100 V cm�1

across electrodes B and C for 5 minutes. Ethanol was used in this

instance because iso-propanol, which is typically used for the

wash step in DNA extraction clean-up,25 did not move under

EOP. When comparing the flow rate of ethanol solution with

that of ethanol gel (Fig. 2), it was noted that the relationship

between field strength and flow rate for the ethanol in gel was

non-linear due to the interference effect of the cross polymer

network on the bulk flow of liquid. In addition, it can be seen

that as expected, the flow rate of ethanol solution was found to be

more rapid than that obtained from the same solution in gel

format. However, the agarose gel was found to be capable of

delivering the ethanol wash across the monolith at an acceptably

efficient flow rate. Therefore enabling the removal of cellular

debris from the monolith which would have a detrimental effect

on the PCR process, as proven by the succesful PCR amplifica-

tion of the cleaned sample.
Fig. 3 UV transilluminator image of D16S539 PCR products obtained

from the stability testing of the concentration of reagent support gel.
DNA elution into PCR reagent gel

Based on slab gel electrophoresis, qualitative analysis of PCR

products was obtained to establish the efficiency of DNA elution

for sequences presented in Table 1. The results indicated DNA

recovery increased with each sequence investigated. Accordingly

sequence 7 gave a recovery of 65% DNA based on data obtained

using the PicoGreen� quantification method. The residual 35%

was found to be present at the positive electrode F (22%), prob-

ably due to electrophoretic movement, with 13% being detected in

the ethanol wash. Increasing the electric field beyond 100 V cm�1

was found to damage the physical structure of the gel whilst

offering no notable improvement in the extraction efficiency.

For successful PCR amplification 1–10 ng of genomic DNA is

required,26 therefore for a recovery rate of 65% a biological sample

containing at least 1.5 ng of genomic DNA is required. The DNA
This journal is ª The Royal Society of Chemistry 2009
extracted from the monolith by EOP was found to be of sufficient

quantity and quality for PCR amplification of the Amelogenin loci

to be carried out, as determined by the presence of a PCR product

band at the target base pair size (not shown). The results also

established that the reagents present in gel-form remained stable

even when a relatively high electric field was applied.

PCR gel stability

In order to assess the stability of the gel-supported reagents

a series of agarose gel concentrations were investigated (10%, 5%,

3%, 1.5%, 1% and 0.75% (w/v)). As the results obtained for the

5% and 10% concentrations were poor, due to adverse viscosity

effects hindering the flow/mixing of DNA and PCR reagents

within the gel matrix, these samples were excluded from further

study. Of the concentrations evaluated the visualisation of the

results for solutions 0.75–3% are presented in Fig. 3. The results

indicate that the PCR amplification was successful for each

experiment, as all PCR bands were of the target base pair size. In

addition, it was determined that the PCR amplification process

was more successful when using a lower concentration of

agarose, suggested by the presence of stronger UV absorbance

bands on the gel. Preliminary tests, however, indicated that

concentrations above 1.5% agarose gel were necessary in order to

provide long term functional preservation of the reagents.

Accordingly 1.5% gel was identified as most suitable both in

terms of PCR reagent stability and flow/mixing characteristics.

Gel storage stability tests (Fig. 4) identified that at room

temperature the reagents were rendered completely unusable

after 1 hour, as indicated by the absence of a PCR product band

at the target base pair size. However, stability tests did indicate

that storage for 30 minutes at room temperature still permitted

generation of PCR products. The storage tests indicated that for

optimal results the pre-loaded device should be maintained in

a cool environment until time of use.
Lab Chip, 2009, 9, 1596–1600 | 1599
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Fig. 4 UV transilluminator image of Amelogenin PCR products

following EOP of DNA into PCR reagents in gel. Positive and negative

controls are samples of the PCR reagents with and without DNA

template respectively. The ‘gel positive’ and ‘DNA elution by EOP’ are

control samples of PCR reagents in gel and DNA, pre- and post-

experimentation respectively. Stability tests; gel left at room temperature

for 1 hour, gel left at room temperature for 30 minutes and gel stored at

4 �C for four weeks.
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Conclusions

This paper reports the successful application of EOP through

a gel supported reagent matrix, supported by a silica monolith

which additionally acted as the extraction surface for DNA clean

up and elution prior to PCR amplification. It was determined

that PCR could successfully be performed in the specifically

designed PCR reagent agarose gel, even after the application of

an electric field of 100 V cm�1. Stability testing indicated that the

agarose gel containing all the reagents necessary for PCR was

stable for up to four weeks, when stored at 4 �C.

The incorporation of pre-loaded reagent gels into a micro-

fluidc device offers an attractive methodology compatible with

the aim of developing integrated, self-contained, lab on a chip

technology. Work is currently in progress to establish a fully

integrated device capable of DNA extraction, amplification and

analysis.
1600 | Lab Chip, 2009, 9, 1596–1600
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a b s t r a c t

An integrated gel supported micro-fluidic system is reported, in which PCR products can be efficiently
injected into a capillary electrophoresis device. The gel supported system is designed to provide greater
stability to reagents during long periods of dormancy, enabling the mass production of one use chips
encapsulating all required reagents at the time of manufacturing. This simultaneously diminishes the
risk of sample contamination, and reduces the amount of external hardware required for auxiliary flow
control, thus increasing the potential for portability. After PCR amplification was performed in a polysac-
charide gel matrix, the PCR product was injected into the separation gel polymer matrix by executing
a capillary-based electro-kinetic pinched injection across a gel-to-gel interface. The gel-to-gel system
delivered a precise and accurate plug into the separation polymer, which offered more stable electro-
DNA analysis

Integration
Gel matrix

kinetic control of the sample compared to solution based methodology even when bubbles were present
in the system. Suitable voltage control was proven to provide a repeatable electro-kinetic injection of PCR
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. Introduction

Micro-fluidic devices, which offer the benefits of high sample
hroughput and low sample volume, are attractive as they introduce
he possibility of integrating multiple processes onto one device
1], which in turn can lead to automated systems that will increase
he integrity of an analytical measurement [2]. DNA analysis is one
uch technique that would benefit greatly from the integration of
rocesses such as sample clean up, extraction, PCR amplification,
eparation and detection. Current methods in place to perform such
ractices are laborious, with a single analysis taking several hours
oving from one process ‘station’ to another, in addition issues such

s misplacement, contamination and chain of custody are problems
hich would be avoidable if analysis could be performed on one

evice at point of need. There are a number of reviews published
hat discuss in detail various work undertaken in the field of inte-

ration and miniaturisation of DNA analysis, including Wu et al.,
orsman et al., and Cruces-Blanco et al. [3–5].

Integration of different processes onto one device has proven
ifficult in past attempts, and providing meaningful and repro-

∗ Corresponding author. Tel.: +44 1482 465475; fax: +44 1482 466410.
E-mail address: g.m.greenway@hull.ac.uk (G.M. Greenway).

003-2670/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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ip separation of multiple loci by capillary electrophoresis.
© 2009 Elsevier B.V. All rights reserved.

ducible analytical results difficult to attain [6–9]. One of the reasons
such integration has proved difficult to implement, however, is the
high degree of complexity associated with successfully coupling
the macro to micro interface necessary for introducing reactants
and samples into the micro-fluidic system. A solution to this prob-
lem would be to incorporate the reactants into the device at the
time of manufacture, sealing them inside so only the sample needs
to be introduced at point of analysis.

A pre-loaded liquid based system can be problematic, however
in terms of stability of the reagents when exposed to long periods
of dormancy in the micro-fluidic device, so substantially reducing
the shelf life of such a device for commercial uses. Previous work
has suggested that the stability of certain volatile reagents can be
greatly increased by encapsulating them in a protective polymer
solution [10,11].

We previously demonstrated the advantage of this approach for
integrating the process of DNA clean up and extraction in a micro-
fluidic device [12]. All the reagents necessary for both the processes
were supported within the pre-loaded gels, which could be stored
for 4 ◦C for up to four weeks. The crude sample of lysed cells was

introduced hydro-dynamically onto a silica monolith contained
within a chip in order to extract the DNA. Ethanol contained within
an agarose gel matrix on chip was then used to wash unwanted
debris away from the sample by electro-osmotic pumping (EOP).
The retained DNA was then eluted from the monolith by water

http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:g.m.greenway@hull.ac.uk
dx.doi.org/10.1016/j.aca.2009.07.063
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etained within a second on chip agarose gel, again using EOP. The
luted DNA was then successfully amplified by PCR.

The next step in the integration process would be the electro-
inetic (EK) injection of the PCR product into a separation channel
o allow separation and detection. Controlling the injection, for
xample, of a sample into capillary channels is key to obtain-
ng reproducible electrophoretic separations [13,14], and reliable
etection resolution. However, producing an accurate, reproducible

njection can prove challenging, when addressing issues such as
arge volumes of sample lost during sample placement and clear-
nce stages of an injection and bias complicating the injection
rocess.

In general, injections into a micro-fluidic device can be
ontrolled either pneumatically, hydro-dynamically, by suction,
ressure, gravity, or alternatively, electro-kinetically [2,8,15–17].
he latter intrinsically lends itself to more precise and accurate con-
rol of sample introduction over hydro-dynamic systems, whilst at
he same time removing the need for external pumps, actuators,
alves, etc. Accordingly a number of different forms of EK injec-
ion have been reported; Zhang et al. for example, described a form
f pressure pinched injection, where a combination of negative
ressure, electro-kinetic, hydrostatic, and geometric forces were
sed to control the quantity of the sample injected. The approach
escribed claims to provide a highly accurate and reproducible

njection, though it involves a complicated procedure involving
xtensive instrumentation [17]. Another common approach is the
ated injection where a small sample volume is diverted from
continuous flowing stream into a side channel. To control the

njection, a negative charge is applied to the cross channel perpen-
icular to the separation channel creating a gate, which directs or
ithdraws the sample stream away from the separation channel.

he gated approach is simple to operate and requires fairly sim-
le channel geometry, however a large volume of sample can be
equired to maintain a steady flow in which a reproducible plug
ould be directed from the main stream. In addition, the applica-
ion of a divergent electric field can create an interference effect
pon the separation field. This method was modified by Wenclaw-

ak and Puschl, who used a high powered laser to bleach sections
f the sample stream, creating a succession of very short sample
lugs in the channel, thereby generating an optically gated injection
18].

The principle of the pinched EK injection, specifically in ‘T’ geom-
try, is that a plug of a controllable size is pulled into the separation
hannel, from a sample source aligned with the separation channel
ntrance. Once a plug of controlled size is contained in the sepa-
ation channel, the remaining sample is prevented from entering
he separation channel by creating an opposing electric field at the
ntrance and exit of the channel, such that excess sample is drawn
way from the separation channel. The advantage of the pinched
njection is that problems associated with continuous sample leak-
ge during the separation process can be addressed; the pull back of
he remaining sample efficiently prevents leakage of excess sample
assing down the separation channel, so reducing the peak tailing
nd the sample background.

A disadvantage of EK injection however, is Joule heating which
ccurs when high voltage differences are applied to small volumes
f liquids, which can generate a large amount of heat in the liquid.
his problem can be reduced or negated by finding a means to dis-
ipate the heat, such as the use of buffers or the addition of a higher
iscosity body into the system such as a polymer matrix [19].

Leading on from our previous work, to complete the integrated

NA analysis it was necessary to efficiently inject the DNA products

rom the agarose gel filled PCR chamber into the separation matrix
eady for CE separation. An EK pinched injection was investigated
ecause, an optimised voltage profile can provide a sample plug
ith a precisely determined shape and size, in addition to the sim-
a Acta 652 (2009) 239–244

plicity of its implementation, making the EK pinched injection an
appealing option for the integrated device. Schmalzing et al. credit
the ultra fast separation capabilities of their system to the extremely
short injection plugs achieved by an electro-kinetic injection across
a suitably designed geometry [20].

Whilst gel-to-gel electro elution of species has been utilised in
protein analysis, for example 2-D gel electrophoresis and blotting
techniques, it has not been widely used in micro-fluidic systems.
Thiatrong et al. recently developed an in-line affinity capture
sample injection in which a photo-polymerised oligonucleotide-
modified acrylamide capture gel was used to eliminate band
broadening and achieve 100% efficiency of injection. The modified
gel captured the entirety of the sample, which was then thermally
released by melting the gel, before being electrically eluted into the
CE channel [21]. The advantage of this system was that the entire
sample would be injected but this did require energy to melt the
gel which adds complexity to the process and may be problem-
atic for portable systems where it is essential to preserve energy
requirements to a minimum.

In this study, we describe how a gel-to-gel based approach
impacts the EK pinched injection technique and subsequent sep-
aration of DNA by capillary electrophoresis; we describe how the
introduction of a gel based system can increase the general robust-
ness of the technique by overcoming disrupted flow problems that
may occur due to complicated solution injections or Joule heating
when bubbles or voids form.

2. Experimental

2.1. Reagents

Low melting point agarose gel (gelling point of 36 ◦C),
EDTA, polyethylene oxide (molecular weight 8,000,000), 40%
N,N-dimethylacrylamide solution (for electrophoresis, stark
filtered), acryloyl chloride, dihexylamine, triethylamine, azobis(4-
cyanopentetoic acid), and dichloromethane were purchased
from Sigma–Aldrich (Poole, Dorset, UK). Tris(hydroxymethyl)
aminomethane was purchased from Fisher Scientific UK Ltd.
(Loughborough, Leicestershire, UK). The standard electrophoresis
grade agarose gel, deoxyribonucleotide triphosphates (dNTPs), 10×
NH4 buffer, bovine serum albumin (BSA), and magnesium chloride
were all purchased from Bioline Ltd. (The Edge Business Centre,
London, UK). The Hot Start Taq DNA polymerase, GoTaq®, was pur-
chased from Promega (Hampshire, UK). The forward and reverse
vWA (forward; 5′-GGACAGATGATAAATACATAGGATGGATGG-
3′, reverse; 5′-GCCCTAGTGGATGATAAGAATAATCAGTATGTG-3′,
product size of approximately 150–200 bp) and FGA (forward; 5′-
GGCTGCAGGGCATAACATTA-3′, reverse; 5′-ATTCTATGACTTTGCGC-
TTCAGGA-3′, product size of approximately 210–280 bp), both
labelled with 5′ TAMRA 5′, oligonucleotide primers were ordered
to specification from MWG Biotech (Ebersberg, Germany). The DNA
template was extracted from a sample provided by a volunteer,
using a QIAamp® DNA Micro Kit, (Qiagen House, West Sussex, UK).
Other chemicals used were of analytical grade and all solutions
were prepared with distilled water (Millipore Ltd., Livingston, UK).

2.2. Instrumentation

Experimentation was performed in a micro-fluidic device (Fig. 1)
[12], wet etched in borate-silicate glass and fabricated in-house

[22].

The electro-kinetic movement was generated via the application
of electric potentials to platinum electrodes placed in reservoirs
A–D. The electric potentials were generated by a Paragon 3B power
supply unit (4 × 0 − 1000 V D.C.), which was custom built by King-
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ig. 1. (a) Schematic of the integrated chip design capable of DNA clean up, extrac-
ion, PCR amplification and capillary electrophoretic separation and (b) photograph
f the device; A–D indicates the positioning of platinum electrodes.

eld Electronics Ltd., Chesterfield, Derbyshire, UK. In addition, an
Series compact, regulated power supply (0–10,000 V D.C.) sup-

lied by EMCO High Voltage Corporation (Sutter Creek, California,
SA) was used. Both the Paragon 3B and the H Series power supply
nits were controlled using LabView software (version 5.0), writ-
en and supplied by National Instruments Corporation Ltd. (Newbury,
erkshire, UK). Platinum wire, diameter 500 �m, acted as electrode
ontacts and was supplied by Johnson Matthey (London, UK). Visual-
sation of the movement of the fluorescently labelled PCR products

as recorded with a Zeiss Axiovert S 100 fluorescence microscope
oupled to an ORCA-ER Hamamatsu digital camera. Laser induced
uorescent measurements were also recorded with an Ocean Optics
2000 fiber optic spectrometer, supported by 001Base32 Spectrom-
ter Operating Software, Ocean Optics Inc. (Dunedin, Florida, USA),
nd a diode pumped green laser (CrystaLaser®, Reno, Nevada, USA).
he separation polymers used were polyethylene oxide (PEO) gel,
made up to a concentration of 2.5% (w/v) in 1× Tris-EDTA buffer by
he prolonged stirring method, detailed by Fung et al.) [23] and lin-
ar poly(acrylamide-co-dihexyl-acrylamide) according to a method
escribed by Chiesl et al. [24].

.3. Procedures

The micro-fluidic device was cleaned and prepared by flush-
ng through with 1 M hydrochloric acid followed by 1 M sodium
ydroxide and deionised water before drying. The separation poly-
er was loaded into the separation channel by pressure injection

nto port D. Before performing a gel-to-gel injection a voltage pro-
le capable of performing a suitable EK injection of DNA products

n solution into the gel separation was identified. The fluores-
ently labelled PCR product sample intended for injection was

repared in solution by diluting 9.8 �L of sample, into 10.2 �L of
eionised water. The sample was then introduced into the micro-
uidic device by pressure injection into port A in order to ensure
qual filling of sample matrix into both arms of the cross bar (B–C).
he presence of the separation polymer provided enough resistance
a Acta 652 (2009) 239–244 241

to ensure the PCR product sample was not introduced into the sep-
aration channel. Finally platinum wire electrodes were secured into
place in ports A–D (Fig. 1).

Once the micro-fluidic device was prepared the sample and sep-
aration matrices were inspected by eye to ensure no bubbles or
debris, that could cause interruption to the applied electric field,
had been introduced by the injection process. The voltage profile
was automatically applied from a preset program entered through
the LabView software. Systematic stepwise changes of voltages at
the different electrodes were investigated with visual assessment
of the results. The voltage profile selected (as given in Table 1) gave
a reproducible plug injection approximately 5 s long with sample
diffusion and tailing greatly reduced.

The next step was to investigate a gel-to-gel injection of the
PCR products from the PCR chamber to the separation channel. The
agarose gel utilised in the PCR chamber was prepared by dissolving
0.0029 g of low melting point agarose in 100 �L of DNA/RNA-free
water, creating a gel concentration of 2.94% (w/v). The solution was
then heated in a water bath at 75 ◦C for 10 min to allow the gel to
form. For optimisation experiments the PCR products were added
to the molten gel, 10.2 �L of the gel was added to 9.8 �L of the PCR,
and mixed. The final gel solution, which had a concentration of 1.5%
(w/v), was injected into the micro-fluidic device whilst in molten
form by pressure injection into port A and the electrodes secured
into place. The voltage profile was then modified from that used for
the solution injection to identify a suitable profile that would per-
form a comparable EK injection in agarose gel (given in Table 1).
Later in the work to test integration of the device the PCR was
performed on chip (conditions as described in our previous publi-
cation) [12] and the resulting products injected into the separation
channels.

3. Results and discussion

3.1. Characterisation of solution to gel and the gel-to-gel based
electro-kinetic injections

3.1.1. Solution to gel injection
By making systematic stepwise changes to the voltages at elec-

trodes placed in channels A–D and visually assessing the result on a
fluorescent microscope a voltage profile was obtained that provided
a satisfactory EK injection from solution to gel which gave a narrow
plug of DNA products. These results were used as a comparison for
the gel-to-gel injection process.

3.1.2. Gel-to-gel injection
When the voltage profile optimised for solution based injection

was applied to EK injection from the agarose gel into the separation
gel (PEO), the injection proved unsuccessful as no fluorescent PCR
product was seen to move into the separation channel (as shown in
Fig. 2).

In Fig. 2, step 1, the PCR products were not pulled into the separa-
tion channel (i.e. towards D); furthermore, after the initial injection
the excess sample is usually pulled away from the entrance to the
separation channel to prevent diffusion and sample leakage and
this can be seen in steps 2 and 3, however in step 4 the process is
not completed because the applied voltage degraded the gel at elec-
trode B and electrical contact was disrupted. The two most probable
reasons for the failure of the injection into the separation chamber
in step 1 are either a miss match in the viscosities of the loading

and separation gels, or the interface between the two different gel
types had a detrimental effect on the electric field strength across
the channel.

Examination of the current profiles acquired for the solution and
gel injections (Fig. 3a and b), however, indicated that the electric
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Table 1
The voltages and times required for the optimised electro-kinetic injection of sample contained within a 1.5% (w/v) agarose gel made with TE buffer, into PEO separation
polymer.

Applied voltage (V) Applied time (s)

Electrode A Electrode B Electrode C Electrode D

Step 1: initial injection of sample 1 2400 600 1100 5
Step 2: concentration of sample and ‘pull back’ of excess 1 3600 900 825 10
Step 3: clearance of excess from separation channel opening 1 3600 900 1237.5 30
Step 4: concentration of sample in separation channel 1 3200 800 1237.5 5

Fig. 2. Visualisation of the unsuccessful electro-kinetic injection of fluorescent PCR product contained within agarose gel.

jectio
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Fig. 3. The current profile acquired from the EK in

urrents generated within the system were in fact almost identical,
he only difference being the flatter and more even nature of the
rofile observed for the gel system. This evidence suggested that the

ncreased viscosity of the gel has not influenced the applied elec-
ric field, other than producing a stabilising effect. The observed
indrance to the injected PCR products is therefore more likely to
e attributable to a physical resistance caused by the higher vis-
osity agarose gel matrix compared to that of a solution based

ample. This would suggest that the same fundamental mechanism
f movement would apply in both the gel and the solution, the
nly difference being that the physical influence of the gel requires
igher voltages and longer time periods for similar movement to
ccur.

Fig. 4. Visualisation of a successful electro-kinetic injection in agaros
n: (a) in solution and (b) in 1.5% (w/v) agarose gel.

It was therefore necessary to change the voltage profile for
the gel-to-gel EK injection and as previously, systematic stepwise
changes to the voltages at the different electrodes were made and
the results inspected visually until a narrow reproducible plug of
DNA products was obtained. The optimal voltages are given in
Table 1 and Fig. 4 show a successful gel-to-gel injection.

This time in step 1 the PCR products can be seen to be entering
the separation channel (towards D) and in step 4 the sample can

be seen to be focussed into a sharp plug. The new voltage profile
given in Table 1 also indicates a higher field strength was required
to move the same sample through the agarose gel matrix.

This increase in field strength can be explained from Eq. (1)
which describes electrophoretic mobility (�ep) (where q is the net

e gel matrix. Operating voltages and times are given in Table 1.
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Fig. 5. Electropherogram, separation of PCR products (vWA and FGA) in 3% LPA-co-
DHA, injection field of 90 V cm−1 for 5 s, separation field of 275 V cm−1.
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harge, f is the translational friction coefficient, � is the migra-
ion velocity of the component and E is the electric field) and the
ückel equation [25] (Eq. (2)), which is a modified form of the
lectrophoretic mobility equation, that takes into account elec-
rophoretic movement of a species in a polymer solution (�0),
where � is the solvent viscosity and q is the polyion’s charge and
the polyion’s radius).

ep = q

f
= v

E
(1)

0 = q

6��R
(2)

The electrophoretic mobility is expressed in terms of charge
ver the translational friction coefficient, however the additional
onsideration of a polymer solution necessitates the introduction
f not only the viscosity of the solvent but also the radius of the
olyions. In both equations whilst the charge could be the same the
dded effect of viscosity and the radius of the polyions will alter the
lectrophoretic mobility within the gel considerably.

To investigate the reproducibility of the gel-to-gel injection
epeat injections were made under a range of conditions, including
lteration of injection time, injection voltage and polymer concen-
ration. To evaluate the injection process the detector was placed
t a fixed point 5 mm distance from the entrance to the separa-
ion channel and electropherograms were obtained (fluorescence
ntensity against time). The half peak width for the injected PCR
roducts was then measured and found to give 7.7% RSD (n = 3) for
he optimal conditions indicated in Table 1. (Repeated experiments
ere performed on the same device, the reagent debris from each

xperiment was removed and the device was cleaned and reloaded
s described).

As indicated earlier, controlling the injection of a sample into a
apillary channel is key to obtaining reproducible electrophoretic
eparations with reliable detection resolution. In order to improve
he resolution of the CE separation, having established the optimal
garose to PEO injection technique, other separation polymers were
nvestigated including LPA-co-DHA [26]. When the voltage profile
iven in Table 1 was applied for an injection into this matrix, it was
ound that the difference in viscosity between the separation gels
EO and LPA-co-DHA resulted once again in the optimised voltage
rofile for the gel-to-gel injection being no longer valid. When the
rofile optimised for the PEO was applied to LPA-co-DHA, it was

ound lower voltages applied to electrodes B and C were satisfac-
ory compared to PEO separations. This is thought to occur due
o the low resistance afforded by the less viscous PEO separation

atrix providing a preferential field for the sample, a higher force
s required to alter the direction of the movement of the sample
fter the initial sample pull down action (step 1).
Once the successful gel-to-gel injection (LPA-co-DHA) had been
btained with good precision, 2.9% RSD (n = 3), separations of the
CR products could be carried out and an example is shown in Fig. 5

n which PCR products vWA and FGA are seen to be separated with
peak resolution of 2.7.

Fig. 7. Visualisation of a successful electro-kinetic injection in agarose gel matrix
Fig. 6. The current profile acquired from the optimised EK injection in 1.5% agarose
gel.

3.2. Robustness of a gel supported injection

It can clearly be seen in Fig. 3b and Fig. 6 that for gel-to-gel injec-
tions the current profiles acquired are smoother when compared to
the solution to gel injection (Fig. 3a); this suggests a greater degree
of electrical stability in the system.

The increased stability of the gel was further displayed when an
electro-kinetic injection was successfully carried out with a void
or a bubble, introduced into the system as an artefact of reagent
introduction (Fig. 7).

In the solution based system, a bubble present during the EK
injection can severely compromise the fluidic movement and often

lead to failure of the process. Fig. 7 shows a gel-to-gel EK injection
in the presence of a void or a bubble. In step 1 a large void or bubble
can be seen in the channel leading to B, however the PCR products
can be seen to have entered the separation channel in the same
way as Fig. 4. In steps 2 and 3 the excess sample is still cleared away

with a bubble present. Operating voltages and times are given in Table 1.
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rom the separation channel despite having to move around the
ubble. By step 4 for the excess sample has gone and the sample
lug can be seen moving down the separation. The sample plug

s more diffuse with a wider diameter, however it can clearly be
een that a successful injection of sample can be made, despite the
resence of a bubble or void. The success of an injection with a
ubble or void present was found to be dependent on the placement
f the disruption in the gel, if it occurs between the interface of the
eparation matrix and sample containing gel, or in the vicinity of
he junction at that point, then this would disrupt the electric field
nd the injection would be unsuccessful.

. Conclusions

This paper reports the successful optimisation and application
f a gel-to-gel electro-kinetic injection of a sample from a gel sup-
orted matrix into a polymer gel separation matrix. The work has

dentified the importance viscosity plays on a gel-to-gel system for
lectro-kinetic injections, compared to a solution injection, indicat-
ng much higher electric fields were required to achieve identical

ovement within a sample gel matrix. Interestingly, the oppo-
ite effect was noted when the viscosity of the separation gel was
ncreased, the electric field required to clear excess sample from
eparation channel entrance was found to be much lower with the
igher viscosity separation gel than the low viscosity separation
el.

Evidence of an increase in control and robustness for a gel
upported injection over solution based introduction has been
emonstrated. In addition, an interesting aspect of this work dis-
overed that the presence of a bubble or void in the sample gel did
ot cause the problems of excess Joule heating observed in sample
olution based systems. Although disruptions in the continuity of
he gel altered the pathway of the injection mechanism substan-
ially, the robustness of the system allowed the current to still be

aintained and an injection achieved. It is important to remember
hat if this disruption occurred in a solution only fluidic system, a
reak in the electric field would have severely compromised the

njection process.
These results will support the development of a fully integrated

ortable gel based DNA analyser on a micro-fluidic device. The
se of both applied voltages and gels leads to several advantages
or integration including simplification of instrumentation with no
eed for moving parts and reduction of macro to micro interfacing
nd power requirements. The gels allow the storage of the reactants
t the time of manufacture along with increasing the robustness of
he EK injection.

[
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a b s t r a c t

DNA extraction was carried out on silica-based monoliths within a microfluidic device. Solid-phase DNA
extraction methodology was applied in which the DNA binds to silica in the presence of a chaotropic salt
such as guanidine hydrochloride, and is eluted in a low ionic strength solution, such as water. The addition
of poly-A carrier RNA to the chaotropic salt solution resulted in a marked increase in the effective amount
of DNA that could be recovered (25 ng) compared to the absence of RNA (5 ng) using the silica-based
Keywords:
DNA extraction
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monolith. These findings confirm that techniques utilising nucleic acid carrier molecules can enhance
DNA extraction methodologies in microfluidic applications.
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. Introduction

The isolation of DNA from biological samples constitutes the
rst step in a variety of bioanalytical techniques, for example

he polymerase chain reaction (PCR) which performs optimally
hen using purified DNA free from potential inhibitors of the

mplification reaction. In many instances, such as forensic inves-
igations, biological samples are limited both in terms of quantity
nd quality therefore retrieving the maximum amount of DNA
ossible from the original sample is crucial. DNA purification is
ommonly achieved by employing solid-phase extraction method-
logy, whereby the DNA is adsorbed onto a solid support, potential
ontaminants are removed by washing and the purified DNA
luted from the support. One of the practical advantages of
sing adsorption-based methodology is that it facilitates pre-
oncentration of the DNA, which is important when dealing with a
imited amount of sample material.

One example of solid-phase DNA extraction methodology, used
n many commercially available DNA extraction kits such as the
IAamp® DNA Micro Kit [Qiagen, UK], involves the use of sil-

ca as the solid-phase to which the DNA binds in the presence

f chaotropic agents, such as guanidine hydrochloride. Chaotropic
alts have a disruptive effect on the three-dimensional macro-
olecular structure of DNA, by interfering with intra-molecular

nteractions, thereby facilitating binding of DNA to the silica sur-

∗ Corresponding author. Tel.: +44 01482 465469.
E-mail address: s.j.haswell@hull.ac.uk (S.J. Haswell).

003-2670/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2009.03.038
© 2009 Elsevier B.V. All rights reserved.

face. In addition, the chaotrope also acts to lyse cells and inactivate
deoxyribonucleases, which enzymatically digest DNA. Following
DNA adsorption to the solid-phase support, any cellular or proteina-
ceous debris is removed using an alcohol wash. Finally the DNA is
eluted in a low ionic strength buffer such as water [1] in which it
can then be used in downstream applications.

Alternative solid-phase DNA extraction methodologies include
the use of ion exchange chromatography [2], which exploits the
anionic nature of the DNA by capturing DNA molecules on a posi-
tively charged column such as those containing diethylaminoethyl
(DEAE) groups, for example QIAGEN Genomic-tip System [Qiagen,
UK]. By altering the pH and salt concentration of the buffers used,
the binding, wash stringency and elution of DNA can be controlled.
In addition, liquid–liquid DNA extraction techniques are also avail-
able, such as phenol–chloroform extraction but these tend to be
more laborious and so are less extensively used.

Whilst commercially available kits, such as the QIAamp® DNA
Micro Kit [Qiagen, UK] are widely used for DNA extraction and pro-
vide the gold standard [3], there is increasing interest in performing
DNA analysis in miniaturised microfluidic systems. Such minia-
turised systems offer many advantages over conventional benchtop
laboratory systems, including reduced reagent volumes and shorter
analysis times. More importantly, however, they facilitate direct
integration of DNA extraction with other techniques such as PCR.
Early work incorporating solid-phase DNA extraction methods
into microfluidic devices utilised silica beads held in place by adapt-
ing the device geometry, for example the inclusion of a weir to trap
the silica beads [4]. Typical DNA extraction efficiencies, given as
the amount of DNA eluted expressed as a percentage of the total

http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:s.j.haswell@hull.ac.uk
dx.doi.org/10.1016/j.aca.2009.03.038
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NA added to the system, when using silica beads in a microfluidic
evice are in the region of 70% [1].

More recently microfluidic devices have incorporated silica-
ased monoliths, which provide a larger surface area for DNA
dsorption and offer favourable properties in terms of fluid dynam-
cs. Silica-based monoliths can be produced by either thermal
ctivation [5] or photo-initiation [6]. Each method of production has
ts own advantages and range of compatible substrates which can
e used. The use of monoliths for DNA extraction has been shown
o offer higher DNA extraction efficiencies [6] and greater repro-
ucibility compared with bead-based systems [4], with reported
NA extraction efficiencies for silica-based monoliths of up to 85%,
epending on the type of biological sample used as the starting
aterial [5–7].

Despite the high DNA extraction efficiencies reported when
sing monoliths instead of beads as the solid-phase, there are tech-
iques available to potentially further improve the recovery of DNA

ncluding the use of carrier molecules such as RNA [8], salmon
perm DNA [9] or glycogen [10]. As part of phenol–chloroform DNA
xtraction methodologies, glycogen can be used as a co-precipitant
o increase the precipitation of DNA in the presence of alcohol.
arrier molecules have also been used in solid-phase DNA extrac-
ion procedures, for example, the addition of poly-A carrier RNA
o the extraction matrix in commercially available Qiagen DNA kits
ncreases the amount of DNA recovered during the extraction phase
y an average of 24% [3].

The use of carrier molecules to improve DNA extraction effi-
iencies has not yet been applied to microfluidic systems. The work
resented here is an investigation of the potential for carrier RNA
o enhance DNA extraction on thermally activated silica monoliths
n order to evaluate its compatibility with microfluidic systems.

. Materials and methods

Silica-based monoliths, of 2 mm in length, were produced by
ixing a solution of aqueous potassium silicate (K2SiO3 [21% SiO2,

% K2O]) [VWR International, UK] with formamide [Alfa Aesar, UK],
n a 10:1 (v/v) ratio which was then injected into a glass capillary

ith an internal diameter of 0.65 mm [11]. The solution was cured
t 90 ◦C overnight to produce the solid monolith (Fig. 1).
A 30 min pre-treatment of the monolith with TE buffer (10 mM
ris, 1 mM EDTA adjusted to pH 6.7 [Sigma–Aldrich, UK]) at
�L min−1 was required prior to performing DNA extraction in
rder to activate the silica surface and produce optimal DNA

ig. 1. Scanning electron micrograph image of the surface of a thermally activated
ilica monolith at 10,000× resolution, showing the large surface area available for
NA binding and also the porous structure which allows flow of solutions through

he microfluidic device.
a Acta 652 (2009) 231–233

extraction efficiency. DNA was first extracted from human buc-
cal cells, using QIAamp® DNA Micro Kits [Qiagen, UK], to obtain
genomic DNA of a known concentration. An aliquot of DNA was
then added to a solution of 5 M guanidine hydrochloride (GuHCl)
[Sigma–Aldrich, UK] with varying amounts of poly-A carrier RNA
(1 �g �L−1) [Qiagen, UK]. The DNA solution was flowed through the
monolith at 2.5 �L min−1. An 80% isopropanol wash, administered
at 5 �L min−1, was subsequently used to remove any remaining pro-
teins/cellular contaminants that might interfere with downstream
applications. The purified, pre-concentrated DNA was then eluted
from the monolith in ultrapure water at 1 �L min−1. All solutions
from the loading, washing and elution phases were collected in 2 �L
aliquots and placed in a sealed 96 well microtitre plate to prevent
evaporation of solutions.

Since carrier RNA will co-elute with the DNA, it is important to
use a DNA specific detection method rather than measuring the
total nucleic acid concentration. The concentration of DNA was,
therefore, determined using a Quant-iTTM PicoGreen® assay [Invit-
rogen, UK]. Standards of known DNA concentration were made up
in the appropriate media for each phase, i.e. guanidine hydrochlo-
ride, isopropanol or water, to enable accurate quantitation. The
PicoGreen® solution was diluted, according to the manufacturer’s
instructions, in 1× TE buffer and then 100 �L added to each 2 �L
aliquot collected from the DNA extraction process. All measure-
ments were carried out on a FLUOstar OPTIMA microplate reader
[BMG LabTech, UK]. DNA extraction efficiencies were calculated
based on the amount of DNA recovered during the elution step as
a percentage of the initial amount of DNA added to the system.

To assess the quality and integrity of the extracted DNA the
collected fractions were analysed by using PCR to amplify a spe-
cific microsatellite target sequence. The PCR reaction mixture
comprised of: 1× NH4 buffer [Bioline, UK], 1 mM MgCl2 [Bio-
line, UK], 200 �M each dNTPs [Bioline, UK], 1 �M forward primer
[MWG, Germany], 1 �M reverse primer [MWG, Germany], 1 unit
Taq DNA polymerase [Bioline, UK] and 10 �g bovine serum albu-
min [New England BioLabs, UK]. Forward and reverse primers
with the following sequences 5′-GTGGGCTGAAAAGCTCCCGATTAT-
3′ and 5′-GTGATTCCCATTGGCC TGTTCCTC-3′ were designed for the
amplification of THO1 microsatellite locus [12]. Samples were then
amplified using a Techne TC-312 thermal cycler for 28 cycles, each
cycle comprising heating steps of: 94 ◦C for 30 s, 59 ◦C for 30 s and
72 ◦C for 30 s.
3. Results and discussion

The effect of the ratio of carrier RNA to DNA was determined by
adding varying amounts of 1 �g �L−1 carrier RNA to a 25 ng aliquot

Fig. 2. The ratio of carrier RNA (ng) to DNA (ng) was varied to determine the effects
on the amount of DNA recovered during the elution step. DNA extraction efficien-
cies were calculated as the percentage of DNA recovered during the elution step
compared with the amount initially added onto the monolith (n = 3).
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Fig. 3. Amount of DNA recovered from the monolith during the elution step com-
pared with the amount of DNA initially added. Samples with carrier RNA (�) (ratio
10:1, RNA:DNA) were compared to those with no carrier RNA (�) added (n = 3).

Fig. 4. Agarose gel showing PCR products amplified from DNA extracted using silica-
based monoliths within a microfluidic device. Lane 1: DNA size ladder; lane 2:
p
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w
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r
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[10] E.M. Heath, N.W. Morken, K.A. Campbell, D. Tkach, E.A. Boyd, D.A. Strom, Arch.
ositive control using genomic DNA extracted with QIAamp® DNA Micro Kit; lane
: negative control containing no DNA; lane 4: amplified DNA extracted using silica
onolith with carrier RNA; lane 5: amplified DNA extracted using silica monolith
ith no carrier RNA.

f DNA in GuHCl solution and calculating the DNA extraction effi-
iencies (Fig. 2). The efficiency of the DNA extraction process was
ighest when carrier RNA to DNA ratios of between 10:1 and 50:1
ere used.

Having investigated the effect of varying the ratio of carrier RNA
o DNA, the influence of varying the amount of starting DNA used,

anging from 1 to 100 ng, was investigated. A comparative set of
xperiments was carried out in which the samples did not have any
arrier RNA added (Fig. 3). When RNA was added at the ratio of 10:1,
he DNA extraction efficiency can be seen to follow the ideal 100%
ecovery up to 25 ng of total added DNA. In comparison however,

[

[
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without carrier RNA the DNA extraction efficiency only follows the
ideal recovery upto 5 ng of DNA. The results therefore indicate that
more efficient DNA recoveries can be achieved over a larger mass
range when carrier RNA is present in the binding solution.

PCR analysis was carried out on the eluted DNA not only to con-
firm the integrity of the DNA but also to establish that the carrier
RNA had no adverse effects on downstream applications. After 28
cycles of amplification the PCR products were analysed using con-
ventional slab gel electrophoresis. The results showed successful
amplification of the target THO1 locus indicating that the extracted
DNA is of sufficient quality for amplification and furthermore that
the carrier RNA does not inhibit the reaction (Fig. 4).

4. Conclusions

It has been demonstrated that the inclusion of carrier RNA
markedly increases DNA extraction efficiency on thermally acti-
vated silica-based monoliths in a microfluidic device, confirming
that this methodology is suitable for microfluidic applications. Car-
rier RNA was found to have a more pronounced effect on increasing
the DNA extraction efficiency when smaller amounts of DNA were
added to the system. It is hypothesised that on the silica matrix
there are always a certain number of sites which will irreversibly
bind nucleic acids. By including carrier RNA in the binding solution
it can sacrificially bind to these sites and so the loss of important
DNA is minimised leading to greater recoveries [3]. No adverse
effects on downstream applications such as PCR were observed to
be associated with the inclusion of carrier RNA.
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The detection of hydrogen peroxide is detailed using horseradish peroxidase and anthraquinone. Both
species are immobilized on a glassy carbon electrode substrate. This dual immobilization gives rise to
lower detection limits compared with the situation when either of the species is immobilized. Detection
limits of 40 nM are reported within physiologically-relevant media.
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1. Introduction

Horseradish peroxidase (HRP) is a stable and readily-available
haeme peroxidase found in horseradish roots containing an iro-
n(III) prosthetic group (haemin), and which catalyses the oxidation
of a plethora of compounds by hydrogen peroxide [1]. Accordingly,
it is an important enzyme in amperometric bioelectroanalysis [2],
for which the simplest peroxide biosensor consists of a layer of
HRP adsorbed onto an electrode surface, with the applied electrode
poised lower than 0.6 V vs. SCE. However, since the redox active
site is relatively deeply buried in the polypeptide of HRP, and that
numerous glycosylation sites exist on the surface of the native
form of HRP, the direct long-range electron transfer (ET) is rela-
tively slow [3]. In contrast, mediated ET between the electrode
and the electron-accepting prosthetic group of the enzyme is more
efficient c.f. direct ET [2], so that the former process can be used to
determine the mediator concentration at constant peroxide levels;
mutatis mutandis the converse. It is this latter route (q.v. Scheme 1
in Ref. [4]) that we wish to examine in this article for the proof-
of-concept development of an HRP-based biosensor of fast
response, good stability and good reproducibility which may be
useful in the understanding of biological stress (such as ischaemic
injury of the heart) [5,6].
ll rights reserved.

; fax: +44 (0) 14 82 46 64 16.
wan).
(J. Wadhawan).
Our approach follows earlier work [7,8], except that we cova-
lently attach an anthraquinone (AQ) monolayer on an electrode
surface, and allow the HRP to adsorb onto this layer [9,10]. We pre-
fer this method of protein immobilization to direct attachment
[11], as it is thought not to affect the enzyme activity, whilst allow-
ing for a distribution in the conformational orientation of the
enzyme [10]. Although AQ-derivatives are known to mediate
peroxide reduction directly [12], the use of HRP has the advantage
of ‘‘amplifying” the response, thence leading to enhanced sensitiv-
ity. Nevertheless, the ‘‘blocking” of the AQ-layer by enzyme
adsorption may reduce the extent of this reaction. Of course, our
approach is limited by inhibition due to HRP-mediated O2-reduc-
tion [13,14].

2. Experimental

2.1. Reagents

Water, with a resistivity greater than 18 MX cm, was taken
from an Elgastat system (Vivendi, UK). HRP (EC 1.11.1.7) type-I
(50–150 units mg�1) and type-VI (250–330 units mg�1), hydrogen
peroxide (30 vol.%), tetrabutylammonium perchlorate (electro-
chemical grade), and chemicals for the preparation of phosphate
(PBS, 10 mM PBS with 0.1 M NaCl) and Britton–Robinson (BR,
0.04 M BR with 0.1 M KCl) buffers were purchased from Sigma–
Aldrich (UK). Acetonitrile and fast-red-AL-salt were respectively
obtained from Fischer (UK) and Acros (UK). All chemicals were
used as received.

http://dx.doi.org/10.1016/j.elecom.2009.08.032
mailto:j.wadhawan@hull.ac.uk
http://www.hull.ac.uk/chemistry/wadhawan
http://www.sciencedirect.com/science/journal/13882481
http://www.elsevier.com/locate/elecom
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2.2. Instrumentation

Electrochemical experiments employed a three-electrode cell
using a glassy carbon (GC) disc electrode (diameter 3.0 mm, BAS,
UK) as working electrode with a platinum spiral counter electrode
and Ag–AgCl–3 M NaCl (aq) reference electrode (BAS, UK), con-
trolled by a l-AUTOLAB-type-III potentiostat (Eco-Chemie, The
Netherlands). Electrolytes were degassed with nitrogen (BOC, UK)
prior to experimentation, and were thermostatted at 22 ± 1 �C ex-
cept where specified. Square wave voltammetry (SWV) was under-
taken in the range �0.1 6 E/V 6 �1.2, at a frequency of 25.0 Hz,
5.0 mV amplitude. Hydrogen peroxide aliquot additions were of
at least 0.02 lM concentrations.

The GC electrode was polished using diamond lapping com-
pounds of decreasing particle size (1.0, 0.3 and 0.1 lm, Kemet,
UK) followed by sonication in water for 5 min. AQ-modification
was achieved by reduction of 2.0 mM fast-red-AL-salt in
0.1 M Bu4NClO4–MeCN during 20-reduction–oxidation cycles
[15,16]. HRP films were physisorbed to this layer after immersion
[9] of the AQ-modified electrode in 4.0 mg (mL)�1 HRP–0.1 M PBS
(pH 7.0) overnight at 4.0 �C. Electrodes were stored over this solu-
tion at this temperature. All protein-modified electrodes were
cycled (v ¼ dE=dt ¼ 0:1 V s�1) between �0.2 and 1.2 V in 0.1 M
PBS (pH 7.0) until the voltammograms stabilized, prior to
measurement.
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Fig. 1. (a) CVs of an AQ-modified GC electrode immersed in (i) BR buffer at pH 1.0, 7
experimental timescale, key: (d, s) correspond to peaks a and b at pH 7.0; (N, ., O
Voltammograms of an AQ-modified GC electrode immersed in PBS (pH 7.0) containing: (i
of the cathodic current with timescale; (ii) various amounts of H2O2: SWVs are depicted,
Average gradients: 3.5 nA (lM)�1 (1.0–15.0 lM, R2 = 0.986) at �0.65 V; 1.4 nA (lM)�1 (1
3. Results and discussion

Fig. 1a depicts cyclic voltammograms (CVs) of the AQ-modified
GC electrode immersed in aqueous solution of different proton
concentration. At pH 1, a single pair of broad redox waves are ob-
served, as anticipated [16] consistent with the known two-electron
reduction pathways of anthraquinone species in Eigen-acid media:

AQðadsÞ þ 2e� þ 2HþðaqÞ¢ AQH2ðadsÞ:

Decreasing the solution proton concentration causes the waves to
split due to stabilization of an intermediate semiquinone species
within the classical square reduction scheme [17]:

AQðadsÞ ������! ������þe� ;þHþ

�e� ;�Hþ
AQH�ðadsÞ �����! �����þe� ;þHþ

�e� ;�Hþ
AQH2ðadsÞ:

Accordingly, such changes affect the overall electrode kinetics of
the reduction, as inferred from the changes in the voltammetric
waveshapes and the shifts in the potential of the observed vol-
tammetric peaks with changing timescales (q.v. Fig. 1a(i)). The
two-electron, two-proton transfer in acidic media enables the
determination of the electrode coverage (CAQ) on application of

Faraday’s Laws CAQ ¼
R

idE

nFSv

� �
to be 4.6 ± 1.5 � 10�10 mol cm�2, in

agreement with literature results [16]. In all cases, as expected
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for adsorbed species, the two-electron peak reduction current is
proportional to the voltage sweep rate (q.v. Fig. 1a(ii) for pH
7.0, from which the surface coverage is deduced, assuming elec-
trochemical reversibility, to be 2.0 ± 1.2 � 10�10 mol cm�2, in
approximate agreement with that estimated above). We will only
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Fig. 2. (a) Representative CVs (10 6 v/mV s�1
6 250) illustrating the voltammetry of an

(iii)) and presence (panels (ii) and (iv)) of H2O2 (at a concentration of 0.1 mM). The inse
HRP-type-I, (i) and (ii); HRP-type-VI, (iii) and (iv). (b) Variation of the CV peak reduct
immersed in BR (pH 7.0) for peaks a and b (q.v. Fig. 1a(i)); (�) HRP-I/GC and (}) HRP-VI/G
VI/AQ/GC at 1 and 2 immersed in PBS (pH 7.0) (q.v. Fig. 3a(i) and (ii)). (c) SWV of HRP-m
and (iii), of H2O2. HRP-type-I, (i) and (ii); HRP-type-VI, (iii). In (i), peaks at�0.37 V decreas
current on HRP-I/GC with H2O2 concentration, gradient of 1.46 nA (lM)�1, R2 = 0.998
2.0 6 [H2O2]/lM 6 150.0.
be interested in the response of such electrodes at pH 7.0 hereaf-
ter, since these conditions are physiologically-relevant and opti-
mal for enzyme activity. It suffices to note that the final two-
electron product is the fully protonated quinol (for which [18]

pK25�C
a1
¼ 9:00; pK25�C

a2
¼ 12:05).
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This anthraquinone-modified electrode allows for the redox
catalysis of hydrogen peroxide, as suggested by earlier work [12].
Such effects are illustrated in Fig. 1b. The absence of the surface
modification results in a broad voltammetric wave corresponding
to hydrogen peroxide reduction (for [H2O2] > 20 lM, data not
shown; the combination of surface anthraquinone and hydrogen
peroxide results in sharper signals and more current passed during
each anthraquinone wave. Moreover, the peak potentials shift neg-
atively with decreasing experimental timescale as expected for
such behaviours [19,20]. SWV (q.v. Fig. 1b(ii)) suggests that several
linear regions in the current/concentration plot exist, to a lower le-
vel of 0.2 lM.

Fig. 2a shows voltammograms corresponding to the reduction
of adsorbed protein films of HRP. These two broad waves are seen
to be apparently quasi-reversible – the peak potentials shift to
more negative values whilst the peak current increases with
decreasing timescale (q.v. Fig. 2a(i), (iii) and b), but chemically irre-
versible forming a new species detected voltammetrically at
�0.75 V [3]. There is a noticeable difference between types-I and
VI HRP: the latter is reduced more easily, yet gives rise to larger
currents (at constant enzyme coverage) presumably due to its
greater activity. The presence of hydrogen peroxide dramatically
changes the voltammetry (Fig. 2a(ii), (iv) and b) – the narrower
peaks coupled with a square-root scan rate dependence of the peak
current are indicative of redox catalysis, as has been described [21].
As before, kinetics of this process [20] have not been deduced ow-
ing to the complex reaction pathways involved. Nevertheless, the
square wave voltammetry current at �0.8 V is linear with
[H2O2] < 4.0 mM (type-I HRP) or [H2O2] < 30.0 lM (type-VI HRP),
q.v. Fig. 2c. This difference between these two enzymes was ob-
served to be consistent; we attribute the underlying cause to be
statistical effects in the orientation of the adsorbed protein [10].

Fig. 3a illustates voltammograms of the combined anthraqui-
none/HRP surface modification. These sharp adsorbed waves fol-
low increase with scan rate, and are suggestive of the mediated
reduction of HRP. In the presence of hydrogen peroxide, both vol-
tammetric waves increase in size (q.v. Fig. 3b), with greater sensi-
tivity being observed at 37 �C rather than room temperature, as
expected, with linearity in the current-concentration plot observed
for 0.015 6 [H2O2]/mM 6 2.0 (type-I HRP) and 0.2 6 [H2O2]/
lM 6 1.0 (type-VI HRP), the latter giving an estimated limit of
detection (based on 3sb/b) of 0.04 lM. It is important to note that
the perceived reaction pathway results in inhibition at high perox-
ide concentrations depending on the enzyme activity [4], as ob-
served in Fig. 3b.
4. Conclusions

An amperometric biosensor for the detection of hydrogen per-
oxide has been reported. Noticeable differences in enzyme type
have been established, in particular in sensitivity and range of lin-
ear response. In particular, we note that the use of a type-VI sensor
may be appropriate for study of hydrogen peroxide released from
a single cell under oxidative stress injury, since the measured
extracellular concentration [22] is as low as 10 nM. In contrast,
use of a type-I sensor may be of interest for highlighting conditions
of myocardial-ischaemia, for which hydrogen peroxide concentra-
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Fig. 3. (a) Typical CVs (10 6 v/mV s�1
6 250) of a GC electrode covalently bound to AQ and onto which HRP is adsorbed immersed in PBS (pH 7.0); (i) HRP-type-I; (ii) HRP-

type-VI. (b) Representative SWVs for HRP/AQ/GC immersed in PBS (pH 7.0) containing H2O2 at 22 �C, (i) and (iii) and 37 �C (ii) and (iv); HRP-type-VI, (i) and (ii), HRP-type-I,
(iii) and (iv). Inset (i) calibration: 205 and 97 nA (lM)�1, 0.2–1.0 lM, R2 = 0.997 (peak 1, d, and 2, s, respectively); inset (ii) calibration at �0.62 V: 7.7 nA (lM)�1, 1.0–
15.0 lM, R2 = 0.983; (iii) calibration: 0.3 nA (lM)�1, 20.0–2000.0 lM, R2 = 0.994; (iv) calibration: 2.0 nA (lM)�1, 15.0–2000.0 lM, R2 = 0.993.

1980 Y. Dou et al. / Electrochemistry Communications 11 (2009) 1976–1981
tions are [5,6] between 3.0 lM and 1.0 mM. Indeed, long-term
storage of the electrode at 4 �C immersed in PBS (pH 7.0) demon-
strated a 93% response after 45 days. A future work will examine
the performance of these sensing systems in human heart perfu-
sion studies.
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A novel DNA loading methodology is presented for performing DNA extraction on a microfluidic

system. DNA in a chaotropic salt solution was manually loaded onto a silica monolith orthogonal to

the subsequent flow of wash and elution solutions. DNA was successfully extracted from buccal swabs

using electro-osmotic pumping (EOP) coupled with in situ reagents contained within a 1.5% agarose gel

matrix. The extracted DNA was of sufficient quantity and purity for polymerase chain reaction (PCR)

amplification.
Introduction

Isolating deoxyribonucleic acid (DNA) from other cellular

components in order to perform subsequent analysis and/or the

pre-concentration of a dilute sample are the main objectives of

DNA extraction methodologies. For example, DNA extraction

is critical for bioanalytical applications based on blood samples

in which haem protein is a known inhibitor of PCR.1 Solid-phase

extraction protocols in which DNA is adsorbed onto a solid

support, usually silica-based, are commonly employed. The use

of chaotropic agents, such as guanidine hydrochloride, not only

facilitates binding of DNA to the silica surface but also acts to

lyse cells and inactivate deoxyribonucleases (DNases).2 Any

cellular debris is then removed from the system using an alcohol

wash. Finally the DNA is eluted in a low ionic strength buffer

such as Tris-EDTA (TE) buffer or water. This method has the

added advantage that it allows pre-concentration of the DNA,

which is of particular relevance where samples are limited, such

as those available in forensic cases.

Solid-phase extraction methodology commonly employs

a packed column or membrane such as those in the commercially

available Qiagen� DNA extraction kits.3 To replicate this type

of system within a microfluidic device it is vital to create a large

surface area to which the DNA can be adsorbed. The silica solid-

phase can exist in a variety of forms such as immobilised parti-

cles, microfabricated pillars or monoliths as recently reviewed by

Wen et al.4 The use of sol-gels of monoliths not only provides

a large surface area for adsorption but also offers favourable

properties in terms of reproducibility when incorporated into

microfluidic devices.5

When performing DNA extraction in microfluidic systems, the

required reagents are commonly moved within the device using

hydrodynamic or electrokinetic pumping, allowing accurate

control of flow rates. More recently, DNA extraction devices
aDepartment of Chemistry, University of Hull, Cottingham Road, Hull, UK
HU6 7RX. E-mail: s.j.haswell@hull.ac.uk; Fax: +44 (0)1482 466410; Tel:
+44 (0)1482 465475
bPostgraduate Medical Institute, University of Hull, Cottingham Road,
Hull, UK HU6 7RX; Fax: +44 (0)1482 466996; Tel: +44 (0)1482 466996

3430 | Lab Chip, 2009, 9, 3430–3432
have emerged which rely on centrifugal forces to move solutions

hydrodynamically through the microfluidic device. For

example, pathogen-specific DNA extraction using antibody-

conjugated magnetic beads was performed on a compact disc

(CD) platform, incorporating target pathogen capture, washing

and cell lysis to extract the DNA.6 Whilst such methods for

controlling movement of solutions work very well, the sample is

typically loaded onto the extraction matrix using the same

direction of flow as the wash and elution solutions, which can

lead to practical difficulties when producing sealed interfaces

between the macro- and micro-scale. By dispensing with

mechanically-driven connections, the interfacing between

different systems becomes easier as does the practical and engi-

neering design of the system.

The work reported here demonstrates a practical approach to

the introduction of a biological sample onto a silica monolith

using the sample inlet employed for loading of the monolith

solution. The wash and elution steps for DNA extraction

are then performed in an orthogonal direction through the

microfluidic device.
Experimental

Microfluidic device manufacture

All glass microfluidic devices were produced using standard

photolithography and wet etching techniques to produce the

design shown in Figure 1.7 The features were etched to a depth of

250 mm using hydrofluoric acid. In order to allow the micro-

fluidic device to be loaded with reagents and enable connection to

electrodes for EOP, 1 mm holes were drilled for the inlets and

outlet. The etched glass surface was then thermally bonded to

a second 1 mm glass wafer to produce the complete microfluidic

device.

Silica-based monoliths were produced by mixing potassium

silicate solution (21% SiO2 and 9% K2O (VWR International,

UK)) and formamide (Alfa Aesar, UK) in a 10:1 ratio.8 In order

to make sure the monolith was only produced in the DNA

extraction chamber, the entire device was first filled with

glycerol (Sigma-Aldrich, UK). The monolith solution was then
This journal is ª The Royal Society of Chemistry 2009
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Fig. 1 Schematic of the microfluidic device incorporating the DNA

extraction chamber with an adjacent chamber providing the potential for

integrated DNA amplification. There is an inlet in the top of the DNA

extraction chamber for loading of both the solid-phase matrix and DNA

in loading solution (AB). The position of the holes for carbon electrodes

for EOP is shown (B–FC).
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injected into the DNA extraction chamber, displacing the

glycerol, and the microfluidic device placed in an oven at 90 �C
for 15 min. After this initial heating step, the remaining

glycerol was removed and the microfluidic device placed back

in the oven overnight for complete polymerisation to occur.

Once polymerised, the monoliths were washed with ethanol to

remove any unreacted solution. Prior to DNA extraction

the monoliths were washed with 10 mM TE buffer at 5 ml/min

for 30 min.

For EOP, the wash and elution reagents were encapsulated in

1.5% (w/v) low melting temperature (LMT) agarose gels

(Sigma-Aldrich, UK) and pre-loaded into the relevant channels

on the microfluidic device. The wash gel, produced by dissolv-

ing 0.015 g LMT agarose in a solution of 500 ml of ethanol,

400 ml of distilled water and 100 ml of 1 M NaCl (Sigma-

Aldrich, UK) was injected into channel B. The elution gel,

produced by dissolving 0.015 g LMT agarose in 1 ml 10 mM

TE buffer, was injected into channel D. Injection molded

carbon-containing polystyrene plugs were then fitted into the

1 mm reagent loading holes and attached to platinum elec-

trodes, through which a voltage could be delivered using an

external power supply.
DNA extraction

Buccal cells were collected from volunteers using an OmniS-

wab� (Whatman, UK) scraped along the inside of the cheek.

The buccal swab was then added to a 1 ml solution of 5 M

guanidine hydrochloride (GuHCl) (Sigma-Aldrich UK) in

10 mM TE buffer and incubated at room temperature for 5 min.

A 50 ml aliquot of the DNA in loading buffer was then manually

injected onto the monolith using a displacement pipette and

capillary action, with any excess sample collected in the waste

channel (C) which gave relatively low hydrodynamic resistance.

Once the biological sample was added the hole was sealed using

a polystyrene plug to prevent leaking/contamination.

When using EOP, the ethanol gel contained in channel B was

used to wash the monolith by applying a voltage of 100 V/cm

between electrodes B and C. The DNA was then eluted using the

10 mM TE buffer gel contained in channel D by applying

a voltage of 100 V/cm between electrodes D and E. The eluted

DNA was then removed from the microfluidic device through

port E prior to analysis.
This journal is ª The Royal Society of Chemistry 2009
Analysis of extracted DNA

Quantification of the DNA obtained from the extraction

procedure was carried out using a Quant-iT� PicoGreen�

double stranded (ds) DNA Assay Kit (Invitrogen, UK) and

a FLUOstar Optima Plate Reader (BMG Labtech, UK).

PCR amplification of the extracted DNA was performed using

a PCR reaction mixture composed of the following: 1x NH4

buffer, 1 mM MgCl2, 200 mM each dNTPs, 1 mM forward

primer, 1 mM reverse primer, 1 unit BIOTaq� DNA polymerase

and 10 mg bovine serum albumin. Forward and reverse primers

were designed for amplification of the Amelogenin locus with the

following sequences: 50-CCCTGGGCTCTGTAAAGAATAG

TG-30 and 50-ATCAGAGCTTAAACTGGGAAGCTG-30.9 All

PCR reagents were purchased from Bioline, UK except for the

primers which were custom-made by Eurofins MWG Operon,

Germany. The samples were then amplified using a Techne

TC-312 thermal cycler for 28 cycles, each cycle comprising

heating steps of: 94 �C for 30 s, 59 �C for 30 s and 72 �C for 30 s.

An initial denaturing step of 94 �C for 5 min and a final extension

step of 60 �C for 45 min were also included.

PCR products were analysed using slab-gel electrophoresis. A

1.5% (w/v) agarose gel was prepared by dissolving 1.5 g agarose

(Bioline, UK) in 100 ml 0.5 � TBE buffer (0.09 M Tris-HCl

(Sigma-Aldrich, UK), 0.09 M boric acid (Fisher Scientific) and

0.002 M EDTA in distilled water). PCR products were mixed

with loading dye (MBI Fermentas, Canada) and added to the gel,

along with a DNA molecular weight standard, Hyperladder II

(Bioline, UK), before being subjected to electrophoresis at 120 V

until adequate separation was achieved. Gels were then stained

using 0.5 mg/ml ethidium bromide (CLP, UK) in 0.5 � TBE

buffer for 20 min and then visualized using a UV trans-

illuminator.
Results and discussion

DNA was successfully extracted from a solution of GuHCl

containing buccal cells by manually pipetting the sample onto

a monolith which was then washed and eluted using EOP. The

average DNA concentration in the eluent was 0.44 ng/ml. The

extracted DNA was assessed for quantity and integrity using

PCR. Successful amplification of the target locus, producing

PCR products of the expected size (106 bp) from DNA extracted

using EOP, indicated that the eluted DNA was of sufficient

quality for downstream applications (Fig. 2).

The results confirm that the monolith-based sample loading

procedure coupled with preloaded reagents and EOP represent

a suitable combination of techniques for DNA extraction on

a microfluidic device. Optimum DNA elution was obtained using

an applied voltage of 100 V/cm for 10 min. In addition, extrac-

tion based on hydrodynamic pumping was carried out, using

established methodology,10 to evaluate the effectiveness of the

sample loading procedure. The hydrodynamic pumping DNA

extraction efficiency was found to be 72% compared to that of

52% with the optimised EOP protocol, which correlates with

DNA extraction efficiencies reported in the literature ranging

from 30% to 84% for l-phage DNA.11,12 The difference in the

DNA extraction efficiencies between the hydrodynamic and

electro-osmotic pumping system presented here can be attributed
Lab Chip, 2009, 9, 3430–3432 | 3431
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Fig. 2 Example of an agarose gel showing PCR products of the expected

size (106 bp) for amplification of the Amelogenin locus from female

genomic DNA where samples are: (1) DNA size ladder; (2) positive PCR

control containing DNA extracted using a QIAamp� DNA Micro Kit;

(3) negative PCR control containing no DNA; (4–6) replicate samples

showing PCR products of DNA extracted from the microfluidic device

using EOP.
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to the different flow rates achieved and the opposing electro-

phoretic force which acts upon the DNA when using EOP.

Despite this slightly lower recovery, the DNA extraction effi-

ciency of EOP was still sufficient for subsequent PCR and also

enables a proportion of the DNA to be retained upon the

monolith for subsequent analysis, particularly useful for forensic

samples.

Conclusion

The manual loading method described offers a simple practical

means of introducing liquid samples onto microfluidic systems.

The inlet above the DNA extraction chamber serves two

purposes: firstly it allows the monolith solution to be introduced

prior to polymerisation and secondly, it enables the loading of

a DNA sample into the microfluidic device. Following sample

addition, DNA extraction was successfully performed using

EOP, producing DNA of PCR-amplifiable quantity and quality.
3432 | Lab Chip, 2009, 9, 3430–3432
By simply using a pipette to achieve manual injection of

a biological sample, via capillary action, to facilitate DNA

adsorption prior to performing a DNA extraction protocol, no

external connection is required. In addition, the use of disposable

pipette tips provides a cost effective means of adding samples to

a microfluidic system with minimal risk of contamination.

Incorporation of all the necessary reagents for performing

DNA extraction on the microfluidic device creates a ready-to-use

system. Indeed the need for complex interfaces or macro to micro

connections is eliminated in this system, which only requires the

presence of simple electrodes to control reagent movement. This

in turn leads to a more robust microfluidic system for DNA

extraction.
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Abstract This paper describes a simple and efficient

method for producing an on-chip enzyme immobilized

monolith micro-reactor that integrates a microfluidic elec-

trochemical cell for rapid characterization of enzymatic

kinetics. The monolith was generated using a sol–gel

method, followed by PEI functionalization and enzyme

immobilization via electrostatic attraction between elec-

tronegative enzymes and electropositive PEI polymers.

Using the proposed immobilization strategy, a glucose

oxidase (GOD) immobilized monolith micro-reactor has

been produced with the controllable porosity that gives

better enzyme kinetics compared to previously reported

devices. This can be attributed to a favourable enzyme-

substrate affinity in which more than 98% of the immo-

bilized enzyme remains in an active conformation. The

kinetic studies conducted have identified that a similar

value of the kcat is obtained for immobilized GOD

(13.4 s-1) and GOD free in solution (14 s-1) whilst the

immobilized Michaelis constant Km(app) (7.2 mM) is

*4 times lower than GOD in solution (25 mM). In addi-

tion, the immobilized GOD exhibits increased stability,

retaining at least 95% of the initial activity when stored

of 30 days at 4�C, compared to only 60% for GOD in

solution. Furthermore, the same enzyme immobilization

strategy has been used for choline oxidase immobilization

and similar kinetics to choline oxidase in solution were

observed, once again indicating better maintenance of the

enzyme conformation provided by the proposed method.

Keywords Micro-reactor � Monolith � Immobilization �
Kinetics � Glucose oxidase � Choline oxidase

1 Introduction

The use of integrated enzymatic micro-reactors has

attracted a growing interest in recent years due to their

ability to facilitate the characterization of reaction kinetics

which in turn allows for faster screening of enzymatic

reaction parameters including substrate concentration, new

biocatalyts and feedstock (Verpoorte 2003; Krenková and

Foret 2004; Girelli and Mattei 2005; Urban et al. 2006;

Peterson 2005). To date, enzyme immobilization methods

in a micro-reactor configuration have focused mainly on

one of three strategies: (i) direct attachment of enzymes to

a modified surface (Guo et al. 2003; Mao et al. 2002;

DeLouise and Miller 2005; Gleason and Carbeck 2004;

Holden et al. 2004; Thomsen et al. 2007; Koh and Pishko

2005; Honda et al. 2006; Tokeshi et al. 2003), (ii) attach-

ment of enzymes to beads (packed-bed) (Wang et al. 2000;

Seong and Crooks 2002; Park et al. 2003; Nomura et al.

2004; Vodopivec et al. 2003; Kerby et al. 2006; Seong

et al. 2003) and (iii) the immobilization of enzymes onto

monoliths (Peterson et al. 2002; Mersal and Bilitewski

2005; Kato et al. 2005; Sakai-Kato et al. 2003; Kawakami

et al. 2005; Ota et al. 2007; Legido-Quigley et al. 2003;

Hilder et al. 2002). There have been, however, a number of

reported drawbacks associated with both direct surface

attachments and the packed bead approach, including long

diffusion times (Krenková and Foret 2004) and the loss of

enzyme activity owing to altered structural conformation

and/or steric hindrance resulting from covalent bonding,

cross-linking and the encapsulation associated with these

methods (Guo et al. 2003; Mao et al. 2002; DeLouise and
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Miller 2005; Peterson et al. 2002; Mersal and Bilitewski

2005; Kato et al. 2005; Sakai-Kato et al. 2003; Kawakami

et al. 2005; Ota et al. 2007). Accordingly, a high enzyme

load is generally required with these approaches to allevi-

ate the limitations indicated (Park and Clark 2002;

Luckarift et al. 2004; Lei et al. 2002; Demers et al. 2001).

In addition, packed-bed micro-reactors often generate

increased backpressure that gives rise to leaking or

blocking problems, making the maintenance of micro-

reactors stable conditions difficult (Honda et al. 2006;

Tokeshi et al. 2003), which has led in turn to special

reaction chamber designs for lowering backpressure

(Kerby et al. 2006; Seong et al. 2003). In recent years,

monolith micro-reactor devices (continuous beds) have

emerged as an attractive alternative to packed beads for the

analysis of proteins, peptides and nucleic acids because of

good porosity control and minimal backpressure effects

(Verpoorte 2003; Krenková and Foret 2004; Girelli and

Mattei 2005; Urban et al. 2006; Peterson 2005). Generally,

silicon alkoxides such as TMOS (tetramethoxysilane) and

MTMOS (methyltrimethoxysilane) can be used to generate

silica-based monoliths but current approaches usually

require the addition of other additives, i.e. PEG (polyeth-

ylene glycol) and dextrin to stabilize the structure (Kato

et al. 2005; Sakai-Kato et al. 2003) and fabrication can be

time consuming (ca. 3–15 days) (Kato et al. 2005; Sakai-

Kato et al. 2003; Kawakami et al. 2005). In addition, large

molecules such as proteins may not be able to diffuse

through the nanopores of a hydrogel network (Sakai-Kato

et al. 2003). To date, the maximum percentage of active

enzymes immobilized has been around 75% compared to

the equivalent enzyme in solution, indicating that at least

25% of the enzyme is immobilized in an inactive confor-

mation (Mao et al. 2002; DeLouise and Miller 2005; Honda

et al. 2006; Vodopivec et al. 2003; Kerby et al. 2006;

Sakai-Kato et al. 2003).

In order to improve on the current immobilization effi-

ciency, we propose a new approach for enzyme immobi-

lization that involves the on-chip preparation of

macroporous silica-monoliths within a glass microfluidic

channel, followed by modification with PEI (polyethylen-

imine) and enzyme immobilization via electrostatic

attraction between electronegative enzymes and electro-

positive PEI polymers. In addition, the on-chip integration

of an appropriate electrochemical detection system could

provide rapid evaluation of enzyme activity. Two enzymes,

glucose oxidase (GOD) and choline oxidase, have been

immobilized separately within a PEI-coated silica monolith

micro-reactor and enzymatic kinetics have been evaluated.

The proposed method not only offers the advantages of

simple, low cost and shorter preparation times compared to

existing methods (Kato et al. 2005; Sakai-Kato et al. 2003;

Kawakami et al. 2005) but also favours the maintenance of

the active conformation and stability of the immobilized

enzymes.

2 Experimental

2.1 Materials

Glucose oxidase from Aspergillus niger (GOD, MW

160 kDa), choline oxidase from Alcaligenes sp. (CHO,

MW 72 kDa), choline chloride (CH, 99%) and tris(hydroxy-

methyl)aminomethane (Tris, 99%) were purchased from

the Sigma-Aldrich. Polyethylenimine (PEI, 99%, molecu-

lar weight 423, 800, 2000, 10000 and 25000, respectively),

KCl (99%), D-Glucose (99%), HCl (37%), tetramethoxysilane

(TMOS, 99%) and methyltrimethoxysilane (MTMOS, 99%)

were purchased from Fluka. Milli-Q water (18 MX cm) was

used to prepare all aqueous solutions.

2.2 Preparation of silica-monoliths

in the micro-reactors

Glass micro-reactor devices were fabricated in house using

standard photolithography technology followed by wet

etching and thermal bonding (Fletcher et al. 2002) and

comprised a channel in which a monolith was produced

and an electrochemical detector integrated. A photograph

of the micro-reactor system used is shown in Fig. 1. The

dimensions of the channels were 600 lm wide, 50 lm

deep and 20 mm long for the monolith channel and 1.5 mm

wide, 50 lm deep and 20 mm long for electrochemical

detection channel. The connecting channel between the

monolith and detector was 100 lm wide, 50 lm deep and

5 mm long. The silica-monoliths were prepared from two

precursors, TMOS and MTMOS using a sol–gel method

modified from that reported by Kawakami (Kawakami

et al. 2005). A mixture containing 18 ll of TMOS and

69 ll of MTMOS (at 1:4 molar ratio) was added to dilute

HCl solution (8 ll of 1 mM HCl and 13.2 ll water) and

allowed to hydrolyse for 15 min under sonication at room

temperature to form a homogeneous sol. A 4.2 ll aliquot

of sol was mixed with 17.8 ll of water and 22 ll of

0.2 M (pH 7) Tris–HCl buffer, and the resultant liquid

mixture was immediately loaded into the monolith

channel and allowed to polymerize for 15 h at room

temperature followed by vacuum drying for 1 h to form a

silica monolith with a porosity of 0.67 (void volume ca

0.4 ll).

2.3 Measurement of the porosity of silica monolith

The porosity ð2Þ of silica monoliths was estimated using

Eq. 1 where d is the density of water by first measuring the
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weight of water filled into an empty capillary (WT) and

then into a monolith filled capillary (WM). The measure-

ments were normally carried out five times and an average

taken.

2¼ ðWM=dÞ
ðWT=dÞ ¼

WM

WT

ð1Þ

2.4 Modification of silica monolith with PEI

and enzyme immobilization

The silica-monoliths were loaded with PEI solution

(concentration 10 mg/ml in 0.1 M neutral Tris–HCl buf-

fer) and kept in a fridge (4�C) for at least 2 h followed by

vacuum drying for 1 h. PEI-modified monolith was then

washed with 0.05 M neutral Tris–HCl buffer to remove

loosely bound PEI and vacuum drying for 1 h to generate

the PEI-coated silica-monolith. An enzyme solution (i.e.

GOD 4.8 mg/ml (0.1 U/ll) or CHO 3.3 mg/ml (0.05 U/ll)

in 0.05 M neutral Tris–HCl buffer) was then loaded into

the monolith (required ca. 0.4 ll of enzyme solution to

fully filled the monolith) using a micropipette. The

monolith was then placed in a fridge (4�C) for 1 h fol-

lowed by vacuum drying for 30 min to generate the

enzyme immobilized monolith micro-reactor. Three elec-

trodes were then placed into the holes in the detection

channel of the device and sealed by using epoxy resin.

Before kinetic measurements were carried out, the micro-

reactor was washed for 5 min with a working buffer

solution that was collected.

2.5 Evaluation of solution and immobilized

enzyme activity

The enzyme kinetic measurements were carried out on-

chip to evaluate the performance of the immobilized

enzyme by comparing the data obtained to a solution only

system. In order to evaluate the immobilized enzyme

activity a continuous flow micro-reactor system that con-

sisted of a syringe pump (PHD 2000, Harvard), a syringe

(1 ml), a micro-injector with a sample loop of 2.5 ll and an

enzyme immobilized monolith micro-reactor equipped

with on-chip amperometric detector was used. A working

buffer solution was continuously pumped into the monolith

through a plastic tube (0.5 mm I.D.) that connected the

syringe pump with the inlet of the monolith. The detector

was constructed from a Pt disc-working electrode (0.5 mm

diameter), a Pt wire counter electrode (1 mm diameter) and

a Ag/AgCl (1 mm diameter) reference electrode and

aligned as shown in Fig. 1.

A series of substrate concentrations (0.25, 0.5, 0.75 and

1 mM) were injected onto the monolith using a 6-port

valve injector. The carrier (0.05 M neutral Tris–HCl buffer

containing 10 mM KCl) held at a constant flow rate and the

H2O2 product formed during enzyme reaction was am-

perometrically measured using the on-chip electrochemical

cell according to Eqs. 2 and 4 for GOD and Eqs. 3 and 4

for CHO.

Enzymatic reactions:

d-Glucoseþ O2 þ H2O! d-Gluconic acidþ H2O2 ð2Þ

Cholineþ 1

2
O2 þ H2O! Choline acetateþ H2O2: ð3Þ

Electrode reaction:

H2O2 ! O2 þ 2Hþ þ 2e�: ð4Þ

All amperometric measurements were obtained using a

PalmSens Electrochemical Sensor interface (IVIUM

Technologies, The Netherlands) with a computer at a

fixed electrode potential (650 mV vs. Ag/AgCl) at room

temperature. It should be noted that the detection technique

used is applicable not only for enzymes producing H2O2

but also has wider applicability for enzymes giving redox

products measurable with bare electrodes.

Based on flow rates of 5, 7.5 and 10 ll/min for the

buffer carrier stream, the enzyme kinetics were determined

using the electrochemical Eadie–Hofstee equation in

Lineweaver–Burk form (Eq. 5) under steady-state condi-

tions (Kaku et al. 1994; Arai et al. 1998):

1

j
¼

KmðappÞ
jmax

1

½S� þ
1

jmax

ð5Þ

where Km(app) was the apparent Michaelis constant, j the

current intensity, jmax the maximum current intensity and

(a) (b) 

(f) (g) (h) 

(d) 

(e) (c) 

Fig. 1 Photograph of micro-reactor system: (a) silica monolith,

600 lm wide, 50 lm deep and 20 mm long; (b) electrochemical

detection channel, 1.5 mm wide, 50 lm deep and 20 mm long; (c)

link channel, 100 lm wide, 50 lm deep and 5 mm long; (d) inlet,

1.5 mm diameter; (e) outlet, 1.5 mm diameter; (f) working electrode

(Pt disc, 0.5 mm diameter); (g) Pt wire (1 mm diameter) counter

electrode and (h) Ag/AgCl (1 mm diameter) reference electrode. A

working buffer solution was continuously pumped into the monolith

micro-reactor through a plastic tube (0.5 mm diameter) that con-

nected the syringe pump with the inlet of the monolith micro-reactor
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[S] the substrate concentration. The Km(app) and jmax values

could be directly obtained from the Lineweaver–Burk plots

and the Vmax values were determined from jmax values

according to a standard H2O2-current calibration curve

divided by average contact times of 2.4, 3.2 and 4.8 s for

the flow rate of 10, 7.5 and 5 ll/min, respectively. The

standard H2O2-current calibration curves (linear range

from 0.005 to 10 mM) were obtained by injecting a series

of different concentrations of freshly prepared H2O2 in

working buffer solution after kinetic measurements were

taken. The contact times were calculated from the

measured void volume of the monolith (0.4 ll for

porosity 0.67 ± 0.04) divided by flow rates. The kcat was

determined from Eq. 6.

Vmax ¼ kcat½E� ð6Þ

where, [E] was immobilized GOD or CHO concentration in

a monolith micro-reactor. The quantity of enzyme immo-

bilized was determined from the difference between the

amount of enzymes in the enzyme solution and that col-

lected from washings which was measured using a Gene-

Quant instrument (Pharmacial Biotech) at 280 nm (He

et al. 2008). All measurements were normally repeated at

least three times and data was then presented as mean and

standard deviation values.

For comparative purposes, batch-based enzymatic

reactions were also carried out and the activity of GOD and

CHO in free solution was determined by the method pre-

viously reported (He et al. 2008).

2.6 Scanning electron microscopy

Due to the practical difficulty of cutting and so losing a

micro-reactor device to obtain a perfect cross-section of

the silica monolith, a glass capillary of similar channel

geometry was used to observe the type of monolith being

produced on-chip. Each sample was sputter-coated with a

thin layer of gold-platinum (thickness approximately 2 nm)

using a SEMPREP 2 Sputter Coater (Nanotech Ltd.). Once

sputtered, samples were imaged on a Cambridge S360

scanning electron microscopy (SEM) operated at fixed

voltage (20 kV).

3 Results and discussion

3.1 Effect of silica-monolith porosity as a function

of sol volume used in the polymerization process

SEM images (see Fig. 2a–b) of the cross-section of the

silica-monoliths formed in a glass capillary (0.5 mm

diameter) revealed that the monoliths consisted of fused

particles of 3–6 lm in diameter, forming a macroporous

structure that could minimize backpressure effect in a

continuous-flow system. In addition, the monolith porosity

could be selectively changed by controlling the volume of

the silicic acid solution used, for example, the measured

porosity was reduced from 0.67 to 0.33 (see Fig. 3a–b) by

increasing the volume of sol from 4.2 (silicic acid 0.52 M)

Fig. 2 SEM images of the

cross-section of silica monoliths

formed in a capillary of 0.5 mm

diameter: a low magnification;

b silica-monolith at high

magnification; c PEI-coated

silica-monolith and d GOD

immobilized on the surface of

PEI-coated silica-monolith.

(scale bar 20 lm)
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to 12.6 ll (silicic acid 1.57 M) in the polymerization

reactions.

3.2 Functionalization of silica-monolith with PEI

polymers and enzymes

As indicated, the use of PEI polymers for enzyme immo-

bilization can promote the enzyme activity by avoiding the

formation of covalent bonds and/or encapsulation pro-

cesses. PEI polymers have been found to have the ability to

carry proteins in aqueous media via the electrostatic

attraction between the positively charged polymers and

the negatively charged proteins (He et al. 2008; Laarz

and Bergström 2000; Han et al. 1999). PEI is a cationic

polyelectrolyte and acts as a weak base owing to the

pH-dependent protonation of its amine groups in water.

At pH & 2, approximately 70% of the amine groups are

protonated, thus carrying positive charges that decrease

with increasing pH and approach zero at pH & 11.5 (De-

ere et al. 2002). In this study, silica and the enzymes used

have low isoelectric point (pI) values, i.e. 5.4 for GOD, 3–4

for CHO and ca. 2 for silica, meaning that at neutral pH

enzymes and silica are electronegative species whilst PEI

polymer represents an electropositive species. Therefore,

by using electrostatic attraction, PEI polymers can be

readily coated on the surface of silica-monolith (see

Fig. 2c), thus enabling enzymes to be efficiently immo-

bilized on the PEI-coated monolith (see Fig. 2d).

3.3 Effects of reaction parameters on enzyme

immobilization

Several reaction parameters, i.e. PEI polymer molecular

weight (MW) and concentration, buffer type and

concentration for the enzyme immobilization have been

investigated to optimize the performance of the immobi-

lized enzyme. The influence of PEI polymer MW and

concentration on the activity of immobilized enzymes are

presented in Table 1. It can be seen from Table 1 that the

performance of immobilized enzymes can be significantly

affected by both the PEI polymer MW and concentration.

A significant reduction in the response current, which is

proportional to the enzyme activity, was observed for PEI

MW 25000 at a concentration of 20 mM, probably due to

steric hindrance produced by the larger polymer and high

concentrations. The effect of buffer on the performance of

immobilized enzymes is attributed to the ionic strength of

buffer solutions (Laarz and Bergström 2000; Han et al.

1999; Deere et al. 2002). Experiments indicated that

washing with water and 0.05 M neutral Tris–HCl buffer

with 10 mM KCl (ionic strength 0.057 mM) failed to

release any immobilized enzymes, even at high flow rates

Fig. 3 SEM images of the

cross-section of silica monoliths

formed in a capillary of 0.5 mm

diameter with: a silicic acid

0.52 M; b silicic acid 1.57 M

(scale bar 20 lm)

Table 1 Response current of monolith micro-reactors coated with

different molecular weights (MW) and concentrations of PEI polymer

PEI MW PEI concentration

(mg/ml)

Response

current (nA)a

423 10 0

800 10 2.7 ± 0.2

2,000 10 18.5 ± 1

10,000 10 29.5 ± 2

25,000 10 13.8 ± 2

10,000 5 19.3 ± 2

10,000 20 16.8 ± 0.5

Flow rate of buffer was 10 ll/min and substrate concentration 1 mM
a Mean value ± SD
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(30 ll/min). However, washing with 0.1 M phosphate

buffer (ionic strength 0.6 mM) could release at least 95%

of immobilized enzymes. Using a high concentration of

KCl (i.e. 0.1 M with 0.05 M Tris–HCl, ionic strength

0.15 mM) also gradually washed out the immobilized

enzymes. This observation was consistent with reports in

the literature (Laarz and Bergström 2000; Han et al. 1999;

Deere et al. 2002). The reaction conditions for the best

performance of the immobilized enzymes were to be PEI

MW 10000 and concentration 10 mg/ml in 0.05 M neutral

Tris–HCl buffer containing 10 mM KCl. Using these

optimal conditions, maximum enzyme immobilization was

found to be approximately 100 mg per gram of silica-

monolith. It should be noted that enzyme release, however,

occurred at flow rates greater than 40 ll/min, leading to the

loss of enzyme activity.

3.4 Evaluation of the kinetic parameters for free

and immobilized GOD and CHO enzymes

The kinetic parameters obtained from the (1/j vs. 1/[S])

double-reciprocal plots for both the immobilized (see

Fig. 4a) and solution-based GOD are summarized in

Table 2. The Km for GOD free in solution was found to be

25 ± 2 mM, which agreed well with the reported value

(27 mM) (Rogers and Brandt 1971). The Km(app) for

immobilized GOD was, however, found to be around

7 mM, which is nearly 4 times lower than the Km for GOD

in solution. This value of the Km(app) was also smaller than

22 mM reported for GOD entrapped in a silica sol–gel

membrane (Wang et al. 1998), 20 mM for GOD bound to

self-assembled monolayer electrode (Murthy and Sharma

1998), 25 mM for GOD-polypyrrole (Vidal et al. 1998) and

11.8 mM for GOD immobilized on silica hybrid sol–gel

film (Liu and Sun 2007). The Km(app) generally relates to

the diffusion of the substrate from bulk solution into the

enzyme’s substrate binding site with a lower Km(app) indi-

cating a smaller diffusion limitation (DeLouise and Miller

2005). From Table 2, effects of flow rates on Km(app) were

also obtained. Values for the immobilized Km(app) were

found to be independent of flow rates, which differed from

the packed-bed methodology where the immobilized

Km(app) showed dependence on flow rates due to a mass

transfer limitation effect (Kerby et al. 2006; Seong et al.

2003). A similar value of the kcat for immobilized GOD

(13.4 s-1) and GOD free in solution (14 s-1) was

observed, indicating that good maintenance of the enzyme

conformation was being provided by the proposed method.

Comparison between values of the Vmax for GOD in

solution and the immobilized GOD in PEI-coated monolith

micro-reactor indicates that the immobilized Vmax

(23.6 mM/min) is about 74 times higher than the solution

Vmax (0.32 mM/min). Quantitative analysis of enzyme

presented in a monolith micro-reactor of 0.4 ll void vol-

ume revealed that ca. 1.89 lg of GOD was immobilized,

giving a GOD concentration of approximately 0.029 mM

in the micro-reactor which corresponded to at least 98% of

the enzymes being immobilized. Comparison to a GOD

concentration of 3.7 9 10-4 mM in 0.8 ml buffer solution,

the ratio of the immobilized GOD concentration to the

solution GOD concentration is therefore 78, which is in

good agreement with the ratio (74) of the immobilized

Vmax to the solution Vmax, indicated above. This observa-

tion also indicates that GOD is immobilized in a similar

active conformation to GOD in solution. The GOD kinetic

measurements were also carried out using PEI-coated

monolith micro-reactor with lower porosity (0.33) and the

kinetic parameters were found to be almost similar to those

obtained for the micro-reactor with the porosity of 0.67

(see Table 2). The stability of the immobilized GOD dur-

ing operation and storage was also examined. The activity

of the immobilized GOD and GOD in solution as a func-

tion of storage time is shown in Fig. 5. A continuous run of

1 day did not lead to any significant decrease in the enzyme

activity and after subsequent storage at 4�C for 30 days the

0
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0.1

0.15

0 1 2 3 4 5

1/[S] (mM-1)

Flow rate 10 µl/min  
Flow rate 7.5 µl/min  
Flow rate 5 µl/min 

(A) 

0
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0.1

0.15

0.2

0 1 2 3 4 5

1/
j (

nA
-1

)

Flow rate 10 µl/min  
Flow rate 7.5 µl/min  
Flow rate 5 µl/min  

(B) 
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1/
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)

Fig. 4 The (1/j vs. 1/[S]) double-reciprocal plots for GOD (a) and

CHO (b) immobilized in the PEI-coated silica-monolith micro-reactor

system with different flow rates
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activity of the immobilized GOD retained at least 95% of

the initial activity compared to only 60% of the initial

activity for GOD in solution.

In addition to GOD, the same enzyme immobilization

strategy was used for CHO immobilization. CHO is a

catabolic enzyme that offers a model system for the study

of choline oxidation, an important metabolic process in

both prokaryotes and eukaryotes. The kinetic parameters

obtained from the (1/j vs. 1/[S]) double-reciprocal plots

(see Fig. 4b) for immobilized CHO in a monolith micro-

reactor with porosity of 0.33 and solution-based CHO with

choline chloride as the substrate are also summarized in

Table 2. Comparisons between the kinetic parameters of

the immobilized CHO in PEI-coated monolith micro-

reactor and CHO free in solution revealed that the Km(app)

value (1.7 mM) for the immobilized CHO was slightly

smaller than that (2.1 mM) for free CHO in solution and a

similar value of the kcat for the immobilized (2.9 s-1) and

solution (3.0 s-1)-based CHO was obtained. As with

immobilized GOD, the immobilized Km(app) for CHO was

also found to be independent of flow rates. These results

indicate slightly favourable mass transfer and less influence

on the CHO conformation by electrostatic interaction

between the CHO and the PEI-coated monolith. Compar-

isons between value of the Vmax for the immobilized CHO

(8.0 mM/min) and CHO in solution (0.15 mM/min) and

the concentrations for the immobilized CHO in the PEI-

coated monolith micro-reactor (0.046 mM in monolith

void volume of 0.2 ll) and CHO in solution (8.2 9 10-4

mM in 0.8 ml of buffer solution) showed a good agreement

between the ratio (53) of the immobilized Vmax to the

solution Vmax and the ratio (56) of the concentration of the

immobilized CHO to the CHO in solution, once again

indicating that CHO was immobilized in a similar active

conformation to CHO in solution. As a control the immo-

bilization of GOD and CHO in a silica monolith micro-

reactor in the absence of PEI did not form detectable H2O2

because the silica monolith micro-reactor could not be

efficiently immobilized enzymes in the absence of PEI

when loading a limited volume of enzyme solution into the

silica monolith micro-reactor. It should also be noted that

the both micro-reactors with porosity of 0.67 and 0.33 did

not create any backpressure problems (i.e. leakage or

blockage) at flow rates less than 30 ll/min. However,

further reduction of porosity decreased enzyme immobili-

zation efficiency, leading to a reduction in enzyme activity.

Finally, regeneration of the micro-reactor devices could be

achieved by simply adding 1 M NaOH solution and heating

at 60–90�C for 15 min to dissolve and totally remove the

used silica-monoliths. The performance of monolith micro-

reactors produced by using new microchip and regenerated

microchip was highly reproducible (97 ± 3%, n = 5).

4 Conclusions

The method described in the present work has the fol-

lowing significant advantages: (1) monolith preparation is

simple and the porosity can be controlled; (2) micrometer-

size flow-through pores give low pressure drop and fast

mass transfer kinetics; (3) enzymes such as GOD and CHO

can be immobilized in their active conformation on the

surface of the PEI-coated monolith via electrostatic

attractions between electronegative enzyme and electro-

positive PEI, so efficiently maintaining the biological

activity compared to covalent bonding and encapsulation

processes; (4) the on-chip electrochemical detection pro-

vides the opportunity for fast and convenient monitoring

the activity of the immobilized enzymes and (5) the

microchip devices can be regenerated simply by adding

Table 2 The kinetic parameters Km(app), Vmax and kcat for enzyme

immobilized in PEI-coated silica-monolith and enzyme in solution

Flow rate

(ll/min)

Km(app)

(mM)a
Vmax

(mM/min)a
kcat (s-1)a

GOD in the

monolithb
5 7.3 ± 0.2 23.9 ± 0.2 13.5 ± 0.5

7.5 7.2 ± 0.2 23.6 ± 0.3 13.4 ± 0.4

10 7.3 ± 0.2 23.5 ± 0.3 13.3 ± 0.5

GOD in the

monolithc
5–10 6.7 ± 0.6 23.4 ± 0.2 13.2 ± 0.2

GOD in solution 0 25 ± 2 0.32 ± 0.02 14 ± 0.3

CHO in the

monolithc
5 1.8 ± 0.2 8.3 ± 0.2 3.0 ± 0.1

7.5 1.7 ± 0.4 8.0 ± 0.4 2.9 ± 0.1

10 1.7 ± 0.3 7.8 ± 0.4 2.8 ± 0.2

CHO in solution 0 2.1 ± 0.2 0.15 ± 0.01 3 ± 0.3

a Mean value ± SD
b The porosity was 0.67 ± 0.04
c The porosity was 0.33 ± 0.02
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Fig. 5 Stability of the immobilized GOD and the GOD in solution.

Both GOD immobilized monolith micro-reactor and GOD in working

buffer solution were stored at 4�C, substrate was 1 mM and flow rate

10 ll/min
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1 M NaOH solution to dissolve and remove the used silica-

monoliths. Accordingly, the immobilized enzyme in PEI-

coated monolith exhibit almost similar kcat to GOD in

solution with the Km(app) being *4 times lower and the

Vmax *70 times higher compared to GOD in solution,

indicating better maintenance of the conformation of GOD

by proposed immobilization method and favourable

enzyme concentration in the micro-reactor environment.

Similar kinetic behaviour was also observed for CHO

immobilized in the PEI-coated monolith where analogous

values for kcat and Km(app) but with the Vmax *50 times

higher compared to CHO in solution were obtained, once

again indicating better maintenance of the conformation of

CHO by proposed method and favourable enzyme con-

centration in the micro-reactor environment. In addition,

the immobilized enzyme exhibited increased stability

during continuous use and storage compared to enzyme in

solution. This method also provides the flexibility to

regenerate micro-reactor or to use disposal monolithic

capillary micro-reactor.
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A B S T R A C T

This paper reports a simple method for producing macroporous silica-monoliths with controllable

porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor

for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis

reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have

identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A

(0.13 min�1) and the free lipase in solution (0.12 min�1) whilst the immobilized apparent Michaelis

constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was

obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase.

The significant higher conversions obtained with the immobilized lipases were mainly attributed to the

formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a

significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the

monolith also exhibited improved stability, showing 64% conversion at 80 8C and 70% conversion after

continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and

reaction time for the free lipase.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the existence of the interfacial activation lipases
(triacylglycerol acylhydrolase, EC 3.1.1.3) represent versatile
group of enzymes with various biocatalytic activities which
include triacylglycerols hydrolysis, esterification, trans-esterifi-
cation, alcoholysis and acidolysis to yield a wide range of useful
biological and chemical derivatives [1–5]. Furthermore, lipases
are also enantioselective catalysts and can be used for the
resolution of chiral compounds and the synthesis of high-value
pharmaceutical intermediates [6–8]. However, the high cost of
lipase makes enzymatically driven processes in the soluble
homogenous form economically unattractive. A practical solution
to this problem is to use an immobilized lipase that can
significantly reduce the cost and increase the ratio of product
to lipase used [9,10]. The use of an appropriate immobilization
method may promote enzyme-support multipoint or multi-
subunit interactions and enhance enzyme stabilization. Such a
method of immobilization will also enhance other lipase
properties including activity [11,12] whilst facilitating the
separation of products from the enzyme, and optimization of
* Corresponding author. Tel.: +44 01482 465469; fax: +44 01482 466410.

E-mail address: s.j.haswell@hull.ac.uk (S.J. Haswell).

1359-5113/$ – see front matter � 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.procbio.2009.12.008
lipase/substrate contact time by using continuous flow systems
[2,10–13]. Traditional methods for lipase immobilization are
largely based on lipase adsorption onto hydrophobic polymers
such as polypropylene, alkyl-agarose, polyacrylate and polysty-
rene, lipase stability can, however, still be significantly affected by
the polymer surfaces and activity is typically limited by surface
coverage [14–16]. Recently, hydrophobic sol–gel supports,
obtained by using alkyl-modified silane (RSi(OCH3)3), have been
reported for the entrapment of lipases [17,18]. Since lipases are
interface-active enzymes with lipophilic domains, lipophilic
interactions between hydrophobic parts of gel and lipase favour
the stabilization of the open form of the lipase which offers in turn
enhanced activity [11,12]. However, if the substrate is large or
hydrophilic, the near presence of the hydrophobic support surface
may generate some steric hindrances, reducing the activity of the
lipase. More recently chemical covalent bonding and cross-
linking as well as physical encapsulation processes have been
reported for the enzyme immobilization but these methods can
still cause structural deformation of the enzyme or introduce
steric hindrance to the catalytic sites, leading to reduction in
enzyme activity [19–23].

The use of micro-reactors in conjugation with enzymatic
processes is now attracting increasing attention due to their ability
to spatially control localized concentration of reactants, inter-
mediates and products within the flow region of such systems

mailto:s.j.haswell@hull.ac.uk
http://www.sciencedirect.com/science/journal/13595113
http://dx.doi.org/10.1016/j.procbio.2009.12.008


Fig. 1. Schematic diagram of the reaction system used to assay immobilized lipase

activity, consisting of (A) syringe pump, (B1) syringe (volume 1 ml) for organic

solution and (B2) syringe (volume 1 ml) for buffer solution, (C) small PEEK Y-shape

connector (pore size 0.5 mm diameter), (D) the capillary mixer (0.6 mm ID and 3 cm

length), (E) 2-way PEEK connector (pore size 0.5 mm diameter), (F) the monolith

micro-reactor (0.6 mm ID and 4 cm length), (G) sample collection vial. Within the

capillary mixer, water was the continuous phase and the organic solution the

segmented phase. The length of the organic plugs was ca. 1.5 mm.
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offering a significant reduction in both reagent consumption and
operating costs [24]. In addition, chemical and biological proces-
sing at the microscale offers a number of reaction and practical
benefits that are unattainable when using a macroscale config-
urations [25–27]. However, packed-bed micro-reactors often
generate increased backpressure that gives rise to leaking or
blocking problems [28,29]. Recently, silica-based monoliths have
been used as an attractive alternative to packed columns for the
analysis of proteins, peptides and nucleic acids as they offer low
diffusion resistance during mass transfer, controllable porosity and
low back pressure compared to packed column reactors [30–35].
The preparation of these monoliths by sol–gel chemistry however
usually requires the addition of other additives such as polyethyl-
ene glycol (PEG) and dextrin to stabilise the structure [21,22] and
fabrication can be time consuming (ca. 3–15 days) [21,22].

In this paper we report a simple method for generating a
stable monolith for the immobilization of lipase with in a micro-
reactor device. The macroporous silica-monoliths with control-
lable porosity were prepared within a capillary from two
precursors tetramethoxysilane (TMOS) and methyltrimethoxy-
silane (MTMOS) using a sol–gel method, followed by lipase
immobilization via multipoint interactions between lipase and
the surface of silica-monoliths to generate immobilized lipase
micro-reactors based on a range of commercially available lipases.
Through multipoint immobilization the lipases can be immobilized
in an active conformation that significantly enhances thermal and
reactive stability. In addition, the use of mobile water–decane
biphasic system for the hydrolysis reaction of 4-nitrophenyl
butyrate can significantly increase the lipase interfacial activation.
Kinetic parameters, i.e. apparent Michaelis constant Km and
turnover number kcat for the free and immobilized lipase were
determined. An evaluation of the stability for the free and
immobilized lipase at elevated temperatures and over extended
run times was also carried out.

2. Experimental

2.1. Materials

Six lipases (EC 3.1.1.3) including Aspergillus niger lipase (ANL), Burkholderia sp.

Lipase (BCL), Candida antarctica lipase A (CAL), C. antarctica lipase B (CBL), Penicillium

camembert lipase (PCL) and C. antarctica lipase A cross-linked enzyme aggregate

(CLEA–CAL) were purchased from Sigma–Aldrich (UK) and used without further

purification. Decane (�99%), 4-nitrophenyl butyrate (4-NPB, �98%) and 4-nitrophe-

nol (4-NP, �98%) were also obtained from Sigma–Aldrich. Polyethyleneimine (PEI,

molecular weight 10,000), KCl (99%), HCl (37%), tetramethoxysilane (TMOS, 99%) and

methyltrimethoxysilane (MTMOS, 99%) were purchased from Fluka. Glass capillary

(0.6� 0.05 mm ID and 25 mm length) was obtained from Brand GMBH (Germany). Milli-

Q water (18 MV cm) was used to prepare all aqueous solutions.

2.2. Preparation of silica-monoliths within a capillary

Silica-monoliths were prepared from two precursors TMOS and MTMOS by using

a sol–gel method [36]. In a typical preparation, 18 ml of TMOS and 69 ml of MTMOS

(at 1:4 molar ratio) were added to dilute HCl solution (8 ml of 1 mM HCl and 13.2 ml

water) and allowed to hydrolyse for 15 min under sonication at room temperature

to form a homogeneous sol of silicic acid. A 12.6 ml aliquot of sol was then mixed

with 9.4 ml of water and 22 ml of 0.2 M (pH 7) Tris–HCl buffer, and the resultant

liquid mixture was immediately loaded into a capillary (4 cm length) and allowed

to polymerize for 15 h at room temperature, followed by vacuum drying for 1 h to

form a silica-monolith with void volume of 10 � 1 ml.

2.3. Lipase immobilization

An aqueous solution (lipase in 0.05 M pH 7 Tris–HCl buffer, final lipase

concentration 0.1–1 mg/ml) was pumped through a monolith micro-reactor at flow

rate of 10 ml/min for 10 min, then the monolith micro-reactor was kept in a fridge

(4 8C) for 1 h, followed by vacuum drying for 30 min to give a monolith immobilized

lipase micro-reactor (note: after an initial evaluation of a range of lipase substrates

only monoliths based on immobilized C. antarctica lipase A (CAL–monolith) were

used in this paper). Before measurement was taken, the micro-reactor was washed

with 0.05 M neutral Tris–HCl buffer (flow rate 10 ml/min) for 5 min to remove un-

entrapped lipase and washing liquid was collected.
2.4. Assay of the free solution and immobilized lipase activity

4-NPB, a well-known substrate for lipase hydrolysis activity, was used as the

substrate in this work to evaluate the performance of free solution and immobilized

lipase in the media consisted of 0.05 M pH 7 Tris–HCl buffer and decane solvent. The

solubility of the reactant 4-NPB, the product 4-NP and lipases was checked in both

water and decane solvent, it was found that the reactant 4-NPB was dissolved in the

organic phase (decane) whilst the product 4-NP and lipase (for solution based

reactions only) were present in water phase.

The assay for free lipase activity was carried out at the desired temperature

(usually room temperature 25 8C) under agitation (with a magnetic stirrer at

100 rmp) in 1 ml final volume, containing 0.4 ml of organic phase (1–15 mM 4-NPB

in decane) and 0.6 ml of aqueous phase (free lipase in 0.05 M pH 7 Tris–HCl buffer).

After a given time (1, 2.5, 5, 10 and 15 min), aqueous phase samples (10–100 ml)

were removed by a pipette and mixed with a 0.1 M neutral Tris–HCl buffer solution

to quench the reaction (final volume 1 ml in a disposable plastic UV–vis cuvette).

The production of 4-NP was determined using an UV–vis spectrophotometer

(Chemspec M508) by reading absorbance at 400 nm and using a calibration curve of

4-NP concentration versus absorbance. The conversion was calculated using Eq. (1):

Conversion ¼ Cp

C0
� 100 (1)

where C0 was initial concentration of 4-NPB and Cp concentration of 4-NP in the

samples collected at a given time. All data reported are average values from at least

triplicate measurements and with standard error less than 6%.

A schematic of the apparatus used for the evaluation of the immobilized lipase

activity is shown in Fig. 1 and consists of two syringe pumps for controlling flow

rate of the aqueous and organic solutions, a capillary mixer, and a monolith

immobilized lipase micro-reactor. An aqueous solution (0.05 M neutral Tris–HCl

buffer) without lipase present and an organic solution (1–15 mM 4-NPB in decane)

were separately pumped through the capillary mixer and monolith micro-reactor

with the product being collected from the outlet of the micro-reactor under steady-

state condition. The organic phase was then removed by a pipette and the aqueous

phase was treated and analysed using the same methodology as described above for

the assay of the free lipase activity.

2.5. Determination of lipase loading in the immobilized monolith micro-reactor

The quantity of the immobilized lipase was determined by calculating the

difference between the amount of lipase in the initial loading solution and that in

the residual solution collected after the entrapping process, which was quantified

using a calibration curve of lipase activity versus lipase concentration within a

linear range. The quantity of immobilized lipase reported is an average value from

at least triplicate measurements with a standard error less than 5%.

3. Results and discussion

3.1. Initial solution study into the catalytic activity of different lipases

and effect of water content

The activity of the different lipases and the effect of water
content were first investigated in order to aid the selection of lipase
and determine the optimum water content to use in the
immobilization methodology. Six commercially available lipases
including CAL, BCL, ANL, PCL, CBL and CLEA–CAL were examined in



Fig. 2. Initial velocity obtained from different lipases in solution-based reactions.

CAL = Candida antarctica lipase A, BCL = Burkholderia sp lipase, CBL = Candida

antarctica lipase B, CLEA = Candida antarctica lipase A cross-linked enzyme

aggregate, ANL = Aspergillus niger lipase, PCL = Penicillium camemberti lipase,

lipase concentration = 1 mg/ml, 4-NPB concentration = 4 mm, the volume ratio of

aqueous phase to organic phase was 1, reaction temperature, 25 8C.

Table 1
Effect of water to decane ratio on the CAL lipase activity.a.

Interfacial area (mm2) Ratio of water

to decane in volume

Initial velocity

(mmol/min)

229.5b 3:1 0.029� 0.001

229.5b 3:2 0.045� 0.002

229.5b 3:3 0.035� 0.002

437.2c 3:2 0.0675� 0.003

a 4-NPB = 5 mM, CAL = 1.5 mg, total volume = 1.0 ml.
b The diameter of the reaction tube was 17.1 mm.
c The diameter of reaction tube was 23.6 mm.
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free solution batch-based reactions. The initial velocity obtained
from the different lipases is presented in Fig. 2, from which it can
be seen that the CAL represents the best lipase for the hydrolysis of
4-NPB in water-decane media, accordingly CAL was subsequently
used for all further immobilization experiments. The difference in
activity observed for the various lipases investigated is attributed
to different substrate specificities. It was also found that higher
stirring speeds reduce the activity of the lipase due to the
production of more bubbles that can reportedly inactivate enzyme
activity [11]. However, in the case where CLEA–CAL particles were
used, the lower activity is attributed more to the fact that most of
the particles tended to be present in the lower water phase,
resulting in the immobilized enzyme molecules having poor
contact with the substrates in the organic phase.

For hydrolytic reactions, water is required not only as a
substrate but also for structural integrity of the lipase, however,
the effect of water is known also to depend on the amount of
enzyme, polarity of the solvent, solid support and type of reaction
[37]. In this study the effect of water was examined by evaluating
Fig. 3. (a) The Lilly–Hornby plots obtained for the CAL–Monolith (1.1 mg/ml). (b) Th
the initial velocity of the free CAL as a function of water to decane
ratio. As indicated in Table 1, the initial velocity was found to
increase with increasing interfacial area with the maximum initial
velocity being obtained at a water to decane ratio of 3:2. These
findings were be attributed to favourable lipase interfacial
activation. The ratio of 3:2 was therefore used for all further
immobilization experiments.

3.2. Evaluation of the kinetic parameters for the free and immobilized

CAL in a biphasic system

Kinetic constants for the free CAL were determined using
Lineweaver–Burk double reciprocal plot. Kinetic constants for the
immobilized CAL were obtained from Lilly–Hornby model (Eq. (2)),
which was developed for packed-bed reactor systems [38]:

Cin � Cout ¼ Km ln
Cout

Cin
þ VmaxVvoid

Q
(2)

where Km was the apparent Michaelis constant, Vmax the maximum
velocity, Cin and Cout the reactant concentration at the inlet and
outlet, Vvoid the void volume of the monolith micro-reactor and Q

the volume flow rate. The Km values could be directly obtained
from a slope of the plot and Vmax was calculated from the Y-axis
intercept. The values of Vvoid (10 ml) and Q (10 ml/min) were
measured and the turnover number kcat was determined (Vmax/
[lipase]). The Lilly–Hornby and Lineweaver–Burk plots obtained
for the immobilized and the free CAL are shown in Fig. 3a and b and
the kinetic constants calculated are summarized in Table 2. It can
be seen that the immobilized Km is 3.1 mM for the CAL–monolith.
This value was found to be 12 times lower than the Km for the free
CAL in solution (38 mM), indicating a favourable affinity between
substrate and enzyme’s substrate binding site. A similar value of
the kcat was obtained for the CAL–monolith (0.13 min�1) and the
free CAL (0.12 min�1), indicating that both the free and immobi-
lized lipases were activated in a similar way [36]. However, it was
observed that the kcat values were reduced to 0.029 min�1 for CAL–
monolith when using higher lipase loadings (4.4 mg/ml). In this
case the reduction in the kcat can be attributed to both lipase
aggregation and the possibility of pores blocking at higher lipase
loadings, decreasing specific lipase activity and accessibility of the
substrate to the biphasic system. Although higher lipase loadings
gave lower kcat values, higher conversions were obtained using
higher lipase loadings compared to lower lipase loadings. For
example, CAL–monolith with lipase load of 4–5 mg/ml gave a
conversion of approximately 70–75% compared to ca. 40%
conversion with lipase load of 0.55 mg/ml at flow rate of 2.5 ml/
min (1.5 ml/min of 0.05 M neutral Tris–HCl buffer and 1 ml/min of
1 mM 4-NPB in decane).

The free and immobilized CAL activities were also examined
using the same loading of lipase (see Table 3). The immobilized
lipase was found to give a conversion of 96%, which was four times
e Lineweaver–Burk double reciprocal plot obtained for the free CAL (1 mg/ml).



Table 2
The kinetic parameters Km and kcat for the immobilized and free CAL.

Lipase Lipase loading (mg/ml) Reaction kinetics

Km (mM) kcat (min�1)

CAL–monolith 1.1 3.1� 0.2 0.13�0.01

CAL–monolith 4.4 3.0� 0.2 0.029�0.002

Free 1.0 38�4 0.12�0.01

Table 3
Activity of the free and immobilized CAL obtained using the same CAL loadings.

Lipase Lipase loading (mg/ml) Conversion (%)

8 min 16 min

CAL–monolitha 3.6 77�2.5b 96�4.5c

Free CAL in solutiond 3.6 13.9� 0.6 24.3�1.4

a Organic phase = 1 mM 4-NPB in decane, aqueous phase = 0.05 M pH 7 Tris–HCl

buffer, length of micro-reactor = 8 cm.
b Flow rate of organic phase = 1 ml/min, flow rate of aqueous phase = 1.5 ml/min.
c Flow rate of organic phase = 0.5 ml/min, flow rate of aqueous phase = 0.75 ml/

min.
d Organic phase = 1 mM 4-NPB in 400 ml of decane, aqueous phase = 600 ml of

0.05 M pH 7 Tris–HCl buffer.

Fig. 5. Stability of the activity for the free and immobilized CAL as a function of

reaction time: (*) hydrolysis was carried out using free CAL (1.1 mg/ml) in solution

at room temperature and 4-NPB 1 mM in decane; (^) 0.05 M pH 7 Tris–HCl buffer

(1.5 ml/min) and 1 mm 4-NPB in decane (1 ml/min) continuously pumped through

an immobilized CAL–monolith micro-reactor (8 cm long and immobilized CAL

0.102 mg) giving a contact time ca. 8 min, samples were collected to determine the

conversion.
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higher than that (23.4%) for the free lipase in solution. This trend was
mainly attributed to the favourable biphasic system formed in the
continuous flow micro-reactor system in which the aqueous phase
represented the continuous phase and the organic solution the
segmented phase (ca. 1.5 mm long) surrounded by the aqueous
buffer. The calculation revealed that the surface to volume ratio was
8 mm�1 in the flow system compared to only 0.23 mm�1 for the
batch-based reaction. This significant increase in interfacial area
could therefore enhance the lipase activation, giving consequently
higher reaction conversions. It was also observed that when a longer
contact time (>16 min) is used in the continuous flow system the
production of the product is reduced due to the reversible reaction,
i.e. the intensity of the reverse reaction increased with the increase
in the production of the product.

3.3. Thermal stability and reaction life time of the free and

immobilized CAL

The thermal stability of the free and immobilized CAL was
examined by determining lipase activity (conversion) as a function
of reaction temperature (heating was provided by an isothermal
water bath), and the reaction was carried out in a closed vial with a
30 s reaction time to prevent evaporation of solvents. Fig. 4 shows
Fig. 4. Effect of the reaction temperature on the free and immobilized CAL activity:

(^) the immobilized CAL at flow rate of 2.5 ml/min (1.5 ml/min of 0.05 M pH 7 Tris–

HCl buffer and 1 ml/min of 5 mm 4-NPB in decane); (~) the free CAL using a closed

vial, reaction time 30 s, 5 mm 4-NPB in 400 ml of decane, 0.05 M pH 7 Tris–HCl

buffer 600 ml.
changes in conversion of the free and immobilized CAL with
temperature. The maximum activity of the free CAL appeared at
30 8C, which was consistent with results reported by Liu et al. [39].
On the other hand, the immobilized CAL exhibited better thermal
stability and gave higher conversions compared to the free CAL,
resulting in an increase from 27 to 61% with increasing
temperature from 25 to 60 8C with a slight increase to 64% when
the temperature was increased to 80 8C.

The reactive stability of the free and immobilized CAL was also
observed as function of continuous reaction time at room
temperature (25 8C). As shown in Fig. 5, immobilized CAL exhibited
better stability during 480 h of continuous run compared to the
free CAL. For the free CAL, full activation was only observed for 24 h
then the activity gradually decreased with time to 19% after 480 h
of continuous operation. The half-life (time of obtaining half of
initial activity) was estimated from linear regression of all data to
be 672 h for the immobilized CAL and 276 h for free CAL. The
higher thermal and reactive stability for the immobilized lipase
could be attributed to multiple interactions between hydrophobic
surface of silica-monolith and lipase including hydrophobic
interaction, hydrogen bond or ionic interaction [16].

4. Conclusions

A simple method has been reported for producing macroporous
silica-monoliths that can be used for lipase immobilization to
generate active and stable immobilized lipase micro-reactors
for biocatalysis. Different lipases exhibited varied activity for
the hydrolysis of 4-NPB in water–decane media and the
activity followed the sequence of CAL > BCL > CBL > CLEA–
CAL > ANL > PCL. The lipase activity for the biphasic system was
significantly affected by the ratio of water to decane and the
interfacial area. Significantly higher conversions were obtained in
the continuous flow micro-reactor system and these have been
attributed to favourable formation of the biphasic system that
significantly enhanced the lipase interfacial activation. A kinetic
study identified that the immobilized apparent Km constant
(3.1 mM) is 12 times lower than that obtained for the free CAL
(38 mM) and a similar value of the kcat is obtained for the
immobilized lipase (0.13 min�1) and the free lipase in solution
(0.12 min�1), indicating that the immobilization method used can
maintain the entrapped/immobilized lipases in the active confor-
mation in both the free and immobilized forms. However, higher
lipase loadings reduced the immobilized kcat due to lipase
aggregation and pore blocking which decreased the lipase specific
activity and the accessibility of the substrate to the biphasic
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system. The monolith immobilized lipase also exhibited significant
thermal and reactive stability at both elevated temperatures and
during long term continuous runs. This can be attributed to the
multipoint or multisubunit interactions occurring between the
hydrophobic surface of the silica-monolith and lipase.

Acknowledgement

We acknowledge the EU for funding through project NMP4-CT-
2006-033254.

References

[1] Fernandez-Lafuente R, Armisén P, Sabuquillo P, Femández-Lorente G, Guisán
JM. Immobilization of lipases by selective adsorption on hydrophobic sup-
ports. Chem Phys Lipids 1998;93:185–97.

[2] Balcão VM, Paiva AL, Malcata FX. Bioreactors with immobilized lipases: state of
the art. Enzyme Microb Technol 1996;18:392–416.

[3] Paiva AL, Balcão VM, Malcata FX. Kinetics and mechanisms of reactions
catalyzed by immobilized lipases. Enzyme Microb Technol 2000;27:187–204.

[4] Soni K, Madamwar D. Ester synthesis by lipase immobilized on silica and
microemulsion based organogels (MBGs). Process Biochem 2001;36:607–11.

[5] Nagayama K, Yamasaki N, Imai M. Fatty acid esterification catalyzed by
Candida rugosa lipase in lecithin microemulsion-based organogels. Biochem
Eng J 2002;12:231–6.

[6] Singh S, Kumar S, Chimni SS. Enantioselective resolution of 3-phenylthio-2-
propanol with Humicola lanuginosa lipase. Biotechnol Lett 2000;22:1237–41.

[7] Miyazawa T, Yukawa T, Koshiba T, Ueji S, Yanagihara R, Yamada T. Enzymatic
resolution of 2-phenoxy-1-propanols through the enantioselective acylation
mediated by Achromobacter sp. lipase. Biotechnol Lett 2001;23:1547–50.

[8] Lee YS, Hong JH, Jeon NY, Won K, Kim BT. Highly Enantioselective acylation of
rac-alkyl lactates using Candida antarctica lipase B. Org Process Res Dev
2004;8:948–51.

[9] Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and
applications of lipases. Biotechnol Adv 2001;19:627–62.

[10] Villeneuve P, Muderhwa JM, Graille JM, Hass MJ. Customizing lipases for
biocatalysis: a survey of chemical, physical and molecular biological
approaches. J Mol Catal B Enzymol 2000;9:113–48.

[11] Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R.
Improvement of enzyme activity, stability and selectivity via immobilization
techniques. Enzyme Microb Technol 2007;40:1451–63.

[12] Fernandez-Lafuente R. Stabilization of multimeric enzymes: strategies to
prevent subunit dissociation. Enzyme Microb Technol 2009;45:405–18.

[13] Tischer W, Wedekind F. Immobilized enzymes: methods and applications. Top
Curr Chem 1999;200:95–126.

[14] Malcata FX, Reyes HR, Garcia HS, Hill Jr CG, Amundson CH. Immobilized lipase
reactors for modification for fats and oils—a review. J Am Oil Chem Soc
1990;67:890–910.

[15] Ruckenstein E, Wang X. Lipase immobilized on hydrophobic porous polymer
supports prepared by concentrated emulsion polymerization and their activi-
ty in the hydrolysis of triacylglycerides. Biotechnol Bioeng 1993;42:821–8.

[16] Bastida A, Sabuquillo P, Amisen P, Fernández-Lafuente R, Huget J, Guisán JM. A
single step purification, immobilization, and hyperactivation of lipases via
interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng
1998;58:486–93.
[17] Reez MT, Zonta A, Simpelkamp J. Efficient immobilization of lipases by
entrapment in hydrophobic sol–gel materials. Biotechnol Bioeng 1996;
49:527–34.

[18] Chen JP, Lin WS. Sol–gel powders and supported sol–gel polymers for immo-
bilization of lipase in ester synthesis. Enzyme Microb Technol 2003;32:801–
11.
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a b s t r a c t

This paper reports a simple �-FIA based method for the rapid evaluation of acetylcholinesterase inhibition
based on bienzymes immobilized monolith micro-reactor, with integrated electrochemical detection.
The monolith was prepared inside a micro-fluidic device from two precursors TMOS and MTMOS using a
sol–gel method, followed by PEI polymer functionalization and subsequent enzyme immobilization via
electrostatic attraction between electronegative enzymes and electropositive PEI polymers. A bienzyme
system containing co-immobilized acetylcholinesterase and choline oxidase was used for the evaluation
eywords:
icro-reactor

mmobilized enzymes
onolith

cetycholinesterase

of enzyme inhibition induced by malaoxon, eserine and methomyl analytes. The proposed method, which
gave a LOD of 0.5, 0.2 and 1.0 �M for malaoxon, eserine and methomyl repeatedly, was found to offer
several advantages over existing systems including efficient enzyme immobilization, minimal reagent
consumption and rapid analysis capability.

© 2009 Elsevier B.V. All rights reserved.

nzyme inhibition
esticides
lectrochemical detection

. Introduction

Cholinesterases (e.g. acetylcholinesterase (AChE) and butyryl-
holinesterase (BuChE)) are known to play an important role in
entral and peripheral nervous system impulse transmission pro-
esses [1], a property that has lead such compounds to be used
n a number clinico-diagnostic and pharmaco-therapeutic applica-
ions [2–3]. In addition, cholinesterase inhibition is widely used
or environmental, agricultural and military detection of carba-

ate and organophosphate pesticides as well as nerve agents
4–7]. Such compounds therefore, can by their nature, also rep-
esent severe environmental and health risks and have been linked
o many diseases such as carcinogenic processes, fertility disor-
ers, cytogenic effects, neurological diseases and respiratory and

mmunological dysfunction [8]. The traditional methods used for
he determination of the cholinesterase activity include UV- and
R-spectroscopy, liquid chromatography (LC), gas chromatography
GC) and mass spectrometry (MS) with often different combi-
ations of these methods being reported in the literature [4–6].

he main drawback however of these approaches, is that they
re highly dependent on laboratory base techniques which may
equire slow and sometimes sophisticated analytical methodology
9]. As a result, many biosensors based on cholinesterase-inhibition

∗ Corresponding author. Tel.: +44 1482 465469.
E-mail address: s.j.haswell@hull.ac.uk (S.J. Haswell).

003-2670/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2009.11.052
have been developed for identifying and detecting samples in the
field. Most of these are based on a bioelectrocatalytical principle
where enzymes are immobilized onto suitable electrodes (e.g. plat-
inum and carbon) and the levels of pesticides for example, are
determined by measuring the variation of the enzyme activity as
a function of their concentration. The features of these biosen-
sors have been described, evaluated and discussed in a number of
recent review papers [10–15]. The main disadvantages however of
the enzyme electrode based biosensor approach include the high
number of steps required for the preparation and measurement
procedures, the instability of the response and short life-times
[13].

To improve sample throughput or allow online monitoring
of the inhibition processes, flow-injection analysis (FIA) systems
have proved to be a popular approach and capable of perform-
ing continuous analysis. The FIA systems usually consist of a
packed enzymatic reactor column combined with different detec-
tion system e.g. electrochemistry or UV spectroscopy [13–16]. The
performance of the FIA systems are however very dependent on the
methods used for creating the immobilized enzymatic component.
Currently, chemical covalent bonding and cross-linking as well as
physical encapsulation processes are the most popular methods

for the enzyme immobilization but these methods can cause struc-
tural deformation of the enzyme or introduce steric hindrance to
the catalytic sites, leading to reduction in enzyme activity [17–21].
In addition, packed column reactors often generate increased back-
pressure that gives rise to leaking or blocking problems [22–23].

http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:s.j.haswell@hull.ac.uk
dx.doi.org/10.1016/j.aca.2009.11.052
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Fig. 1. Schematic of the micro-fluidic device: (a) monolith channel, 600 �m wide,
50 �m deep and 20 mm long; (b) electrochemical detection channel, 1.5 mm wide,
50 �m deep and 20 mm long; (c) link channel, 100 �m wide, 50 �m deep and 5 mm
0 P. He et al. / Analytica C

The use of micro-fluidic devices as analytical systems has
ttracted increasing attention in recent years due to their signif-
cant reduction of reagent consumption and low operating costs as

ell as high throughput capability [24]. As demonstrated in ear-
ier publications, undertaking chemical and biological processes
t the micro-scale offers benefits that are generally unattainable
ith a macro scale process configuration [25–26]. Recently, silica-

ased monoliths, coupled with micro-fluidic devices, have been
sed as an attractive alternative to packed columns for the analysis
f proteins, peptides and nucleic acids with special features of low
iffusion resistance during mass transfer, controllable porosity and

ow back pressure compared to packed columns [27–32]. However,
he preparation of these monoliths usually requires the addition
f other additives, i.e. PEG (polyethylene glycol) and dextrin to
tabilise the structure [19–20] and the fabrication can be time con-
iderable (ca. 3–15 days) [19–20]. In addition, large molecules such
s proteins may not be able to diffuse through nanopores of the
ydrogel network [33].

Recently the authors described the development of a silica
ased, immobilized enzyme micro-reactor, with an integrated
icro-fluidic electrochemical detector for the rapid evaluation of

nzyme kinetics. In this work a similar approach has been used
o determine pesticide (e.g. eserine, malaoxon and methomyl)
nhibition in a �FIA device based on the co-immobilization
f acetylcholinesterase (AChE), choline oxidase (CHO) using a
onolith structure. Compared to the mono-enzyme system the

ienzyme approach was expected to offer better selectivity [34–37]
nd through the system miniaturization a significant reduction in
nzyme consumption and an increase in sample throughput can be
xpected [19–20].

. Materials and methods

.1. Materials

Acetylcholinesterase from electric eel (AChE, EC 3.1.1.7, MW
80 kDa), choline oxidase from Alcaligenes species (CHO, EC
.1.3.17, MW 72 kDa), acetylcholine chloride (ACh, 99%) and
ris(hydroxymethyl)aminomethane (Tris, 99%) were purchased
rom Sigma–Aldrich. Three pesticides eserine, malaoxon, and

ethomyl were also obtained from Sigma–Aldrich. Polyethylen-
mine (PEI, molecular weight 10,000), KCl (99%), HCl (37%),
etramethoxysilane (TMOS, 99%) and methyltrimethoxysilane
MTMOS, 99%) were purchased from Fluka. Milli-Q water
18 M� cm) was used in the preparation of all aqueous solutions.

.2. Micro-fluidic device fabrication, preparation of
ilica-monoliths, enzyme immobilization and detection

Glass micro-fluidic devices were fabricated in house using stan-
ard photolithography technology followed by wet etching and
hermal bonding [25]. The device used comprised of a channel in
hich a monolith could be generated and a region where the elec-

rodes for the amperometric detector could be located. A schematic
f the micro-fluidic device is shown in Fig. 1A. The dimensions of
he channels were 600 �m wide, 50 �m deep and 20 mm long for
he monolith channel and 1.5 mm wide, 50 �m deep and 20 mm
ong for electrochemical detection channel. The connecting chan-
el between the monolith and detector was 100 �m wide, 50 �m
eep and 5 mm long. The preparation of silica-monoliths and the

onolith functionalization with PEI polymer were carried out using

imilar methods to those reported previously [38]. In a typical
reparation, 18 �l of TMOS and 69 �l of MTMOS (at 1:4 molar ratio)
ere added to dilute HCl solution (8 �l of 1 mM HCl and 13.2 �l
ater) and allowed to hydrolyse for 15 min under sonication at
long; (d) inlet, 1.5 mm diameter, to which syringe a pump was linked through a
plastic tube (0.5 mm diameter); (e) outlet, 1.5 mm diameter; (f) working electrode
(WE, pt disc, 0.5 mm diameter), (g) Pt wire (1 mm diameter) counter electrode (CE)
and (h) Ag/AgCl (1 mm diameter) reference electrode (RE).

room temperature to form a homogeneous sol of silicic acid. A
4.2 �l aliquot of sol was mixed with 17.8 �l of water and 22 �l
of 0.2 M (pH 7) Tris–HCl buffer, and the resultant liquid mixture
was immediately loaded into the monolith channel and allowed
to polymerize for 15 h at room temperature, followed by vacuum
drying for 1 h to form a silica-monolith which was subsequent
functionalization with PEI solution (concentration 10 mg ml−1 in
0.1 M neutral Tris–HCl buffer) to generate the PEI-coated silica-
monolith. For enzyme immobilization an enzyme solution (i.e.
AChE 0.01–0.1 U �l−1 and CHO 0.025–0.25 U �l−1 in 0.05 M neutral
Tris–HCl buffer) was loaded into the monolith (required ca. 0.4 �l of
enzyme solution to fully filled the monolith) using a micropipette.
The monolith was then kept in a fridge (4 ◦C) for 1 h followed by
vacuum drying for 30 min to generate a monolith immobilized
enzyme micro-reactor where enzymes were efficiently immobi-
lized via electrostatic interaction between electronegative enzymes
and electropositive PEI polymers [38–40]. The amperometric detec-
tor was constructed from a Pt disc-working electrode (0.5 mm
diameter), a Pt wire counter electrode (1 mm diameter) and a
Ag/AgCl (1 mm diameter) reference electrode which were placed
into the holes in the detection channel (Fig. 1a) of the device and
sealed by using epoxy resin. Before measurements were carried out,
using a PalmSens Electrochemical Sensor (IVIUM Technologies, The
Netherlands) at a fixed electrode potential (650 mV versus Ag/AgCl,
room temperature), the micro-reactor was washed for 5 min with
a working buffer solution (0.05 M pH 7 Tris–HCl buffer containing
10 mM KCl) and the washings collected.
2.3. Enzyme activity assay and measurements of free and
immobilized enzyme inhibition

Enzyme activity was measured using the �FIA system shown in
Fig. 1B, which consisted of a syringe pump (PHD 2000, Harvard), a
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are based on evaluating the experimental data according to the
Lineweaver–Burk double reciprocal plot and/or the Dixon method
[44]. For the Lineweaver–Burk method the data obtained from the
amperometric measurements were treated based on the electro-
P. He et al. / Analytica C

icro-injector with a sample loop of 2.5 �l, three-way valves and
he monolith immobilized enzyme micro-reactor equipped with
n-chip amperomatric detector. The product H2O2 formed during
nzyme reactions was detected according to Eqs. (1)–(3). The sub-
trate acetylcholine (ACh) was first hydrolysed to produce choline
nd acetate in the presence of AChE (see Eq. (1)), the choline formed,
as then oxidized in the presence of CHO to form hydrogen per-

xide and betaine (see Eq. (2)). The hydrogen peroxide produced,
hich was proportional to the enzyme activity, was then recorded

s a current response (see Eq. (3)).

cetylcholine + H2O
AChE−→choline + acetate (1)

holine + 1
2

O2 + H2O
CHO−→H2O2 + betaine (2)

2O2 → O2 + 2H+ + 2e− (3)

The initial free enzyme activity (Io) was measured by pump-
ng the buffer carrier stream (10 �l min−1) into the flow-injection
ystem and making successive acetylcholine chloride injections
0.5–5 mM). A defined volume (ca. 0.4 �l) of sample contain-
ng different concentrations of pesticides was then loaded into
he monolith immobilized enzyme micro-reactor and incubated
or 20 min at room temperature, in accordance with standard

ethodology,[12] followed by washing for 2 min with buffer
olution at flow rate of 10 �l min−1. Subsequent injection of
cetylcholine chloride (0.5–5 mM) were then introduced into the
onolith immobilized enzyme micro-reactor. The response cur-

ent (Ii) was recorded and the percentage inhibition of enzyme (I%)
as calculated from Eq. (4).

% = Io − Ii
Io

× 100 (4)

The measurements for free AChE inhibition were performed in
small vial (1 ml) which contained 1 �l of 1.0 U �l−1 of AChE and
.5 �l of 1.0 U �l−1 of CHO, to which different volumes of a stan-
ard pesticide was added to give the required concentrations in a
otal volume of 800 �l buffer solution. After an incubation time of
0 min at room temperature, 5 �l aliquots of acetylcholine chlo-
ide standards were added to the vial in order to generate a range
f substrate concentrations (0.25–5.0 mM). Three electrodes were
hen placed in the solution to record the current response.

. Results and discussion

.1. Evaluation of the immobilized enzyme inhibition and
etection system

The determination of pesticide levels based on single AChE
mperometric sensors, where the substrate acetylthiocholine
odide is catalytically hydrolysed in the presence of AChE to pro-
uce thiocholine that can be amperometrically measured by anodic
xidization has been reported in literature [41–43]. However, the
nodic oxidation of thiocholine provokes a passivation of the plat-
num electrode due to their interaction with the sulphur containing
ompounds [43]. In this study, AChE was co-immobilized with CHO
n a PEI-coated monolith micro-reactor and the effect of an inhibitor
n the enzyme system was studied by measuring enzyme velocity
t a variety of substrate concentration in the presence and absence
f an inhibitor. The use of the bienzyme reaction system therefore
voids passivation of the electrode resulting from the use of a single
nzyme. The substrate concentration and the amount of enzymes

mmobilized can however affect the performance of the monolith
mmobilized enzyme micro-reactor. For instance, at higher con-
entrations of the substrate and enzyme more hydrogen peroxide
ill be produced which in turn will increases the current detected.
ccordingly, it was found that the inhibitor substantially reduced
Fig. 2. The effect of an inhibitor on enzyme velocity measured for a variety of
substrate concentrations in the presence and absence of the inhibitor.

enzyme velocity at lower concentrations of substrate, but did not
appear to alter significantly the enzyme velocity at higher substrate
concentrations, as indicated shown in Fig. 2. The highest sensi-
tivity to inhibitors was found when the monolith micro-reactor
contained low amounts of enzyme. In this work ca. 0.01–0.1 U of
AChE and 0.025–0.25 U of CHO were co-immobilized in a mono-
lith micro-reactor and the substrate concentrations ranged from
0.5 to 5.0 mM. Flow rate was also found to have a significant
influence on the enzyme activity, with smaller flow rates yield-
ing more product due to a longer contact time of the substrate
with the enzymes in the monolith micro-reactor but this in turn
lead to a longer analytical time. In order to reach a reasonable
compromise between sensitivity and response time a flow rate of
10 �l min−1 was selected, giving a total analysis time of 2.5 min
for one injection. Fig. 3 shows the variation in inhibition as a
function of the inhibition time. It can be seen that enzymes are
completely inhibited within 20 min which is comparable to many
current techniques [12]. The amperometric response was found to
be linear for both the immobilized (Y = 95.2X + 0.2, R2 = 0.9983) and
free (Y = 820.73X + 30.503, R2 = 0.9995) enzyme systems whilst the
limits of detection (Table 1), which varied slightly between dif-
ferent pesticides, were found to be approximately 10 times lower
for the free AChE in solution, which is attributed to possible steric
hindrance in the micro-reactor environment.

In general studies on the inhibition of enzymatic reactions
Fig. 3. AChE inhibition from methomyl in solution as a function of incubation time.
For each measurement methomyl of 0.98 �g was added to 800 �l of 0.05 M neutral
Tris–HCl buffer containing 1 U AChE and 2.5 U CHO as well as 10 mM KCl.
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Table 1
The kinetic constants of Km and Ki as well as the LOD for AChE-CHO immobilized monolith and free AChE-CHO in solution.a.

Immobilized AChE-CHO Free AChE-CHO

Malaoxon Eserine Methomyl Malaoxon Eserine Methomyl

Ki (�M)L-B
b 3.9 ± 0.2 1.0 ± 0.09 10.6 ± 0.6 0.3 ± 0.01 0.2 ± 0.01 0.7 ± 0.04

Ki (�M)Dixon
c 3.5 ± 0.2 1.4 ± 0.1 9.8 ± 0.5 0.3 ± 0.01 0.2 ± 0.01 0.6 ± 0.03

Km (mM)d 1.0 ± 0.1 0.8 ± 0.05
LOD (�M)e 0.5 0.2 1.0 0.05 0.02 0.12

a 0.05 M neutral Tris–HCl buffer contained 10 mM KCl was used, flow rate of buffer carrier was 10 �l min−1 and measurements were carried out at room temperature
(25 ◦C).

b The values of Ki were determined by the Lineweaver–Burk plot.
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easily dissociated from the inhibitor binding sites for the inhibition
of immobilized AChE for these particular pesticides within mono-
lith micro-reactor environment when compared to the inhibition of
free AChE. Again, this is probably due to limited space and/or steric
hindrance existed in monolith micro-reactor environment that
The values of Ki were determined by Dixon method.
d Km was determined by Lineweaver–Burk plot in the absence of pesticide.
e The LOD was determined as three times the background signal.

hemical Eadie-Hofstee equation in Lineweaver–Burk (Eqs. (5) and
6)) form under steady-state conditions [45–46]:

1
j

= 1
jmax

+ Km-obs

jmax
· 1

[S]
(5)

m-obs = Km

[
1 + [I]

Ki

]
(6)

here j was the current intensity, jmax the maximum current inten-
ity in the absence of inhibitor, [S] and [I] the substrate and inhibitor
oncentration, Km and Ki the apparent Michaelis constant and the
nhibition constant, and Km-obs the observed Km are defined by Eq.
6). The Dixon method is a graphical method based on a plot of (1/j)
ersus inhibitor concentration [I], which only requires the deter-
ination of two or three substrate concentrations using a series of

nhibitor concentrations at each substrate concentration to obtain
he values of Ki. Fig. 4a and b shows typical plots obtained accord-
ng to the Lineweaver–Burk form and the Dixon method for the
nzyme inhibition induced by malaoxon. It can be seen that the
lots of (1/j) versus (1/[substrate]) (Fig. 4a) for each inhibitor con-
entration gives different slopes for the same value of jmax and the
lope is increased by factors of (1 + [I]/Ki) whilst plots of (1/j) versus
[inhibitor]) (Fig. 4b) from each set of reactions show a series of lines
hat intersect at the same ordinate intercept (jmax remaining con-
tant). The similar linear relationship was also observed for enzyme
nhibition induced by eserine and methomyl, as shown in plots of
Km-obs versus [I]) (see Fig. 5a). These characteristics indicate a typ-
cal competitive inhibition [44] induced by malaoxon, eserine and

ethomyl in which the addition of more substrate overcomes the
ompetitive inhibition of the enzyme catalytic rate, as seen in Fig. 2.

The kinetic characterization of enzyme inhibition in this study
ndicated typical competitive inhibition, where the addition of

ore substrate will reduce competition from the inhibitor and
vercome the inhibition of the enzyme catalytic rate.

The kinetic constants Km and Ki can be obtained from the plots
f ([I] versus Km-obs) where the Y-axis intercept equals the Km and
he X-axis intercept equals the negative Ki. For the Dixon plots the
alue of Ki can be determined by the value of [I] at the intersec-
ion where the value of [I] is equal to the negative Ki, as indicated
n Fig. 4b. The inhibition of free AChE by eserine, methomyl and

alaoxon were also performed in a small vial and experimental
ata was also treated according to Lineweaver–Burk double recip-
ocal plot or Dixon method. Plots of ([I] versus Km-obs) for free AChE
n solution are shown in Fig. 5b. The kinetic constants of Km and Ki
btained from the Lineweaver–Burk and Dixon plots for the immo-

ilized AChE-CHO and free AChE-CHO in solution are summarized

n Table 1.
It can be seen that the values of the Ki constant determined by

he Lineweaver–Burk plot are similar to those obtained from the
ixon method, indicating that both methods give similar values for
free and immobilized enzyme systems however the Dixon method
did offer a more straightforward approach. It can also been seen that
the Michaelis constant Km (1.0 mM) for the immobilized enzyme
is similar to that (0.8 mM) obtained for the free enzyme in solu-
tion. Nevertheless, the inhibition constants of eserine, malaoxon
and methomyl for the immobilized enzyme are approximately 5–7,
11–13 and 15–16 times higher than those observed for the free
enzyme in solution, indicating that the inhibitors appear to be more
Fig. 4. (A) Lineweaver–Burk plots for malaoxon inhibition of the immobilized
AChE obtained based on the electrochemical Eadie-Hofstee equation at different
malaoxon concentration: (♦) 0 �m, (�) 6 �m, (�) 9.1 �m, (©) 13.7 �m. (B) Dixon
plots for malaoxon inhibition of the immobilized AChE at different substrate ACh
concentration: (♦) 0.5 �m, (�) 1 mM, (�) 1.7 mM, (©) 2.5 mM.
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esults in weaker inhibitor binding, leading in turn to an increase in
he dissociation constant. However, the Ki values obtained in this
tudy are several tens of times lower than those reported in litera-
ure [37,47]. For example, the Ki value of 3.5–3.9 �M for malaoxon
btained in this study is almost 4 times lower than the 14 �M
btained from a flow through microreactor containing magnetic
articles immobilized AChE using glutaraldehyde method [37] and
lightly lower than the 5.6 �M obtained from the immobilized AChE
n a controlled pore glass capillary [47]. In the case of eserine the
i value of 1.1 �M obtained in this study is 45 times lower than the
0 �M obtained from the packed bed immobilized enzyme reactor
48]. These results indicate that the monolith immobilized enzyme

icro-reactors offer a more sensitive detection system compared
o the immobilized enzyme reactors previously reported in the
iterature.

.2. Stability of immobilized enzyme and regeneration of
icro-fluidic devices

The stability of the immobilized enzymes during operation and
torage was also examined. It was found that a continuous run of 1
ay did not lead to any significant decrease in the enzyme activity
nd after subsequent storage at 4 ◦C for a week the activity of the
mmobilized AChE retained ca. 85% of the initial activity compared

o only 33% of the initial activity for free AChE in solution after stor-
ge of 1 day and total loss activity after storage of 5 days. However,
fter two weeks storage the immobilized AChE retained only ca.
0% of the initial activity.

[

[
[
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4. Conclusions

A �-FIA system incorporating an immobilized enzyme micro-
reactor with a micro-fluidic electrochemical detection has been
shown to enable enzymes to be immobilized in an active con-
formation such that the screening of pesticides through induce
enzyme inhibition can be detected in a rapid sensitive fashion. The
method described includes minimal preparation time and reagent
consumption as well as low operating cost. Comparison of the inhi-
bition constant Ki between free and immobilized AChE indicates
that inhibitor binding within monolith micro-reactor environment
is less strong due to limited space and/or steric hindrance that may
exist within the monolith micro-reactor environment which in turn
leads to an increase in inhibition constant. However, the Ki values
obtained in this study are several to tens times lower than those
reported currently in the literature. The method presented in this
study is at present based on standard pesticide solutions, how-
ever work is currently being planned to extend the methodology
to measure enzyme inhibition on real samples.
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A microfluidic-based system was developed for the in situ monitoring of the 7-ethoxyresorufin

O-dealkylation (EROD) activity of primary rat hepatocytes by measuring the fluorescent intensity

of both cells and their surrounding media. The microfluidic chip was designed to allow the cell

suspension and test reagent to be introduced in a layer-by-layer flow format, thereby resulting in a short

mixing time by diffusion. A good linear relationship was obtained between the resorufin concentration

up to 30 mM and fluorescent intensity over the chip’s circular chamber area. The EROD activity was

determined with 3-methylcholanthrene (3-MC)-induced hepatocytes. The inhibition effect of

a-naphthoflavone was also examined on EROD activity resulting in an IC50 value of 12.98 mM.
1. Introduction

Hepatic cytochrome P450 (CYP450) is a family of variant

enzymes that catalyses the oxidative metabolism of a wide variety

of exogenous chemicals including drugs, carcinogens, toxins and

endogenous compounds such as steroids, fatty acids and pros-

taglandins.1,2 The quantitative determination of CYP450 enzy-

matic activity in mammalian hepatocytes is a commonly used

method for drug screening and detecting general toxicity where

CYP activity can be induced or inhibited by specific test

compounds.3–5 One of the commonly used assays for CYP450

enzymatic activity is 7-ethoxyresorufin O-dealkylation (EROD),

which is based on the conversion of 7-ethoxyresorufin (7-ER)

to resorufin, a reaction catalysed by CYP4501A enzymes

(eqn (1)).6–8 Since the product is fluorescent, the kinetics of the

reaction can be quantified by the measurement of fluorescence

intensity during the reaction, which is directly related to

CYP4501A enzymatic activity.

(1)

The determination of EROD activity is typically carried out in

a multi-well (e.g., 96-well) plate using a fluorescence reader to

record the signal associated with resorufin.5,7 Although the
aLGC Limited, Queens Road, Teddington, Middlesex, TW11 0LY, UK
bDepartment of Electronics and Electrical Engineering, University of
Glasgow, Glasgow, G12 8QQ, UK
cDepartment of Chemistry, The University of Hull, Hull, HU6 7RX, UK
dBioengineering Group, School of Engineering Sciences, University of
Southampton, Southampton, SO17 1BJ, UK. E-mail: XL.Zhang@soton.
ac.uk; Fax: +44 (0) 23 8059 3016; Tel: +44 (0) 23 8059 5099

1282 | Analyst, 2010, 135, 1282–1287
commonly used multi-well system can provide useful informa-

tion on cell behaviour, function and genotype, based on the

average measurements of cell populations, it is incapable of

measuring the kinetics of enzyme reactions occurring within

individual cells. In the case of EROD process, it involves both

reaction (eqn (1)) and subsequent mass transport steps where

fluorescent resorufin produced transfers by diffusion across the

cell membrane towards the outside, and a closer examination of

the reaction step is important for understanding the enzymatic

reaction kinetics and mechanism. However, conventional

methods of cell observation are unable to distinguish between

these two steps.

In recent years, there has been an increasing awareness of the

importance of cell heterogeneity in clinical diagnostics, which has

been reflected in the shift from studying large cell populations

(to obtain average cell responses) to single cell measurements.9–11

The development of single cell-based analysis not only provides

complementary information on a cell population but can also

help reveal the actual functional interaction of biomolecules at

both a cellular and tissue level.12,10

Over the past two decades, significant developments in the field

of miniaturised systems, so-called microfluidics or lab-on-a-chip

technologies, have seen the methodology influence diverse areas

of applications relating to analytical chemistry, biochemistry,

clinical diagnosis, medical chemistry and industrial

chemistry.13,14 It has been demonstrated that such microsystems

represent advantages over conventional bench systems in terms

of speed, performance, reduced sample/solvent quantity, inte-

gration and automation. Of particular relevance to cell analysis is

the small length scale used in which fluidics are restricted to

diffusive mixing under laminar flow, thereby enabling precise

fluidic control to create a biomimetic cell microenvironment. The

microfluidic control also provides unique opportunities for

delivering and locating single cells within microchips with an

appropriate micro-geometry design. In addition, coupling with

microscope-based imaging techniques allows the detection and

measurement of single cell and subcellular levels in situ.15
This journal is ª The Royal Society of Chemistry 2010
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Consequently, a wide range of microfluidic-based methodologies

has been developed for cell manipulation, culture and analysis

including hepatocytes.4,16

The aim of this feasibility study is to develop a microfluidic-

based system that enables the in situ monitoring of EROD

activity using primary rat hepatocytes by measuring the fluo-

rescent intensity of both single cells and the surrounding media.

The inhibition of EROD activity will be examined using

a-naphthoflavone (a-NF) as a CYP1A inhibitor over a range of

concentrations (0–40 mM).
2. Materials and methods

2.1. Microfluidic chip fabrication

The microfluidic device was produced according to published

procedures with minor adaptations.17,18 Briefly, the channel

network was fabricated using a photolithographic fabrication

method. The channel network was first designed using Auto-

CAD drawing software (Autodesk, Farnborough, UK). A film

negative of the desired fluidic network was then prepared by

a commercial photo mask manufacturer (J.D. Photo Tools,

Oldham, UK) to form the optical mask. B-270 glass photolith-

ographic plates (thickness of 3 mm) coated with a thin chromium

metal mask layer plus an upper layer of positive photoresist,

supplied by Telic (Telic Company, Valencia, USA), were used for

channel network fabrication. With UV exposure, the pattern of

interconnecting channels was transferred from the optical mask

to the photoresist layer, which was then developed and removed

together with the chromium layer to reveal the channel areas of

glass to be etched. The channels were etched using a mixture of

1% (w/w) HF and 5% (w/w) NH4F in water at 65 �C.

The fabricated microchannel network consisted of a circular

chamber (for cell holding and monitoring) with two inlet chan-

nels and one outlet channel (Fig. 1a). To create two layers of

sheet flow in the main inlet channel and the chamber, the inlet

channels were etched separately on two glass plates, which were

then bonded face-to-face. Channels on each glass plate were

etched to a depth of 35 mm, resulting in a total depth of 70 mm for

the main channel and the chamber. The width for all the channels

was 150 mm, and the circular chamber had a diameter of 900 mm,

providing a working volume of 0.0445 ml. The main purpose of

using lay-by-layer sheet flow instead of side-by-side flow was to

reduce the diffusion distance in order to shorten the diffusive

mixing time whilst providing a relatively large field of view.
Fig. 1 Schematic of chip design (a) and hepatocytes in suspension

loaded onto the chip in the circular chamber (b). Scale bar: 100 mm.

This journal is ª The Royal Society of Chemistry 2010
Three holes (dia. 1.5 mm) were drilled through the upper glass

plate to link the ends of the channels with tubing. The upper plate

was then aligned with the channel geometry on the base plate and

thermally bonded by placing it in a muffle furnace set at 570 �C

for 3 h. A 90 g block of stainless steel was placed onto the upper

plate to assist bonding.
2.2. Cell culture and assay reagents

Preserved rat hepatocytes were supplied by Abcellute (Abcellute

Ltd, Cardiff, UK) and maintained at a temperature of 10 �C

during transportation. Both 3-methylcholanthrene (3-MC)-

induced (72 h) hepatocytes and controls were supplied. The

preserved hepatocytes were then reactivated with the reactivation

medium and wash medium, which were supplied with the cells,

using the Abcellute protocol ABC-REC-S. The concentration of

cells used for loading the chip during the experiment was in the

range of 1 � 106 cells ml�1. The viability of hepatocytes was

assessed prior to introduction on the chip using the trypan blue

exclusion method with a haemocytometer.

The buffer solution was prepared by adding one pot of KHB

(Krebs-Heinslett buffer) powder to 1 l of distilled water in

a volumetric flask supplemented by amikacin (84 mg ml�1),

calcium chloride (1 mM), gentamicin (84 mg ml�1), HEPES

(20 mM), heptanoic acid (4.2 mM) and sodium bicarbonate

(28.5 mM), and then adjusted to pH 7.4 with either 1 M NaOH

or 1 M HCl. Other chemicals were used as received, including

7-ER, resorufin, 3,30-methylenebis(4-hydroxycoumarin) (or

dicumarol), a-NF, acetonitrile and dimethyl sulfoxide (DMSO).

All these materials were supplied by Sigma-Aldrich (Dorset,

UK). To make the test reagent, dicumarol was first dissolved in

DMSO and then diluted, together with 7-ER, in buffer to the

desired concentration. The blank was DMSO only (at the

equivalent concentration) added to the buffer.
2.3. Instrumentation and image analysis

An Axiovert S100 inverted microscope (Carl Zeiss, UK) using

both transmission and fluorescent optics coupled with a mono-

chrome CCD digital camera (C4742-95-12NRB, Hamamatsu

Photonics, UK) was used to obtain both conventional micro-

graphs and digital videos. AQM Hamamatsu ORCA I software

(Kinetic Imaging, Nottingham, UK) was used for image acqui-

sition and analysis. By selecting areas (e.g., cells or whole

chamber) in successive video images a light intensity profile

versus time was obtained. A Chroma green filter set (P/N 11002,

Chroma Technology Corp, Rockingham, USA) was selected,

which consists of an Exciter D546/10, an Emitter E590LP and

a beam splitter Dichroic 565DCLP.

Two KDS 200 syringe pumps (KD Scientific Inc., Holliston,

USA) were used to deliver cells in suspension and test reagents.

ETFE (ethylene tetrafluoroethylene) polymer tubing with an

inner diameter of 250 mm and outer diameter of 1/160 0 (P/N 1529),

on/off valves (P/N P-782) and appropriate fittings and connec-

tors, all obtained from Upchurch (Upchurch Scientific Inc., Oak

Harbor, USA), were used for plumbing to link the chip and

syringes.

To maintain the chip temperature during measurements,

a heated microscope stage (Model 14472, World Precision
Analyst, 2010, 135, 1282–1287 | 1283
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Instruments Ltd, Stevenage, UK) with an aperture of 6 mm in

diameter was used and the temperature was controlled in the

range of 37 � 0.5 �C. When the cells were loaded onto the chip,

the measurement of EROD activity was carried out by taking

a series of digital images as a video clip covering the whole

circular chamber area of the chip under the fluorescent condi-

tions. The scan rate of the video was set to be one frame every

two minutes with an exposure time of 20 ms. To minimise the

photo bleaching effect, a shutter was inserted into the light path

which was open (for 2 s) only when taking each image frame. All

fluorescent images were taken under the same conditions for

comparison and data analysis.
Fig. 2 Fluorescent intensity of single cells (n ¼ 12) vs. time.
3. Results and discussion

3.1. Cell loading

Hepatocytes in suspension and the test reagent were introduced

into the chip at a flow rate of 15 ml min�1 via the two inlet

channels, in a continuous flow, layer-by-layer format (Fig. 1a).

The test reagent was composed of 40 mM 7-ER and 80 mM

dicumarol in buffer, where dicumarol was added to prevent the

disappearance of resorufin fluorescence since the product resor-

ufin (eqn (1)) can be further reduced through metabolism by

cytosolic oxidoreductases.7,19 Once a steady flow had been

established, the on/off valves on all three inlet and outlet tubes

were closed simultaneously,17 and the measurement process

started. Fig. 1b shows the hepatocytes retained in the chip

chamber in bright-field view after loading.

It can be seen from Fig. 1 that the delivery procedure allowed

hepatocytes to be distributed reasonably evenly on the bottom of

the chamber, whereas the test reagent solution was placed in the

top layer above the cell/media. When the flow was stopped and

all the valves were closed, cells in the chamber tended to settle

down and attach to the bottom surface within about 10 s, and

diffusive mixing occurred based on Fick’s law,20 which defines

the relationship between the distance travelled, d, by a molecule

and the time, t:

d ¼
ffiffiffiffiffiffiffiffi
2Dt
p

(2)

where D is the diffusion coefficient. Using this equation, the time

needed for a resorufin molecule to diffuse across a distance of

70 mm, i.e., the chamber depth, is estimated to be 5.1 s, based on

the diffusion coefficient value of 4.80�10�10 m2 s�1 as determined

by Schilling et al.21 Compared to the typical measurement time of

20 min this time for diffusion was not expected to cause signifi-

cant errors for kinetic measurements.

It was also observed that the hepatocytes were distributed as

an attached monolayer within the 70 mm deep chamber where the

size of the hepatocytes was in the range of 10–20 mm in diameter.

This monolayer distribution clearly simplified the process of

image analysis and made it possible to select either a single cell or

the surrounding media (outside the cell) for further analysis

based on the fluorescent intensity. In addition, the cell viability

assessment before and after passing through the chip without

reaction over a given time period was not significantly different

between the samples on the chip and in the batch micro-well

plate.
1284 | Analyst, 2010, 135, 1282–1287
3.2. Single cell monitoring

Upon the reaction taking place an increase in fluorescent inten-

sity from the resorufin was observed for almost all hepatocytes.

Fig. 2 shows the plot of fluorescent intensity of 12 individual cells

randomly selected as a function of time (the fluorescent curves

have been normalised for comparison). It was found that the

fluorescent intensity for all cells showed a similar profile with

some variations; fluorescent intensity increased approximately

linearly for the first 10–12 min, reaching a maximum and then

followed by a relatively stable period (and a gradual decline for

some cells).

The fluorescent intensity of most cells (about nine out of 12)

fell in a standard deviation of �15% compared with the average.

This intensity difference was probably because of the variation in

cell size. By examining the cell morphology (Fig. 1b), it was

found that the cell size distribution for the majority of cells

(about 80%) was within the range of �20% compared with the

average, which corresponds closely to the maxima for the cells’

fluorescent intensities; the highest fluorescent intensity corre-

sponds to the largest cell size and the lowest fluorescent intensity

to the smallest cell size, although the variation in activity for

individual cells cannot be ruled out.

However, the variation in the time needed for each single cell

to reach the maximum fluorescence was indicative of alterations

in reaction rates among individual cells. This method, therefore,

can provide a useful tool for the measurement of the kinetics of

enzyme reactions occurring within individual cells. It was also

shown that the chip-based measurement required a remarkably

low number of cells, which can be a major advantage when

screening limited amounts of cell samples.22

3.3. In situ measurement of EROD activity

As discussed above, the measurement of EROD activity is based

on the conversion of 7-ER (which is delivered with the test

reagent) to fluorescent resorufin.23,24 This reaction was catalysed

by cytochrome CYP1A, the expression of which was induced by

3-MC. Since the biocatalytic conversion of 7-ER to resorufin

occurred inside hepatocytes, temporarily, the increase in fluo-

rescent intensity started within hepatocytes and was followed by

the fluorescent intensity increase in the surrounding media as
This journal is ª The Royal Society of Chemistry 2010
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Fig. 4 Integrated fluorescent intensity from areas covering the cells,

media or whole circular chamber.
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resorufin diffused outside cells. Spatially, the accumulation of the

fluorescent intensity, both inside and outside hepatocytes,

represented the total amount of resorufin produced.

This process was detected, both temporarily and spatially, by

monitoring fluorescent intensity changes over the chip chamber

area while the reaction progressed with time. Fig. 3 shows two

example snapshots at reaction time zero and 10 min to compare

the fluorescent intensity changes in both cells and the

surrounding media. It can be seen clearly that at the beginning of

the reaction resorufin production started showing significant

fluorescence within the cells only (Fig. 3a). With the increase in

resorufin concentration inside the cells, resorufin diffusion across

the cell membrane towards the outside became more significant,

resulting in a bright fluorescence in the media within the whole

chamber (Fig. 3b).

Fig. 4 compares the integrated fluorescent intensities from

cells, the surrounding media and the whole circular chamber. It

was seen that the integrated fluorescent intensity of all cells was

just about 10% of that from the surrounding media, although the

cell area was generally brighter. To obtain the total amount of

the resorufin produced during the process, the fluorescent

intensity from the whole circular chamber area was used because

it represents the analyte in both cells and media, which could be

converted to a concentration-dependant calibration model.

To correlate the fluorescent intensity with the resorufin

concentrations within the chamber, a calibration method was

carried out in which the fluorescent intensity was measured over

the whole circular chamber area with a wide range of resorufin

concentrations. It was observed that the fluorescent intensity

gave a good linear relationship (Int ¼ 1.7554 � Conc � 0.0095)

with the resorufin concentration in the range of 0–30 mM (Fig. 5).

Above that concentration, the fluorescent intensity tended to be

lower than predicted, which was thought to be caused by the

saturation of the CCD detector. Since the working concentration

was normally in the range of a few mM the linear correlation was

considered suitable for determining the resorufin concentration

in this study. Using the calibration curve the resorufin concen-

tration profile was obtained. Fig. 5 shows a plot of the resorufin

concentration as a function of time. It can be seen that the

general trend followed the profile of the fluorescent intensity.

The blank result is also included for comparison, which indicated

no significant increase in fluorescent intensity.
Fig. 3 Fluorescent intensity variations in both cells and media during

the reaction of EROD at time zero (a) and 10 min (b). Scale bar: 100 mm.

(A weak transmission light was applied for a better visibility of the

chamber and channel).

This journal is ª The Royal Society of Chemistry 2010
3.4. Inhibition of EROD activity

CYP1A enzymes are active in the biotransformation of both

endogenous substances and xenobiotics.25 They can activate

innocuous promutagens into their mutagenic and/or carcino-

genic forms through the production of highly reactive epoxide

intermediates that can bind potently to DNA and initiate carci-

nogenesis.26 Thus, the examination of the inhibition of CYP1A

enzymatic activity is important in the studies of toxicology and

drug metabolism, whereas hepatic microsomal EROD activity is

an indicator of CYP1A.27

In this study, the effect of a model CYP1A inhibitor a-NF was

examined on the 3-MC-induced rat hepatocytes when various

concentrations of a-NF were added to the test reagent for a range

of concentrations (0–40 mM). EROD activity was measured

using the procedure described above under identical fluidic

conditions, and the results are summarised in Fig. 6. It was found

that with higher inhibitor concentrations the corresponding

fluorescent intensity became lower, as expected. When the

concentration of a-NF reached 40 mM, no significant EROD
Fig. 5 Resorufin production as a function of time, and (inset) the cali-

bration of fluorescent intensity vs. resorufin concentration.

Analyst, 2010, 135, 1282–1287 | 1285
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Fig. 6 Resorufin production as a function of time with inhibitor a-NF at

different concentrations.
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activity was observed, which was comparable with the result of

the blank test. The relationship between the inhibition effect and

inhibitor a-NF concentration is plotted in Fig. 7, where the

inhibition effect is expressed as a percentage of the EROD

activity remaining.

In biochemical and biomedical studies for dose-response

relationships, a four-parameter logistic model has frequently

been used to obtain the IC50 value in drug testing (IC50 represents

the concentration of an inhibitor at which 50% of the maximal

response is observed).28,29 This model was employed for fitting

the experimental data shown in Fig. 6:

y ¼ A�D

1þ ðx=CÞB
þD (3)

where y is the EROD activity remaining as a percentage and x is

the inhibitor a-NF concentration (mM). A and D are the upper

and lower asymptotes, respectively. B is the slope of the curve

(or Hill slope) and C is the central point of the linear portion of

the curve, i.e., IC50. By fitting the experimental data to the four-

parameter logistic model, the best fit of the four parameters was

found to be 98.63, –2.27, 3.36 and 12.98, respectively.
Fig. 7 Effects of various concentrations of inhibitor a-NF. The inhibi-

tion effect is expressed as percentage of EROD activity remaining.

1286 | Analyst, 2010, 135, 1282–1287
4. Conclusions

A microfluidic-based system was developed for the in situ

monitoring of EROD activity for primary rat hepatocytes by

measuring the fluorescent intensity of both single cells and their

surrounding media. The glass microfluidic chip enabled the cell

suspension and test reagent to be introduced in a layer-by-layer

flow format, thereby resulting in a short mixing time by diffu-

sion. A calibration showed a good linear relationship between

the resorufin concentration up to 30 mM and fluorescent inten-

sity. EROD activity was measured with 3-MC-induced hepato-

cytes, and the inhibition effect of a-NF was also examined on

EROD activity.
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A microwave heating system is described for performing polymerase chain reaction (PCR) in

a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid

thermal cycling with heating and cooling rates of up to 65 �C s�1 and minimal over- or under-shoot

(�0.1 �C) when reaching target temperatures. In addition, once the required temperature was reached it

could be maintained with an accuracy of�0.1 �C. To demonstrate the functionality of the system, PCR

was successfully performed for the amplification of the Amelogenin locus using heating rates and

quantities an order of magnitude faster and smaller than current commercial instruments.
Introduction

PCR is a commonly used biochemical tool for the amplification

of DNA and features thermal cycling between two or three

distinct temperatures to achieve the denaturing of the DNA,

primer annealing and DNA extension.

In order to increase sample processing and facilitate the inte-

gration of PCR with other techniques, the speed of processing is

very important. In addition, a reduction in the volume required

for PCR is advantageous as it not only increases speed but also

reduces the amount of reagents required therefore reducing the

cost of analysis. Since the early development of PCR in micro-

fluidic systems, either as a stand-alone technique1 or as an

integrated process,2 numerous examples of miniaturised PCR

have been reported which can be found in substantial reviews on

the subject.3–6

A wide variety of heating and cooling methods have been

reported in the literature for achieving thermal cycling. Broadly

speaking these methods can be divided into contact and non-

contact forms. Commonly used contact heating methods include

block heaters e.g. Peltier heaters, or the deposition of thin film

resistive heaters e.g. platinum, on the exterior of the microfluidic

device. While Peltier heaters are widely used to achieve thermal

cycling for DNA amplification as they produce reliable heating,

they suffer from relatively slow temperature ramp rates.3

Non-contact heating methods described for DNA amplifica-

tion in microfluidic systems include the use of infrared7 and

halogen lamps.8 Induction heating has been shown to provide

a low power consumption method for performing thermal

cycling with a temperature stability of�0.2 �C.9,10 An alternating
aDepartment of Chemistry, University of Hull, Cottingham Road, Hull, UK
HU6 7RX. E-mail: s.j.haswell@hull.ac.uk; Fax: +44 (0)1482 466410; Tel:
+44 (0)1482 465475
bExxel Amplifiers Ltd., 4 Pinfold Lane, Norfolk, UK IP26 5LH
cCentre for Biomedical Research, University of Hull, Cottingham Road,
Hull, UK HU6 7RX

† Electronic supplementary information (ESI) available: Details of
temperature measurement technique used; description of the microwave
cavity and power source developed. See DOI: 10.1039/c000357n
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electric current induced Joule heating method has also been

described where platinum electrodes are used to transfer an

electric current directly into the PCR solution, producing heating

and cooling rates of 15 �C s�1.11

The use of microwaves for dielectric heating of liquids within

microfluidic devices has previously been shown to have the

potential for thermal cycling but the technology has not been

fully exploited to demonstrate actual DNA amplification.12–14

Issadore et al., for example, reported a system whereby droplets

are flowed through a microwave heater, which relies on inte-

grated metal electrodes that run parallel to the fluidic channel to

deliver the microwave power.12 The use of direct sample coupling

of microwave heating has also been demonstrated for PCR, with

the emphasis of this work being on the thermal cycling of rela-

tively large volumes of liquid rather than miniaturisation. For

example, Orrling et al. presented a microwave heating system

capable of performing PCR in a 15 ml reaction volume for

increased sample processing.15 A total of 33 cycles were used to

amplify a 53 bp fragment in 2 hours and 7 minutes. Despite

successful amplification of the target product, this system was

only capable of heating and not cooling therefore the sample

required manual transfer into a thermally controlled block for

each annealing step.

The work presented here demonstrates the successful use of

a tuned microwave cavity for direct substrate heating, configured

to perform both heating and air impingement cooling resulting in

rapid thermal cycling, enabling DNA amplification on a micro-

fluidic device.
Experimental

Microwave cavity and power source

A custom built re-entrant microwave cavity operating at 8 GHz

was used to directly heat the glass microfluidic device (Fig. 1).

The copper cavity was connected via a coaxial coupling loop to

the microwave power source, a CPI VZM6991 series 8–18 GHz

20 W travelling wave tube amplifier [CPI, US] capable of
Lab Chip, 2010, 10, 1725–1728 | 1725
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Fig. 1 Photograph (a) and schematic cross-section (b) of the re-entrant

cylindrical microwave cavity.
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delivering power levels up to 10 W and driven by a HP3850B

microwave signal generator [Hewlett Packard, US].

After inserting a microfluidic device into the cavity the reso-

nant frequency was determined at low power using a HP8719D

network analyser [Hewlett Packard, US] by observing the reso-

nance dip in the reflected power signal. The frequency was noted

and transferred to the HP3850B signal generator. Coupling into

the cavity was adjusted for a minimum of 10 dB return loss by

varying the insertion depth of the coupling loop. The mean

power consumption of the cavity during a typical heating cycle

was found to be under 500 mW (for further details see ESI†).

Air impingement cooling was provided from a compressed air

cylinder and controlled by the actuation of a solenoid valve

which delivered short pulses of air to aid the transition between

the denaturation and annealing temperatures.
Fig. 2 Schematic showing the microfluidic device design, showing

a type-k junction thermocouple which has been threaded along the

channel length into the PCR chamber.
Temperature measurement

A 75 mm type-k (Chromel-Alumel) junction thermocouple was

inserted through the etched channels leading to the PCR

chamber. By positioning the thermocouple junction in the centre

of the PCR chamber, true sample measurement could be ensured.

A digital display on the control system allows the temperature to

be monitored in real-time, while a PicoScope 2200 [Pico�
Technology Ltd., UK] was used to record the thermal cycling

(for further details see ESI†). To ensure direct heating of the

thermocouple was not occurring in the ac electric field associated

with the microwaves, the microwave generator was (temporarily)

100% square wave amplitude modulated and the low level dc

signal (around 40 mV �C�1) of the thermocouple was monitored.

The resulting oscilloscope temperature trace showed only the
1726 | Lab Chip, 2010, 10, 1725–1728
expected triangular heating and cooling waveform, with no step

discontinuity occurring at the modulation switching points, thus

confirming the adequacy of the screening and filtering used.

In order to check the accuracy of the thermocouple measure-

ment a microfluidic device with a thermocouple in position was

placed into an isothermal block with a glass thermometer and

found to give complete agreement within the tolerances of the

thermometer used, �0.5 �C. Furthermore, the calculated error

for the thermocouple electronics was �0.4 �C, assuming that the

thermocouples, the Pt resistance thermometer and all the resis-

tors used were in tolerance.
Thermocycler

The thermocycler was designed for rapid throughput with

maximum flexibility and portability; it is therefore self-contained

and functions without an external computer. Hold times at the

DNA denaturation, primer annealing and DNA extension

temperatures are adjustable from 1 to 99 seconds, and from 1 to

999 seconds at initial and final hold temperatures if required. The

target temperatures are all adjustable and displayed numerically

to a resolution and an accuracy of �0.1 �C. Time and tempera-

ture settings can be adjusted during cycling if necessary (for

further details see ESI†).
Production of microfluidic device

Borosilicate glass microfluidic devices of cross-section 5 mm �
2 mm were produced using standard photolithography and wet

etching techniques.16 The DNA amplification chamber (3 mm

diameter, 100 mm deep), which had a volume of 0.7 ml, was

connected to inlet and outlet ports via etched channels (200 mm

wide and 100 mm deep), which also served to allow access for the

thermocouple (Fig. 2). To create a sealed device the etched glass

plate was thermally bonded to a top plate which had 360 mm

holes drilled in it to act as reagent and sample inlets. The ther-

mocouple was threaded into the microfluidic device by hand

from the open channel end after fabrication.

The internal glass surfaces of the microfluidic device were

silanised to prevent DNA polymerase adsorption.17 A solution of

290 ml of trichloro(1H,1H,2H,2H-perfluorooctyl) silane in 5 ml

of 2,2,4-trimethylpentane was flowed through the microfluidic

device for 10 minutes at 5 ml min�1.18 Following this solutions of

2,2,4-trimethylpentane, acetone and distilled water were

sequentially used to wash the microfluidic device.
This journal is ª The Royal Society of Chemistry 2010
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DNA amplification

Saliva was collected, from male and female volunteers, using

a 0.9% (w/v) saline solution mouthwash which was swilled

around the mouth. A 1 ml aliquot of the mouthwash was placed

in a 1.5 ml microcentrifuge tube and centrifuged at 14 000 rpm

for 3 minutes. The supernatant was removed and the pellet

subjected to DNA extraction using a QIAamp� DNA Micro Kit

[Qiagen, UK] following standard protocols.

The extracted DNA (1 ng) was added to a PCR reagent

solution composed of the following: 1� reaction buffer [Prom-

ega, UK], 2 mM MgCl2 [Promega, UK], 200 mM each dNTPs

[Bioline, UK], 0.5 mM forward primer, 0.5 mM reverse primer,

10 mg ml�1 bovine serum albumin [NEB, UK], 0.01% (w/v)

poly(vinylpyrrolidine) [Sigma-Aldrich, UK], 0.1% (v/v) Tween-

20 [Sigma-Aldrich, UK] and 1 U GoTaq� DNA polymerase

[Promega, UK] made up in purified water. Forward and reverse

primers were custom-made for the Amelogenin locus (Forward:

50-JOE-CCCTGGGCTCTGTAAAGAA-30, Reverse: 50-ATC-

AGAGCTTAAACTGGGAAGCTG-30) [Eurofins MWG

Operon, Germany].19 PCR control samples were run in parallel

on a TC-312 thermal cycler [Techne, UK].
Analysis of PCR products

PCR products were analysed by capillary electrophoresis using

an ABi Prism 310 Genetic Analyser [Applied Biosystems, UK].

The samples were collected from the DNA amplification

chamber and added to 12 ml of Hi-Di� formamide [Applied

Biosystems, UK] and 0.5 ml GeneScan� 500 ROX� DNA size

standard [Applied Biosystems, UK]. The solutions were heated

to 95 �C for 5 minutes to denature the DNA and then snap-

cooled on ice prior to loading on the ABi Prism 310 Genetic

Analyser. Standard protocols for DNA fragment analysis were

followed, using POP-4 [Applied Biosystems, UK] as the separ-

ation matrix.
Fig. 3 Graph showing the thermal cycling profile of the microwave

heating system based on selected temperatures of 92 �C, 58 �C and 71 �C.

The image comprises 5 overlaid thermal cycles demonstrating the

reproducibility of the system.
Results and discussion

Microwave cavity and power source

The microwave heating system was designed to have an imped-

ance mismatch between the substrate and sample in order to heat

the glass of the microfluidic device and not the sample itself. This

was achieved by combining the device geometry, electrical

characteristics and very low sample volume and ionic strength

together with the radio frequency (RF) field. For example as the

sample solution was not simply water but a mixture of buffer and

PCR reagents its ionic strength would make the solution suffi-

ciently conducting to effectively act as a short circuit in its axial

direction so supporting the preferential match of the transverse

impedance of the glass with the impedance of the microwave

cavity. Evidence that it was indeed direct heating of the glass

substrate as opposed to heat conduction from the sample was

established by the fact that heating rates were the same with or

without the sample being present.

Whilst indirect microwave heating of the sample via the glass

may seem to offer little advantage over simpler methods such as

surface contact resistive heating, the uniformity of microwave

heating throughout the volume of the glass rather than via the
This journal is ª The Royal Society of Chemistry 2010
surface removes the delay in the thermal control loop, thus

allowing far more rapid yet stable temperature control. The

cooling process of two impinging air jets is, however, susceptible

to the thermal delay of the glass, as it is its outer surface and not

its bulk volume that is cooled. The air cooling was therefore

excluded from the temperature control system by cooling to just

below the target temperature then maintaining that temperature

by the feedback controlled microwave heating. This also elimi-

nated any need for proportional control of the cooling air flow,

thus allowing a simple on–off solenoid valve to be used.

Thermal cycling profile

Using feedback controlled microwave heating coupled with air

impingement cooling, the system showed minimal thermal

overshoot or undershoot at any of the three set temperatures.

Once the microwave system had reached a set temperature the

variation was less than �0.1 �C. The ramp rates for heating and

cooling exceeded 65 �C s�1, allowing very fast transitions between

temperatures (Fig. 3). Note that the cooling rate is slower than

the heating rate.

The thermocycler of the microwave system was designed to

include an initial denaturing step, essential when using Hot-Start

Taq DNA polymerases, and a final extension step to ensure

complete adenylation of the PCR products. The time and

temperature of these steps were adjustable in the same way as for

the three amplification steps.

DNA amplification

DNA amplification of the Amelogenin locus was carried out

using the microwave heating system described. Amelogenin is

used to distinguish between male (XY) and female (XX), yielding

PCR products of 106 bp (X) and 112 bp (Y). For PCR experi-

ments, a 2 minute initial heating step at 95 �C was carried out to

ensure complete denaturation of the DNA and to activate the

Hot-Start GoTaq DNA polymerase. Thermal cycling between

DNA denaturation (94 �C), primer annealing (59 �C) and DNA

extension (72 �C) temperatures was performed for 28 cycles.
Lab Chip, 2010, 10, 1725–1728 | 1727
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Fig. 4 Electropherogram showing PCR products from amplification of

the Amelogenin locus, using DNA extracted from a male volunteer, on

a microfluidic device using microwave heating. A DNA size standard was

also included to enable accurate sizing of the PCR products.
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Samples were then analysed using capillary electrophoresis.

Successful PCR amplification, of DNA from both male and

female donors, was achieved using the microwave system (Fig. 4).
Conclusions

The microwave heating system developed was found to have

a response speed orders of magnitude faster than that of current

commercial systems. This fast thermal transition capability

enabled 28 cycles to be performed in 42 minutes. This represents

a considerable time saving on previously reported microwave

PCR systems where 33 cycles took 127 minutes.13 Further work

aims to reduce the hold times at each temperature to achieve

DNA amplification which will be no longer thermally limited but

restricted for example by the processivity of the DNA poly-

merase, where an average DNA polymerase enzyme adds 60–100

nucleotides per second.
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Microfluidic perfusion system for maintaining viable heart tissue with
real-time electrochemical monitoring of reactive oxygen species†
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A microfluidic device has been developed to maintain viable heart tissue samples in a biomimetic

microenvironment. This device allows rat or human heart tissue to be studied under pseudo in vivo

conditions. Effluent levels of lactate dehydrogenase and hydrogen peroxide were used as markers of

damaged tissue in combination with in situ electrochemical measurement of the release of reactive

oxygen species (ROS). The parameters for perfusion were optimized to maintain biopsies of rat right

ventricular or human right atrial tissue viable for up to 5 and 3.5 hours, respectively. Electrochemical

assessment of the oxidation current of total ROS, employing cyclic voltammetry, gave results in real-

time that were in good agreement to biochemical assessment using conventional, off-chip, commercial

assays. This proof-of-principle, integrated microfluidic device, may be exploited in providing

a platform technology for future cardiac research, offering an alternative approach for investigating

heart pathophysiology and facilitating the development of new therapeutic strategies.
Introduction

Studies of cardiac physiology and biochemistry have traditionally

used in vitro perfusion systems such as the Langendorff retro-

grade perfusion.1,2 This model has been widely used for a diverse

range of studies of the heart, including molecular and cellular

alterations, as well as evaluating therapeutic interventions.

The main alternative approaches for studying the pathophys-

iology of heart diseases are based on cell or tissue culture.

However, the concern for all in vitro cell manipulation studies is

that the cells behave differently in culture flasks,3 as the micro-

environment experienced in vitro is clearly different from those in

vivo. In addition, there is a further complication with adult car-

diomyocytes as these can only be maintained as primary cell

cultures, not immortal cell lines. Tissues and organs have

complex three-dimensional systems in situ, including a complex

network of extra-cellular matrix, e.g. elastin, laminin, collagen

and fibronectin. In addition, cells inhabit a closely packed spatio-

temporal environment where any cell is always communicating

and interacting with multiple other cell types, responding to local

concentrations of a plethora of molecules, such as cytokines,

enzymes and nutrients. Accordingly in an in vitro cell culture

environment, many, if not all of these signals are missing.

Microfluidics offers an approach that can circumvent many of

the limitations of in vitro cell culture methodology. For example,
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by continuously supplying enriched media to heart tissue biop-

sies in vitro, whilst removing waste products and gases produced

by cellular processes.4,5 Several groups have developed micro-

fluidic devices for studying cardiomyocyte functions, with Li and

Li being the first, investigating cell contraction.6 A single car-

diomyocyte was retained within a V-shaped structure of the chip.

Analysis of intracellular [Ca2+] following ionomycin stimulation

was measured using the calcium-sensitive dye, Fluo-4 AM ester.

Subsequently, Li et al. developed a microfluidic chip with

improved cell retention properties and used this to monitor

calcium mobilization in single cardiomyocytes, in real-time, as

a part of a drug screening application.7 Cheng et al. developed

a multi-functional microfluidic platform with a microelectrode

array to stimulate the cell and monitor lactate release by elec-

trochemical (EC) probes.8 This analysis was used in conjunction

with in situ microscopy and fluorescence detection of extracel-

lular pH and cellular Ca2+ concentrations during cell contraction.

However tissue, with its highly complex structures, presents

a greater technological challenge in terms of maintaining essen-

tial supplies of oxygen and nutrients, whilst removing waste

products. The benefits of studying a more holistic representation

of the complex cell–cell and cell–stroma interactions are a greater

relevance for physiological and clinical studies.

Reactive oxygen species (ROS) play a major role in ischemia–

reperfusion injury, ageing, neurodegenerative disorders and

many other diseases.9,10 ROS can cause the oxidation of

membrane phospholipids, DNA and proteins, subsequently

impairing mitochondrial function. ROS can be measured by

various means, such as chemiluminescence,11,12 fluorescence,13,14

infrared15 and electron spin resonance spectroscopy.16 Electro-

chemical methods, however, provide a direct means of analysing

the concentration of free radicals in solution at the specific site

where the sensing electrode is positioned, with minimal distur-

bance to the sample under investigation.17 Fast cyclic voltam-

metry has been carried out previously to capture the transient
This journal is ª The Royal Society of Chemistry 2010
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Fig. 1 Schematics of the experimental setup (A and B): stimulation

electrodes (a and b); working, reference and counter electrodes (c–e);

tissue in chamber with Krebs–Henseleit buffer (supplemented with 5 mM

glucose, 100 Units mL�1 penicillin and 100 mg mL�1 streptomycin, f);

tissue holder (PDMS, g). Petri dish lid as the chamber cover and holder

for electrodes and tubes (h). Polystyrene Petri dish (i). Photograph of the

device with tissue (without the chamber lid) (C).
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signals of extracellular nitric oxide or nitric oxide synthase

(NOS) in brain slices.18,19 Recently, triple potential-step

chronoamperometry has been developed to measure simul-

taneously ROS and reactive nitrogen species (RNS).20

Several groups have reported electrochemical sensors inte-

grated with microfluidic devices to determine changes in ROS. A

microfabricated Pt electrode was platinised to increase electro-

chemical sensitivity and used to detect ROS and RNS released

from macrophage cells following continuous microinjection of

a calcium ionophore.21 Electrochemical measurement has also

been used to detect lactate released from heart cells7 and in

saliva.22 Hitherto, electrochemical monitoring of ROS during

perfusion of viable heart tissue biopsies has not been reported.

Here, a microfluidic chip based perfusion system has been

designed and optimised to maintain viable and functioning heart

tissue samples. Analysis of tissue was performed on-chip by

electrochemical measurements and verified off-chip by

biochemical methods, as a route towards developing the next

generation of user-friendly devices to maintain and analyse tissue

to address clinically relevant issues.

Experimental

Experimental models

All procedures conform to the UK Animals (Scientific Proce-

dures) Act 1986. Wistar rats (B&K Universal Ltd., Grimston,

UK) were housed under a 12:12 hour light–dark cycle and

provided with food and water ad libitum. Animals were anaes-

thetized via intraperitoneal injection of 0.5 mL 100 g�1 sodium

thiopentone (25 mg mL�1, Link Pharmaceuticals Ltd., West

Sussex, UK). In brief, hearts were rapidly excised and the aorta

was cannulated. A piece of right ventricular tissue (approxi-

mately 2 � 4 � 4 mm3) was taken and placed directly into the

chamber of the perfusion device filled with buffer. At the end of

the experiment, the wet weight of the heart tissue sample was

recorded.

Human heart tissue biopsies were supplied by Mr S. Griffin

(Consultant Cardiothoracic Surgeon). Ethics and Hospital Trust

approvals were obtained from Hull and East Yorkshire Local

Research Ethics Committee (07/H1304/105) and Hull and East

Yorkshire NHS Trust (R0568), respectively. Samples were taken

from patients undergoing coronary artery bypass surgery

(CABG). Heart biopsies were immersed in freshly prepared

cardioplegic solution at 4 �C (Martindale Pharmaceuticals, UK),

transported to the laboratory and mounted in the perfusion

chamber within 60 minutes.

Fabrication of microfluidic perfusion device

A microfluidic perfusion chamber with a capacity of 400 mL was

constructed from polydimethylsiloxane (PDMS) (Dow Corning,

USA) and a polystyrene Petri dish (35 mm in diameter) (Fig. 1).

Briefly, the chamber was moulded around the diamond-shaped

end of a 1 mL syringe barrel that was attached to a silicon wafer

using an instant adhesive (Henkel Loctite Adhesives Ltd., UK).

Mixed and degassed PDMS monomer and initiator (w/w, 10 : 1)

were poured over the syringe end and cured at 75 �C for two hours

to form a mould. The PDMS chamber was stripped off the

template and five holes (1–3 mm in diameter) were punched to
This journal is ª The Royal Society of Chemistry 2010
allow for the inlet, and outlet Teflon� tubings (1.0 mm ID � 1.6

mm OD, VWR Int. Ltd.), and electrodes. The PDMS was bonded

with the Petri dish after oxygen plasma treatment at 350 V, 20 mA,

PO2
8 mbar for 50 s (SPEEDIVAC, Model 12E6/1405 Edwards

High Vacuum Ltd., UK). This device provided a 7 mm chamber at

its centre into which a heart biopsy was placed and positioned on

a 37 �C hotplate (WIS1, World Precision Instruments, UK). Both

the inlet and outlet were connected to peristaltic pumps at a flow

rate of 120 mL min�1, and the heart tissue was electrically stimu-

lated via two platinum wire electrodes anchored in the chamber lid

using a programmable, square wave, function generator

(TG1010A, Thurlby Thandar Instruments Ltd., UK).
Lab Chip, 2010, 10, 2720–2726 | 2721
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Experimental protocols

Prior to each experiment, the microfluidic system was sterilised

with 70% (v/v) ethanol/water by perfusion at 120 mL min�1 and

rinsed with sterilised double distilled water for 10 minutes,

respectively. The microfluidic device was then primed with

Krebs–Henseleit buffer (KH, 118 mM NaCl, 25 mM NaHCO3,

4.8 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgCl2 and 2.5 mM

CaCl2) for 15 minutes. In this paper KHG represents KH buffer

plus 5 mM glucose. The addition of 100 Unit mL�1 penicillin and

0.1 mg mL�1 streptomycin (final concentration) to KHG buffer

formed KHGB. All constituents were purchased from Sigma-

Aldrich (UK) in the highest purity grade commercially available

and used without further purification. Buffers were filtered using

a 0.22 mm syringe filter (Millipore Corporation, USA) and

oxygenated with 95% O2-5% CO2 continuously at 37 �C.

Right ventricular tissue from rat or right atrial tissue biopsies

from patients were perfused with KHGB for up to 5 hours

followed by 30 minutes to one hour with 2% (v/v) Triton X100

(BDH, England) in KHGB. Triton X100 is a non-ionic surfac-

tant able to solubilise phospholipid membranes,23 releasing the

intracellular enzymes. In some experiments, 95% N2-5% CO2

saturated KHGB was used as an alternative method of inducing

damage.
Assessment of tissue functions

1 Tissue viability. Viability was evaluated using calcein–

acetoxymethyl ester (Calcein AM; Invitrogen, UK) and propi-

dium iodide (PI; Sigma-Aldrich, UK). Calcein AM is a modified

carboxylic acid containing an additional ester group that permits

entry into cells. The ester is hydrolysed within viable cells altering

hydrophobicity; the resulting carboxylate is both fluorescent and

membrane impermeable. Conversely, PI only enters cells when

the plasma membrane is disrupted where it intercalates with the

double-stranded DNA and fluoresces, thus providing a measure

of dead or dying cells. Following perfusion for various time

periods, cardiac tissue sections were incubated with 50 mL of

10 mM calcein AM (lex ¼ 494 nm and lem ¼ 517 nm) in phos-

phate buffered saline (PBS, pH 7.4) for 1 hour. The tissue was

then washed with PBS and incubated with 50 mL of 3.75 mM PI

(lex ¼ 536 nm and lem ¼ 617 nm) in PBS for 10 minutes. After

a final wash with PBS, the cardiac tissue section was examined

under a laser-scanning inverted confocal microscope (Nikon

Eclipse TE2000-E).

2 Lactate dehydrogenase measurement. Cell damage was

determined via release of lactate dehydrogenase (LDH),24 using

a commercial colorimetric assay (Cytotoxicity Detection KitPlus,

Roche, UK). Effluent samples were collected for 2 min

(approximately 240 mL in total) at 5 min intervals during

perfusion from the outlet tube (see Fig. 1(A)). To measure LDH,

samples (50 mL) were incubated with 50 mL of reaction mixture

containing diaphorase/NAD+, iodotetrazolium chloride and

sodium lactate for 30 min at room temperature in 96-well plates.

The reaction was terminated by adding 50 mL of stop solution

(1 M HCl) per well, and absorbance measured at 492 nm using

a microplate reader (BioTek Instruments, Inc., USA). All

samples were assayed in triplicate.
2722 | Lab Chip, 2010, 10, 2720–2726
3 Detection of H2O2. The concentration of H2O2 in the

effluent was determined using a commercial Amplex Red

Hydrogen Peroxide assay kit (Invitrogen Molecular Probes,

UK). A standard curve ranging from 0 to 5 mM H2O2 was

generated for each experiment. Samples (50 mL) were incubated

with 50 mL of reaction mixture containing 100 mM Amplex Red

reagent and 0.2 U mL�1 horseradish peroxidase (EC. 1.11.1.7,

one unit of enzyme will form 1.0 mg purpurogallin from pyro-

gallol in 20 seconds at pH 6.0 and 20 �C) for 30 minutes at room

temperature. Absorbance at 562 nm was measured using

a microplate reader (BioTek Instruments Inc.). All results were

corrected for background absorbance and expressed as the

average of duplicate samples.

4 Electrochemical monitoring of the total ROS. Electro-

chemical measurements were performed with the three-electrode

system integrated onto the perfusion chip by a Palmsens poten-

tiostat (PalmSens Instruments, Netherlands). This in-house

produced system comprised one Pt disk electrode (250 mm in

diameter) sealed in a glass tube (3 mm OD) which served as

a working electrode (WE), a Pt wire as a counter electrode and

Ag wire with a layer of AgCl operating as a reference electrode.

Note that the saline buffer is sufficient to ensure that this refer-

ence maintains a constant potential. The AgCl layer was elec-

trochemically coated by placing Ag wire in 100 mM NaCl

solution and holding the potential at 0.45 V vs. Ag/AgCl (3 M

NaCl) for 10 min until the oxidation current tailed to a residual.

Potentials are reported versus this reference electrode unless

otherwise stated. Prior to use, the working electrode was polished

with 0.3 mm and 0.1 mm alumina slurry on polishing pads (Kemet

International Ltd., Kent, UK), respectively and then successively

cleaned in 10% (v/v) HNO3 and water in an ultrasonic bath.

During tests, refreshing of the electrode surface was carried out

by wiping the WE on a polishing cloth and rinsing with water.

During in situ measurements, cleaning of the WE was carried out

by electrochemical methods, such as differential pulse voltam-

metry (DPV) or cyclic voltammetry. During perfusion, cyclic

voltammetry was conducted between �0.8 V and 1.0 V at a scan

rate of 0.1 V s�1 and followed by a square wave voltammetry

(SWV) scan from �0.55 V to 1.0 V with a frequency of 25 Hz,

amplitude of 25 mV and a step of 5 mV. The first scan of cyclic

voltammetry data was used for ‘‘non-polishing-mode’’ analysis

while the second scan was used when polishing was undertaken,

due to the enhanced sharpness of the feature in the second cycle.

The electrochemical measurement was carried out when the

stimulation pulse (ES) was switched off to obviate the deterio-

ration in voltammograms.
Results and discussion

Perfusion system and viability assessment of tissue

1 Establishment of an optimal perfusion system. The dimen-

sions of the tissue samples were optimised so that sufficient

oxygen was supplied to the heart tissue sample. Samples with

dimensions of approximately 4 � 2.5 � 2 mm3 were evenly

labelled with calcein AM with little PI staining after perfusion for

5 hours (Fig. 2(A)). Larger heart tissue biopsies had a greater

distance for oxygen and nutrient permeation from the edge to the
This journal is ª The Royal Society of Chemistry 2010

http://dx.doi.org/10.1039/c004910g


Fig. 2 Representative confocal microscopy images of cardiac tissue

sections treated with calcein AM (green fluorescence) and PI (red

fluorescence) following 5 h incubation and an hour treatment with 2%

(v/v) Triton X100. Tissue size in (A) �4 � 2.5 � 2 mm3; (B) �5 � 3.5 � 2

mm3. A 10� objective lens was used. The images were 400–500 mm from

the bottom surface of the tissues.

Fig. 3 LDH level in rat (A) or human (B) tissue. Tissues were perfused

with oxygenated KHGB until 300 min in (A), and 200 min in (B),

followed by 2% (v/v) Triton X100 in KHGB. Stimulation pulse, 4 V cm�1;

1.5 Hz. The LDH concentration was calculated in U mL�1 in (A) and

subsequently standardised against the wet weight of human tissue (B).

(Representation of three and eleven experiments in (A) and (B), respec-

tively.)
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core of the tissue sample; and thus the central region was strongly

stained with PI but with a reduced calcein signal (Fig. 2(B)). Flow

rates <100 mL min�1 meant that the collection of sufficiently sized

aliquots took too long for repeated analysis, whereas flow rates

$200 mL min�1 disturb the tissue and stimulation probes pre-

venting reproducible assessment; see later and ESI† for EC

optimisation. A flow rate of 120 mL min�1 was established as the

standard flow rate for all subsequent experiments.

2 Establishment of on-chip electrical stimulation parameters.

The heart tissue in the current study was stimulated electrically to

mimic the in vivo situation. It was found that the excitation

threshold for rat tissue to start beating and be maintained for at

least 1 min was 1.0 V cm�1 at 2 Hz. Normally, the stimulation

regime using square monophasic pulses, for a whole rat heart,

occurs for a duration of 5 ms at a frequency of 5 Hz and

amplitude of 1.5–2 V;25 or for approximately 3 ms at a frequency

between 0.5 and 1 Hz with a field strength of 5–6 V cm�1 for

single rat ventricular cardiomyocytes.26,27 For rat tissue samples

of the sizes described in Fig. 2 stimulation started at 0.8 V cm�1

and 2 Hz and the electric field was incrementally increased until

all or part of the tissue commenced beating. At 1 V cm�1 the

beating was observed to last more than 1 min. Bubbles due to

solvent breakdown formed when the electrical field was $12 V

cm�1. A standardized frequency of 1.5 Hz with an electric field of

3–4 V cm�1 was chosen in order to obtain prolonged heart

beating.

The contractile function of tissue in the perfusion device

became more pronounced, and generally lasted for longer

periods of time when the calcium concentration in the KH buffer
This journal is ª The Royal Society of Chemistry 2010
was increased from 1.25 to 2.5 mM. The latter concentration was

used as standard for all subsequent experiments.

The optimized conditions (3–4 V cm�1, 1.5 Hz, 2.5 mM

calcium chloride) maintained the heart tissue with regular

contractions for up to 5 hours. Contraction of the electrically

excited heart tissue sample was observed via a microscope

camera (Veho, UK) during the perfusion of the majority of rat

tissue biopsies, but only about 40% of human tissue samples

showed this trend. The key determinant of damage was LDH

release, measured in effluent samples and following incubation of

the tissue with Triton X100 at the end of the perfusion period in

the device. An alternative method of inducing injury was through

perfusion with media containing 95% N2-5% CO2. It was

observed that rat tissue ceased functioning within 10 min after

incubation in KHG buffer saturated with this gas, associated

with a marked increase in LDH release, similar to that observed

after incubation with Triton X100 (Fig. 3).

3 Viability in perfusion device as assessed by LDH release.

Biopsies from right ventricular rat tissue were maintained in

a viable state for at least 5 hours (Fig. 3A), whereas for human

right atrial tissues, a period of 3.5 hours was the maximum tested

(Fig. 3B). LDH activities were high initially in every experiment,

most likely due to damage caused when samples were taken and

transported to the microdevice. Following this initial peak, the

LDH levels remained at low levels, suggesting a recovery from

the acute injury due to sufficient supplies of nutrients, oxygen

and appropriate electrical stimulation in the flow perfusion

chamber. When oxygen was removed from the buffer, electrical

stimulation was stopped, or the biopsy was treated with Triton

X100, the LDH levels showed a sharp increase within 10–15

minutes, verifying the viability of tissue prior to induction of

damage.

The current work here is distinct from tissue engineering

constructs in microfluidic systems, which generate new tissues to

restore, maintain, or enhance tissue function. The methodology

described here allows direct experimentation on primary clinical

samples under in vivo conditions. Similar work has been
Lab Chip, 2010, 10, 2720–2726 | 2723
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demonstrated by our group using liver tissue28 and colorectal

tumour biopsies,29 both of which were kept viable for over 70

hours in the microfluidic environment. The liver tissue produced

albumin and urea during perfusion, whereas the colorectal tissue

produced vascular endothelial growth factor in response to

hypoxia, demonstrating that both cell types were functional and

responded in a similar manner to tissue in vivo.
Fig. 4 Control tests in different buffer solutions using polished elec-

trodes. Between 0–30 min and 90–125 min, no stimulation pulse; 40–

80 min, stimulation pulse on while not conducting EC measurement. IO at

0.72 V in cyclic voltammetry in KHGB buffer with Triton X100 from the

90th min (a, solid circle), in KHG with 95% N2-5% CO2 from the 90th min

(b, empty star) and in KH (c, square-cross). IO at 0.3 V in SWV with 95%

N2-5% CO2 from 90 min, in KHG (d, solid star), and KHGB (e, solid

triangle). Flow rate: 120 mL min�1 for all perfusions. (Representative of

three independent experiments.)
ROS monitoring by electrochemistry

ROS or NOS can be measured by various kinds of chemical

means.11–16 Electrochemical measurement has distinct advan-

tages in terms of sensitivity and speed for real-time assessment, in

situ. Previously H2O2 has been reported to be released at a rate of

50 nmol g�1 min�1 two minutes after an ischaemia/reperfusion

episode.30 Following previous work in our laboratory regarding

the development of a hydrogen peroxide biosensor, preliminary

studies indicated that this enzyme-modified electrode could be

employed to measure H2O2 using the current methodology.31

Given that the half-life of H2O2 is longer than that of the other

ROS and NOS, we chose to employ direct H2O2 oxidation at Pt

electrodes as the validation of part of ROS.

1 Species confirmation and identification of the monitoring

window. Details regarding the amperometric monitoring of ROS

are given in ESI 1†; in summary it was observed that potentials of

+0.72 V vs. Ag/AgCl allowed for the oxidative detection of

ROS.21,32

2 Control tests. Monitoring the current change continuously

in the perfusion system is a challenge because many parameters

can cause interference with the electrochemical measurements.

The cleanliness of the WE, the presence or absence of oxygen and

nitrogen in different stages of the perfusion, Triton X100 and the

stimulation for maintenance of the heart ‘‘beat’’ were the main

interfering parameters.

Two modes of control test for EC measurement were studied:

non-polishing and polishing of the electrode in the relevant

buffers. In the first mode, the WE was scanned initially in KH

solution from �0.8 V to 1.0 V until a stable response was

observed; the electrode remained in place within the chamber

during perfusion without cleaning prior to voltammetric

measurement. In the second control the WE was polished and

rinsed with water before each measurement; Fig. 4 illustrates

these results. It was found that the ‘‘on/off’’ stimulation pulse

caused fluctuations in the background current measured using

cyclic voltammetry or SWV. When no stimulation pulse was

applied, the baseline was relatively noise-free and stable with

a low standard deviation (Fig. 4a, and ESI 2, Table S1†).

Higher variances of oxidation current (IO) were observed when

electrical stimulation was applied, as expected (region 40–80 min

in Fig 4). Glucose and antibiotics were not responsible for this

because further tests in KH and KHG buffers suggested a similar

fluctuation within this period (Fig. 4b and c). When electrical

stimulation is applied ionic species will redistribute around the

pulse probes to form electrical double layers, which may alter the

background current of a voltammetric measurement each time

this stimulation is turned on. In order to mitigate this effect EC

measurement was delayed for 5 seconds after the pulse ceased to
2724 | Lab Chip, 2010, 10, 2720–2726
ensure sufficient time for the double layer around the electrode to

resettle in the presence of freshly flowing buffer.

3 Study of induction of injury and in situ EC measurement. In

Triton X100–KHGB with no electrical simulation (90 to

125 min), the background current IO at 0.72 V in cyclic

voltammetry fluctuated by up to �10% compared with those

between 40 and 80 min without Triton X100; whilst in 95% N2-

5% CO2–KHGB, IO increased less than 6% on average (Fig. 4).

The surfactant was reported to enhance efficiently the electron

transfer between solution and electrode surface due to its strong

adsorption on the hydrophobic electrode surface.33 Since the use

of Triton X100 in tissue-free buffer caused an increased signal of

up to 10%, the tissue would be considered alive before the assault

only when the current measured in EC increased by more than

15%.

In order to achieve in situ EC measurement, a non-polished

electrode was first used. The baseline was found to be smooth

and stable when there were no electrical stimulation periods but

suffered poor reproducibility and a decreasing baseline when

stimulation pulses were switched on. The average IO decreased

more than 20% with addition of Triton X100, and the relative

standard deviation was 12% on average. The WE also became

easily contaminated during voltammetry scans. This was

confirmed by using a Pt disk electrode in N,N,N0,N0-tetramethyl-

p-phenylenediamine solutions (TMPD, Sigma) before and after

cyclic voltammetry scans in KHGB and KH (ESI 3, Fig. S2†).

Distorted voltammograms were observed in the range of 0.05 V

to �0.02 V in the TMPD solution after scans in KH buffers.

However, when operating in the non-polishing mode, it was

necessary to minimise disturbances of the device once estab-

lished, hence a method for cleaning the electrode in situ by

electrochemistry was designed. DPV and cyclic voltammetry,

which scan to high potentials (from �0.5 V to 1.5 V with the ES-

on), were demonstrated to clean the WE effectively in situ, when

fouling was observed by increased reduction currents around

0.8 V in cyclic voltammograms.

In order to increase the sensitivity of the EC measurement and

shorten the record time, thus limiting any potential disruption of
This journal is ª The Royal Society of Chemistry 2010
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the perfusion, measurement of ROS by SWV was also studied.

Generally, the average IO at 0.25 V in SWV was smaller than that

in cyclic voltammetry (Fig. 4 (d, KHG) and (e, KHGB)). This

lower current at 0.25 V in KHGB is due to the presence of

antibiotics ((d) in Fig. S1A, inset†), which may induce electrode

surface blocking after the SWV scan. This can be found in 90–

125 min area when 95% N2-5% CO2 took the place of O2 and

electrical stimulation was off; the standard deviation was better

than in cyclic voltammetry, whilst the variance of IO after N2

treatment was �20%, higher than in cyclic voltammetry.

4 ROS results compared with LDH and H2O2 assays. Fig. 5A

shows the results of LDH and in situ EC measurement of ROS in

real time. The electrode was cleaned by the EC method described

above. The profile of LDH release (measured off-chip) and EC

agreed well, with relatively high levels in the early stage of the

perfusion, this then decreased and remained low until a sharp

increase was induced with the addition of Triton X100. The

electrode was cleaned by DPV with scans from �0.8 V to 1.5 V

before the 25th, 55th, 140th and 190th min, when the WE was

contaminated (an early sign was increased cathodic current

around 0.8 V in cyclic voltammetry). The decrease of signal at the

55th and 190th min accordingly is likely to be due to this action. It

was noted that the length of time between obtaining the biopsy

and placing this in the chamber was correlated with electrode

contamination, i.e. when placed in the device within 5 minutes,

little electrode contamination was observed; unfortunately the

human tissue had to be transported from the hospital site and

took up to 60 min from biopsy to device.

Fig. 5B shows the comparison of LDH, H2O2 release with total

ROS by electrochemical measurement in a polishing mode.

During perfusion, cyclic voltammetry and SWV measurements
Fig. 5 Comparison of LDH, H2O2 and total ROS by EC in human

sample perfusion. (A) Release of LDH (blue circles) and ROS by cyclic

voltammetry (filled circles). In situ electrode cleaning by DPV, scanning

from �0.5 V to 1.5 V before the 25th, 55th, 140th and 190th min. (B) LDH

(blue circles), H2O2 (red circles) from Amplex Red assay and ROS by

cyclic voltammetry (filled circles) with perfusion. The electrode was

polished before each scan. Perfusion with 95% O2-5% CO2–KHGB with

ES until the 200th min then electrical stimulation was turned off and the

sample was incubated with Triton X100-KHGB in (A), or 95% N2-5%

CO2–KHGB in (B). Stimulation pulse: 4 V cm�1, 1.5 Hz; EC measure-

ments were carried out with the pulse off. (Representative of three

independent experiments.)

This journal is ª The Royal Society of Chemistry 2010
took 1.5 min, while it took 2 min to collect sufficient effluents for

H2O2 assay and another 2 min for LDH analysis. Taking these

small differences into account, the LDH release matched the

H2O2 levels, except between 100 and 160 min where there was

a raised level of H2O2, with only minor fluctuations in LDH.

However, the IO in cyclic voltammetry and SWV agreed well with

the H2O2 assay results in the main, especially at 130 min where

LDH did not detect damage (see ESI 4, Fig. S3† for SWV

results).

The [H2O2] at 220 min was determined to be 1.18 mM from the

off-chip biochemical assay and 3 mM by electrochemical means

after calibration with standard H2O2 in the flow system (ESI 5,

Fig. S4†), indicating that the total ROS included H2O2 plus

additional ROS. As stated above it has been reported that H2O2

was released from rat heart tissue at a rate of 50 nmol g�1 min�1

two minutes after an ischaemia/reperfusion incident.30 Given the

chamber size of the device used in this work was 0.4 mL, with

a tissue weight of 0.03 g, these parameters would give an H2O2

concentration of approximately 3.75 mM min�1 for our tissue. In

contrast, a release rate of 3 � 10�18 mol s�1 per cell for H2O2 by

human neutrophils has been reported.34 Assuming an average rat

or human cardiomyocyte from the ventricle has a volume

30 000 mm3 (this varies considerably with age and sex)35 and

tissue biopsy dimensions of 2 � 4 � 4 mm3 would give a calcu-

lation of 0.48 mM min�1 for H2O2. These values do not take into

account differences in cell type, nature of the cell sample, i.e. in

the tissue a restricted number of cells are initially exposed to the

Triton X100, or stimulation method, however the production

rates are of a similar scale. Interestingly the H2O2 release

occurred prior to LDH, indicating that oxidative damage

preceded membrane damage and LDH release.

It was found that 95% N2-5% CO2 was a good alternative to

Triton X100 for inducing cell damage, due to the gas having less

effect on the background current in cyclic voltammetry. It

induced a similar release of LDH 10 min earlier than Triton X100

did (the 240th min in Fig. 3B and the 230th min in Fig. 5B).

However, the LDH rise was smaller than that caused by the

detergent treatment. This is most likely due to Triton acting

directly on the cell membranes rather than an indirect effect

associated with a lack of oxygen. It is hypothesised that longer

periods of perfusion with the 95% N2-5% CO2 media would

result in a similar level of cell rupture and LDH release.
Conclusions

A microfluidic device has been developed for heart tissue

perfusion with real-time electrochemical monitoring of ROS

release. Having optimized the perfusion and stimulation condi-

tions, it is possible to maintain viable tissue biopsies from rat and

human tissue for up to 300 min, a typical time frame for current

in vitro models. In situ, real-time electrochemical measurement of

total ROS was achieved, matching the release of LDH deter-

mined off-chip. Both cyclic voltammetry and square wave

voltammetry have been utilised to monitor ROS levels and the

concentrations detected have been verified by biochemical assay

of H2O2. In summary, this study describes a novel method to

monitor continuously the change of ROS and other factors in

heart tissue biopsies, and will facilitate investigations of normal
Lab Chip, 2010, 10, 2720–2726 | 2725
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and pathological cardiac functions ex vivo, whilst mimicking the

in vivo environment.
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This communication reports the development of a microfluidic device

capable of maintaining the long-term culture of viable tissue biop-

sies. Tissue-based models will enable evaluation of cell–cell and cell–

matrix interactions within multi-cellular systems. The device

demonstrated is a prototype, fabricated with the capacity to receive

biopsy samples up to 2 mm3, from various tissue sources. Presently,

this system has been tested with human colorectal tissue biopsies, for

periods in excess of 3 days. The response of normal colorectal tissue

and neoplastic biopsies to hypoxia was assayed by the release of

vascular endothelial growth factor (VEGF) into the media, which

was measured off-chip. As anticipated, the hypoxia induced

a greater VEGF response in the tumour biopsies than the non-

malignant tissue.
The application of microfluidic devices to the analysis of biological

samples is a rapidly developing field. Culturing tissue biopsies in

a microfluidic device will provide a more holistic model for detecting

cellular response to changes, such as drug stimuli, because the device

can accurately reproduce many of the key parameters of the in vivo

environment. Compared with a traditional cell culture model, biopsy

tissue retains the complex cell–cell and cell–matrix communication/

interaction; furthermore tissue biopsies are far less likely to undergo

surface marker changes, a phenomenon that occurs over time with

cell culture as essentially a portion of the tissue in its native state is

being studied. Advances in 3D culturing1 and tumour spheroid

models2 have been reported recently as it is believed these will provide

superior models of tumour response to anticancer drugs in preclinical

in vitro experiments. Whilst a great deal of literature describes cell

culture within microfluidic devices,3,4 relatively few report whole

tissue based methodology due to the difficulty in culturing this type of

sample. Previous work within this area has largely been restricted to

culturing ultra-thin brain tissue slices in polydimethylsiloxane

(PDMS) devices for a maximum of 3 h.5–7 Culturing tissue biop-

sies, not cells, in excess of 24 hours would generally be considered

long-term.8

The most important factors when culturing cells or tissue are

temperature, sterility, nutrients (via media) and gas supply. Gas

saturation of media is essential as media require pH stabilisation

using CO2, while gas concentrations, especially O2, are vital to the

normal functioning of cellular processes. Tissue hypoxia, resulting

from inadequate oxygen supply, compromises cellular functions and

in tumours can be described as a pathophysiologic consequence of

a functionally and structurally disturbed microcirculation. Hypoxia

not only affects tumour cells directly, but is also an important
aDepartment of Chemistry, University of Hull, Cottingham Rd, Hull, UK
bDivision of Cancer, Postgraduate Medical Institute, University of Hull,
Hull, UK. E-mail: j.greenman@hull.ac.uk; Fax: +44 (0)1482466996;
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parameter to be considered when investigating drug treatments, i.e.

hypoxic regions within the tumour microenvironment will alter the

local pH and drug sensitivity.9 During cancer progression, the

neoplastic tissue grows too large for diffusion to supply the nutrient

needs of the inner cell mass. The neoplastic tissue releases a variety of

factors including vascular endothelial growth factor (VEGF),

a fundamental neovascularisation factor,10 which is required to

stimulate angiogenesis and thus create new supply routes that will

provide the rapidly dividing tumour mass with essential nutrients.

Overexpression of VEGF has been demonstrated in almost all solid

tumours including colonic neoplasms.11 Critically low gaseous supply

can be generated in the laboratory to mimic the process by creating

a hypoxic environment, and tumours release VEGF in response to

this stimulation.12 Hence, VEGF is a useful biomarker for monitoring

the response of normal and neoplastic tissue biopsies to changes in

the microenvironment within the tissue cavity of the prototype device

due to changes in the gassing regime.
Results and discussion

The microfluidic device was designed using AutoCAD software and

was fabricated in-house according to published procedures13 with

some adaptation. Briefly, the channel network (50 mm deep) was

fabricated by photolithography on B270 super white crown glass

(1 mm thick). A 3 mm top-plate was predrilled with 1.25 mm

diameter holes to accommodate the tubing and a central 3 mm tissue

cavity (Fig. 1A). The two plates were then thermally bonded in

a muffle furnace. A flat bottomed nanoport assembly with an internal

diameter of 6.4 mm (Upchurch Scientific, UK) was adhered to the

top-plate over the tissue cavity, using thermally activated glue

according to the manufacturer’s instructions, to enable easy access for

insertion or removal of tissue biopsies (Fig. 1B).

The experimental assembly offers a high degree of fluidic and gas

saturation control and the potential for manipulating the tissue

microenvironment. The device was attached to a peristaltic pump

(Minipuls 3, Gilson, France) that provided in-line filtered (Millipore

0.22 mm PES membrane, Millipore Ireland), gas-saturated media of

known concentrations (Fig. 1C). A 30 ml reservoir of Dulbecco’s

Modified Eagle Medium (DMEM) supplemented with 10% (v/v)

fetal calf serum and penicillin/streptomycin (10 unit per ml) (Invi-

trogen, UK) was gassed with 75% O2/20% N2/5% CO2. Prior to each

experiment, a microdevice was primed with this medium.

Temperature was kept at a constant 37.5� 0.2 �C using a hotplate

(Stuart CB160), monitored with an optical temperature probe

(OpSens, Hart Scientific, UK) located directly under the tissue

chamber. pH stabilisation of the media was achieved using 5% CO2 in

both gas mixtures and was verified by measuring the pH of the media

after it had flowed through an empty, sterile microdevice. The pH

was stable at 7.4 when no tissue was present in the device, minor

fluctuations in pH were seen when the device contained tissue, which
Anal. Methods, 2010, 2, 1005–1007 | 1005
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Fig. 1 (A) Channel schematic of the device. (B) Photograph showing the

glass microdevice with attached nanoport. (C) General schematic of the

assembly showing the pumping system, gassing to media reservoir and

flow of the system.

Fig. 2 Results from the ELISA showing the expression of VEGF in

response to changes in the gas regime. The tumour tissue shows a greater

increase of VEGF release than seen with the normal tissue after the

hypoxic period (N2/CO2 gassed media). Hypoxic periods are indicated by

cross-hatched N2 areas on the graph. Data shown are representative of 3

similar experiments.
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was most probably due to changes caused by the tissue and the

factors released.

Tissue was taken following ethics approval from Hull and East

Yorkshire Local Research Ethics Committee 07/H1304/105 and

NHS Trust R0568. Colorectal tissue biopsies, normal and neoplastic,

were sectioned and a sample weighing approx. 5–10 mg was then

placed in the device. The control was tissue taken from the distal

region of the tumour biopsy. The tissue was perfused with supple-

mented DMEM at a flow rate of 1 ml min�1. After a period of nor-

moxia (18 h), this was replaced by perfusion with an aliquot of

supplemented DMEM saturated with 95% N2/5% CO2, at the same

flow rate, to generate a hypoxic environment. After approximately 26

h the medium was changed to supplemented DMEM that had been

O2 purged and normoxia was restored for 22 h, finishing with

a second (4 h) period of hypoxia. During this time, aliquots of the

supernatant were collected at 2 h intervals after flow over the tissue,

however overnight samples were collected for a 16 h period. The

supernatant was frozen immediately after collection and analysed for

VEGF release using a commercial ELISA (R&D Systems, UK).

Samples were measured in triplicate and the results were normalised

for VEGF concentration per mg of tissue.

The tumour tissue responded to the hypoxic conditions of the gas

regime with an enhanced production of VEGF, as measured by

ELISA. The normal tissue also responded with a release of VEGF,

but at lower levels, which is in accord with the expected in vivo

response as colorectal neoplastic tissue is known to overexpress

VEGF.11 The release of VEGF was reduced when the gaseous

microenvironment was restored to normoxia, and subsequently

a reduction in the amount of VEGF was seen in the supernatant,

these results are shown in Fig. 2.
1006 | Anal. Methods, 2010, 2, 1005–1007
Summary

Initial testing of this experimental system has shown adequate gas

saturation and sterile media delivery, which enables the long-term

culturing of tissue. It is expected that the microfluidic device will now

be used to investigate chemotherapeutic drugs that prevent prolifer-

ation and/or induce apoptosis by assaying VEGF and other relevant

biomarkers. For the majority of in vitro studies, apart from those on

blood cells, tissues are disaggregated and cultured as individual cell

populations, with the concomitant loss of cell organisation and

interaction with a tissue-specific extracellular matrix. With the advent

of tissue engineering the complexity and importance of the 3D

structure has become very apparent for normal14 and disease

processes.15 Furthermore, it is acknowledged that many of the 3D

models or co-cultures cannot yet represent the natural or patho-

physiological state, although many studies are in progress to address

this problem.16 The simplistic and flexible design of the current system

offers a device that will be capable of real time analytical interroga-

tion of various tissue types, supporting a variety of diverse applica-

tions in which a microfluidic tissue device can be used to guide drug

treatment selection in a clinical setting. This will be particularly

valuable for diseases where a cocktail of drugs are required, for

example in cancer therapy. This research is timely in driving towards

less animal-reliant testing in the pharmaceutical industry and more

personalised care in the medical arena. It also offers the potential for

development of point-of-care units capable of assessing the suitability

of drug treatments prior to administration to patients, providing

more cost effective and, more importantly, clinically effective treat-

ments.
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Microfluidic Chromatography for Early Stage Evaluation of
Biopharmaceutical Binding and Separation Conditions

Michael S. Shapiro,1 Stephen J. Haswell,2 Gary J. Lye,1 and Daniel G. Bracewell1
1The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering,
University College London, Torrington Place, London, UK
2Department of Chemistry, University of Hull, Hull, UK

Optimization of separation conditions for biopharmaceuticals
requires evaluation of a large number of process variables. To min-
iaturize this evaluation a microfluidic column (1.5 lL volume and
1 cm height) was fabricated and packed with a typical process scale
resin. The device was assessed by comparison to a protein separation
at conventional laboratory scale. This was based upon measurement
of the quality of packing and generation of breakthrough and
elution curves. Dynamic binding capacities from the microfluidic
column compared well with the laboratory scale. Microfluidic scale
gradient elution separations also equated to the laboratory column
three orders of magnitude larger in scale.

Keywords breakthrough; elution; ion exchange; microfluidics

INTRODUCTION

Ion exchange chromatography is a commonly used
separation process within the biopharmaceutical industry.
The charged stationary phase will interact, bind, and separ-
ate an oppositely charged macromolecule such as a protein
or DNA present in the mobile phase. Cation exchange
occurs where the stationary phase is negatively charged
and the macromolecule in the mobile phase has a net posi-
tive charge, while the opposite situation occurs in the case
of anion exchange chromatography (1,2). In assessing
chromatographic performance, plate analysis combined
with frontal and elution chromatography is commonly
used (2). Frontal chromatography (or breakthrough) is
the process by which the column becomes saturated with
the biological macromolecule contained within the mobile
phase, while elution chromatography involves the separ-
ation of solutes using a step or linear gradient, usually
via increased salt concentration (2).

Biopharmaceuticals represent an internationally impor-
tant and growing industry sector (3). This is especially

highlighted in the field of chromatography where there
are an ever increasing number of stationary phase materials
available from suppliers each offering improved separa-
tions and recovery yields. During bioprocess development
biopharmaceutical companies generally have restricted
time and resources to analyse each of these resins for a
specific purification process. Microfluidic scale chroma-
tography columns, requiring minimal quantities of resin
and product molecule, offer potential advantages in this
respect. Additionally, many experimental variables such
as protein concentration, buffer type, pH, flowrate, etc.
may be investigated in systems that have the possibility
to be used in parallel and in Lab-on-a-chip formats. Possi-
bilities include sample preparation and eluate analysis on a
single microfluidic chip (4).

There have been a number of approaches described in
the literature recently to small-scale chromatography
evaluation. The majority relate to 96-well microtiter filter
plate technologies (micro-batch adsorption) (5) as well as
resin-packed micro-pipette tips (micro-tip columns) (6,7).
Additionally, more conventional mini columns have also
been described (8). In each case parallelization of exper-
imentation is achieved by integration with a laboratory
liquid handling robot. Fig. 1 summarizes the available
technologies (9) and also compares the scales of operation
to the microfluidic approach established here.

Micro-batch adsorption is operated using a batch mode
such that the resin is contained within the microwell plate
while the remaining liquid is captured by using aspiration
or filtration. Linear gradients cannot be performed using
this technique; however, pseudo linear gradients have been
developed using a series of increasing ionic strength batch
adsorption steps (10). This approach has been applied to
both breakthrough and elution chromatography yielding
results that can compare favorably with laboratory scale
columns (11–15). Micro-pipette tip systems also operate
in batch mode; however, the solute containing fluid is
moved in both directions through the resin bed by repeated
automated aspiration and dispensing of the sample. This
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approach offers enhanced solute mass transfer under
flow conditions and we have recently demonstrated its
application to the miniaturization of virus-like particle
purification (6). The more conventional mini columns
(50, 100, 200 mL) resemble most closely standard labora-
tory chromatography columns. They are operated as part
of a 96 microwell plate system where the mobile phase is
pumped through the column in one direction. Such systems
have been successfully used for the determination of
dynamic binding capacity and elution chromatography of
proteins (8).

While offering certain advantages none of these technol-
ogies truly operate as a chromatography column offering
continuous mobile flow with either linear or gradient elu-
tion. Previously, we described the fabrication and flow
characterization of a microfluidic chromatography column
that has the necessary flow characteristics and which oper-
ates at at least a 20,000-fold smaller scale than standard
laboratory scale columns. Dynamic binding capacities were
generated that were comparable with those found within
the literature (16) for laboratory scale columns. In this
work study of the 1.5 mL microfluidic column is extended
to both dynamic binding and separation studies with model
protein solutions of either lysozyme or a mixture of hen egg

white proteins. The column is packed with a polydisperse
6% agarose process resin, Sepharose 6FF, in order to
resemble the columns used in the ultimate large scale appli-
cations. In this way the work is distinct from the small scale
columns used in proteomics studies which are based on
very small, monodisperse resins and which separate only
digested protein fragments rather than whole proteins
(17). When compared to results obtained on conventional
laboratory scale columns the microfluidic column shows
almost quantitiative agreement in dynamic binding capa-
city and gives a good indication of separation conditions.

MATERIALS AND METHODS

Materials

All chemicals were purchased from Sigma-Aldrich
(Dorset, UK), apart from the fluorescein-5-isothiocyanate
(FITC) which was purchased from Invitrogen (Paisley,
UK), and were of the highest purity available. The chroma-
tography resins, Sulfopropyl (SP) and Quaternary Amine
Sepharose (Q) Fast Flow, were bought from GE Health-
care UK Ltd (Buckinghamshire, UK). Chicken eggs were
purchased locally from Tesco (London, UK). All tubing,
the connectors and the MilliGAT pump, were purchased
from Presearch (Hampshire, UK). All buffers were
prepared using analytical grade water (Millipore, Watford,
UK).

Packing and HETP Measurements for the Laboratory
Scale Columns

The 2 or 30mL columns of Q or SP Sepharose Fast
Flow (6% agarose) were gravity settled and flow packed at
a velocity of 300 cm h�1 into an XK 16=20 Column to a
height of 15 cm. To gravity pack, the bottom adaptor was
placed on the bottom of the XK column then 30–35mL of
SP Sepharose Fast Flow in 20% (v=v) ethanol was poured
into the column. The adaptor was opened to allow the
ethanol to drip out. More matrix was then gently poured
into the top of the column to ensure the height reached
17 cm. Once the matrix had formed a stable bed, the bottom
adaptor was sealed and further addition of 20% (v=v)
ethanol was added to the top of the column until a meniscus
was formed. The top adaptor was connected to an AKTA
Basic (GE Healthcare) and was placed at a 45� angle onto
the top of the bed. Then, using a flowrate of 0.5mL min�1

of ethanol to avoid air bubbles, the bottom adaptor was
opened to ready the column for flow packing. The flowrate
was slowly increased to 10mL min�1 (300 cm h�1) until
the column had compressed to 15 cm, then the top adaptor
was placed on top of the bed. The packing quality was
then tested by producing a conductivity peak using a
100mL sample loop filled with 2M NaCl at 0.5mL min�1.
The HETP and asymmetry of the peak were then calculated.

FIG. 1. A selection of the microscale chromatography technologies cur-

rently available. The first three are designed for use with a laboratory

automation platform, while the fourth is the microfluidic chip presented

here.
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Laboratory Column Breakthrough Measurements

Each SP Sepharose 6FF column was equilibrated with 5
Column Volumes (CVs) of 0.05M sodium phosphate
buffer pH 5.5 (start buffer). This buffer system was selected
to have a large buffering pH range; however, at pH 5.5 it is
limited, and to ensure capacity results were not impacted
by this selection they were validated against a sodium acet-
ate system. Lysozyme (1mgmL�1) from egg white in the
same buffer was continually pumped through at either 9,
7.5, 5, or 2mLmin�1 (270, 225, 150, and 60 cmh�1 calcu-
lated on the basis of an XK 16=20 column). When break-
through was achieved, the column was washed with 5
CVs of the start buffer, and then the lysozyme was eluted
from the column using 5 CVs of 0.05M sodium phosphate
and 1M NaCl buffer (elution buffer) at the same pH. The
column was then regenerated with 5 CVs of 1M sodium
hydroxide and equilibrated with the start buffer. Dynamic
binding capacity was then calculated at 5, 10, and 100%
capacity by calculating the area under the breakthrough
curve, subtracting the mass of protein adsorbed from that in
the feed and then dividing the result by the column volume.

Laboratory Column Elution Measurements

Egg white was separated from the egg yolk and 1 in 2
diluted using 0.05M Tris=HCl pH 8. The mixture was stir-
red overnight at 4�C to remove glycosylated proteins
by precipitation, then centrifuged at 10000RPM for
30 minutes (18–20).

Each Q Sepharose 6FF column was equilibrated with 5
CVs of 0.05M Tris=HCl pH 8 and then run isocratically at
2, 5, 7.5, or 9mL min�1 (linear velocities of 60, 150, 220,
and 270 cmh�1). For the 2mL column, injection volumes
of 0.13, 0.33, 0.67, and 1.33mL were used while for the
30mL column, volumes of 2, 5, 10, and 20mL were used.
Two CVs were used for the injection process using either
standard loops with PEEK tubing or for larger volumes,

a superloop. The superloop is a pressurized cylinder which
can be connected to the pump as a standard loop. It is used
for injections of 10mL and above. Fifteen CVs were used
for the linear gradient based on 0.05M Tris=HCl, 0.3M
NaCl pH 8 and then 5 CVs were used for the final wash
step in which the elution buffer was used. The column
was then re-equilibrated for 5 CVs using 0.05M Tris=
HCl pH 8. Experiments were also performed using a linear
gradient of 0.05M Tris=HCl, 0.3M NaCl pH 8 over 150
CVs to facilitate comparison with the microfluidic column
results.

Microfluidic Column Fabrication and Operation

Details of microfluidic column fabrication are described
in our previous work (16). Briefly, the glass chip was fabri-
cated using standard photolithography and wet etching
techniques. The column length, width, and depth were
constant at 10mm, 1000 mm, and 150 mm. The packing pro-
cedure involved the dilution of a 20% (v=v) slurry of resin
in 20% (v=v) aqueous ethanol. Beads were sieved using 38
and 106 mm (VWR Leicestershire, UK) mesh to reduce the
size range in order to prevent blockages. Beads were
packed into the microfluidic column using a 2mL plastic
syringe with an adapted micropipette tip. The matrix was
manually pressurized into the packing chamber and held
in position due to a keystoning effect. The quality of the
packed microfluidic column was then checked using a Leica
DMRA2 microscope (Leica Microsystems, Milton Keynes
UK) and QWin Software to ensure that there were no
resin particles that blocked the inlet and outlet channels.
MilliGAT pumps were used throughout this work in the
experimental setup outlined in Fig. 2. These pumps are able
to accurately pump from 0.6�6� 106 mL min�1 and can
accurately dispense 10 mL of liquid. A small internal
volume Rheodyne Valve was used for all injections into
the microfluidic column.

FIG. 2. Schematic diagram of the experimental system used for microfluidic elution chromatography. Two precision MilliGAT pumps were used to

pump the start buffer (0.05M Tris=HCl pH 8) and elution buffer (0.05M Tris=HCl=0.3M NaCl pH 8) through the nanomixer and injection valve and

into the microfluidic column containing Q Sepharose FF beads. A sample of 1mL of 1mgmL�1 lysozyme, 3.6mgmL�1 conalbumin and 15mgmL�1

ovalbumin in start buffer was injected onto the microfluidic column once equilibrated with start buffer (20% (v=v) of each protein was fluorescently

labelled using FITC).
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All protein solutions contained 20% (v=v) of the protein
fluorescently labelled using fluorescein-5-ithocyanate
(FITC). The preparation of the fluorescently labelled pro-
teins was performed using the manufacturer’s instructions
with slight modifications (21) as described previously
(16). Leica QWin software was used as the image analysis
software where fluorescence quantification was analyzed
by altering the resolution time depending on the level of
fluorescence. A time interval programe was developed to
record the average fluorescence intensity in the outlet
channel every 3 seconds (16).

Breakthrough measurements occurred using 1mgmL�1

lysozyme in 0.05M sodium phosphate buffer pH 5.5 (start
buffer). The buffer was pumped at linear velocities of
60, 150, 220, and 270 cm h�1 (1.33, 3.67, 5.33, and
6.67 mL min�1 respectively) calculated for the microfluidic
packed bed using the crosssectional area of the column.
Column dead volume was analyzed using 1mgmL�1

lysozyme in 0.05M Tris=HCl pH 8 using Quarternary
amine (Q Sepharose FF) beads. Dynamic protein binding
capacity was calculated at 5, 10, and 100% breakthrough.
All data was normalized in terms of c=co where c is the
lysozyme concentration in the effluent at each time point
and c0 is the highest value of recorded effluent concen-
tration. Equation (1) was used to calculate the binding
capacity (Q) (22):

Q ¼
Min � Vretained

R co
cin
dc

� �
Vbeads

� em
es

ð1Þ

Here Min is the total protein mass into the column,
Vretained and Vbeads are the volume retained through the sys-
tem and the volume of the beads packed in the column
respectively and es and em are the voidages in a standard
column and in the microfluidic column respectively. The
voidage was normalized in this way to allow comparison
with larger scale published results. Data presented is the
average of at least three breakthrough curves determined
at different flowrates.

Microfluidic Column HETP Measurements

The experimental procedure used was the same as for
the breakthrough measurements, except the fluorescent
light microscope detection occurred at either end of the
microfluidic column which now contained sieved Q Sephar-
ose Fast Flow beads (average diameter of 70 mm). The vari-
ance and HETP (23) were then calculated from the
intensity readings produced. A volume of 0.4 mL (the smal-
lest volume available) of 1mgmL�1 lysozyme (20% (v=v)
fluorescently labelled) in 0.05M Tris=HCl pH 8 was
injected into the microfluidic column. The method was
validated against the laboratory scale method described
earlier to ensure no interactive effects between the protein
and column.

Microfluidic Column Elution Measurements

A 1.5 mL microfluidic column packed with sieved Q
Sepharose Fast Flow was equilibrated with 5 CVs of
0.05M Tris=HCl pH 8 (start buffer). A concentration of
1mgmL�1 lysozyme, 3.6mgmL�1 conalbumin, and
15mgmL�1 ovalbumin proteins (20% (v=v) of each
labelled with FITC) was pumped through in the start
buffer. Elution was carried out using the same method out-
lined in the laboratory column elution measurements. The
peaks were monitored using the Leica fluorescent micro-
scope as shown in Fig. 2. In order to achieve the gradient,
0.2mgmL�1 fluorescently labelled lysozyme was used in
place of the elution buffer allowing the monitoring of the
gradient using the Leica microscope. The gradient used
for the separations was 0.05M Tris=HCl pH 8 with
0.3M NaCl over 150 CVs over 16 step changes.

RESULTS AND DISCUSSION

Determination and Assessment of Column Packing

Initial experiments focused on measurement of the
HETP of the three columns in order to assess the quality
of resin packing. The HETP for the 30mL (15 cm height)
and 2mL (1 cm height) columns were calculated to be
389.9 and 350.7 mm at a linear velocity of 30 cm h�1 while
the variance (r2) for each was 1.83 and 0.10mL2. The vari-
ance for the 2mL column gave a lower plate number due to
the reduced height and increased complexity involved in
packing the column. The asymmetry of the 30 and 2mL
columns were 0.65 and 2 respectively. Ideal peak symmetry
should be achieved for a well-packed chromatography
column. The values reported here display under and over
packing respectively; however, the results produced were
adequate for comparisons with the microfluidic column
(24).

Table 1 displays the measured peak asymmetry, the
calculated variance of the peak, the HETP and the
HETP=dp (diameter of the resin particle) as a function of
mobile phase linear velocity for the 1.5 mL microfluidic col-
umn. Values were calculated from the width at 50% of the
maximum height of the peak using the standard plate
analysis (23). Although the peaks used for analysis were
not Gaussian, due to tailing, standard peak analysis was
considered useful as a method to compliment the confocal
microscopy analysis developed previously 16. The asym-
metry values for all peaks were two to three times the value
of a Gaussian peak (unity). The variance calculated over
the column was smaller than expected since laminar flow
and diffusive mixing throughout the extra-column system
appear to be the dominating factor. The volume of the
adjacent equipment was 2 mL, compared to the volume of
the packed bed which was 1.5 mL, producing dispersed
peaks. The data presented, however, does show that
variance and HETP may still be calculated within a
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microfluidic system. In Table 1, r2 can be considered to be
constant at around 1.5� 10�6mL2.

The HETP data are also presented in Table 1. As the
variance is directly proportional to the HETP (23) a similar
level of error is observed. The value for the HETP can be
considered to be around 1mm, while the HETP=dp is
around 14. In conventional terms, this value would be
indicative of poor packing especially when compared with
the laboratory scale 15 cm column (experimentally determ-
ined to have a HETP=dp of 4). However, the 2mL column
produced a similar value to the microfluidic column due to
similar heights.

The voidage in the microfluidic column was 0.55 (as
calculated and presented previously (16)) which implies
that there are more voids present in the microfluidic packed
system than in a standard column. When considering the
assessment of microfluidic column packing the plate test
results are best interpreted in conjunction with a three
dimensional image of the packing, as shown within Fig. 3.
In practice the packing was good enough for the binding
and elution studies given that there was only 1.5 mL of
packing and that on average it is only 2 beads high.

Laboratory Scale Column Breakthrough Profiles

As a basis for later comparison with the microfluidic
column, Fig. 4 displays the breakthrough curves for all 4
flowrates as a function of the volume retained for (a) the
30mL (15 cm height) column and (b) the 2mL (1 cm
height) column. Breakthrough curves for the 30mL col-
umn (Fig. 4(a)) are consistent and independent of mobile
phase linear velocity. They show near perfect representa-
tions of breakthrough curves with a constant pattern front
(25,26). This was expected and is due to a number of
factors including the use of low concentrations of a model
protein and the fact that lysozyme is a protein with a high
isoelectric point (11.1) that adsorbs with high affinity (27).

For the 2mL column (Fig. 4(b)) there is some variation
of the breakthrough curves with increasing linear velocity;
however, in general the flow rates are consistent. At the

higher flowrates the residence time in the column would
be reduced leading to proportionally less time for the pro-
tein to interact with the matrix particles. Additionally, as
shown in Table 2 there was a decreased number of theoreti-
cal plates. However, the breakthrough curves are highly
consistent and accurate over the range required.

The breakthrough curves determined here in both the
laboratory scale columns are similar to those described in
the literature (28,29) using lysozyme with the same Sephar-
ose FF resin. The reported values of maximum dynamic
binding capacity were also similar to those calculated and
reported here in Table 1 (�120mgmL matrix�1).

Microfluidic Scale Column Breakthrough Profiles

In our previous work on chip fabrication and analysis of
fluid flow within the column initial breakthrough studies

TABLE 1
Influence of mobile phase linear velocity on microfluidic chromatography column performance. Peak symmetry,

r2 and the HETP and HETP/dp determined using 0.4 mL of 0.2mgmL�1 fluorescently labelled lysozyme in 0.05M
Tris=HCl buffer pH 8 (non-binding conditions). Asymmetry and r2 were calculated from the values obtained before

and after the packed microfluidic column. Errors represent one standard deviation around the mean

Linear velocity (cm h�1) r2 (mL2) HETP (mm) HETP=dP Asymmetry

60 1.41� 10�6� 4.35� 10�7 945� 290 13.52� 4.16 2.98� 0.56
105 1.44� 10�6� 1.70� 10�7 1050� 175 15.00� 2.52 2.64� 0.31
150 1.21� 10�6� 0 1035� 35.30 14.79� 0.50 2.90� 0.36
220 1.09� 10�6� 2.74� 10�7 970� 95.80 13.88� 1.37 3.05� 0.30
270 1.12� 10�6� 0 1010� 0 14.44� 0 3.10� 0.22

FIG. 3. Confocal microscope image of a section of the microfluidic

packed bed rendered in a 3 dimensional plane. The perspective is of a

45� angle from the top of the bed (average particle diameter 70 mm).
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on the microfluidic column were also reported. Here
comparisons are made between breakthrough profiles
determined on the microfluidic column and the two
laboratory scale columns at an identical linear velocity of
270 cm h�1. The voidage for the 1.5 mL column was 0.55
as opposed to 0.4 which was present in the standard lab-
oratory columns (as is also standard in general chromato-
graphy columns) (16). Instead of the standard column
volumes employed in previous figures, the resin column
volumes was used where the column volume was multiplied
by the bed voidage, so as to standardize the results.

As shown in Fig. 5, the microfluidic and the 2mL lab-
oratory scale columns are very similar in terms of break-
through profile shape and the column residence time.
This agreement is considered excellent given the 1300-fold
difference in scale and is probably related to the columns
having the same length. The breakthrough curve for the
30mL column is a near perfect representation of a break-
through curve which was considered to be an excellent
basis to make comparisons with other scales.

Table 2 presents a comparison of the calculated
maximum and 5% dynamic binding capacities for both
laboratory scale columns and the microfluidic column at
different mobile phase linear velocities. Values of the
maximum binding capacity are in reasonable agreement
between the microfluidic and laboratory scale, as suggested
by the breakthrough profiles shown in Fig. 5. Although the
shape of the breakthrough curve was different, the calcu-
lated maximum binding capacity for the 30mL column
was similar to the microfluidic column.

Calculated dynamic binding capacities (at 5% capacity)
were not as similar between the various scale columns as
were the maximum binding capacities. This may have been
due to non-specific binding and channelling through the
column (16). Overall, the capacities calculated are in
reasonable agreement with previously published data and
laboratory scale data (28,29). This provides a further con-
firmation that the microfluidic chromatography column
does offer a useful methodology for the determination of
breakthrough curves and binding capacities using consider-
ably reduced quantities of material.

FIG. 4. Influence of mobile phase velocity on dynamic binding capacity

of laboratory scale chromatography columns. Breakthrough curves of

1mgmL�1 lysozyme using (a) 30mL (15 cm height) and (b) 2mL (1 cm

height) XK 16=20 columns containing SP Sepharose Fast Flow in

0.05M sodium phosphate pH 5.5.

TABLE 2
Comparison of maximum and 5% dynamic binding capacities for the microfluidic and laboratory scale columns

Linear velocity (cm h�1)

Dynamic binding capacity
(mgmL matrix�1)

1.5 mL Column 2mL Column 30mL Column

60 150 220 270 60 150 220 270 60 150 220 270

5% 140 144 50.3 55.7 79.8 57.3 53.5 39.6 105 105 103 103
Maximum 160 175 96.4 117 116 121 113 108 116 112 104 111
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Laboratory Scale Column Elution Profiles

Figure 6 displays the egg white separation data gener-
ated using the two laboratory scale columns. Three peaks
are clearly shown in each profile, the first being lysozyme,
which is unretained, and two further peaks which are not
fully resolved. In Fig. 6(a) for the 30mL column conalbu-
min and ovalbumin represent the second and third peak
respectively. There is some evidence that resolution using
smaller injection volumes produced better resolution, as
the column has sufficient time to remove the proteins over
the linear gradient. In Fig. 6(b) when using 1.33mL as the
injection volume for the 2mL column, no resolution was
obtained between the second two peaks. This is almost
certainly due to the reduction in the residence time in this
much shorter column. The lack of resolution on both
columns could be due to the fact that the isoelectric points
for both proteins are comparatively close to each other.
Conalbumin has a pI of 6.5, while ovalbumin has a pI of
4.7 (30) which could lead to some competitive binding. A
longer bed height or a longer linear gradient would most
likely improve resolution of the two proteins when using
the same flowrates. The fact that there was incomplete res-
olution between peaks, however, does not detract from the
ability to obtain useful insights from these columns on how
the conalbumin-ovalbumin peaks alter with changing bed
heights and potentially different mobile phase conditions
i.e., pH, ionic strength etc.

Microfluidic Scale Elution Profiles

In assessing the utility of the microfluidic column in
early stage bioprocess development it is important to not
only assess binding capacity (Table 2) but also the degree

of resolution that could potentially be obtained on the ulti-
mate, large scale manufacturing column. One of the main
technical challenges of achieving linear gradient separa-
tions at this scale is the production of the gradient. This
could be due to local flow instabilities at nano flowrate
changes explained below.

To visualize the linear gradient required for separation,
fluorescently labelled lysozyme was used as buffer B instead
of a salt gradient. Results were then overlaid over the separ-
ation data. Separation of egg white proteins was then insti-
tuted. Column volumes in this case were not quoted in
terms of the resin column volume because the comparison
required referred to the linear gradient of the separation
which was not present when using breakthrough curves.

FIG. 6. Influence of mobile phase velocity on laboratory scale separation

of a ternary protein mixture. (a) a 20mL injection of 30mgmL�1 egg

white proteins (3.6% (w=w) lysozyme, 12% (w=w) conalbumin and 54%

(w=w) ovalbumin) in 0.05M Tris=HCl buffer pH 8 using a 30mL column;

(b) 1.33mL injection of egg white protein using a 2mL column. The first

peak is lysozyme, then conalbumin and finally ovalbumin. Proteins were

eluted using 0.05M Tris=HCl=0.3M NaCl pH 8 and the resin used was

Q Sepharose Fast Flow.

FIG. 5. Comparison of lyoszyme breakthrough curves determined on

the 1.5 mL (1 cm height) and 2mL (1 cm height) microfluidic chromato-

graphy columns compared to the laboratory scale 30mL (15 cm height)

column. Experiments performed at a linear velocity of 270 cmh�1. Note

the �1300 fold difference in scale.

OPTIMIZING SEPARATION CONDITIONS FOR BIOPHARMACEUTICALS 191

D
ow

nl
oa

de
d 

by
 [

D
ea

ki
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

7:
51

 0
6 

Ju
ly

 2
01

4 



To institute a linear gradient at the microfluidic flowrates
used here, nano flowrate changes are required. Very low
flowrate changes are difficult tomaintain as they are affected
by factors such as temperature, variation in the piston seal
quality over time, and there may be solvent compressibility
problems (31). Extremely small air bubbles in the liquid that
compress in a piston based pump could also cause instabil-
ities within local velocities. Velocities then even out as the
pressure reaches atmospheric pressure at the exit (32). The
small scale of the microfluidic column therefore ensures that
accurate gradients are difficult to obtain. The chip version
developed by Brennen et al. (31) have developed gradients
over minutes at nano-liter flow rates.

Irrespective of these technical challenges however, a
separation of three proteins using a linear gradient was
achieved on the microfluidic column as shown in Figs. 7
and 8. Figure 7 shows elution of the non-biding lysozyme
peak first followed by a broader second peak being a
mixture of conalbumin and ovalbumin. There is a shoulder
evident on this second peak (at around 100 column
volumes), which is most likely to be from conalbumin while
the main body of the peak is ovalbumin.

Figure 8(a) provides a close-up view of this shoulder and
peak. In order to verify if the degree of separation achieved
is likely to be representative of large scale separations, it
was necessary to generate comparative 2mL column data
(i.e., 1 cm length at the laboratory scale) using a similar
150 column volume gradient as shown in Fig. 8(b).
Although the height of the conductivity when the curve
returns to the baseline differs between the scales, the length
of the gradient is the same.

Although full resolution was not observed between the
conalbumin and ovalbumin peaks when using 150 column
volumes with the 2mL column, the data in Figs. 7 and 8
represents a first step in the generation of elution profiles
of ion exchange chromatography using a microfluidic
column.

Comparison with Other Microscale
Chromatography Techniques

As shown in Fig. 1 the performance and potential indus-
trial application of the microfluidic column established
here needs to be considered against other similar technolo-
gies for high throughput chromatographic process screen-
ing. The other systems presented use complex liquid
handling systems facilitating the use of many different
chromatographic separations at once. The advantage of
the approach presented within this paper is the use of
extremely small volume (1.5 mL) chromatography columns.
The microfluidic system is capable of developing into the
use of highly parallel chromatography columns using true
flowrate conditions. All other systems within the literature

FIG. 7. Influence of mobile phase linear velocity on separation of a ter-

nary protein mixture. A microfluidic column egg white protein separation

using a series of 16 steps to produce a gradient over 150 column volumes.

The same buffer conditions were used as in the standard scale chromato-

graphy column system. An injection of 1mL volume was used containing

1mgmL�1 lysozyme, 3.6mgmL�1 conalbumin and 16.2mgmL�1 ovalbu-

min in a fluorescently labelled solution with the standard buffer.

FIG. 8. Comparison of both scales of the ternary protein separation at

the elution stage using 150 column volumes. Linear gradient separation

of the three egg white proteins using (a) the microfluidic column and (b)

the 2mL column. Both columns were run at 270 cmh�1, while the injec-

tion volume used for the 2mL column was 1.33mL.
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operate using batch conditions or with the use of pseudo
linear gradients. The advantage of the microfluidic system
is that it is capable of producing separations using true
linear gradients as well as parallel conditions.

CONCLUSIONS

The data presented here displays positive initial results
on the performance of a 1.5 mL microfluidic chromato-
graphy column packed with process scale chromatography
resin. Results in terms of packing quality and performance
(HETP) and frontal and elution chromatography between
the microfluidic column and laboratory scale 2mL and
30mL columns showed good quantitative agreement both
in terms of maximum dynamic binding capacity and also
separation of binding and non-binding proteins. Protein
requirement has decreased 10,000-fold for breakthrough
analysis and 3000-fold for elution between the microfluidic
and the 30mL column. Therefore the work described in
this paper is representative of the proof of principle of a
potentially powerful tool for the generation of microfluidic
process bed data for the biopharmaceutical industry and is
useful for early stage bioprocess development.
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Development of a real-world direct interface for integrated DNA extraction
and amplification in a microfluidic device
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Integrated DNA extraction and amplification have been carried out in a microfluidic device using

electro-osmotic pumping (EOP) for fluidic control. All the necessary reagents for performing both

DNA extraction and polymerase chain reaction (PCR) amplification were pre-loaded into the

microfluidic device following encapsulation in agarose gel. Buccal cells were collected using

OmniSwabs [Whatman�, UK] and manually added to a chaotropic binding/lysis solution pre-loaded

into the microfluidic device. The released DNA was then adsorbed onto a silica monolith contained

within the DNA extraction chamber and the microfluidic device sealed using polymer electrodes. The

washing and elution steps for DNA extraction were carried out using EOP, resulting in transfer of the

eluted DNA into the PCR chamber. Thermal cycling, achieved using a Peltier element, resulted in

amplification of the Amelogenin locus as confirmed using conventional capillary gel electrophoresis. It

was demonstrated that the PCR reagents could be stored in the microfluidic device for at least 8 weeks

at 4 �C with no significant loss of activity. Such methodology lends itself to the production of ‘ready-to-

use’ microfluidic devices containing all the necessary reagents for sample processing, with many

obvious applications in forensics and clinical medicine.
Introduction

Nucleic acid purification and amplification are important

biochemical tools for genetic analysis. In many instances, such as

forensic or clinical investigations, biological samples are limited

both in terms of quantity and quality, accordingly retrieval of

sufficient amounts of high enough quality DNA from the orig-

inal sample without contamination is crucial. The use of solid-

phase DNA extraction methodology is highly suited to such

samples as it also enables pre-concentration of nucleic acids.

Genomic regions of interest can then be amplified from this

template DNA using PCR, facilitating simplified detection, for

example through the incorporation of fluorescently labelled

primers.

A wide variety of DNA purification protocols have been

successfully adapted to work in a microfluidic environment.

Silica-based, solid-phase methodology has been commonly

employed in which nucleic acids adsorb onto the silica in the

presence of a chaotropic salt. Cellular or proteinaceous debris

can then be removed using an alcohol wash, and the nucleic acids

subsequently eluted in a low ionic strength solution enabling

direct transfer to downstream applications. In addition to silica-

based methodologies, a range of other nucleic acid extraction

techniques have been successfully applied to microfluidic
aDepartment of Chemistry, University of Hull, Cottingham Road, Hull, UK
HU6 7RX. E-mail: s.j.haswell@hull.ac.uk; Fax: +44 (0)1482 466410; Tel:
+44 (0)1482 465475
bDepartment of Biological Sciences, University of Hull, Cottingham Road,
Hull, UK HU6 7RX
cCentre for Biomedical Research, University of Hull, Cottingham Road,
Hull, UK HU6 7RX

This journal is ª The Royal Society of Chemistry 2011
systems, such as the use of organic polymeric monoliths and ion-

exchange resins, each suited for different applications.1

PCR in microfluidic systems has been widely reported in the

literature and the reader is directed for more information to

substantial reviews which look in detail at the diverse variety of

amplification systems which exist.2–4 Whilst the integration of

PCR with downstream analysis techniques (mainly capillary gel

electrophoresis) has received significant interest, much less focus

has been placed on the integration with pre-PCR procedures

such as DNA extraction; important when dealing with crude

biological samples.5 This is in part because of the difficulties

associated with confining the solid-phase extraction matrix

within a specific location in the microfluidic device, preventing

contamination of the template DNA with potential inhibitors

from the DNA extraction process e.g. isopropanol, and isolating

any surface coating required for the prevention of DNA poly-

merase adsorption onto the internal glass surfaces of the PCR

chamber.6

A number of approaches designed to overcome the challenges

associated with developing microfluidic devices for integrated

DNA extraction and amplification have been evaluated. Silica-

coated or surface-charge switchable magnetic particles can be

used to facilitate nucleic acid movement within microfluidic

systems. For example, Pipper et al.7 used superparamagnetic

particles to move viral RNA between aqueous droplets in

a microfluidic environment. Each droplet, separated by an oil

carrier phase, contained a different reagent solution for

sequential nucleic acid purification and reverse transcription

(RT)-PCR. Alternatively, the particles can be retained within one

or more chambers on a microfluidic device using an external

magnet, allowing the various biological sample, DNA extraction

and PCR solutions to be pumped over the solid-phase surface.8,9
Lab Chip, 2011, 11, 443–448 | 443
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This enables nucleic acids present in the biological sample to bind

to the particles during the extraction process, allowing them to be

directly transferred into a chamber containing PCR reagents.

However, it has been shown that performing PCR in the presence

of magnetic beads can decrease the amplification efficiency by as

much as 50%.10

Another approach is to combine the flow of DNA eluted from

a solid-phase extraction matrix with a concentrated PCR reagent

mixture from a side channel and direct the combined solutions

into a PCR chamber for amplification.11,12 Direct elution of

RNA, from immobilised silica beads, using a nucleic acid

sequence-based amplification (NASBA) reagent mixture has also

been demonstrated, although in this instance the enzymes

required for NASBA were added to the amplification chamber in

a separate step following RNA elution.13

The use of mechanical external syringe pumps to facilitate flow

of solutions through such integrated devices allows accurate

control of flow rates but requires the use of miniaturised fittings

to provide an interface to the microfluidic device, which in turn

brings problems associated with large dead volumes (important

when dealing with expensive reagents such as DNA polymerase)

and labour intensive assembly.14 The use of dynamic EOP,

however, eliminates the need for moving parts enabling easier

integration of pumping methodology into the microfluidic

device. A recent review by Wang et al.15 demonstrated the flex-

ibility of electro-osmotic pumps for a variety of uses including

microflow injection analysis and microfluidic chromatography

systems. EOP has recently been demonstrated by the authors to

be a suitable pumping technique for performing DNA extraction

on a microfluidic device, using a dual function monolith which

not only provides the solid-phase for DNA extraction but also

acts as support for electro-osmotic flow (EOF) whilst reducing

the reverse hydrodynamic flow of solutions.16

In addition to integrating pumping mechanisms onto

microfluidic devices, the storage of reagents within such

devices lends itself to the development of truly portable min-

iaturised systems. Long-term storage of reagents on micro-

fluidic devices for performing nucleic acid-based reactions has

received limited attention in the literature but in recent years

the need for such capability has become apparent if truly

portable, integrated microfluidic systems are to be developed.

In terms of DNA extraction, storage of liquid reagents for

washing and elution has been achieved by using valve actuated

reservoirs17 or glass ampoules.18 The latter requires the appli-

cation of a local mechanical force to break the ampoules and

centrifugal force to ensure release of reagents to the desired

location in the microfluidic device.18 An alternative approach

has been described by Yobas et al.,19 who presented a self-

contained cartridge which can be connected to a microfluidic

device and contains all the necessary reagents for performing

nucleic acid extraction. In this case a magnetic planar peri-

staltic pump was used to move reagent plugs, separated by air

spaces, around the system. Whilst representing an advance in

the development of ‘ready-to-use’ microfluidic technology, no

long-term storage of the reagents was evaluated as the

cartridges were used immediately following preparation. The

use of a cartridge for reagents also represents an extra

component in addition to the microfluidic device increasing the

complexity of operation.
444 | Lab Chip, 2011, 11, 443–448
The storage of essential components for nucleic acid amplifi-

cation within microfluidic devices has focussed on the drying of

PCR reagents within amplification chambers. For example, by

freeze–drying PCR reagents onto the internal surfaces of a PCR

chamber, successful DNA amplification can be performed after

six months storage at �20 �C.20 However, when the PCR

reagents were stored at higher temperatures, of 4 �C or room

temperature, DNA polymerase was found to be half or

completely inactive respectively. Furthermore, Kim et al., have

demonstrated that PCR reagents can be dried at room temper-

ature and passivated using a protective paraffin layer which melts

during thermal cycling facilitating release and hydration of the

reagents.21 More recently, the same group have combined this

form of dry reagent storage with liquid storage of reagents for

upstream DNA extraction.22 Whilst the drying of PCR reagents

within microfluidic devices eliminates the need for reagent

loading at point-of-use, offering several advantages including

reduced risk of contamination and increased portability, there

are problems relating to decreased DNA polymerase activity as

a result of the drying methodology utilised.21

The work presented here describes an integrated DNA

extraction and amplification methodology in which all the

required reagents are pre-loaded onto the microfluidic device by

encapsulating them in agarose gel. A bi-functional thermally

activated silica-based monolith was used as the solid-phase for

DNA extraction and as a pump for electro-osmotic movement.

The efficiency of the DNA extraction process was evaluated

along with the effectiveness of encapsulation of PCR reagents in

a gel-based format for storage on the microfluidic device.
Experimental

Microfluidic device

All glass microfluidic devices were produced using standard

photolithography and wet etching techniques to generate the

design shown in Fig. 1.23

The features were etched to a depth of 50 mm using a 1%

hydrofluoric acid/5% ammonium fluoride solution at 65 �C for

10 minutes. In order to allow electrodes to be connected to the

microfluidic device, 3 mm diameter holes were drilled in a 3 mm

thick top plate which was then thermally bonded to the etched

glass wafer (1 mm thick) to produce the complete microfluidic

device. Injection moulded carbon-containing polystyrene plugs

[N. Goddard, Manchester University, UK] were fitted into the

holes and then brought into contact, via pogo-pins, with elec-

trodes housed in the custom-made control instrument [JLS

Designs Ltd, UK] shown in Fig. 2.

The internal glass surfaces of the PCR chamber were silanised

to prevent DNA polymerase adsorption. A solution of 290 ml of

trichloro(1H,1H,2H,2H-perfluorooctyl)silane [Sigma-Aldrich,

UK] in 5 ml of 2,2,4-trimethylpentane [Fisher Scientific, UK] was

flowed through the microfluidic device for 10 minutes at 5 ml

min�1. Following this, solutions of 2,2,4-trimethylpentane,

acetone and distilled water were sequentially used to wash the

microfluidic device for a total of 5 minutes each at 5 ml min�1.24

The channels of the DNA extraction chamber were incubated

with a 5% hexadimethrine bromide (Polybrene, PB) [Sigma-

Aldrich, UK] solution for 15 minutes and then dried under
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 Schematic (top) and photograph (bottom) of the microfluidic

device showing the thermally activated silica monolith (A) within the

microfluidic device, the position of the carbon electrodes (B–H) and the

locations of the gel encapsulated reagents. The additional channel

between electrodes G and H provides the potential for future integration

with capillary electrophoresis for detection of PCR products.

Fig. 2 Photograph of the control instrument, showing position of the

microfluidic device, Peltier element, electrical connections and

touchscreen control panel.
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vacuum. This created a positively charged surface reversing the

normal direction of EOP so that bulk movement occurs from

cathode to anode.
This journal is ª The Royal Society of Chemistry 2011
The thermally activated silica-based monolith was produced

by mixing potassium silicate solution (21% SiO2 and 9% K2O

[VWR International, UK]) and formamide [Alfa Aesar, UK] in

a 10 : 1 ratio.25 In order to ensure the monolith was only

produced in the DNA extraction chamber, the entire device was

first filled with glycerol [Sigma-Aldrich, UK]. The monolith

solution was then injected into the DNA extraction chamber,

displacing the glycerol, and the microfluidic device placed in an

oven at 90 �C for 15 minutes. After this initial heating step, the

remaining glycerol was removed and the microfluidic device

placed back in the oven overnight for complete polymerisation to

occur. Once polymerised, the monoliths were washed with

ethanol to remove any unreacted solution and glycerol residue.

Prior to DNA extraction the monoliths were washed with 10 mM

TE buffer (10 mM Tris and 1 mM EDTA in distilled water,

adjusted to pH 6.7 using hydrochloric acid [Sigma-Aldrich, UK])

at 5 ml min�1 for 30 minutes.

All the necessary reagents for performing DNA extraction and

amplification were encapsulated in 1.5% (w/v) low-melting

temperature (LMT) agarose [Sigma-Aldrich, UK] for pre-

loading and storage on the microfluidic device. The wash gel

contained 50% (v/v) ethanol in 100 mM sodium chloride for

increased electro-osmotic movement,16 and the elution gel was

made up using 10 mM TE buffer. For single locus amplification

PCR reagents were added to a molten agarose solution (in which

the concentration of the agarose gel was varied in the initial

experiments26): 1� GoTaq� buffer, 2 mM MgCl2, 1 unit

GoTaq� Hot Start DNA polymerase [Promega, UK], 10 mg ml�1

bovine serum albumin [NEB Inc., UK], 0.01% (w/v)

poly(vinylpyrrolidine), 0.1% (v/v) Tween-20 [Sigma-Aldrich,

UK], 200 mM each deoxyribonucleotide triphosphate [Bioline,

UK] and 0.1 mM Amelogenin forward and reverse primers27

[Eurofins MWG Operon, Germany]. The molten wash, elution

and PCR gel solutions were injected by positive pressure into the

relevant locations on the microfluidic device through electrode

loading holes C, D and E respectively, prior to electrode fitting

(Fig. 1).
DNA extraction and amplification

Buccal swab DNA samples were collected using an OmniSwab�
[Whatman, UK] which was gently scraped along the inside of the

cheek. The tip of the swab was then added to a binding/lysis

solution of 5 M guanidine hydrochloride (GuHCl) [Sigma-

Aldrich, UK] in 10 mM TE buffer previously added (20 ml) to the

DNA extraction chamber (port A in Fig. 1). A carbon containing

polystyrene plug was then placed into port A which enabled the

DNA present in the binding/lysis solution to be displaced onto

the surface of the silica monolith with the residual liquid passing

into channel B shown in Fig. 1. An ethanol wash was used to

remove any cellular or proteinaceous debris from the sample by

applying a voltage of 100 V cm�1 between electrodes at B and C

resulting in EOP of the ethanol wash gel contained in channel C

(Fig. 1). The DNA retained on the monolith was then eluted into

the chamber pre-loaded with PCR reagents by applying a voltage

of 100 V cm�1 from electrodes D to E resulting in EOP of the

elution solution contained in channel D (Fig. 1). During this step

the PCR reagents were cooled to 4 �C using a thermoelectric

Peltier element to prevent adverse thermal effects that may arise
Lab Chip, 2011, 11, 443–448 | 445

http://dx.doi.org/10.1039/c0lc00346h


Fig. 4 Graph showing the effect of time on DNA recovery from buccal

swab tips using a 5 M GuHCl lysis solution (error bars indicate standard

deviation, n ¼ 6).

Fig. 3 Photograph showing the individual buccal swab segments that

were analysed.
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from Joule heating. DNA amplification was then performed

using the same Peltier system, which provided both the heating

and cooling required for thermal cycling, according to the

following program: a Hot-Start step of 95 �C for 2 minutes,

followed by 35 cycles of 94 �C for 30 seconds, 60 �C for 30

seconds and 72 �C for 30 seconds, with a 7 minute final extension

at 60 �C. Control PCR samples were run on a Techne TC-312

thermal cycler, at the same temperatures and hold-times as the

Peltier system.

DNA quantification

Quantification of the DNA obtained from the extraction

procedure was performed using a Quant-iT� PicoGreen� double

stranded (ds) DNA Assay Kit [Invitrogen, UK]. To each 2 ml

aliquot of sample from the DNA extraction process, 100 ml of the

PicoGreen� working stock solution was added, based on man-

ufacturer’s protocol, in a black microtitre plate. DNA standards

were used to provide a calibration curve at the following

concentrations: 10, 5, 2.5, 1.25, 0.625, 0.3125 and 0.15625 ng ml�1.

A blank containing no DNA was also used to account for any

background fluorescence. All samples were analysed using

a FLUOstar Optima Plate Reader [BMG Labtech, UK].

Analysis of PCR products

PCR products were analysed off-chip by capillary electropho-

resis using an ABI Prism 310 Genetic Analyser [Applied Bio-

systems, UK]. The PCR-amplified DNA samples were collected

from the DNA amplification chamber (Fig. 1) and added to 12 ml

of Hi-Di� formamide and 0.5 ml GeneScan� 500 ROX DNA

size standard [Applied Biosystems, UK]. The solutions were then

heated to 95 �C for 5 min to denature the DNA before being

snap-cooled and electrokinetically injected into the capillary.

Results and discussion

DNA recovery direct from buccal swabs

In order to reduce the complexity of sample introduction into the

microfluidic device the direct transfer of DNA from the buccal

swab to the extraction monolith was evaluated. This was carried

out by placing the buccal swab tip (Fig. 3, section A) directly into

port A, indicated in Fig. 1, which had been pre-loaded with 20 ml

of binding/lysis solution. The buccal swab tip was left in the

binding/lysis solution for varying amounts of time and the

amount of DNA present in the lysate analysed. Optimum yields

were produced when the swab tip remained in the binding/lysis

solution for a total of 10 minutes (Fig. 4).

In order to ensure that the tip of the swab would yield suffi-

cient amounts of DNA for analysis, the DNA yields for each

segment of the swab were analysed. The average DNA concen-

tration for each segment (A–G, as shown in Fig. 3) was found to

be 0.576 � 0.086 ng ml�1, indicating that all sections of the buccal

swab, including the tip, were equally effective in retaining DNA

and could be used for analysis.

Previous work by the authors has shown that DNA extraction

can be successfully performed using conventional EOP across

a silica-based monolith.28 Here DNA was eluted using an applied

voltage of 100 V cm�1 resulting in DNA extraction efficiencies of
446 | Lab Chip, 2011, 11, 443–448
approximately 52%. Despite sufficient DNA being recovered for

PCR amplification, the DNA extraction efficiency was limited by

the anionic nature of the DNA. As conventional EOF creates

bulk movement in the direction of the cathode it opposes the

natural electrophoretic migration of the DNA therefore reducing

the overall mobility of the DNA. By reversing the direction of

EOF, i.e. creating a positively charged surface, both EOF and

electrophoresis work together to move DNA to the anode

resulting in a more efficient process.

To this end, DNA extraction from monoliths using EOP in

channels treated with PB was evaluated. The average DNA

extraction efficiency obtained using an applied voltage of 100 V

cm�1 was found to be 74.5% (with a standard deviation of 20.3%)

representing an increased yield as compared with conventional

forward EOP (data not shown).
Encapsulation of PCR reagents in LMT agarose gel

A range of final agarose gel concentrations, ranging from 0 to

2.5% (w/v), for encapsulating the PCR reagents were evaluated.

Conventional aqueous PCR reagent solutions, containing no

agarose gel, were used as control samples. All samples were

amplified in a standard bench top thermal cycler and the relative

fluorescence intensities of the PCR products, as determined by

capillary electrophoresis, were compared.

Comparable PCR efficiencies were demonstrated when using

agarose gel concentrations between 0 and 1.5%. However, at

agarose gel concentrations of 2% or greater there was a signifi-

cant decrease in the signal intensity observed, most likely due to

high viscosity of the gel matrix slowing the diffusion rate of

reactants during the primer annealing and DNA extension

phases of the reaction.26 Accordingly, a 1.5% agarose gel was

identified as optimal for maintaining a high PCR efficiency, with
This journal is ª The Royal Society of Chemistry 2011
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Fig. 6 Relative fluorescence intensities, as determined by capillary

electrophoresis, from amplification of a single locus (Amelogenin) when

PCR reagents (without DNA) were stored at different temperatures:

room temperature (black bar), 4 �C (white bar) and �20 �C (grey bar)

(error bars indicate standard deviation, n ¼ 3).
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the gel providing increased mechanical stability for reagent

storage (Fig. 5).

Once the optimum agarose gel concentration had been estab-

lished the stability of PCR reagents contained within the matrix

was examined. All the necessary reagents for PCR, excluding the

DNA, were incorporated into a 1.5% (w/v) agarose gel solution

and stored at room temperature, 4 �C or �20 �C for up to 8

weeks. DNA was added immediately prior to analysis and the

stability was determined by measuring the relative fluorescence

intensity of the PCR products obtained (Fig. 6).

The results indicated that storage of the encapsulated PCR

reagents at room temperature was not a viable option as the

signal intensity is drastically reduced after just 24 hours.

Reagents stored at either 4 �C or �20 �C, however, retain the

ability to support PCR amplification of DNA at the same effi-

ciency for at least 8 weeks. By storing the microfluidic device

under these conditions, all the necessary reagents for performing

PCR amplification of specific target loci can be pre-loaded onto

the device.
Fig. 7 Electropherogram showing PCR products from amplification of

the Amelogenin locus (X¼ 104 bp and Y¼ 110 bp), using DNA extracted

from a male volunteer, on the ‘ready-to-use’ microfluidic device as

confirmed on an ABI Prism 310 Genetic Analyser.
Integration of DNA extraction and amplification

Following optimisation of the individual processes on the

microfluidic device, integration of the two processes was evalu-

ated for DNA extraction and amplification of a single target

locus (Amelogenin). A small section of buccal swab was placed in

port A directly above the silica monolith, along with 20 ml of

binding/lysis solution, before being sealed using a polystyrene

plug. The entire microfluidic device was then placed inside the

control instrument. Following a 10 minute incubation step at

room temperature, voltages were applied to achieve movement of

the reagents stored on the microfluidic device for both washing of

the monolith and subsequent DNA elution. Once the DNA had

been transferred into the PCR chamber, which contained all the

necessary reagents for amplification, thermal cycling was per-

formed using the Peltier heating/cooling system. Successful

amplification of the target locus directly from a buccal swab

using the self-contained microfluidic device was confirmed using

conventional capillary gel electrophoresis (Fig. 7).
Fig. 5 Amplification of a single locus (Amelogenin) from male DNA

with PCR reagents encapsulated in different concentrations of agarose

gel. Samples were analysed using capillary electrophoresis and the peak

heights of the two alleles (XY) at the Amelogenin locus recorded

providing the fluorescence intensity measurements (error bars indicate

standard deviation, n ¼ 3).

This journal is ª The Royal Society of Chemistry 2011
Conclusion

This paper reports the successful integration of direct DNA

extraction and PCR amplification on a single, self-contained

microfluidic device. All the necessary extraction and PCR

reagents were pre-loaded onto the device in specific compart-

ments and no external pumps were required as movement was

achieved using EOP. In this novel system, a bi-functional silica

monolith provided both a solid-phase for DNA extraction and

a pump for EOP. An evaluation of the encapsulation of PCR

reagents for storage on the microfluidic device showed a final

concentration of 1.5% (w/v) agarose gel provided the greatest

degree of reagent stability. The gel loaded with reagents could be

stored at 4 �C for at least 8 weeks and no interference with the

amplification process was observed. Storing the reagents on the

device reduces the size of the system footprint by eliminating the

need for any external reservoirs of solutions and their mechanical

manipulation. The approach developed also serves to increase

the reproducibility of the analysis process as any handling errors

related to preparing reagents and flowing them into the device

will be reduced.

Using reverse EOF in combination with electrophoretic flow

improved DNA extraction efficiencies. The use of EOP also

resulted in an effective pumping method for performing DNA
Lab Chip, 2011, 11, 443–448 | 447
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extraction and amplification, eliminating the need for complex

mechanical interfaces. It has been demonstrated, by successful

amplification of the target locus from the eluted DNA, that no

detrimental electrophoretic effects on the PCR reagents are

observed. By reducing user intervention and simplifying the

pumping interface the proposed system exhibits reduced potential

for introducing contamination, a particularly important consid-

eration when dealing with clinical or forensic samples. In

conclusion, the work presented here offers the potential for

creating ‘ready-to-use’ microfluidic devices that can be used in

fully automated systems for rapid sample processing. By

combining the current methodology with PCR product detection,

via real-time PCR or capillary electrophoresis, on a single device

a complete ‘‘sample in-answer out’’ system could be generated.
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mercially available ETFE tubing (0.17–1.0 mm diameter) connected in series to support the hydrolysis,
nucleation and particle growth based on a sol–gel method in the presence of PEI polymer at room temper-
ature. Two microfluidic reactor configurations, laminar flow and segmented flow, have been evaluated.
Both microfluidic reactors produce particles with narrower size distributions and higher particle yields
compared to batch based process. In addition, microfluidic methods offer the possibility to tune particle

ns by

ilica nanoparticles
EI polymer

sizes and size distributio
and residence time.

. Introduction

The synthesis of silica nanoparticles, which underpins a wide
ange of potential applications covering material science, biotech-
ology and drug delivery, health-care, sensors, chromatography,
atalysis, paints and paper coating [1] has reached the world market
emand of 1.5 million metric tons in 2010 [2]. Current indus-
rial processes which provide relatively little control over size and
omposition are also energy intensive and generally involve harsh
eaction conditions such as high temperatures and acidic or basic
edia in the presence of an organic solvent [3]. By contrast, marine

rganisms such as diatoms and sponges make elaborate silica struc-
ures at ambient conditions and neutral pH from the low amount of
ilicon found in seawater. In recent years work has been undertaken
o mimic this biosilicification process through the use of polypep-
ides isolated from marine organisms [4] and artificial polyamines
5] to rapidly precipitate silica spheres of several hundreds of
anometers in diameter from hydrolysed tetramethoxysilane solu-
ions at neutral pH.

In order to improve the control over particle generation contin-
ous methodology rather than batch based reactions to generate
ilica nanoparticles has also been evaluated [6]. The use of microflu-
dic reactors has for example been used to rapidly produce
norganic and organic nanoparticles [7] because such reactions
re extremely sensitive to the reaction conditions such as high

emperature and caustic precursors which are more controllable
n a microfluidic device [8]. In these methods microfluidic reac-
ors provide the capability of controlling particle size, shape, and
omposition [8], which is not achievable when using batch based

∗ Corresponding author.
E-mail address: s.j.haswell@hull.ac.uk (S.J. Haswell).
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varying the operation variables such as flow rate, reactor tube diameter

© 2010 Elsevier B.V. All rights reserved.

reactions. Recently, a microfluidic method has been reported for the
generation of silica nanoparticles [9] in which single-phase lami-
nar flow and two-phase (air–liquid) segmented flow microreactors
were used to control the particle sizes and size distributions by
varying flow velocity and residence time. Using this method col-
loidal silica particles were synthesized using the Stöber process
which involves a high concentration of base (i.e. 2 M NH3) and
alcohol solvent [10]. The yield of particles was not however pro-
vided, and the deposition of particles on the channel walls occurred,
leading clogging and unstable reactor conditions were reported.

In this current paper, a simple microfluidic reactor system is
proposed for performing continuous hydrolysis, nucleation and
particle growth in the presence of polyethylenimine polymers. The
microfluidic reactors presented in this study is built by simply
connecting commercially available ETFE tubes, fittings and con-
nectors together enabling reaction tubes to be replaced, which
minimizes effect of particle deposition within the reaction tube
whilst maintaining constant flow conditions. Using polyethylen-
imine polymers as nucleation catalysts, silica nanoparticles can be
rapidly precipitated at room temperature. Two reactor configu-
rations, a single-phase continuous flow microreactor (CFMR) and
a two-phase (gas–liquid) segmented flow microreactor (SFMR),
will be evaluated for continuous hydrolysis and condensation of
tetramethoxysilane. The effects of some operation variables such as
reactor tube diameter, pH and flow rate on particle sizes and distri-
bution together with yield will be evaluated and results compared
with those obtained from small-scale batch based process.
2. Methods and materials

Tetramethoxysilane (TMOS, 99%), sodium dihydrogen phos-
phate anhydrous (99%), sodium phosphate dibasic anhydrous
(99%), polyethylenimine (PEI, 99%, molecular weight 423, 800,

dx.doi.org/10.1016/j.cej.2010.08.079
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:s.j.haswell@hull.ac.uk
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000, 10,000 and 25,000) and HCl (37%), were purchased from
he Sigma–Aldrich. ETFE tubing was purchased from VWR Interna-
ional and fittings and connectors (pore size 0.5 mm diameter) were
urchased from Upchurch. Milli-Q water (18 M� cm) was used to
repare all aqueous solutions.

.1. Construction of microfluidic reactors

Currently, most microfluidic reactors are fabricated by pho-
olithographic process and the reactor channels are not readily
hangeable after fabrication has been completed. The microfluidic
eactors used in the present work were fabricated using readily
vailable commercial components such as PEEK Y-shape and cross
onnectors as well as ETFE tubing. The practical advantages of
his method for fabricating microfluidic reactors include simplic-
ty and component replaceability. Fig. 1A shows a CFMR system
hat consists of two PEEK Y-shape connectors and EFTE tubing for
ydrolysis and silicification reactions. Fig. 1B shows a SFMR sys-
em that consists of a PEEK Y-shape connector and a PEEK cross

onnector as well as EFTE tubing. Syringe pumps (KD Scientific)
ere used for controlling flow rates of the reagents and air (in

he SFMR system). Reaction times for TMOS hydrolysis and sili-
ification can be adjusted by altering the length of the tubing and
ow rate.

ig. 1. Schematic diagram of microfluidic reactor systems for the particle synthesis. (A
or 1 mM HCl, (S3) syringe (volume 1 ml) for PEI polymer in Tris–HCl buffer solution, (M
0.17 mm diameter) for hydrolysis, (R2) reaction tube (0.5 mm diameter) for silica precipi
ml) for 1 mM HCl, (S3) syringe (volume 20 ml) for air injection, (S4) syringe for PEI p
iameter), (M2) PEEK 4-way mixer, (R1) reaction tube (0.17 mm diameter) for hydrolysis
Journal 167 (2011) 694–699 695

2.2. Batch based silica synthesis

A typical reagent mixture of 250 �l of 0.2 M sodium phosphate
buffer, 200 �l of Milli-Q water, 25 �l of PEI (100 mg/ml) and 25 �l
of 1 M TMOS solution (which was pre-hydrolysed in 1 mM HCl for
10 min) was added in the above sequence into a polypropylene vial.
In the final reaction mixture (volume = 500 �l), the concentration
of phosphate buffer, PEI and TMOS was 0.1 M, 5 mg/ml and 0.05 M
respectively. After adding the freshly hydrolysed TMOS, the solu-
tion became cloudy within tens of seconds and a reaction time
of 5 min was used. After which the mixture was centrifuged at
14,000 rpm for 1 min, the supernatant was collected and the pel-
lets were washed three times by re-dispersing in Milli-Q water and
re-centrifuging, and finally dispersed in 500 �l of Milli-Q water.
The reagent concentrations used for batch based synthesis were
also chosen for the microfluidic synthesis in order to compare the
performance of the two synthetic methods.

2.3. Continuous flow microreactor (CFMR) based silica synthesis
The set up for the CFMR synthesis of silica nanoparticles can
be seen in Fig. 1A, in which TMOS (0.15 �l/min) and 1 mM HCl
(1.85 �l/min) are individually pumped into a small Y-shape con-
nector (M1) where the two reagents mix and pass though the EFTE

) CFMR system: (S1) syringe (volume 1 ml) for TMOS, (S2) syringe (volume 1 ml)
1) and (M2) PEEK Y-shape mixers (pore size 0.5 mm diameter), (R1) reaction tube
tation. (B) SFMR system: (S1) syringe (volume 1 ml) for TMOS, (S2) syringe (volume
olymer in Tris–HCl buffer solution, (M1) PEEK Y-shape mixers (pore size 0.5 mm
, (R2) reaction tube (0.5 mm diameter) for silica precipitation.
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ubing (R1, diameter 0.17 mm) to complete the 10 min hydrolysis
eaction. The use of online hydrolysis of TMOS rather than pre-
ydrolysed TMOS enabled a more reproducible hydrolysis time to
e achieved compared to the batch synthesis. PEI in phosphate
uffer (18 �l/min) was then introduced and mixed with hydrolysed
MOS at a small Y-shape mixer (M2) and finally passed through
TFE tubing (R2, diameter 0.5–1.0 mm) to perform silicification
ver a period of 5 min. A sintered funnel with a membrane (10 nm
ore size), connected to a vacuum pump, was used to immedi-
tely remove reaction media in order to effectively quench the
eaction and isolate the particles formed. The liquid sample was
ollected and the particles were physically collected by carefully

emoving the membrane and transferring it to a 1.5 ml polypropy-
ene vial in which the particles were re-suspended in Milli-Q

ater and washed three times using the procedure described
reviously.

ig. 2. SEM images of silica spheres obtained using batch based process. (A) pH 6.0; (B) p
ith TMOS then PEI added to; (G) PEI first mixed with TMOS then phosphate buffer (pH 7
Journal 167 (2011) 694–699

2.4. Segmented flow microreactor (SFMR) based silica synthesis

The SFMR system for the synthesis of silica nanoparticles is
shown in Fig. 1B. Air–liquid segmented flow was used to generate
small plugs within the ETFE tubing, which acted as compartments
for the silicification reaction. TMOS (0.15 �l/min) and 1 mM HCl
(1.85 �l/min) were separately pumped into a small Y-shape con-
nector (M1) where the two reagents mixed and passed along an
EFTE tubing (R1, diameter 0.17 mm) to complete the hydrolysis
reaction over a period of 10 min. Air–liquid segmented flow was
generated using a small PEEK cross connector (M2) in which air
(20 �l/min) was pumped into the middle inlet of the cross connec-

tor through a SEG gastight syringe, hydrolysed TMOS solution and
PEI in phosphate buffer (pH 7.0) solution (18 �l/min) were intro-
duced from two side inlets. The reaction streams passed through
EFTE tubing (R2, diameter 0.5 mm) to complete silicification reac-

H 6.5; (C) pH 7.0; (D) pH 7.5; (E) pH 8.0; (F) Phosphate buffer (pH 7.5) first mixed
.5) added to.
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Fig. 3. Production of silica particles as function of buffer pH values.

Table 1
Properties of silica nanoparticles obtained from batch, CFMR and SFMR synthesis.

Reactor pH Mean size (nm) Standard deviation Yield (%)

Batch 6.0 1100 90.2 18 ± 5
Batch 6.5 802 50.2 22 ± 3
Batch 7.0 493 23.5 25 ± 3
Batch 7.5 476 12.4 28 ± 3
Batch 8.0 228 3.4 35 ± 3
CFMRa 6.5 176 5.5 59 ± 6
CFMRb 6.5 73 3.0 62 ± 6
CFMRa 7.5 53 1.1 65 ± 7
SFMRc 6.5 63 1.1 58 ± 6

a TMOS = 0.15 �l/min, 1 mM HCl = 1.85 �l/min, PEI-buffer = 20 �l/min, residence
time = 5 min.

b TMOS = 0.075 �l/min, 1 mM HCl = 0.09 �l/min, PEI-buffer = 10 �l/min, residence
P. He et al. / Chemical Engine

ion in a period of 5 min. Sample collection and treatment were the
ame as the procedures used for the CFMR based synthesis.

.5. Silica quantitation

The silica produced was quantitated using the �-
ilicomolybdate method developed by Iler [11]. Briefly, individual
amples obtained from total reaction volume of 500 �l were
issolved in 0.5 M NaOH solution and incubated at 95 ◦C (oil
ath) for 30 min to ensure complete dissolution. After which the

iberated PEI polymers in solution were removed from the solution
y centrifuging at 14,000 rpm for 1 min. 100 �l of supernatant was
dded to the molybdate solution to form the bright yellow product
hat was monitored by UV–vis spectrophotometry at 410 nm and
uantitated from a standard curve of silicate standards.

. Results and discussion

In this study the synthesis of silica particles was first performed
sing a batch based process in the presence of PEI polymers. SEM

mages of silica particles (Fig. 2) produced at different pH and yield
Fig. 3) indicate that the diameter of silica spheres significantly
ecreases with increasing pH of the silicic acid solution whilst the
ield increases. The properties of silica spheres precipitated in the
resence of PEI polymer, using batch based process are shown in
able 1. At present, the mechanism of polyamine-induced silica
ondensation and precipitation is not completely understood, but
t has been suggested by several groups [4d, 4i, 5e] that the PEI
ould act as an acid-base catalyst in which deprotonated residues
acting as the “base”) accept a proton from a silicic acid molecule to
orm a reactive silanolate group and protonated residues (acting as
he “acid”) that facilitate the release of a water from the silicic acid
ubstrate. In addition, electrostatic interaction between negatively
harged silica species and positively charged PEI molecule may lead
o a supramolecular assembly that encapsulates the PEI molecules

ithin the silica nanospheres. As the TMOS was pre-hydrolysed the

ize of the particles formed was found to be directly determined by
he nucleation and growth processes where nucleation is the reac-
ion of the monomer with unreacted monomer and growth is the
eaction of the monomer with existing particles. Accordingly, the

Fig. 4. SEM images of silica particles obtained using microfluidic reactors. (A) CFMR s
time = 5 min.
c TMOS = 0.15 �l/min, 1 mM HCl = 1.85 �l/min, PEI-buffer = 20 �l/min, air injec-

tion = 20 �l/min, residence time = 5 min.
nucleation rate is a second-order reaction dependant on the con-
centration of the monomer whereas growth is first order. Factors
that promote nucleation must result in smaller particles whilst fac-

ynthesis at pH 6.5; (B) CFMR synthesis at pH 7.5; (C) SFMR synthesis at pH 6.5.
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ors that favour growth should have the opposite effect [12]. From
able 1 it can be seen that at a low pH (i.e. 6.0) the monomer is
onsumed in the reaction with existing particles (particle growth),
ather than with unreacted monomer (nucleation), giving signifi-
antly larger particles and considerably broader size distributions.
owever, at high pH (i.e. 8.0) nucleation dominates the reaction,
roducing smaller particles with narrower size distributions and
igher silica yields. Other parameters were also investigated and

t was found that PEI molecular mass (423–10,000) and concentra-
ion (2–10 mg/ml) and silicic acid concentration (0.05–0.1 M in final
olution) have no significant effect on diameter of silica spheres and
orphology of silica spheres produced (data not shown). However,

he order of mixing reagents was found to be important for the
ormation of silica spheres (Fig. 2D, F and G).

To compare the effect of microfluidic reactors on the particle size
nd aggregation behaviour with batch based process, silica precip-
tation was carried out in both CFMR and SFMR systems using the
ame conditions as those used in the batch synthesis. SEM images
f silica particles obtained from the CFMR and SFMR systems are
hown in Fig. 4 and their characteristics are summarized in Table 1.
t can be seen that microfluidic reactors always produce signifi-
antly smaller particles with narrower size distributions and twice
he silica yield compared to batch based synthesis. The particle
haracteristics observed in microfluidic reactor systems, i.e. sizes,
ields and size distributions, can be attributed to the fast kinet-
cs for nucleation or the decrease in the particle size dispersion.
n terms of chemical synthesis reactions in microliter to nanoliter
olumes have demonstrated enhanced reaction yield and kinetics
13] this being due to the high concentration of active (hydrolysed)

onomers, monomer–monomer reaction present and hence the
ate of growth is low, giving smaller particles. Under laminar flow
CFMR case) the axial dispersion coefficient (EA) of particles sus-
ended in a cylindrical tube can be express by Taylor dispersion
q. (1).

A = D + U2R2

48D
(1)

Here, U is the average velocity in the reaction tube, R the radius
f the reaction tube, and D the diffusion coefficient of the particles,
hich is given by Stokes–Einstein relation (2).

= kBT

6��rP
(2)

Here kB is the Boltzmann constant, T the absolute temperature
nd � the fluid viscosity. Substituting the radius of the reaction
ube (0.25 mm) for the tube radius in Eq. (1) and a radius of 88 nm
corresponding to mean size 176 nm, see Table 1) for the calcula-
ion of particle diffusivity, we can make the following observation
n the axial dispersion effect. The small diffusivity of silica spheres
≈10−12 m2/s) implies that the axial dispersion is dominated by
he convective term in Eq. (1), thus the axial dispersion coeffi-
ient varies as the square of (U × R). As the Reynolds number is
roportional to U × R, this implies that the axial dispersion coef-
cient varies with the second power of the Reynolds number.
ormally, the Reynolds number in microfluidic reactors is very

mall (0.01–10), that is to say, the microfluidic reactor systems give
maller dispersion coefficients, which in turn lead to narrow dis-
ribution of residence times and consequently, lower particle size
istribution, the particle size dispersion therefore becomes smaller.

ndeed, at the same pH values as the batch processes, the CFMR sys-
em produced significantly smaller particles (mean size 176 nm for

H 6.5 and 53 nm for pH 7.5) with narrower size distributions (SD
.5 for pH 6.5 and 1.1 for pH 7.5) and double increase in silica yield
59% for pH 6.5 and 65% for pH 7.5) (see Fig. 4A and B and Table 1).

For the SFMR system, introduction of gas into the inlet of the
eaction tube continuously separates liquid feed into small por-
Diameter of reaction tubing (mm)

Fig. 5. Effect of reactor tube diameter on mean size of silica nanoparticles obtained
at pH 7.

tions, as shown in Fig. 4B. Hence an SFMR process is equivalent
to many small batch reactors passing through the tube at con-
stant velocity. As re-circulation occurs within each slug, all the
segmented batches experience the same amount of mixing and the
residence time which eliminates dispersion of the particles, leading
to more uniform particles [9].

Comparison of the silica spheres obtained under SFMR condi-
tions (Fig. 4C) with those under CFMR conditions (Fig. 4A) indicates
that the SFMR silica spheres were found to have smaller mean size,
narrower size distribution and similar silica yield relative to the
CFMR. For example, the SFMR system gave mean size of 63 nm, SD of
1.1 and 58% silica yield compared to a mean size of 176 nm, SD of 5.5
and 59% silica yield obtained from the CFMR system (see Table 1).
It was also found that under CFMR conditions a decrease in flow
rate by a factor of 2 for the liquid and gas, produced smaller parti-
cles (mean size = 73 nm) with narrower size distribution (SD = 3.0)
and a slightly higher yield (62%) whilst having no obvious effect on
particle size and size distribution for the SFMR synthesis (data not
shown).

Under CFMR conditions, the effect of reaction tube diameter on
particle size was also investigated. Results (Fig. 5) indicate that the
particle sizes can be controlled by using different tube diameters
with an increase in reactor diameter from 0.5 to 0.75 and 1.0 mm
generating silica spheres with increasing mean size of 167 nm to
241 nm and 402 nm respectively, compared to mean size of 492 nm
obtained for batch based reaction. This is in agreement with the
discussion on Eq. (1) where smaller diameters of the reaction tubes
give smaller axial dispersions, leading to smaller particles.

It should be noted that the deposition of silica particles was
observed around 1–2 cm from the inlet when carrying out the
microfluidic synthesis after approximately 2 h. The deposition of
particles formed in the reaction channel is a common phenomenon
[9], which leads to clogging and unstable reactor conditions. For our
microfluidic systems the reaction tubes can be simply replaced,
minimizing effect of the particle deposition on the synthesis.
Finally, there was no indication that pulsation or jetting occurred
under the reaction conditions used.

4. Conclusions

It has been demonstrated that microfluidic methods for the syn-
thesis of silica nanoparticles offer the possibility to tune particle
sizes and size distributions by varying the operation variables such

as flow rate and residence time. A significantly narrow size distribu-
tion of silica particles can be obtained by using microfluidic reactors
in the presence of PEI polymer at room temperature compared to
batch based synthesis. The SFMR conditions yield fine particles of
better quality than the CFMR due to the elimination of axial disper-
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ion effect under the SFMR conditions. Compared to a conventional
atch system, microfluidic reactors enable a controllable process in
erms of size and size distribution for the production of silica par-
icles. For the microfluidic reactor systems presented in this work
he reaction tubes can be simply replaced, minimizing effect of the
article deposition on the synthesis and potential channel blockage.
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Review

Microsystems for personalized biomolecular
diagnostics

The development of microfluidic methodology that can be used in conjunction
with drug screening and biomolecular diagnostics offers a route to evidence-based
personalized medical care. Ideally, all personal diagnostics are best carried out in a
rapid and frequent manner and a microfluidic interface can provide appropriate
methodology. The ability to perform genetic analysis or biomarker detection at
point-of-care would allow the clinician to decide on the most informed course of
treatment. Microfluidic systems for biomolecular analysis at all levels, from genes
to whole tissue biopsies, have been proposed. Much of the work presented here is
at an early stage of development but will consider the range of design consid-
erations together with the plethora of potential applications of integrated
microfluidic technology.
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1 Introduction

The aims of personalized medicine are to predict how an indi-
vidual will respond to a particular drug or medical intervention
such that the therapeutic efficacy is maximized while reducing
unwanted side effects. To achieve this, the correct selection of
drug formulation and dosage, for example, all need to be
determined, leading to a gradual lowering of mass development
of pharmaceuticals and an increase in production of a range of
more specified drugs. This extended knowledge on a molecular
level can further serve to pre-diagnose the development of a
disease, within a particular individual based on genomic and
proteomic information [1]. A recent article by Bates reviews
current clinical progress in personalized medicine and
summarizes future perspectives in the field [2]. Specifically, the
review demonstrates that the main thrust of personalized
medicine is focused in oncology. Cancer arises when disrupted
cell signaling pathways cause a significant growth advantage over
their neighboring cells resulting in the development of a tumor
mass. However, the genetic changes that define these variations
are not universal to all cases of cancer, even for tumors of the

same location within the body. By isolating this genetic infor-
mation, it is possible to gather information about the disease in
its in vivo state and location, while also obtaining further details
on how it will progress and respond to drug intervention.

The move towards personalized medicine has been driven
by the knowledge that, for a given disease, each individual
person will respond in a unique way to treatment. Broadly
speaking, personalized diagnostic medicine can be divided into
four main steps: evaluating an individual’s predisposition for
genetic disorders possibly enabling preventative treatment;
screening and early disease diagnosis; targeting therapeutic
treatments based on molecular characteristics of disease; and
preventing adverse drug reactions. To enable truly personalized
medical treatment, these steps can be performed individually,
in parallel or in series.

By using genetic analysis, it is possible to predict an indi-
vidual’s predisposition to a certain disease, usually by single
nucleotide polymorphism (SNP) analysis, allowing adminis-
tration of preventative therapies, e.g. statins for people at risk
of developing coronary artery disease [3]. An example of a
targeted therapeutic in use is Herceptins (trastuzumab) for
the treatment of breast cancers, which overexpress human
epidermal growth factor receptor (EGFR) 2 (HER-2/neu), as
identified using a complementary diagnostic test, Hercep-
TestTM (Dako, Denmark). Alternatively, the prescription of
medications based on genetic data can be used to avoid drugs
that demonstrate absent or incomplete efficacy in certain
individuals in the population, e.g. 40–70% of the population
for 2-agonists [1]. Drug development in the pharmaceutical
industry can take advantage of the molecular basis of a disease
in order to direct therapeutic agents at the right population.
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This is achieved by selecting optimal drug targets and dosage,
predicting which individuals will respond well to the drugs and
those who will experience toxic effects, as a result the overall
cost of treatment is reduced with more effective healthcare.
Adverse drug reactions are caused by the failure to predict drug
toxicity in individuals, which can have a severe health impact
and a corresponding, often substantial, related economic cost.
Both drug efficacy and adverse reactions are dependent upon a
complex interaction of genetic and non-genetic factors,
including genetic variation in the drug target, disease pathway
genes and drug metabolizing enzymes. For example, SNP
variation in the cytochrome P450 system is associated with
toxicity due to differences in drug metabolism [4].

Biotechnological advances in the post-genomic era enable
the possibility of managing diseases, such as cancer, by
combining molecular profiles with conventional clinical
observation to provide the best possible course of treatment
for the individual patient. Biomarkers can be examined for risk
assessment, treatment response, prediction and prognosis [5].
Various manifestations of cancer are immensely heterogeneous
with respect to metastatic potential and resistance to treat-
ment, for example, the interstitial lung disease associated with
non-small cell lung cancer can vary greatly and require a wide
range of chemotherapy treatments [6]. A proteomic finger-
print obtained using biomarkers can serve to eliminate treat-
ments proven to be ineffective and isolate an effective
treatment without the need for a trial and error approach.
However, early detection can require as many as four or more
biomarkers to identify a susceptible individual with confidence
[6, 7]. The Tumor Marker Guidelines Committee of the
American Society of Clinical Oncology has published a short
list of acceptable biomarkers; the list is limited as the markers
must show sufficient robustness to provide reliable prognosis
and determination of the optimum course of treatment. The
ability to be able to provide these biomolecular profiles at the
point-of-care (POC) through the use of microfluidic systems
would be invaluable.

The field of microfluidics has rapidly expanded in the past
decade, driven by the need for so-called micro-total-analysis or
Lab-on-a-Chip (LOC) systems, in which multiple processes are
integrated into a single device. Utilizing microfluidic platforms
to miniaturize bio(chemical) processes has many inherent
advantages. Importantly, for diagnostics, this includes a
reduction in the amount of sample, which maybe limited, for
example, in the case of a section from a tissue biopsy. Of
particular importance in dealing with clinical samples,
microfluidics offers spatial and temporal fluidic control in a
biomimetic environment allowing in vivo conditions to be
created in vitro. Speed of analysis within microfluidic devices is
faster than conventional laboratory-based diagnostic tests and
can be further enhanced by parallel processing, enabling
production of results ‘‘while-you-wait.’’ Both material selection
and kinetic mechanisms are important variables that can be
adapted to suit the specific requirements of the assay. Manu-
facturing capabilities provide the potential for mass produc-
tion of cheap, disposable microfluidic devices, which can be
used as part of fully integrated portable systems for POC
analysis [8]. Analysis of clinical samples at POC also brings
with it a number of other considerations, such as who will

operate the system and what resources will they have available
to them. Diagnostic tests that are to be used in developing
countries or in remote areas may not have access to refrig-
eration and so any reagents stored on the microfluidic device
will require stabilization, achieved, for example, in the case of
antibodies by the addition of trehalose [9].

Microfluidic systems are now finding increasing use in the
field of clinical diagnostics, for example, through viral geno-
typing of human papilloma virus (HPV) [10] and the testing
of multiple metabolic parameters, such as glucose and lactate
in a portable handheld device [11]. Fully integrated ‘‘digital’’
microfluidic devices have also been developed, which use the
electrowetting effect to manipulate droplets. These droplets act
as individual reaction chambers and have allowed a proof-of-
principle colorimetric enzymatic glucose assay to be
performed. The technique can be used to manipulate a wide
variety of biological fluids, including whole blood, plasma and
saliva, with the system being fully integrated from sample
injection through to detection [12]. While such systems aid
clinical diagnosis and provide an introduction to clinicians to
the use of microfluidic systems, they do not represent perso-
nalized healthcare.

Those microfluidic systems that truly aid personalized
diagnostics are just beginning to emerge and are aimed at
analysis at different cellular levels. The ideal microfluidic
device should have sample in-answer out capabilities, require
minimal user intervention, be low cost and disposable. This
review presents current research in the field of personalized
medical diagnostics and considers future perspectives for
microfluidic devices covering areas such as pharmacoge-
nomics, transcriptomics and proteomics.

2 Genetic analysis

2.1 Viral detection

Direct nucleic acid amplification of clinically relevant diag-
nostic targets on microfluidic devices, made from cyclic olefin
copolymer, has been reported by Gulliksen et al. [13], which
exploits real-time nucleic acid sequence-based amplification
for the detection of HPV. Using such a device for the identi-
fication of high-risk HPV mRNA transcripts will hopefully
provide a more sensitive and reliable method for cervical
cancer screening as compared with cytological testing. Reac-
tion volumes were limited to 80 nL, which reduces the amount
of reagents required; the associated control system was also
designed for simplicity using a simple heating mechanism, as
isothermal amplification was used, and a light emitting diode
in combination with a photomultipler tube for detection.

Kaigala et al. [14] developed a microfluidic device that
combined polymerase chain reaction (PCR) amplification with
capillary electrophoresis for the detection of BK virus (Fig. 1).
High levels of BK virus can cause serious complications in
renal transplant patients, such as graft loss in up to 80% of
patients who develop BK-virus associated nephritis. No sample
processing was required as urine samples were directly applied
to the microfluidic device, which simplifies user intervention.
Sensitive limits of detection, down to as few as 1–2 viral copies,
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enabled the system to distinguish between different viral loads
and inform the physician whether clinical intervention was
required. Routine screening of patients for the recommended 2
years post-transplant is currently limited by cost considera-
tions but may be improved if the patient can perform a self-
test at home or in the doctor’s surgery using such a micro-
fluidic system.

2.2 Gene expression profiling

Conventional transcriptome analysis is achieved by performing
a reverse transcription-PCR (RT-PCR) followed by hybridiza-
tion of the DNA products on a microarray. Such technology
lends itself well to the detection of prognostic biomarkers to
aid personalized medicine. For example, chronic lymphocytic
leukemia can be divided into two prognostic subtypes
depending upon the degree of mutation in immunoglobulin
heavy-chain variable region (IgVH) genes. Patients who have
unmutated IgVH genes have an average survival of 8 years from
diagnosis compared to 25 years for those with mutated IgVH

genes. A custom-printed TaqMan Low Density Array micro-
fluidics card has been successfully used to perform quantitative
RT-PCR and distinguish between mutated and unmutated
genes from samples of patients with this form of leukemia.
Despite the clear prognostic value of such a system, extensive
sample preparation was required off-chip which limits use at
POC, although recently systems have emerged that show
integration of sample preparation and subsequent genetic
analysis to be possible [15].

Yokokawa et al. [16] have developed a poly(dimethyl-
siloxane) (PDMS) microfluidic device for transcriptome
analysis to detect c-fos mRNA, an oncogene whose over-
expression is involved in carcinogenesis. Sequence-specific
mRNA detection is achieved by hybridization to a 20-O-methyl
oligonucleotide probe, resulting in a significant increase in
fluorescence, which can be observed using a conventional
epifluorescent microscope (Fig. 2). The advantage of this
system over traditional microarrays is that the hybridization
occurs in the liquid phase, which means that there is no need
to purify the target mRNA and no wash steps are required to
remove any unhybridized probes as these are not detectable,
resulting in a decreased analysis time.

Direct profiling of cancer biomarkers in tumor tissue using
a multiplexed nanostructured microelectrode integrated circuit
was recently reported by Fang et al. [17]. mRNA from tumor
biopsies was analyzed for prostate cancer-related gene fusions,
which could be used to distinguish between aggressive and
slower progressing forms of the disease. Following mRNA
extraction, samples were added onto the device and direct,
amplification-free analysis could be completed in less than 1 h.
Microelectrodes were modified with thiolated peptide nucleic
acid probes and upon hybridization of complementary
sequences an electrical signal was observed. The clinical
application of the approach is awaited.

Figure 1. Schematic of a poly(dimethylsiloxane) (PDMS)/glass
microfluidic device for PCR and capillary electrophoresis.
Reproduced with permission from [14].

Figure 2. A schematic showing (A) the microfluidic device and
(B) the mechanism of hybridization whereby fluorescence
detection of only c-fos mRNA occurs. Reproduced with permis-
sion from Fig. 1 of [16].
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2.3 Genotyping by fragment analysis

Miniaturized electrophoresis devices have been applied to a
wide range of biomolecular analysis techniques that have the
potential to be integrated into more complete systems for
personalized medicine. SNP analysis has been applied in a
microfluidic setting to evaluate the risk of adverse drug events.
In patients undergoing thiopurine therapy, for conditions such
as acute lymphoblastic leukemia, rheumatoid arthritis or organ
transplantation, SNPs account for inter-patient variability in
drug response. An inherited deficiency in thiopurine
S-methyltransferase (TPMT), a cytosolic enzyme that catalyses
S-methylation of thiopurines, leads to toxic metabolite accu-
mulation and potentially fatal neutropenia. Approximately
0.3% of the population have two non-functional alleles and
therefore have no detectable enzyme activity. If identified, such
individuals can then be treated with a significantly lower
thiopurine dose (10- to 15-fold reduction) to minimize any
adverse effects. An integrated microfluidic device has been
presented by Chowdhury et al. [18], which combines either
restriction fragment length polymorphism analysis or allele-
specific PCR with capillary electrophoresis for identification of
the three most common SNP alleles associated with TPMT
deficiency. The microfluidic device was partnered with a
control system which was used to supply thermal cycling,
electrokinetic movement and detection components. An esti-
mated cost for such as system was proposed as less than $10
per microfluidic device and approximately $1000 for the
control system. This represents a step forward toward POC
systems compared to traditional methods where DNA micro-
arrays were previously the best option [19], although in both
these systems DNA extraction and quantification from whole
blood samples was still performed off-chip.

Odenthal et al. [20] presented a microfluidic electrophoresis
chip for the detection of microsatellite instability in patients
with colorectal cancer. Carcinogenesis caused by genomic
defects in the mismatch repair machinery, which occurs in
10–20% of patients with colorectal cancer, leading to micro-
satellite instability is associated with a better prognosis and
therefore provides a useful diagnostic marker. Following off-
chip DNA extraction and PCR, electrophoretic separation was
carried out using commercially available DNA 1000 LabChip
Kits and a 2100 Bioanalyser (Agilent, Germany) for the
detection of five key microsatellite loci. Electropherograms of
tumor and non-tumor tissue were overlaid to show any
microsatellite instability present. The 2100 Bioanalyser has also
been used in conjunction with a microfluidic device for the
rapid mutation screening of KIT and PDGFRA genes in
gastrointestinal stromal tumors. Insertion and deletion muta-
tions frequently occur in both genes and their presence is
directly related to treatment response to the kinase inhibitor
imatinib mesylate (Gleevecs); therefore mutation detection
aids in determining the optimum course of treatment. In a
similar procedure to that described above, tissue samples have
been subjected to conventional off-chip DNA extraction and
RT-PCR procedures before the resulting products are applied
to the microfluidic device. Electrophoresis was performed in
the presence of an intercalating dye, which enabled fluores-
cence detection of the PCR products on-chip [21].

In addition, microfluidic electrophoresis chips have been
used as a screening methodology to detect mutations in breast
cancer susceptibility genes. Such mutations show higher
frequency in certain ethnic populations, for example, muta-
tions 185delAG and 5382insC in BRCA1 and 6174delT in
BRCA2 are common in the Ashkenazi Jewish population, and
women who have one or more of these mutations are at a high
risk of developing breast or ovarian cancer in the future. After
off-chip DNA extraction and PCR, mutations were detected by
the incorporation of fluorescently labeled primers in less than
2 min [22], in an analogous way to that described by Zamo
et al. [21].

3 Immunoassays

The use of immunoassays in diagnostic medicine is something
that has gained great popularity, but these can be time
consuming to perform (4–8 h) and require relatively large
reagent volumes. Fortunately, the immunoassay format is highly
compatible with microfluidic systems, which can be used to
overcome these limitations and make immunoassays ideal for
POC applications. Accordingly, research in this area has been
extensive and varied, including detection of hormones, cancer
markers and common pathogens. Immunoassays can be either
heterogeneous, i.e. where antibodies are immobilized on a solid
surface, or homogeneous, i.e. where the conjugation of antibody
and antigen occurs in solution. Heterogeneous methodology is
commonly employed as it brings with it greater sensitivity,
achieved by an increased surface area for antibody–antigen
binding. The use of sandwich immunoassays, commonly an
ELISA, has been widely adapted for use in microfluidic systems.
The principle involves using a primary antibody, attached to a
solid support, to bind any antigen present in the sample.
Following this, a secondary enzyme-conjugated antibody is
added and which also binds to the antigen. Upon addition of
the enzyme substrate, a signal is generated proportional to the
amount of target antigen present.

Currently, microfluidic devices reported for performing
immunoassays have focused on diagnosis and detection rather
than personalized medicine. Examples include the diagnosis of
celiac disease [23] and detection of Helicobacter pylori infection
[24]. Despite not representing personalized biomolecular
diagnostics, such systems enable faster detection and therefore
swifter patient treatment. Yet one of the fields where immu-
noassay methodology has found great success is in the analysis
of biomarkers associated with various forms of cancer.
Differential expression of such biomarkers often provides an
indication of disease state or phenotype. For example, the
overexpression of EGFR is associated with early tumorigenesis
and/or aggressive phenotypes in head and neck cancer [25].
Immunological techniques can be used to isolate different cell
types, from complex biological fluids or biopsy suspensions,
prior to interrogation of the cells for specific biomarkers. For
example, this can be achieved by a polycarbonate membrane
that acts as a microsieve to capture cells within a poly
(methylmethacrylate) chip. The captured cells can then be
interrogated by immunofluorescent assays in order to confirm
their presence and determine the isotype [26]. Christodoulides
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et al. [27] presented a microfluidic system which exploited
antibody-based capture techniques for both cells and indivi-
dual proteins from whole blood samples. Both increased serum
concentration of C-reactive protein (CRP) and leukocyte
count are predictors for the development of coronary heart
disease and so are useful diagnostic markers, particularly in
combination. Porous agarose microspheres, contained within
an etched well array, coated in CRP-specific antibodies capture
the CRP antigen if present. This was coupled with a poly-
carbonate membrane that captured the leukocytes while
allowing deformable erythrocytes to pass through. Both
predictors generate fluorescent signals, through a secondary
labeled antibody, which are detected using a charge-coupled
device and data analysis software. In addition, Lenshof et al.
[28] showed that plasma could be separated from whole blood
using an acoustic plasmapheresis chip and the resulting plasma
transferred to a linked microarray for prostate-specific antigen
detection without the need for any signal amplification.

A problem with microfluidic immunoassays is often the low
sensitivity associated with widespread optical detection meth-
ods, accordingly techniques such as fluorescence or lumines-
cence, are often coupled with expensive equipment for the
analysis to counteract this. The detection of single biomarkers
does not provide sufficient clinical information with regards to
the large variety of cancerous diseases, so it is crucial that
multiple biomarkers can be detected efficiently. Ko et al. [29]
were able to capitalize on more recently developed electro-
chemical immunoassay detection methods to develop a device
to detect multiple biomarkers. In this case, high sensitivity is
achieved via an electrical signal produced from a redox reaction
of an enzyme tagged with antibodies. The electrical signal is
then amplified via a silver enhancer before detection. This
methodology was integrated into a microfluidic device to
provide a multiple electro-immunosensing system, and was
used successfully to detect three cancer biomarkers. However,
one of the main disadvantages of using electrochemical detec-
tion in immunoassay microarrays is the significant cross-talk
that can occur. To overcome this, a disposable array has been
developed for simultaneous detection of two tumor markers,
carbohydrate antigen (CA19-9) and carcinoma antigen
(CA125), by using a cellulose acetate membrane to co-immo-
bilize a thionine mediator and two kinds of antigens on two
carbon electrodes of a screen-printed chip. Corresponding
horseradish peroxidase-labeled antibodies were then captured
on the membranes and the immobilized thionine shuttled
electrons between horseradish peroxidase and the electrodes for
enzymatic reduction of H2O2 to produce detectable signals [30].

An alternative means of increasing the sensitivity of immu-
noassays is via the use of quantum dots. Multiplex cancer
biomarker detection from serum has been shown to be possible,
down to fM sensitivity, by employing secondary antibodies
conjugated to luminescent CdTe/CdS quantum dots [31].
Jokerst et al. [7] also showed the ability to detect successfully
three cancer biomarkers from serum, as well as from saliva. The
discussed biomarkers are able to again provide early detection
while providing extensive on-going information on treatment
and metastasis developments. Whole saliva is an ideal fluid for
sampling as it can be collected in high quantities with minimal
patient invasion; however, biomarkers are often present at low

concentrations. Here, the high sensitivity of antibody-conju-
gated semi-conductor nanoparticle quantum dot fluorophores
was used to overcome the lower levels of biomarkers present
within saliva, while also being successfully integrated to a
microfluidic device (Fig. 3). The low limits of detection provi-
ded by quantum dots, which can amplify the signal 30 times
relative to that of standard fluorophores, showed the potential
for fingerprinting from serum and more importantly saliva. In
addition, the integration of sample processing, analyte capture
and detection to produce a LOC device shows great hope for
on-going POC analysis.

Another way to improve detection sensitivity has been
demonstrated through the use of iridium oxide nanowires for
the detection of inflammatory disease biomarkers, CRP and
myeloperoxidase. During protein binding on the nanowires, a
specific electrical parameter perturbation occurs during the
immunoassay, which enables monitoring of disease biomarker
proteins. The use of iridium oxide, and its capability to detect
very small changes to the surface charge, forms the basis of the
key innovations of this technology, which are improving the
selectivity and sensitivity of detection [32].

4 Cell analysis

4.1 Isolation of specific cell populations

The immunological properties of cells can also be exploited to
facilitate the capture of specific cell populations from complex
biological matrices and such methodology has been widely
demonstrated in microfluidic systems. Circulating tumor cells
(CTCs), particularly those of the colorectal origin are char-
acterized by an overexpression of epithelial cell adhesion
molecule (EpCAM), are produced during tumorigenesis and

Figure 3. Schematic showing a comparison of (A) quantum dots
and (B) fluorescent labels for detection in immunoassays where
the following components are represented: (i) capture antibody
on bead-based support, (ii) antigen and (iii) detection anti-
body–fluorophore complex. Reprinted from [7] with permission
from Elsevier.
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are an indicator of metastasis [33]. Isolation of CTCs from
whole blood and saliva samples has been demonstrated by
various forms of antibody-mediated capture using anti-
EpCAM. This enables enrichment of CTCs, while allowing
removal of hematological cells which do not express EpCAM.
One of the simplest means is via the use of anti-EpCAM-
coated microposts within a microfluidic device and this has
been successfully demonstrated for the isolation of CTCs from
whole blood samples from patients with lung, prostate,
pancreatic, breast and colon cancers. Such systems are very
sensitive, with the ability to detection 1 CTC per 109 hema-
tological cells. Once captured the CTC may be subject to
further interrogation, from simple counting of cells which can
be indicative of treatment efficiency, to more complex off-chip
mutational analysis by PCR, for example, the presence of a
T790M mutation in the EGFR gene is associated with reduced
survival [34]. A larger surface area for increased antigen
capture efficiency can also be provided using a series of high-
aspect ratio channels within the microfluidic device. For
example, Adams et al. [35] demonstrated that following
isolation of CTCs from 1 mL of whole blood, they could be
released using trypsin and counted using a label-free conduc-
tivity route which was capable of detecting single tumor cells as
they passed through detection electrodes, all of which was
possible within 37 min. The number of CTCs was related to
progression free survival rates, with an average of 7 months for
patients with r5 CTCs/75 mL blood compared with 2.7
months when 45 CTCs/75 mL blood were detected. The
simplicity of the device makes it an attractive prospect for POC
applications.

In addition to CTCs, antibody-mediated capture on
microfluidic devices can be applied to other distinct cell
populations. For example, Du et al. [36] reported a device for
the capture of cervical cancer cells, which relies on up-
regulation of a6-integrin cell surface receptors as a result of
HPV-16 infection in order to facilitate capture. Such techni-
ques have also proved successful when combined with negative
dielectrophoresis for cell trapping. Here, such methodology
was combined with label-free impedance detection for
counting of endothelial progenitor (CD341) cells from mature
white blood cells. Further work aims to focus on the integra-
tion of cell isolation and detection with whole blood sample
preparation for the development of a cardiovascular diag-

nostics system that can be implemented, for example, in urgent
cases like stent deployment [37].

Isolation and enumeration of CD41 T lymphocytes from
whole blood samples has been demonstrated, with analysis of
needle stick samples possible in less than 1 h. More than 85%
of the 33 million people worldwide infected with HIV live in
developing countries, and as such the main aim of work was to
present methodology that would be used in resource-limited
settings. Such a device could enable clinicians to monitor
T-cell populations to determine the degree of immunological
deterioration and effectiveness of current retroviral therapies.
The disposable device presented contained all the necessary
reagents held within fluid holding blister packs, no refrigera-
tion was necessary due to solid-layer storage of antibodies on
the device and the inclusion of waste reservoirs on the
microfluidic device limits the production of harmful waste
products for external disposable. In addition, the use of
quantum dot-antibody adducts enabled a reduction in the
complexity of optical detection requirements due to increased
sensitivity [38].

4.2 Cell culture and analysis

Microfluidic devices can be used to culture cell populations, to
provide a more biomimetic microenvironment than tradi-
tional monolayer cultures. Komen et al. [39] developed a
system of cell culturing for estrogen receptor positive human
breast cancer cells, which were shown to be viable for up to 7
days by static culture on the microfluidic device (Fig. 4).
Chemosensitivity of the cultured cells to the anticancer drug
staurosporine was then evaluated and apoptosis was observed.
Development of such techniques for use on individual patient
cell populations would enable multiple drug testing and allow
the optimum combination of drugs to be administered.

To further mimic the in vivo microenvironment, a droplet-
based system has been reported for multicellular tumor spher-
oid formation and anti-cancer drug testing. Alginate beads were
used to entrap breast tumor cells and continuous dynamic
perfusion enabled long-term cell culture, permitting cell
proliferation and spheroid formation. Dose-dependent response
to the anticancer drug doxorubicin (anthracycline molecule that
intercalates DNA, inhibiting topoisomerase II and therefore

Figure 4. Static culture of MCF-7 cells on a microfluidic device developed by Komen et al. [39]. Cells were loaded onto the microfluidic
device and held by a cell trap. Cell culture was achieved using a specific cell culture medium at a temperature of 371C. Reproduced with
permission from [39].

126 K. J. Shaw et al. Eng. Life Sci. 2011, 11, No. 2, 121–132

& 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://www.els-journal.com



synthesis) was evaluated. Increased drug resistance was observed
in the multicellular tumor spheroid compared with conven-
tional monolayer culture hypothesized to be due to contact with
the extracellular microenvironment [40].

Alternatively, tissue biopsy samples can be disaggregated by
conventional laboratory techniques and then applied to a
microfluidic device for analysis. Cell studies can provide a fully
quantitative assessment of the molecular content of a tumor
biopsy while requiring minimal tissue sampling [41]. In this
case, single cell microfluidic image cytometry was utilized to
isolate signaling protein biomarkers from within a brain tumor
tissue sample. The phosphoinositide 3-kinase/Akt/mammalian
target of the rapamycin signaling pathway is frequently
deregulated in glioblastoma multiforme, the most lethal form
of brain cancer in adults. Here, four critical signaling proteins
within this oncogenic pathway were used as biomarkers.
Following off-chip dissociation of brain tumor biopsies,
between 1000 and 3000 cells were applied to the microfluidic
device and subjected to immunolabeling. Bioinformatic
analysis revealed clusters of molecular signatures that corre-
lated with a prediction of tumor progression or poor patient
survival; for example, high EGFR expression is associated with
poor patient outcome. These biomarkers bring with them
extensive detail on the progression of the cancer within the
individual, providing further vital information about survival
chances. Such data can influence key decisions regarding
therapy or surgery for a particular individual [42].

5 Tissue analysis

While cellular analysis lends much valuable knowledge to the
field of personalized medicine, it falls short in some
aspects. Cells in vivo, with the exception of those in the
vasculature, never exist in an isolated manner, but as part of a
complex 3-D structure containing many constituent parts, all
of which are continuously communicating and responding to
external stimuli. Traditional cell culture fails to recreate this
natural environment, as individual cell lines are routinely
cultured in isolation, which can lead to experimental artifacts.
For example, cells cultured in this way are more likely to
undergo changes to cell surface markers in the longer term
than when whole tissue biopsies are studied [43]. It is therefore
beneficial in some situations to analyze tissue samples as whole
entities, so that the physiology might be more akin to that seen
in vivo.

The use of a microfluidic environment for tissue analysis
provides many advantages over larger scale tissue analysis such
as the requirement for only small quantities of tissue for
experimentation. For tissue types that are highly perfused in
vivo (such as liver and kidney), microfluidic devices can be
superior in mimicking the natural extracellular environment,
due to the close proximity of the ‘‘vascular’’ network [44]. The
ability to add nutrients continuously and remove waste
products on-chip is also preferable to the more static nature of
traditional tissue culture [45]. Indeed, some cells, such as
primary hepatocytes, are difficult to culture beyond 24 h in
static medium, whereas continuous perfusion of tissue samples
could significantly extend the time available for interrogation

[46]. This provides investigators with a pseudo-in vivo envir-
onment, which is easy to both alter and monitor.

Broadly speaking tissue samples can be interrogated on a
microfluidic device in two ways. The first involves a biopsy
being taken directly from a subject and maintained for analysis
on-chip. The latter involves developing a scaffold that allows
individual cells to aggregate in a manner that resembles that of
a complex tissue structure. Examples of the preliminary work
in both these fields will now be discussed.

5.1 Maintaining tissue on a microfluidic device

The direct addition of conventional paraffin embedded thin-
film tissue sections into microfluidic devices for immunohis-
tochemical analysis has been explored. For example, the
successful detection of multiple biomarkers (estrogen receptor,
HER-2, progesterone receptor and Ki-67) in breast cancer
tissue [5]. However, as the tissue has been fixed and paraffin
embedded this prevents dynamic, real-time measurements
from being performed. To try and overcome such problems, a
number of groups have begun to look at the maintenance of
tissue samples directly within a microfluidic system.

Hattersley et al. [45] have described a microfluidic device
capable of maintaining liver tissue in a viable state for a
duration of up to 70 h. Small biopsies of liver tissue (4 mm3)
were immersed in medium on a microfluidic device and placed
in a 371C incubator. Throughout the experiment, the conti-
nuing function of the tissue was demonstrated by the
production of both albumin and urea, which are synthesized
and secreted by liver hepatocytes. The retention of normal
tissue architecture at the end of the time period was also
demonstrated. On-chip cell disaggregation was performed,
with 78% of cells remaining alive, a value comparable to
traditional disaggregation methods.

Tissue maintenance has also been described by van Midwoud
et al. [46] who have developed a microfluidic system for
performing absorption, distribution, metabolism, excretion and
toxicity studies on precision-cut liver slices (Fig. 5). Precision-
cut liver slices provide a good alternative to traditional biopsies
as not only is much of the architecture of the organ sampled
maintained but also the thinness of the samples (�100mm)
leaves far shorter diffusion distance to the innermost cells,
allowing better supply of nutrients throughout the tissue;
however, the sample size does limit the number of cells that can
be tested. Cell viability and hepatic metabolic activity were
assessed and found to be comparable with that reported for
conventional well-plate systems but with the added advantages
previously described for microfluidic systems.

Interrogation of human colorectal tissue biopsies has also
been demonstrated using neoplastic and normal tissues biop-
sies sectioned for use on a microfluidic device [43]. Examining
both cancerous and normal tissue from the same subject
provides an invaluable tool when investigating not only the
desirable cytotoxic action but also any undesirable adverse
effects of a chemotherapeutic agent. A hypoxic environment
was created in the microfluidic device and levels of vascular
endothelial growth factor in the supernatant were monitored
at regular intervals. Enhanced production of vascular
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endothelial growth factor was observed in the neoplastic tissue
when compared with the normal tissue, which is in keeping
with known in vivo responses of colorectal neoplastic tissue to
hypoxic environments [47]. In addition, a similar system has
also been use to interrogate heart tissue for electrochemical
observation of reactive oxygen species, which play a major role
in conditions such as ischemia-reperfusion injury and neuro-
degenerative disorders [48]. Here, viable heart tissue was
maintained within a microfluidic perfusion system allowing
real-time monitoring in a biomimetic environment.

Professor Haswell’s team at the University of Hull have used
such microfluidic systems to investigate the effects of various
anti-cancer drugs, including camptothecin, on colorectal tissue
biopsies. Camptothecin is a cytotoxic quinoline alkaloid that
inhibits human DNA topoisomerase I [49]. Blockage of the
rejoining step of the cleavage/religation reaction results in
accumulation of a covalent reaction intermediate, the topoi-
somerase I cleavable complex. Cell death primarily occurs due
to lethal collisions between this complex and the advancing
DNA replication forks. As demonstrated in Fig. 6, cell death
occurs in a cyclic manner approximately every 24 h due to the
cell cycle-specific action of camptothecin; cell death only
occurs during the S phase. It is hypothesized that a replication
wave sweeps through the tissue, resulting in semi-synchronous
cell death through the sample. In addition to loss of dead cells
from the outside of the tumor, further penetration of camp-
tothecin over time results in increased cell death per cycle.

5.2 Engineered 3-D tissue

A microfluidic device for engineering 3-D liver tissue has been
reported by Domansky et al. [50], consisting of an array of 12
fluidically isolated open-well bioreactors. Cells were pipetted
onto the extracellular matrix-coated scaffolds contained in the
reactor wells, where they self-assembled into 3-D tissue units.
A micropump was then used to circulate medium from indi-
vidual reservoir wells (one per reactor) in a continuous
manner. Hepatocyte enriched populations attached to the
scaffold within the first few hours and were shown to be

predominately viable at 7 days. Retention of hepatocyte
function was also demonstrated using albumin-specific anti-
bodies. To investigate the possibilities of culturing non-
parenchymal cells (to more closely mimic normal tissue
composition), co-cultures of hepatocytes and liver sinusoidal
endothelial cells were carried out. Liver sinusoidal endothelial
cells normally show signs of de-differentiation within 1–3 days
of static culture. When co-cultured using the extracellular
matrix coated scaffolds, good morphology was seen at 3 days,
with a decline in levels of de-differentiation occurring after 7
days. The authors suggest that the maintenance of function
demonstrated in these ‘‘hard to culture’’ cells are likely to be
attributable to the cell-cell interactions occurring in this 3-D
engineered tissue, similar to those occurring in tissue in vivo.
Functional marker staining as late as 13 days also showed
Kupffer and stellate cells present, suggesting many of the
normal liver cells types remain viable in this microfluidic
device. If mass produced, the design of these devices is such
that they could be disposable, allowing for single use for
individual patients. The presence of multiple wells side by side
would allow several drugs to be trialed simultaneously on cells
from the same engineered tissue sample and the best candidate
drug used clinically.

Taking the idea of engineered 3-D tissue a stage further,
Hsiao et al. [51] generated prostate cancer spheroids on a
microfluidic device (Fig. 7). The metastatic model includes
surrounding cell types to closely mimic the bone micro-
environment where prostate cancer metastasis is prevalent,
including osteoblasts and endothelial cells. Uniform incor-
poration of the different cell types into the spheroids was
observed with the ability to maintain cultures for at least 7
days. The rate of prostate cancer cell proliferation was lower in
this 3-D cell culture model, compared with conventional 2-D
cell culture techniques, which may more accurately reflect the
true in vivo behavior of such cell types.

Figure 5. Control samples ( ) compared with samples
treated with camptothecin ( ) as analyzed using a lactate
dehydrogenase (LDH) assay to evaluate cytotoxicity. The LDH
signal intensity is directly proportional to the number of cells
which have been lysed.

Figure 6. Schematic view of the set-up of the microfluidic device
developed by van Midwoud et al. for the perfusion of precision-
cut liver slices [46]. The device incorporates PDMS membranes
to allow a sufficient supply of oxygen and carbon dioxide, while
providing a suitable pressure resistance to the flow of medium
through the chip, enabling good tissue perfusion without
undesirable tissue damage. Reproduced with permission from
[46].
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In a similar effort, Sung and Shuler [52] used hydrogels to
embed cells for culture on microfluidic devices. To examine
multi-organ interactions, three types of cells were cultured in
interlinked compartments within the same device: colon
cancer cells (tumor), hepatoma cells (liver) and myeloblasts
(marrow). The channels which connected the tissue chambers
were used to mimic blood flow between the different organs
and the use of hydrogels combine to create a more realistic
physiological environment. Following successful cell culture,
the cytotoxic effect of the anti-cancer drug Tegafur was
examined. Tegafur is an oral pro-drug, which is metabolized to
5-fluorouracil in the liver. Successful reproduction of liver
metabolism of Tegafur was achieved using the microfluidic
device as demonstrated by a decrease in cell viability as
visualized using a live/dead stain (5 mM calcein AM and 5 mM
ethidium homodimer-1 in DPBS (Invitrogen)). The ability to
study drug metabolism and organ interaction on a single
system offers great potential for development of personalized
therapeutics.

6 Concluding remarks

Genetic analysis is particularly useful as a tool for determin-
ing pre-disposition to certain diseases by identification
of known risk factors. SNP analysis has also been used to
identify patients with mutations that make them susceptible
to adverse drug reactions; such information allows the clin-
ician to alter drug choice or dosage. Biomarkers have
shown great promise in informing treatment choice, particu-
larly in cancer patients, and many microfluidic systems
have been developed that exploit immunological properties
for isolation and detection of these biomarkers to produce
an individual patient profile to aid optimum treatment.
While the detection of disease may not require an instant
answer by the clinician, the choice of optimum drug treatment
would prove invaluable. In addition, such systems would prove
useful in monitoring the patient following treatment to access
efficacy and determine if further action was necessary.
Performing analysis at POC also brings with it a reduced cost
of analysis, which opens up the possibility of large-scale
screening and the ability to perform testing in resource-limited
areas.

In an excellent review recently published by Wlodkowic and
Cooper [53], the use of microfluidics for cancer research is
discussed. Here, the advantages of using microfluidic systems
are highlighted as they mimic the physiological environment
within the human body due to the comparable dimensions.
Many of the papers presented look at the development of cell
culture methods for creating artificial tissues. While such
methodology has significant advantages over traditional 2-D
cell culture, it seems intuitive that if actual tissue sections
could be incorporated into microfluidic device, this would
enable much more representative analysis. The field of whole
tissue analysis on microfluidic systems, despite being relatively
new, holds many exciting possibilities regarding personalized
medicine. The work reviewed here demonstrates the possibility
that a biopsy taken from an individual could be analyzed to
assess physiological responses (both desirable and adverse) of
different tissue types to pharmacological interventions. Much
of this work is however purely experimental, with few diag-
nostic or personalized medicine applications due to the diffi-
culty in obtaining tissue and maintaining it thereafter for
experimentation [54]. The smaller tissue quantities and closer
to in vivo environments potentially possible on a microfluidic
device could turn the area of functional human tissue assays
from one confined to drug discovery and clinical trials, to one
which could be applied to the individual patient.

Despite widespread research efforts, very few microfluidic
systems for personalized biomolecular diagnostics have yet to
find a place in clinical practice. Those microfluidic-based
systems which have made it into clinical practice are predo-
minantly not for personalized medicine but are designed for
situations where rapid analysis is crucial, for example, the
i-STATs, Triages and ABORhCards systems. The i-STATs is
a handheld device first evaluated in 1993 for the detection of
sodium, potassium, chloride, glucose, urea nitrogen and
hematocrit from a whole blood sample in 2 min [55]. A variety
of electrochemical sensors are used for the detection of the
different analytes, such as ion selective electrode potentiometry
for sodium, potassium and chloride. Abbott now markets the
handheld analyzer with a range of cartridges designed for
evaluation of a wide range of clinical diagnostics including
cardiac markers, blood gases and electrolytes. An example
Triages system, developed by Biosite, is their cardiac system
that is used for the analysis of troponin I, CKMB and

Figure 7. Schematic illustrations of (A and B) the microfluidic device and (C) co-culture spheroid formation process. The device consists
of two PDMS microchannels separated by a semi-permeable polycarbonate membrane with 5 mm pores. The cells preferentially settle in
side chambers and self-aggregate to form co-culture spheroids within 1 day of culture. Red represents fluorescently labeled metastatic
prostate cancer cells and green represents live cells. Reprinted with permission from [51].
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myoglobin from blood samples [56]. ABORhCards is an
example of a microfluidic immunoassay device that is able to
perform bloodtyping from a fingerstick blood sample in less
than 1 min [57]. In terms of commercialized microfluidic
systems specifically for personalized medicine, the Verigenes

Warfarin Metabolism Nucleic Acid Test (Nanosphere US)
provides an excellent example of what can be achieved and
has received FDA approval [58]. Warfarin is a widely prescri-
bed anticoagulant but genetic variations between individuals
can lead to an increased risk of adverse reactions including
hemorrhage. The Verigenes system utilizes gold nanoparticle
technology to detect nucleic acid targets on a microfluidic
test cartridge. Genotyping of CYP2C9 alleles and VKORC1
point mutations aids identification of individuals with an
increased risk of warfarin sensitivity enabling treatment to be
tailored accordingly. Such devices are leading the way toward
the use of microfluidic devices in clinical settings for POC
diagnostics.

One example of a microfluidic system for personalized
medicine in a clinical setting was developed by Russom et al.
[59] and tested in a hospital by nurses and laboratory staff. The
microfluidic device has been designed for isolation of leukocyte
nucleic acids for gene expression analysis. To assess the user
friendliness of the microfluidic system, the research team
provided a 4 h training session to research nurses who took
samples from critically ill hospitalized patients with severe burn
or trauma injuries. Generation of enriched leukocyte popula-
tions from whole blood samples using the microfluidic system
was possible in less than 25 min. The leukocytes were then
removed from the microfluidic device and gene expression
analysis was performed. Gene expression profiles from samples
processed using both the microfluidic system and conventional
laboratory techniques were concordant, showing less variability
than existed between individual patient samples. This provides
an excellent example of the development of a user friendly
system, which can be used in a clinical setting by medical
professionals with limited training.

The ability to perform biomolecular analysis at the
point-of-need in order to allow the physician to provide
personalized medicine is a tantalizing prospect. As described
throughout this review, there are many microfluidic
devices aimed at achieving this situation, although there
are still some gaps preventing widespread use in clinical
settings. However, issues such as integration of multiple
techniques on a single unit, storage of reagents at room
temperature on microfluidic devices and ease of user
interaction are all currently being addressed. In addition,
coupling such technology with telemedicine would open up
the market for such devices in resource-limited areas where
simple tests could be performed at POC and results transferred
remotely to a clinician who could interpret the results and
advice the best course of treatment [60]. Moving the labora-
tory closer to the patient will revolutionize medicine over the
next decade.
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Development of microfluidic devices
for biomedical and clinical application
Abigail Webster,a John Greenmanb and Stephen J. Haswella∗

Abstract

This review focuses on the development and use of microfluidic devices within a clinical setting. The underlying theoretical
background of microfluidics is briefly elucidated. The materials and techniques used to fabricate the devices and their
applicability to the clinical environment are described. The current research in this area is appraised and projections for future
applications are discussed.
c© 2010 Society of Chemical Industry
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NOMENCLATURE
5-fu: 5-fluorouracil
EB: Embryoid bodies
ECM: Extracellular matrix
EGFR: Epidermal growth factor receptor
EI: Elongation index
EOF: Electro-osmotic flow
ESCs: Embryonic stems cells
CAD: Computer aided design software
DRIE: Deep reactive ion etching
HLM: Human liver microsomes
µTAS: Miniaturized total chemical analysis system
MSC: Mesenchymal stem and progenitor cells
NMR: Nuclear magnetic resonance
PC-3: Prostate cancer cells
PCR: Polymerase chain reaction
PDMS: Polydimethylsiloxane
PMMA: Polymethyl methacrylate
POC: Point of care
UV: Ultraviolet

INTRODUCTION
The application of microfluidic devices to biomedical research, cell
culture and medical diagnostics has the potential to facilitate a
paradigm shift in methodology by offering a better representation
of the physiological and pathological condition of complex
biological systems. The technology has progressed a long way
since its beginnings in the 1970s with the introduction of a
miniaturised gas chromatography analyzer,1 and the first cell
culture in a microchannel.2 This is in marked contrast with
traditional cell culture techniques which have remained relatively
unchanged over the intervening decades. Cell culture models are
traditionally produced in large, homogenous, 2D plastic culture
flasks that promote monolayer cellular growth, which is a very
different from the dynamic, complex 3D counterparts that form
biological tissues. Cultured cells are most commonly maintained as
a single cell source, compared with the cellular community which
typically forms tissues and where interactions with neighbouring

cells of different types significantly influences their growth,
development and function. Furthermore, fluid movement within
a culture flask is normally static or turbulent, if roller bottles are
used to create fluid movement, whereas in the body, tissues are
continually bathed in fluids that are moved hydrodynamically
under pressure and with flow nominally laminar. In addition,
in vivo cells respond to spatial and temporal signals from their
multi-cellular community; by contrast cultured cells are often
starved of concentration gradients and signal variety that are
known to result in alterations in cell surface receptor density,
together with autocrine and conditioning factors being lost when
media are changed. It is also notable that cells in culture grow
in their own metabolic ‘waste’, which leads to pH changes of the
growth media; while in vivo cells perform constant housekeeping
to keep waste levels and pH changes to a minimum. As cells adjust
to and transform in culture conditions, over the long term, cultured
cell lines often possess abnormal cell cycle control mechanisms,
in part due to mutated genes. These defects are evident when
cultured cells are transplanted back into an animal host, as they
frequently form tumours.3

The concept of a ‘miniaturized total chemical analysis system’
or µTAS was first proposed by Manz et al. in 1990,4 microfluidics,
however, is a broad term used to describe the behaviour, precise
control and manipulation of geometrically constrained fluids on
a sub-millimetre scale. Microfluidic devices are characterised by
small length scales, laminar flow regimes and diffusion dominated
mass transport.5 These characteristics can be exploited to provide
a biomimetic environment for cell and tissue culture, and thus
advance traditional culture methodology with the creation of
unique environments that mimic the intracellular environment.
Continuous flow of fresh media within the culture system is one of
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Table 1. Comparison of the biocompatibility offered by microfluidics
versus cell culture flask, relating these comparisons to general biological
functions where applicable

Cellular Microfluidics Cell culture flask

Large surface to
volume ratio

Large surface to volume
ratio

Small surface to volume
ratio

Constant
movement of
fluids,
replacement of
nutrient and
removal of
waste

Constant renewal of
media (replacement of
nutrients and removal
of waste)

Static until changed
(build up of waste
products with
concomitant removal
of nutrient)

Generally laminar
(some
turbulence in
areas of high
pressure i.e.
ascending
aorta)

Laminar flow of fluid Turbulent (during
movement or
flask/roller flask) or
static

Variable
pressures

Variable pressures
(controllable)

Set pressure

Small media
consumption/cell

Large media
consumption/cell

Integration to
instrumentation/assay

No integration to
instrumentation

Rapid temperature
changes

Slow temperature
changes

Control of shear stress No shear stress

the advantages that microfluidics can bring to cell culture. Laminar
flow replicates the normal fluid flow within the body, facilitating
mass transport of solutes, simultaneously supplying consistent
nutrient delivery, effective waste removal and downstream
signalling resulting in a more in vivo-like environment. The small
fluid volume required for the devices results in reduced reagent
consumption when compared with static culture. This can be an
important consideration with expensive reagents, for example, a
microfluidic culture system at a flow rate of 1 µL min−1 would
require only 10 mL of medium for an entire week. It is worth
noting that the average flow of blood through tumour tissue
is ∼0.8 mL g−1 min−1.6 Furthermore, recirculation of media can
promote greater cell signalling as conditioning factors from the
cells are secreted into the media; recirculation reduces media
consumption too.7 Continual flow can result in shear stress,
however, this feature can be controlled by the flow rate to
stimulate cell growth in a biomemetic manner,8 or to investigate
disease processes, for example, by mimicking cellular damage and
disease progression.9,10 Constant fluidic loading is an important
principle in many areas of biology, for example, in remodelling
and bone shaping mechanisms during skeletal development;11

a comparison of microfluidic to cell culture flask can be seen in
Table 1.

One of the long-term goals of microfluidics is integrated,
portable diagnostic devices; this approach would be especially
useful in the clinical setting where point of care (POC) units for
doctors’ surgery, bedside, clinics or even operating theatre use
could eliminate time consuming laboratory analysis procedures.
The reduced scale of these devices negates the need for
large laboratory facilities while integrated instrumentation and
combined sample processing results in shorter assay times and
higher sensitivity. The low cost manufacture of the devices permits

them to be single use and disposable, reducing the possibility of
false results caused by contamination and mislabelling. When
realised, one such use of the technology would be the ability
of the surgeon to test biopsy tissue in situ, and choose the
right course of treatment/action before the patient comes out of
anaesthetic, negating the need for additional surgical procedures,
both reducing the risk to the patient and offering a substantial cost
saving. These benefits signify that personal medicine, for example
‘individualised’ patient therapy regimens is a goal worth pursuing.

Introduction to Microfluidics
Fluid flow through microfluidic channels is characterised by low
Reynolds numbers, a dimensionless parameter, which when less
than 2000 results in laminar flow dominating. In this flow regime,
the mass transfer of solutes occurs transversely between the
characteristic parallel flow profile. Accordingly, mixing of such
solutes occurs by diffusive forces as described by Fick’s second
law. In a microfluidic device, this results in excellent spatial and
temporal regulation of solute concentration, which is essential for
the control of biomemetic processes.

In addition, the high surface to volume ratios found within
the microfluidic channel further mimic the biological setting.
This ratio also enables rapid temperature change and improves
thermal transfer in two significant ways. Initially, convective heat
transfer occurs at the solid/liquid interface, following Newton’s
law of cooling, thus the liquid flow is effectively cooling the device
until the temperature of the liquid and the device equilibrate;
and secondly, heat transfer in small fluid volumes, such as
found in a microfluidic device, occurs rapidly. Improved thermal
transfer results in rapid thermal homogeneity and reduced thermal
cycling times, which is especially advantageous in techniques
such as the polymerase chain reaction (PCR) used to amplify
DNA sequencing.12 Surface attachments also benefit from the
spatial and temporal properties of the microchannel, which can be
exploited to offer increased surface area for catalysts, resulting
in improved antibody/enzymatic reactions useful for analyte
detection and quantification.13

Fluid Delivery within a Microfluidic Device
Fluids behave differently at the microscale; factors such as energy
dissipation, surface tension and fluid resistance dominate, and
mixing is diffusional because there is no turbulence within the
liquid as indicated above. Two of the most common methods
to achieve fluid flow within a microfluidic device are pressure or
hydrodynamic driven flow and electro-osmotic flow (EOF).14 – 18

Pressure driven flow allows fluid to be moved via positive or
negative displacement, such as syringe or peristaltic pumps. The
static nature of the fluid at the boundary produces a parabolic
velocity profile within the channel (see Fig. 1(a)).19 There are
two broad categories of pressure driven flow, closed reservoir,
such as that found within a syringe pump, where the whole
fluid reservoir must be replaced when the fluid is exhausted. In
contrast, peristaltic pumping, where the reservoir is external to
the pump, enables the reservoir to be refilled without a break in
the continuity of the fluid flow. This latter type is more suitable
for continual gassing of fluids, which is a requirement of cell and
tissue culture because most media, and the tissue that it bathes,
require pH stabilisation by CO2.

Positive displacement pumps are highly amenable to minia-
turisation, as these devices are relatively inexpensive and offer
reproducible flow profiles, which is their major advantage. How-
ever, the parabolic velocity profile has significant implications for
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Figure 1. Graphic examples of the fluid profiles seen within a microchannel.
(A) During pressure driven flow a parabolic profiles is observed. (B) During
EOF, displaying the blunted fluid profile and the anionic surface charge,
with the movement of cations from solution towards the charged wall.

the distribution of solutes transported within the channel, leading
to non-uniformity of diffusion coefficients and greater dispersion
of sample plugs.20

EOF induces fluid flow by the application of an electrical
potential across a microchannel. In brief, ions in solution migrate to
the opposite charge lining the channel wall, creating an electrical
double layer of counter ions. The velocity profile of electro-osmotic
movement in an open channel is flat, exhibiting plug flow (see
Fig. 1(b)), whereas in a closed channel the profile is slightly curved
due to recirculation effects around the walls of the channel caused
by back-pressure within the system.21

The advantages of EOF are that the velocity profile reduces
the diffusional non-uniformity seen with pressure driven flow,
although sample dispersion by band broadening still occurs.20

EOF is simpler to couple to a device as there are no moving
parts; flow velocity is constant and can be computer controlled.
However, there are also a number of drawbacks, principally
proteins in solution can adsorb to the walls of the channels,
changing the surface characteristics and therefore fluid velocity,
resulting in unpredictable flow. Additionally, flow characteristics
are affected by other factors including the nature of the buffer,
surface composition and hydrodynamic effects.

Fabrication of Microfluidic Devices, Methods and Materials
Materials used for fabrication of microfluidic devices vary; the
commonest substrates being glass, polymers (both synthetic and
natural) and hydrogels. The fabrication technologies used to create
these devices are specific to the material used for the device, often
requiring the use of computer aided design (CAD) software to
produce photomasks prior to photolithography,22 and include
techniques such as etching, cutting, embossing and moulding.
Such methodologies can create highly complex, integrated
devices, with cross-sectional dimensions of microchannels ranging
between 10 and 500 µm. The device material is chosen to best
suit the application, the substrate would then dictate the method
used for the fabrication; Table 2 shows a number of materials that

Table 2. A selection of materials used for the fabrication of µTAS
chips and the most commonly used method for fabrication in each
material

Material Channel etching technique EOF

Glass Chemical etch, laser
cutting, DRIE

Y

Hydrogels Photopolymerisation or
microfluidic tectonics

Polymeric films
(Mylar)

Laminate laser cutting Y

Silicon Chemical wet etch, DRIE Y

Silicone elastomer
(PDMS)

Micromoulding or soft
lithography

poor

Thermoplastic
(PMMA,
polycarbonate,
etc.)

Hot embossing, injection
moulding

have been used for microfluidic devices and relevant applicable
fabrication techniques and the native EOF compatibility.

Due to the close technical connections of microfluidics with the
microelectronics industry, silicon and glass were the first substrates
used to create microfluidic devices, and chemical etching is the
most established method for creating channels in this substrate.
However, this material is becoming largely overshadowed by
the use of plastics and elastomers, due to the labour intensive,
technically challenging method of creating the channels as well
as the relative expense of the glass quality required. While glass
is not gas permeable, it is easy to sterilise, chemically robust, and
offers simple surface functionalisation, although optical devices
can only be in the visible region.

Elastomers, based on the initial work of George Whitesides,23

are popular for the creation of microfluidic devices owing to the
ease and speed of fabrication. Some of the more important
features of elastomers include gas permeability and optical
transparency, although there is a slight fluorescence background
signal with PDMS. The porous nature of the substrate can reduce
its effectiveness when detection of trace elements is required as
well as the propensity of fluorescent dyes adsorbing to the surface
prior of the channels, which can be resolved by prior surface
coating.24 However, the relative ease of fabrication and cheap
manufacture costs offers the prospect of the devices being of a
disposable nature; as well as the ability for built-in valves and other
fluid controlling devices.25

Various plastics have also been used, including thermoplastics
and thermo-set plastics. Thermoplastic polymers differ from
thermo-set polymers in their ability to be reshaped upon
heating, while retaining chemical and dimensional stability over
a range of operational pressures and temperatures.26 These
polymers exhibit softening behaviour above a characteristic glass
transition temperature resulting from the long-range motion
of the polymer backbone; upon cooling they return to their
original chemical state. Fabrication methodologies used for
thermoplastics include injection moulding and embossing, which
offer high throughput production of devices, faciltating their
mass fabrication. In addition, the ease of tailoring chemophysical
properties makes thermoplastics highly adaptable substrates
giving this material a strong niche within microfluidic technology.
Recently, biopolymers have started to make an impact as a
material for microfluidic devices with substrates such as chitosan,27
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collagen,28 silk29 and hydrogels30 being investigated for their
potential as microfluidic platforms, principally due to their
compatibility with biomolecules and cell culture, as well as ease of
functionalisation with bioactive reagents.

TISSUE CULTURE WITHIN A MICROFLUIDIC
DEVICE
There are many potential applications for microfluidic devices in
the area of regenerative medicine, which include the disciplines
of tissue engineering, biomaterials and cell and tissue transplan-
tation. These disciplines all contribute to restoring function to
diseased or damaged tissues through the use of cells and bio-
material scaffolds. The success of therapeutic strategies relies on
an understanding of the complex cellular microenvironments that
form functional tissue. Microfluidic devices can be utilised to create
unique biomimetic platforms that enable the study of the cellu-
lar response, while micropatterning of cells allows for structural
biomaterials to be formed.

One of the most fundamental aspects of tissue engineering
is the isolation and enrichment of selected cell types from a
heterogeneous cell suspension. Towards this goal, Green et al.31

developed a deterministic lateral displacement microfluidic device
capable of separating large epithelial cells from smaller fibroblasts.
They quoted rapid, high purity separations of >97% with a 90%
yield in a single pass process. In a different approach to cell
isolation, Plouffe et al.32 developed a microfluidic platform that
utilised variable shear stress and a panel of conjugated antibodies
and -von Willebrand factor to capture circulating endothelial
progenitor cells by exploiting cell surface chemistry and adhesion
profiles, in an endeavour to provide new tools to address
challenges in cardiovascular disease and tissue engineering. A
dielectrophoretic field-flow fractionation separator device was
constructed by Vykoukal et al.33 for the enrichment of a putative
stem cell population derived from enzyme-digested adipose tissue
using a microelectronic hybrid flex-circuit. They reported a 14-
fold enrichment of an NG2-positive cell population (pericytes
and/or putative progenitor cells) in a label-free fractionation of
the cell subpopulation. Shafiee et al. presented two microfluidic
prototypes capable of contactless dieletrophoretic separation.
Both devices provided greater than 95% removal efficiency at
0.2–0.5 mm s−1 with 100% selectivity between live/dead cells.
The devices could be used, in conjunction with enrichment
methodologies, for reliable, automated microfluidic cell sorting.34

High density, 3D cultures are being recognised for their physical
similarity to in vivo tissue, however, one of the limiting factors to
the use of biologically relevant dense cell culture is that unassisted
intra-culture transport is limited to just a few layers of thickness.
If this form of culture could be developed it would provide an
invaluable tool for pre-clinical therapeutic discoveries. Recently, a
number of novel microfluidic approaches have been developed
to investigate different aspects of tissue culture; these approaches
include concentration of nutrient and catabolite movement at
biologically relevant levels in structure and resembling tissue
dimensions.

Song et al.35 produced a novel 3D hydrogel tissue construct, and
investigated O2 and nutrients perfusion through the system with
respect to efficient delivery to the cells determined by cell growth
and viability. They found a channel radius within the scaffold of
400 µm with a large channel to channel distance (R = 7.5 mm,
volume = 5 mL) allowed nutrients to diffuse further through the
3D hydrogel tissue construct than smaller channels and distances.

Their findings revealed a close correlation between nutrient
diffusion profiles and cell viability throughout the hydrogel.

A simple approach for the preparation of cell attachable Janus
microfibres in a microfluidic system was presented by Jung et al.36

These microfibres consist of a porous region that promotes cellular
adhesion and a nonporous region for scaffold strength. Janus fibres
were synthesised using laminar flows to produce the formation
of carbon dioxide bubbles, resulting in an asymmetrically porous
microfibre, which provided improved cell adhesion, proliferation,
and viability of cultured cells. The Janus microfibre can be used as
an alternative to 2D cell culture plates providing a 3D scaffold for
tissue engineering.

Vukasinovic et al.37 cultured neural astrocytic constructs at a
cell density close to that found in the brain (50,000 cells/mm3).
They applied forced convection laminar flow to supply nutrients
and remove catabolites, and determined that perfused cultures
exhibited good viability (90% over 2 days), whereas unperfused
cultures were mainly dead over the same period. Taking a
different approach, Huang et al.38 demonstrated a versatile
microfluidic platform utilising mechanical and chemical 3D
microenvironments using precise patterning of 3D biopolymer
gels in well-defined geometries to observe extracellular matrix
(ECM)–cell and cell–cell interactions in real time. During a 7 day
experiment, they found that macrophages invaded neighbouring
gels containing the breast carcinoma cell MDA-MB-231; however
cell-deficient gels were not invaded. Toh et al.39 developed a
transparent 3D microfluidic channel-based system that enabled
optical monitoring of cells and cellular events. Maximal cell–cell
interaction was achieved by perfusion-seeding cells through an
array of micropillars. 3D cell–cell and cell–matrix interactions
supported and encouraged cell growth; this was achieved by
a polyelectrolyte complex coacervation process. Carcinoma cell
lines (HepG2, MCF7), primary differentiated (hepatocytes) and
primary progenitor cells (bone marrow mesenchymal stem cells)
were perfusion-cultured for up to a week in the channel and their
3D cyto-architecture, cell-specific functions and differentiation
competence were well preserved.

Stem Cells and Tumour Spheroids
The pluripotent nature of embryonic stem cells (ESCs) means that
they receive a great deal of interest as a renewable source for
tissue regeneration and cellular replacement therapies, however
controlling their differentiation is paramount to success. Fung
et al.40 developed a microfluidic device based on the most
common technique to cause differentiation of ESCs, the in vitro
aggregation of embryoid bodies (EB) with ESCs. The device
encompassed a Y-channel design which allowed two different
epidermal growth factors, fibroblast growth factor 2, and platelet-
derived growth factor, to be flowed over an EB located centrally
between the laminar streams. These factors successfully facilitated
the dual differentiation of EBs.

Successful repair and regeneration of damaged and diseased
tissues relies on good cell–matrix interactions. It has been pro-
posed, due to the anisotropic nature of many tissues, that aligned
ECM could guide and support differentiation of mesenchymal
stem and progenitor cells (MSC). To address this, Lanfer et al.41

aligned collagen type 1 structures within a microfluidic device.
It was found that such ECM structures enabled the maintenance
of multilineage differentiation of MSCs with ordered matrix
mineralisation in osteoblasts, while myotube organisation and
length were enhanced in the mouse myoblast cell line, C2C12,
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when compared with the control. In a similar vein, Khademhos-
seini et al.42 seeded cardiomyocytes onto hyaluronic acid subset
patterned microfluidic chambers to create 3D cardiac tissue. The
cells elongated and aligned along the pattern direction, attaching
preferentially to the glass substrate, which once detached from
the surface, formed contractile cardiac organelles. Tanaka et al.43

in a related area, created a unique microspherical pump powered
by cardiomyocyte-sheet contractions, which required no external
energy source or stimuli. A sheet of beating cardiomyocytes were
wrapped around a fabricated hollow elastomeric sphere fixed to
inlet and outlet ports. The synchronously pulsating cardiomyocyte
sheet induced fluid oscillations in a capillary connected to the
hollow sphere confirming cellular contractions for 5 days, which
could offer novel, non-mechanical pumping that could be applied
for various purposes, for example, as a bioactuator for medical
implant devices, as it relies solely on biochemical energy.

An alternative to 3D cell seeding within prepared tissue scaf-
folds is the formation and culture of cellular spheroids, classically
formed by adding cells to an inverted media drop, held by surface
tension so cells accumulate and develop at the free liquid–air
interface forming a compacted tissue. These are complex multicel-
lular constructs that can be described as an intermediate between
monolayer culture and in vivo models such as xenografts. Tumour
spheroids have been receiving attention recently as a tool to inves-
tigate cancer medication. Spheroids offer a better model of tumour
tissue compared with cell line models as they more closely mimic
the microenvironment prevalent within tumour tissue and the spe-
cific processes such as angiogenesis, invasion and metastasis. Tori-
sawa et al.44 first described multicellular spheroid culture within
a microfluidic device. Their spheroid culture device consisted of
an array of pyramid-like microholes constructed in a silicon device
with elastomeric microchannels. Cells in suspension were intro-
duced into the silicon microholes and microwells to enable the for-
mation of cellular spheroids. The production of albumin from the
hepatoma cell line (HepG2) was measured to demonstrate main-
tenance of liver-specific functions for 2 weeks. Cellular response
to different chemical stimuli was detected simultaneously on the
same device, demonstrating the independence of each channel
and hence the ability to multiplex analysis. Hu et al.45 utilised
tumour spheroids to investigate 3D flow and nutrient transport
within an avascular, multicellular tumour spheroid growth model.
They showed that continuous-flow perfusion was more efficient for
nutrient delivery than static culture. Further, they found that single
spheroids were insensitive to flow rate increases (and hence in-
creased nutrient delivery) but when more than one spheroid was in
a chamber together, increased velocities were required to maintain
growth rates. Hsiao et al.46 engineered a multicelluar metastatic
prostate cancer model that mimicked the bone microenvironment
found in vivo for prostate cancer cells. The model consisted of the
prostate cancer cells (PC-3) osteoblasts and endothelial cells in
a co-culture spheroid. They found during the 7 day culture time,
that PC-3 cell proliferation rates were decreased without reduced
cell viability, which could offer good insight to the in vivo growth
of malignant prostate cancer and a possible drug model. In a
similar manner, Wu et al.47 created multicellular tumour spheroids
for characterising anticancer treatments, which hydrodynamically
trapped cancer cells in controlled geometries. Spheroid formation
was enhanced by continuous perfusion maintaining compaction
of the trapped cells. The average speed of spheroid formation
was ∼7 h, while size uniformity was found to increase with flow
rate (up to 10 µm min−1) and provided a much simpler approach
to the classic ‘hanging drop’ method. In a different approach to

tissue modelling, Rosano et al.48 developed a synthetic microvas-
cular network on PDMS, capable of serving as an in vitro model
of the bifurcations, tortuosities and cross-sectional changes found
in vivo in the vascular network. The vascular system was computer-
mapped using a graphical information system and manufactured
as a physically realistic vascular network. The finished PDMS de-
vice was seeded with bovine aortic endothelial cells and cultured
to confluency over 4 days. These cells were found to be viable,
retaining cytokine responses and expression of anti-ICAM-1.

While cell culture in microfluidic devices is relatively well
established, whole tissue or biopsy culture within a microfluidic
device is still in its infancy; however there have been some inroads
into this area, mostly utilising brain tissue. Passeraub et al.49 first
developed a microfluidic chamber for the maintenance of thick
slice brain tissue using an array of micropillars to replace the mesh
normally used in classical interfaces. Using a zero-Mg2+ model of
epileptiform activity, they observed spontaneous single and multi-
spike bursts in the CA3 region of a rat hippocampal brain slice for
greater than 5 h. Blake et al.50 produced a novel method to control
the microenvironment of brain slices within a PDMS device. The
device could accommodate brain slices approximately 700 µm
thick and was used to culture the slices for up to 3 h, with viable
active tissue capable of respiratory-related motor output. Similarly,
Rambani et al.51 cultured thick brain slices in a custom-made
perfusion chamber which facilitated laminar flow and interstitial
perfusion of oxygenated nutrient supplemented medium with
concomitant removal of depleted medium and catabolites. The
method gave approximately 84% viability of functionally active
tissue after 5 days in vitro. An alternative approach to culturing
thick brain slices was explored by Choi et al.,52 who fabricated a
microneedle based perfusion device for high cell density in vitro
tissue culture. The device was fabricated from PDMS and used to
test the sensitivity to nutrient supply disruptions. High viability of
the tissue was confirmed visually by fluorescent live–dead staining
and confocal microscopy. In a different approach to on-chip tissue
culture, rat liver biopsies were cultured within a microfluidic device
for 70 h, the tissue was finally disaggregated on-chip using a
collagenase digestion to show cell viability by Trypan blue assay.53

In summary, microfluidic technology has made a number of
inroads into the areas of cell and tissue culture, offering specific
environments that are not possible to provide by standard culture
methodology; for example the dual differentiation of EB40 and
novel devices from cells, such as the cardiomyocyte pump,43 while
devices such as the tumour spheroid-forming microdevices44,47

offer simplistic solutions to technically challenging biology.

BIOCHEMICAL ANALYSIS OF CLINICALLY
RELEVANT SAMPLES WITHIN A
MICROFLUIDIC DEVICE
Monitoring disease and disease progression
Monitoring of clinical samples benefits from fast throughput, small
sample size and accurate, single use analysis devices; microfluidic
devices are in a unique position to offer all these benefits. The
following section will show the breadth of approaches currently
being researched. Alyassin et al.54 presented an automated device
for high throughput quantification of fluorescent cell image anal-
ysis using the data analysis program Matlab. HIV-infected whole
blood samples were used to validate the method and the au-
tomatic microfluidic platform was found to perform similarly in
speed and accuracy to manual counting with small cell numbers.
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Figure 2. Bar chart showing the publications for microfluidic platforms developed for a number of common disease states over the past 5 years.

However, the microfluidic device was more accurate and >100
times faster for multiple-colour stained cells, or when relatively
large numbers of cells were present (>500). The software program-
ming accounted for general problems such as uneven fluorescent
background, overlapping cell images and cell detection with mul-
tiple stains, to give accurate and precise data which the authors
concluded that the methodology was suitable for many assays util-
ising fluorescent cell staining. Lee et al.55 developed a diagnostic
magnetic resonance sensor combining a miniaturised NMR probe
with targeted magnetic nanoparticles for detection and molecular
profiling of cancer cells. The sensor measured the transverse relax-
ation of water molecules in magnetic nanoparticle-labelled cells in
biological samples. They quoted high sensitivity and a detection
rate of as few as 2 cancer cells in 1 µL of unprocessed fine-needle
tumour aspirates, with expression profiling taking less than 15 min.
Shin et al.56 compared blood samples for erythrocyte deformabil-
ity from healthy and diabetic (diabetes mellitus) patients using a
microfluidic ektacytometer to determine the elongation index (EI),
which changes due to the hyperglycemic process. The measure-
ment was performed in a viscous polyvinyl pyrrolidone solution
within a disposable microchannel, and the results correlated well
with the levels of creatinine and haemoglobin. EI decreased with
chronic renal failure, end stage renal disease, retinopathy and with
a combination of retinopathy and nephropathy. Further reduc-
tions were induced by the microangiopathy process despite drug
therapy. The device offered a simple way to measure the progres-
sive decrease seen in EI with respect to disease. Mohammed et al.57

developed a microfluidic device to perfuse pancreatic islets while
simultaneously characterising mitochondrial membrane potential
and intracellular calcium, as well as quantification of secreted in-
sulin by ELISA; offering a means for the rapid assessment of tissue
quality immediately following donor isolation. Mohammed et al.
believed this work could provide a new gold standard for com-
prehensive islet analysis and predictive value for islet functionality
prior to transplantation into recipients.

Microfluidics has shown its versatility in the area of disease mon-
itoring with small sample size, unique and tailored environments,
whilst matching or even exceeding the speed and sensitivity of
the standard protocols used in macro-system assays. A bar chart
showing the breadth and depth of research applying microfluidic
technology to various disease states is shown in Fig. 2.

Pharmaceutical applications
Microfluidic devices can offer a great many benefits to the
pharmaceutical industry with faster assay times, unique microenvi-
ronments and small sample sizes. Research to explore the potential
of microfluidic drug screening methodology is accumulating, from
drug treatment strategies to toxicological studies.

Zhang et al.58 investigated the viability of four human cell types
(C3A, A549, HK2 and HPA) in compartmentalised microenviron-
ments chosen to represent liver, lung, kidney and adipose tissues.
Cellular functions were optimised by growth factor supplementa-
tion of the medium. The device demonstrated cell–cell cross-talk
similar to the in vivo environment. This system could offer poten-
tial alternatives to animal testing in drug screening experiments.
Similarly, Sung et al.59 using an approach termed ‘body-on-a-chip’
produced a 3D hydrogel culture of three separate cell types,
liver, tumour and bone marrow within a single microfluidic de-
vice connected by channels mimicking blood flow. The system
investigated the cytotoxicity of anticancer drugs to gain phar-
macokinetic and pharmacodynamic profiles of the drug. Colon
cancer (HCT-116) and hepatoma cells (Hep G2/C3A) were encap-
sulated in matrigel and cultured in separate chambers within the
device to assess the effect of 5-fluorouracil (5-fu). The device was
able to reproduce the metabolism of the 5-fu pro-drug Tegafur
in the liver, giving consistent results on cell death by 5-fu, while
96-well plate cultures were unable to demonstrate significant
drug metabolism. Ma et al.60 developed an integrated microfluidic
device for the simultaneous characterisation of drug metabolites
and cytotoxic assay of human liver microsomes (HLM). The mul-
tilayer PDMS device contained a three-microwell array of solgel
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HLM bioreactors. Unit functionality was validated by monitoring
UDP-glucuronosyltransferase metabolism based drug–drug inter-
action between acetaminophen and phenytoin and their effect on
hepG2 cells, which demonstrated increased hepG2 cytotoxicity in
response to the drug treatment.

Monodispersity of pharmaceutical colloid spheres is an im-
portant issue for the pharmaceutical industry. Zhang et al.61

investigated monodispersed pharmaceutical colloidal spheres of
size-tunable atorvastatin calcium, synthesised in a continuous
flow microfluidic system. It was found that altering drug concen-
tration and flow rate could efficiently control particle size and
improve polydispersity. The microfluidic-prepared spheres were
amorphous and displayed an enhanced dissolution rate when
compared with commercial preparations. The work offered a sim-
ple and economic way to prepare monodispersed pharmaceutical
colloidal particles or nanoparticles of predetermined sizes.

In the area of drug testing, microfluidic devices are in a
commanding position to offer faster throughput and greater
sensitivity, as well as the ability to integrate the (3D) culture of cells
and/or tissue to instrument analysis in real time. Body-on-a-chip
and organ-on-a-chip will offer pharmaceutical companies viable
alternatives to animal experimentation. Although some potential
has already been realised, this field is bound to grow as our need
for more reliable drug testing, without animal models, is becoming
paramount due to public reaction and European dictate.

FUTURE PROSPECTS AND PERSONALISED
MEDICINE
Microfluidics is an enabling technology that can be utilised for
an almost limitless number of applications, many of which are
beneficial to cell culture and tissue analysis, for example, reduced
running costs, integrated technology and designer biomemetic
environments. Constant fluid flow in laminar regimes enables
transport of nutrient and waste products, as well as high surface to
volume ratios. Manufacturing methodologies can create complex,
compact and highly integrated platforms which enable on-chip
cell separation and/or cell enriching, one-step sample to assay
procedures and drug compatibility studies.

While glass and PDMS are popular substrates, the future of
biomedical microfluidic device manufacture on a large scale will
probably exploit thermoplastic substrates. This substrate enables
cost effective, high throughput manufacture of disposable devices
by injection moulding, while the substrate itself can be chemically
designed with versatile functionalisation chemistries to offer
a myriad of desirable surface properties. Studies into ‘green’
biodegradable thermoplastic and other ‘natural’ biocompatible
polymers29,62,63 offer further reasons why this substrate is likely
to become the more popular material for disposable devices,
for example thermoplastic cornstarch blends have shown good
potential for biomedical applications.64 However, choice of device
substrate will always remain a function of the properties needed
for the specific application of the device.

In the light of strong international concern and the latest
European directives to reduce the use of experimental animals for
toxicological testing as well as the ban on cosmetic testing, cell
and biopsy models should be considered for the development
of alternative in vitro toxicity tests. Biomedical microfluidics
is in a unique position to offer an acceptable alternative
with the ability to create niche biomemetic environments for
in vitro pharmacokinetic evaluation of drug candidates65 and
disease study that cannot be modelled by standard culture

technology, for example the effects of high shear stress on plaque
formation within a biological system.26 The wealth of applications
envisioned for biomedical microfluidic platforms are limited at
this stage only by the imagination. Advanced cell culture, where
intrinsic control over the microenvironment is essential, can be
realised by microfluidic technology in ways that standard culture
methodology fails. Personalised medicine and POC devices will
enable faster, individually relevant medical results and decisions,
thus influencing medical interventions and drug therapy choices.
These devices do not end with assay platforms but will extend to
implantable devices that can for example, control drug delivery
and dosing, without the need for internal circuitry, or on-going
monitoring of disease recurrence. While still in its infancy, the
application of microfluidics to medical analysis, intervention,
diagnosis and cell culture is set to change the face of medicine on
a level equivalent to the discovery of antibiotics in the 1930s or
monoclonal antibodies in the 1970s.
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Abstract There is an increasing demand for easy and cost-
effective methods to screen the toxicological impact of the
growing number of chemical mixtures being generated by
industry. Such a screening method has been developed using
viable, genetically modified green fluorescent protein (GFP)
reporter yeast that was magnetically functionalised and held
within a microfluidic device. The GFP reporter yeast was used
to detect genotoxicity by monitoring the exposure of the cells
to a well-known genotoxic chemical (methyl methane

sulfonate, MMS). The cells were magnetised using biocom-
patible positively charged PAH-stabilised magnetic nano-
particles with diameters around 15 nm. Gradient mixing was
utilised to simultaneously expose yeast to a range of
concentrations of toxins, and the effective fluorescence emitted
from the produced GFP was measured. The magnetically
enhanced retention of the yeast cells, with their facile
subsequent removal and reloading, allowed for very convenient
and rapid toxicity screening of a wide range of chemicals. This
is the first report showing magnetic yeast within microfluidic
devices in a simple bioassay, with potential applications to
other types of fluorescent reporter yeast in toxicological and
biomedical research. The microfluidic chip offers a simple and
low-cost screening test that can be automated to allow multiple
uses (adapted to different cell types) of the device on a wide
range of chemicals and concentrations.

Keywords Toxicity screening . GFP reporter yeast .

Magnetic retention .Microfluidic devices

Introduction

There is an urgent need for simple toxicity screening
systems for environmental and regulatory reasons. For
instance, the introduction of the new European Union
regulations for the Registration, Evaluation, Authorisation
and Restriction of Chemicals which has placed a duty on
manufacturers to assess the safety of the chemicals they
manufacture, including formulations, for both humans
and the environment [1]. There is a profound difference
with respect to monitoring the safety of individual
chemicals compared to mixtures, as synergistic effects from
several compounds in a formulation or product can occur.
Approved animal-based toxicity testing methods are ex-
pensive, and (Q)SAR methods are not designed to test
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synergistic effects in mixtures. This creates a need for
simple screening methods to identify products that may be
of concern. Although fully automated commercial screen-
ing systems based on 96-well plate systems have been
developed for the pharmaceutical industry, these are not
relevant for companies that just want to check different
formulations of a relatively low number of chemicals.

Toxicity screening using yeast is widely employed for
detecting oxidative stress factors [2], genotoxic chemicals
[3] or endocrine-disrupting chemicals [4]. Recombinant
budding yeasts Saccharomyces cerevisiae have been devel-
oped, containing fluorescent markers such as green or red
fluorescent protein (GFP or RFP), and have been proven to
be extremely useful for microscreening because they
release the fluorescence without the necessity of adding
any substrates. For example, GreenScreen™ yeast cells
have been genetically modified to express the GFP
whenever the cells carry out repair of DNA damage, and
this has been used to detect genotoxicity and cytotoxicity
simultaneously [3]. Under genotoxic conditions, the fluo-
rescence emission increases. GreenScreen™ is a well-
established yeast reporter, and it has been employed for a
range of applications including screening of industrial
products and environmental samples [5, 6].

The incorporation of such screening tools within a
miniaturised system has many advantages including a small
sample and reagent volumes as well as the biomimetic
microenvironment within microfluidic systems, which is
ideal for microorganism maintenance. The microfluidic
environment with its inherent high surface area-to-volume
ratio provides a tool that creates a more in vivo-like cellular
microenvironment in vitro than current methodology offers.
A number of elegant microfluidic cell-based handling
applications have been described for drug development,
tissue engineering, molecular diagnostics and biosensors
[7–9]. Microfluidic systems have been used to analyse
single cells, including bacterial, fungal, yeast and mamma-
lian cells [10–14]. It has also been shown that the gradient
mixing can be employed to facilitate the screening process
by automatically providing the range of reagent concen-
trations [13, 15].

Yeast cells are small (<12 μm) and can thus be easily
loaded into microfluidic devices. However, it can be
challenging to retain the cells within the device and in a
viable condition [14]. One method of overcoming this
problem is to coat the yeast with magnetic nanoparticles
[16] and then employ magnetic fields to retain them inside
the microfluidic devices [17].

In this communication, we present a simple, low-cost
method for “on-chip” testing of toxicity, incorporating both
gradient mixing of toxins and magnetic GFP reporter yeast
cells retained and released by the application of external
magnetic fields.

Experimental procedures

Chemicals and materials

GreenScreen™ yeast strains, specialist resuscitation and assay
media were supplied by Gentronix Ltd. (Manchester, UK). A
DNA-repair-competent strain of the brewer’s yeast S. cerevi-
siae was employed as the host strain for a reporter of DNA
repair activity (the “test” strain). Viability test was carried out
using fluorescein diacetate (F7378, Sigma-Aldrich). On
exposure to a genotoxic agent, the cells become increasingly
fluorescent as GFP accumulates. MMS (# M4016) was
employed as the genotoxic standard and dimethyl sulfoxide
(DMSO # D8418) as diluent (purchased from Sigma-Aldrich).

Microfluidic devices manufacture

“Glass-on-glass” and “polydimethylsiloxane (PDMS)-on-
glass” microchips were designed with multi-gradient pattern
(Fig. 1a). The design was drawn using auto-CAD software
and transferred by a commercial process (J. D. PhotoTools,
Oldham, UK) to a film photomask. Crown white glass (B270)
plates coated with chrome and photoresist (Telic Co., CA,
USA) were contacted with a photomask design and exposed
to UV radiation. The plates were then treated with photoresist
developer followed by chrome etch solution (Rohm-Haas Ltd.
UK). The exposed glass channels were etched at a rate of
4 μm/min in a 1% hydrofluoric acid/5% ammonium fluoride
solution at 65 °C. A pine tree pattern of channels were
designed in order to get a gradient from two inlets (one
containing culture medium and the other containing a high
concentration of standard or test sample). Channels (40 μm
wide and 80 μm deep) with three series of serpentines
consisting of four completed loops and the yeast chambers
(up to 400 μm wide and 40 μm deep) were fabricated by wet
etching the glass [14]. After a cleaning process, the etched
plates were thermally bonded (595 °C for 3 h) to top plates
with drilled access holes.

The fabrication of the PDMS glass microchips used the
same methodology as described above for the glass base
plates. Briefly, these microchips were developed using the
etched glass bonded with two consecutive PMDS layers.
PDMS (Sylgard 184 kit, IPA, HMDS) were polymerase in
two layers. The upper layers of PDMS (0.1 and 5 mm,
respectively) were polymerised and hardened for 2 h at
90 °C and plasma-bonded via Oxigen to the glass (Fig. 1a).

TFZL tubing (i.d. 1/16 in, Upchurch Scientific) was used to
interface the chip with syringes containing culture medium.

Microscreening bioassay

The magnetisation of the GFP report yeast with nano-
particles, and the posterior viability test of the cells are
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described in the Electronic Supplementary Material Fig. 1S.
Based on the previous prototype, the devices allowed the
performance of toxicity bioassays by placing the microchip
under an inverted microscope, such that all the chambers
could be observed at the same time at 40 times magnifi-
cation. The specific assay culture medium was then
pumped into the microfluidic device at a very low flow
rate of 0.1 μL min−1 using two pumps (KDS-200CE, KD
Scientific®). One inlet of the system was connected to a
syringe containing culture medium + MMS at 0.005%,
while the other inlet was connected to a syringe with
culture medium and diluent (DMSO) (see Fig. 1SA).

Aliquots (50 μL) of magnetic yeast suspension were
pumped into the microchip. The yeast were trapped in the
chambers, and then the culture media (with or without the
addition of MMS) was passed over the cells for 14–16 h at
25 °C. After exposure to MMS, yeast were excited at 485 nm,
and the fluorescence emission detected at 520 nm under an

inverted microscope (Olympus IX71) using a ×4 objective
(UPLFLN). The induction of GFP fluorescence in exposed
yeast was compared to the constitutive expression of GFP in
the control cells, as they maintain their DNA integrity.

Fluorescence emission was quantified as intensity per area
using Cell D™ software. Ten squares (5,000 μm2) were
analysed per chamber, obtaining mean intensity per treat-
ment. Comparisons of the fluorescence intensity were
performed by analyses of variance followed by Dunnett’s
T3 post hoc test, using SPSS 16.0 software. Genotoxicity
was corroborated when significant differences appeared (p<
0.05) between those cells exposed to MMS and those under
the control condition (2% DMSO only). When the bioassay
is finished, the yeast is easily discarded from the devices by
removing the magnets on the top of the chambers and
flowing culture medium through the channels and chambers.
After that, the systems are ready to re-load yeast and start a
bioassay again with very good reproducibility.

Fig. 1 The gradient microscre-
ening system. a PDMS glass
microscreening system. Two
parallel systems are used, one to
test an unknown sample and the
second with a reference. The
magnets were placed above the
chambers to retain the yeast.
Arrow shows the laminar flow
direction. b A scheme showing
the position of the magnet on
the top of the chambers. c The
details of the serpentine pattern
visualised with safranin (dye)
showing the four loops that
contain each serpentine. d Gen-
erated concentration gradients in
the microchambers visualised
with red ink (safranin) at the
working flow rate. e The first
step in the pine-tree-shaped pat-
tern, indicating the squares
where the intensity (densitome-
try) was analysed to corroborate
diffusion and complete homog-
enisation. f Densitometry of the
squares at each loop indicating
laminar flow and posterior dif-
fusion at each serpentine
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Results and discussion

The microfluidic device, designed to generate concentration
gradients and based on magnetically functionalised GFP
reporter yeast, was evaluated using both glass and PDMS
glass microchips. The devices were found to maintain a
concentration gradient (Fig. 1c–f) and to retain the cells
within the microchambers (Fig. 2a). The glass microchips
were found to be more robust for handling, although the
multilayer PDMS glass devices offer great potential to
develop 3D microscreening devices with low cost of
production.

Visualisation of concentration gradient was performed in
the system by using the dye safranin instead of the
genotoxic agent (Fig. 1c, d). The serpentine pattern
increases the length of the channels, allowing the lateral
diffusion and complete homogenisation for each concen-
tration before reaching the chambers containing the yeast
(Fig. 1c). As can be seen from Fig. 1d, the concentration
gradient was well established in chambers that housed the
yeast cells. A direct magnetisation of yeast with magnetite
nanoparticles were achieved previous to the bioassay
(Fig. 1SB, C). The nanoparticles were located at the surface
of the cell walls and did not internalise into the cells
(Fig. 1SC).

In this work, the utilisation of magnetically retained
living fluorescent yeast was found to overcome cell
retention problems commonly reported in microfluidic
devices [14]. Yeast was successfully retained by placing a
small neodymium magnet on the top of the chambers
(Figs. 1b and 2a). The removal of the magnet led to
sweeping of the yeast cells out of the microchip. The
fluorescence emitted by GFP reporter yeast used indicates
that the gene expression and synthesis of GFP were not
affected either by the coating or the devices.

A genotoxicity bioassay was developed in the micro-
screening device, with a proportional increase of fluores-
cence upon increasing the genotoxic compound and
statistically significantly higher than the control system
(Fig. 2c, d).

At the level of the microchambers where the yeast are
maintained, the speed of the culture medium flow was at
21 μms−1, calculated as the flow rate/cross-sectional area.
At this speed, the flow allows the magnetic fields to retain
the yeast inside the chambers. As expected, an increase in
fluorescence intensity was observed towards the chambers
where the yeast was exposed to the higher concentration of
genotoxic agent (MMS, Fig. 2d). Using selected areas for
fluorescence intensity quantification, it was possible to
clearly differentiate between the cells exposed to MMS and
those in the control chamber (the yeast strain exposed to
DMSO alone). Yeast exposed to the lowest concentrations
of MMS showed the lowest values in arbitrary units of
75.57±15. Then, the increasing concentration generated by
the gradient system proportionally increased the fluores-
cence until values of 455±55 were reached (Fig. 2).

The methodology developed was found to offer an
effective way of locating magnetically functionalised GFP
reporter yeast on the chip, including magnet-facilitated
loading of the cells, their retention during the toxicity tests
and their release upon removal of the magnetic field
(Fig. 1SB). Further optimisation of flow designs was
carried out in order to fine-tune the system and avoid any
uneven distribution of cells within all chambers. Based on
its dynamic, this microscreening system presents several
advantages over the static plate-based bioassays. It allows
simple testing of different formulations and concentrations,
regulated fresh nutrient and analytes inputs, adaptability to
diverse conditions, keeping diverse cells types in optimum
conditions and potential portability.

Fig. 2 A six-concentration microscreening system. a Yeast cells are
loaded into the system and retained via the external magnetic field; b
after the bioassay (14 h), yeast remained in the chamber (light
microscopy image); c fluorescence emission from yeast, showing the
GFP expression and intensity correlating with the amount of genotoxic

compound. d Fluorescence quantification (intensity per square
millilitre, mean ± SD). The concentration range of MMS were 0, 28,
56, 112, 225 and 450 μM (black columns). White columns correspond
to a control parallel system (not shown); chamber was exposed only to
the diluent (culture media containing 2% DMSO)
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This screening test can be easily automated to allow
multiple uses in biomedical, industrial and environmental
monitoring studies. Miniaturisation of toxicity screening
methods is very promising for toxicity testing of new
formulations and for environmental monitoring. Future work
will involve the spatial reduction of the microfluidic pattern
and increase the number of toxicities to be tested in parallel.
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Abstract
A product-scalable, catalytically mediated flow system has been developed to perform Suzuki–Miyaura reactions under a

microwave heating regime, in which the volumetric throughput of a Pd-supported silica monolith can be used to increase the quan-

tity of the product without changing the optimal operating conditions. Two silica monoliths (both 3 cm long), with comparable pore

diameters and surface areas, were fabricated with diameters of 3.2 and 6.4 mm to give volumetric capacities of 0.205 and 0.790 mL,

respectively. The two monoliths were functionalized with a loading of 4.5 wt % Pd and then sealed in heat-shrinkable Teflon®

tubing to form a monolithic flow reactor. The Pd-supported silica monolith flow reactor was then placed into the microwave cavity

and connected to an HPLC pump and a backpressure regulator to minimize the formation of gas bubbles. The flow rate and

microwave power were varied to optimize the reactant contact time and temperature, respectively. Under optimal reaction condi-

tions the quantity of product could be increased from 31 mg per hour to 340 mg per hour simply by changing the volumetric

capacity of the monolith.

1150

Introduction
Interest in flow based reaction chemistry has grown over recent

years with the realization that such systems can offer greater

control over reaction conditions, such as catalyst and heating

contact time, which in turn lead to improved product selectivity

and yield when compared to batch based methods [1-7]. Much

of this work has focused on continuous-flow microreactor

methodology for laboratory based organic synthesis, and has

featured the development of inorganic and organic polymer

based functionalized monolithic reactors that can operate at

elevated temperatures and under high pressure [8,9]. Recently,

application of magnetic nanoparticles as media that can be

heated in an electromagnetic field, was reported to be ideal for

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:s.j.haswell@hull.ac.uk
http://dx.doi.org/10.3762%2Fbjoc.7.133
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Table 1: The main characteristics of monoliths characterized by N2 adsorption at 77 K.a

Entry Monolith DN2 SBET VN2 Vwater φt
(nm) (m2 g−1) (cm3 g−1) (mL)

1 monolith-3.2 16.0 164 0.70 0.205 0.85
2 Pd-monolith-3.2 15.9 169 0.67 0.202 0.84
3 monolith-6.4 16.1 161 0.73 0.791 0.82
4 Pd-monolith-6.4 16.0 166 0.67 0.790 0.82

aDN2, SBET and VN2 are the pore diameter, specific surface area and pore volume, respectively, as determined by N2 adsorption at 77 K. Vwater is the
total volume of the monoliths as measured by the adsorption of water at room temperature. φt is the total porosity as determined by equation (WM −
WT)/dlr2π, here WT and WM are the weights of the dry and water filled monolith respectively, d is the density of water and l and r are the overall length
and radius of the cylindrical monoliths. The palladium loading for entries 2 and 4 was ca. 4.5 wt %.

use inside microfluidic fixed-bed reactors for chemical syn-

thesis [10]. A new concept to build the catalytic membrane

inside a microchannel reactor was demonstrated by Uozumi et

al. [11], where carbon–carbon bond forming reactions of aryl

halides and arylboronic acids under microflow conditions can

be achieved quantitatively within 4 s residence time. However,

the stability of the catalytic membrane was not discussed.

Monolith based devices have shown good flow characteristics

when coupled with the highly controlled surface properties

associated with the formation of nano-, micro- and mesoporous

structures, and they therefore represent ideal supports for

reagents and catalysts where contact time and temperature can

be spatially and temporally mediated [12,13]. To this end, the

use of microwave heating in conjunction with microporous

monolithic reactors has attracted some interest for small-scale

synthesis under continuous-flow conditions [14-16]. One

obvious problem, however, when using microwaves to heat

solvents/reagents and surface-functionalized monoliths in a

flow microreactor, is the achievement of an efficient coupling

of the microwave energy, which will be a function of both the

absorbing species present and of the penetration depth of

microwave irradiation into the reaction zone [17]. This is espe-

cially important in flow systems where the reactants are present

in the irradiation chamber for a short period of time [18,19].

Therefore, the application of microwave chemistry to scalable,

continuous-flow processes, with commercially available

microwave equipment and suitable flow instrumentation, is

becoming increasingly important [7,20]. Finally, the high

surface-to-volume ratio and spatial and temporal control over

the reactants and products, without the need for additional opti-

mization, is of considerable interest [7,21-23] as these factors

promise to increase the quantity of product to desirable levels

whilst maintaining the intrinsic benefits of the reaction geom-

etry offered when using microreactor methodology.

In this work we report a simple and effective approach for

achieving volumetric scalability in a flow reaction system

through the use of Pd-supported silica-based monolithic reac-

tors coupled with microwave heating. The practicality of this

approach will be demonstrated using Suzuki–Miyaura reactions

in which the Pd-supported silica-monolith catalysts exhibit

excellent activities and the doubling of the monolith diameter,

thus operating at four times the volumetric flow rate, increases

product output without any observable change in the reaction

conversion.

Results and Discussion
Synthesis of silica monolith and
Pd-supported silica monolith catalyst
The reaction parameters, such as polymer concentration, acid

strength, water content, amount of silicon alkoxide, reaction

temperature and reaction time, all have an important impact on

the physical properties of the silica monoliths prepared. Silica

monoliths used as catalyst supports require not only a high

surface area to maximize their catalytic activity, but also a high

permeability to achieve good flow characteristics and enable

fast mass transfer from the flowing reaction solutions to the

catalytic surface. In addition, they must be mechanically strong

enough to withstand the pressures required to drive fluid

through the monolithic structure at the required flow rate. Silica

monoliths were synthesized from PEO, tetraethoxysilane and

nitric acid as supports for the Pd catalyst, as based on the results

of previous studies [24]. Silica monoliths, i.e., monolith-3.2 and

monolith-6.4 (diameters of 3.2 mm and 6.4 mm respectively),

with two different diameters were synthesized using the same

procedure, leading to structures with comparable surface char-

acteristics but with different volumes for the solution-acces-

sible connected pores. Characterization of these monoliths indi-

cated that a 2-fold increase in the monolith diameter had little

influence on the physical characteristics of the monoliths (see

Table 1, entries 1 and 3, 2 and 4), except the total volume that

was increased by a factor of almost four, as expected. In addi-

tion, the loading of metal particles within monoliths had no

effect on either the nm-scale or µm-scale pore structures (see

Table 1, entries 1 and 2, 3 and 4, also see Supporting Informa-

tion File 1, Figure S1).
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Table 2: Reactivity of Pd-monolith-3.2 synthesized using different Pd precursors in the Suzuki–Miyaura reaction between bromobenzene and phenyl-
boronic acid under continuous flow conditions.a

Entry Pd precursor MW power Temperature Flow rate Contact time Conversion
(W) (°C) (μL min−1) (min) (%)

1 Pd(OAc)2 8 123 20 10 72
2 Pd(dba)2 8 123 20 10 55
3 Pd(NO3)2 15 123 20 10 28
4 Na2PdCl4 5 123 20 10 97
5 Na2PdCl4 3 99 20 10 70
6 Na2PdCl4 10 116 40 5 66
7 Na2PdCl4 5 109 40 5 45

aAll Pd-monolith catalysts have a Pd-loading of ca. 4.5 wt %. Conversions were determined using GC–MS versus internal standard. The main byprod-
ucts (1–3%) were formed by the debromination of halide reactants.

According to IUPAC [24] the measurements obtained from N2

adsorption and desorption isotherms indicate a type H2

hysteresis, which is consistent with the disordered mesoporous

structure seen in the micrograph shown in Figure 1 (also see

Supporting Information File 1, Figure S2)

Figure 1: SEM image of silica monolith.

Effect of Pd precursor on the activity of the
Pd-monolith catalyst
The Suzuki–Miyaura reaction is a widely used method in

organic synthesis for the selective formation of aryl–aryl

carbon–carbon bonds in the synthesis of high-value fine chemi-

cals and intermediates in the pharmaceutical industry. This reac-

tion requires a metal catalyst, such as palladium, in both homo-

geneous and heterogeneous reactions. In this study, the

Suzuki–Miyaura reaction of bromobenzene with phenylboronic

acid (Scheme 1) was initially used as a model heterogeneously

catalyzed reaction for the evaluation of Pd-monolith activity

under continuous flow conditions with microwave heating.

Scheme 1: Suzuki–Miyaura reaction of bromobenzene with phenyl-
boronic acid.

The silica monoliths were impregnated with a range of Pd

precursors, namely Na2PdCl4, Pd(OAc)2, Pd(dba)2 and

Pd(NO3)2, by a standard method described previously for the

preparation of Pd-monoliths. The Pd-monolith-3.2 catalysts

were evaluated using the previously optimized solvent and basic

reaction conditions [3,4]. The results of this study (Table 2,

entries 1–4) indicate that, whilst all the Pd-monolith catalysts

contain the same amount of palladium (around 4.5 wt %), their

catalytic activity differs significantly even for similar reaction

temperatures and contact times, showing a significant effect of

the palladium precursor on the catalyst activity. The Pd-mono-

lith catalyst that was synthesized from a Na2PdCl4 precursor

showed the best activity and was therefore used as the Pd

precursor for the preparation of a Pd-monolith catalyst to be

employed in further investigations. As expected, reducing the

reaction temperature and decreasing the catalyst contact time

(see Table 2, entries 4–7) resulted in a corresponding reduction

of the product yield.

Comparison of activity between Pd-monolith-
3.2 and Pd-monolith-6.4
The main aim of this work is to develop a methodology to scale

up the rate of product formation without a loss in the intrinsic

reaction performance, by using a continuous-flow, microwave-

assisted, Pd-supported silica-monolith reactor. The Pd-mono-

lith-3.2 and Pd-monolith-6.4 (both with the same length of

3 cm) were used to perform the model reaction (1) to demon-

strate this methodology. The total pore volume accessible to the
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solution, determined by adsorption of water, was 0.20 mL for

Pd-monolith-3.2 and 0.79 mL for Pd-monolith-6.4, which repre-

sents an almost 4-fold volume increase for the larger

Pd-monolith-6.4. The activities of both monoliths for the

Suzuki–Miyaura reaction (Scheme 1) are shown in Figure 2. It

can be seen that Pd-monolith-6.4 produces a very similar

percentage yield of product to that obtained using the Pd-mono-

lith-3.2 under four times the flow rate to keep the same catalyst

contact time. This observation is suggestive of virtually iden-

tical intrinsic properties for both monoliths in terms of flow rate

and reaction conversion.

Figure 2: Reactivity of the Pd-monolith-3.2 and Pd-monolith-6.4 for the
Suzuki–Miyaura reaction between bromobenzene (0.1 M) and phenyl-
boronic acid (0.12 M): The relationship of product yield with contact
time.

It can also be seen (Figure 3) that the rate of product formation

scales up as expected, i.e., the larger catalyst monolith produces

four times as much product compared to the smaller catalyst

monolith under equivalent reaction conditions. However, it is

also evident from the data that whilst shorter catalyst contact

times (corresponding to higher solution flow rates) produce an

increase in the rate of product formation, this increased rate of

product formation is at the expense of reduced reagent conver-

sion.

This methodology was also used to test Suzuki–Miyaura reac-

tions with a variety of substrates, as shown in Table 3. It can be

seen that this scale-up strategy also works very well, with the

amount of product obtained with the Pd-monolith-6.4 being

four times greater than that obtained with the Pd-monolith-3.2,

under these conditions. Most reagents generated an excellent

reaction conversion of the desired coupling product (see

Supporting Information File 1, Figures S3, S4 and S5), even in

the case of chlorobenzene, which is a notably poor substrate

for the Suzuki–Miyaura reaction (entries 6 and 12). The

Figure 3: Reactivity of the Pd-monolith-3.2 and Pd-monolith-6.4 for the
Suzuki–Miyaura reaction between bromobenzene (0.1 M) and phenyl-
boronic acid (0.12 M): The dependence of micromoles of product
obtained on contact time.

Figure 4: TEM image of Pd-monolith catalyst (scale bar: 100 nm).

Suzuki–Miyaura reaction between bromobenzene and

4-bromobenzaldehyde with a higher concentration of reactants,

i.e., 0.3 M, was also performed with the Pd-monolith-6.4 cata-

lyst to evaluate the conversion ability. The reaction conversion

was found to be high, i.e., 87–89 %, under these modified

conditions.

The high catalytic activity of the Pd-monolith catalysts in

Suzuki–Miyaura reactions can be attributed to the following

three factors. First is the high dispersion of small Pd particles

over the substrate surface within the monolith mesopores. The

TEM image (Figure 4) shows that the catalyst sample incorpo-

rates metal particles, distributed over the substrate surface, with

two different sizes: Small crystallites with dimensions of less

than 2 nm (majority), and large crystallites with diameters of
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Table 3: Reactivity of Pd-monoliths with different diameters, in the Suzuki–Miyaura reaction between various reactants under continuous-flow condi-
tions.a

Entry Catalyst Flow rate Halide Boronic acid Product Conversion
(μL min−1) (%)

1 Pd-monolith-3.2 40 99

2 Pd-monolith-3.2 20 100

3 Pd-monolith-3.2 30 95

4 Pd-monolith-3.2 20 65

5 Pd-monolith-3.2 20 60

6 Pd-monolith-3.2 20 99

7 Pd-monolith-6.4 160 99

8 Pd-monolith-6.4 80 99

9 Pd-monolith-6.4 120 95

10 Pd-monolith-6.4 80 65

11 Pd-monolith-6.4 80 59

12 Pd-monolith-6.4 80 98

aMW power used was 5–10 W for Pd-monolith-3.2 and 1–2 W for Pd-monolith-6.4 to a maintain reaction temperature of 125–130 °C. The backpres-
sure valve was set up 75 psi for Pd-monolith-3.2 and 45 psi for Pd-monolith-6.4, respectively. The reaction conversion was determined by GC–MS
with an internal standard and the main byproduct (1–3%) was formed by debromination of halide reactants.

around 10 nm. Second is the large surface-to-volume ratio of

the monoliths. The values of the surface-area-to-volume ratio

for the microchannels typically range from 10,000 to 50,000

m2/m3, as a consequence of their decreased size. Based on BET

characterization, the surface-area-to-volume ratio generated

within the Pd-monolith-3.2 reactor was estimated to be 2.5 ×

108 m2/m3, which contributed greatly to the promotion of the

reaction. The final factor relates to the combination of

microwave heating and palladium nanoparticles. Kappe et al.

found that smaller particles are more active in traditional

heating whereas bigger particles perform better in microwave

heating [25]. The monolithic structure used in this work takes

advantage of both these characteristics by having more reactive,

nano-sized, Pd particles located within a strongly microwave-

absorbing, meso-size, silica structure. Because it was difficult to

measure the temperature inside the monolith, the outlet

temperature measured by fiber probe was used, which gave a

difference of at least 20 °C between the outlet temperature and

the temperature of the outer surface of the monolith, as

measured using the installed IR sensor. It was found that reac-

tion conversion was only 40–50% with oil bath heating.

With supported Pd catalysts, leaching of palladium is always an

issue of concern in terms of catalyst performance, cost and
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recovery. Recent papers have shown that leaching from palla-

dium catalysts is in the order of 1 to several tens of ppm

[6,10,19,25] and that recovery of this palladium could be

achieved with a scavenger column [6]. The tendency for

leaching of palladium metal from the Pd-monoliths was

measured through an ICP–OES analysis to determine the Pd

concentration in the washing liquid, which immediately fol-

lowed the first flow reaction experiment. This was achieved by

pumping DMF/H2O (3:1) solvent through the Pd-monolith at

0.1 mL/min for 20 min. For the Na2PdCl4 based monolithic

catalyst, the amount of palladium present in the washing liquid

was found to be as little as 74 ppb (Pd-monolith-3.2), corres-

ponding to a loss of only 0.000011% of the initial amount of

palladium added to the monoliths. The amount of palladium

present in the final reaction sample was found still to be less

than 100 ppb. This finding suggests that there is a highly

specific and strong interaction between the impregnated metal

nanoparticles and the monolith support surface, possibly

through a combination of hydrogen bonding, ionic interactions

and substitution of Cl by silanol groups present on the monolith

surface, resulting in highly stable nanoparticle fixation [26,27].

The presence of a strong specific metal/support interaction is

also supported by observations made during the impregnation

process, where PdCl4
2− uptake in the silica monolith body was

seen to be fast, with the monolith turning a stable dark brown

color after several hours. In contrast, the Pd(NO3)2 salt gave the

monolith a lighter coloration, much more slowly, and was easily

washed away. The PdCl4
2− based Pd-monolith catalyst was in

fact used for several runs (i.e., 6 runs representing 15–20 hours)

with no deactivation being observed when the catalyst was

washed with DMF, water or DMF/H2O (3:1) after completion

of each run.

Conclusion
It has been demonstrated that the combination of Pd-functional-

ized silica monolithic reactors with microwave heating results

in a high percentage yield of the desired reaction products for

Suzuki–Miyaura reactions under flow conditions. Yields can be

scaled-up by increasing the diameter of the catalytic monolith

used. The cylindrical catalyst monoliths were of a constant

length, but of variable diameter and were produced to give the

same intrinsic monolith activity and permeability properties,

when operating under the same conditions of temperature and

catalyst contact time. In this way the product formation rate

scales quantitatively with the square of the catalyst monolith

diameter. However, at least one alternative approach can be

envisaged, i.e., changing the monolith length for scaling up

whilst maintaining the required intrinsic properties. It is worth

considering the relative advantages and disadvantages of these

two possible approaches in light of the work presented.

Increasing the diameter of a fixed length monolith, the scale-up

method as used here, offers the advantage that the pressure drop

required to produce a certain flow rate decreases with

increasing diameter. However, as microwave penetration is

necessary to obtain reliable heating characteristics, there will

come a point at which the monolith diameter will become larger

than the penetration depth of the microwaves (estimated to be 4

cm), which will lead to an unheated, cold “core”. In addition for

disc-shaped monoliths, where diameters are larger than the

length, there will also come a point where the mechanical

strength of the monolith will be a limitation with respect to the

pressure drop required for flow. On the other hand, increasing

the length of a fixed diameter monolith in order to achieve this

scale-up offers the advantage that uniform microwave penetra-

tion/heating can be maintained. In addition, the catalyst contact

time could be extended by increasing the length. The disadvan-

tage, however, to this approach is related to the pressure drop

required to produce the required flow rate, which will increase

proportionally with the length. Hence, the mechanical strength

of the monolith structure, i.e., the strength to resist collapse of

the pores and/or the monolith casing material, ultimately limits

the maximum length achievable.

Experimental
Materials
The reagents and solvents bromobenzene (99%), 4-bromoben-

zonitrile (99%), 4-bromobenzaldehyde (99%), 3-bromopyri-

dine (99%), chlorobenzene (99%), phenylboronic acid (97%),

4-carboxyphenylboronic acid (97%), poly(ethylene oxide)

(PEO) with average relative molar mass of 100 kDa,

tetraethoxysilane (TEOS), N,N-dimethylformamide (99%,

DMF), dichloromethane (99%, DCM), ammonium hydroxide (5

N) and nitric acid aqueous solutions (1 N) were purchased from

Aldrich. All reagents were used as obtained, without further

purification. Heat shrinkable Teflon® tubes (wall thickness 0.1

and 0.3 mm before and after shrinkage) with a shrinkage ratio

of 2:1 were purchased from Adtech Polymer Engineering Ltd.

(UK).

Synthesis of silica monolith supports
Silica based monoliths were prepared using a sol–gel process

described in the literature [24]. The desired amount of PEO was

added to an aqueous solution of nitric acid and the resultant

mixture was cooled in an ice bath and stirred until a homoge-

neous solution formed. TEOS was then added to the reaction

mixture, which was stirred vigorously in the ice bath for 30 min

to form a transparent solution. Subsequently, the solution was

poured into a plastic mould (diameter 4.8 mm and length 6 cm

for monolith-3.2; and diameter 8.2 mm and length 5 cm for

monolith-6.4). Both ends of the plastic mould were then closed

and the sealed tube was incubated in an oven at 40 °C for 3

days, during which time a wet, semi-solid, gel monolith was
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formed. Approximately 20% shrinkage occurred during this gel

formation, which allowed easy removal of the wet gel mono-

liths from the plastic tube moulds. The wet gel monoliths were

washed with copious amounts of water to remove any residues

and then transferred to a 10 times larger volume of 0.5 M

NH4OH aqueous solution in an autoclave, where it was incu-

bated at 80 °C for 24 h. The monoliths were again washed with

copious amounts of water before drying in an oven at 90 °C for

24 h. Finally, the monoliths were calcined at 550 °C for 3 h

(heating rate: 2 °C/min) in an air flow to remove the remaining

PEO and form white silica-monolith rods (diameters 3.2

and 6.4 mm respectively) that were then cut to 3 cm long mono-

liths.

Preparation of Pd-supported silica-monolith
catalyst (Pd-monolith)
An aqueous solution of 200 μL containing 0.017 g Na2PdCl4

(theoretical Pd loading 5.0 wt %) was adsorbed onto the mono-

liths, dried at 90 °C and calcined at 550 °C for 3 h (temperature

ramp: 2 °C min−1) under a flow of air, followed by reduction in

a H2 (10%)/N2 stream at 340 °C for 3 h (heating rate: 2 °C) to

produce a black Pd-monolith rod with Pd loading of approxi-

mately 4.5 wt % as determined by ICP–OES (Perkin Elmer

Optima 5300DV). The Pd-monolith rod obtained was then clad

in a heat-shrinkable Teflon® tube with a glass connector at each

end. The assembly was heated in a furnace up to 330 °C until

the monolith was sealed within the Teflon® tube to form a flow

Pd-monolith reactor system.

Sample characterization
Scanning electron microscopy (SEM) images were obtained by

means of a Cambridge S360 scanning electron microscope

operated at 20 kV. Each sample was sputter coated with a thin

layer of gold–platinum (thickness approximately 2 nm) by a

SEMPREP 2 Sputter Coater (Nanotech Ltd.). Transmission

electron microscopy (TEM) was carried out on a JEOL-2010

operating at 200 kV. The BET surface area and nm-scale pore-

size distribution were obtained by measuring N2 adsorption and

desorption isotherms at 77 K by means of a Micromeritics

Surface Area and Porosity Analyzer. The pore volume and pore

size distributions of the nm-scale pores within the monoliths

were evaluated from the isotherms within the BJH (Barrett-

Joyner-Halenda) model. The palladium content in the mono-

liths and washing liquid was determined by ICP–OES.

Determination of the µm-scale porosity φt (which determines

the monolith permeability) was determined from the equation

(WM − WT)/dlr2π, where WT and WM were the weights of the

dry and water filled monolith respectively, d was the density of

water, l and r were the overall length and radius of the cylin-

drical monolith. The µm-scale pore size was determined from

SEM measurements.

Activity measurements
The experimental setup is shown schematically in Supporting

Information File 1, Figure S6. The 30 mm long Pd-monolith

reactor with a diameter of either 3.2 mm (Pd-monolith-3.2) or

6.4 mm (Pd-monolith-6.4) was positioned in the cavity of a

Discover microwave system (CEM Ltd.) with the capability of

delivering 0–300 W of microwave power at 2.45 GHz with

mono-mode operation. The microwave cavity was fitted with an

infrared sensor to monitor the temperature of the external

surface of the monolith catalyst. A reactant solution containing

an aryl halide (0.1 M), arylboronic acid (0.12 M), K2CO3 (0.3

M) in DMF/H2O (3:1) solvent was pumped through the reactor

with an HPLC pump, and a backpressure valve (45–75 psi) was

used to minimize the formation of gas bubbles (see Supporting

Information File 1, Figure S6). The residence times of the reac-

tants within the catalytic monoliths were determined based on

the known monolith and pore volume and from the different

flow rates. Product samples were collected at defined flow

periods during a reaction run, weighed and a known amount of

dodecane was added to the individual samples as an internal

standard. Samples were treated with 1 M aqueous NaOH to

remove unreacted arylboronic acid and extracted with DCM.

The remaining organic material was then washed three times

with distilled water, collected and dried over MgSO4. Indi-

vidual samples were analyzed using GC–MS (Varian 2000) as

described in literature [3,4].

Supporting Information
The Supporting Information File contains six parts, Figure

S1: SEM image of Pd-monolith; Figure S2: BET

characterization; Figure S3: GC–MS chromatogram for

Suzuki–Miyaura reaction of bromobenzene and

phenylboronic acid; Figure S4: GC–MS chromatogram for

Suzuki–Miyaura reaction of 4-bromobenzaldehyde and

phenylboronic acid; Figure S5: GC–MS chromatogram for

Suzuki–Miyaura reaction of 4-bromobenzonitrile and

phenylboronic acid; Figure S6: Schematic diagram of the

setup for continuous-flow, microwave-assisted

Suzuki–Miyaura reactions.

Supporting Information File 1
Additional material.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-7-133-S1.pdf]
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a b s t r a c t

Green tea catechins have been reported to have multiple health benefits. To understand their metabolic
and toxicological interactions in the human body studies need to be undertaken using stable isotope
labelled compounds, but they can be time consuming and expensive. Using microreactor technology
ccepted 31 August 2010
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labelling catechins could be produced more quickly and at a reduced cost. This research reports on a
2-step synthesis of deuterium labelled epicatechin developed using microreactor technology for the
production.

© 2010 Elsevier B.V. All rights reserved.
euterium
abelling

. Introduction

Green tea is produced from the plant Camellia sinensis and
as been linked with many potential health benefits [1]. These
enefits are linked to polyphenols compounds, which are part of
he flavanoid group and include antioxidants such as theaflavin
nd catechins [2]. Previous studies have discovered their benefits
nclude radical scavenging, anticancer and antimicrobial activity
3].

A number of studies have investigated the metabolites of cat-
chins to gain metabolic and toxicological knowledge of these
ompounds [4]. However this requires labelling the compounds,
hich can often be expensive and time consuming. Labelling
olecules in order to monitor their metabolic activity can be per-

ormed using various methods, such as tagging the molecule by
uorescence or by using stable carbon isotopes in the molecu-

ar structure [5]. Whilst fluorescent markers are very useful in
iological studies, their structures are sensitive to environmental
onditions such as temperature [6]. In addition, fluorescent labels
an alter the overall structure and potentially the properties of

he compound, which in turn could distort results in a metabolic
tudy. The use of a 13C or 14C marker offers substantial benefits
n metabolic studies due to their stability and integration into the
verall structure of the compound investigated [7]. Although this

∗ Corresponding author.
E-mail address: s.j.haswell@hull.ac.uk (S.J. Haswell).

385-8947/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2010.08.093
is an effective method of labelling a compound and has been used
in flavanoids in previous research, it often involves many reaction
steps and more complicated stereochemistry [8].

An alternative method to 13C or 14C labelling is to label the
compound under investigation with deuterium. This approach has
proven to be successful in various batch reactions including that for
the labelling of the catechin epigallocatechin gallate [4]. Such syn-
thesis has also been undertaken previously in microreactors for the
production of labelled phenol compounds [9]. In this present study
we extend this earlier work to the labelling of polyphenols using
microreactor technology, which offers a more rapid, low volume
methodology, with the capability of integrating chemical synthesis
and biological testing [10]. Using microreactors in synthetic chem-
istry have been shown to have many advantages [11] including a
greater level of reaction control, an increase in product yield and
purity and a lower volume of reagents required. Further benefits
of microreactors is in the area of health and safety where due to
reduced reactants, factors such as managing heat transfer are more
easily and safely controlled [12].

In this paper we report the use of a simple T-shaped microreac-
tor to perform a 2-step synthesis route, based on a previous batch
synthesis [13], to generate deuterium labelled epicatechin.
2. Experimental

In this 2-step procedure epicatechin was labelled in a T-shaped
microreactor (Fig. 1a and b), which was fabricated using methods
developed at the University of Hull [14]. The first step was a 1:1 iod-

dx.doi.org/10.1016/j.cej.2010.08.093
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:s.j.haswell@hull.ac.uk
dx.doi.org/10.1016/j.cej.2010.08.093
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ig. 1. (a and b) Showing a schematic of the microreactor. (a) Step 1 of the synthesis
howing the conversion of 6-iodoepicatechin to deuterium labelled epicatechin in p

nation reaction (Fig. 1a), between epicatechin (0.058 g, 20 mmol)
nd N-iodosuccinimide (0.045 g, 20 mmol) in acetone at 30 ◦C con-
rolled by a syringe pump at 10 �L/min. Products were collected
nto a vial containing methanol, which acted as a quencher. This

as to confirm that the reaction actually occurred in the micro
eactor and not in the collecting vial. Products were concentrated
nder reduced pressure leaving a brown/beige coloured powder
0.1 g). 1H NMR and LC/MS data were then acquired.

Step 2 of the procedure was a 1:2 deuteration reaction between
he crude 6-iodoepicatechin powder (0.1 g) and trifluoroacetic
cid-d (0.046 g, 40 mmol), performed again in a T-shaped microre-
ctor (Fig. 1b). The reaction was performed in acetone-d6 and
ontrolled by a syringe pump at 10 �L/min and was at a tem-
erature of 30 ◦C. Products were collected into a vial and then
oncentrated under reduced pressure leaving a purple/brown oil
0.105 g) which was analyzed via 1H NMR and LC/MS.
The immediate stability of the labelled epicatechin was also
ested in water at room temperature. LC/MS of the compound was
erformed at 0, 1 and 2 h after production.

An initial optimization of these reactions to establish the most
ppropriate flow rate in the range 20–5 �L/min was carried out
ng the conversion of (−)epicatechin to 6-iodoepicatechin. (b) Step 2 of the synthesis
n 6.

(results not shown here) from which 10 �L/min was found to be
the optimal flow.

3. Results and discussion

The H NMR data from the crude products of both reactions
showed that they were almost 100% complete. From the reaction in
step 1 the following 13C NMR and 1H NMR data is reported where:
d = doublets, dd = doublet of doubles, m = multiplet, s = singlet and
bs = broad singlet.

1H NMR (400 MHz, CD3COCD3) 6.95 (1H, d, J = 1.36 Hz, H-2′), 6.81
(1H, d, J = 2.2 Hz, H-6′), 6.14 (1H, d, J = 2.76 Hz, H-8), 5.45 (1H, m, H-
3), 4.87 (1H, bs, H-2), 2.90 (1H, dd, J = 19.2, 4.67 Hz, H-4), 2.70 (1H,
dd, J = 16.6, 2.2 Hz, H-4).

13C NMR (400 MHz, CD3COCD3) 157.4 (C-8a), 156.3 (C-7), 156.2
(C-5), 145.2, 141.1 (C-3′, C-4′), 131.8 (C-1′), 119.2 (C-6′), 115.7 (C-

2′), 115.0 (C-5′), 100.5 (C-4a), 96.2 (C-8), 79.8 (C-2), 67.2 (C-3), 66.4
(C-6), 29.6 (C-4).

From the H NMR data identifies the disappearance of a peak at
6.25 ppm indicating that the proton in that region had been lost.
LC/MS confirmed a peak at 416.8 m/z (see supplementary data),
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hich was consistant with the loss of a proton and thus iodination
ad occurred giving 6-iodoepicatechin.

Due to the large variation between the H NMR peaks of epi-
atechin and catechin, a direct comparison of the data from the
odocatechin [13] could not be made with the iodoepicatechin pro-
uced. However, there is a clear indication that the iodination of
picatechin was successful. The high conversion in step 1 elimi-
ated the need for purification prior to step 2.

From the reaction in step 2 the following 13C NMR and 1H NMR
ata was obtained where: d = doublets, dd = doublet of doubles,
= multiplet, s = singlet and bs = broad singlet.
1H NMR (400 MHz, CD3COCD3) 6.95 (1H, d, J = 1.36 Hz, H-2′), 6.81

1H, d, J = 2.2 Hz, H-6′), 6.14 (1H, d, J = 2.76 Hz, H-8), 5.45 (1H, m, H-
), 4.87 (1H, bs, H-2), 2.90 (1H, dd, J = 18.1, 4.76 Hz, H-4), 2.70 (1H,
d, J = 16.2, 2.2 Hz, H-4).

13C NMR (400 MHz, CD3COCD3) 157.5 (C-8a), 157.0 (C-7), 156.6
C-5), 145.2, 145.1 (C-3′, C-4′), 132.4 (C-1′), 119.4 (C-6′), 115.7 (C-
′), 115.2 (C-5′), 100.1 (C-4a), 99.8 (C-8), 95.6 (C-6), 79.9 (C-2), 66.6
C-3), 29.6 (C-4).

The H NMR spectra showed that only one peak remained at
.14 ppm and the peak at 6.25 ppm had not returned. LC/MS of
he product again showed main peaks at 292 m/z and 293 m/z
see supplementary data) indicating the mass of single and double
-labelled epicatechin with the additional deuterium most likely
eing from hydrogen transfer with one of the phenol groups.

The immediate stability tests of deuterium labelled compound
howed that in water it was stable for up to 2 h. LC/MS performed at
, 1 and 2 h after storage showed the main mass peak remained at
92 m/z. The peak at 293m/z had been reduced indicating hydrogen
ransfer had again occurred. However this does not represent the
tability in serum and this would need to be investigated further if
t were to be used in toxicological studies.

. Conclusions

This research shows for the first time that labelling polyphenols
n a microreactor is possible and unlike batch reactions is more cost
ffective and could be used for a continuous flow process to monitor
oxicological effects of various compounds in a microfluidic device.
t is also the first time epicatechin has been labelled in the 6 position
sing a 2-step process. Due to the high conversion in step 1 and the
eed for no purification, it is clear that at a future date the labelling

ould be undertaken in a single microreactor. The unique structure
f epicatechin allows iodination and deuteration in the positions we
ave shown. However, when applied to more complex polyphenols,

odination could occur in multiple positions thus complicating any
n vivo analysis. We propose that future studies should investigate

[

[
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the 24 h stability of this labelled compound in more depth for the
preparation of its use in toxicological/metabolic studies.
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Abstract For applications as catalyst supports in flow

reactors, porous silica monoliths require a combination of

connected pores of micron-scale to enable fluid flow plus

nm-scale pores to enable high catalyst area and activity.

We have synthesised a range porous silica monoliths,

characterised their micron and nm-scale pores and mea-

sured their permeability coefficients K. K can be controlled

over the range 10-10–10-14 m2, primarily by adjustment of

the polymer/silane concentration ratio, whilst maintaining

the specific surface area and nm-scale porosity approxi-

mately constant. For the majority of the silica monolith

samples, the measured permeability coefficient K is 2–5

times smaller than K for a hypothetical reference system

consisting of a monolith with uniform cylindrical pores

aligned in the flow direction and with the same average

pore diameter and volume fraction.

Keywords Silica � Porous � Monolith � Permeability

1 Introduction

Increasing interest in the development of miniaturised

micro chemical systems has led to increased research in

micro chemical engineering; embracing microfabrication,

microfluidics and microreaction technology and their

applications in chemical synthesis and analytical and

physical measurements. Such systems commonly have

feature sizes in the range 1–1,000 lm and reagent flow

channels are usually integrated with microsensors, micro-

actuators and catalytic elements appropriate to the partic-

ular application [1–5]. Understanding and controlling

microfluidics is key to controlling reagent delivery, mixing,

separation, heat and mass transfer and reagent contact time

with a heterogeneous catalyst. Most microchemical sys-

tems employ either electrokinetic mobilisation or pressure-

driven pumping of reagents and, in previous studies, we

have demonstrated the successful modelling of an elec-

trokinetic system for the control of the spatial and temporal

evolution of chemical reactions [6]. In the present study,

we focus on the pressure-driven flow properties (i.e. the

permeability) of porous silica monolithic catalyst supports

integrated within flow systems.

Silica monoliths for use as catalyst supports require a

high specific surface area (achieved with nm-sized pores)

to maximise their catalytic activity but must also be highly

permeable (achieved with micron-sized pores) to enable

fast mass transfer to the catalytic surface. They must also

be mechanically strong to withstand the pressures required

to drive fluid through them at the required flow rate. Hence,

effective monoliths must achieve a suitable compromise

between these conflicting requirements which can be done

using fabrication procedures yielding monoliths with both

micron and nano-scale pores. Such monoliths are made by

the sol–gel synthesis of silicon alkoxide precursors in the

presence of additives such as organic solvents or polymers

and there is an extensive literature on their synthesis and

the control of the pore morphology, particularly with

regard to fabricating chromatographic columns with

enhanced performance [7–22]. Formation of a silica

monolith proceeds in the following stages. Firstly, a

homogeneous, single-phase aqueous solution containing a
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silicon alkoxide, a catalyst (commonly an acid or a base)

and an organic additive such as a water-miscible co-solvent

or water-soluble polymer is prepared. The alkoxide then

undergoes hydrolysis to produce –Si–OH species followed

by their polymerisation to yield polycondensed species

containing –Si–O–Si– linkages. The polymerisation indu-

ces phase separation of a silica-rich phase which,

depending on conditions, can occur either by nucleation

and growth or by spinodal decomposition. Additionally, the

polymerisation also causes gelation of the silica-rich phase

which ‘‘freezes’’ the morphology of the silica-rich phase.

The aged wet gel is washed and treated with ammonium

hydroxide solution before washing, drying and calcination

to produce the final porous silica monolith in which the

morphology of the silica ‘‘skeleton’’ is determined by that

of the silica-rich phase of the wet gel, albeit with some

shrinkage. According to this mechanism, the micron-size

pore structure is determined by the composition of the

initial solution and reaction conditions which, in turn,

control the type (nucleation and growth or spinodal

decomposition) and rate of the phase separation and the

subsequent coarsening of the multi-phase system before

gelling occurs to ‘‘freeze’’ the structure. The nm-size pores

are thought to be formed by dissolution/re-precipitation on

the rough surface of the gel network during the treatment

with base and the average nano-pore size can be controlled

by varying the pH and temperature of this treatment step. A

detailed discussion of these processes and how to control

them is given in the elegant review by Nakanishi [8].

Although the extensive literature on silica monoliths

provides much elegant and systematic information on the

mechanism of formation, the control of pore morphology

and monolith performance in chromatography applications,

direct information on fluid permeability through monoliths

is somewhat scattered (see, for example, [11]). In this work

we focus on two main questions. Firstly, how does the

permeability coefficient of a monolith depend on its

porosity and pore size and, secondly, how do measured

permeability coefficients compare with that of a hypo-

thetical monolith containing monodisperse, uniform,

cylindrical micron-scale pores of the same micron-scale

porosity and pore size.

2 Experimental

2.1 Materials

Poly(ethylene oxide) (PEO) with average relative molar

masses of 10, 35, 100, 200 and 300 kDa, poly(ethylene

oxide)-block-poly(propylene oxide)-block-poly(ethylene

oxide) (P123, EO20PO70EO20 and F127, EO106PO70EO106),

tetramethoxysilane (TMOS), tetraethoxysilane (TEOS),

ammonium hydroxide (5 N), and nitric acid aqueous

solutions (1 N) and acetic acid were purchased from

Aldrich. All reagents are AR grade and were used as

obtained without further purification. Heat Shrinkable

Teflon tubes with a shrinkage ratio of 2:1 were purchased

from Adtech Polymer Engineering Ltd., UK.

2.2 Synthesis of silica monoliths

The silica monoliths were prepared using a procedure

similar to that described by Nakanishi [8]. The desired

amount of polymer was added to aqueous solution of acid,

the mixture was cooled in an ice bath and stirred until a

homogeneous solution formed. Then the required amount

of silicon alkoxide was added and the mixture was stirred

vigorously in the ice bath for 30 min to form a transparent

solution. Subsequently, the solution was poured into a

plastic tube (diameter 4.8 mm and length 6 cm), both ends

were closed and the tube was incubated in a water bath at

40 �C for 3 days, during which a wet, semi-solid gel

monolith was formed. Approximately 20% shrinkage

occurred during this gel formation which allowed easy

removal of the wet gel monoliths from the plastic tube

moulds. The wet gel monoliths were washed with copious

amounts of water to remove any possible residues and then

transferred to a 10 times volume of 1 M NH4OH aqueous

solution in an autoclave where it was incubated at 90 �C

for 16 h. The monoliths were again washed with lots of

water before drying in an oven at 60 �C for 2 days. Finally,

the monoliths were calcined at 550–650 �C for 16 h under

air flow to remove any remaining organic material.

The desired application for these silica monoliths is as

catalyst supports within continuous flow chemical reactors.

For both this application and the fluid permeability mea-

surements described here, it is essential they can be

mounted tightly with no leakage in a flow system. The

following method was found to be effective. The silica

monolith rod was clad in a heat shrinkable Teflon tube

which was also connected to the ends of the flow system.

The assembly was then heated in an oven at 320 �C until

the monolith was sealed within the Teflon tube which also

formed leak-tight connections with the flow system.

2.3 Characterization

Scanning electron microscopy (SEM) images were

obtained using a Cambridge S360 scanning electron

microscope operated at 20 kV. Each sample was sputter-

coated with a thin layer of gold-platinum (thickness

approximately 2 nm) using a SEMPREP 2 Sputter Coater

(Nanotech Ltd.). Mean micron-scale pore diameters were

estimated by averaging[20 pore diameters measured from

the SEM images.
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Nitrogen adsorption and desorption isotherms were

measured at 77 K using a Micromeritics Surface Area and

Porosity Analyzer. The isotherms were analysed to obtain

the specific surface area according to the Brunauer-

Emmett-Teller (BET) model. The pore volume and pore

size distributions of the nm-scale pores within the mono-

liths were evaluated from the isotherms using the BJH

(Barrett-Joyner-Halenda) model. The micron-scale pores

are too large to significantly affect the adsorption

isotherms.

Permeability coefficients (K) of the monoliths were

determined by measuring the variation of the pressure drop

across the monolith (DP) with liquid volumetric flow rate

(Q). A syringe pump (KDS 200) was used to drive a set

flow rate of either water or hexane through the monolith

and a miniature pressure sensor (Entran Sensors and

Electronics with range 0–35 bar) was used to measure

DP. Measurement data sets were converted into values of

the permeability coefficient K for each monolith using

Darcy’s law.

K ¼ QlL

ADP
ð1Þ

where Q is the volumetric flow rate (units m3 s-1), l is the

fluid viscosity (units Pa s), L is the monolith length in the

direction of the fluid flow and A is the overall monolith

cross-sectional area.

The total porosity (/t, equal to the volume fraction of

both the micron-scale and nm-scale pores) of the cylin-

drical monolith samples were determined by weighing the

monoliths when dried (i.e. with all pores containing only

air) and when filled with water. The total porosity was

obtained from the weight measurements using Eq. 2.

ut ¼
WM �WT

dLR2p
ð2Þ

where WT and WM are the weights of the dry and water-

filled monolith respectively, d is the density of water and

L and R are the overall length and radius of the cylindrical

monolith. The measurements were normally carried out

five times and an average taken. Several points should be

noted about the value of total monolith porosity estimated

in this way. Firstly, the assumption of air-filled pores ini-

tially is likely to be valid owing to the long drying time and

high temperature calcination in air used in the preparation

of the monoliths. Secondly, water is expected to be fully

imbibed in all micron and nano-sized pores since water

virtually completely wets silica (i.e. the contact angle of a

water drop on silica is close to zero) which makes complete

filling energetically favourable. In principle, despite ther-

modynamic favourability, complete water filling may be

kinetically-limited by the monolith structure. However,

the monoliths here contain a combination of micron and

nano-sized pores which are likely to ensure rapid water

filling. Finally, it is noted that the measured values of /t

reported here will not include any micro- or nano-pores

which are closed, i.e. not connected with the main pore

network which is continuous through out the monolith.

3 Results and discussion

The range of liquid mixture compositions, including

polymer, acid, water and silicon alkoxide, used for the

synthesis of silica monoliths are summarized in Table 1

together with the values of the key characterisation

parameters.

SEM images of examples of the various final monolith

morphologies after calcination are shown in Fig. 1. The

nm-scale pores are not visible at this magnification. As

discussed in [8], the final silica skeleton is dictated by the

point at which the phase separation and subsequent

coarsening of the silica-rich phase becomes ‘‘frozen-in’’ by

solidification. The interplay between these processes can

result in the different morphologies exemplified by the

sample images in Fig. 1. These include (1) fully or partially

discontinuous voids in a continuous silica matrix (‘‘air-

in-silica’’), (2) fully or partially discontinuous silica parti-

cles in a continuous gas phase (‘‘silica-in-air’’) and (3)

‘‘sponge-like’’ structures which are continuous in both the

silica and gas phases (‘‘bicontinuous’’). Of the monolith

samples prepared and investigated here, the majority were

of the bicontinuous type with only samples 17 and 39 being

of the silica-in-air type and samples 24, 42 and 43 being

air-in-silica.

Figure 2 shows a representative nitrogen adsorption/

desorption isotherm and the corresponding size distribution

of the nano-scale pores for monolith sample 20. The

nm-pore distributions are fairly broad and show significant

hysteresis between adsorption and desorption indicating the

pores are not uniform cylinders in shape. The physisorption

analysis illustrated in Fig. 2 shows that the monolith

exhibits a type 4 nitrogen adsorption isotherm, which is

typical of mesoporous materials with a large surface area.

As shown in Table 1 for all the different monolith systems

made here, the variations in mean nano-pore diameter

(11–19 nm), nanopore volume per gram of monolith

(0.53–0.95) and specific surface area (164–252 m2 g-1) are

(relatively) not very large, even though the compositions,

the polymer, acid and the silicon alkoxide used in the

preparations all differ. The variation is even less within the

subsets of systems all containing the same components.

This lack of wide variation is a consequence of the fact that

the nano-pores in the silica skeleton are mainly created by

the treatment step with ammonium hydroxide which is

constant for all the monoliths described here. The treatment
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Table 1 Components and compositions of the initial liquid mixtures used for the synthesis of silica monoliths and the physical properties of the

final monoliths

No. WFpolymer WFwater WFsilane [acid]ov/

[M]

Calcin.

Temp (�C)

Pore diam

(nm)

Surface area

(m2 g-1)

Porosity

(nm)

Porosity

(micron)

Pore diam

(lm)

1014

(K/m2)

K/Kref

F127 13k, acetic acid, TMOS

1 0.067 0.622 0.311 0.0124 550 14.6 183 0.119 0.801 2 3.5 0.35

2 0.062 0.577 0.361 0.0115 – – – – – – A

3 0.051 0.474 0.474 0.0095 – – – – – – – A

4 0.058 0.538 0.404 0.0108 – – – – – – – A

5 0.067 0.622 0.311 0.0124 550 12.7 197 0.154 0.736 3 6.2 0.30

6 0.067 0.622 0.311 0.0124 600 13.5 205 0.153 0.747 3 6.6 0.31

7 0.067 0.622 0.311 0.0124 650 13.9 201 0.171 0.719 2 4.5 0.50

P123 6k, acetic acid, TMOS

8 0.184 0.588 0.228 0.0118 550 16.2 234 0.211 0.689 7 2.5 0.02

9 0.184 0.588 0.228 0.0118 550 12.8 252 0.200 0.690 7 2.5 0.02

10 0.184 0.588 0.228 0.0118 600 14.6 236 0.115 0.825 5 – –

11 0.184 0.588 0.228 0.0118 650 14.9 236 0.113 0.827 4 – –

12 0.171 0.548 0.281 0.0110 – – – – – – – A

13 0.229 0.556 0.215 0.0111 – – – – – – – A

PEO 100k, acetic acid, TMOS

14 0.047 0.667 0.286 0.0133 – – – – – – – A

F127 13k, nitric acid, TEOS

15 0.059 0.550 0.391 0.5498 – – – – – – – A

16 0.053 0.527 0.420 0.4728 – – – – – – – A

17 0.058 0.586 0.355 0.5261 550 10.5 207 0.134 0.756 – – –

18 0.058 0.586 0.355 0.5261 550 10.5 207 0.122 0.778 – 140 –

P123 6k, nitric acid, TEOS

19 0.165 0.527 0.309 0.4739 – – – – – – – A

PEO 100k, nitric acid, TEOS

20 0.053 0.527 0.420 0.4728 550 16 164 0.249 0.591 10 140 0.76

21 0.057 0.525 0.418 0.4713 550 16.6 199 0.240 0.630 4 10 0.32

22 0.057 0.525 0.418 0.4713 600 14.9 194 0.160 0.740 4 5.9 0.16

23 0.057 0.525 0.418 0.4713 650 14.8 192 0.205 0.665 3 8.3 0.44

24 0.044 0.404 0.553 0.3623 550 15.6 172 1.058 0.300 30 37,000 43.85

25 0.043 0.802 0.155 0.7191 – – – – – – – A

26 0.022 0.820 0.158 0.7353 – – – – – – – A

27 0.065 0.604 0.331 0.5417 – – – – – – – A

28 0.028 0.260 0.712 0.2334 – – – – – – A

29 0.057 0.576 0.367 0.5167 550 18 187 0.189 0.711 4 12 0.34

30 0.057 0.576 0.367 0.5167 600 16.8 190 0.213 0.667 4 14 0.42

31 0.057 0.576 0.367 0.5167 650 17.1 190 0.090 0.860 3 11 0.45

PEO 200k, nitric acid, TEOS

32 0.053 0.527 0.420 0.4728 550 13.2 201 0.220 0.630 4 10 0.32

33 0.053 0.527 0.420 0.4728 600 13.6 181 0.193 0.667 3 8.3 0.44

34 0.053 0.527 0.420 0.4728 650 19.2 181 0.249 0.611 3 7.1 0.41

35 0.027 0.541 0.432 0.4856 – – – – – – – A

PEO 300k, nitric acid, TEOS

36 0.032 0.713 0.255 0.2865 – – – – – – – A

37 0.018 0.546 0.436 0.4898 – – – – – – – A
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with base is thought to create the nanopores through a

process of dissolution/re-adsorption, see [8] and references

therein.

Monolith permeability was determined from measure-

ments of pressure drop as a function of liquid volumetric

flow rate (using either water or hexane as liquid) and

representative plots are shown in Fig. 3. The plots for all

samples were found to be linear indicating that Darcy’s law

(Eq. 1) is obeyed, at least up to driving pressures of 60 psi.

The silica monoliths made here contain both micron and

nanoscale pores. Because it is likely that only the micron-

scale pores contribute to the permeability, in order to

determine how the permeability varies with porosity, it is

useful to separate the total porosity /t (measured by water

imbibition) into the micron-scale porosity /m and nano-

scale porosity /n (measured by BET). We assume that all

pores are accessible to water imbibition, i.e. there are no

sealed voids in the monoliths. In this case, we have:

ut ¼ um þ unð Þ ¼ Vn þ Vm

Vn þ Vm þ VSi

ð3Þ

where Vn, Vm and VSi are the volumes per unit mass of

monolith of nano-scale pores, micron-scale pores and silica

respectively. Noting that Vn is obtained directly from the

nitrogen adsorption isotherms and that VSi = 1/qSi (where

qSi is the density of silica), the final expression for /m in

terms of the measured quantities /t and Vn is:

um ¼
ut � 1ð ÞVn þ utVSið Þ= 1� utð Þ

Vn þ VSi þ ut � 1ð ÞVn þ utVSið Þ= 1� utð Þ ð4Þ

Table 1 summarises the values of nano- and micron-scale

porosities, average micron-scale pore sizes and perme-

ability coefficients for all monolith samples. For some

monoliths, (samples 24, 41 and 42), the apparent values of

/m estimated using Eq. 4 were found to be negative which

indicates that one or both of the assumptions underpinning

Eq. 4 (i.e. that water is imbibed into both the micron- and

nm-scale pores and that no pores are closed) must be

invalid in some cases. For these samples, the micron

porosity values in Table 1 refer to the total porosities.

The permeability coefficient K of a monolith is expected

to depend on the porosity, the average pore diameter and

factors dependent on the detailed geometry of the pore

network such as tortuosity and inter-connectivity (see, for

example, [21, 22]). In order to estimate the relative

importance of these different factors, it is useful to com-

pare the measured permeability coefficients with a hypo-

thetical reference system consisting of a monolith

containing a volume fraction /m of uniform, cylindrical

pores of radius r aligned parallel to the flow direction [23].

The number of pores in the monolith (n) is

n ¼ umA

pr2
ð5Þ

Assuming the fluid flow through the cylindrical pores is

laminar, the Hagen-Poiseuille equation yields the

volumetric flow rate Q as:

Q ¼ nDPpr4

8lL
ð6Þ

Substituting for n in Eq. 6 followed by substitution for Q in

Eq. 1 yields the final expression for the permeability

coefficient of this reference system of monodisperse,

uniform, cylindrical pores (Kref).

Kref ¼
umr2

8
ð7Þ

Values of Kref provide an upper limit to the permeability

coefficient expected for a monolith with micron-scale

porosity /m and average pore radius r since factors such as

Table 1 continued

No. WFpolymer WFwater WFsilane [acid]ov/

[M]

Calcin.

Temp ( �C)

Pore diam

(nm)

Surface area

(m2 g-1)

Porosity

(nm)

Porosity

(micron)

Pore diam

(lm)

1014

(K/m2)

K/Kref

F127 13k, nitric acid, TMOS

38 0.067 0.622 0.311 0.6219 – – – – – – – A

PEG 10k, nitric acid, TMOS

39 0.058 0.586 0.355 0.5261 550 10.5 195 0.200 0.630 – – –

40 0.058 0.586 0.355 0.5261 550 – – – 0.830 – 240 –

PEG 35k, nitric acid, TMOS

41 0.058 0.586 0.355 0.5261 550 13.3 191 0.650 0.570 4 – –

42 0.058 0.586 0.355 0.5261 550 13.3 191 0.650 0.570 4 350 12.28

PEO 100k, nitric acid, TMOS

43 0.058 0.586 0.355 0.5261 550 14.9 184 0.828 0.460 – – A

WF signifies the weight fraction of the component

The entry ‘‘A’’ in the final column indicates that either the monolith did not form or it was too easily cracked to enable permeability

measurements
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the tortuosity of the micron-scale pores in real monoliths

are expected to reduce the observed permeability

coefficient.

Figure 4 shows how the measured monolith permeabil-

ity coefficients listed in Table 1 compare with values of

Kref calculated using Eq. 7. For most of the monoliths, the

experimental values of K scale with /mr2 but have absolute

values which are a factor of 2–5 below the behaviour

predicted by Eq. 7. For these monoliths, the variation in

K is dominated by changes in average pore radius r since

the extent of variation in micron-scale porosity is relatively

small (Table 1). A key overall conclusion is that (apart

from the exceptional cases discussed below) the factors

dependent on the pore network geometry (tortuosity, etc.)

reduce the permeability by only a factor 2–5 below that for

a monolith with uniform, cylindrical pores of the same

porosity and pore size.

Fig. 1 SEM micrographs showing examples of the main structural

types: bicontinuous (sample 1), air-in-silica (sample 24) and silica-

in-air (sample 17)

0

100

200

300

400

500

A
bs

or
be

d 
vo

lu
m

e/
cm

3
g-1

Relative pressure, P/Po

adsorption
desorption

0

0.002

0.004

0.006

0.008

0 0.2 0.4 0.6 0.8 1

0 20 40 60
D

if
f'l

 p
or

e 
vo

lu
m

e/
cm

3 g
-1

Å
-1

Pore diameter/nm

adsorption
desorption

Fig. 2 Nitrogen adsorption isotherms and derived nm-scale pore size

distributions for monolith sample number 20

0

20

40

60

0 1 2 3

Pr
es

su
re

 d
ro

p/
ps

i

Flow rate/cm3min-1

monolith sample 1
monolith sample 8
monolith sample 20

Fig. 3 Representative plots of pressure drop versus liquid volumetric

flow rate for monolith samples 1, 8 and 20

506 J Porous Mater (2011) 18:501–508

123



Figure 4 shows two monoliths (samples 24 and 42) with

anomalously high values of K, i.e. K/Kref is greater than 1.

Both these samples are of the ‘‘air-in-silica’’ type (see

Fig. 1) containing fully or partially discontinuous air voids

in a continuous silica matrix. They also showed apparently

negative values of /m estimated using Eq. 4 which indi-

cates that one or both of the assumptions (i.e. that water is

imbibed into both the micron- and nm-scale pores and that

no pores are closed) must be invalid for these monoliths. In

principle, the anomalously high values of K could be a

consequence of either incomplete sealing of the monoliths

within the heat shrink Teflon cladding or pressure-driven

collapse of the silica skeleton of the monoliths leading to

large diameter pathways through the monoliths. Pressure

driven breakthrough into initially closed air voids (=pores)

could account for both the anomalously high values of

K and negative values of /m and therefore appears to be the

most likely explanation.

Two monolith samples (8 and 9) show unusually low

values of K/Kref of approximately 0.02. Both these samples

appear to be of the ‘‘bicontinuous’’ structural type and it is

presently unclear why K/Kref is low for these samples. It is

noteworthy that sample 17, showing ‘‘silica-in-air’’ mor-

phology (Fig. 1), had a very low permeability coefficient

(\10-15 m2), too low to be measured by the method used

here. For samples 8 and 9, although the SEM images of the

monolith surfaces indicate a bicontinuous structure, it may

be that their internal structure has partially collapsed.

As noted above, monolith permeability is primarily

controlled by the average micron-scale pore size r. As

discussed in [8], the key compositional variable affecting r

is the ratio of concentrations of the polymer to silicon

alkoxide, i.e. r decreases as WFpolymer/WFsilane increases.

Hence, it is expected that K will decrease sharply with

increasing WFpolymer/WFsilane. Figure 5 shows this expec-

tation is indeed realised for monoliths containing PEO

100k, nitric acid and TEOS (samples 20–31) and K can be

‘‘tuned’’ over 4 orders of magnitude by adjustment of this

concentration ratio.

4 Conclusions

The key conclusion from this study is that the permeability

coefficient K of silica monoliths can range from 10-14 to

10-10 m2 and approximately scales with /mr2. Using the

synthesis method described here, K can be controlled,

primarily by adjustment of the polymer/silane concentra-

tion ratio, whilst maintaining the specific surface area and

nanopore diameter and volume approximately constant.

For the majority of monolith samples, the value of K is a

factor of 2–5 smaller than a corresponding monolith with

uniform cylindrical micron-scale pores with the same

porosity and size. Some exceptions to this behaviour are

seen and probably caused by either pressure driven

breakthrough into initially closed pores (producing anom-

alously high K monoliths) or either initial formation or

partial collapse to a silica-in-air morphology (producing

anomalously low K monoliths).
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Research Article

On-chip integrated labelling, transport
and detection of tumour cells

Microflow cytometry represents a promising tool for the investigation of diagnostic and

prognostic cellular cancer markers, particularly if integrated within a device that allows

primary cells to be freshly isolated from the solid tumour biopsies that more accurately

reflect patient-specific in vivo tissue microenvironments at the time of staining. However,

current tissue processing techniques involve several sequential stages with concomitant

cell losses, and as such are inappropriate for use with small biopsies. Accordingly, we

present a simple method for combined antibody-labelling and dissociation of hetero-

geneous cells from a tumour mass, which reduces the number of processing steps.

Perfusion of ex vivo tissue at 41C with antibodies and enzymes slows cellular activity

while allowing sufficient time for the diffusion of minimally active enzymes. In situ

antibody-labelled cells are then dissociated at 371C from the tumour mass, whereupon

hydrogel-filled channels allow the release of relatively low cell numbers (o1000) into a

biomimetic microenvironment. This novel approach to sample processing is then further

integrated with hydrogel-based electrokinetic transport of the freshly liberated fluor-

escent cells for downstream detection. It is anticipated that this integrated microfluidic

methodology will have wide-ranging biomedical and clinical applications.

Keywords:

Electrokinetic / Head and neck squamous cell carcinoma / Hydrogel / Lab on a
chip / Microflow cytometry DOI 10.1002/elps.201100172

1 Introduction

Flow cytometry is an invaluable biomedical tool for research

into the cellular mechanisms of cancer malignancy [1].

Microflow cytometry, an emerging technology in cancer

research, has advantages over conventional flow cytometry;

these include compactness, reduced sample size require-

ments, prevention of cross-contamination by containment

of biohazardous samples in disposable microfluidic devices

and possibilities for integrated analyses [2]. The first

instance of microflow cytometry on patient-derived solid

tumour cells was reported over four decades ago, where

fixed cells were detected and sorted according to the size and

nucleic acid content by differences in light absorption and

scattering properties [3].

Despite the inherent promise of this early success,

microflow (and flow) cytometry for cancer research remains

largely restricted to the analysis of cultured cell lines selec-

ted to represent the tissue of origin. However, the risk of

phenotypic alteration brings interpretive problems, i.e.

insights gained through cell line work cannot be confidently

extrapolated to explain in vivo tumour behaviour. Even 3-D

co-cultures or artificial tissue constructs do not fully repre-

sent tissue complexity, in which multiple cell types

continuously interact with one another and with the extra-

cellular matrix (ECM [4]). Furthermore, the tumour ECM

and stroma are known to exhibit patient-to-patient hetero-

geneity even among tumours of the same histopathological

type, and this has a significant influence upon metastatic

potential and thus upon patient prognosis [5].

Consequently, fresh biopsies comprising patient-speci-

fic tumour cells and stromal cells within their native ECM

milieu constitute more physiologically relevant samples for

the exploration of solid tumour biology at the cellular level

[6, 7]. It is postulated that cells directly liberated from this

microenvironment would more reliably retain their pheno-

types; however, the labelling of cell-membrane markers

entails several sequential steps – tissue disaggregation,

incubation of dissociated cells with fluorescently conjugated

antibody, and removal of unbound antibody – each neces-

sitating cell washing and centrifugation [8]. Inevitable cell

losses during these procedures render flow cytometry

Jane Woods1,2

Peter T. Docker1

Charlotte E. Dyer2

Stephen J. Haswell1

John Greenman2

1Department of Chemistry,
University of Hull, Hull, UK

2Postgraduate Medical Institute,
University of Hull, Hull, UK

Received March 16, 2011
Revised July 28, 2011
Accepted August 23, 2011

Colour online: See the article online to view Figs. 3, 4 and 6 in colour.

Abbreviations: ECM, extracellular matrix; EPF,

electrophoretic flow; HNSCC, head and neck squamous cell
carcinoma

Correspondence: Professor John Greenman, Centre for Biome-
dical Research, Postgraduate Medical Institute, University of
Hull, Cottingham Road, Hull, HU6 7RX, UK
E-mail: j.greenman@hull.ac.uk
Fax: 144-1482-466996

& 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com

Electrophoresis 2011, 32, 3188–31953188



impractical for small biopsy samples [9]. Microflow cyto-

metry meanwhile has the capability to analyse small

numbers of cells; nonetheless, there is an acknowledged

need for simplified, robust, integration of pre-analytical

sample processing if such a technology is to be widely

adopted by biomedical researchers [10–12]. Progress in this

area has been demonstrated, for example, by antibody

labelling of primary human blood cells in Lab-on-a-chip (or

micro Total Analysis Systems); accordingly, the ability to

label solid tumour cells on microfluidic-based devices would

represent a further significant step [13].

Other advantageous features of a microflow cytometer

for biomedical research include a reduced footprint and

fewer moving parts; advantages afforded by utilising an

electrokinetic (EK) system for cell movement that can be

rapidly switched for accurate cell sorting. Early work on EK

cytometry explored the manipulation of unlabelled bacteria,

yeasts and red blood cells, employing combinations of

microchannel layouts and voltage switching [14]. Since then,

applications have extended to encompass the labelling of

bacteria on-chip prior to sorting [15] but for tumour cell

manipulation the greater convenience of EK has yet to be

exploited.

We present here an innovative and integrated approach

to pre-analytical tumour tissue disaggregation, single cell

isolation and antibody cell labelling that represents a

departure from conventional protocols such as FACS which

is designed for large cell numbers and high throughput [16].

This methodology allows in situ labelling of cells within a

tumour mass during interactions with neighbouring cells

and with the tumour-specific ECM, prior to cell dissociation.

Moreover, this pre-analytical sample processing is then

integrated with EK transport and detection of relatively

small numbers of freshly liberated tumour cells, as illu-

strated in Fig. 1A which can be used for subsequent

analysis, e.g. polymerase chain reaction (PCR) measure-

ment of changes in gene transcription.

2 Materials and methods

2.1 Microfluidic devices

Glass microfluidic devices were fabricated using standard

photolithography and wet etching techniques to produce the

design shown in Fig. 2. Channels 70 mm deep� 150 mm

wide were etched in 1 mm glass. A 3-mm diameter tissue

chamber and 1.5 mm holes for sample, reagent and

electrode access were drilled in a 3-mm glass top plate

before thermally bonding it to the etched base plate to form

the device. Prior to each use, devices were sterilised by

flushing with ethanol and autoclaving, and fresh reservoirs

glued around the access ports using epoxy resin (Perma-

bond, UK). Lids reduced evaporation and housed 0.5 mm

diameter Pt electrodes. Channels were flushed with

deionised H2O, then 0.1 M NaOH for 5 min, followed by

deionised H2O and then finally media. All fluids were

filtered prior to use through a 0.22-mm syringe filter

(Millipore, UK). After filling microchannels with hydrogel

(formulated as described below), excess hydrogel was

removed from the tissue chamber, and to prevent tissue

debris from entering and clogging the channels, a 50-mm

mesh cell strainer (340632, BD Falcon, UK) was secured

above the main channel as shown in Fig. 2C.

Figure 1. (A) Schematic of integrated microfluidic processes
from biopsy to detection of antibody-labelled tumour cells.
Labelling is achieved during in situ interactions with native ECM
and neighbouring cells. Following controlled release, labelled
tissue cells are transported electrokinetically in small numbers
for detection and imaging. (B) HNSCC tissue (E1 mm3) placed
upon cell strainer in tissue chamber, submerged in enzyme/
antibody mixture. At 41C, solid hydrogel acts to contain fluid in
reservoir. (C) A combination of melting hydrogel and hydrostatic
pressure allows in situ antibody-labelled, dissociated cells to
pass through the cell strainer and hydrogel macropores in the
microchannel.
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2.2 Preparation of hydrogel for tumour cell electro-

kinesis

As fluid flow in tissues occurs within a gel-like matrix

[17, 18], low melting point (LMP) agarose hydrogel (A9419,

Sigma-Aldrich, UK) was used in the microchannels

to provide a biometic microenvironment and also to

suppress the hydrodynamic back pressure during EK

transport. 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic

acid (HEPES)/sucrose mixture was first prepared by

dissolving acid and base components of HEPES in deionised

water giving a 0.1 M stock solution, pH 7.4, at 251C (http://

www.liv.ac.uk/buffers/buffercalc.html). This was diluted 1:1

with deionised water and then mixed with 0.50 M sucrose

1:1 to give 0.025 M HEPES/0.25 M sucrose (final concentra-

tions). Hydrogel was then prepared by dissolving 0.25 or

0.50% w/v LMP agarose in the above HEPES/sucrose

buffer, which was specifically formulated to meet the

following criteria:

(i) EK linear velocity is proportional to zeta potential z and

field strength. Applied potentials should be kept at

minimal levels to prevent high currents, Joule heating

and cell lysis [19]. To maximise bulk flow and cell

viability at a given voltage, it is desirable to maximise z
which is affected by pH and inversely proportional to

ionic strength [20–22]. Well-buffered fluids at low ionic

strength are thus essential for EK at low voltages in

microfluidic cellular applications.

(ii) Biocompatible osmolality for human tumour cells is

E297 mOsm/kg [23]. To prevent artefacts arising from

hypo- or hyper-tonic shock, osmolality in vitro is

commonly controlled using salts, e.g. phosphate-

buffered saline (PBS). The requirement for low ionic

strength precludes the use of salts, so an isotonic

sucrose solution was used in place of PBS [24].

(iii) Biocompatible extracellular pH is 6.8–7.8 [25].

Adequate pH buffering is especially important in

EK, as electrolysis and other interactions can alter the

local pH, reduce the zeta potential and even reverse

the direction of flow [26–29]. A 0.025 M HEPES buffer

was selected as optimal for this application [30, 31].

A PBS-based hydrogel was also used in all the

comparative EK mobility experiments.

2.3 Tissue and cell samples

Tumour samples from patients with head and neck squamous

cell carcinoma (HNSCC) were selected as representative of

small clinical biopsies typically consisting of tiny pieces of

tissue E0.1–3.0 g in mass. Anonymised samples from

HNSCC lesions were obtained from patients undergoing

surgery, having gained ethical approval from Hull and East

Yorkshire Research Ethics Committee (07/H1304) and the

Hull and East Yorkshire Hospitals NHS Trust (RO568).

Samples were stored in Dulbecco’s modified Eagle’s medium

(DMEM; E15-009, PAA Laboratories, UK) supplemented with

10% v/v foetal calf serum (FCS; S1900, Biosera, UK) and

antibiotic solution [10 000 U/mL penicillin and 10 mg/mL

streptomycin in 0.9% w/v NaCl; P11-010, Sigma, UK], at 41C,

and if not used immediately, snap frozen and cryopreserved in

liquid nitrogen at �1961C.

K562 human erythroleukaemic cells were selected for

proof of principle in EK studies, as it was experimentally

easier to work with cell lines than fresh cells derived from a

tumour. Cells were cultured in Roswell Park Memorial

Institute medium (RPMI 1640; E15-840, PAA Laboratories)

supplemented as above and harvested by centrifugation at

400� g. Cell and tissue preparation was carried out in a

class II biological safety cabinet.

Figure 2. (A) Scale drawing of microfluidic
device showing tissue chamber above main
channel, and access ports A–D above
channel ends; (B) photograph of device
with reservoirs in place; (C) photograph
taken on inverted microscope showing
50 mm mesh cell strainer secured in tissue
chamber E100 mm above main channel.
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2.4 Antibodies

Integrin subunits b1 and a6 were selected as ubiquitously

expressed cell membrane targets that are reported to be

upregulated in metastatic HNSCC cells [32, 33]. Monoclonal

antibodies conjugated with red or green fluorophores were

used: anti-CD29 (integrin b1) PerCPe-Fluors710 (46-0299,

eBioscience, UK) and anti-CD49f (integrin a6) Alexa

Fluors488 (313608, Cambridge Bioscience Ltd, UK), each

at 5 mL per mm3 of tissue (E400 000 cells).

2.5 Integrated antibody labelling and cell release

A 1 mm3 piece of HNSCC biopsy tissue was placed in the

tissue reservoir upon the cell strainer and submerged in

200 mL of enzyme solution. Antibodies as described above

were added to the collagenase solution (see below) after 3 h,

and the tissue incubated at 41C for a further 5–21 h as

shown in Fig. 1B. The reduction in temperature and

extended time frame, compared with conventional metho-

dology, was designed to minimise enzyme and cellular

metabolic activity while permitting sufficient time for

diffusion of reagents to occur into centre of the tissue.

In preliminary experiments, cells were retrieved at

various stages for imaging, to assess the effectiveness of the

labelling and dissociation method, to optimise the duration

of the cold perfusion required for saturation of tissue with

enzymes and antibodies, and to check whether the enzymes

affect antibody labelling. Reservoir contents were gently

pushed through a 50mm mesh cell strainer using a syringe

plunger, centrifuged at 400� g for 3 min; 10 mL from the

reservoir was observed on a microscope slide by inverted

fluorescence microscopy (Axiovert S100, Carl Zeiss, UK)

using a 20� objective lens. Identical excitation filters of

band pass 470/40 nm allowed excitation at 488 nm. To

collect the red signal, a 660-nm beam splitter and emission

filter band pass 690/50 nm excluded green fluorescence. To

collect the green signal, a 495 nm beam splitter and emis-

sion filter band pass 540/50 excluded red fluorescence.

Dual-labelled cells were separately imaged by monochrome

CCD camera [Orca ER, Hamamatsu Photonics UK] for

analysis in ImageJ software [34].

After an allotted time span for incubation in enzyme/

antibody mixture, the solution was replaced with HEPES/

sucrose buffer and cell release from the tumour mass was

instigated by incubating the device at 371C for 30–60 min.

The device was then placed upon the microscope stage for

observation of tissue cells passing through the cell strainer,

under gravity and hydrodynamic pressure, and into the

microchannel.

2.6 EK cell transport

Once the optimal conditions for effective in situ labelling of

cell-membrane integrins and the dissociation of labelled

cells had been established, the optimal field strength

required for controlled cell manipulation enabling subse-

quent cell sorting (10–100 V/cm) was determined using

K562 cells. After functionalising the device by rinsing with

NaOH and buffer as described, channels were filled with

hydrogel made with either PBS or HEPES/sucrose buffer,

and containing either labelled or unlabelled cells suspended

at E0.5–1.0� 106 mL�1. The device was placed on the stage

of an inverted fluorescence microscope, and a voltage

applied between access ports A and B (Fig. 2A) using

0.5 mm Pt electrodes connected to a 1-kV DC power supply

(Kingfield Electronics, UK). Fluorescent image sequences

were analysed in ImageJ to derive apparent linear velocity

(vapp) which was converted to apparent mobility (mapp);

mapp 5 mepf1meof. Cell diameters were measured in ImageJ

and plotted against corresponding mapp.

Having established cell flow characteristics using the

K562 cells, the integrated device was then used to study

freshly dissociated antibody-labelled tumour cells

from a tissue biopsy. Cells were initially observed entering

the channel under gravitational and hydrodynamic

forces, and when this cell movement had subsided,

the cells were then moved through the microchannel

to the detection window by EK with a field strength of

70 V/cm. Again, mapp was derived from vapp using ImageJ

analysis.

3 Results

3.1 Integrated antibody labelling and cell release

Antibody labelling and dissociation of cells from tumorous

and normal (peripheral) regions of HNSCC biopsies was

undertaken both ‘off-chip’ and ‘on-chip’ on a series of

different biopsies, testing different incubation periods

of the enzyme and antibody mixture. An example of an

‘off-chip’ experiment is shown in Fig. 3. It was found that

incubation periods 420 h were required to elicit relatively

small clumps of cells and sufficient single cells for

downstream analysis; tumour biopsies tended to yield more

single cells than the peripheral tissue although as expected

there were difference in the dissociation reflecting tumour

heterogeneity. Greater incubation times were not pursued

as the aim was to label and analyse as contemporaneously as

possible. This methodology enables minimally disruptive in

situ antibody labelling of cell membrane targets and

moreover is able to reflect the dynamic behaviours of ex

vivo human cancer cells within both normal and malignant

functional tissues.

The rationale behind the cold perfusion approach for

antibody labelling and tissue disaggregation is the total

suffusion of the tissue ECM with minimally active collage-

nase, and simultaneous saturation of antigen binding sites

with antibody. In contrast to conventional methods, this

relatively prolonged incubation at 41C preserves the tissue,

antibodies and enzymes, and slows cellular activity; while

Electrophoresis 2011, 32, 3188–3195 Microfluidics and Miniaturization 3191
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allowing sufficient time for diffusion to the centre of the

tissue. The diffusion coefficient D in free solution at 201C is

dependent upon both medium and solute, and inversely

proportional to solute molecular weight. Diffusion into

tissue, however, is more complex than in free solution, as

extracellular space is non-homogeneous, and tissue porosity

affects diffusion rate [35]. Tumour tissue is often composed

of very densely packed cells, in the region of 2–4� 105 cells/

mL (mm�3 [36]). D for IgG1 and collagenase in tumour

tissue is typically E1� 10�11 m2/s, or 10 mm2/s [36, 37]

compared with 4.2� 10�11 and 4.5� 10�11 m2/s for IgG1

and collagenase in free solution at 201C [38]. For a 1-mm3

piece of tumour tissue, diffusion distance to the centre is

5� 10�4 m, giving an approximate diffusion time of

E12 500 s or 3.5 h at 201C. However, diffusion is also

temperature dependent, resulting in significantly longer

time scales at 41C [39].

In the case of antibody diffusion, as the antibody front

progresses, the effective diffusion rate is influenced not only

by the above factors but also by antibody–antigen binding

and is thus inversely proportional to antigen density [40].

Pre-treatment with collagenases has been shown previously

to enhance the diffusion of large molecules into in vivo

tissue [40]. Accordingly in this current work, collagenase –

whose activity at 41C is much reduced [41] – was incubated

for 24 h to allow diffusion into the tissue with only residual

collagenase activity. Since this may nonetheless go some

way toward preconditioning the tissue to facilitate entry of

IgG1, a 3-h delay was incorporated before adding the anti-

body. Although 24 h incubation was used for the following

proof of concept studies, shorter incubation time periods

also gave effective antibody labelling but less efficient

dissociation.

After incubation of tissue biopsies ‘on-chip’ with the

antibodies and enzymes, the excess mixture was replaced

with HEPES/sucrose buffer. Incubation at 371C then

increased enzymatic activity within the tissue, cleaving the

ECM and releasing labelled cells. Concurrently, as the

temperature was raised from 4 to 371C, the hydrogel

underwent partial melting without reaching the total fluid

phase (501C). Heating the microdevice to 371C thus realised

two desired outcomes – dissociation of labelled cells from

the tissue, and flow of cells vertically through the strainer

and laterally into the hydrogel-filled channel by gravitational

and hydrodynamic forces, as shown in Fig. 1C. The 0.25%

hydrogel was found to be superior to the 0.5% hydrogel in

terms of allowing cells to cross from a fluidic medium into

the hydrogel macropores, whereupon it was found to

adequately control the hydrodynamic back flow and stabilise

cell motion in the microchannel. Eight independent

experiments were undertaken to test the labelling and

dissociation aspects of the device.

Figure 3. Fluorescent pseudo-coloured micrographs of peripheral cells (A–C) and tumour cells (D–F) from a patient with HNSCC. Cells
were dual-labelled and dissociated ‘off-chip’ by the combination method. Antibodies to two integrin subunits were used: (A and D) anti-
CD49f (a6) conjugated with Alexa Fluors488 (green), (B and E) anti-CD29 (b1) conjugated with PerCPe-Fluors710 (red). Monochrome
images were combined to show co-localisation of a6 and b1 (C and F). Pseudopodia are just apparent upon the tumour cells, with
clusters of b1 at the leading edges. Results are representative of three separate experiments.
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3.2 EK cell transport

In preparation for transporting dissociated cancer cells, the

interplay between electroosmotic flow (EOF) and electro-

phoretic flow (EPF) in hydrogel-based EK was explored.

Figure 4A shows a scatter plot for mapp versus cell diameter

for unlabelled K562 cells in PBS-based hydrogel in a field of

70 V/cm. Figure 4B shows the experimental set-up in which

a range of EK field strengths were studied. The levels below

50 V/cm did not reproducibly cause movement with all

cell types studied (data not shown). The levels in excess of

70 V/cm, although causing more rapid movement,

commonly induced extensive cell lysis, particularly in the

freshly isolated tumour cells. The data show a positive

correlation between cell diameter and EK mobility indicat-

ing that in this application, mapp is generally higher for larger

cells than for smaller ones. These results suggest that cells

can be discriminated on the basis of size alone, a factor that

could be useful in future applications of this technology.

Figure 5 shows mapp for fluorescent antibody-labelled

versus unlabelled cells in HEPES/sucrose hydrogel.

This result indicates that mapp is much higher for

unlabelled cells (42.0� 10�8 m2/Vs) than for labelled cells

(o1.0� 10�8 m2/Vs ). These variations in overall EK

mobilities for cells of varying size and for labelled and

unlabelled cells reveal the part played by EPF. The nega-

tively charged membrane attracts cations to form an electric

double layer and cellular zeta potential zc. Simultaneous to

cell movement within the EOF bulk flow, cell movement

relative to the fluid occurs by EPF, with linear velocity vepf

dependent upon charge-to-size ratio. Smaller cells possess

higher charge-to-size ratios and thus experience greater

cathodic EPF. In the case of labelled cells, antibody charge is

pH dependent and governed by the isoelectric point. For

monoclonal IgG1, the isoelectric point is highly hetero-

geneous but lies in the range 7.0–9.0, and so IgG1 has a net

positive charge at pH 7.4 [42]. The overall charge on

conjugated antibodies should include fluorophore charge;

however, this information is not readily available. However,

what is known is that cells with bound conjugated antibody

have increased zc and greater charge-to-size ratios than

unlabelled cells [43]. Labelled cells are consequently more

electrophoretically mobile, a phenomenon used for the

characterisation of lymphocyte phenotypes, zeta potential

calculation and immunoelectrophoresis of erythrocytes

[43, 44].

If mepf and meof are in the same direction, mapp is

increased; conversely, if they are in opposite directions mapp

is decreased. As a consequence of microchannel fouling,

due to the deposition and adsorption of proteins and other

cellular debris, it is known that normally negative channel

surfaces become positively charged resulting in reverse

EOF, i.e. bulk flow is towards the anode [45, 46]. Following

release into the microchannel as described above, antibody-

labelled dissociated tumour cells were transported by

hydrogel-based EK for detection by fluorescence microscopy.

Figure 6A shows a stationary integrin b1-labelled cell in the

0.25% hydrogel-filled channel, just prior to application of an

electric field. The fluorescent signal is sufficiently bright to

be easily detectable, showing that antibody remains bound

to cells while in motion within the hydrogel, and that the

hydrogel is a suitably transparent medium. In addition, the

levels of unbound antibody in the hydrogel are low in

contrast with antibody bound to the cells.

Figure 6B shows a plot of intensity versus time for the

same cell (representative of many cells) traversing a region

of interest (ROI; marked on Fig. 6C) upon the application of

45 V/cm. The fluorescence peak for the cell is distinct from

that of the background, indicating that washing off excess

antibody is un-necessary, and also that the selected fluor-

ophores are sufficiently bright and photostable to give

prolonged, detectable signals from moving cells.

The sequence in Fig. 6C shows cells moving by hydro-

gel-based EK, with dominant anodic EOF. The overall

Figure 4. (A) Scatter plot of EK mobility (mapp) versus cell
diameter for unlabelled K562 cells in PBS-based hydrogel. Each
point represents an individual cell, data shown are representa-
tive of over 150 cells. Mean vappE9.0� 10�5 m/s. Mean
mappE1.34� 10�8 m2/Vs; (B) K562 cells moving by EK in a
hydrogel-filled microchannel. All observed cell velocities are
toward the anode.

Figure 5. EK mobility (mapp) for antibody-labelled and unlabelled
cells in HEPES/sucrose hydrogel. Error bars are SE for four
repeats.
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mobility of these cells showed no difference from that

observed in initial experiments characterising the flow

system with the K562 cell line. Agarose hydrogel is

mechanically similar to ECM and supports the cells in

motion, preventing settling out, while permitting continued

paracrine interactions via soluble signalling factors

[18, 47, 48].

4 Discussion

This study has demonstrated the feasibility of using ex vivo

human tumour tissue as a source of primary cells for EK

microflow cytometry. Furthermore, it has enabled the

integration of solid tumour cell dissociation, antibody

labelling, cell transportation and fluorescence-based cell

detection to be achieved on a single microfluidic platform.

The demonstration that these procedures can be success-

fully assimilated will lead to future devices containing these

processes in portable units as the existing components can

all be miniaturised without loss of function or sensitivity [2].

The innovative tissue processing approach reduces cell

handling, simplifies the pre-analytical stage of microflow

cytometry and thus minimises the potential for generating

experimental artefacts. In addition, cell labelling can be

achieved alongside complex dynamic signalling and adhe-

sion events with neighbouring cells and with the ECM. The

work demonstrates the value of microfluidics as a tool for

solid tumour research at the cellular level. Cells released

directly from this vital and information-rich tumour

microenvironment provide unique data on individual

patient tumours. Finally, the use of EOF and EPF to

transport antibody-labelled and unlabelled heterogeneous

tumour cells suggests that through careful selection of field

strength and flow direction, some degree of cell separation

may also be achievable. Future studies using multiple

fluorescently labelled antibodies to validate the detection of

known diagnostic/prognostic markers on tumour samples

in the microfluidic device are planned, e.g. detection of

epidermal growth factor receptor on HNSCC, in parallel

with technological developments of the integrated micro-

fluidic device.
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Abstract Current in vitro methodologies for the culture
and analysis of liver specific responses lack the sophistication
of in vivo dynamics. In this work, a microfluidic based
experimental methodology has been utilized to reproduce a
biomimetic microenvironment in which pseudo in vivo liver
tissue studies can be carried out under in vitro conditions. This
innovative technique, which exploits the inherent advantages
of microfluidic technology, has been utilised to study the
viability and functionality of explant liver tissue over four
days in the presence of varying concentrations of ethanol.
Concentrations of ethanol as low as 20 mM have produced a
decrease in WST-1 metabolism, a marker of mitochondrial
activity, and an increase lactose dehydrogenase release,
reflecting cell death, in the explant samples; these effects
increase with higher ethanol concentrations. A concomitant
decrease in albumin and urea synthesis was also observed. We
believe the proposed methodology is widely applicable and is
clearly of relevance to biological and clinical research
including drug development and toxicity, as well as enabling
better fundamental understanding of tissue/cell processes.

Keywords Alcohol induced injury. Liver biopsy.

Liver metabolism

1 Introduction

The association of alcohol abuse with liver tissue damage
has been the focus of considerable research that has shown
ethanol to be the direct cause of various abnormalities in
liver architecture and functionality such as fatty liver,
apoptosis, necrosis, cancer, fibrosis and cirrhosis (Albano
2008; Clemens 2007; Seitz and Becker 2007). However, the
understanding of the mechanisms of alcoholic liver disease
(ALD) progression has been protracted due to the lack of
appropriate in vitro models that accurately simulate the
microenvironment of the liver organ itself. Whilst extensive
knowledge has been gained through the application of
primary hepatocytes in culture and hepatoma cells lines,
both in tandem and isolation, these studies cannot provide
a complete understanding of the complex intracellular
interactions and regulatory factors that are exhibited in
native tissue (Emami et al. 2009; Jones et al. 2010; Ruan et
al. 2010). Indeed many liver cells cultured by traditional
methods, which do not replicate in vivo flow and transport
dynamics, rapidly lose their specific liver gene expression
and consequently their ability to produce tissue specific
functions (Boess et al. 2003; Mathijs et al. 2009).
Traditionally to overcome many of the limitations associated
with cell-based methodology, animal models have been
utilised to study physiological and pathological effects
however, due to differences between organisms these models
are limited (King et al. 2010; Mortensen et al. 2008). The
maintenance of human liver tissue in vitro represents a
more attractive approach to studying biological processes,
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compared with isolated and cultured primary hepatocytes,
as the former offers the complexity and interactions of
multiple different cell types arranged in their specific in
vivo architectural patterns.

In the liver, hepatocytes are the main functional element
responsible for toxicity elimination, xenobiotic and fatty
acid metabolism, glucose storage, and protein synthesis.
Accordingly, realizing a method for the maintenance of
liver-specific functions of hepatocytes and other liver cells
in a tissue environment would represent a useful tool for
investigating functional changes through toxicological
damage. A number of in vitro models for liver function
have used precision–cut liver slices (PCLS). PCLS represent
fractions of the whole liver in the form of thin sections (150–
250 μm) of tissue. PCLS have been used to study a variety of
metabolic and toxicological studies and have been effectively
used to model ethanol hepatoxicity. An in vitro method, for
example, has recently been developed of ethanol-induced
injury using PCLS from Wistar rats, cultured with and
without 25 mmol/L ethanol using a roller system under 95%
O2 (Klassen et al. 2008). However, the PCLS used in this
study were dimensionally only a few hundred microns in
scale and would contain therefore approximately 8–10
hepatocytes, which may in fact be too thin to include all of
the relevant cell types and 3D structure necessary to model
the whole organ effectively, e.g. cell types that are sparsely
represented within the tissue such as cholangiocytes may not
be present. A further problem with such methodology is that
it lacks in vivo flow dynamics as nutrients are typically
supplied in discreet batches, which then decrease as
metabolism occurs generating a build-up of waste products
(Kim et al. 2007; Walker et al. 2004; Warrick et al. 2007).
Under normal physiological conditions the flow within
vascular capillaries and tissues is known to have Reynolds
numbers <100, resulting in predominantly diffusion based
characteristics, over spatial distances of approximately
100 μm,(Kim et al. 2007; Ling et al. 2007) conditions under
which cellular metabolite uptake, gaseous exchange and
waste removal occur (Nevill et al. 2007).

Given that the flow and spatial parameters which exist in
tissue are very similar to those of the microfluidic
environment, the opportunity to carry out continuous
perfusion of tissue samples (Kim et al. 2006; Nevill et al.
2007) offers an experimental approach that may overcome
some of the limitations of current standard batch culture
systems (Yu et al. 2007). The benefits of microfluidic
techniques for cell/tissue culture that have been demon-
strated previously include laminar flow conditions, small
length scales, large surface to volume ratios, diffusion
dominant transport, portability, reusability or disposability
and reduced cost (El-Ali et al. 2006, Meyvantsson and
Beebe 2008). In addition, by exploiting the flow conditions
present in a microfluidic device, unprecedented spatial and

temporal control over materials entering and leaving an
experimental system can be achieved (Hattersley et al. 2008;
Takayama et al. 2003; Zhang et al. 2008). Accordingly the
ability to place a viable tissue biopsy in a microfluidic
device will offer the opportunity to control, probe and
monitor complex cell functions in diseased and healthy
tissue whilst maintaining in vivo architecture(El-Ali et al.
2006; Weibel and Whitesides 2006; Puleo et al. 2007;
Nakanishi et al. 2008).

In this paper, we build on previous work (Hattersley et
al. 2008) to describe an innovative approach for studying
rat liver tissue that exploits the benefits of the microfluidic
environment to create pseudo in vivo conditions in vitro and
apply it to an investigation of ethanol hepatoxicity.

2 Material and methods

2.1 Design and microfabrication of the microfluidic device

The microfluidic chips were fabricated using photolithography
techniques as described previously(Broadwell et al. 2001;
McCreedy 2001). AutoCAD LT software, a computer
assisted design package, was used to design the microdevice
from which a photomask was generated. The final device was
generated in glass by transferring the design produced on the
photomask using standard photolithography and wet-etching
techniques (Broadwell et al. 2001). Access holes and a
central chamber (diameter 3 mm) were drilled in the top
plate. The top plate was then thermally bonded to the etched
bottom plate in a furnace at 590°C for 3 h (Tarn 2008). The
channel design used in this device consisted of a single
channel, which diverged into two outlet channels as shown
in Fig. 1.

Fig. 1 (a) Image of the microfluidic device, tissue was placed in the
3 mm circular cavity in the centre of the device. (b) Image of four
microdevices in operation within a single experiment (c) Schematic of
the microfluidic device used in these studies
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2.2 Microfluidic system for maintaining tissue biopsies

The microfluidic device as described above had a microport
(Anachem, UK) glued to the surface of the top glass layer
such that the circular tissue cavity could be sealed using an
English threaded adapter (Anachem, UK). The adapter was
filled with poly-dimethylsiloxane (PDMS) (Dow Corning,
UK) to allow gaseous exchange (Kane et al. 2006). The
tissue cavity is cylindrical with a volume of approximately
20 μl. A Harvard PhD 2000 syringe pump (Harvard, UK)
was connected to the device via 0.8 mm ID×1.58 mm OD
TFE Teflon® tubing (Anachem, UK). The length of the
tubing from syringe to the device was 30 cm. This allowed
sufficient time for the media to be heated to 35–37°C before
reaching the tissue. A 0.22 μm syringe filter (Millipore,
UK) was fitted in line to remove any bacterial contamination;
this also minimised the generation of gas bubbles in the
media. A 1.5 ml microcentrifuge tube, with a hole in the lid
covered with parafilm to stop contamination and leakage, was
placed on each end of the outlet tubing to collect eluate. The
entire system was placed in a portable incubator at 37°C.

2.3 Animal and tissue preparation

All samples for the following experiments were taken from
a single male rat (Wistar, B&K Universal Ltd, UK). The
animal was fed and watered ad libitum until anaesthetized
(10 ml kg−1 of 10 mM sodium thiopentone, intraperitoneal)
and killed under a Schedule 1 procedure prior to liver
extraction. The liver was immediately sectioned into pieces,
approximately 1 cm3 using a scalpel, and placed in 1 ml
cryovials (Alpha Laboratories, UK), which were then
plunged into liquid nitrogen and stored for subsequent
experimentation.

Six microfluidic devices were sterilized prior to use by
pumping 70% (v/v) ethanol/water through the devices for
15 min at 10 μl min−1 followed by a rinse with sterile,
distilled water. The devices were then primed with Williams
Media E (WME) (Gibco, UK) supplemented with 1% (w/v)
penicillin/streptomycin (Sigma, UK) at a flow rate of
20 μl min−1 and set in a 37°C incubator. The frozen tissue
was removed from the cryovial, cut into approximately
4 mm3 sized sections, allowed to thaw, weighed and placed
into the tissue cavities pre-filled with medium. To ensure
that all cells in such a tissue sample have time to come into
contact with media or ethanol/media it was found that a
period of approximately 2 h was required for the tissue
sample to become fully diffused. This was determined
through the application of Brilliant Blue Dye (Sigma, UK)
to the sample through the system at 2 μl min−1, then
removing the tissue and cutting it in half to visualize the
diffusion profile. The flow rate through the tissue cavities
was maintained at 2 μl min−1. A visual check was made to

ensure no bubbles were trapped in any of the chambers; if
observed they were removed using a sterile hypodermic
needle. WME was replaced with WME supplemented with
20, 50, 100, 150 and 200 mM ethanol in five independent
parallel devices. In the sixth device, WME only was run and
acted as a negative control. The eluent from the outlets of each
of the microfluidic device was collected every hour in 0.5 ml
microcentrifuge tubes for cell viability and functionality
analysis.

2.4 Viability analysis

To quantify cell viability and cell death within the tissue
sample, a colorimetric cytotoxicity assay (Cytotoxicity
Detection Kit Plus, Lactate dehydrogenase (LDH) Roche,
UK) and a colorimetric cell proliferation assay using a
tetrazolium salt, 4-[3-[4-lodophenyl]-2–4 (4-nitrophenyl)-
2H-5-tetrazolio-1, 3-benzene disulfonate (WST-1) (Roche,
UK) were carried out following the manufacturer’s protocols.
Aliquots were collected every hour over 8 h period and
analysed individually in triplicate. The daily results represent
the average absorbance of these samples, which are then
subsequently divided by the mass of liver tissue (mg) in each
microfluidic device. The absorbances of the samples were
determined at 492 nm (LDH) and 450 nm (WST-1), using
690 nm as a reference in both cases. The spectrophotometer
was blanked using WME media alone. The samples were
refrigerated and analyzed after every 8 h period was
completed.

2.5 Functionality analysis

To assess the functionality of the tissue within the microfluidic
device production of albumin and urea was investigated.
Albumin levels in the eluent were obtained by the use of
an enzyme-linked immunosorbant assay (ELISA) (Bethyl
Laboratories Inc., USA) according to the manufacturer’s
guidelines. A 96-well flat bottom ELISA plate (SLS, UK) was
coated overnight with 100 μl primary sheep anti-rat albumin
antibody diluted in 0.05 M carbonate-bicarbonate buffer, pH
9.6 at 4°C. A 200 μl wash solution containing 50 mM Tris,
0.14 M NaCl, and 0.05% (v/v) Tween 20, pH 8.0 was used
after each step and repeated three times. Plates were
subsequently blocked with 200 μl 50 mM Tris, 0.14 M NaCl,
containing 1% (w/v) Bovine Serum Albumin (BSA) pH 8.0
for 30 min at ambient temperature. The rat serum reference
standards (10,000, 500, 250, 125, 62.5, 31.25,15.625 and
7.8 ng ml−1 were diluted in 50 mM Tris, 0.14 M NaCl and
0.05% (v/v) Tween 20, pH 8.0 and 100 μl of each dilution
was incubated on the plate with eluent samples for 1 h. The
plates were subsequently incubated with 100 μl Horseradish
Peroxidase-conjugated detection antibody 1:5,000 in 50 mM
Tris, 0.14 M NaCl and 0.05% (v/v) Tween 20, pH 8.0 for
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1 h. Finally, a colorimetric reaction was carried out by the
addition of 50 μl undiluted tetramethyl benzidine solution.
The reaction was stopped with 25 μl of 2 M sulphuric acid
and the absorbances were measured at 1 =450 nm.

Urea concentrations in the media were determined using
a colorimetric assay (QuantiChrom™ Urea Assay Kit,
BioAssay Systems, USA) carried out using themanufacturer’s
protocol.

2.6 Morphology analysis

To visualize cell architecture within the tissue, it was first
embedded on a cork tile covered with Tissue-Tek® (Sakura,
Netherlands) and plunged immediately in liquid nitrogen-
cooled 2-methyl butane solution. Frozen sections (12 μm
thick) were then cut using a Microm HM505E cryostat.
Sections were selected from the centre of the sample and
these were stained with Haematoxylin and Eosin (H&E).
The sections were then fixed with 10% (v/v) formalin for
10 min in a fume cupboard, stained with Delafield’s
Haematoxylin for 5 min before rinsing with running cold
tap water. After rinsing for 10 min the tissue was
dehydrated with sequentially higher concentrations of
25%, 50%, 75%, 85% and 95% (v/v) ethanol over 8 min.
The tissue was then stained with 100% Eosin for 1 min
before being quickly dipped in 95% (v/v) and absolute
ethanol. The tissue was finally placed in Histoclear for five
minutes to remove any excess, non-specific stain and
mounted in Depex using a coverslip. The tissue was
imaged by light microscopy.

2.7 Fatty liver

The first pathologic alteration that occurs to the liver as a
consequence of ethanol consumption is the development of
fat in the liver, a condition called steatosis. It has been
proposed that ethanol sensitizes the liver through the
accumulation of fat to additional oxidative injury that leads
to alcoholic liver disease (Tsukamoto et al. 2009). The
increase in fat in the liver has been recognized as a factor
that can be involved in more serious liver injury(Zeng and
Xie 2009). To discover whether there was a build up of fat
in cells of the rat liver tissue after interrogation with
increasing ethanol concentrations, a lipid stain was used.
Oil Red O is a lysochrome (fat-soluble dye) diazo dye used
for staining of neutral triglycerides and lipids.

Frozen sections (12 μm thick) were cut from the liver
samples after maintenance in the microfluidic system using
a Microm HM505E cryostat. Sections were selected from
the centre of the sample and these were allowed to dry for
60 min and subsequently fixed with 10% (v/v) formalin for
10 min in a fume cupboard, then allowed to dry again for
another 60 min. The slides were placed in absolute

propylene glycol for 2 min before being immersed in Oil
Red O for 10 min before rinsing with distilled water. The
tissue was then placed in 85% (v/v) propylene glycol for
five minutes to remove any excess stain, rinsed under
running water and finally mounted in Depex using a
coverslip. The tissue was then imaged using light microscopy
using 40 × magnification.

2.8 Statistical analysis

The results are expressed as standard error of the mean
(S.E.M.) All statistical analysis was performed using
statistical analysis software SPSS 17 (SPSS Inc. UK).

3 Results

A 20 mM concentration of ethanol, roughly equates to the
legal drink drive limit in a blood sample in the United
Kingdom (18.5 mM). Levels over 100 mM ethanol equate
to a blood concentration associated with a heavy consumer
of alcohol (Wu et al. 2006). The tissue sample perfused with
WME alone (negative control) established the ‘normal’
baseline for WST-1 and LDH measurements within the
device. The WST-1 results determined for each of the
individual different concentrations of ethanol are represented
as percentages of the negative control (Fig. 2). All samples
show an initial decrease in WST-1 metabolism however by
the fourth day, the liver tissue treated with the lowest
concentration of ethanol is 20% lower than the untreated
liver samples. Increasing concentrations of ethanol show a
dose dependant decrease in WST-1 metabolism.

Fig. 2 Percentage of viable rat liver tissue using WST-1 metabolism
as an indicator after interrogation with 20, 50, 100, 150 and 200 mM
compared with negative control of untreated liver samples (from
aliquots collected over 8 h period). Data are expressed as the mean %
of three separate experiments
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Ethanol is known to be a significant source of energy
through its NAD metabolism. NADH rapidly reduces WST-
1 to formazan however; this reduction is strongly inhibited
by superoxide dismutase (SOD), which is also upregulated
in ethanol metabolism to detoxify superoxide radicals
(Berridge et al. 1996). As SOD is upregulated, inhibition
of WST-1 occurs resulting in potentially a lower formazan
production. This may impact the results of the test samples
giving a lower indication of viability of the tissue than may
actually be present. Measurement of LDH activity in the
eluent showed that cell death in the control liver sample
remained at low levels for the 96 h studied in the perfusion
period in Fig. 3. Exposure to ethanol levels above 100 mM
resulted in an increase in LDH release compared to the
untreated tissue, indicative of increased levels of cell death at
these concentrations over the time periods assayed. LDH
activity at 20 and 50 mM show no marked difference
compared with the control. These results corresponds to the
findings of an earlier study, which demonstrated that exposure
to low ethanol concentrations reduces cell necrosis through
the reduction of intracellular oxidative stress (Castilla et al.
2004). Both the LDH and WST-1 data signifies that ethanol
concentrations in excess of 50 mM, after a period of two
days resulted in a marked decrease in cell viability.

The ability of the liver tissue sample to continue to
produce both serum albumin and urea under interrogation
from increasing ethanol concentrations are shown in Figs. 4
and 5. Increases in ethanol concentration are known to

affect protein synthesis (Ohtake et al. 1986). As shown in
Fig. 4, albumin was secreted by all the liver samples despite
the interrogation with ethanol. As the ethanol concentration
increased, the albumin synthesis decreased, with relatively
little difference over time. Liver samples interrogated with
100 mM ethanol concentrations and below showed a steady
increase over the four-day exposure period although this
level always remained below the control (0 mM). Ethanol
concentrations of 150 mM and 200 mM show depressed

Fig. 3 LDH activities in rat liver tissue samples after maintenance
within a micro fluidic device during interrogation with increasing
ethanol concentrations. Liver samples were maintained at t0, 24, 48,
72, 96 h in the absence of ethanol, control (dashed line, black), and in
the presence of 20 mM (solid line, purple), 50 mM (dashed line, blue),
100 mM (solid line, green), 150 mM (dashed line, orange) and
200 mM (solid line, red) ethanol. Data are expressed as the mean % of
three separate experiments, repeated in duplicates. ±S.E.M. of three
separate experiments

Fig. 4 Albumin secretion by of rat liver tissue samples after
maintenance within a micro fluidic device and incubated with
increasing ethanol concentrations. Data are expressed as the mean
albumin levels ng ml−1 in the liver sample eluent ±S.E.M. of three
separate experiments

Fig. 5 Urea production by of rat liver tissue samples after maintenance
within a micro fluidic device and incubated with increasing ethanol
concentrations. Data are expressed as the mean albumin levels ng ml−1

in the liver sample eluent ±S.E.M. of three separate experiments
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secretion. The maximum concentration (200 mM) shows a
decline of albumin secretion of two-thirds compared with
the control. It can be seen from Fig. 5 that urea, like
albumin, was secreted by all liver samples regardless of
their treatment. The control shows a 30% decrease of urea
production from the start to the finish of the experiment.
The sample treated with 20 mM ethanol exhibited an initial
80% increase, which dropped to a 37% increase over the
four-day exposure period but consistently remained higher
than the control. Ethanol treatment at 50 mM and 100 mM
demonstrates an increase of urea production over the first
three days however by day four, urea levels have dropped
to between 50–75% compared with the control. Urea
production in liver samples interrogated with 150 mM and
200 mM initially remain stable and comparable with the
control. However by day three, urea levels are depressed by
25–30% and at the end of day four; the levels were only
45% and 33% respectively. These results suggest that the
metabolism of ethanol is involved in the decrease of
albumin secretion and the increase of urea production at
relatively low ethanol concentrations however; constant
exposure over the period with concentrations above 50 mM
causes urea levels to drop. These results correlate with the
viability of the cells as cell death is increasing over time.
This is supported through finding from a previous study
using isolated perfused liver (Rothschild et al. 1983).

H&E staining of the rat liver tissue after maintenance
and interrogation with different concentrations of ethanol
was used to analyze the integrity of the tissue and cell
morphology. Figure 6(a) shows the control liver sample
after four days maintenance in the microfluidic device.
These samples were taken from the centre of the sample
between 120 μm and 180 μm from the periphery. As shown
the cell nuclei of the hepatocytes have maintained their
rounded appearance, with little or no shrinkage after 96 h of
culture in the microfluidic device. The cell membranes can
be seen in several places, with the hepatocytes preserving
their original hexagonal shape. In addition there is no
discernible loss of the extracellular matrix between the
cells. However, as ethanol concentration increases, there are
small gaps seen appearing in the structure of the tissue and
the cells are beginning to look misshaped and there is
evidence of some loss of cytoplasm (Fig. 6(b)) as reported in
a previous study (Gavaler et al. 1984). The loss of ECM can
be seen to increase with larger gaps appearing (Fig. 6(c), (d),
(e), (f)) and the cells begin to lose their shape, structure and
cohesion this is exacerbated by the lost of viable hepato-
cytes. Ethanol has been shown to arrest the cell cycle and
impair the replication of normal hepatocytes, even though
the liver usually has a tremendous capacity to replace cells
that are lost or damaged from other cytotoxic injuries
(Clemens 2007).

Fig. 6 Haematoxylin and Eosin (H&E) staining of rat liver tissue samples
after maintenance within a microfluidic device and incubated with
increasing concentrations after maintenance in a microfluidic device. Liver
samples were maintained in (a) 0 mM ethanol, (b) 20 mM ethanol, (c)

50mMethanol, (d) 100 mM ethanol, (e) 150 mM ethanol and (f) 200 mM
ethanol. Samples were chosen between 200 μm and 300 μm from edge of
tissue. Light microscopy images were taken at random on under ×40
magnification and are representative of three separate experiments
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Fatty liver is a reversible condition associated with
alcohol consumption where the liver stores triglycerides
(Iseri et al. 1966). Oil Red O staining of the rat liver tissue
biopsies treated with increasing ethanol concentrations are
shown in Figure 7. No staining of fatty infiltration was
observed in samples interrogated with 20, 50 and 100 mM
over the exposure period (not shown). In contrast with the
control (Fig. 7(a)), the liver sample exposed to 150 mM
ethanol demonstrates a small increase in staining by Oil
Red O (Fig. 7(b)) and the liver sample exposed to 200 mM
ethanol showed a marked increase in staining (Fig. 7(c)).

A recent study using PCLS and traditional explant
culture methods, demonstrated that there was an increase
in Oil Red O staining after the slices were incubated for
over 48 h with 25 mM ethanol compared to the control
(Klassen et al. 2008). However, they also noted that there
was an increase of Oil Red O staining in the control PCLS
after culture compared with the PCLS examined before
culture. High (>100 mM) concentrations of ethanol decrease
the viability and functionality of the cells in the liver
biopsy. Histological analysis of the liver sections showed
the loss of ECM in the tissue and the increase of fatty
deposits in the cells. Further analysis of the effects of
ethanol on liver tissue in the microfluidic system could
in the future give more information on the mechanisms
involved in ethanol metabolism and how these can be
used to treat ALD.

4 Discussion and conclusion

The responses of defined cell types to specific physiological
stimuli can be manipulated within the microfluidic cell culture

environment to provide greater knowledge of key cellular
responses. The high degree of fluidic control within a
microsystem makes it possible to pinpoint different
environmental conditions to a particular cell or groups
of cells (Takayama et al. 2003). Conventional cell
analysis is usually based on bulk averages of multiple
cellular responses where it is impossible to isolate a single
cell to analyse its output(Rao et al. 2002). This is due to
the fact that vessels used to culture, store, interrogate and
analyse cell responses are considerably larger than the
individual cell. The microfluidic environment can facilitate
the continuous perfusion of fresh media at a scale that enables
the contents of the microchannels to be continually replaced
and analysed without disturbing individual cell dynamics
(Kim et al. 2006; Nevill et al. 2007). With these advantages,
microfluidic devices have the potential to revolutionize
the field of cell biology and open up new avenues of
research which are currently inaccessible such as for example;
pinpointing individual signalling pathways in response to a
single stimulus or the response of different cells to extracellular
matrices (Lee et al. 2006; Takayama et al. 2003). Growth
in the use of microscale systems in the field of cell biology
has been rapid over the past few years, largely due to the
many practical advantages offered by such methodology.
In addition to the fundamental fluidic properties further
advantages such as; portability, reusability or disposability
of equipment, reduced costs and low cell number requirement
make micro fluidic devices superior to conventional cell
culture in many assays.

Microfluidic technology is currently being used to
extend the viability and functionality of explants in culture.
Explant culture which can be defined as an in vitro
technique that maintains sections or whole organs in culture

Fig. 7 Oil Red O staining of
rat liver tissue samples after
maintenance within a
microfluidic device and
incubated with increasing
ethanol concentrations. Liver
samples were maintained in
(a) 0 mM ethanol, (b) 150 mM
ethanol and (c) 200 mM ethanol.
Samples were chosen between
200 μm and 300 μm from edge
of tissue. Light microscopy
images were taken at random
under ×40 magnification and
are representative of three
separate experiments
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using specialised media, vessels and atmosphere (Jones et
al. 1981). Such an approach would enable the normal
architecture of the tissues with its three-dimensional
intercellular complex relationships to be maintained in
culture conditions (Jones et al. 1981). Traditionally explant
culture is carried out in vessels submersed with media in
rocking chambers, platforms or roller bottle equipment to
improve diffusion of nutrients into the tissue (Resau et al.
1991). The methodology is however problematical when
used in biological laboratories as it lacks the ability to
maintain the tissue morphology and functionality during
culture, due to a lack of oxygen diffusion of into the explant
coupled with the diffusive removal of toxic metabolites
(Sundstrom et al. 2005). The microenvironment cells
occupy, can dramatically alter the genotype and consequently
the phenotype of the cells, such as the addition of serum
to fibroblast culture can alter the gene expression of the
cell (Iyer et al. 1999). The chemical composition of the
microenvironment is rigidly controlled by the release of
signals from different cells, which may or may not be in
close proximity. Therefore, a number of different cells are
needed within an experimental model in order to give a
greater approximation of typical cellular responses to
external stimuli.

Many of the cell lines used in cell culturing both in
traditional and microfluidic systems have been immortalized
or are tumour-derived, which are genetically unstable, have
intrinsic changes in gene expression, loss of proliferative
regulation and signaling transduction pathways. These cells
therefore are not a replicate of the typical in vivo cell (Balis
2002). It has also been shown lately the importance of the
ECM and its components. ECM is composed of structural
proteins such as collagen and elastin, specialized proteins
such as fibrillin, fibronectin, and laminin and proteoglycans.
There are at least 19 different vertebrate collagens with
tissue-specific distributions and unique functional properties
(Koch et al. 2003). Proteoglycans, for example, are a diverse
multifunctional component of the ECM, playing roles in
regulating matrix organization, growth factor activity, cell
proliferation, and differentiation (Cattaruzza and Perris
2005). The research into the relationships between cardiac
myocytes, fibroblasts, endothelial cells and the surrounding
ECM, highlights the importance of particular cardiac cell
populations and extracellular matrix factors that are critical
to the development and regulation of heart function. These
include the differences in ECM in conditions such as
hypertrophy and aortic valve stenosis. These differences
include increased fibronectin and collagens I, III, IV,
compared with physiological hypertrophy where there is no
such increase in ECM expression (Bowers et al. 2010). The
ECM used in both traditional and microfluidic 3D cell
culture lacks these in vivo complexities (Chatterjee et al.
2010; Kievit et al. 2010).

It is also widely acknowledged that there is a need for
preclinical models of human disease which better reflect
the in vivo environment incorporating all components of
the tissue in their in vivo configurations (Thompson et al.
2008). However, tissue-based microfluidic applications are
still in their infancy. The first micro fluidic studies using
tissue slices were the culture of ex vivo brain tissue
employing either a hollow SU-8 microneedles on 2.7 mm
circular disks within a micro fluidic system (Choi et al.
2007) to perfuse 400 μm thick hippocampal rat brain
tissue at 40 μl min−1 or a three-layer PDMS device
incorporating 530–700 μm thick medullary brain slices
from neonatal rats perfused at 1 ml min−1 (Blake et al.
2007). Using these approaches cell viability was found to
be lost after 4 h at 36°C in the case of the microneedle
device and 3 h in the PDMS system, this is a shorter
viability period than traditional methods as shown in a
earlier section. Liver explant culture is the latest develop-
ment in microfluidic tissue studies. The first was published
by our group (Hattersley et al. 2008); the second study
used precision cut tissue slices (PLCS), in a 10 layer
PDMS micro fluidic device. The PLCS had 4 mm
diameter and were 100 μm thick and perfused at
10 μl min−1, and maintained viability for 24 h. The PLCS
were subsequently interrogated with 7-ethoxycoumarin
(7-EC) and exhibited results comparable to PLCS cultured
in 1.3 ml well plates (Van Midwoud et al. 2010). This
study however only maintained the explants for up to 24 h.
Interrogating tissues within a microfluidic system couples
the benefits of tissue-based methodologies; the different
phenotypes of cells, mechanical forces and extracellular
matrix, with the additional advantages of replicating the
transport and flow mechanisms that are found within
in vivo dynamics.

In conclusion, liver samples were kept viable and
functional over 4 days, and with the addition of ethanol,
the samples exhibited many of the same characteristics
noted in previous studies which have used isolated
hepatocytes and in vivo models of chronic ethanol
intoxication. These included the decrease in viability of
the tissue over the concentration range, with the reduction
of albumin production and decrease in urea levels. This
tissue model could offer a novel route to deciphering the
multitude of interactions between cells and extracellular
matrix, cell signaling pathways and toxicology in a more
biologically relevant environment. Tissue-based microfluidic
methodology could have a wide impact on biological and
clinical research in the modeling hepatoxicity, as well as
enabling better fundamental research into cell processes
within the microenvironment. The direct use of native
tissue offers a more clinically relevant experimental
system, which can potentially replace less relevant
animal-based models.

BiomedMicrodevices (2011) 13:1005–10141012



Acknowledgements The authors acknowledge the support of
Biotechnology and Biological Sciences Research Council (Grant no.
BB/E002722/1) and University of Hull for SMH studentship funding.

Competing interest None to declare.

References

E. Albano, Oxidative mechanisms in the pathogenesis of alcoholic
liver disease. Mol. Aspects Med. 29, 9–16 (2008)

F.M. Balis, Evolution of anticancer drug discovery and role of cell-
based screening. J. Natl. Cancer Inst. 94, 78–79 (2002)

M.V. Berridge, A.S. Tan, K.D. McCoy, R. Wang, The biochemical and
cellular basis of cell proliferation assays that use tetrazolium
salts. Biochemica 4, 15–20 (1996)

A.J. Blake, T.M. Pearce, N.S. Rao, S.M. Johnson, J.C. Williams,
Multilayer PDMS microfluidic chamber for controlling brain
slice microenvironment. Lab Chip 7, 842–849 (2007)

F. Boess, M. Kamber, S. Romer, R. Gasser, D. Muller, S. Albertini,
L. Suter, Gene expression in two hepatic cell lines, cultured
primary hepatocytes, and liver slices compared to the in vivo
liver gene expression in rats: Possible implications for toxico-
genomics use of in vitro systems. Toxicol. Sci. 73, 386–402
(2003)

S.L.K. Bowers, I. Banerjee, T.A. Baudino, The extracellular matrix: at
the center of it all. J. Mol. Cell. Cardiol. 48, 474–482 (2010)

I. Broadwell, P.D.I. Fletcher, S.J. Haswell, T. McCreedy, X.L. Zhang,
Quantitative 3-dimensional profiling of channel networks within
transparent ‘lab-on-a-chip’ microreactors using a digital imaging
method. Lab Chip 1, 66–71 (2001)

R. Castilla, R. Gonzalez, D. Fouad, E. Fraga, J. Muntane, Dual effect
of ethanol on death in primary culture of human and rat
hepatocytes. Alcohol Alcohol. 39, 290–296 (2004)

S. Cattaruzza, R. Perris, Proteoglycan control of cell movement
during wound healing and cancer spreading. Matrix Biol. 24,
400–417 (2005)

K. Chatterjee, S. Lin-Gibson, W.E. Wallace, S.H. Parekh, Y.J. Lee, M.
T. Cicerone, M.F. Young, C.G. Simon Jr., The effect of 3D
hydrogel scaffold modulus on osteoblast differentiation and
mineralization revealed by combinatorial screening. Biomaterials
31, 5051–5062 (2010)

Y. Choi, M.A. McClain, M.C. LaPlaca, A.B. Frazier, M.G. Allen,
Three dimensional MEMS microfluidic perfusion system for
thick brain slice cultures. Biomed. Microdevices 9, 7–13
(2007)

D.L. Clemens, Effects of ethanol on hepatic cellular replication and
cell cycle progression. World J. Gastroenterol. 13, 4955–4959
(2007)

J. El-Ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature 442, 403–
411 (2006)

S.A. Emami, N. Vahdati-Mashhadian, R. Vosough, M.B. Oghazian,
The anticancer activity of five species of artemisia on Hep2 and
HepG2 cell lines. Pharmacologyonline 3, 327–339 (2009)

J.S. Gavaler, H.A. Perez, L. Estes, D.H. Van Thiel, Morphologic
alterations of rat Leydig cells induced by ethanol. Pharmacol.
Biochem. Behav. 18, 341–347 (1984)

S.M. Hattersley, C.E. Dyer, J. Greenman, S.J. Haswell, Development
of a microfluidic device for the maintenance and interrogation of
viable tissue biopsies. Lab Chip 8, 1842–1846 (2008)

O.A. Iseri, C.S. Lieber, L.S. Gottlieb, The ultrastructure of fatty liver
induced by prolonged ethanol ingestion. Am. J. Pathol. 48, 535–
555 (1966)

V.R. Iyer et al., The transcriptional program in the response of human
fibroblasts to serum. Science 283, 83–87 (1999)

R.T. Jones, E.A. Hudson, J.H. Resau, A review of in vitro and in vivo
culture techniques for the study of pancreatic carcinogenesis.
Cancer 47, 1490–1496 (1981)

C.N. Jones, N. Tuleuova, J.Y. Lee, E. Ramanculov, A.H. Reddi, M.
A. Zern, A. Revzin, Cultivating hepatocytes on printed arrays
of HGF and BMP7 to characterize protective effects of these
growth factors during in vitro alcohol injury. Biomaterials 31,
5936–5944 (2010)

B.J. Kane, M.J. Zinner, M.L. Yarmush, M. Toner, Liver-specific
functional studies in a microfluidic array of primary mammalian
hepatocytes. Anal. Chem. 78, 4291–4298 (2006)

F.M. Kievit, S.J. Florczyk, M.C. Leung, O. Veiseh, J.O. Park, M.L. Disis,
M. Zhang, Chitosan-alginate 3D scaffolds as a mimic of the glioma
tumor microenvironment. Biomaterials 31, 5903–5910 (2010)

L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Microfluidic arrays for
logarithmically perfused embryonic stem cell culture. Lab Chip
6, 394–406 (2006)

L. Kim, Y.C. Toh, J. Voldman, H. Yu, A practical guide to microfluidic
perfusion culture of adherent mammalian cells. Lab on a Chip 7,
681–694 (2007)

A.L. King, T.M. Swain, D.A. Dickinson, M.J. Lesort, S.M. Bailey,
Chronic ethanol consumption enhances sensitivity to Ca2+

mediated opening of the mitochondrial permeability transition
pore and increases cyclophilin D in liver. Am. J. Physiol.—
Gastrointest. Liver. Physiol. 299 (2010)

L.W. Klassen, G.M. Thiele, M.J. Duryee, C.S. Schaffert, A.L.
DeVeney, C.D. Hunter, P. Olinga, D.J. Tuma, An in vitro method
of alcoholic liver injury using precision-cut liver slices from rats.
Biochem. Pharmacol. 76, 426–436 (2008)

M. Koch, F. Laub, P. Zhou, R.A. Hahn, S. Tanaka, R.E. Burgeson, D.R.
Gerecke, F. Ramirez, M.K. Gordon, Collagen XXIV, a vertebrate
fibrillar collagen with structural features of invertebrate collagens:
selective expression in developing cornea and bone. J. Biol. Chem.
278, 43236–43244 (2003)

P. Lee, R. Lin, J. Moon, L.P. Lee, Microfluidic alignment of collagen fibers
for in vitro cell culture. Biomed. Microdevices 8, 35–41 (2006)

Y. Ling, J. Rubin, Y. Deng, C. Huang, U. Demirci, J.M. Karp, A.
Khademhosseini, A cell-laden microfluidic hydrogel. Lab Chip 7,
756–762 (2007)

K. Mathijs, A.S. Kienhuis, K.J.J. Brauers, D.G.J. Jennen, A. Lahoz, J.
C.S. Kleinjans, J.H.M. Van Delft, Assessing the metabolic
competence of sandwich-cultured mouse primary hepatocytes.
Drug Metab. Dispos. 37, 1305–1311 (2009)

T. McCreedy, Rapid prototyping of glass and PDMS microstructures
for micro total analytical systems and micro chemical reactors by
microfabrication in the general laboratory. Anal. Chim. Acta 427,
39–43 (2001)

I. Meyvantsson, D.J. Beebe, Cell culture models in microfluidic
systems. Annu. Rev. Anal. Chem. 1, 423–449 (2008)

A. Mortensen, I.K. Sorensen, C. Wilde, S. Dragoni, D. Mullerova, O.
Toussaint, Z. Zloch, G. Sgaragli, J. Ovesna, Biological models
for phytochemical research: from cell to human organism. British
J. Nutr. 99 (2008)

J. Nakanishi, T. Takarada, K. Yamaguchi, M. Maeda, Recent advances in
cell micropatterning techniques for bioanalytical and biomedical
sciences. Anal. Sci. 24, 67–72 (2008)

J.T. Nevill, R. Cooper, M. Dueck, D.N. Breslauer, L.P. Lee, Integrated
microfluidic cell culture and lysis on a chip. Lab Chip 7, 1689–
1695 (2007)

H. Ohtake, S. Kato, Y. Murawaki, Acute and chronic effect of ethanol
on hepatic albumin synthesis in rat liver in vitro. Res. Commun.
Chem. Pathol. Pharmacol. 53, 213–231 (1986)

C.M. Puleo, H.C. Yeh, T.H. Wang, Applications of MEMS technologies
in tissue engineering. Tissue Eng. 13, 2839–2854 (2007)

C.V. Rao, D.M. Wolf, A.P. Arkin, Control, exploitation and tolerance
of intracellular noise. Nature 420, 231–237 (2002)

BiomedMicrodevices (2011) 13:1005–1014 1013



J.H. Resau, K. Sakamoto, J.R. Cottrell, E.A. Hudson, S.J. Meltzer,
Explant organ culture: a review. Cytotechnology 7, 137–149 (1991)

M.A. Rothschild, M. Oratz, S.S. Schreiber, Effects of nutrition and alcohol
on albumin synthesis. Alcohol. Clin. Exp. Res. 7, 28–30 (1983)

X. Ruan, C. Shen, Q. Meng, Establishment of a methodology for
investigating protectants against ethanol-induced hepatotoxicity.
Food Chem. Toxicol. 48, 1145–1151 (2010)

H.K. Seitz, P. Becker, Alcohol metabolism and cancer risk. Alcohol
Res. Health 30, 38–47 (2007)

L. Sundstrom, B. Morrison Iii, M. Bradley, A. Pringle, Organotypic
cultures as tools for functional screening in the CNS. Drug
Discov. Today 10, 993–1000 (2005)

S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D.E. Ingber, G.M.
Whitesides, Selective Chemical Treatment of Cellular Microdomains
Using Multiple Laminar Streams. Chem. Biol. 10, 123–130 (2003)

M.D. Tarn. Standard Operating Procedures for the Fabrication of
Glass Microchips: University of Hull (2008)

A. Thompson, K. Brennan, A. Cox, J. Gee, D. Harcourt, A. Harris, M.
Harvie, I. Holen, A. Howell, R. Nicholson, M. Steel, C. Streuli,
Evaluation of the current knowledge limitations in breast cancer
research: a gap analysis. Breast Canc. Res. 10 (2008)

H. Tsukamoto, K. Machida, A. Dynnyk, H. Mkrtchyan, “Second hit”
models of alcoholic liver disease. Semin. Liver Dis. 29, 178–187
(2009)

P.M. Van Midwoud, G.M.M. Groothuis, M.T. Merema, E. Verpoorte,
Microfluidic biochip for the perifusion of precision-cut rat liver
slices for metabolism and toxicology studies. Biotechnol. Bioeng.
105, 184–194 (2010)

G.M. Walker, H.C. Zeringue, D.J. Beebe, Microenvironment design
considerations for cellular scale studies. Lab Chip 4, 91–97
(2004)

J. Warrick, I. Meyvantsson, J.I. Ju, D.J. Beebe, High-throughput
microfluidics: improved sample treatment and washing over
standard wells. Lab Chip 7, 316–321 (2007)

D.B. Weibel, G.M. Whitesides, Applications of microfluidics in
chemical biology. Curr. Opin. Chem. Biol. 10, 584–591 (2006)

D.M. Wu, Q.W. Zhai, X.L. Shi, Alcohol-induced oxidative stress and
cell responses. J. Gastroenterol. Hepatol. 21, S26–S29 (2006)

H.M. Yu, C.M. Alexander, D.J. Beebe, Understanding microchannel
culture: parameters involved in soluble factor signaling. Lab Chip
7, 726–730 (2007)

T. Zeng, K.Q. Xie, Ethanol and liver: Recent advances in the
mechanisms of ethanol-induced hepatosteatosis. Arch. Toxicol.
83, 1075–1081 (2009)

X.L. Zhang, H.B. Yin, J.M. Cooper, S.J. Haswell, Characterization
of cellular chemical dynamics using combined microfluidic
and Raman techniques. Anal. Bioanal. Chem. 390, 833–840
(2008)

BiomedMicrodevices (2011) 13:1005–10141014



Dynamic Article LinksC<Analytical
Methods

Cite this: Anal. Methods, 2012, 4, 2141

www.rsc.org/methods PAPER

Pu
bl

is
he

d 
on

 1
0 

M
ay

 2
01

2.
 D

ow
nl

oa
de

d 
by

 D
ea

ki
n 

U
ni

ve
rs

ity
 o

n 
07

/0
7/

20
14

 0
4:

33
:4

1.
 

View Article Online / Journal Homepage / Table of Contents for this issue
Direct processing of clinically relevant large volume samples for the detection
of sexually transmitted infectious agents from urine on a microfluidic device

Cordula Kemp,a Christopher Birch,a Kirsty J. Shaw,c Gavin J. Nixon,b Peter T. Docker,c John Greenman,a

Jim F. Huggett,b Stephen J. Haswell,c Carole A. Foyb and Charlotte E. Dyer*a

Received 20th January 2012, Accepted 9th May 2012

DOI: 10.1039/c2ay25075f
Urine is a preferred specimen for nucleic acid-based detection of sexually transmitted infections (STIs)

but represents a challenge for microfluidic devices due to low analyte concentrations. We present an

extraction methodology enabling rapid on-chip nucleic acid purification directly from clinically

relevant sample volumes up to 1 ml and subsequent PCR amplification detection.
Introduction

An estimated 1 million new cases of curable bacterial STIs occur

daily worldwide.1 As such, STIs present a major challenge to

global healthcare, highlighting the need for the development of

novel technologies offering rapid point-of-care (POC) detection

and diagnosis, to improve disease control and inform therapeutic

intervention. Emerging microfluidic lab-on-a-chip (LOC)

analytical technologies offer advanced alternatives to conven-

tional diagnostic methods, as they facilitate automated integra-

tion of several sample processing and analysis techniques. In

addition, the potential for system miniaturisation using micro-

fluidic technologies offers a number of advantages for the

development of POC platforms, including increased speed of

analysis, reduction in sample and reagent volumes used, reduced

power consumption compatible with non-mains power sources

and minimal user intervention.

For the detection of STIs, urine provides a favourable choice

as patient specimen, as it can be easily self-collected and is non-

invasive. However, urine has not been widely investigated as

a sample matrix for microfluidic LOC analysis. In the case of BK

virus (BKV) infection, 1000 fold dilutions of fresh urine samples

were used in an automatic microchip screening platform directly

in the PCR reaction.2 This approach avoids prior extraction or

purification of the target nucleic acid but is only suitable for

infections such as BKV that accumulate in the urine at high levels

(107 to 1010 BKV particles per ml). Many STIs, however, such as

Neisseria gonorrhoeae which shows considerably lower titers in

the estimated range of 103 to 105 CFU per ml, are not suitable for

this direct approach.3
aPostgraduate Medical Institute, University of Hull, Cottingham Road,
Hull, HU6 7RX, UK. E-mail: c.e.dyer@hull.ac.uk; Fax: +44 (0)1482
466996; Tel: +44 (0)1482 466993
bMolecular and Cell Biology Team, LGC Ltd, Queens Road, Teddington,
TW11 0LY, UK
cDepartment of Chemistry, University of Hull, Cottingham Road, Hull,
HU6 7RX, UK

This journal is ª The Royal Society of Chemistry 2012
Current clinically validated nucleic acid-based diagnostic

systems, such as BD ProbeTec� Chlamydia trachomatis (CT) Qx

Amplified DNA Assay (Becton, Dickinson and Company,

USA), use 2 to 3 ml of first void urine for initial processing and

around 400 ml of urine for the actual test procedure, whereas the

Gen-probe APTIMA COMBO 2� Assay (Gene Probe Incorpo-

rated, USA) requires sample volumes of 300–500 ml urine. Such

large specimen volumes represent a significant challenge for

microfluidic LOC devices. Ideally, little or no prior processing of

clinical samples at the bench should be required in order to

provide simple and cost-effective POC diagnostics.

Here, we present an efficient sample loading methodology for

performing DNA extraction directly from an artificial urine

matrix (AUM) on a microfluidic device that demonstrates the

successful processing of specimen volumes of up to 1 ml, with

reduced processing time. This system differs significantly from

others reported, since it provides the processing of clinically

relevant large volumes on a microfluidic device without pre-

concentrating the biological matrix or adding buffering

reagents.4,5
Theory

The development of the rapid DNA extraction methodology

reported in this work utilises silica-based monoliths integrated

within a microfluidic device. Solid-phase nucleic acid extraction

relies on the binding of nucleic acids to a silica support in the

presence of a chaotropic salt at pH # 7.5; this is below the pKa of

the surface silanol groups and so reduces the negative charge at

the surface thereby decreasing electrostatic repulsion and facili-

tating nucleic acid adsorption. The presence of a high capacity

solid phase is characterised by a high surface area for binding and

several approaches are available to achieve this, including the

generation of porous monolithic silica structures or the high

density packing of silica beads.6 The removal of proteins and

other contaminating macromolecules present in a sample is

achieved using an alcohol wash and subsequent retrieval of
Anal. Methods, 2012, 4, 2141–2144 | 2141
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purified nucleic acids from the solid phase is brought about by

elution in a low ionic strength medium.

Purification of DNA from biological specimens by solid-phase

extraction on microfluidic devices is commonly performed by

addition of a chaotropic salt, such as guanidine hydrochloride

(GuHCl) in solution. Typically this is added directly to the

sample, thus increasing the total sample volume for loading and

so lengthening the processing time. Through optimisation of the

microfluidic DNA extraction system reported here, novel meth-

odologies have been developed which minimise sample volumes

for processing in addition to increasing loading speed, without

loss of DNA extraction efficiency.

Experimental

Glass microfluidic devices were manufactured using standard

photolithography and wet etching techniques to produce the

design shown in Fig. 1. Thermally activated silica monoliths were

prepared in the DNA extraction chambers by curing a mixture of

potassium silicate and formamide at 90 �C overnight.7 Initial

validation experiments were performed using a glass capillary

flow system. All DNA extractions were performed using

hydrodynamic pumping, allowing sample loading and recovery

via inlet and outlet channels. Silica monoliths were activated by

flowing through 10 mM TE buffer (10 mM Tris, 1 mM EDTA,

pH 6.7) for 30 minutes at 5 ml min�1. An AUM medium was

prepared in order to assess the compatibility of the proposed

system with direct analysis of urine specimens.8 Standard DNA

extractions were performed using samples comprising 5 ng ml�1

human genomic DNA (gDNA) prepared in either water or

AUM. This was then added to a 5 M GuHCl solution prepared

in either 10 mM TE buffer or AUM. The sample was then loaded

onto the silica monolith at a flow rate of 2.5 ml min�1 followed by

a washing phase with 80% (v/v) isopropanol (5 ml min�1). Finally,

the bound DNA was eluted with water at 1 ml min�1. Throughout

the extraction process, 2 ml fractions were continuously collected

and double-stranded DNA (dsDNA) content was quantified

using a Quant-iT� Picogreen� assay [Invitrogen, UK] and

FLUOstar Optima Plate Reader [BMG Labtech, UK].
Fig. 1 Three dimensional representation of the DNA extraction micro-

fluidic device. The DNA extraction chamber was etched to a depth of

100 mm resulting in a volume of 2.4 ml. Channels were connected, via holes

in the top plate, to 360 mm diameter PEEK tubing enabling hydrodynamic

pumping (A)–(D). A 1 mm port was incorporated in the centre of the DNA

extraction chamber to permit addition of the solid-phase reagents (E).

2142 | Anal. Methods, 2012, 4, 2141–2144
Optimisation of the system to achieve rapid, large volume

sample processing was performed through a series of DNA

extractions investigating the effects of varying the quantity of 5 M

GuHCl solution added to the sample prior to loading and also the

rate of sample loading onto the monolith. Validation of the system

was performed by processing model samples simulating concen-

trations of patient and pathogen nucleic acids found in clinical

urine specimens. For the model sample, 1 ml AUM was spiked

with 25 ng human gDNA plus 105 copies of a plasmid-based multi-

STI pathogen target (pSTI) [designed and constructed by LGC

Ltd, UK]. The pSTI contained cloned sequences from Chlamydia

trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium,

providing targets for amplification and detection by quantitative

real time PCR (qPCR). Following DNA extraction, eluted

samples were analysed by both PicoGreen� assay, to determine

the total dsDNA content, and by qPCR, to determine plasmid

copy number. qPCR was carried out using GoTaq� Hot Start

DNA Polymerase, 3 mM MgCl2 [Promega], and custom Taq-

Man� probes and primers for the Pa gene of Mycoplasma geni-

talium [forward primer 50-GGCGAGCCTATCTTTGATCCT-

30, reverse primer 50-AACTTTACCTTTGATCTCATTC

CAATC-30 probe 50-FAM-AAAGGCTTTGGTTTAACTGG

TAATGCCCCT-TAMRA-30, designed by LGC Ltd, UK and

supplied by Applied Biosystems, UK]. Thermal cycling was per-

formed on a StepOnePlus� Real-Time PCR instrument [Applied

Biosystems, UK] using an initial denaturation step of 95 �C for 10

minutes, followed by 50 cycles of 95 �C for 15 seconds and 60 �C
for 1 minute.
Results and discussion

For all experiments the DNA extraction efficiency was assessed

by calculating the quantity of DNA eluted as a percentage of the

quantity of DNA initially loaded onto the system. Investigations

comparing DNA extraction using either water or AUM as the

sample matrix were performed in the flow system with added 5 M

GuHCl solution prepared in either TE buffer or AUM (1 volume

sample : 9 volumes GuHCl). The presence of the AUM did not

appear to inhibit the extraction process as comparable DNA

extraction efficiencies were obtained using either AUM or water

(Table 1). The demonstration that DNA extraction efficiency

was not adversely affected by using an AUM sample matrix

suggests the proposed system is suitable for direct processing of

clinical urine specimens.

In order to minimise sample volumes for loading onto the

device, experiments were performed using the standard condi-

tions described but varying the ratio of the volume of biological

sample : volume of GuHCl solution (5 M in TE buffer). Little
Table 1 DNA extraction efficiencies using various sample–GuHCl
matrices. Values shown represent the mean and standard deviation of 6
independent experiments. In all experiments, the DNA : GuHCl ratio
was 1 : 9, representing a final concentration of GuHCl of 4.5 M

Sample matrix GuHCl solution
DNA extraction
efficiency [%]

Water TE buffer 21.7 � 7.8
AUM TE buffer 22.0 � 4.2
AUM AUM 21.6 � 6.2

This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 Effects of varying the amount of GuHCl added to the biological

sample on DNA extraction efficiency (n ¼ 6).

Fig. 4 A typical DNA elution profile illustrating co-elution of host (total

dsDNA (black dotted line)) and pathogen DNA (number of pSTI copies

as determined by qPCR (grey solid line)) from the microfluidic system.

Pu
bl

is
he

d 
on

 1
0 

M
ay

 2
01

2.
 D

ow
nl

oa
de

d 
by

 D
ea

ki
n 

U
ni

ve
rs

ity
 o

n 
07

/0
7/

20
14

 0
4:

33
:4

1.
 

View Article Online
variation in DNA extraction efficiency was observed for ratios of

1 : 9, 1 : 7, 1 : 6 and 1 : 4 (corresponding to final GuHCl

concentrations of 4.5 M, 4.38 M, 4.29 M and 4 M) (Fig. 2). A

dramatic reduction in efficiency was found to occur, however,

once the ratio was reduced to 1 : 3 (3.75 M GuHCl), indicating

insufficient quantity of chaotrope to achieve successful DNA

binding to the silica-based monolith. Subsequently, experiments

were conducted which indicated that GuHCl could be dissolved

directly in the urine-based sample to give a final concentration of

5 M without compromising DNA extraction efficiency. Samples

were subsequently prepared using this technique in all further

experiments allowing sample volumes to be minimised by elim-

inating addition of GuHCl in solution.

Further characterisation of the system was performed using

the microfluidic device to investigate the effects of increasing the

rate of sample loading on to the monolith on DNA extraction

efficiency. Experiments were carried out using the standard

conditions described but with sample loading flow rates

increased from 2.5 ml min�1 to 5, 10 and 25 ml min�1. Flow rates

for DNA loading could be increased by up to 4 fold (10 ml min�1)

without apparent reduction in DNA extraction efficiency,

permitting more rapid processing of large volume samples

(Fig. 3). At a flow rate of 25 ml min�1, however, DNA binding to

the silica monolith was found to decrease markedly associated

with a reduction in DNA extraction efficiency.

Validation experiments using the biological model described

above were performed by dissolving GuHCl directly in the

simulated urine sample to give a final concentration of 5 M and

loading on to the monolith at 10 ml min�1. Analysis of extracted
Fig. 3 Effect of the sample loading flow rate on DNA extraction effi-

ciencies (n ¼ 6).

This journal is ª The Royal Society of Chemistry 2012
DNA by qPCR showed the DNA to be of sufficient quantity and

quality for successful amplification to be achieved (Fig. 4). In

addition, these findings suggest that any AUM components

potentially co-purified with the extracted DNA do not inhibit

quantitation. Comparison of results from the PicoGreen� assay

of total dsDNA and pSTI plasmid detection by qPCR showed

co-elution of human gDNA with pSTI (Fig. 4).

Furthermore, studies varying the amount of human gDNA

(25–50 ng) and pSTI (104 to 105 plasmid copies) contained in the

model sample did not affect the ability of the system to extract

DNA suitable for analysis by qPCR (results not shown).
Conclusions

A novel method for DNA extraction on a microfluidic device

directly from a urine-based sample is reported which addresses

issues associated with processing large sample volumes and speed

of analysis, critical for the development of a POC diagnostic

platform. Current clinically validated molecular diagnostic kits

use around 400 ml of urine, which are volumes that lie well within

the sample loading capacity of the microfluidic system described.

Being able to process up to 1 ml of sample using this system

provides potential for specific tailoring of the specimen volume

according to the target organism, in order to achieve the required

sensitivity for detection even at low target copy numbers. The

capacity to process such a large volume sample of potentially low

target concentration will facilitate earlier presymptomatic

disease diagnosis as well as detection of low target number

coinfections, key goals in the prevention of STI transmission

through earlier diagnosis and appropriate treatment. Further-

more, the system described successfully accommodated varia-

tions in both host and pathogen DNA quantity as occurs in

clinical samples, where typical human gDNA concentrations

range from 14–200 ng ml�1 in females and 4–60 ng ml�1 in males.9

The use of a non-infectious biological model system as a target

in conjunction with an artificial urine medium in this study has

permitted the validation of the on-chip sample processing and

DNA extraction techniques under standardised conditions which

are not achievable using clinical samples, that can be of highly

variable composition and present potential infection hazards.

Further studies are now required to demonstrate the efficiency of
Anal. Methods, 2012, 4, 2141–2144 | 2143
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this system for the analysis of clinical samples in order to account

for variations in sample composition, including variable levels of

host genomic background DNA and the stage of infection

affecting concentration of infectious agent DNA.

Since the extracted DNA was shown to be suitable for PCR

amplification there is potential for the methodology described

here to be integrated with downstream processes, such as qPCR

or isothermal amplification, in a single microfluidic device. Such

a device could offer a POC platform for STI detection in a clin-

ical setting enabling sample analysis, diagnosis and treatment in

a single visit.
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Integrated DNA extraction and amplification using electrokinetic pumping in
a microfluidic device
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An integrated system employing anion exchange for the extraction of DNA from biological samples

prior to polymerase chain reaction DNA amplification has been developed, based on microfluidic

methodology utilising electrokinetic pumping. In this system, the biological samples were added

directly to chitosan-coated silica beads to facilitate DNA immobilisation. The purified, pre-

concentrated DNA was then eluted using a combination of electro-osmotic flow enhanced with

electrophoretic mobility, which enable DNA to be transported by both mechanisms into the DNA

amplification chamber. Through optimisation of the DNA elution conditions, average DNA extraction

efficiencies of 69.1% were achievable. Subsequent DNA amplification performed on the microfluidic

system demonstrated not only the ability to use electrokinetic movement to integrate the two processes

on a single device, but also that the quality and quantity of DNA eluted was suitable for downstream

analysis. This work offers an attractive real-world to chip interface and a route to simpler Lab-on-a-

Chip technology which eliminates the need for moving parts.
Introduction

Microfluidics has been widely exploited for genetic analysis in

order to advance developments in areas such as clinical diag-

nostics and forensics.1,2 Across this wide range of potential

applications, it is often necessary to first isolate the nucleic acids

from the sample matrix using an extraction step. This allows the

target DNA to be purified and/or pre-concentrated.

At present, DNA extraction methodologies employed in

microfluidic systems are predominantly silica-based, in which the

addition of chaotropic salts to the sample matrix generates the

necessary conditions for cell lysis and subsequent denaturing of

the free DNA. This in turn leads to the binding of the DNA to

a high surface area, solid silica phase.3,4 Any biological

contaminants or potential inhibitors of downstream processes,

such as the polymerase chain reaction (PCR), can then be

removed using an alcohol wash and the purified DNA can be

eluted in a low ionic strength buffer. While such methodologies

have consistently provided a high yield of purified DNA, cha-

otropic salts and organic solvents have been found to substan-

tially hinder the PCR process. As a result, attempts to integrate

silica-based nucleic acid extraction to downstream processes on

a single microfluidic device has carried with it the added

complication of additional wash steps. In order to experimentally

simplify the extraction procedure, modified materials such as

movable magnetic silica particles, which carry the bound target
Department of Chemistry, University of Hull, Cottingham Road, Hull,
HU6 7RX, UK. E-mail: k.j.shaw@hull.ac.uk; Fax: +44 (0)1482 466416;
Tel: +44 (0)1482 466746
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DNA to the elution buffer rather than introducing sample and

reagents consecutively, have been reported.5

The use of anion exchange resins presents an attractive alter-

native to silica-based methodologies as they bypass the need for

chaotropic salts and organic solvents by utilising surface chem-

istries which facilitate binding and elution of DNA to/from the

solid-phase matrix by pH manipulation. Nakagawa et al.

developed a microfluidic device which integrated a silicon wafer

coated with amino groups to allow DNA recoveries of 40% from

whole blood by the capture and release of DNA at pH 7.5 and

10.6 respectively.6 More recently, the field has capitalised on

a similar surface activity provided by the increasingly popular

and highly versatile biomaterial chitosan (a(1 / 4)-linked 2-

amino-2-deoxy-b-D-glucopyranose). The bioactive polymer,

synthesised from the partial deacetylation of naturally occuring

chitin, possesses a variety of physical characteristics, such as high

solubility, viscosity and biodegradability.7 Importantly, the

presence of reactive amino side groups with a pKa of 6.3 makes

chitosan an ideal solid-phase matrix for DNA extraction as

deprotonation, and hence DNA release, can occur at pH 9

leaving the DNA in a suitable media for subsequent PCR.

Furthermore, the ability to treat silica surfaces with chitosan

directly has inspired a number of microfluidic applications and

several high performing DNA purification methodologies have

emerged. Cao et al., for example, were able to integrate chitosan-

coated beads into a microfluidic device and obtained DNA

recoveries from whole blood as high as 75%.8 Simple hydrody-

namic pumping techniques were implemented to flow sample and

reagents through the bead-packed extraction chamber allowing

easy retrieval of target DNA for further analysis. Reedy et al.
This journal is ª The Royal Society of Chemistry 2012

http://dx.doi.org/10.1039/c1ay05552f
http://dx.doi.org/10.1039/c1ay05552f
http://dx.doi.org/10.1039/c1ay05552f
http://dx.doi.org/10.1039/c1ay05552f
http://dx.doi.org/10.1039/c1ay05552f
http://dx.doi.org/10.1039/c1ay05552f
http://pubs.rsc.org/en/journals/journal/AY
http://pubs.rsc.org/en/journals/journal/AY?issueid=AY004001


Fig. 1 Schematic of the microfluidic device design used to perform

integrated DNA extraction and amplification experiments. The position

of the DNA extraction chamber packed with chitosan-coated silica

beads, DNA amplification chamber and electrodes (B–E) for performing

electrokinetic movement are all illustrated.
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used a similar approach in conjunction with a preceding silica-

based step, highlighting chitosan as an especially effective tool

for nucleic acid preconcentration. This additional step provided

a significant 50-fold reduction in elution volume which is highly

appealing as it is more manageable for PCR.9 In further work,

Reedy and colleagues adopted a modified approach by using pre-

fabricated polymeric micro-posts functionalised with chitosan.

Also using hydrodynamic pumping, the work demonstrated the

ability to functionalise a wider variety of materials (e.g. poly

(methyl methacrylate)) with chitosan for DNA extraction.10

The use of electrokinetic movement of reagents, i.e. electro-

osmotic flow (EOF) and/or electrophoresis, in microfluidic

devices is a desirable alternative to hydrodynamic pumping, as it

eliminates the need for moving parts and simplifies the experi-

mental process both mechanically and spatially. Such techniques

have been used to successfully integrate DNA extraction and

amplification steps, demonstrating the process as a suitable real-

world to chip interface.11 In addition to this, Shaw et al. showed

how a reversal of normal EOF (i.e. using a net positive charge on

the surface generating bulk flow towards the positive electrode)

using a suitable surface functional group (e.g. hexadimethrine

bromide) is especially welcome in analysis of nucleic acids, as the

negatively-charged sugar-phosphate backbone ensures an elec-

trophoretic movement which compliments the direction of the

bulk flow. This combined electrokinetic movement can be

advantageous, in terms of both experimental timescale and

energy usage.11

In the work presented here, an integrated microfluidic device

for performing DNA extraction and amplification is described in

which all sample and reagent movement within the system is

controlled electrokinetically. For the first time, the processes

support an anion exchange methodology using chitosan-coated

silica beads for the initial DNA purification step. Furthermore,

the observed reverse-EOF in the presence of chitosan-treated

surfaces is capitalised on for optimum experimental

performance.
Experimental

Manufacture and functionalisation of microfluidic devices

Glass microfluidic devices were produced using standard

photolithography and wet-etching techniques to produce the

design shown in Fig. 1. The 1 mm base plate was etched to

a depth of 100 mm and then thermally bonded to a 3 mm top plate

containing 3 mm access ports. Silanisation of the PCR chamber

was performed in order to prevent DNA polymerase adsorption

which would otherwise lead to PCR inhibition.12 This was ach-

ieved by adding a 150 mM solution of trichloro(1H,1H,2H,2H-

perfluorooctyl)silane [Sigma-Aldrich, UK] in 2,2,4-trime-

thylpentane [Fisher Scientific, UK] to the PCR chamber for

10 min. Solutions of 2,2,4-trimethylpentane, acetone and distilled

water were then sequentially used to wash the device.13

Silica beads (40–60 mm diameter) [Sigma-Aldrich, UK] were

thoroughly cleaned using piranha solution (2 : 1, H2SO4/H2O2),

washed with water and dried prior to use. The beads were then

incubated with a solution of 1% low molecular weight chitosan

oligosaccharide lactate [Sigma-Aldrich, UK] and 0.1% (3-glyci-

dyloxypropyl) trimethoxysilane [Sigma-Aldrich, UK] for 8 h at
This journal is ª The Royal Society of Chemistry 2012
room temperature. After chitosan coating, the beads were

washed in 10 mM acetic acid and dried at 60 �C prior to use.8

When required, the chitosan-coated beads were injected through

Port A into the DNA extraction chamber on the microfluidic

device, which was designed such that the beads were held in place

via the keystone effect.
DNA extraction and amplification procedure

In order to enable calculation of the DNA extraction efficiency of

the system, human genomic DNA samples were prepared to

a final concentration of 5 ng ml�1 in an artificial urine matrix.14 To

further evaluate the system real urine samples were used during

the integrated DNA extraction and amplification phase. The

urine samples were thermally lysed and 50 mL aliquots used for

analysis. The biological samples were then added to 10 mM 2-(N-

morpholino)ethanesulfonic acid (MES) buffer (pH 5) prior to

manual injection through Port A onto the solid-phase matrix in

order to facilitate DNA binding, with any residual sample

directed into the waste channel. Once the biological sample had

been loaded, the microfluidic device was sealed with carbon-filled

polystyrene electrodes positioned within the ports of the device

and connected to an external Paragon 3B Power Supply Unit

[Kingfield Electronics, UK] in order to facilitate electrokinetic

movement.

Following this, the solid-phase was washed with 10 mM MES

buffer, contained within channel B, in order to remove any

potential contaminants of downstream processes. This was

achieved by applying a voltage between electrodes B and C. The

pre-concentrated, purified DNA was then eluted using 10 mM

Tris buffer with 50 mM KCl (pH 9), contained within channel D,

by applying a voltage between electrodes D and E. Whilst opti-

mising the electrokinetic movement it was found that cooling the

microfluidic device to 4 �C increased the efficiency of the process

by reducing Joule heating, which in turn minimized sample

evaporation/diffusion.

Subsequently DNA amplification via PCR was performed on

the microfluidic device. The PCR solution consisted of: 1x
Anal. Methods, 2012, 4, 96–100 | 97
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GoTaq� buffer, 2 mM MgCl2, 1 unit GoTaq� Hot Start DNA

polymerase [Promega, UK], 10 mg ml�1 bovine serum albumin

[NEB Inc., UK], 0.01% (w/v) poly(vinylpyrrolidone), 0.1% (v/v)

Tween-20 [Sigma-Aldrich, UK], 200 mM each deoxyribonucleo-

tide triphosphates [Bioline, UK] and 0.1 mM Amelogenin

forward and reverse primers15 [Eurofins MWG Operon, Ger-

many]. Thermal cycling was performed using a thermoelectric

Peltier element, which provided both the heating and cooling

required. The following program was used: an initial denatur-

ation step of 95 �C for 2 min, 35 cycles of 94 �C for 30 s, 60 �C for

30 s and 72 �C for 30 s, with a final extension step of 60 �C for

7 min. Control PCR samples were also run on a Techne TC-312

thermal cycler.
DNA quantification and capillary electrophoresis

DNA quantification was performed using a Quant-iT� Pico-

Green� double stranded DNA Assay Kit [Invitrogen, UK] and

analysed using a FLUOstar Optima Plate Reader [BMG Lab-

tech, UK]. All amplified DNA samples were analysed off-chip by

capillary gel electrophoresis using a 3500 Genetic Analyzer

[Applied Biosystems, UK]. Samples (1 mL) were added to 12 mL

of Hi-Di� Formamide and 0.5 mL GeneScan� 500 LIZ� Size

Standard [Applied Biosystems, UK] and denatured for 5 min at

95 �C before being snap-cooled on ice and loaded onto the

instrument.
Results and discussion

Movement of reagents within the microfluidic device

Initial experiments were designed to assess the compatibility of

the different reagents required for chitosan-based anion

exchange methodology with EOF movement. It was found that

all solutions were capable of supporting EOF and so a range of

voltages (50–500 V cm�1) were examined to evaluate flow rates.

The EOF mobilities for the wash and elution buffers were found

to be 3.70 � 10�4 cm2 V�1 sec�1 and 3.95 � 10�4 cm2 V�1 sec�1,

respectively (Fig. 2).
Fig. 2 Graph showing the average nEOF at different applied voltages for

the binding/wash solution [MES buffer pH 5 (-)] and elution solution

[Tris-KCl buffer pH 9 ( )] for anion exchange-based DNA extraction.

98 | Anal. Methods, 2012, 4, 96–100
Due to the anionic nature of the chitosan surface, bulk

movement of solutions via EOF occurs towards the positive

electrode. As the electrophoretic mobility of DNA in free solu-

tion is 3.75 � 10�4 cm2 V�1 sec�1, this combines with EOF to

generate efficient movement of DNA within the microfluidic

device.16
DNA extraction capability

The efficiency of the DNA extraction process was evaluated as

a function of the time over which the elution buffer was pumped

over the solid-phase. DNA extraction efficiency was calculated as

the amount of DNA recovered during the elution expressed as

a percentage of the amount of DNA initially loaded onto the

system. Maximum DNA yields were obtained when a 20 min

elution was used, resulting in an average DNA extraction effi-

ciency of 46.6% (�5.6%) when a potential of 100 V cm�1 was

applied (Fig. 3).

The DNA extraction efficiency was also evaluated as a func-

tion of the voltage applied during the DNA elution phase using

the optimised 20 min elution time (Fig. 4). The data showed

a Gaussian shaped distribution, peaking at 100 V cm�1 with an

average DNA extraction efficiency of 69.1% (�10.7%). The

increase in average efficiency from Fig. 3 is due to the intro-

duction of cooling the microfluidic device in order to minimize

the effects of Joule heating.

During the evaluation of DNA extraction efficiency, PCR

reagents were loaded onto the microfluidic device within the

DNA amplification chamber. Following the extraction process,

the PCR reagents were removed and subject to DNA amplifi-

cation on a conventional thermal cycler in order to assess

whether the use of electrokinetic movement had any adverse

affect on the reagents. An evaluation of these samples confirmed

that the use of electrokinetic movement did not have an inhibi-

tory effect on the PCR reagents. However, it was found that

altering the voltages affected the relative PCR efficiency, as

observed from a change in fluorescence intensity of the PCR
Fig. 3 Graph showing DNA extraction efficiency as a function of the

time the voltage was applied in order to perform the elution phase of the

DNA extraction process on the microfluidic device, where * denotes

eluted DNA samples which were successfully amplified by PCR (n ¼ 3).

This journal is ª The Royal Society of Chemistry 2012
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Fig. 4 DNA extraction efficiencies expressed as a function of applied

voltage for electrokinetic movement of reagents within the microfluidic

system (n ¼ 3).

Fig. 5 Electropherogram showing PCR products from the amplification

of the Amelogenin locus (X ¼ 105 bp) from a human urine sample, using

DNA extracted and amplified on the integrated microfluidic device as

confirmed on an ABI 3500 Genetic Analyzer.
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products produced. The most efficient DNA amplification results

were obtained when 100 V cm�1 was used, as this resulted in an

average signal intensity at least 21% higher than at any other

applied voltage.

Optimal conditions were achieved using an applied voltage of

100 V cm�1 for both DNA extraction and PCR efficiency. Whilst

it is clear that the application of different voltages during the

DNA extraction step has a direct effect on the efficiency of the

process, there maybe direct and/or indirect influences on PCR

efficiency. It is hypothesized that both play an important role,

whereby the voltage can directly affect the PCR reagents and can

also indirectly influence the efficiency of the upstream DNA

extraction process resulting in differing quality and quantity of

DNA for amplification.
Integrated DNA extraction and amplification

Following optimisation of the DNA extraction process and the

confirmation that the PCR reagents were not inhibited by the

electrokinetic movement, integration of DNA extraction and

amplification on the microfluidic device was evaluated. Control

of DNA movement between the DNA extraction and amplifi-

cation chambers was driven electrokinetically and the eluted

DNA was transferred directly into the PCR chamber. The PCR

chamber was positioned on a thermoelectric Peltier which was

used to provide the thermal cycling. The eluted DNA was

successfully amplified on the integrated microfluidic system, as

confirmed by off-chip capillary gel electrophoresis (Fig. 5).
Conclusions

Exploitation of EOF with enhanced electrophoretic mobility to

achieve electrokinetic pumping provided high DNA extraction

efficiencies, using a chitosan-based solid-phase, along with

successful DNA amplification. The DNA extraction efficiencies

presented are comparable to those summarized in a recent

review, which reported average efficiencies of between 60 and
This journal is ª The Royal Society of Chemistry 2012
70% for the majority of silica-bead and anion exchange-based

microfluidic devices.3

The ability to integrate both DNA extraction and amplifica-

tion on a single device offers several advantages, including

a reduction in the potential for contamination of the biological

sample and reduced reagent consumption. While the DNA

extraction efficiencies reported here are comparable to those

previously described for electrokinetically driven systems, the

integration with PCR was improved. By using an anion exchange

matrix rather a than silica one, the solutions used are more

compatible for integration with downstream processes as the use

of chaotropic salts and organic solvents can be avoided.11

Moreover, the opportunity exists for further integration with

downstream detection techniques such as DNA hybridisation or

capillary electrophoresis.

By controlling the movement of reagents electrokinetically,

moving components either on- or off-chip are eliminated

which greatly reduces the complexity of the design and the

footprint of the system. The possibility of incorporating reagent

storage as previously described could also increase the applica-

tion of the system described into ‘ready-to-use’ microfluidic

devices.11
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Abstract—Tumors are heterogeneous masses of cells charac-
terized pathologically by their size and spread. Their chaotic
biology makes treatment of malignancies hard to generalize.
We present a robust and reproducible glass microfluidic
system, for the maintenance and ‘‘interrogation’’ of head and
neck squamous cell carcinoma (HNSCC) tumor biopsies,
which enables continuous media perfusion and waste
removal, recreating in vivo laminar flow and diffusion-driven
conditions. Primary HNSCC or metastatic lymph samples
were subsequently treated with 5-fluorouracil and cisplatin,
alone and in combination, and were monitored for viability
and apoptotic biomarker release ‘off-chip’ over 7 days. The
concentration of lactate dehydrogenase was initially high but
rapidly dropped to minimally detectable levels in all tumor
samples; conversely, effluent concentration of WST-1 (cell
proliferation) increased over 7 days: both factors demon-
strating cell viability. Addition of cell lysis reagent resulted in
increased cell death and reduction in cell proliferation. An
apoptotic biomarker, cytochrome c, was analyzed and all the
treated samples showed higher levels than the control, with
the combination therapy showing the greatest effect. Hema-
toxylin- and Eosin-stained sections from the biopsy, before
and after maintenance, demonstrated the preservation of
tissue architecture. This device offers a novel method of
studying the tumor environment, and offers a pre-clinical
model for creating personalized treatment regimens.

Keywords—Head and neck squamous cell carcinoma, 5-flu-

orouracil, Cisplatin, Lactate dehydrogenase, Cytochrome c.

INTRODUCTION

Discovering improved prognostic models remains a
high priority for clinicians. At present, the vast
majority of pre-clinical models use cell-based meth-
odologies or animal models. Although these models
have given invaluable information for the prognosis
and diagnosis of several pathological and physiological
conditions, as yet, most of these questions remain
largely unanswered because of the complexity of dis-
ease progression.14,19 While cell-based models make
use of human-derived cell types, these have been
modified and transformed for in vitro culture condi-
tions. In recent years, protocols have changed to
include extracellular matrix (ECM) and different cell
types; however, these models still lack the complexity
of in vivo microenvironment.19 The alternative to cell-
based methods has been the use of animal models
which too have major drawbacks as a number of
pathological and physiological pathways can differ
from animal to animal, and animal to human, leading
to results that cannot be translated to the clinical
setting as well as the additional ethical and moral
considerations.14,24

The major biological benefit of microfluidics is the
ability to replicate the in vivo environment, which is lost
when using traditional macroscopic vessels. Parame-
ters, such as laminar flow, mass transport driven by
diffusion rather than turbulence, constant removal of
waste products, while maintaining cell-to-cell interac-
tions via paracrine- and autocrine-signaling molecules,
can all be incorporated into such devices. The ability to
replicate the in vivo dynamics of biological tissue is
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revolutionary and when applied to tumor biology
provides a unique platform to explore the pathological
microenvironment with the analysis of released para-
crine and autocrine molecules. Ultimately, this tech-
nology will permit a better understanding of biological
mechanisms operating within pathological and normal
tissues as well as providing a gateway to novel point
of care devices for biomarker monitoring.

Current studies of cancer dynamics within micro-
fluidic systems have principally focused on evaluating
the steps involved in cancer cell metastasis, with a
benefit of these studies being that these factors make
ideal biomarkers in many instances. In such studies,
tumor cells have been exposed to differing shear
stresses and chemokine gradients, parameters that
change in capillaries in vivo, to study factors thought to
be involved in generating circulating tumor cells.34,35

Others have examined the site of attachment and
adhesion itself through the use of isotropic silicon
microstructures and matrigel lined with human
microvascular endothelial cells—highlighting the bio-
mechanical properties of normal and cancer cells.9,21 A
third group of studies have examined cell deformabi-
lity, to distinguish between normal, benign, and
metastatic cancer cells using antibody-coated micro-
channels, to develop a test for metastatic disease.5,15

In this article, we describe a microfluidic platform
that will address many of these parameters, using head
and neck tumor biopsies to demonstrate proof of
concept. Worldwide, head and neck cancer is the sixth
most frequent solid tumor with about 90% of these
being squamous cell carcinomas (HNSCC).8 These
cancers are more frequent in people over the age of 50
and are more common in males.20 However, there is
evidence of an increase in incidence in the younger
population; such a group would most likely benefit
from targeted therapy.8 Despite advances in chemo-
therapy, radiotherapy, and surgical techniques, 5-year
survival rates remain largely unchanged for the last 3
decades. HNSCC encompasses a heterogeneous group
of tumors with distinct epidemiology, biology, and
clinical behavior, with each subsite differing greatly in
management and prognosis; however, they are often
grouped together in research studies because of limited
amounts of tissue and inadequate culture techniques.
The relatively small biopsy-sizes available and the lack
of advances in treatment make this malignancy ideally
suited to a microfluidic-based analysis approach.

Rapid and easily detected markers of cell death are
needed for appraising early therapeutic efficiency for
chemotherapy, so that patients and their oncologists
can make better informed decisions regarding treat-
ment strategies. In recent laboratory studies, it has
been shown that tumor cells undergoing apoptosis
release cellular components into the culture media, for

example, cytochrome c.3,31,33 Ideally, such markers
should be detected within hours or days, giving a
specific response that relates to positive or negative
outcome of on-going or completed treatment, and to
determine the continuing effectiveness of targeted
therapies saving the expense of long term (>5 years)
follow-up studies.7,36 The main objective of this study
is the demonstration that an explant-based microflui-
dics device can be used effectively to analyze apoptosis-
related biomarkers offering a new type of technology
with wide-spread applications.

MATERIALS AND METHODS

Design and Microfabrication of the Microfluidic Device

The microfluidic devices were fabricated using
photolithography techniques as described previ-
ously.4,23 AutoCAD LT software, a computer-assisted
design package, was used to design the microdevice
from which a photomask was generated. The final
device was generated in glass using standard photoli-
thography and wet-etching techniques.4 Access holes
and a central chamber (diameter 3 mm) were drilled in
the top plate and was then thermally bonded with the
etched bottom plate in a furnace at 590 �C for 3 h. The
channel network was etched into the bottom 1-mm
glass layer to produce channels of 190-lm width and
70-lm depth, which diverged into two channels as
shown in Fig. 1.

Microfluidic System for Maintaining Tissue Biopsies

As described in previous study,12 the microfluidic
device had a microport (Anachem, UK) glued to the
surface of the top glass layer such that the circular
tissue cavity could be sealed using an English-threaded
adapter (Anachem, UK). The adapter was filled with
poly-dimethylsiloxane (PDMS; Dow Corning, UK) to
allow gaseous exchange to occur. The tissue chamber is
cylindrical with a volume of approximately 20 lL. A
Harvard PhD 2000 syringe pump (Harvard, UK) was
connected to the device via 0.8 mm (internal diame-
ter) 9 1.58 mm (external diameter) TFE Teflon� tub-
ing (Anachem, UK). The length of the tubing from
syringe to the device was 30 cm, and this allowed
sufficient time for the media to be heated to 37 �C
before reaching the tissue. A 0.22-lm syringe filter
(Millipore, UK) was fitted in-line to remove any
bacterial contamination; this also minimized the gen-
eration of gas bubbles in the media. A 1.5-mL micro-
centrifuge tube (Sarstedt, UK) with a hole in the lid
covered with parafilm to stop contamination and
leakage was placed on each end of the outlet tubing to
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collect eluate. The entire system was placed in a por-
table incubator at 37 �C.

Establishment of HNSCC Tissue Biopsies

In this study, histopathological-confirmed samples
from 23 patients undergoing surgery for HNSCC were
studied within 107 microfluidic devices. Samples were
provided in an anonymous manner, apart from the type
of tumor, in accordance with Local Research Ethics
Committee and NHS Trust R&D approval (LREC-07/
H1304/105; R0568). Tissue biopsies obtained during
neck lymph node dissection or primary tumor resection
were transported to the laboratory in media at 4 �C.
Within 40 min of resection, the tissue was cut into
approximately 3 mm3 sections, with the weight of each
individual sample recorded. The microfluidic system
was cleaned before use by pumping 70% (v/v) ethanol/
water through the device for 15 min at 10 lL min21

followed by a rinse with autoclaved, distilled water. The
device was then primed with Dulbecco’s Modified
Eagle’s medium, DMEM (Gibco, UK) supplemented
with 1% (w/v) penicillin/streptomycin (Sigma, UK) at a
flow rate of 20 lL min21 for 30 min and set in the
incubator. DMEM uses phenol red as a pH indicator
that gradually changes from yellow to red over the pH
range of 6.8–8.2 that is routinely used in cell culture.

When cells are necrotic, released cell products cause
acidification of the media, turning this to turn from
pink to yellow.17 In addition, waste products produced
by mammalian cells will slowly decrease the pH if
accumulation occurs;29 inclusion of the indicator within
media is a simple way to confirm the health of cultured
cells. The tumor sample was then added to the central
well of the microchip giving a ratio of chamber to tissue
volume of approximately 1:0.8. The cavity was sealed
using the threaded adapter, and the flow rate reduced to
2 lL min21. A visual check was made to ensure no
bubbles were trapped in the chamber; any bubbles
observed were removed using a sterile hypodermic
needle. The effluent from both outlets of the microflu-
idic device was collected for a period of 30 min and
then combined in a 0.5 mL microcentrifuge tubes for
analysis. Samples were stored at 4 �C for up to 6 h
before the appropriate assays were performed.

Analysis of HNSCC Samples Incubated
in the Microfluidic Device

Histological Examination of Tissue Sections Using
H&E Staining

To visualize cell architecture samples were taken
before, and after, perfusion in the microfluidic device.
Tissue was embedded on a cork tile covered with

FIGURE 1. Schematic of glass microfluidic device used in these studies. Access holes and a central chamber (diameter 3 mm)
were drilled in the top plate. The channel network was etched into the bottom 1-mm glass layer to produce channels of 190-lm
width and 70-lm depth, which diverged into two channels. The tissue chamber, shaded blue, was sealed with a threaded adaptor
filled with PDMS during perfusion.
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Tissue-Tek� (Sakura, Netherlands) and plunged
immediately in liquid-nitrogen-cooled 2-methyl butane
solution (Sigma, UK). Frozen sections (12 lm) were
cut using a Microm HM505E cryostat, fixed with 10%
(v/v) formalin and stained with Hematoxylin and
Eosin (H&E) using standard protocols.2 Stained sec-
tions were reviewed by Dr. L. Karsai (Consultant
Histopathologist, Hull & East Yorkshire NHS Trust).

Measurement of Viability Using Lactose Dehydrogenase
Release and WST-1 Metabolism

To quantify cell viability and proliferation, a col-
orimetric cytotoxicity assay (Cytotoxicity Detection
Kit Plus, LDH, Roche, UK) and a Water Soluble
Tetrazolium (WST-1) Cell Proliferation Assay (Roche,
UK) were used, respectively. Analyses were carried out
according to the manufacturer’s protocols with the
exception that all LDH test samples were diluted 1:10
before analysis—based on preliminary experiments.
The results are expressed as an average determined
from triplicate samples. The background LDH and
WST-1 levels present within the media were sub-
tracted, and the data normalized per mg of tissue. For
the determination of viability after perfusion (up to
72 h), tissue samples were incubated with 10% (v/v)
lysis buffer from the Cytotoxicity Detection Kit
introduced at 2 lL min21 for 4.5 h.

Chemotherapy Treatments

Eight microfluidic systems were used in parallel
allowing all the variables of chemotherapy treatments
to be explored on a single cancer biopsy from a single
patient. Before the tissue was placed in the microfluidic
systems, these were sterilized by the passage of 70%
(v/v) ethanol for 20 min at 10 lL min21 then rinsed
with sterile, distilled water as described above.

For the first 12 h of the experiment, only DMEM
flowed through the system. After 12 h, the media were
changed in six of the microfluidic systems (two systems
remained as controls with media only flowing through
the tissue). For the six systems receiving drugs: two
systems had 0.2 lg mL21 cisplatin (CDDP) in
DMEM, two systems had 1.0 lg mL21 5-fluorouracil
(5-FU) in DMEM; and the remaining two had both
0.2 lg mL21 CDDP and 1.0 lg mL21 5-FU in
DMEM. These concentrations were used in a previous
study that examined a 3D cell culture system, con-
structed from silicon and PDMS with multi-micro-
channels, for evaluating the effect of chemotherapy
drugs on cancer cells and closely resemble the con-
centrations found in a patient’s plasma undergoing
chemotherapy treatment.32 The treatment period
was 7 days with the total experiment lasting 8 days.

Effluent was collected constantly in 4- hourly aliquots
throughout the day and night for the 7 days of treat-
ment. These samples, six for every 24 h, were analyzed
in duplicate, and then the results were averaged for the
whole 24 h to give daily values.

Viability Analysis of Single Cells Released
from the Biopsy During Incubation

Cancer cells were collected in the effluent from the
microfluidic system after the 7-day incubation period.
This was collected for 3 h in a 1.5 mL micro centrifuge
tubes and centrifuged at 100 g for 5 min. The super-
natant containing cell debris was removed by aspira-
tion, and then the cells were resuspended in DMEM.
To quantify cell viability equal volumes of 2% (w/v)
trypan blue and cell solution were mixed, and the cell
count enumerated using a hemocytometer. Counts
were measured in duplicate and the percentage viabil-
ity determined.

Cytochrome c Analysis

Cytochrome c is a 14.5 kDa protein that is located
in the inner mitochondria membrane in healthy cells
and is a key component of the electron transport chain
in the respiration, functioning as an electron shuttle.30

During apoptosis, cytochrome c is liberated from the
mitochondria into the cytoplasm, where it is then
released into the culture media.38 Within 1 h of treat-
ment, cytochrome c was found in the media whereas
LDH was released only after 15 h.28 In necrosis it was
shown that cytochrome c remains within the cell and is
not released into the media. There is much speculation
of the biological significance of the release of cyto-
chrome c, with studies showing various anti-inflam-
matory effects, e.g., guiding phagocytes to sites of
injury, and increasing the effect of apoptosis and cell
shrinkage by inducing K+ efflux from cells.1,25,28 To
quantify the release of cytochrome c within the tissue
sample, a quantitative sandwich enzyme immunoassay
technique (Quantikine�, Human Cytochrome c, R&D
Systems, USA) was carried out following the manu-
facturer’s protocol. Cytochrome c has a half-life of
8 days22, and therefore samples were kept at 4 �C until
the experiment was completed, and all samples were
analyzed on the same plate.

RESULTS

Characterization of Tissue Viability
and Metabolic Activity

To validate the microfluidic device’s ability to model
the in vivo cancer microenvironment, HNSCC tissue
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samples were placed in a microfluidic system, while the
viability was examined using biochemical biomarkers:
water soluble tetrazolium (WST)-1 metabolism and
lactate dehydrogenase (LDH) release over a 75-h time
period. WST-1 metabolism is achieved by the mito-
chondrial enzyme succinate–tetrazolium reductase,
and increases in proportion with the number of viable
cells. LDH is a cytoplasmic enzyme that is constitu-
tively expressed in most mammalian cells, enabling its
widespread use for assessing plasma membrane integ-
rity by detecting the amount of LDH released into the
supernatant. During the subsequent experiments, only
two cases of media color change were recorded, and
these samples were removed from the study as this
change was caused by bacterial contamination.

After an initial peak of LDH release at the begin-
ning of the experiment, thought to be due to the
damage caused to the surface of the tissue in harvesting
and handling, levels decreased and remained low for
the next 48 h (Fig. 2). On application of the lysis
buffer, that ruptures cell membranes, after 70 h there
was a marked rise in LDH release. LDH levels
remained high for the next 5 h as more cells became
exposed to the lysis buffer as this diffused through the
tissue. In contrast to LDH release, WST-1 metabolism
only showed an increase in detectable formazan
product after approximately 40 h. The delay in detec-
tion of product is most probably due to the fact that
only the outer layers of cells would initially be exposed

to the WST-1 reagent, therefore relatively small
amounts of substrate would be actively metabolized.
As the reagent diffuses further into the tissue, through
the extracellular spaces, more cells would become
exposed hence increasing the amount of metabolized
product. Furthermore, the formazan salt would also
take time to diffuse out of the tissue sample into the
effluent. Extensive analysis of more than 40 different
biopsies of normal23 and malignant tissues,2 from
various types of tissues has always shown a 35–50 h
delay in WST-1 detection. After the application of lysis
buffer at 70 h of tissue maintenance, the amount of
formazan salt detected decreases rapidly as the number
of viable cells is reduced mirroring the increase in LDH
concentration.

To understand whether the characteristics of the
tumor tissue had an effect on the results, primary
tumor tissue was compared with biopsies from meta-
static lymph nodes again using LDH leakage and
WST-1 metabolism. When comparing the absorbance
values for the LDH release between the primary
tumors and nodal tissue, no significant differences were
detected (Fig. 3). However, when comparing the
metabolism of WST-1 in the primary and secondary
tumors, there was a marked difference in the amount
of formazan released after 46 h. This could indicate
higher proliferation of cells in the primary tumor in
comparison with the metastatic node as more cells
would produce more formazan. Another factor to be

FIGURE 2. LDH release and WST-1 metabolism of primary HNSCC tissue with the addition of 10% lysis buffer after 70 h. Aliquots
of effluent were collected every 30 min for determination of LDH and WST-1 concentration in duplicate; all values were then
standardized per mg of biopsy. Data are expressed as the mean (6S.E.M) of 22 separate experiments.
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taken into consideration is the potential difference in
the architecture of the biopsies. As tumors develop, the
basic morphology of the tissue breaks down with
the loss of structure, cohesion, and ECM, causing the
tumor tissue to become fenestrated allowing greater
diffusion between cells and hence greater access to
WST-1 for metabolism and subsequent release.
Although this is true for primary tumor, lymph nodes
are bounded by a capsule, and thus metastatic deposits
are likely to possess a more compact, dense, structure
than the primary malignancy; this could contribute to
the observed differences in the biochemical markers.

H&E-stained Cryostat Sectioning of HNSCC
Biopsy Tissue

A comparison of H&E-stained tissue sections taken
before placement in the microfluidic device (Figs. 4a,
4b) and after 72 h of continuous perfusion within the
device (Figs. 4c, 4d), indicated that the architecture of

the samples has been maintained. The nuclei appear
intact and loss of cell cohesion is minimal. It is notable
that there was no evidence of necrosis in the center of
the biopsy, supporting the evidence that the microflu-
idic diffusion properties can facilitate the passage of
nutrients, and removal of waste throughout the biopsy.

Analysis of LDH Release and WST-1 Metabolism
in Primary HNSCC Biopsies Treated

with Chemotherapeutic Drugs

The aim of these preliminary experiments was to
determine the viability of tumor tissue after treatment
with chemotherapeutic agents within a microfluidic
system. All chemotherapy treatments invoked a greater
release of LDH than untreated tumor tissue, from the
same biopsy, over the 7 day treatment period (Fig. 5).

LDH was released in the greatest concentration in
the combination therapy of 5-FU and CDDP. In the
first 5 days of treatment, the amount of LDH released

FIGURE 3. Comparison of LDH release and WST-1 metabolism between primary HNSCC and nodal tissue. Aliquots of effluent are
collected every 30 min for determination of (a) LDH and (b) WST-1 concentration in duplicate; all values were then standardized per
mg of biopsy. Data are expressed as the mean (6SEM) of 22 separate experiments.
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was approximately double the amount released by the
untreated sample, and for the final two days, this
increased further. CDDP induced a greater death

response than 5-FU alone; on average, 30% more
LDH was released over the exposure period. The
combination therapy, however, showed the greatest

FIGURE 4. H&E-stained cryostat sections of HNSCC. Tumor biopsies before perfusion at 53 (a) and 203 (b) magnification, and
after 72 h of perfusion in media alone at 53 (c) and 203 (d) magnification were cryostat sectioned (12 lm) and stained with H&E.
Representative images of sections from three separate tumors are shown.

FIGURE 5. LDH released from primary HNSCC tissue during treatment with different chemotherapy treatments (5-FU, cisplatin,
and 5-FU with cisplatin) compared with untreated cancer tissue biopsies. Aliquots of effluent are collected each 24 h over 7 days
for determination of LDH concentration; all values were then standardized per mg of biopsy. Data are expressed as the mean
(6SEM) absorbance levels of LDH in the effluent from three separate experiments performed in duplicate.
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variation between samples as shown by relatively wide
error bars (Fig. 5). All treatments over the interroga-
tion period significantly affected the viability of the
tissue, as assessed by LDH release, compared with the
control (ANOVA, p< 0.01). Post hoc comparisons
using the Tukey test indicated that only the combina-
tion treatment was significantly different from the
untreated control.

In Fig. 6, the effects of the chemotherapeutic agents
on WST-1 metabolism are highly noticeable from Day
5. In the untreated control samples, WST-1 metabo-
lism at Day 5 is over four-and-a-half times more than
the samples treated with the chemotherapy drugs, and
this is maintained over the next 2 days of treatment.
Interestingly, there is no marked difference in the
amount of WST-1 metabolized between the three dif-
ferent regimes, however, in these tests, 5-FU treated
samples seem to have a slightly greater effect than the
two other treatments. This could be a reflection of the
5-FU and CDDP acting via different mechanistic
pathways and/or differences in the tumor biology. A
one-way between-subjects ANOVA showed there was
no significant effect of different drug treatments on the
tumor samples.

Analysis of Single Cell Viability After
Chemotherapeutic Intervention

The aim of this experiment was to determine whe-
ther chemotherapeutic agents destroyed cells released

from the tumor tissue in the microfluidic system. The
cells collected at the end of experiment resulted in
approximately 3000 cells being liberated from an
untreated 3 mm3 biopsy; based on hemocytometer
measurements. Cells were removed from the primary
tissue by increasing the flow rate to 10 lL21 min. The
percentage of cancer cells which survived the chemo-
therapy interrogation as assessed by Trypan blue
exclusion, is shown in Table 1. The results indicate that
an average of 72% (n = 3 patients) of cells were alive
from the untreated tumor biopsy, which is comparable
with viability levels obtained in cell culture.

The viability of the cancer cells treated with the
chemotherapy decreased compared with the untreated
tumor biopsy, the combination therapy again showed

FIGURE 6. WST-1 metabolism in primary HNSCC tissue during treatment with different chemotherapy treatments (5-FU, cisplatin,
and 5-FU with cisplatin) compared with untreated cancer tissue biopsies. Aliquots of effluent are collected each 24 h over 7 days
for determination of LDH concentration; all values were then standardized per mg of biopsy. Data are expressed as the mean
(6SEM) absorbance levels of LDH in the effluent from three separate experiments performed in duplicate.

TABLE 1. Percentage of viable single cancer cells recovered
after primary tumor tissue was maintained and interrogated in

microfluidic system for 7 days.

Drug treatment

Percentage of viable cells

collected in eluent from microfluidic system.

Number of cells collected in total in brackets

Untreated samples 72% ± 15.6 (32 ± 3.27)

5-FU only 45% ± 22.3 (29 ± 8.64)

CDDP only 44% ± 20.2 (32 ± 2.83)

5-FU and CDDP

combination

30% ± 23.7 (35 ± 7.48)

Mean (±SEM) from three separate experiments.

5-FU, 5-fluorouracil; CDDP, cisplatin.
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the greatest effect of all the treatment regimens, cor-
relating favorably with the results from the LDH and
WST-1 assays.

Determination of Cytochrome c Release from Primary
HNSCC Biopsies

The aim of this experiment was to determine
whether cytochrome c was released from primary
tumor biopsies maintained within a microfluidic sys-
tem providing a second marker of cell death. Effluent
collected from the microfluidic system was analyzed
using a commercial immunoassay. All treatments
incurred an immediate response as cells were damaged
incorporating the tissue into the device. However, by
the second day of treatment, the amount of cyto-
chrome c released from the control sample had
decreased and was maintained at a low level through
the rest of the experiment. The tissue treated with
5-FU alone showed the highest release of cytochrome
c within the first 2 days with the combination therapy
showing a sustained effect over the first 6 days of the
experiment (Fig. 7). CDDP alone showed little effect
within the first 24 h of the samples studied; however, a
measurable response from the tissue was shown after
this time. All treatments showed a higher release
of cytochrome c throughout the experiment than
the control samples. A one-way between-subjects
ANOVA showed there was a significant effect of drug
action on the tumor samples at all three conditions
(p< 0.01).

DISCUSSION

In the current investigation, an in vitro cancer
explant tissue model was used to maintain viability and
architecture of 23 independent HNSCC tissue biopsies:
14 primary tumors and nine metastatic nodes, using
microfluidic technology. By using biochemical assays
and basic histological techniques, HNSCC primary
and secondary cancer tumor biopsies have been shown
viable with little or no loss of morphology and viability
after 7 days within a microfluidic system. Although
differences in the magnitude of responses between
primary tumors and metastatic deposits have been
shown, their patterns of behavior are very similar.
Traditional in vitro cancer models have been used
extensively to study cancer proliferation and key
genetic events, however, it has been noted by many
that these models do lack the complex in vivo structure
and dynamic kinetics of nutrients and signaling mole-
cules. Viability of in vitro-cultured cancer explants
using WST-1 and LDH as biomarkers in the effluent of
the tissue exposed medium has not been previously
investigated; however, it has been reported that LDH
levels in serum could have diagnostic and prognostic
values in a number of clinical studies.37

Histology of the tumor explants was analyzed
before and after maintenance in the microfluidic sys-
tem by H&E staining of sections taken through the full
depth of the biopsy. There is little or no shrinkage in
the nuclei or cytosol of the cells in the biopsy after 72 h
of culture in a microfluidic system. The nuclei of the

FIGURE 7. Cytochrome c released from primary HNSCC tissue during treatment with different chemotherapy treatments (5-FU,
cisplatin, and 5-FU with cisplatin) compared with untreated cancer tissue biopsies. Aliquots of effluent are collected every 24 h
over 7 days. Data are expressed as the mean (6SEM) of cytochrome c levels ng mL21 mg21 of tissue from three separate
experiments.

Microfluidic Model of Tumor Response to Chemotherapy 1285



tumor cells maintained their spherical appearance and,
as with all cancer cells, a variable degree of dysplasia
was seen, which did not change after culture. The cell
membranes remain intact and clearly visible, and there
is no discernible loss of the extracellular matrix
between the cells. Preservation of the morphology of
the tissue was also seen when culturing brain slices
(>700 lm) in microfluidic perfusion chambers.26

Rambani and colleagues demonstrated, as in the cur-
rent study, that the overall structure, cell sizes, and
shapes of the perfused slices were comparable to the
baseline slices. In comparison, their unperfused slices
showed the health of the cells to be compromised, with
cell death occurring from the center outwards. The
combination of the histology with the anticipated
responses of WST-1 and LDH provide convincing
evidence that tissue was being maintained in a viable
state in the glass device.

Although the tissue-containing device was main-
tained in a 37 �C incubator, the media were not con-
tinuously oxygenated. Analyses of the biochemical and
histological results have shown a continuous flow rate
of 2 lL min21, meaning that, the total volume of the
tissue chamber is theoretically changed every 2 min
was sufficient to ensure maintenance of the cancer
biopsies without obvious changes in tissue architecture
being observed. This differs from many reported
explant cultures that required the use of 5% CO2

incubators or other complex gaseous parameters.10,16

The relative simplicity of the set-up in terms of appa-
ratus is an important consideration that should facili-
tate widespread use of the technology. With minor
alterations to the device, we have already demon-
strated that liver and cardiac tissues of similar size to
the malignant biopsies can be maintained and studied;
the latter being electrically stimulated.6,13 The benefit
of explant-based microfluidics other than allowing the
replication of the in vivo microenvironment is that it
also permits numerous analyses to be undertaken on a
single biopsy over several days.

In this study, the analysis of different biomarkers of
viability and cell death, involving distinct cell pro-
cesses, in effluent from a tissue sample maintained in a
microfluidic was achieved. LDH is released from both
necrotic and apoptotic cells, whereas cytochrome c is
released almost immediately during necrosis, but only
later in apoptosis.18 Release of cytochrome c was low
in the first day of the treatment, compared to the
control, in all except those samples treated with 5-FU
alone. In days two and three, the release of cytochrome
c peaked in all the treated biopsies with a gradual
decrease over the next 4 days. This correlates with
previous studies into the temporal release of cyto-
chrome c and suggests that the mechanism of death is
largely apoptotic rather than necrotic.18

Research into cytochrome c as a biomarker of
cancer response to chemotherapeutic agents is in its
infancy, although some encouraging data have been
published. Cancer patients that responded to treatment
and survived for 3 years had lower serum levels of
cytochrome c (25 ng mL21) within the first 3 days than
those patients that died.28 Conversely, a study aimed at
testing the prognostic significance of several biomark-
ers, including cytochrome c, in surgically treated
parotid cancer patients treated with adjuvant radio-
therapy showed that, through immunohistochemical
examination of paraffin-embedded tissue specimens,
cytochrome c expression did not predict survival.11

These results might indicate that the use of cytochrome
c as a biomarker is limited to specific types of cancer
and/or chemotherapy regimens.

In the current study, explant culture was used, as it
has all the relevant cell types alongside the specialized
and complex extracellular matrix found in a specified
locale, which can be either normal or pathological in
nature. Using microfluidic technology, these tissue
samples have been maintained for a significant period
of time with little loss of viability or structures. The
microfluidic experiments, although relatively small in
size, have shown the ability to model cell death by
chemotherapeutic agents in HNSCC biopsies, and the
results are in agreement with those published using cell
models, and, more importantly, those found in cancer
patients themselves, i.e., that combination drug ther-
apy is most effective in causing cell death.

Head and neck cancer, like many others, has a low
survival rate, and while there have been advances in
clinical treatment regimens, translation of these
improvements into decreases in the mortality rate have
not been achieved.27 This study provides an important
first step into the development of a pre-clinical
microfluidic device, which can be used to provide fur-
ther understanding into the progression and treatment
of solid tumors. It is envisaged that the approach will
be extremely powerful in studying the metastatic pro-
cess as well as allowing therapeutic regimens to be
tested on biopsies from primary tumor, permitting
therapy to the tailored in terms of specific drug com-
binations and concentrations on a personalized basis
directing the oncologist’s choice of first-line therapy.
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ABSTRACT: A microfluidic system containing a chamber for
heart tissue biopsies, perfused with Krebs–Henseleit buffer
containing glucose and antibiotic (KHGB) using peristaltic
pumps and continuously stimulated, was used to evaluate
tissue viability under redox-magnetohydrodynamics (redox-
MHD) conditions. Redox-MHD possesses unique capabilities
to control fluid flow using ionic current from oxidation and
reduction processes at electrodes in a magnetic field, making
it attractive to fine-tune fluid flow around tissues for ‘‘tissue-
on-a-chip’’ applications. The manuscript describes a parallel
setup to study two tissue samples simultaneously, and 6-min
static incubation with Triton X100. Tissue viability was
subsequently determined by assaying perfusate for lactate
dehydrogenase (LDH) activity, where LDH serves as an
injury marker. Incubation with KHGB containing 5mM
hexaammineruthenium(III) (ruhex) redox species with and
without a pair of NdFeBmagnets (�0.39 T, placed parallel to
the chamber) exhibited no additional tissue insult. MHD
fluid flow, viewed by tracking microbeads with microscopy,
occurred only when the magnet was present and stimulating
electrodes were activated. Pulsating MHD flow with a
frequency similar to the stimulating waveform was super-
imposed over thermal convection (from a hotplate) for
Triton-KHGB, but fluid speed was up to twice as fast for
ruhex-Triton-KHGB. A large transient ionic current,
achieved when switching on the stimulating electrodes,
generates MHD perturbations visible over varying peristaltic
flow. The well-controlled flow methodology of redox-MHD

is applicable to any tissue type, being useful in various drug
uptake and toxicity studies, and can be combined equally
with on- or off-device analysis modalities.

Biotechnol. Bioeng. 2012;109: 1827–1834.

� 2012 Wiley Periodicals, Inc.

KEYWORDS: heart tissue; microfluidics; redox-magnetohy-
drodynamics; lactate dehydrogenase; Triton X100;
hexaammineruthenium(III) chloride

Introduction

Redox-magnetohydrodynamics (redox-MHD) possesses
unique capabilities to control fluid flow using the ionic
current resulting from oxidation and reduction processes
produced at electrodes in the presence of a magnetic field.
This makes it attractive to fine-tune fluid flow for ‘‘tissue-
on-a-chip’’ applications. This is the first study where the
impact of redox-MHD conditions on the viability of heart
tissue has been examined. Viability was indicated by the cell
membrane integrity, determined by lactate dehydrogenase
(LDH) release from the cardiomyocytes. Studies involved
the presence and absence of the redox species and magnetic
field, which are considered necessary for pumping fluid by
redox-MHD.

There has been a rapid growth of microfluidic and lab-on-
a-chip technologies to conduct biological research. They
offer several advantages over conventional, non-microfluidic-
based techniques, including the use of a very small amount
of sample and reagent, portability, low production cost per
device, and fast sampling and assay time (Manz et al., 1990).
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Furthermore, the existing apparatus is commonly expensive
and requires highly trained personnel.

Several tissue interrogation studies within microfluidic
devices have been reported, involving for instance liver
tissue (Hattersley et al., 2008; van Midwoud et al., 2010),
colorectal tissue (Webster et al., 2010), and brain tissue
(Caicedo et al., 2010; Choi et al., 2007). Moreover, a
microfluidic perfusion system has been developed and
optimized to maintain the viability of heart tissue samples
(Cheah et al., 2010), where the tissue was continuously
supplied with enriched media and waste products were
removed. This kind of fluid exchange resembles the human
circulatory in vivo conditions (Hung et al., 2005; Yeon and
Park, 2007). In addition, the heart tissue samples were also
electrically stimulated using platinum electrodes to mimic
the in vivo situation.

Low Reynolds numbers of flow in microfluidic devices
with channels of 100-mm width indicate that the flow is
predominately laminar with limited mixing, except for
density and thermal gradients (Chapman, 1987; Gao et al.,
1995) and diffusion (Ottino and Wiggins, 2004), between
two streams of fluids. Mixing is particularly essential in
biological processes, therefore microstirrers or micromixers
are often integrated with these devices to facilitate and
enhance mixing (Miyake et al., 1993; Voldman et al., 2000;
Wong et al., 2004). MHD offers mixing capability by
controlling fluid flow locally using ionic currents in a
magnetic field (Qian and Haim, 2009; Weston et al., 2010b).
A force, FB (the magnetic portion of the Lorentz force) on
ions that have velocities at a right angles to a magnetic
field, B, moves them in the third direction, according to
the cross product, FB¼ j�B, where j is the ionic current
density. A momentum transfer to the solution surround-
ing those ions also causes that volume element to move in
the direction of FB. The actual velocity of that volume
element is further influenced by other forces and the no
slip boundary condition at surfaces of walls and objects
in the chamber. By having programmable electrodes
patterned in a small space and by adding chemical species
(redox species) to the solution that can be oxidized or
reduced by them, one can tune the density and location of
the ionic current, and thus the patterns of fluid motion on
the small scale without the use of channel walls to direct
this, causing little or no bubble formation or electrode
corrosion (Anderson et al., 2010; Weston et al., 2010a).

Redox-MHD has features that are not possible with other
microfluidic pumps. These include the capability to stir
without moving parts or specially fabricated obstacles
(Fahidy, 1983; Qian and Bau, 2005; Tacken and Janssen,
1995; Weston et al., 2006); to control the flow pattern in a
small volume by activating different microelectrodes
patterned on a chip; and to move a plug of solution of a
different composition without the need for channel walls
(Weston et al., 2010a). Although this latter study also
showed that the activity of alkaline phosphatase, an enzyme
used in ELISA, was maintained in the presence of low
concentrations (5mM) of the redox species, [Ru(NH3)6]

3þ

(ruhex), there remains concern for reactivity and interfer-
ence of the redox species with biological samples.
Consequently, we set out to determine the impact of the
presence of the redox species and MHD on probably the
most complex of biological tissue samples, that is, heart
tissue biopsies. The maintenance of heart tissue has
additional consideration, in that it requires electrical
stimulation to replicate the in vivo environment, thus
offering an intrinsic source of ion current that in the
presence of an orthogonal magnetic field can produceMHD.

In addition, modifications were implemented in the
perfusion setup shown previously (Cheah et al., 2010) to
improve reproducibility and time efficiency within a set of
experiments to test the effect of a variable on heart viability.
The LDH assay was chosen as it is a simple and rapid test for
membrane integrity, which is compromised when cells die.
Other assays that could be used, for example, M30
CytoDEATH (Fayad et al., 2011) and cellular DNA
fragmentation (Niemi et al., 2011), are more complicated,
expensive, and time-consuming. An alternative approach
would be to assess the tissue response by immunohisto-
chemical staining for markers of cell death (TUNEL) or
proliferation, for example, Ki-67. However, this is not
suitable for the current study that needs to be undertaken
repeatedly over the assay duration and in real-time. A
parallel setup has been established so that two tissues cut
from the same heart could be studied simultaneously,
having aged for the same time before use. Repeated
experimentation on the same tissue sample was performed
to eliminate inherent variations between tissue samples due
to cutting (�2mm� 4mm� 4mm), or the region where
the tissue sample was taken from the same heart.

Materials and Methods

Chemicals

All chemicals were reagent grade and used as received, unless
otherwise specified. The sodium thiopentone was obtained
from Link Pharmaceutical Ltd (UK). The sodium chloride,
sodium hydrogen carbonate, potassium chloride, potassium
dihydrogen phosphate, magnesium sulfate heptahydrate,
calcium chloride dihydrate, Triton X100, glucose, and
hexaammineruthenium(III) chloride (98%) were acquired
from Sigma–Aldrich (Dorset, UK). The gas consisting of
95% O2 and 5% CO2 was purchased from BOC (South
Yorkshire, UK).

Animal Model

This investigation conforms to the UK Animals (Scientific
Procedures) Act 1986. Male Sprague Dawley rats (Charles
River Laboratories International Inc, Margate, UK) were all
housed under conditions with a 12:12 h light–dark cycle and
provided with food and water ad libitum. Animals were
anaesthetized via intraperitoneal injection of 0.5mL sodium
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thiopentone/100 g and the hearts were excised under a
Schedule 1 procedure.

Microfluidic Perfusion System

A microfluidic perfusion device was constructed from
polydimethylsiloxane (PDMS) on a polystyrene base (Cheah
et al., 2010). The perfusion system was set up as shown in
Figure 1a so that it could perform perfusion studies on two
samples of heart tissue (A and B) simultaneously. Tubing
lengths between different components of the system were
identical for A and B so that arrival and departure times of
perfusing solutions were the same in both chambers; this
was confirmed by control experiments. One peristaltic
pump served as the pushing pump and another as the
withdraw pump for A and B. Before introduction of a tissue
sample, the microfluidic system was sterilized with 70%

(v/v) ethanol/water by perfusion at 120mL/min for 10min
and rinsed with sterile double distilled water. The microfluidic
device was then primed with Krebs–Henseleit buffer (KH)
containing glucose (G) and antibiotic (B) (pH 7.4). KHGB
buffer consisted of 118mMNaCl, 25mMNaHCO3, 4.8mM
KCl, 1.2mM KH2PO4, 1.2mM MgSO4�7 H2O, 2.5mM
CaCl2�2 H2O, 5mM glucose, which was supplemented with
100U/mL Penicillin and 0.1mg/mL Streptomycin (Sigma–
Aldrich) and then filtered using 0.22mm syringe driven filter
unit (Millipore Corporation, Billerica, MA) prior to use.
The buffer solution containing redox species consisted of
5mM Ru(NH3)6Cl3 in KHGB (ruhex-KHGB). The non-
ionic surfactant Triton X100 was added to the buffer to
reach 2% (w/v) to cause solubilization of phospholipid
membranes, and release of the intracellular contents,
measured by LDH activity.

In brief, rat hearts were rapidly excised and a piece
(�2mm� 4mm� 4mm) of right ventricular tissue was
placed directly into the chamber of the perfusion device. The
perfusion chamber was positioned on a 378C hotplate
connected to a Carel IR Thermostat controller (World
Precision Instruments, Hertfordshire, UK). Care was taken
to ensure that the chamber was level. Buffer was introduced
to the chamber via the inlet and was removed from the
chamber through the outlet. In this way, the heart tissue was
supplied with fresh nutrients throughout the experiment.
The inlet and outlet were connected to separate Minipuls3
peristaltic pumps (Gilson Inc, Villiers-le-Bel, France) at a
flow rate of 120mL/min. All solutions pumped through the
chamber were gassed with 95% O2, 5% CO2 in a water bath
of 378C throughout the experiment (Grant Instruments Ltd,
Cambridgeshire, UK), with a residence time of 6.9min.
Heart tissue was electrically stimulated via two platinum
wire electrodes (0.4mm diameter) using a programmable
function generator to produce a square wave, 2 V, 1.5Hz
(Thurlby Thandar Instruments Ltd, Cambridgeshire, UK).
Contraction of the heart tissue was monitored using a
microscope-based camera (Veho, Hampshire, UK).

After introduction of the heart sample into the micro-
fluidic device, the tissue was perfused with KHGB for
90min, followed by static incubation of KHGB, Triton-
KHGB, or ruhex-Triton-KHGB for 6min in the presence or
absence of a magnetic field (described below). After that, the
incubation solution was washed away from the tissue
chamber by again perfusing with oxygenated KHGB for
another 90min. At this point, if stated, a second static
incubation period may have been performed and the KHGB
washing/perfusion repeated. For the last 30min of all
experiments, the heart tissue sample was perfused with
Triton-KHGB. Approximately 200mL effluent was collected
every 5min. Effluent samples were stored at �208C for
subsequent LDH analysis. The tissue sample was discarded
after each experiment.

Polystyrene latex microspheres (10-mm diameter,
2.5 wt% dispersion, stabilized with slight anionic charge
from surface sulfate groups, Alfa Aesar, Lancashire, UK)
were added to the solution in a 1:30 dilution for monitoring

Figure 1. Schematics of the experimental setup. a: The overall system for

parallel studies that simultaneously perfuses two tissue chambers (A and B) and

applies a square wave potential to both sets of stimulating electrodes (modified from

the single-tissue setup of Cheah et al., 2010). b: An enlarged view of a device for

studies involving the magnet, showing placement of hot plate, chamber, perfusion

tubing, platinum stimulating electrodes, and clips from wave generator.
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fluid flow caused by MHD and other convection sources
(thermal gradients and perfusion) under an inverted
microscope.

LDH Measurement

To quantify the extent of cell damage, and thereby, provide a
measure of viability, a colorimetric cytotoxicity assay using
LDH as a marker of injury (Cytotoxicity Detection Kit Plus

(LDH), Roche, West Sussex, UK) was carried out according
to manufacturer’s instructions. Absorbance of the samples
was measured at 490 nm using a microplate reader (BioTek
Instruments, Inc., Winooski, VT). The results were expressed
as the average determined from triplicate samples. The
absorbance value obtained from the background control
(KHGB alone) was subtracted from all test values.
Absorbance values of the samples were converted to LDH
activity (U/mL) according to the LDH standard curve. The
ruhex is pale yellow, and it exhibits negligible absorbance at
490 nm. However, its presence at 5mM concentration
decreased the sensitivity of the LDH assay to 54%. Thus, for
effluent samples expected to contain ruhex, the LDH activity
determined by using the standard method was first
corrected, before accounting for the dilution factor and
tissue weight. Throughout the studies reported here, there
were fluctuations in LDH activity from tissue to tissue and
from experiment to experiment. Therefore, data analysis was
confined to evaluating relative trends.

Magnet Setup

Amagnet configuration was chosen to allow viewing of bead
motion to monitor fluid flow in the chamber of the chip
with an inverted microscope (Axiovert S100, Zeiss,
Hertfordshire, UK). A similar setup was used for viability
experiments, although viewing of microbeads was not
performed in those studies. Two permanent NdFeB sintered
magnets (1 in.� 1 in.� 0.5 in.) were placed at the ends of a
steel U-shaped bar in an attracting arrangement with the
magnetic field parallel to the plane of the chip (see Fig. 1b). A
dc magnetometer (AlfaLab, Inc., Salt Lake City, UT) was
used to measure the magnetic field at the surface of each
magnet to be 0.39 T. The magnet apparatus was placed on
top of the hotplate, with the chamber centered horizontally
between the poles and placed vertically about ¼ the way up
from the bottom of the magnet. The chamber had to be
centered over the hole (0.6 cm diameter) in the hotplate to
monitor fluid flow via bead movement with the inverted
microscope. The chamber was shielded during bead studies
to minimize air currents which otherwise added to the
overall convection of the fluid.

Results and Discussion

Multiple Experiments With a Single Tissue

In order to enhance time efficiency, a tissue sample was
subjected to two 6-min static incubations with Triton-

KHGB during the experiment, followed by final Triton-
KHGB perfusion. The LDH release following the brief
incubation with Triton-KHGB was determined and served
several purposes: (1) to indicate whether the tissue remains
viable after an experiment; and (2) as a marker of the end of
an experiment and the start of another. A lack of LDH
release is an inverse measure of tissue viability. Figure 2
shows that LDH activities were high initially (0–30min),
most probably due to the damage of cells at the edge or
surface of the tissue when excised from the heart. The
relatively high initial LDH leakage was also observed by
Obatomi et al. (1998), Hattersley et al. (2008), and van
Midwoud et al. (2010). As perfusion proceeded, this trauma
associated LDH was washed away (�45min) and then
remained at relatively low levels. LDH activity increased
at 100min, after the short Triton-KHGB static incubation
(84–90min), but decreased to low levels with time. The
delay from the end of the incubation period and the LDH
peak is attributed to a combination of chamber-emptying
time (�4min) and a 6.9-min travel time of solution from
the chamber to collection tube. The LDH spike suggests that
the tissue was viable during the first perfusion period. A
second Triton-KHGB incubation (174–180min) produced
a similar LDH response, with a spike at 185min. This
indicates that the tissue had remained viable after the first
Triton-KHGB incubation and second perfusion periods. A
final Triton-KHGB perfusion (�270min) elicited a larger
LDH peak, revealing that the sample was still viable after the
second Triton-KHGB incubation and third perfusion
periods.

This result suggests that a series of experiments can be
carried out on the same piece of tissue sample. During static

Figure 2. A representative study of LDH release from heart tissue resulting from

two brief exposures to Triton, each followed by a recovery period. Black and pink bars

indicate oxygenated KHGB perfusion and 6-min static Triton-KHGB incubation,

respectively. The yellow bar (from 270 min) shows the final Triton-KHGB perfusion

used to confirm viability of the tissue at the end of experiment; the time corresponds to

when solution filled the tissue chamber. N¼ 2.
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incubation, the peristaltic pump was turned off to maximize
the influence of redox-MHD fluid flow on the tissue without
the overriding fluid flow and diluting effects from a
perfusion stream. A 6-min Triton-KHGB incubation time
was long enough to produce tissue insult and induce LDH
release, but short enough to avoid complete tissue death.
Other incubation periods were not investigated.

Heart tissue has been shown viable in the present device
for up to 5 h (Cheah et al., 2010). In a sealed glass
microfluidic device developed in our group, the tissue
sample was viable for up to 24 h in a chamber with diameter
3mm (data not shown). Clinically, heart biopsies are
preserved ex vivo for no longer than 4–6 h (Ozeki et al.,
2007); therefore, a 5-h perfusion period in this microfluidic
system is considered sufficient. Conventional methods such
as the whole heart perfusion, for example, the Langendorff
preparation, and isolated cardiomyocyte culture studies will
commonly maintain viability for several hours and have
been very useful for measuring heart contraction activity.
However, these approaches possess major drawbacks
attributed to the limitations in replicating in vivo
microenvironments and are considered ‘‘dying models’’.

Influence of Redox Species and Magnetic Field on
Viability

Many possible redox species can be used in electrochemi-
cally generating the current, and therefore the ion flux
necessary to induce MHD in a magnetic field. Those redox
species can be native to the fluid of interest (e.g., oxygen,
solvent, components in a buffer, or electrolyte), added (as
was done here), or components of the electrode material
itself (e.g., dissolution of easily oxidizable metals, such as
copper, silver, and nickel).

Selection of an appropriate redox species for redox-MHD
microfluidics depends on the application. The factors that
should be considered are: (1) an acceptable range of
potentials or currents that can be applied at the electrodes;
(2) solubility in and chemical reactivity (compatibility) with
the solutions; (3) possible interference with detection
methods; and (4) chemical reactivity with the sample.
The latter point is the main focus of this paper.

To address (1), we chose three typical redox species that
are relatively stable, commonly used in electrochemical
studies, easily obtainable from a commercial source, and
require voltages for oxidation and reduction that minimize
water electrolysis (and therefore, bubble formation) and
corrosion of the electrodes. We used two of these in previous
redox-MHD studies: ruhex (Weston et al., 2010a) and a
mixture of a 1:1 mole ratio of potassium ferricyanide and
potassium ferrocyanide (Aguilar et al., 2006; Anderson et al.,
2010; Arumugam et al., 2006). The third was hydroquinone,
a structure present in some biochemical compounds, and
therefore compatible with physiological conditions.

To address (2), we evaluated the electrochemical behavior
of the three species in the KHGB solution that would be used

for the heart tissue. All three tested chemicals were stable and
provided expected responses.

We screened these redox species in solutions of KHGB for
interference with the detection method (the LDH assay).
This step addresses (3). We already knew that 5mM ruhex
was compatible with alkaline phosphatase activity from
our previous work (Weston et al., 2010a). Thus, we also
chose redox concentrations of 5mM for hydroquinone,
and 2.5mM of each form in the ferricyanide/ferrocyanide
mixture. The ruhex decreased the assay sensitivity to about
half (a factor of 0.542), whereas, the other two redox species
adversely affected the assay results. Thus, ruhex was chosen
for subsequent studies on tissue viability. Separate calibra-
tion curves, then, were obtained for LDH with and without
ruhex.

The effect of 5mM ruhex on heart tissue samples was
investigated before redox MHD was performed. Using the
parallel setup in Figure 1a, two tissues excised from the same
heart were evaluated simultaneously with a 6-min incuba-
tion period in KHGB (84–90min). Ruhex was only present
during this ‘‘static’’ period for one of the tissues (red squares
in Fig. 3). Figure 3 shows that the trends of LDH activities
with time are similar, with the appearance of a small LDH
spike at 100min (with ruhex) and 95min (without ruhex),
followed by low LDH activities. This result indicates that
insult on the tissue during the static period is not further
affected by the presence of ruhex. Also, the increase in LDH
activity after Triton-KHGB perfusion at the end of the
experiments confirmed the tissue remained viable in the
presence of the redox species. Two sets of parallel studies
were performed. A previous study by Schoenfisch et al.

Figure 3. The effect of ruhex on LDH release from the heart tissue sample

during perfusion. A representative parallel study was performed in which the 6-min

incubation step (green bar) involved 5mM ruhex in KHGB for one tissue (red squares)

and only KHGB for the other (blue diamonds). Black bars indicate oxygenated KHGB

perfusion. The yellow bar (from 180min) shows the final Triton-KHGB perfusion used to

confirm viability of the tissue at the end of experiment; the time corresponds to when

solution filled the tissue chamber. N¼ 2.

Cheah et al.: Redox-Magnetohydrodynamics With Heart Tissue 1831

Biotechnology and Bioengineering



(2005) used 1–5mM Ruhex in a rat heart perfusion system
to carry out in situ electrochemical measurements. The
tissue was considered to be ‘‘living’’ based on the criterion
that the heart was still metabolizing nutrients and generating
a heartbeat.

The effect of the magnetic field during the incubation
period (84–90min) with ruhex-Triton present was deter-
mined using the parallel tissue setup (Fig. 1a). The magnet
was inserted across one of the chambers at the beginning of
the incubation period (see Fig. 1b) and removed at the end.
Two sets of parallel studies were carried out. Figure 4 shows
that the magnet had no perceptible impact on LDH release
from the heart tissue. In fact, the LDH variation with time
was similar for both tissues, showing an increase in LDH
activity at 95min, as in the other cases investigated. The
slower drop in LDH activity after 95min was not typical, but
because it occurred for both tissues, it was likely due to
the flow apparatus behavior, and not the chemistry with the
tissue. The tissue still remained viable as determined by the
prolonged perfusion in Triton at the end of the experiments,
causing marked LDH release. Because of the significant
variations of LDH activity following Triton-KHGB incuba-
tion in Fig. 4, it cannot be confirmed here whether the
redox-MHD stirring had an enhancing or diminishing
effect on tissue lysis in the presence of Triton. A closed chip
and patterned electrodes throughout the chamber (instead
of only using the stimulating electrodes) would provide a
platform to fine-tune fluid flow around the tissue with the
goal of affecting concentration gradients at the tissue
surface, and therefore enhance release and uptake of
chemical species.

MHD Fluid Flow Under Perfusion and Heating
Conditions

Fluid flow under heart tissue conditions was qualitatively
investigated in a single-chamber apparatus on the stage of an
inverted microscope, by adding microbeads to the solution
to track the flow. These studies confirm that MHD
flow occurs because of the stimulating electrodes alone in
the presence of a magnetic field. Video clips (of 5 and 10 s
duration) are provided as Supplementary Information
online. Because a magnet was only present during the 6-
min incubation period in the tissue studies and because
Triton was usually present during that time, the available
video clips are only shown on Triton-KHGB and ruhex-
Triton-KHGB solutions. Similar trends were also observed
in KHGB and ruhex-KHGB (without Triton).

Video 1 (see Supplementary Information online) shows
natural agitation of Triton-KHGB solution from thermal
gradients caused by the 378C hot plate located beneath the
chamber. When the wave generator was turned on at 2 s to
activate the stimulating electrodes, there was no significant
change in fluid flow. However, when the wave generator
was on in the presence of the magnet, MHD flow was
superimposed on the thermal convection as shown in Video
2 (see Supplementary Information online). Slight pulsating
movement of microbeads seemed to occur at about 1.5Hz,
in synchrony with the alternating ionic current produced by
the square wave potential at the stimulating electrodes. The
applied voltage was large enough in the weak magnetic field
to generate enough ionic current without ruhex to produce
the MHD flow. The orientation of the chamber, its tubing,
and placement of the stimulating electrodes relative to
the magnet was chosen because of its convenience for
performing the tissue studies, but is not optimal for MHD.
(A 90-degree rotation of the pair of stimulating electrodes
around the chamber would have been expected to provide
maximum MHD force.) The net ion flux between the
stimulating electrodes (see Fig. 1b) was approximately
parallel to the magnetic field. Thus, in the evaluated
configuration there must have been sufficient radially-
directed, ionic current along the axis of the Pt wires and the
wires must not have been directly across from each other
and aligned along the magnetic field lines. It was difficult to
track the MHD fluid flow when perfusion was then turned
on, as in Video 3 (see Supplementary Information online).
There was a slow pulsating (forward and slight reversal)
motion that is consistent with the peristaltic pump roller
frequency of about 5.5 s (determined by dividing the time
for one rotation of the pump, 55 s, by the number of rollers,
10; 0.18Hz).

The presence of ruhex in the Triton-KHGB made the
MHDmore noticeable over thermal convection (see Video 4
in Supplementary Information online) than without added
ruhex. An initial surge of flow occurred in a direction
different than motion from thermal convection when the
wave generator was turned on at 2.0 s. This observation is
attributed to the transient faradaic current in the presence of

Figure 4. The effect of redox MHD on LDH release from heart tissue sample

during the perfusion. A representative parallel study was performed in which the 6-min

ruhex-Triton-KHGB incubation step (white bar) included the presence of the magnet

for one tissue (red squares) but not for the other (blue diamonds). Black bars indicate

oxygenated KHGB perfusion. The yellow bar (from 180min) shows the final Triton-

KHGB perfusion used to confirm viability of the tissue at the end of experiment; the

time corresponds to when solution filled the tissue chamber. N¼ 2.
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the magnetic field. The MHD flow which decreased was
clearly visible over the thermal convection and about �1.5
to 2 times greater (based on net bead displacement for a
fixed time) compared to that in the absence of ruhex.
Pulsating bead movement appeared to be synchronized with
the alternating ionic current at the stimulating electrodes.
There was a noticeable surge of redox-MHD fluid flow even
during perfusion at the moment when the wave generator
was switched on in the presence of the magnet (at 2.2 s in
Video 5, see Supplementary Information online) due to the
large transient faradaic current. Microbeads slowed after the
initial surge and their movement due to MHD became
difficult to distinguish over the highly variable convection
from perfusion. (Because the heart sample only occupied a
fraction of the chamber, we observed redox-MHD fluid flow
without perfusion even when the tissue was added to the
chamber; not shown.)

Conclusions

Redox-MHD conditions have unnoticeable effects on heart
tissue viability as determined by the LDH analysis. Fluid
flow resulting from MHD in this system is evident over
thermal convection when stimulating electrodes were used
to produce the ionic current in the presence of a magnetic
field, without addition of redox species, presumably because
the applied voltage was sufficiently large enough to
electrolyze water (DE¼ 2V). However, MHD fluid flow
was higher in the presence of redox species. The transient
current achieved when turning on the stimulating electrodes
produced a MHD movement visible over perfusion, as well.

Surprisingly, although the presence of ruhex did not
adversely affect the viability of the heart tissue, it did
influence the LDH assay sensitivity. However, it was possible
to account for the change in sensitivity by calibration. Thus,
the entire study must be considered when choosing a redox
species to induce redox-MHD. An alternative is to apply
potentials that might electrolyze water or electrolyte, but
where the current is so small that resulting gaseous products
remain dissolved in the solution and bubbles are not
problematic.

This system is actually more challenging than a laminar
flow platform, because it had not been demonstrated
whether redox-MHD could exhibit a perceptible effect over
perfusion which was driven by peristaltic pumps. However,
it was still possible to stop the perfusion briefly during a
redox-MHD event to separate out the effect of perfusion and
the effect of redox-MHD on the tissue.

The convection caused by redox MHD using the
stimulating electrodes alone did not appear to change the
effect of Triton on tissue viability during the 6-min
incubation period. Avenues to pursue the effects of
additional stirring on release or uptake of species or drugs
by tissue could include orienting the magnetic field
perpendicular to the path between stimulating electrodes
to maximize the cross product, and using chips patterned

with arrays of individually addressable electrodes to fine-
tune fluid flow around the tissue to offset dead volumes and
eddies.

The described methodology can be adopted for any tissue
type, permitting direct in vitro experimentation on primary
clinical tissue, even when just a biopsy-sized sample is
available, while retaining the in vivo environment. Efficient
mixing around the tissue sample controlled by redox-MHD
allows defined uptake of drugs as well as monitoring release
of chemical species; facilitating drug availability and toxicity
investigations. Furthermore, the redox-MHD methodology
allows local concentrations of solutes to be specifically
generated for known time periods, after which tissue
responses can be measured. The fine control of the
environment can be coupled with subsequent analysis of
the tissue biopsy, either on the device or after additional
labeling and study, for example, confocal microscopy.
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a  b  s  t  r  a  c  t

The  evaluation  of a micro  fluidic  system  with  an  integrated  silica monolith  for performing  DNA  extraction
from  limited  biological  samples  has  been  carried  out.  Low  DNA  target  concentrations  usually  require  the
addition  of  carrier  RNA  to  ensure  desired  extraction  efficiencies.  Here,  we  demonstrate  a micro  fluidic
extraction  system  with  increasingly  efficient  extraction  performances  for biological  samples  containing
eywords:
NA extraction
onolith
icro fluidic

<15  ng  of total  DNA  without  the  need  of  adding  carrier  nucleic  acids.  All  extracted  DNA  showed  successful
amplification  via  the  polymerase  chain  reaction  demonstrating  both  the  effectiveness  of  the  proposed  sys-
tem at  removing  potential  inhibitors  and  yielding  good  quality  DNA.  The  work  presented  here  beneficially
identifies  reduced  sample  volumes/concentrations  as suitable  for processing  with  respect  to  downstream
analysis  by  enabling  pre-concentration  of the  biological  sample,  particularly  important  when  dealing  with
clinical  or  forensic  specimens.
. Introduction

Biological samples recovered for forensic analysis or clinical

iagnostic applications are often limited in terms of the amount
f target analyte present. As a result, methodologies which enable
oncentration of target molecules as well as isolation from the

Abbreviations: EDTA, ethylene diaminetetraacetic acid; EMEM,  Eagle’s mini-
um  essential medium; GuHCl, guanidine hydrochloride; PCR, polymerase chain

eaction; TBE, Tris–borate–EDTA buffer; TE, Tris–EDTA buffer.
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complex biological matrix offer distinct advantages and increase
the likelihood of achieving positive results during downstream
analyses. The use of solid-phase extraction matrices facilitates
such sample processing.

Micro fluidics enables the manipulation of microlitre volumes
of liquids within a micron scale environment to be carried out. The
rapid expansion of this field over the past two  decades has been
driven by the advantages offered in the development of integrated
‘Lab-on-a-Chip’ systems. Micro fluidic devices offer numerous
advantages over conventional systems as they enable the use of
reduced sample and reagent volumes, alongside easier integration

of multiple processes on a single device. The ability to integrate
sequential processes within a micro fluidic system, that is com-
pletely sealed once the samples have been added, offers significant
advantages in terms of a reduced risk of contamination [1].  Such
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nherent characteristics make micro fluidic systems highly suited
or dealing with limited or degraded samples, as is frequently the
ase for forensic specimens.

Integrating solid-phase nucleic acid extraction techniques into
 micro fluidic system enables efficient isolation of target analytes
ue to beneficial surface area characteristics. Isolation of nucleic
cids can be achieved using a silica-based solid-phase onto which
he nucleic acids bind in the presence of a chaotropic reagent,
uch as a guanidine salt. The residual biological matrix, plus any
xogenous contaminants, can then be removed by washing the
olid-phase with an alcohol. Removal of the purified nucleic acids
rom the solid-phase matrix is then carried out in a low strength
onic buffer. A more detailed account of the mechanisms involved
n the interaction of nucleic acids with silica surfaces is presented
n an excellent review by Wen  et al. [2].  The use of a small vol-
me  of elution buffer can enhance the effective concentration of
he nucleic acids from the original total sample volume [3]. This

ethodology provides additional benefits in that the chaotropic
gent used to facilitate DNA binding also serves to lyse any cells
resent, releasing the nucleic acids, and eliminating the need for a
eparate lysis step thereby simplifying the extraction procedure.

While conventional DNA extraction kits often rely on bulky
quipment for centrifugation or manipulation of magnetic parti-
les to enable washing of the solid-phase, micro fluidic system can
se hydrodynamic pumping [4],  electro-osmotic pumping [5] or
entrifugal forces [6] to control fluid flow within the device. For
ydrodynamic pumping, a simple syringe pump can be connected
o the micro fluidic device to deliver sample and reagents at pre-
isely controlled volumes and flow rates.

The use of micro fluidic devices offers an increased surface area
vailable for nucleic acid binding resulting in an efficient DNA
xtraction process. Manipulation of channel geometries or addi-
ion of a solid-phase matrix can further enhance these beneficial
roperties. Pillars, or similar structures, can be fabricated into the
icro fluidic device during the manufacturing process and provide

n integral means of increasing the surface area available, although
NA extraction efficiencies are limited [7].  The introduction of sil-

ca coated particles offers an increased surface area with improved
NA extraction efficiencies of 56% in a micro fluidic device [8]. The
hallenges of this methodology are in holding the beads in place
ithin the device, using channel geometries or weir-type struc-

ures, reducing the reproducibility of the system. More recently,
ilica-coated magnetic particles have been shown to be success-
ully manipulated within micro fluidic device via the use of external

agnets [9].
In order to achieve more reproducible extraction efficiencies on

icro fluidic devices, methodologies which rely on the in situ fab-
ication of monolithic, i.e. continuous polymeric, structures have
een developed [10]. The availability of different monomers and
orogens leads to the creation of monolithic structures with differ-
nt surface properties and pore structures. An ideal monolith has a
imodal pore structure containing macropores (>50 nm)  enabling
nhindered flow of solutions in addition to micropores (<2 nm)
hich provide the high surface area required for DNA binding [11].

or example, the use of tetramethyl orthosilicate as the monomer
ather than tetraethyl orthosilicate offers higher DNA extraction
fficiencies and reduced problems with high backpressures [12].
recision placement of the monolith within the micro fluidic device
an be achieved using photopolymerisation [13] or controlled heat-
ng [14].

Further improvements can be made for the extraction of low
uantities of nucleic acids by including carrier molecules as part

f the binding solution. While a number of carrier molecules exist
epending on the application, poly-A carrier RNA has commonly
een used in commercially available DNA extraction kits, e.g. Qia-
en, and can increased DNA yields by an average of 24% [15]. Such
ca Acta 750 (2012) 127– 131

methodology has also been adapted for inclusion within micro flu-
idic DNA extraction protocols and showed a significant increase in
DNA extraction efficiencies particularly at lower starting amounts
of DNA [4].

Here we present an evaluation of a micro fluidic system con-
taining an integrated silica monolith for the extraction of DNA
from biological samples. The extraction efficiency of the system
improved with minimal cell samples containing less than 15 ng of
total DNA, without the need of the addition of carrier RNA. The
robustness of the system shows potential for situations where sam-
ples are limited, such as in a forensic setting.

2. Experimental

2.1. Micro fluidic device fabrication

Micro fluidic devices were produced in borosilicate glass using
standard photolithography and wet  etching techniques to generate
the design shown in Fig. 1. The features were etched to a depth of
100 �m using a 1% hydrofluoric acid/5% ammonium fluoride solu-
tion. In order to allow poly(etheretherketone) tubing to be attached
to the micro fluidic device, 360 �m diameter holes were drilled in
a 1 mm thick top plate which was  then thermally bonded to the
etched glass wafer (1 mm thick) to produce the complete micro
fluidic device.

The thermally activated silica-based monolith was produced by
mixing potassium silicate solution (21% SiO2 and 9% K2O [VWR
International, UK]) and formamide [Alfa Aesar, UK] in a 10:1 ratio
[4].  In order to ensure the monolith was  only produced in the DNA
extraction chamber, the entire device was first filled with glyc-
erol [Sigma–Aldrich, UK]. The monolith solution was then injected
into the DNA extraction chamber, displacing the glycerol, and the
micro fluidic device placed in an oven at 90 ◦C for 15 min. After this
initial heating step, the remaining glycerol was removed and the
micro fluidic device placed back in the oven overnight for complete
polymerisation to occur. Once polymerised, the monoliths were
washed with ethanol to remove any unreacted solution and glyc-
erol residue. Prior to DNA extraction the monoliths were washed
with 10 mM TE buffer (10 mM Tris and 1 mM ethylene diaminete-
traacetic acid (EDTA) in distilled water, adjusted to pH 6.7 using
hydrochloric acid [Sigma–Aldrich, UK]) at 5 �L min−1 for 30 min.

2.2. DNA extraction

DNA extractions were carried out on Mus  musculus cells
[Neuro-2a, LGC, UK] grown in ATCC-formulated Eagle’s minimum
essential medium (EMEM). Cell populations were counted using
an improved Neubauer haemocytometer [Weber Scientific Interna-
tional Ltd., UK] and then diluted in EMEM to produce a range of cell
numbers (diluted down from a maximum working concentration
of 1500 cells mL−1). Cells were then pelleted and the supernatant
removed prior to the cells being frozen at −20 ◦C until required. The
cells were then added to a solution of 5 M guanidine hydrochlo-
ride (GuHCl) [Sigma–Aldrich, UK] in 10 mM TE buffer, pH 6.7, and
applied to the monolith at 2.5 �L min−1. The monolith was washed
with 100% ethanol to remove proteinaceous debris along with other
potential contaminants of downstream processes at 5 �L min−1.
Finally, the purified DNA was then eluted from the monolith in
10 mM TE buffer, pH 8.5 at 1 �L min−1. All solutions that flowed
through the monolith were collected in 4 �L fractions and then
analysed by both quantification and amplification techniques.
2.3. DNA quantification

Quantification of the DNA obtained from the extraction proce-
dure was  assessed using a Quant-iTTM PicoGreen® double stranded
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Fig. 1. Schematic showing the micro fluidic device and a close-up of the mo

ds) DNA Assay Kit [Invitrogen, UK]. To each 2 �L aliquot of sample
rom the DNA extraction process a 100 �L of the PicoGreen® work-
ng stock solution was added, based on manufacturer’s protocol,
n a black microtitre plate. DNA standards were used to provide a
alibration curve at the following concentrations: 10, 5, 2.5, 1.25,
.625, 0.313 and 0.156 ng �L−1. A blank containing no DNA was  also
sed to account for any background fluorescence. All samples were
nalysed using a FLUOstar Optima Plate Reader [BMG Labtech, UK].

In order to enable calculation of DNA extraction efficiencies, it
as necessary to determine the total amount of DNA initially added

o the system. Diluted cell populations were thermally lysed by
eating to 100 ◦C and the total amount of DNA released quantified.
NA extraction efficiencies were then expressed as a percentage of

he amount of DNA recovered during the elution step compared to
he initial amount of DNA added to the system.

.4. DNA amplification

In order to ensure that the eluted DNA was free of inhibitors and
as of sufficient quality for downstream processing, DNA amplifi-

ation using the polymerase chain reaction (PCR) was performed.
he PCR reagent mixture was composed of: 1× GoTaq® buffer,

 mM MgCl2, 1 unit GoTaq® Hot Start DNA polymerase [Promega,
K], 10 mg  mL−1 bovine serum albumin [NEB Inc., UK], 0.01%

w/v) poly(vinylpyrrolidine), 0.1% (v/v) Tween-20 [Sigma–Aldrich,
K], 200 �M each deoxyribonucleotide triphosphate [Bioline, UK]
nd 0.1 �M primers for amplification of murine �-actin (forward:
′-GCAGCTCCTTCGTTGCCGGT-3′; 5′-CCCGCCCATGGTGT-CCGTTC-
′) [Eurofins MWG  Operon, Germany]. Samples were run on a
echne-32 conventional thermal cycler using the following pro-
ramme: an initial denaturationof 94 ◦C for 5 min, followed by 35
ycles of 94 ◦C for 30 s, 60 ◦C for 30 s and 72 ◦C for 30 s, with a final
xtension step of 60 ◦C for 5 min.

PCR products were then analysed using slab-gel electrophore-
is. A 1.5% (w/v) agarose gel was prepared by dissolving 1.5 g
garose [Bioline, UK] in 100 mL  0.5× TBE buffer (0.09 M Tris–HCl,

.09 M boric acid and 0.002 M EDTA [Sigma–Aldrich, UK] in distilled
ater). PCR products were mixed with loading dye [Fermentas, UK]

nd added to the gel, along with a DNA molecular weight standard,
eneRulerTM 100 bp Plus DNA Ladder [Fermentas, UK], before being
 structure as seen using scanning electron microscopy (10,000× resolution).

subjected to electrophoresis at 120 V until adequate separation was
achieved. Gels were then stained using 0.5 mg mL−1 ethidium bro-
mide [CLP, UK] in 0.5× TBE buffer for 20 min  and then visualized
using a UV transilluminator.

3. Results and discussion

3.1. Monolith characterisation

The nucleic acid binding capacity of monoliths formed within
the micro fluidic device was initially established. Purified human
genomic DNA in 5 M GuHCl in 10 mM TE buffer (pH 6.7) was con-
tinuously loaded onto the pre-conditioned monolith for 30 min
at a flow rate of 2.5 �L min−1. All solutions that passed through
the monolith were collected and the amount of DNA present was
quantified in order to determine the point at which nucleic acid
binding sites on the solid-phase became saturated. Evaluation of
the breakthrough curve, showed this point to be approximately
620 ng. However, given the limited biological samples that this pro-
posed system aims to analyse, the DNA present will be well below
the binding capacity of the monolith so no potential loss of analyte
is anticipated at the binding stage.

3.2. DNA extraction

DNA extraction was performed using decreasing cell numbers
in order to evaluate the efficiency of the process when dealing with
limited sample populations. An example of a typical elution profile
is shown in Fig. 2. As can been seen, minimal DNA passes through
the system during the binding and wash phases indicating success-
ful adsorption. A distinct peak, showing release of DNA, is present
during the elution step, which is used to calculate the efficiency of
the extraction process.

At reduced cell numbers, the efficiency of the DNA extraction
process was shown to increase, particularly at 250 cells or less
(Fig. 3). Previous research, using micro fluidic devices containing

a silica-coated paramagnetic particles, has shown a linear relation-
ship between DNA loaded onto the system and DNA recovered in
the range of 25–400 ng [16]. The work presented here is in con-
cordance with that data but goes further to show that when DNA
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Fig. 2. Average DNA elution profile from DNA extracted from 1000 cells using a
silica-based monolith within a micro fluidic device showing binding (1–7), wash
(
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Fig. 4. Example of a gel image showing successful amplification of �-actin gene
8–15) and elution (16–24) stages (n = 3).

s loaded in amounts less than 15 ng, equivalent to 250 cells, DNA
xtraction efficiencies increase and the system is more effective at
ealing with limited samples.

Analysis of the DNA elution profiles show that adsorption of DNA
s occurring during the binding phase, regardless of the number of
ells which are initially added to the system. However, the amount
f DNA that is recovered during the elution phase increases in a lin-
ar fashion, as lower cell numbers are used. This trend is thought
o be due to the low levels of DNA binding initially to reversible
ather than irreversible binding sites on the silica monolith [15],

 trend which diminishes with increasing amounts on DNA as the
eversible sites preferentially fill. Accordingly with low DNA con-
entrations more reversible binding occurs giving a corresponding
igher release efficiency. This hypothesis is in good agreement with
he observation that in the presence of carrier RNA, the DNA extrac-
ion efficiency increases due to selective irreversible binding of the
NA which in turn improves the elution efficiency of DNA.
ig. 3. Comparison of DNA extraction efficiency from varying cell populations, using
hermally activated silica monoliths in a micro fluidic device (n = 3).
a  micro fluidic DNA extraction from ∼62 murine cells: (1) DNA size ladder; (2–9)
sequentially eluted samples; (10) negative control; (11) �-actin positive control.

3.3. DNA amplification

DNA amplification was performed on the extracted DNA  in order
to confirm that the extraction process was  suitable for removing
inhibitors of PCR and the eluted DNA was  of suitable quality for
analysis. PCR products of the expected size, 135 bp for �-actin,
were detectable from DNA extracted using the micro fluidic system
(Fig. 4).

4. Conclusion

The evaluation of a micro fluidic device with an integrated silica
monolith for the extraction of DNA from limited biological samples
has been performed. The high surface area and preferential use of
reversible binding sites afforded by the silica monolith when low
quantities of DNA are present, were found to enhance the recovery
of nucleic acids from complex biological samples. In particular, it
has been shown that at lower cell numbers, high DNA  extraction
efficiencies were achieved without the need of additional carrier
RNA. The system developed showed robust performance for limited
samples containing less than 15 ng total DNA, which in combina-
tion with its ability to use a low volume, relatively closed system to
maximise the amount of DNA recovered from limited sample types
greatly increases the potential for reducing contamination. Given
the low cell numbers that can be successfully extracted, this sys-
tem lends itself to the examination of clinical or forensic specimens
where samples are often limited, such as DNA profiling from crime
scene samples. These samples can be directly applied to the micro
fluidic device, DNA extraction performed and then analysed either
using conventional downstream methodologies or, as hoped in the
future, as part of an integrated Lab-on-a-Chip system.

Acknowledgements

The authors would like to thank Dr. Steve Clark for fabrication
of the micro fluidic device and the Government of Saudi Arabia for
funding.

References

[1] S.E. Ong, S. Zhang, H.J. Du, Y.Q. Fu, Front. Biosci. 13 (2008) 2757.
[2]  J. Wen, L.A. Legendre, J.M. Bienvenue, J.P. Landers, Anal. Chem. 80 (2008) 6472.
[3] R. Boom, C.J.A. Sol, M.M.M.  Salimans, C.L. Jansen, P.M.E. Wertheimvandillen, J.

Vandernoordaa, J. Clin. Microbiol. 28 (1990) 495.

[4] K.J. Shaw, L. Thain, P.T. Docker, C.E. Dyer, J. Greenman, G.M. Greenway, S.J.

Haswell, Anal. Chim. Acta 652 (2009) 231.
[5] J. Parton, C. Birch, C. Kemp, S.J. Haswell, N. Pamme, K.J. Shaw, Anal. Methods 4

(2012) 96.
[6] Y.K. Cho, J.G. Lee, J.M. Park, B.S. Lee, Y. Lee, C. Ko, Lab Chip 7 (2007) 565.



Chimi

[

[

[

[

[
Haswell, Lab Chip (2011).
L. Kashkary et al. / Analytica 

[7]  B.J. Hindson, D.M. Gutierrez, K.D. Ness, A.J. Makarewicz, T.R. Metz, U.S. Setlur,
W.B.  Benett, J.M. Loge, B.W. Colston, P.S. Francis, N.W. Barnett, J.M. Dzenitis,
Analyst 133 (2008) 248.

[8] K.A. Wolfe, M.C. Breadmore, J.P. Ferrance, M.E. Power, J.F. Conroy, P.M. Norris,
J.P. Landers, Electrophoresis 23 (2002) 727.

[9] S.M. Azimi, G. Nixon, J. Ahern, W.  Balachandran, Microfluid. Nanofluid. 11

(2011) 157.

10] K.J. Shaw, D.A. Joyce, P.T. Docker, C.E. Dyer, J. Greenman, G.M. Greenway, S.J.
Haswell, Lab Chip 9 (2009) 3430.

11] X. Chen, D.F. Cui, C.C. Liu, H. Li, Microsyst. Technol.: Micro- Nanosyst. Inform.
Storage Process. Syst. 14 (2008) 51.

[

[

ca Acta 750 (2012) 127– 131 131

12] Q.R. Wu,  J.M. Bienvenue, B.J. Hassan, Y.C. Kwok, B.C. Giordano, P.M. Norris, J.P.
Landers, J.P. Ferrance, Anal. Chem. 78 (2006) 5704.

13] J. Wen, C. Guillo, J.P. Ferrance, J.P. Landers, Anal. Chem. 78 (2006)
1673.

14] K.J. Shaw, D.A. Joyce, P.T. Docker, C.E. Dyer, G.M. Greenway, J. Greenman, S.J.
15] R. Kishore, W.R. Hardy, V.J. Anderson, N.A. Sanchez, M.R. Buoncristiani, J. Foren-
sic  Sci. 51 (2006) 1055.

16] C.R. Reedy, J.M. Bienvenue, L. Coletta, B.C. Strachan, N. Bhatri, S. Greenspoon,
J.P. Landers, Forensic Sci. Int.: Genet. 4 (2010) 206.



Acetylation of Alcohols and Phenols Using Continuous-Flow, Tungstosilicic
Acid-Supported, Monolith Microreactors With Scale-Up Capability
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A highly scalable and efficient flow-system has been developed to perform the catalyzed acetylation of alcohols and

phenols, such as salicylic acid, at room temperature in excellent yield. The volumetric throughput and the amount of

product can be increased simply by increasing the diameter of a versatile catalytic 12-tungstosilicic acid-supported,

silica monolith can be used to increase the quantity of product produced without having to changeing the optimal

operatingreaction conditions.

Keywords: micro reactor, continuous-flow, monolith

1. Introduction

The acetylation of alcohols and phenols to form alkyl or

aryl acetates (methanoates; Ac = CH3COY) represents a very
important and routinely utilized transformation in organic chem-
istry and is commonly carried out in the presence of acetic

anhydride as an acetylating agent and either a liquid acid or
base catalyst (Scheme 1) [1]. One of the most well known and
industrially important chemical reactions is the acetylation of
salicylic acid in the presence of acetic anhydride and mineral

acid to produce acetyl salicylic acid (aspirin). Since Dresser
introduced the clinical use of aspirin in 1899, it has become one
of the most widely used medications in the world, still relevant

today as an analgesic and prophylactic for several serious
medical conditions, with an estimated annual production of
40,000 tons [2]. Various metal chlorides [3] and triflates [4]

have been investigated in attempts to develop more efficient
and selective acetylation reaction protocols. Unfortunately,
these catalysts are often toxic, corrosive, and difficult to recover
from the reaction solution.

ROH
Ac2O

acid or base
b ROAc ð1Þ

Due to an advantageous combination of strong acidity and an
environmentally friendly nature, heteropoly acids (HPAs) have

found numerous applications as versatile, green catalysts for a
wide variety of organic reactions, such as acetylation of alco-
hols and phenols [5], oxidation of alcohols [6], FriedelYCrafts

and Mannich reactions [7], cyanosilylation [8], ring-opening re-
actions of epoxides [9], dehydration [10], and hydrolysis reac-
tions in the manufacture of biofuels [11]. HPAs generally exhibit
higher catalytic activity than that of conventional liquid mineral

acid catalysts, offering many advantages including high flexi-
bility in the modification of the acid strength, ease of handling,
reusability, experimental simplicity, minimal environmental pol-

lution, and limited corrosion problems [12]. However, notable
disadvantages of HPAs, which limit their application, are their
low surface area and high solubility in polar solvents. These

problems can be overcome by the use of a support material, such
as porous silica or mobile crystalline material (MCM)-41 [13].
Currently, supported HPA catalysts are used as particles sus-

pended in a reaction mixture which makes it difficult to control

reaction parameters and conditions when attempting to scale-up
the reaction. In addition, a reduction in the activity of supported
HPA catalysts over several reaction cycles has been observed due

to loss of the supported HPAs [14].
Recently, the use of continuous-flow micro reactors for

chemical synthesis has been shown to offer greater control over

reaction conditions, e.g., catalyst, reagent, and contact time, with
the ability to optimize and scale-up chemical reactions without
the need for additional optimization [15]. This combination of

reactor attributes leads to lower cycle times, greater selectivity,
and higher yield compared to those using batch-based methods
[16]. In particular, so-called ‘‘monolith flow reactors’’ have been

shown to offer good flow characteristics, associated with the
presence in the monolith of nano- and micro-scale pores, while
representing ideal supports for reagents and catalysts [15c].

We report in this paper the development of an heteropoly

acid, 12-tungstosilicic acid (H4SiW12O40)-supported silica-based
monolithic reactor and the results of testing it by the acetylation
of alcohols and phenols, such as salicylic acid, in the presence of

acetic anhydride as a model reaction to demonstrate the practi-
cality of this approach and to extend the scope of continuous-
flow monolithic reactors. The results reported here indicate that

HPAs-supported monoliths not only minimize the pollution and
corrosion problems of the traditional reactions but also facilitate
the optimization and scaling up of chemical reactions with pre-
cise control over the reaction parameters without the need for

additional optimization. The results of this model reaction indi-
cate that the use of continuous-flow monoliths allows scale-up
of chemical reactions without any material change in the

product yield or reaction conditions, by the simple expedient
of increasing the diameter of the monolith, e.g., a doubling of
the monolith diameter results in a four-fold increase in the

flow rate and corresponding four-fold increase in product
output. This scaling-up process is particularly attractive be-
cause as the dimensions of the nano- and micro-pores in both

monolithic structures are the same, the corresponding per-
meability coefficient will remain constant resulting in no
change in the pressure drop for the larger monolith, which
will, however, produce a larger volumetric throughput for an

identical flow rate or catalyst contact time [15c]. Furthermore,
the continuous-flow process eliminates the requirement of the
separation of heterogeneous catalysts from the reaction mix-

ture and minimizes the environmental pollution and corrosive
problems often encountered using the traditional methodolo-
gies involving the use of toxic and corrosive liquid acids, such

as hydrofluoric and sulfuric acids.
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2. Results and Discussion

2.1. Immobilization and Characterization of the Monolithic

Catalysts. The preparation of silica-based monoliths and 12-
tungstosilicic acid-supported monoliths (H4SiW12O40-monolith)

is described in the Experimental. Characterization of these mono-
liths by N2 adsorption and desorption isotherms indicates type H2
hysteresis (see Figure 1), which is consistent with the disordered
mesoporous structure seen in the micrograph shown in Figure 2.

The Brunauer, Emmett and Teller (BET) surface area, pore

volume and size for the H4SiW12O40-monolith and bulk
H4SiW12O40 catalysts are shown in Table 1. The BET surface
area for the H4SiW12O40-monolith was È131 m2/g compared to

only È0.95 m2/g for bulk H4SiW12O40, resulting in a catalytic
monolith with approximately 138 times higher surface area. It
can be seen from the powder X-ray diffraction (XRD) patterns
of pure H4SiW12O40 and the H4SiW12O40-monolith (Figure 3)

that there is no indication of the presence of H4SiW12O40

crystals in the XRD patterns of the H4SiW12O40-monolith,
indicating that the 12-tungstosilicic acid species are highly

dispersed within the mesoporous structure of the silica
monoliths [14a], as shown in Figure 2.

2.2. Acetylation of Alcohols and Phenols. A variety of hy-
droxyl substrates including primary, secondary, benzylic alcohols,

and phenols has been used as reactants in a model acetylation

reaction using the 12-tungstosilic acid H4SiW12O40-monolith-

3.2 in the presence of acetic anhydride as acetylating agent
without solvent and at room temperature under continuous-flow
conditions. It can be seen from Table 2 that all of these acety-

lation reactions are efficient, giving a high yield with negligible
formation of by-products (see GCYMS chromatograms of
samples in the Supporting Information). This HPA-supported
monolith is a more active catalyst than that used in conventional

batch reactions, e.g., see that reported by Heravi et al. [5a]
where the use of free HPA in a batch acetylation reaction gave
an 89% yield using 4-nitrophenol and 97% yield using 4-

methoxy benzyl alcohol as the reactants, with a reaction time of
15 min, compared to the results reported here using the HPA-
supported monolith catalyst in a continuous-flow microreactor

where the acetylation is 100% complete within a residence time
of 3 min (see entries 3 and 4). The high activity of the supported
12-tungstosilicic acid can be attributed to the high dispersion of
the acid in the monolith mesopores. However, when the reagent

flow rate is increased from 80 to 160 and then 320 HL/min,
corresponding to contact times of 3, 1.5, and 0.75 min, re-
spectively, the product yield, for example, of the acetylation of

2,4,6-trichlorophenol decreases from 100% to 68% and then
36% due to the shorter contact times. This continuous-flow
method tolerates other functional groups on the reactants such

as double bonds (entry 9) and gives the quantitative acetylated
product. A deactivating group in the reactants reduces their
reactivity towards acetylation. It is also very interesting to note

that 3-hydroxyphenol (entry 6) mainly gives mono-acetylated
product (97%) with only 3% di-acetylated product, while the
acetylation of 1,4-dihydroxybutane (entry 7) only generates the
di-acetylated product and none of the mono-acetylated product.

These results suggest that the presence of the acetyl group
added by acetylation reaction reduces the activity of the second
hydroxyl group in phenols, while there is little effect on the
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Figure 1. N2 adsorptionYdesorption isotherms of the H4SiW12O40-

monolith at 77 K. Inset: N2 adsorptionYdesorption isotherms of bulk

H4SiW12O40

Figure 2. SEM image of 12-tungstosilicic acid-supported monolith

Table 1. BET characterization of bulk H
4
SiW

12
O

40
and H

4
SiW

12
O

40
-

monolith catalysts

Sample Surface area
(m2/g)

Pore volume
(cm3/g)

Pore size
(nm)

H4SiW12O40-monolith-3.2 130.9 0.35 11.4

H4SiW12O40-monolith-6.4 130.1 0.36 11.5

Bulk H4SiW12O40 0.95 0.0034 8.8

Figure 3. XRD patterns of pure H
4
SiW

12
O

40
(A) and H

4
SiW

12
O

40
-

monolith (B)



activity of the second hydroxyl group in 1,4-dihydroxybutane.
This may be attributable to mesomeric effects in (aromatic)
phenols, which are not present in (aliphatic) alcohols. Similar
results to those reported in Table 2 using a very large excess of
acetic anhydride can also be obtained using 1.0Y1.5 M equiv-
alent of acetic anhydride to reactant when the reactant is soluble
in acetic anhydride. However, some reactants have limited
solubility in acetic anhydride and a high concentration of acetic
anhydride, e.g., 0.3 M for salicylic acid is used to make a ho-
mogenous reaction mixture. Therefore, this concentration was
used for all reactions in this work (see Table 2) to eliminate the
effect of changing the concentration of reagents and reactants,
so that valid comparisons of the results can be made.

2.3. The Scalability of the Monolithic Catalysts. To evaluate
the saleability of the methodology, a larger-diameter monolith,
H4SiW12O40-monolith-6.4 (6.4 mm in diameter, 35-mm long

and void volume of 0.95 mL), was prepared and used to perform
the same reactions as carried out by the H4SiW12O40h-monolith-
3.2 in Table 2. The results confirm that the larger monolith with

a two-fold increase in diameter (3.2 to 6.4 mm both 35-mm
long) gives correspondingly high yields with an almost four-
fold increase in product quantity. The H4SiW12O40-monoliths

were also tested for acetylation of salicylic acid (entry 15) to
produce acetylsalicylic acid (aspirin) which demonstrates that
1 g acetylsalicylic acid can be produced within 1 h using a flow
rate of 0.32 mL/min. A control experiment was also carried out
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Table 2. Activity of H
4
SiW

12
O

40
-monoliths with different diameters in acetylation reactions with a variety of substrates under continuous-flow

conditions
a

Entry Substrate Product H4SiW12O40-monolith-3.2 H4SiW12O40-monolith-6.4

Yield (%) Yield (%)

1 100 100

2 100 100

3 100 100

4 100 100

5 100 100

6b 97 97

7 100 100

8 100 100

9 100 100

10 100 100

11 100 100

12 100 100

13 99 99

14 100 100

15 100 100

aAll reactions were carried out at room temperature (È25 -C). Reactant (0.3 M) was premixed in acetic anhydride, and the reactant solution was pumped
through the reactor using an HPLC pump. Yields were determined by GCYMS versus internal standard. Substrate contact time for both monolithic reactors was
3 min. Flow rates were 80 HL/min for H4SiW12O40-monolith-3.2 and 320 HL/min for H4SiW12O40-monolith-6.4.

b3% di-acetylated product was formed.



using a conventional batch reactor. The same amount of free
HPA as supported HPA (0.039 g), salicylic acid and acetic
anhydride, used in the flow reaction, was used, and a yield of

0.96 g acetylsalicylic acid was obtained within 1 h. A similar
result was also reported by Heravi et al. [5b] using free HPA.
However, the monolithic reactor can be continuously used for
many hours, while the free H4SiW12O40 is difficult to remove

from the batch reaction mixture.

2.4. The Stability of the Monolithic Catalysts. The stability
of the H4SiW12O40-monoliths is indicated through their repeated
use which, in this investigation, represented 15 reactions, each

requiring five optimization reactions (total reaction number 75)
carried out using one monolithic reactor without any distin-
guishable loss in reaction performance. In addition, the mono-

lith catalyst was washed with methanol (see washing treatment
in the Supporting Information) between each acetylation reac-
tion, and the turnover frequency (TOF) for salicylic acid was

130/h. This stability can be attributed to the surface interaction
between 12-tungstosilicic acid and the monolith support, which
is confirmed by infrared characterization. As seen in Figure 4,
the main infrared (IR) bands of H4SiW12O40-monolith are

978 (W=O), 929 (SiYO), 885, and 795 cmj1 (WYOYW), which
corresponds to characteristic 12-tungstosilicic acid vibrations
[17], indicating that the Keggin structure of HPA remains after

the silica monoliths are impregnated with HPA. The absorption
band for W=O shows a small (3 cmj1) red shift, and the bands
for WYOYW show more significant blue shifts (up to 13 cmj1)

compared to the corresponding peaks in the IR spectrum of
bulk 12-tungstosilicic acid (see Table 3). The presence of these
shifts is indicative of the interaction of the monolith support

with the most external oxygen atoms of the Keggin anion and
stabilization of the 12-tungstosilicic acid supported on the
mesoporous silica monoliths [18].

3. Conclusion

In summary, it has been demonstrated that the 12-tungstosilicic
acid-supported silica monolithic reactors show excellent yields

for acetylation of alcohols and phenols, such as salicylic acid,
under continuous-flow conditions. One of the important features

of the monolithic reactor is that the amount of product can be
scaled-up simply by increasing the diameter of the catalytic
monolith without changing the optimal reaction conditions. The
high activity and strong stability of the supported 12-tungstosilicic

acids are attributed to high dispersion of 12-tungstosilicic acids
on silica monolith supports and the surface interaction between
the monolith and the most external oxygen atoms of the Keggin

anions. No problems were encountered in the scale-up of the
monolith with a diameter of 3.2-mm to a 6.4-mm monolith, i.e.,
there was no shrinkage, and the flow reaction worked perfectly

well. However, it was more difficult to maintain a uniform tem-
perature across the larger monolith during the gelation reaction,
and this difference in gelation temperature resulted in a change in

the nano- and micro-structure of monoliths.

4. Experimental

4.1. Materials. All reagents and solvents, such as poly(ethyl-
ene oxide) (PEO) with average relative molar mass of 100 kDa,
tetra-ethoxysilane (TEOS), acetic anhydride (99%), dichlor-

omethane (99%, DCM), ammonium hydroxide (5 N), and nitric
acid aqueous solutions (1 N), were purchased from Aldrich. All
reagents were used as obtained without further purification.

Heat-shrinkable Teflon tubes (wall thickness of 0.1 and 0.3 mm
before and after shrinkage) with a shrinkage ratio of 2:1 were
purchased from Adtech Polymer Engineering Ltd. (UK).

4.2. Synthesis of Silica Monolith Supports. Silica-based

monoliths were prepared using a solYgel process described in
the literature [19]. The desired amount of PEO was added to an
aqueous solution of nitric acid, and the resultant mixture was

cooled in an ice bath and stirred until a homogeneous solution
formed. TEOS was then added to the reaction mixture, which
was stirred vigorously in an ice bath for 30 min to form a

transparent solution. Subsequently, the solution was poured into
a plastic mold (diameter of 4.8 mm and length of 6 cm for
monolith-3.2 and diameter of 8.2 mm and length of 5 cm for
monolith-6.4). Both ends of the plastic mold were then closed,

and the sealed tube was incubated in an oven at 40 -C for 3 days,
while a wet, semi-solid gel monolith was formed. Approximately
20% shrinkage occurred during this gel formation, which

allowed easy removal of the wet gel monoliths from the plastic
tube molds. The wet gel monoliths were washed with copious
amounts of water to remove any residues and then transferred to

a 10 times volume of 1 M NH4OH aqueous solution in an au-
toclave where it was incubated at 80 -C for 24 h. The monoliths
were again washed with copious amounts of water before drying
in an oven at 90 -C for 24 h. Finally, the monoliths were calcined

at 550 -C for 3 h (heating rate: 2 -C/min) in an air flow to remove
the remaining PEO and form white silica-monolith rods (dia-
meters of 3.2 and 6.4 mm, respectively), which were then cut to

35-mm-long monoliths.
4.3. Preparation of 12-Tungstosilicic Acid-Supported Silica-

Monolith (H4SiW12O40-Monolith). An aqueous solution of
240 KL containing 40 wt% H4SiW12O40 relative to silica
monolith was totally adsorbed onto the monoliths, dried at

90 -C and calcined at 200 -C for 2 h (temperature ramp: 1 -C/min)
under a flow of air. The H4SiW12O40-monolith rod obtained was
then clad in a heat-shrinkable Teflon tube with a glass connector

at each end. The assembly was heated in a furnace at 330 -C
until the monolith was sealed within the Teflon tube to form a
flow-H4SiW12O40-monolith reactor system.
4.4. Activity Measurements. The 35-mm-long H4SiW12O40-

monolith reactor with a diameter of either 3.2 mm (H4SiW12O40-
monolith-3.2)or 6.4mm(h4siw12o40-monolith-6.4)wasconnected
to a high performance liquid chromatography (HPLC) pump.
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Table 3. IR characteristics of bulk and monolith-supported 12-tungstosilicic

acid
a

Sample W=O SiYO WYOdYW WYObYW

H4SiW12O40-monolith 978 cmj1 929 cmj1 885 cmj1 795 cmj1

Bulk H4SiW12O40 981 cmj1 927 cmj1 880 cmj1 782 cmj1

aSee Ref. [18] for the identification of the infrared absorption bands.

Figure 4. Infrared spectra of bulk H4SiW12O40 (A) and 40 wt% of

H4SiW12O40-monolith (B)



A reaction solution containing reactant (0.3 M) in acetic anhydride
was pumped through the reactor at room temperature. The resi-

dence times of the reactants within the catalytic monoliths were
determined using the known void volume of monoliths and dif-
ferent flow rates. Product samples were collected at defined flow
periods during a reaction run and weighed, and a known amount

of dodecane was added to the individual samples as an internal
standard. Samples were treated with distilled water to remove
excess acetic anhydride and extracted with DCM. The remaining

organic material was then washed three times with distilled water,
collected and dried over MgSO4. Individual samples were ana-
lyzed using GCYMS (Varian 2000) as described in literature [20].

4.5. Sample Characterization. Scanning electron micros-

copy (SEM) images were obtained using a Cambridge S360
scanning electron microscope operated at 20 kV. Each sample
was sputter coated with a thin layer of gold-platinum (thick-
ness approximately 2 nm) using a SEMPREP 2 Sputter Coater

(Nanotech Ltd.). Transmission electron microscopy (TEM) was
carried out on a JEOL-2010 operating at 200 kV. The BET sur-
face area and nanometer-scale pore-size distribution were ob-

tained by measuring N2 adsorption and desorption isotherms at
77 K by using a micromeritics surface area and porosity analyzer.
The pore volume and pore size distributions of the nanometer-

scale pores within the monoliths were evaluated from the iso-
therms using the BJH (BarrettYJoynerYHalenda) model. The
powder XRD patterns and the IR spectra of the H4SiW12O40-
monolith and pure H4SiW12O40 were obtained by using SIEMENS

D5000 and PerkinElmer Paragon1000 instrument, respectively.
Determination of the micrometer-scale porosity Vt (which deter-
mines the monolith permeability) was determined from the

equation (WM j WT)/dlr2
P, where WT and WM were the weights

of the dry and water-filled monolith, respectively, d was the
density of water, and l and r were the overall length and radius

of the cylindrical monolith. The micrometer-scale pore size was
determined from SEM measurements.
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A microfluidic device has been developed for the sex identification of ancient DNA samples and works by
manipulating liquids within an environment of micrometer dimensions. In this work a range of micro-
fluidic DNA extraction methods were evaluated for their compatibility with ancient DNA samples, and
the use of streptavidin-coated super paramagnetic particles to isolate biotin-labeled abasic sites within
damaged DNA was shown to be the most reproducible. Polymerase chain reaction-based DNA amplifi-
cation was possible on the microfluidic device when less than 50 pg of template DNA was added. As
a proof-of-principle, powdered bone samples were analysed using the integrated methodology devel-
oped. Following conventional capillary gel electrophoresis, two out of the three samples produced
positive amplification results and were successfully identified as female. These sex identifications were
corroborated by independent Amelogenin, anthropological and Y chromosome analysis. The work re-
ported here is the first step in the development of a complete miniaturized microfluidic system that
would enable on-site ancient DNA analysis.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Ancient DNA is the name given to the degraded, fragmented and
chemically damaged biomolecules that can be recovered from
archaeological remains of plants, animals and humans. Its preser-
vation and survival are not fully understood. Where it does survive,
it can give valuable information, and ancient human DNA from
archaeological sites is especially useful for its potential to identify
kinship, population affinities, pathogens and biological sex (Brown
and Brown, 2011).

However, ancient human DNA analysis is still not routinely
applied in archaeology because of three major problems. Firstly
there is the issue of contamination with modern human DNA,
derived from handling of human remains by archaeologists and
osteoarchaeologists. This can largely be overcome by adopting
precautions during excavation to minimise contamination and by
careful cleaning and treatment of the samples when they reach the
cience and the Environment,
anchester M1 5GD, UK. Tel./

(J. Parton), Naglaa.Abu-
andil Hassan), terry.brown@
(S.J. Haswell), keri.brown@
.J. Shaw).

All rights reserved.
laboratory (Brown and Brown, 2011). Secondly there is the issue of
cost. Ancient human DNA analysis requires specialist clean room
facilities, laboratory equipment and is labour intensive e for results
to be credible highly technically skilled and reputable scientists
should carry out the work. Finally there is a limited range of
analytical methods available for ancient DNA analysis. Although
Next Generation Sequencing (NGS) techniques are becoming
increasingly utilised, the bioinformatic analysis of the DNA
sequences obtained is time consuming. The more traditional
polymerase chain reaction (PCR) methods do not seem amenable to
multiplexing with ancient DNA templates, so for each DNA target
one PCR at a time must be carried out, with additional cloning and
sequencing experiments to confirm the authenticity of the DNA
sequences obtained. A way forward would seem to be a method
that incorporates the ability to perform multiple PCRs on a device
that also allows DNA extraction in one operation. The problems of
contamination could also be minimised or eradicated if these
procedures could be performed in an enclosed system.

Microfluidics concerns the manipulation of small amounts of
fluids within channels of micron dimensions (Whitesides, 2006).
This spatial and temporal fluidic control is coupled with efficient
mass and thermal energy transfer providing microfluidic platforms
with the potential to not only miniaturise existing methodologies
but also to develop novel techniques which benefit from this
reduced scale. Inherent benefits include a reduction in sample and
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reagent consumption, increased speed of analysis, reduced cost and
increased portability. Of particular advantage is the ability to inte-
grate multiple techniques onto a single microfluidic device, known
as micro-total analysis systems (mTAS) or Lab-on-a-Chip (LOC).

Microfluidic devices can be produced in a broad range of
materials depending upon the specific application. Glass, for
example, has been widely used in the production of microfluidic
devices for genetic analysis as it has good thermal properties for
PCR-based DNA amplification and optical transparency enabling
a number of detection techniques to be used. However, the high
surface area to volume ratio present within microfluidic devices
coupled with the lack of biocompatibility of glass often requires
surface treatment to minimise adsorption of reagents, such as DNA
polymerase (Erill et al., 2003). Alternatively, polymers such as
poly(methyl methacrylate) can be utilised as they often exhibit
good biocompatibility but are less well suited to high temperature
requirements (Zhang and Xing, 2007).

Movement of reagents around microfluidic devices can be
achieved using a variety of different mechanisms, the most
common being hydrodynamic and electrokinetic pumping tech-
niques. Hydrodynamic pumping is a well established methodology
that uses syringe pumps in either infusion or withdrawal mode,
attached to the microfluidic device by tubing and connectors, to
achieve reagent movement. This generates a parabolic flow profile
within the channel which means that the flow of solutions is faster
in the centre of the channel due to frictional forces at the surface
(Taylor and Yeung, 1993). Electrokinetic pumping can occur due to
the electrophoretic movement of charged species within the
microfluidic device or the bulk flow of solutions via electro-osmotic
flow (EOF). In EOF, an electrical double layer is generated at the
glass surface due to an electrostatic attraction of cations to the
deprotonated silanol groups. The more diffuse mobile layer is
pulled towards the cathode, in the presence of an applied electric
field, dragging with it the bulk solution. In the absence of a pressure
difference across the length of the microfluidic channel, a flat flow
profile is produced which means that all molecules exhibit the
same velocity, except for those very close to the internal surface
wall (Taylor and Yeung, 1993).

The use of microfluidic technology for carrying out genetic
analysis has received much attention in the literature for clinical
diagnostic (Shaw et al., 2011a) and forensic applications (Horsman
et al., 2007). Isolated sample preparation, amplification and
detection techniques within microfluidic systems have been
demonstrated in a wide range of forms, with the integration of two
ormore components being developedmore recently (Njoroge et al.,
2011).

Nucleic acid isolation on microfluidic devices is commonly
achieved using solid-phase extraction protocols (Wen et al.,
2008). The general principle involves the binding of nucleic
acids to a solid-phase support, washing to remove any cellular
debris or potential contaminants and finally elution of the
concentrated, purified nucleic acids. The use of silica as the solid-
phase has been shown to be highly compatible with microfluidic
environments and produces high yields of purified DNA. However,
the requirement for chaotropic salts and organic solvents can lead
to problems in terms of integration with sensitive downstream
applications such as PCR. Anion exchange resins can be used to
overcome these challenges as they utilise pH changes to bind and
release nucleic acids from the solid-phase. In particular chitosan,
a(1/4)-linked 2-amino-2-deoxy-b-D-glucopyranose, can be
coated either directly onto the surface of the microfluidic device
or on beads/particles or monoliths which can be incorporated
after fabrication (Reedy et al., 2011). DNA binding occurs at pH 5,
with release facilitated by increasing the pH of the buffer used
to pH 9.
DNA amplification lends itself well to a microfluidic format
and as such has received widespread attention in the literature, in
particular with reference to PCR-based amplification techniques
(Zhang et al., 2006). More recently, biochemical advances have
lead to the development of a range of novel isothermal amplifi-
cation techniques and these have also been successfully applied
on a microfluidic scale (Asiello and Baeumner, 2011). There are
three main types of microfluidic PCR systems; stationary, flow-
though and droplet. In stationary PCR, one or more PCR cham-
bers are cycled through the required temperature zones in
a similar way to a conventional thermal cycler. Thermal cycling
can be provided by direct contact with a simple block heater, such
as a Peltier element, or via non-contact methods like infra-red
(Zhang et al., 2006). Flow-through PCR relies on the movement
of the PCR reagents through distinct temperature zones resulting
in thermal cycling. Amplification in such systems is governed by
the flow rate of solutions and the layout of the microfluidic device
(Zhang et al., 2006). More recently, droplet-based PCR has
emerged due to the need for higher throughput amplification
techniques. Water-in-oil droplets containing all the necessary
PCR reagents are applied to flow-through devices, with the
possibility for encapsulation and analysis of single molecules
(Schaerli et al., 2009).

Integration of purification and amplification techniques is not
without its challenges; in particular those issues raised by
confinement of the solid-phase matrix, chemical compatibility and
surface properties of the device required for the different stages
(Ferrance et al., 2003). One solution used to overcome these
challenges is to combine the flow of DNA eluted from the solid-
phase with a concentrated PCR reagent mixture from a side
channel and direct the combined solutions into a PCR chamber for
amplification (Bienvenue et al., 2010). Alternatively, the use of
suitably functionalised magnetic particles as the solid-phase can
facilitate nucleic acid movement within microfluidic systems.
Pipper et al., developed a device for the detection of the H1N1 (bird
flu) virus by using superparamagnetic particles to move viral RNA
between aqueous droplets in an oil environment (Pipper et al.,
2007). Each droplet contained a different reagent for sequential
nucleic acid purification and reverse transcription-PCR. Previous
work by the authors has demonstrated the successful use of
electrokinetic pumping to integrate DNA extraction and amplifi-
cation techniques on a single glass microfluidic device for forensic
applications (Shaw et al., 2011b). All necessary reagents were pre-
loaded into the microfluidic device in a gel encapsulated form and,
upon addition of the sample, the device was sealed with polymer
electrodes. This enclosed system was designed so that potential
contamination was reduced and that the input required from the
user was minimal.

While integrated genetic analysis on microfluidic systems has
been reported for a wide range of sample types (Liu and Mathies,
2009), archaeological samples have yet to receive attention in the
literature. The concerns regarding contamination issues, in
particular with modern DNA, make integrated microfluidic
systems an ideal choice for analysis of such specimens. The LOC
theory provided the inspiration to devise a new method for
ancient DNA analysis that utilises microfluidics and miniatur-
isation of standard ancient DNA protocols as described in this
paper. We report the first successful application of these methods
with ancient DNA templates, from a relatively recent (19th
century) set of skeletons chosen for this proof-of-concept project.
A range of DNA extraction methodologies were evaluated and
integration with DNA amplification was performed. In particular,
we report the sex identification of bone samples from analysis
of the Amelogenin locus using the developed microfluidic
protocol.
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2. Materials & methods

2.1. Bones

Bones were excavated by Oxford Archaeology North from
a site in Darwen, Lancashire, UK that was used as a burial ground
in the mid 19th century, 1832e1862. The burials were excavated
in 2008. Bone samples from three individuals were prepared in
a laminar flow cabinet in an ultraclean room dedicated for
ancient human DNA work. The outer surface of the bones were
UV irradiated and a dental pick was used to remove 0.1 g of
powdered bone from the spongy matrix within a broken end of
the bone.

2.2. Conventional DNA extraction

Powdered bone samples were added to 1mL of extraction buffer
(0.5 M EDTA pH 8.0, 0.5% SDS and 100 mg Proteinase K) and incu-
bated on a shaking incubator at 650 rpm at 55 �C for 24 h in
preparation for extraction using an adapted Qiagen protocol
(Bouwman and Brown, 2005). Briefly, samples were then centri-
fuged at 2000 rpm for 5 min and 0.5 mL of the supernatant
transferred to a small Falcon tube, prior to addition of 2.5 mL of PB
(binding) buffer [Qiagen, UK]. A 0.5 mL aliquot of this solution was
then placed onto a silica spin column [Qiagen, UK] and centrifuged
for 1 min. This centrifugation step was repeated until all the sample
had been passed through the column. Then 0.75 mL PE (wash)
buffer [Qiagen, UK] was added to the spin column and centrifuged
for 1 min. The flow through was discarded and the DNAwas eluted
from the spin column by adding 50 mL of EB (elution) buffer [Qia-
gen, UK] and centrifuging for 14,000 rpm for 1 min after 1 min of
room temperature incubation.

2.3. Conventional DNA amplification

2.3.1. Polymerase chain reaction (PCR)
Conventional DNA amplification was carried out using PCR. A

50 mL reaction contained 2.5 mL of bone extract, 1� buffer
(150 mM TriseHCl pH 8.0, 500 mM KCl), 2 mM MgCl2, 200 mM
each dNTPs, 100 ng each primer, 1% bovine serum albumin and
1.25 units AmpliTaq Gold DNA polymerase [Life Technologies, UK].
Primer sequences for the amplification of the Amelogenin locus
were 50-FAM-CCC TGG GCT CTG TAA AGA A-30 and 50-ATC AGA
GCT TAA ACT GGG AAG CTG-30 [Eurofins MWG Operon, Germany].
Thermal cycling was carried out under the following conditions:
4 min at 94 �C; followed by 44 cycles of 1 min at 55 �C, 1 min at
72 �C and 1 min at 94 �C; followed by 1 min at 55 �C and 10 min at
72 �C.

2.3.2. Real-time (quantitative) polymerase chain reaction (qPCR)
qPCR was used to assess the efficiency of the DNA extraction

methodologies performed on the microfluidic device. Eluted DNA
(1 mL) was added to a solution of 1� GoTaq� qPCR Master Mix
[Promega, UK] with 0.5 mM forward and reverse Amelogenin
primers, made up to a total volume of 50 mL with nuclease-free
water. Samples were then run using the following program on
a StepOnePlus� Real-Time PCR System [Life Technologies, UK]:
Hot-Start activation of 95 �C for 2 min, followed by 40 cycles of
denaturation at 95 �C for 15 s and annealing/extension at 60 �C for
1 min, then melt-curve analysis from 60 to 95 �C.

2.4. Gel electrophoresis

Both slab-gel and capillary gel electrophoresis techniques were
used for the analysis of PCR products. Slab-gel electrophoresis was
performed using 3% (w/v) agarose gels. Samples were electro-
phoresed at 120 V until adequate separation was achieved, stained
using ethidium bromide and visualised using a UV trans-
illuminator. Capillary gel electrophoresis was carried out using
a 3500 Genetic Analyzer [Applied Biosystems, UK]. Samples (1 mL)
were added to 12 mL of Hi-Di� Formamide and 0.5 mL GeneScan�
500 LIZ� Size Standard [Applied Biosystems, UK] and denatured
for 5 min at 95 �C before being snap-cooled on ice and loaded onto
the instrument.

2.5. Microfluidic device manufacture

Glass microfluidic devices were produced using standard
photolithography and wet etching techniques to produce the
design shown in Fig. 1a and b (McCreedy, 2000). The 1 mm
bottom glass layer was isotropically etched to a depth of
100 mm, using a solution of 1% hydrofluoric acid/5% ammonium
fluoride at 65 �C, creating channels of 250 mm width. Access
holes, of 1, 3 and 5 mm diameter, were drilled in the 3 mm top
glass layer. The two layers were then thermally bonded at
595 �C for 3 h. Silanisation of the PCR chamber was performed
in order to minimise DNA polymerase adsorption. A 150 mM
solution of trichloro(1H,1H,2H,2H-perfluorooctyl)silane [Sigma-
Aldrich, UK] in 2,2,4-trimethylpentane [Fisher Scientific, UK]
was added to the PCR chamber and incubated at room
temperature for 10 min. The microfluidic device was then
sequentially washed with solutions of 2,2,4-trimethylpentane,
acetone and distilled water.

2.6. Microfluidic DNA extraction

A number of different DNA extraction techniques were evalu-
ated on the microfluidic device for their compatibility with dealing
with the typically limited sample amounts found with ancient DNA
specimens. These included anion exchange facilitated by both
hydrodynamic and EOF and selective enrichment of DNA
containing abasic sites (which are present in ancient DNA but
rare in modern DNA) using 1 mm streptavidin-coated super-
paramagnetic polystyrene particles [Sigma-Aldrich, UK]. A sche-
matic showing the generic operation of the microfluidic device is
shown in Fig. 1cee. In order to evaluate the different methodolo-
gies, experiments were carried out using a known concentration of
DNA (50 pg) which had already been purified using the conven-
tional technique described in Section 2.2. allowing DNA extraction
efficiencies to be calculated. Following DNA extraction, all eluted
samples were collected and analysed by qPCR.

2.6.1. Anion exchange using hydrodynamic pumping
Anion exchange was performed using chitosan coated silica

beads, prepared as previously described (Parton et al., 2012), which
were added to the DNA extraction chamber (B in Fig. 1) on the
microfluidic device. Following addition to the chamber, using
a pipette, the beads were held in place via the “keystone effect” and
the chamber sealed using a polytetrafluoroethylene (PTFE) plug.
PTFE tubing [Kinesis, UK] was attached to the outlets of the
microfluidic device, using epoxy resin, to facilitate attachment to
a PHD syringe pump [Harvard Apparatus, UK]. Purified DNA was
diluted to a total volume of 20 mL in a solution of 10 mM 2-(N-
morpholino) ethanesulfonic acid (MES) buffer (pH 5) [Sigma-
Aldrich, UK] and then pumped over the beads, from inlet A to
outlet C (Fig. 1) using the syringe pump operated in withdrawal
mode at a rate of 1 mL min�1. Washing was then achieved by
pumping 10 mMMES buffer alone over the silica beads, again from
inlet A to outlet C. Elution of the DNA was then carried out by
flowing a solution of 10 mM tris(hydroxymethyl)aminomethane



Fig. 1. a) Photograph showing the microfluidic device used for integrated DNA extraction and amplification experiments, where A, C and E are the 1 mm inlet/outlet holes for
reagent/electrode addition; B is the DNA extraction chamber and D is the PCR chamber; b) diagram showing the composition of the two layer microfluidic device; Schematic
showing the genetic operation of the microfluidic device for DNA extraction and amplification where c) is the location for introduction of the solid-phase (beads or particles) and
DNA sample binding; d) shows the flow path of the wash solution depending on the pumping mechanism used (hydrodynamic: A to C, EOF: A to E) and e) demonstrates the
movement of eluted DNA (anion exchange) or magnetic particles (selective enrichment) into the PCR chamber for subsequent DNA amplification.
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(Tris) buffer supplemented with 50 mM KCl (pH 9) [Sigma-Aldrich,
UK] from inlet A to outlet E, thereby transferring the eluted DNA
into the PCR chamber.

2.6.2. Anion exchange using EOF
The principles of the anion exchange methodology are as

described in Section 2.6.1. but with the movement of reagents
controlled electrokinetically. Purified DNA in 10 mM MES buffer
was manually added to the DNA extraction chamber containing the
packed chitosan-coated silica beads and incubated for 10 min at
room temperature. Chamber A was filled with 10 mM MES buffer
and chambers C, D and E were filled with 10 mM Tris buffer (Fig. 1).
Platinum wire electrodes were positioned within inlets A, C and E
and connected to an external Paragon 3B Power Supply Unit
[Kingfield Electronics, UK]. The beads were washed using 10 mM
MES buffer by applying a voltage of 100 V cm�1 between electrodes
A and E. Subsequently the purified DNA was eluted using 10 mM
Tris buffer by applying a voltage of 100 V cm�1 between electrodes
C and E resulting in transfer of eluted DNA into the PCR chamber.
While carrying out electrokinetic movement, the microfluidic
device was cooled to around 4 �C, using a thermoelectric Peltier
element, in order to reduce Joule heating and minimise sample
evaporation.

2.6.3. Selective enrichment using magnetic particles
DNA was incubated for 1 h at room temperature with 5 mM of

biotinylated aldehyde reactive probe (ARP) [Invitrogen, UK]
within the DNA extraction chamber (B in Fig. 1). ARP undergoes
a Schiff’s base reaction resulting in biotin labelling of any abasic
sites present within the DNA structure (Fundador and Rusling,
2007). A 5 mL aliquot of streptavidin-coated superparamagnetic
polystyrene particles was manually pipetted into the solution
within the DNA extraction chamber located on the microfluidic
device and incubated for an hour at room temperature to allow
binding of biotinylated DNA. Following binding, the magnetic
particles were immobilised by placing a NdFeB permanent
magnet [Magnet Sales, UK] underneath the extraction chamber
and washed using distilled water, pumped over the particles
using the syringe pump operated in withdrawal mode at a rate of
1 mL min�1 from inlet A to outlet C (Fig. 1), to remove and
contaminants or unbound DNA. The washed magnetic particles
were then transferred directly into the PCR reagent solution
(chamber D, Fig. 1), facilitated by manual movement of the NdFeB
permanent magnet, for combined elution and amplification of
the DNA.
2.7. Microfluidic DNA amplification

DNA amplificationwas performed on amicrofluidic device using
the following PCR reagent mixture: 1� GoTaq� buffer, 0.1 U mL�1

GoTaq� DNA polymerase, 2 mMMgCl2 [Promega, UK], 200 mM each
dNTPs [Bioline, UK], 0.5 mM forward and reverse Amelogenin
primer, 0.2 mg mL�1 bovine serum albumin, 0.01% (w/v) poly(-
vinylpyrrolidine) and 0.1% (v/v) Tween-20 [Sigma-Aldrich, UK].
Once the PCR reagents were added to the microfluidic device, along
with the extracted DNA, the inlets were covered with a drop of
mineral oil [Sigma-Aldrich, UK] to prevent evaporation during the
thermal cycling process. The microfluidic device was then posi-
tioned on a thermoelectric Peltier element which was used to
provide thermal cycling at the same conditions as described in
Section 2.3.1.



Fig. 3. Intensity of PCR products amplified on the microfluidic system from varying
levels of template DNA (n ¼ 3).
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3. Results & discussion

3.1. Comparison of microfluidic DNA extraction methods

Extraction was performed, from 50 pg of DNA, using both anion
exchange and themagnetic bead enrichment techniques. Following
DNA extraction, all samples were analysed by qPCR enabling the
DNA extraction efficiency to be determined (Fig. 2). The results
showed that EOF did not produce any quantifiable results,
demonstrating either a poor DNA extraction efficiency resulting in
insufficient DNA for amplification or that inhibitors remained
which prevented successful amplification. Anion exchange using
hydrodynamic pumping demonstrated w35% DNA extraction effi-
ciencies but lacked reproducibility. Magnetic enrichment based on
selectively isolating labelled abasic sites on the DNA showed good
reproducibility. In addition, as it provides enrichment, the low
percentage can be attributed to any non-damaged DNA not being
captured.

3.2. Limits of detection for microfluidic DNA amplification

While DNA levels present in ancient bone samples are widely
variable due to localised environmental conditions, most ancient
DNA analyses are optimised to work on 50 pg or less of DNA. A
feasibility study was carried out in order to establish the limits of
amplification on the microfluidic system. PCR was performed using
different levels of template DNA, ranging from 1 to 1000 pg, and
analysed using capillary gel electrophoresis (Fig. 3). Although DNA
amplification was more efficient at DNA amounts of �100 pg, DNA
amplification was possible down to 1 pg, well within the desired
range for typical ancient DNA samples.

3.3. Integrated DNA extraction and amplification

From comparison of the different DNA extraction techniques,
selective enrichment was used for the integrated microfluidic
system as it offered good reproducibility. In addition, extraction of
only DNA containing abasic sites reduces the likelihood of
contamination frommodern DNA samples as these are less likely to
contain abasic sites and will be removed during the wash step.
Integration of the DNA extraction and amplification methodologies
described above for the analysis of powdered bone samples were
performed on the microfluidic device (Fig. 4).
Fig. 2. Comparison of DNA extraction efficiencies, as determined by qPCR, for the
different extraction methodologies (n ¼ 3).
Three different bone samples (SK095, SK091 and SK116) were
analysed in triplicate on the microfluidic system and the results
analysed by conventional capillary gel electrophoresis. The PCR
target was the Amelogenin gene, which is present on the X and Y
chromosomes. A 6 bp deletion within the amplified region of the X
version of the gene means that the sizes of the PCR products
indicate which chromosomes are present, the X product being
104 bp and the Y version 110 bp (Sullivan et al., 1993). Samples
SK091 and SK116 produced detectable results and indicated the sex
of both sets of bones to be female (XX) for all replicates performed
(Fig. 5). Sample SK095 however did not produce any detectable
results upon repeated analysis.
Fig. 4. Schematic showing the operational process for integration of DNA extraction
and amplification on the microfluidic device.



Fig. 5. Electropherograms showing sex identification of bone samples a) SK091 and b) SK116, following DNA extraction and amplification on the microfluidic system. The size (bp) is
shown on the x axis and the fluorescent intensity of given on the y axis. PCR product (blue) and DNA size ladder (orange) peaks are labelled with their relative sizes. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.4. Comparison of conventional and microfluidic methodologies

In order to corroborate the finding obtained on the microfluidic
system at the University of Hull, the results were compared with
the anthropological sex identifications made by Oxford Archae-
ology North, and with molecular sex identifications using
conventional PCR techniques, directed at the Amelogenin gene and
various markers on the Y chromosome, performed independently
at the University of Manchester (Table 1). The result obtained for
SK091 is encouraging as SK091 could not be assigned sex on oste-
ological grounds. Although the Y chromosome was detected by
Table 1
Summary of sex identification results obtained from 3 bone samples as analysed by
anthropological and biomolecular techniques (yY chromosome marker DYS446; zY
chromosome markers DYS446 and DYS388; Ag, Amelogenin).

Burial
reference

Conventional
Ag sex ID

Anthropological
sex ID

Y chromosome
sex ID

Microfluidic
Ag sex ID

SK091 Female Unknown Positivey Female
SK095 Male Male Positivez e

SK116 Female Female Negative Female
conventional PCR with this sample, this result was for a single
marker, DYS446, that is no longer looked on as male-specific
because of the discovery of a similar DNA sequence in the Xq21
region of the X chromosome (Asamura et al., 2008). The non-
specific Y detection must therefore be weighed against the Ame-
logenin result indicating a female and the microfluidic system
result corroborating this. Although SK095 did not provide a result
with the microfluidic system, paradoxically this may be because of
the good preservation of the nuclear DNA in this sample, which
gave a Y chromosome PCR result for both DYS446 and DYS388 loci.
It may be that there was a lack of abasic DNA fragments in this
particular template. All the results, whether osteological or
biochemical, obtained for SK116were in agreement that the sample
was female.
4. Conclusions

The work presented here describes the first steps in the devel-
opment of a microfluidic system for the analysis of ancient DNA
samples. A number of DNA extraction methodologies were
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evaluated for their suitability at dealing with limited, possibly
degraded DNA samples, as is often the case with ancient archaeo-
logical specimens. Both anion exchange and the enrichment of
labelled abasic sites have been demonstrated as feasible tech-
niques. However, the use of a method which allows selective
extraction of damaged DNA offers advantages in the reduction of
contamination by modern DNA. Amplification from less than 50 pg
of DNA was shown to be successful within silanised glass micro-
fluidic devices, thermally cycled using a custom-built Peltier-based
heating/cooling system. Direct analysis of three powdered bone
samples was carried out as a proof-of-principle. Two out of the
three samples produced positive results and were identified as
female which was found to be in keeping with sex identification
results independently obtained at the University of Manchester.

The use of a microfluidic system offers a number of advantages
over conventional ancient DNA analysis techniques. Integration of
several analysis techniques within a single microfluidic device
reduces the likelihood of contamination as the device can be
sealed once the sample has been added. By miniaturising the
associated control systems, such as the Peltier heater, it will be
possible to create a portable operating system that could be used
at an archaeological excavation enabling on-site results to be
generated. Further work will aim at establishing a robust meth-
odology with integrated detection system. Development of
a “sample in-answer out” system would enable use by non-
specialised staff and therefore increase the convenience and
acceptance of genetic testing of ancient DNA samples. The
possibilities can then be extended from relatively simple sex
identification to mitochondrial DNA haplotyping or more
complex trait analysis.
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Development and Evaluation of a Raman Flow Cell
for Monitoring Continuous Flow Reactions
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We show how in-line Raman spectroscopy can be used to monitor both reactant and product concentrations for a
heterogeneously catalysed Suzuki cross reaction operating in continuous flow. The flow system consisted of an HPLC

pump to drive a homogeneous mixture of the reactants (4-bromobenzonitrile, phenylboronic acid, and potassium
carbonate) through an oven heated (808C) palladium catalyst immobilised on a silica monolith. A custom built PTFE
in-line flow cell with a quartz window enabled the coupling of anOceanOptics Raman spectrometer probe tomonitor both

the reactants and product (4-cyanobiphenyl). Calibration was based on obtaining multivariate spectral data in the range
1530 cm�1 and 1640 cm�1 and using partial least-squares regression (PLSR) to obtain a calibration model which was
validated using gas chromatography–mass spectrometry (GCMS) analysis. In-line Raman monitoring of the reactant and

product concentrations enable (i) determination of reaction kinetic information such as the empirical rate law and
associated rate constant and (ii) optimisation of either the product conversion (61% at 0.02mLmin�1 generating 17 g h�1)
or product yield (14% at 0.24mLmin�1 generating 53 g h�1).
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Introduction

The application of flow chemistry to a range of organic syn-
theses has been demonstrated to offer several benefits including

improvements in reaction yields, product selectivity, and scal-
ability.[1–3] These benefits are mainly associated with the good
spatial, thermal, and temporal control offered by flow method-
ology.[4–7] Reactions such as acetylation, Suzuki, Heck, amide

synthesis, Knoenvenagel condensation, and many more, which
have utilised flow reaction chemistry, all report more efficient
processes.[8–11] In such systems, it has also been common to

utilise catalysts such as palladium configured in both homoge-
neous and heterogeneous reaction states.[12,13] For example, He
et al. reported using heterogeneous palladium coupled with

microwave heating in a flow system to carry out Suzuki reaction
chemistry which produced yields in excess of 70% in 60 s.[14]

Whilst microwave heating has been reported to improve such

reactions due to localised heating generated at the surface of the
catalyst during exposure,[15] other heating methods such as oil
baths, water baths, infrared, and column heating[16–19] are all
equally suitable for implementation into flow systems where

contact times can easily be controlled by flow rate.
One aspect of flow chemistry which has received less

attention to date has been in-line or in-channel reaction moni-

toring. When coupled with flow rate feedback, this offers the
potential of controlling variables such as reagent mixing and
catalyst contact times, which would clearly be beneficial in

optimising reaction yields.[20,21] In-line monitoring using

various spectroscopic techniques coupled, using a flow cell
configuration to flow systems have been reported; these include
infrared,[22] ultraviolet,[23] nuclear magnetic resonance,[24] and

Raman.[25] For example, Carter et al. have reported the incorpo-
ration of an ATR-IR spectral window in a flow reactor to
monitor hydrogenation, Curtius rearrangement, azide forma-
tion, peptide coupling, butane-2,3-diacetal protection, addition

of allenylstannanes to aldehydes, and fluorination reactions.[26]

Raman spectroscopy however, which offers a greater tolerance
to water than IR, has the potential to realise a much more robust

methodology capable of acquiring molecular identification.
In addition, fibre optic probes coupledwithRaman spectroscopy
are able to provide remote monitoring with good spatial resolu-

tion.[27] Mozharov et al. have used Raman spectroscopy very
effectively for monitoring base-catalyzed Knoevenagel conden-
sation between ethyl cyanoacetate and benzaldehyde.[28] Their

findings allowed quantification and kinetic reaction studies to be
performed, without the need for multiwavelength chemometric
calibration.Most Raman spectroscopic systems however, utilise
chemometric techniques to extract the relevant chemical infor-

mation from multiwavelength spectral measurements. This is
necessary in part to remove contributing factors such as fluores-
cence. Walmsley et al. for example, used principal component

analysis (PCA) to identify and remove the underlying fluores-
cence signal in Raman measurements from esterification reac-
tions to obtain pure Raman spectra.[29] Other multivariate

chemometric techniques have been coupled with regression
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analysis to allow quantification of Raman spectra to be

achieved.[30]

In this paper, we describe the development of a novel in-line
Raman flow cell which has been evaluated using the Suzuki

cross coupling reaction between 4-bromobenzonitrile and phe-
nylboronic acid, using a heated heterogeneous palladium-silica
monolithic catalyst.

Results and Discussion

Experimental Set-Up

The reaction used to illustrate the potential of the flow reaction

system developed is shown in Fig. 1. The Suzuki cross coupling
was carried out by pumping a homogeneous reaction mixture
containing 4-bromobenzonitrile (0.1M), phenyl boronic acid

(0.12M), and potassium carbonate (0.24M) through a heated
column containing palladium catalyst immobilised on a silica
monolith, with in-line product and reactant quantification using
Raman spectroscopy (Fig. 2). Optimisation of the product

generated could be achieved by either changing the temperature
of the catalyst column or the catalyst contact time, which was
varied by altering the solution flow rate using a calibrated HPLC

pump (See Fig. S1 in the Supplementary Material).

Calibration of Raman and GCMS Validation

In order to ensure the Raman flow cell could detect quantitative

reactant and product concentrations from the reaction, a series of
matrix match standards were prepared and introduced into the
flow cell sequentially and measured. As the signal response was

found to be unaffected by flow (see Fig. S2 in the Supplementary
Material) the calibration was carried out in static mode to sim-
plify the experimental methodology. Raman spectral data
obtained for the calibration was based on the greatest spectral

variance which occurred in the range between 1530 cm�1 and
1640 cm�1 (see Fig. S3 in the Supplementary Material) and is

Br

�

N

B
O O

H

H

N

Pd

Fig. 1. Scheme for the Suzuki reaction used to develop and test the

reported flow system, which consists of 4-bromobenzonitrile (0.1M),

phenylboronic acid (0.12M), and potassium carbonate (0.24M). The cata-

lyst used was an in-house produced palladium/silica monolith enclosed in an

HPLC column heater device.

Raman probe
position

Laser focus point

45 mm

45 mm

(a)

(b)

Reactant
reservoir

HPLC pump
Column heater

with Pd/Si
monolith

Raman detector
flow cell Product/waste

Flow out

Flow in

Fig. 2. (a) Schematic of the flow reaction system used which incorporates a reactant reservoir, HPLC pump, palladium/silica

monolithic catalyst inside a column heater, Raman detector, and product/waste reservoir. (b) Details of the in-house built PTFE

Raman flow cell incorporating a quartzwindow (10.0mmØ� 2.0mm). The focal point of the laser is 7.5mm into the channelwith a

spot size of 135mm and a depth of field of 2.2mm.
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attributed to the presence of the nitrile group on the

4-bromobenzonitrile and 4-cyanobiphenyl. The two compounds
are however distinguishable from each other due to the fact that
the induced dipole associated with the nitrile group of the
4-bromobenzonitrile is slightlymore hindered than in the case of

4-cyanobiphenyl, resulting in a weaker Raman shift when using
the 785 nm light source. This data was used in conjunction with
partial least-squares regression (PLSR) to obtain calibration

plots of the PLS scores for 4-bromobenzonitrile (starting
material) and 4-cyanobiphenyl (product) as shown in Fig. 3. In
this case, the scores represent the coordinates in space of the

Eigenvectors from the spectral data variance. Using the cali-
bration plots it was possible to predict the conversion and con-
centrations of compounds in the reactionmixture against scores.

The PLSR Raman calibration model was validated using

GCMS analysis performed using the same reaction solutions
(see Fig. S4 in the Supplementary Material). The results indi-
cated that the Raman andGCMSmeasurements gave calibration

predictions within �10%.
Having established that in-line Raman spectroscopy will

offer access to quantitative data on both the reactant and product

for the Suzuki reaction shown in Fig. 1, the opportunity to
acquire direct reaction information related to reaction rates and
product yield/conversion represents an attractive aspect of the

methodology developed. To illustrate this aspect of flow
reaction monitoring a brief example of how kinetic data and

reaction optimisation can be obtained is presented in the
following sections. It should be stressed however, that as the
main thrust of this paper has been to report the development of

Raman flowmonitoring methodology, the applications reported
here of how the measured data can be used to extract kinetic and
reaction optimisation information is intended to illustrate the

principles involved rather than to provide a definitive and
comprehensive study.

Kinetic Data

Reaction kinetic studies were conducted by varying flow rates

and hence catalyst contact times, for the Suzuki cross coupling
reaction outlined in Fig. 1. Volumetric flow rates of between
0.02 and 0.38mLmin�1, producing catalyst contact times of

between 2461 and 130 s were used. The monolith was estimated
to have a pore volume of 1.09mL determined from the differ-
ence in dry and water filled weights of the monolith. Fig. 4

shows the concentration of 4-bromobenzonitrile and
4-cyanobiphenyl as a function of catalyst contact time. As
expected, as the contact time increased, the concentration of
4-bromobenzonitrile decreased and that for 4-cyanobiphenyl

increased.
In order to derive kinetic information about the heterogenous

Suzuki reaction, the concentration data shown in Fig. 4 was

fitted to various integrated rate equations corresponding to
alternative empirical rate laws. The best-fit (shown as the solid
lines Fig. 4) was found to correspond to the second-order rate

law (Eqn 1: rate law for the Suzuki reaction between
4-bromobenzonitrile (BBN) and phenylboronic acid (PBA)) and
the corresponding integrated rate Eqn 2 (reaction kinetic equa-

tion for an overall second order reaction with phenylboronic
acid (PBA) and 4-bromobenzonitrile (BBN) being both first
order[31]), i.e. the rate of reaction was found to be first order with
respect to both 4-bromobenzonitrile (BBN) and phenylboronic

acid (PBA). For the reaction conditions used, the overall second-
order rate constant k is 4.8� 10�3M�1 s�1.

Rate of reaction ¼ k BBN½ �½PBA� ð1Þ

1

PBA½ �0 BBN½ �0
: ln

PBA½ �0
BBN½ �0

:
BBN½ �
PBA½ � ¼ kt ð2Þ
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Fig. 3. Raman calibration for matrix match standards consisting of 0.00–

0.099M solutions for both 4-bromobenzonitrile and 4-cyanobiphenyl. Each

calibration solution was measured in the Raman flow cell under static

conditions at a temperature of 208C with no catalyst present. Raman spectra

in the range 1530 cm�1 and 1640 cm�1 were recorded as the average of five
measurements, each with a 1 s integration time. A 785 nm laser set at

340mW was used. All spectra were subjected to default dark signal and

stray light corrections.
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Fig. 4. Plots of the concentrations of 4-bromobenzonitrile (�) and

4-cyanobiphenyl (J) determined by the Raman spectrometer as a function

of the catalyst contact time. The reaction was performed at volumetic

solution flow rates of 0 to 0.38mLmin�1 and the temperature in the column
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Reaction Optimisation for Conversion and Product
Production Per Hour

Based on the concentration data obtained for the kinetics study
we illustrate here how the optimal flow rate (catalyst contact

time) for the production of both the maximum conversion and
maximum output in grams per hour for 4-cyanobiphenyl can be
determined. From the data presented in Table 1 it can be seen

that maximum conversion of 4-cyanobiphenyl occurred at
0.02mLmin�1 whilst the maximum output of the product in
grams per hour was produced at 0.24mLmin�1. Once again this
illustrates an interesting aspect of flow chemistry, namely that

whilst the percentage conversion of a catalytic product is pro-
portional to contact time of reactants, production of product as a
function of time continues to increase even with decreasing

conversions up to a maximum; after this the conversion drops as
the conversion becomes too low to warrant sufficient product
generation. The product production in grams per hour is shown

in Fig. 5 and indicates the optimal flow rate for the production of
4-cyanobiphenyl at 53 g h�1 even though the conversion is only
around 14%.

Conclusions

An in-line flow cell for the acquisition ofRaman spectral data has
been shown to offer an attractive information rich approach for
monitoring chemical reactions under flow control. Whilst the

main thrust of this present paper has been directed towards the
development of the in-line Raman detection system and its cal-
ibration capability, two examples of how such data could

potentially be used have been presented to illustrate the wider
potential of the approach. Suchmethodology is considered key to
the ongoing development of flow chemical reactors as it not only

offers the possibility of optimisation feedback control but also
enables such experimental platforms to access important physi-
cal organic data relating to often complex reaction mechanisms.

Experimental

Chemicals

Dimethylformamide (99%), 4-bromobenzonitrile (99%), phe-
nylboronic acid (. 97%), potassium carbonate (99%), and

4-cyanobiphenyl (95%)were used for the Suzuki cross coupling
reaction. The heterogeneous catalyst was prepared using tetra-
ethyl orthosilicate (TEOS, 98%), nitric acid (volumetric stan-

dard 1.000N), polyethylene oxide (PEO, 100000Mv),
ammonium hydroxide (volumetric standard 5.0N), and sodium
tetrachloropalladate (98%) fabricated the silica monolithic
reactor. Hydrogen (10%) in nitrogen was used to reduce the

sodium tetrachloropalladate. Magnesium sulfate (99.5%) and
dichloromethane (.99.8%) were used for purification of
reaction products for GCMS analysis using decane (99%) as

internal standard. All chemicals were purchased from Sigma
Aldrich except the hydrogen (10% in nitrogen) which was
purchased from Energas.

Equipment

The flow reaction system was made from 1/16 inch internal

diameter (ID) polyether ether ketone (PEEK) tubing, valves,
connectors (Upchurch Scientific), and HPLC pump (Jasco
Pu-1580). Flow reaction heating was achieved with a column

heater (Jones Chromatography, Column Block Heater). A fur-
nace (ESF Carbolite), hotplate (Stuart CB162), oven (Hotbox
size 1 Gallenkamp), and syringes (BD Plastipack) were used to

create the palladium/silica-monoliths. Polytetrafluoroethylene
(PTFE) heat shrink tubing (Adtech Polymer Engineering) was
used to encase the monoliths into flow geometry. Detection was

carried out using an in house PTFE flow cell with a quartz
window to enable optical access for a Raman probe fibre optic
connected to a 785 nm laser (350mV) and a Raman spectrom-
eter QE65000 (all provided by Ocean Optics). Raman data was

collected and analysed using Spectra Suite software. Analysis
of the reaction yield was confirmed by gas chromatography
(Perkin Elmer Gas Chromatograph) in gas chromatograph mass

spectrometer (GCMS,VarianSaturn 2000)with aGCMScolumn
(30m� 0.25mm, Phenomenex Zebron ZB-5 capillary column).

Flow Suzuki Reaction System

Each reaction consisted of a mixture containing 4-
bromobenzonitrile (0.1M), phenylboronic acid (0.12M), and

potassium carbonate (0.24M) in DMF (66.7%). The mixture
was placed in the reactant reservoir and pumped through the
HPLC pump into the palladium/silica monolith where it was

heated at 808C. From here the reaction mixture passed through
the Raman flow cell where spectral recording was obtained. The
total volume of the flow manifold including the monolithic

reactor and glass connectors was 0.900mL. Within this volume
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Fig. 5. The influence of flow rate on 4-cyanobiphenyl production (J)

and conversion (�) in the Suzuki cross coupling reaction between

4-bromobenzonitrile (0.1M) and phenylboronic acid (0.12M) in the pres-

ence of potassium carbonate (0.24M) using a palladium catalyst immobi-

lised on a silica monolith at a temperature of 808C. 4-Cyanobiphenyl

concentrations and reaction conversions were determined by the Raman

spectrometer.

Table 1. Optimisation of product yield and product formation for the

Suzuki cross coupling reaction between 4-bromobenzonitrile (0.1001M)

and phenylboronic acid (0.1196M) in the presence of potassium

carbonate (0.2391M) and palladium catalyst immobilised on a silica

monolith as a function of flow rate

The temperature in the column heater was set at 808C; 4-cyanobiphenyl

concentrations were determined by the Raman spectrometer

Flow rate

[mLmin�1]
Reaction

time [s]

4-cyanobiphenyl

produced [g h�1]
Conversion

[%]

0.02 2461 17.02 61

0.04 1573 19.49 44

0.05 1156 24.69 41

0.08 827 28.2 33

0.09 696 25.87 25

0.11 600 30.67 26

0.14 471 36.14 24

0.17 387 41.67 23

0.24 268 50.98 19

0.38 173 46.83 11
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the Raman flow cell represented a volume of 0.182mL of which

0.094mL was the measurement zone. The effluent of the cell
was subjected to liquid-liquid separation and GCMS analysis.

Palladium/Silica Monolith Preparation

The catalyst was prepared by previously reported literature
methods.[14]

Raman Analysis

Calibration solutions representing reaction product conversions
of 0, 20, 40, 60, 80, and 100% were produced using
4-bromobenzonitrile, phenylboronic acid, potassium carbonate,

and 4-cyanobiphenyl. Solutions prepared contained 0.0994,
0.0764, 0.0579, 0.0397, 0.0193, and 0M 4-bromobenzonitrile,
0.1156, 0.0957, 0.0802, 0.0677, 0.0413, and 0.0205M phe-
nylboronic acid, 0.2485, 0.2544, 0.2440, 0.2394, 0.2400, and

0.2438M potassium carbonate, and 0.0000, 0.0220, 0.0391,
0.0598, 0.0797, and 0.0989M 4-cyanobiphenyl in 66.7% DMF
respectively. A total of five spectra were obtained for each

solution in the Raman flow cell under static conditions. The
averages of the five spectra were placed into PyChem software
and data regression performed. Row-mean centring and baseline

correction of the calibration and reaction data were performed
simultaneously. The spectral data between 1530 cm�1 and
1640 cm�1 was subject to partial least-squares regression
(PLSR) accounting for four factors contributing to the Raman

signal. The scores for the calibration solutions were used to
create calibration plots. Calibration plots of the conversion (%),
4-bromobenzonitrile concentration (M), and 4-cyanobiphenyl

concentration (M) were obtained.

GCMS Analysis

The calibration solutions described above were subjected to
liquid-liquid extraction with dichloromethane and water. 10mL
of decane (.99%) was added as an internal standard to 400mL
of the standard or sample. Sample preparation required liquid-
liquid extraction of the reaction product in CH2Cl2 (Analar
Grade) with three separate washes in water. This was followed

by dryingwithmagnesium sulfate; the samples were filtered and
injected directly in the GCMS (Perkin Elmer Gas Chromato-
graph and a Varian Saturn 2000 mass spectrometer). A Phe-

nomenex Zebron ZB-5 30m� 0.25mm capillary column was
used for separation. The separation conditions were split
injection (50 : 1) of a 1 mL extract, helium flow rate of

1mLmin�1, injection temperature of 2508C, initial oven
temperature of 508Cwith a ramp of 358Cmin�1 to 708Cand held
for 7.43min, followed by a further ramp of 208Cmin�1 to
2508C held for 6.00min. The resulting GC-MS retention

times were observed at 6.44min for decane, 11.13min for
4-bromobenzonitrile, and 15.35min for 4-cyanobiphenyl (see
Fig. S5 in the Supplementary Material). The mass spectra con-

firmed these peaks as decane, 4-bromobenzonitrile, and 4-
cyanobiphenyl respectively (See Figs 6–8 in the Supplementary
Material). PLSR was also performed on the chromatograph

between 5 and 20min for the calibration and the reaction
solutions.

Supplementary Material

HPLCpump calibration, Raman spectra and PLS calibration and
GCMS data are available on the Journal’s website.
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Integrated RNA extraction and RT-PCR for semi-
quantitative gene expression studies on a microfluidic
device
Kirsty J Shaw1, Elizabeth M Hughes2, Charlotte E Dyer3, John Greenman3 and Stephen J Haswell4

This paper describes the development of a microfluidic methodology, using RNA extraction and reverse transcription PCR,
for investigating expression levels of cytochrome P450 genes. Cytochrome P450 enzymes are involved in the metabolism
of xenobiotics, including many commonly prescribed drugs, therefore information on their expression is useful in both
pharmaceutical and clinical settings. RNA extraction, from rat liver tissue or primary rat hepatocytes, was performed using
a silica-based solid-phase extraction technique. Following elution of the purified RNA, amplification of target sequences
for the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the cytochrome P450 gene
CYP1A2, was carried out using a one-step reverse transcription PCR. Once the microfluidic methodology had been
optimized, analysis of control and 3-methylcholanthrene-induced primary rat hepatocytes were used to evaluate the
system. As expected, GAPDH was consistently expressed, whereas CYP1A2 levels were found to be raised in the
drug-treated samples. The proposed system offers an initial platform for development of both rapid throughput analyzers
for pharmaceutical drug screening and point-of-care diagnostic tests to aid provision of drug regimens, which can be
tailor-made to the individual patient.
Laboratory Investigation (2013) 93, 961–966; doi:10.1038/labinvest.2013.76; published online 27 May 2013

KEYWORDS: diagnostic; metabolism; microfluidics; point-of-care

Cytochrome P450 enzymes (P450s) are a superfamily of
haem-containing monooxygenase enzymes, which have spe-
cific roles in numerous metabolic and synthetic pathways.1

P450s are the major enzymes involved in phase I metabolism
of xenobiotics, ie, any foreign chemicals that can be
introduced into an organism, including deliberately
administered pharmaceutical agents.2 Phase I metabolism
involves the oxidation, hydroxylation, reduction, and
hydrolysis of drug molecules making them more water
soluble for easy removal from the body. P450 enzymes, as
well as metabolizing drugs, are also involved in drug–drug
interactions, in which induction or inhibition of P450 ex-
pression can result in a greater production of toxic meta-
bolites, or a decrease in efficacy of a drug due to increased
clearance.1 There are situations in which, instead of assisting
in the elimination of drugs, P450s can activate prodrugs or
procarcinogens, causing them to become toxic.3 This is the
case with polycyclic aromatic hydrocarbons (PAHs), which

are found in compounds such as tar. PAHs by themselves
cannot damage DNA, but once hydroxylated by P450 they
become activated and have a carcinogenic role.4

Measuring P450 gene expression levels can be beneficial in
the development and administration of pharmaceutical
drugs. For example, the levels of P450 enzymes found in cells
after exposure to a new drug could indicate the likely
outcome of that drug due to a fast metabolism of the drug, or
its conversion to undesirable by-products. Specifically, an
individual patient’s likely response to a particular drug could
be determined before use through testing on a biopsy taken
from the patient. A tailored dosage could then be adminis-
tered taking into consideration the metabolic effects of the
P450 enzymes, and reducing the risk of any adverse effects to
the patient.5

CYP1A2 is a cytochrome P450 enzyme associated with the
metabolism of a number of clinically relevant drugs, such as
clozapine (an antipsychotic), which is released from the cell
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under the induction of various chemicals. One way in which
P450 induction can be assessed is via the 7-ethoxyresorufin
O-dealkylation (EROD) assay.6 In this assay, 7-ethoxyresorufin
is converted, by CYP1A2, to resorufin that can then be
quantified fluorescently.7 Hepatotoxicity studies have been
carried out previously within a microfluidic environment
using in situ quantification of the fluorescent intensity of cells
and their surrounding media via the EROD assay to compare
CYP1A2 expression in control and 3-methylcholanthrene
(3-MC)-induced primary rat hepatocytes.8 Assessment of the
catalytic action of CYP1A2 provides information as to the
action of the protein but does not measure gene expression
levels. Information about changes to specific gene expression
levels, in response to certain conditions, can only be obtained
by analyzing levels of messenger RNA (mRNA).

To obtain this information, mRNA must first be extracted
from the biological matrix that is being investigated. The
purified mRNA is then converted to complementary DNA
(cDNA) by a reverse transcriptase enzymatic reaction. The
cDNA can then be amplified using the PCR, which enables
either end-point or real-time detection.

The increasing ability to miniaturize laboratory techniques
onto a ‘Lab-on-a-Chip’ format using microfluidic technology
has opened the door to many varied and far-reaching
applications. It is now possible to integrate reactions in a way
not possible before, so that instead of products being moved
from one reaction vessel to another, risking contamination
and loss of product, two or more reactions can happen on the
same enclosed microfluidic device.9

Although nucleic acid analysis on microfluidic devices has
received great interest in the literature, the majority of pub-
lications are focussed on DNA presumably because of the
less-stable nature of RNA and its susceptibility to RNases.
However, analysis of RNA is vital for gene expression studies.
Total RNA can be extracted from biological samples using a
solid-phase matrix to which nucleic acids bind under selec-
tive conditions. The most common methods involve either a
silica- or anion exchange-based solid phase. When using
silica, nucleic acids bind to the solid phase in the presence of
a chaotropic salt such as guanidine hydrochloride, and
unbound contaminants are then removed with an alcohol
wash before the purified nucleic acids are eluted in a low
ionic strength buffer.10 Chitosan is an example of an anion
exchange matrix that can be used to bind nucleic acids in
solution at pH 5 and elute them at pH 9 once unbound
contaminants have been removed.11 Alternatively, mRNA can
be isolated via the poly(A) tail using tethered poly(T)
sequences, eg, directly immobilized onto the channel
surface12 or on superparamagnetic beads enabling the
captured mRNA sequences to be manipulated around the
microfluidic device using an external magnet.13 More recent
developments have enabled even more selective extraction of
RNA using sequence-specific probes. Root et al14 presented
an innovative method for the purification of RNA from
serum using a polymer capture matrix containing covalently

bound oligonucleotides. The capture, wash, and elution of
target RNA sequences were controlled by electrophoresis,
with an additional heating step required for elution.

A variety of amplification methods have been applied to
microfluidic devices to analyze RNA. Amplification of RNA
viruses, as well as the more traditional single chamber for
aqueous RT-PCR, has been achieved using both continuous
flow15 and solid-phase microarrays.16 Isothermal techniques,
such as nucleic acid sequence-based amplification17 and
loop-mediated isothermal amplification,18 have also been
successfully used.

The integration of RNA purification and amplification
processes is a challenge that has led to the development of a
number of inventive solutions. For example, Pipper et al19

used a series of aqueous droplets in oil on a perfluorinated
surface. Silica-coated superparamagnetic particles were
incubated with a biological sample and then dragged
through droplets containing wash and elution reagents for
RT-PCR before amplification and real-time detection. Lateral
flow strips have also been incorporated into a microfluidic
device for detection of RT-PCR products for HIV.20

Amplicons are labeled with digoxigenin and biotin that bind
to immobilized streptavidin and are then detected using up-
converting phosphor reporter particles. Another alternative
approach was presented by Ferguson et al21 who used
immunomagnetic target capture combined with sequence-
specific electrochemical detection for identification of the
H1N1 influenza virus from throat swab samples within 3½ h.

Microfluidic devices provide a biomimetic microenviron-
ment that allows tissue samples/biopsies to be maintained for
up to 8 days.22,23 This enables investigation of the tissue as a
whole or of individual cells following disaggregation.24 Here
we demonstrate the integration of RNA extraction with RT-
PCR on a single microfluidic device that could be used for
the analysis of tissue samples. CYP1A2 gene expression levels,
from 3-MC-induced and non-induced cell populations, were
compared with gene expression levels of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) as an internal control.

MATERIALS AND METHODS
Preparation of Microfluidic Devices
The microfluidic device used was made of borosilicate glass
and prepared using standard photolithography and wet
etching techniques to produce the design shown in Figure 1.
The etched bottom plate was then thermally bonded to a top
plate containing 360 mm holes drilled to act as inlets and
outlets for the channels.

The internal surfaces of the microfluidic device were
silanized to minimize DNA polymerase adsorption. The
channels were washed overnight with 10% (w/v) NaOH, then
sequentially with 10 ml water and ethanol before being dried
thoroughly in an oven at 90 1C. Sigmacote (Sigma-Aldrich,
UK) was then applied to the channels for 5 min, following
which the microfluidic devices were dried in an oven for
30 min. Porous thermally activated silica monoliths were
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generated in the RNA-extraction chamber. The monoliths
were made from potassium silicate (K2SiO3 (21% SiO2, 9%
K2O)) (VWR International, UK) and formamide (Alfa Aesar,
UK) in a 10:1 ratio, and cured in an oven overnight at
90 1C.25 The monoliths generated are contained within the
hexagonal RNA-extraction chamber. Porous silica monoliths
have been shown to contain both micron and nm-scale pores,
resulting in facile flow of solutions through the micron pores
and generation of a large surface area for reactions due to the
nm-scale pores.26 In this instance, the micron pores have an
average diameter of 1.6 mm (Supplementary Material,
Supplementary Figure S1). Agarose gel encapsulated RT-PCR
reagents were then filled into half of the PCR chamber and
the microfluidic device stored at 4 1C until required.27

Sample Preparation
Experiments used either rat liver tissue or primary rat
hepatocytes. Male Wistar rats were housed under standard
conditions. All animals were fed and watered ad libitum until
anaesthetized and killed under schedule 1 procedure for liver
extraction. Total hepatectomy was performed, and tissue
sections of approximately 1 mm3 were stabilized in RNAlater
solution (Qiagen, UK) to prevent degradation of RNA and
were stored at � 20 1C. Control and 3-MC-induced primary
rat hepatocytes were provided by LGC (Teddington, UK) and
were stored in Trizol (Invitrogen, UK) at � 80 1C until
required.

Conventional RNA Extraction
All solutions were prepared using diethylpyrocarbonate
(Sigma-Aldrich) treated water. RNA extraction was carried
out from the stabilized liver tissue, following the Qiagen
RNeasy Mini Kit (Qiagen) protocol. Briefly, tissue sections
were homogenized in RLT buffer supplemented with 2 M
dithiothreitol (Fluka, UK) using a 1 ml syringe and a needle.
Homogenized cells were applied to an RNeasy spin column,
washed, and then eluted in 50 ml of water and stored at

� 20 1C until required. RNA extraction from primary rat
hepatocytes (B0.4� 106 cells) was carried out using
conventional Trizol methodology.

Microfluidic RNA Extraction
Before sample addition, the monoliths were pretreated with
10 mM TE buffer (10 mM Tris, 1 mM EDTA, adjusted to
pH 6.7), which was hydrodynamically pumped through at
5 ml/min. Rat liver tissue (1 mm3) or primary hepatocytes
(B0.4� 106 cells) were homogenized in 40 ml 5 M guanidine
hydrochloride (Sigma-Aldrich) in 10 mM TE buffer, and then
pumped through the monolith at 2.5 ml/min. The optional
addition of DNase I (Invitrogen) to this lysis/binding buffer
was also evaluated. A 50 ml solution of 80% (v/v) isopropanol
(Sigma-Aldrich) was then used to wash the monolith and
remove cellular debris and potential contaminants of
downsteam processes. The concentrated RNA was eluted
from the monolith using 50 ml of water at a flow rate of
1 ml/min. Fractions of 5 ml were continuously collected
throughout the extraction procedure for RNA quantification
and downstream analysis using RT-PCR.

RNA Quantification
RNA quantification was carried out using a Nanodrop
spectrometer (ThermoScientific, UK) using 1 ml aliquots
taken from each collected fraction.

RT-PCR
Intron spanning primers were used for GAPDH and CYP1A2
to facilitate amplification of transcribed mRNA and not
genomic DNA (Table 1). GAPDH primers were previously
published,1 whereas CYP1A2 primers were designed using
Primer-BLAST software and synthesized de novo. GAPDH, a
housekeeping gene, was used as a positive control because of
its constitutive expression.

A one-step RT reaction and PCR were combined for
generation of cDNA and subsequent amplification. RT-PCR
was carried out using the following reagent mixture: 2.5 mM
forward primers, 2.5 mM reverse primers, 0.5 mM probes, 1�
M-MLV reaction buffer, 200 U M-MLV reverse transcriptase,
200 mM each deoxyribonucleotides, 2 mM MgCl2, 20 mg/ml
bovine serum albumin, and 0.2 U GoTaq DNA polymerase
(Promega, UK).

After the RNA was eluted from the monolith, the inlets/
outlets of the microfluidic device were covered with a drop of
mineral oil to prevent evaporation of reagents during thermal
cycling. The microfluidic device was placed on a thermo-
electric Peltier element, which provided heating and cooling
for RT-PCR. Control samples were run on a conventional
TC-312 (Techne, UK) thermal cycler. All samples were run
under the following conditions: reverse transcription (70 1C
for 5 min, 4 1C for 30 s, and 37 1C for 15 min) and PCR
(28 cycles of 94 1C for 30 s, 59 1C for 30 s, and 72 1C for 30 s).
Amplified samples were analyzed either by agarose gel
electrophoresis or capillary gel electrophoresis.

Figure 1 Schematic diagram of the microfluidic device used for the

integration of RNA extraction and RT-PCR. All features were etched to a

depth of 500 mm. (a) Monolith solution inlet. (b) Sample, wash and

elution reagent inlet. (c) Waste outlet. (d) PCR reagent inlet. (e) Waste

outlet.
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Gel Electrophoresis
Products of RT-PCR were analyzed using agarose gel
electrophoresis. Agarose gels of 2% (w/v) concentration were
made in 0.5� Tris/Borate/EDTA buffer. Loading dye was
added to the RT-PCR products before being run at 120 V for
90 min alongside Hyperladder II (Bioline, UK) for compar-
ison. Ethidium bromide at a concentration of 0.5 mg/ml (CLP,
US) was used to stain the DNA for visualization using a UV
transilluminator.

RT-PCR products were alternatively analyzed using a
standard procedure on a Capillary Gel Electrophoresis CEQ
8000 Genetic Analyser (Beckman-Coulter, UK).

RESULTS
RNA Extraction
As silica is known to bind all nucleic acids, DNase I was used
to remove any potentially contaminating DNA and maximize
RNA-extraction efficiency. This was carried out by adding
DNase I, at a range of 0.01–10 mg/ml, to the binding buffer.
Optimization of this process showed that a concentration of
1 mg/ml removed the maximum amount of DNA (data not
shown).

Preconditioning of the silica monolith using 10 mM TE
buffer, pH 6.7, was performed in order to confer the most
appropriate level of protonation to the surface in order to
maximize nucleic acid adsorption/desorption28 A 30-min
conditioning step was found to be optimal as it resulted in
maximal RNA yields during the elution phase, approximately
32% greater total yield than with no preconditioning
(Figure 2). Longer incubations times, 60 min, resulted
in loss of RNA during the washing phase, suggesting an
inefficient binding process.

Following optimization of the RNA-extraction process on
the proposed microfluidic system, whole tissue was homo-
genized directly in the lysis/binding buffer and RNA
extracted. RNA was successfully extracted from rat liver tissue
using this technique, and the eluted fractions are shown to be
of sufficient quantity and quality for amplification using
RT-PCR on the microfluidic device (Figure 3).

RT-PCR
Combined RT-PCR for multiplex amplification was
optimized on the benchtop and then transferred onto the
microfluidic system. Successful amplification of both

targets was demonstrated on the microfluidic device as
demonstrated by the generation of PCR products of the
expected sizes for GAPDH and CYP1A2 (Figure 4).

Process Integration on a Microfluidic Device
To facilitate integration of the RNA extraction and RT-PCR
process on a single microfluidic device, the RT-PCR reagents
were encapsulated in a 1.5% (w/v) agarose gel and filled into
half of the amplification chamber. Once the RNA was eluted
from the monolith, the flow was directed toward the am-
plification chamber, whereupon it filled the second half of the
amplification chamber. The inlets and outlets of the micro-
fluidic device were then covered with a layer of mineral oil to

Figure 2 Graph showing an example of the RNA-elution profile results

obtained when the monolith was subjected to different preconditioning

times of 0 (—’—), 30 (- - -J- - -), and 60 min ( � � �D � � � ) (n¼ 3 for each

condition tested).

Figure 3 Graph showing average elution profile from RNA extracted

from rat liver tissue on a microfluidic device. *Denotes samples that were

successfully amplified by RT-PCR (n¼ 3).

Table 1 Primer sequences for GAPDH and CYP1A2

Target Sequence (50 � 30) Product size

GAPDH (forward) 50-FAM-CAAGGTCATCCATGACAACTTTG-30 91 bp

GAPDH (reverse) 50-GGGCCATCCACAGTCTCCTG-30

CYP1A2 (forward) 50-JOE-ACAGCACAACGAGGGACAC-30 129 bp

CYP1A2 (reverse) 50-CTCTGGGCGGAACACAAA-30
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prevent evaporation. Upon the initial reverse transcription
heating step, the agarose gel melts to release the RT-PCR
reagents, which combine with the eluted RNA. Following
amplification on the microfluidic device, RT-PCR products
were analyzed by capillary gel electrophoresis, and the relative
fluorescent intensities of the products were compared to
enable qualitative analysis of the end-point RT-PCR. This
technique was successfully used to compare basal gene ex-
pression levels of CYP1A2 with those induced by 3-MC,
using GAPDH as a constitutively expressed control
(Figure 5). As expected, treatment with 3-MC led to induc-
tion of CYP1A2 resulting in increased gene expression levels;
P¼ 0.008, two-tailed paired t-test, which was in agreement
with Baldwin et al.1

DISCUSSION
The ability to monitor drug effects on tissue samples using a
microfluidic system offers numerous advantages over
conventional drug-examination methods. First, multiple
experiments could be carried out on a single biopsy sample,
reducing the number of animals required for basic research
or enabling a patient biopsy to be used enabling individually
tailored medications and treatment plans to be devised.5,29

Furthermore, as the effect of the drug can be monitored not
only at an observable cellular level but also at the level of gene
expression, the pharmacological effect can be monitored
looking at potential unwanted side effects caused by the
activation of prodrugs or carcinogens. Integration of the
proposed system with other techniques, such as the EROD
assay, would allow more information to be obtained from
individual biopsy samples, eg, protein activity and gene
expression levels, in the development of techniques for
patient-specific treatments. Most important is the ability to
integrate analysis directly from a biopsy of tissue. This allows
direct interrogation in the most appropriate manner
depending on the type of analysis to be performed,
allowing extraction and quantification of the mRNA within
approximately 100 min from the time of sample input

into the microfluidic device. Integration minimizes
contamination and loss of sample, making the whole
process more reliable and applicable to small samples—
useful in many clinical settings where the tissue is often
limited. In addition to measuring changes in mRNA ex-
pression, the tissue-based microfluidic system can be coupled
to other ‘downstream’ analysis modules, eg, spectro-
photometric/fluorescent detection of protein release,30

individual cells can be liberated and changed to the cell
surface analyzed by on-chip flow cytometry,24 and
oligonucleotide hybridization arrays can be used to assess
global changes in gene expression.31 The combination of
these technologies together with the RT-PCR described here
has the potential to offer a new platform technology for
studying normal or diseased tissue.

Supplementary Information accompanies the paper on the Laboratory

Investigation website (http://www.laboratoryinvestigation.org)
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