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Abstract

Face recognition that is invariant to pose and illumination is a problem solved e↵ort-

lessly by the human brain, but the computational details that underlie such e�cient

recognition are still far from clear.

This thesis draws on research from psychology and neuroscience about face and ob-

ject recognition and the visual system in order to develop a novel computational

method for face detection, feature selection and representation, and memory struc-

ture for recall.

A biologically plausible framework for developing a face recognition system will be

presented. This framework can be divided into four parts: 1) A face detection

system. This is an improved version of a biologically inspired feedforward neural

network that has modifiable connections and reflects the hierarchical and elastic

structure of the visual system. The face detection system can detect if a face is

present in an input image, and determine the region which contains that face. The

system is also capable of detecting the pose of the face. 2) A face region selection

mechanism. This mechanism is used to determine the Gabor-style features corres-

ponding to the detected face, i.e., the features from the region of interest. This

region of interest is selected using a feedback mechanism that connects the higher

level layer of the feedforward neural network where ultimately the face is detected
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to an intermediate level where the Gabor style features are detected. 3) A face re-

cognition system which is based on the binary encoding of the Gabor style features

selected to represent a face. Two alternative coding schemes are presented, using

2 and 4 bits to represent a winning orientation at each location. The e↵ectiveness

of the Gabor-style features and the di↵erent coding schemes in discriminating faces

from di↵erent classes is evaluated using the Yale B Face Database. The results from

this evaluation show that this representation is close to other results on the same

database. 4) A theoretical approach for a memory system capable of memorising

sequences of poses. A basic network for memorisation and recall of sequences of

labels have been implemented, and from this it is extrapolated a memory model

that could use the ability of this model to memorise and recall sequences, to assist

in the recognition of faces by memorising sequences of poses.

Finally, the capabilities of the detection and recognition parts of the system are

demonstrated using a demo application that can learn and recognise faces from a

webcam.
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Chapter 1

Introduction

In computer science, biological systems have been inspiring scientists and engineers

since the development of the earliest computers. References to brain-inspired arti-

ficial systems can be found in the literature as early as the 1950’s, for example in

the 1958 book “The Computer and the Brain” by one of the pioneers in comput-

ing, John von Neumann (Neumann, 1958). Some time later, David Marr published

his classic book “Vision” (Marr, 1982), which took a biological approach to the

specific problem of computer vision. Since then, many more bio-inspired computer

algorithms have been developed in order to perform visual tasks such as object de-

tection, segmentation and tracking. Despite great e↵orts and advances in developing

such artificial visual systems, their limitations are obvious in comparison to the per-

formance of real biological systems. In most cases humans are much better than even

the best artificial algorithms at visual tasks such as recognition. There is therefore

a huge ongoing research e↵ort in this area, the aim of which is to further improve

brain-inspired architectures and algorithms so that their performance is one day

1



2 CHAPTER 1. INTRODUCTION

comparable to that of humans. In addition to this motivation, the development of

brain-inspired algorithms in computer vision may also accelerate our understanding

of how the brain works. Since many details of the relevant biological systems are

not known, a biologically inspired system will always have several simplifications

and estimations replacing the missing details. These can be used as the basis of

hypotheses about how certain brain mechanisms work.

Within this context, in this thesis we propose a brain-inspired approach to the

problem of computational face recognition.

1.1 Problem formulation

The aim of this thesis is to develop a comprehensive computational framework

for studying the face recognition that incorporates biologically inspired aspects of

the visual system, by using algorithms which have parallel in the brain mechan-

isms of vision (Masquelier and Thorpe, 2007), and memory organization in the

brain (Borisyuk et al., 2013). This brain-inspired framework should provide new

approaches and algorithms that are able to recognise faces under challenging light-

ing and pose conditions. These new developments can be useful in the real world

in automatic face detection applications such as image tagging in social network

websites and photo cataloguing applications, as well as in automatic image tagging

software (Zhang and Zhang, 2010). Ultimately the system should be able to store

several faces in its internal memory and recognise a new face, according to the previ-

ously memorised faces. In order to store and compare faces a suitable representation

should be used, which consists in a set of features extracted from the face and a
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coding scheme which encodes such features in a discriminative way. This recognition

process also has a huge array of real world applications such as passenger identific-

ation, in a secured environment such as an airport, for identification and access for

an online secured application such as online banking, or even for organising personal

photos based on the persons present in each photo (Senior and Bolle, 2002).

The scope of this study has been somewhat limited because the subject of face

recognition is very broad. Existing algorithms vary greatly in both their goals and

the domain within which they work. We therefore limit our system to greyscale,

8-bit, 2D images, with only one face per image. We also consider only human faces.

Additionally, the neural models incorporated in our system contain several simplific-

ations and approximations. When implementing a computational model of a large

portion of the visual system many details must be left out or approximated. This is

due to a lack of experimental data and to hardware constraints, i.e., computations

should be performed quickly enough to respond to real-time video input.

1.2 Overview of the thesis

This thesis presents and analyses a computational face recognition framework in-

spired by biological visual processing mechanisms. The developed system demon-

strates a very good performance on the level of the state of the art recognition rates

when tested using the Yale B Face Database (Georghiades et al., 2001). These en-

couraging results were achieved while respecting the other goal of this project, which

was to develop a model that was close to biological vision mechanisms. Therefore

our study advances the understanding of key mechanisms for biological vision. This
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is in contrast to the alternative approach of developing a purely mathematical model

with the only goal of achieving a high recognition rate.

The starting point in developing the face recognition framework was to look at the

relevant existing work from three communities: neuroscience, psychology and com-

puter vision.

To summarise, our review of the psychology and neuroscience literature indicated

that object recognition, and in particular face recognition, relies on several mechan-

isms:

1. Hierarchical processing, in which information from simple edge responsive

neurons in the primary visual cortex flows through the ventral stream, where

new neurons respond to increasingly complex features until reaching the IT

where there is a single cell from a population responding to a face stimulus.

2. An attention mechanism which is both feed-forward and feedback driven, that

enables the selection of the intermediate features corresponding to the face

detected. The most salient parts in the image trigger the corresponding neur-

ons in the lower levels of the feedforward network, and this signal is passed

until reaching the face selective neurons in the higher levels. Then a feedback

mechanism that connects the V4/IT cells to the V1 complex cells, highlights

the region of interest in the V1 complex.

3. Highly e�cient neural coding, in conjunction with very fast and hierarchical

processing through the ventral stream, allows high level representation of faces.

4. Synaptic plasticity enables the visual system to adapt and learn new object

representations, e.g., faces.
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5. The brain learns the appearance of a face (or other 3D object) throughout an

experience by observing the face at di↵erent points in time. Each time the

face is seen its pose and illumination are di↵erent, yet the brain can construct

a memory of the face based upon this information.

The framework presented in this thesis is biologically plausible and consists of four

key elements: The first element is the ability to detect a face in an image. This is

achieved by a face detection system based on low level visual features such as ori-

ented bars, together with well-known brain mechanisms such as synaptic plasticity

and feedback connectivity.

The second element corresponds to extracting the features of the face from the re-

gion of the image that contains it. The third element is the coding of such features.

This is achieved by creating a feature space, where similar features are close to each

other and the features that are less similar are located farther apart. Two altern-

ative artificial binary codes are used, both of which code the preferred orientation

in a small local region using 2 or 4-bit binary pattern. To allow good face recogni-

tion this code has to be discriminative (i.e. should easily separate di↵erent faces),

therefore we analyse the quality of the binary code using multi-dimensional binary

feature space techniques such as clustering, and also by computing matching rates

for the same and di↵erent individuals in a well known face database.

Finally, the fourth element of our face recognition framework is the memory model,

which is used to store familiar faces organised by pose. This is a theoretical model

based in oscillatory neural networks. The design of such model was influenced by

the results of our feature space work, which indicated that pose is a big challenge
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for the face recognition framework.

1.3 Tour of this thesis

The thesis is organised as follows: Chapter 2 contains a literature review that covers

several aspects of face recognition from the perspectives of neuroscience, psychology,

and computer science. We review existing experimental results and computational

models for face detection, facial feature discrimination, memory and classification.

Taking into consideration the information gathered during the literature review

stage, Chapter 3 presents our face detection model, i.e. a mechanism of visual at-

tention which is tuned for faces. This model is based in the representation of facial

features by the means of Gabor filter responses, which are known to have similar

properties to the cells in the primary visual cortex (Jones and Palmer, 1987).

Chapter 4 then presents a coding for the facial features that can be identified in the

output of the face detection model. Such coding is intended to reduce the dimen-

sionality of the vectors while keeping the separability of classes, therefore a sparse

binary code which represents edge orientation is chosen.

In Chapter 5 a method of comparing faces using a simple similarity measure is

presented. Several experiments were conducted in order to determine the suitability

of this representation for the task of face recognition. The tests looked at intra- and

inter-subject distances in feature space, the nearest neighbour for each face, and k-

rank based matching (i.e. finding the nearest face in the top k matches). The results

showed that our representation of faces manages to cluster together feature vectors



1.3. TOUR OF THIS THESIS 7

representing the same subject. These results where strengthened by a more elab-

orate test using clustering techniques, which took into consideration other factors

such as pose and illumination. The face database Yale B (Georghiades et al., 2001)

was chosen for performing the tests. The results of these tests are compared with

state of the art methods (both biologically inspired and purely artificial).

In Chapter 6 a theoretical model for facial features memorisation based in an oscil-

latory neural network (Borisyuk et al., 2013) which proposes a memory organisation

based in pose is presented.

Finally, in Chapter 7 we present our general conclusions, draw some directions for

future work and summarise the contributions of this thesis.
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Chapter 2

Face recognition as a biological

and computational process:

literature review

A literature review of methods and models related to face detection and recognition

is presented in this chapter. This review covers several stages of the face detec-

tion and recognition process, including object segmentation, feature selection and

extraction, memory organisation, storage and retrieval, and classification (object

recognition). We have divided this chapter in three main sections: computer vision,

neuroscience, and psychology. First, a review of the computer vision algorithms

that take part in the face recognition framework in artificial systems is presented.

Then, a review of the mechanisms studied by the neuroscience community regard-

ing the face recognition framework and its biological mechanisms is done. Finally,

psychological evidence of the way humans recognise faces is presented.

9
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2.1 Face detection and recognition in computer

vision

In this section a review of computer vision algorithms, processes, and applications

related to face detection and recognition is presented. We start by introducing the

typical process of recognising a face in an image, from the moment the image is cap-

tured until the classification stage where a tag is assigned to the face present in that

image. Then we present several applications where face detection and recognition

has been used. After this, a review of the face detection algorithms is presented,

followed by a review of face recognition algorithms.

Finally, several computer vision algorithms that are incorporated by most face detec-

tion and recognition systems are presented in separated sections. We have divided

these algorithms in several categories according to their main function in the face de-

tection or recognition system: feature extraction, dimensionality reduction, memory

models, and classification. Zhao et al. (2003) present a survey on face recognition

advances.

2.1.1 Face recognition process: from image capture to clas-

sification

A typical face recognition process has several key components:

• Image capture by a sensor

• Colour and Image binary representation

• Segmentation of the face in the image (face detection)
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• Feature extraction

• Dimensionality reduction

• Storage of the face representation in memory

• Classification

In this section, a connection between each component is made, in order to con-

textualise the role of each component in the face recognition process. Individual

components are then analysed later in this chapter.

Let’s start with the image capture process. A digital image is captured by an imaging

sensor, which has a mechanism to generate images by converting the light captured

into voltage, and then the voltage into a binary format. Most modern sensors are

able to capture colour images. The mechanism used to capture the di↵erent colour

channels is to use di↵erent filters to filter the light for each of the individual pixel

sensors that are arranged in a grid inside the main sensor. The most common ar-

rangement of the individual pixel sensors is to alternate colour channels. With this

arrangement, at each pixel position only one colour channel is captured, therefore

the values for the other two colour channels are interpolated using the neighbouring

pixels values. There are alternative arrangements where there are three individual

sensors for each pixel, but they are more expensive, thus less popular.

Then the colours are represented using colour-schemes (Schwarz et al., 1987). The

way these colours are represented in digital images is using a positive integer value

(typically 8-bits) for each colour channel, red, green and blue (RGB), therefore such

images have a 24-bit depth. The RGB colour space is the most commonly used in

computer vision applications (see Figure 2.1).
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Figure 2.1: RGB colour space geometric representation: in one extreme, the origin

(0,0,0), which is located at the vertex hidden in the image, the black colour is

represented. Considering that each of the values red, green, and blue vary from 0 to

1, then the progressive variation resulting from the combination of the three colours

is shown in the cube. In the opposite vertex of the cube, the point (1,1,1) which is

also not shown in the picture, the white colour is represented. Illustration created

by Michael Horvath, http://commons.wikimedia.org/.

An alternative colour representation is by hue, saturation and value (HSV). Hue is

a characteristic of a colour which changes continuously, i.e., between two di↵erent

tones of red there is an infinite number of hues. Saturation reflects the richness
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or purity of a colour, therefore a colour with high saturation is very vivid, while a

similar colour with a low saturation value tends to be closer to grey. Finally the

value corresponds to the brightness of the colour. This HSV representation is more

popular for applications where the user has to pick a colour from a palette or has

to visualise the available colours, because it is an easy way to visualise colours (see

Figure 2.2).

Figure 2.2: HSV colour space representation. Hue determines the colour, sat-

uration determines the vivacity of the colour, and finally the value corres-

ponds to the brightness of the colour. Illustration created by Michael Horvath,

http://commons.wikimedia.org/.
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After the image is captured the next stage in the face recognition process is to de-

termine if there is a face in the image and the location of that face. This stage

is usually called face detection or segmentation, and can be pose dependent, i.e.,

only faces with a certain pose can be detected, or pose invariant, where faces from

di↵erent poses can be successfully detected by using view-dependent methods or

invariant features to represent the faces.

Once this stage is finished, features are extracted from the face pixel values. These

features can be pre-determined by the algorithm or learned from the available data.

The combined set of features extracted from the face, form a feature vector, which

is a representation of the face that is often more abstract and with a smaller dimen-

sionality than the pixel representation (Huang and Yin, 2009).

In order to store several representations of the same and di↵erent faces and the cor-

responding labels, the face recognition process uses a memory module. This module

has the role of storing and retrieving face representations (Barwinski, 2008).

Finally, a classification stage takes place to decide the identity of the face in the

image. Classifiers can perform two di↵erent tasks: 1) identification, in which a

classifier that can assign a label to the probe image, according to all the faces and

labels represented in the memory. 2) verification, which consists in a binary match

classifier, which can determine if two face representations are the same (Jafri and

Arabnia, 2009). In fact the first kind of classifier can be reduced to the second, by

matching the probe face individually with all the faces stored in memory.
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2.1.2 Applications of face detection and recognition

Face detection and recognition applications are very important in today’s world,

with the proliferation of digital imagery and social media, and the need for the use

of biometrics in security sensitive situations.

Starting from face detection (Zhang and Zhang, 2010), which is more than ever a hot

topic, we see that it has become a standard feature in digital cameras, and mobile

phones, because it allows the software to focus correctly the faces found in a picture

in real time. Also some of these cameras go further by not only detecting the faces,

but also analysing them, in particular, analysing if the face is smiling.

Moreover in social networks websites such as Facebook and Google+ this capability

has been used in order to help the users of such websites to tag their friends more

easily by showing boxes around the detected faces.

Finally, photo management software and websites have also been using this func-

tionality in order to assist the users in tagging people, thus making the search based

on the identity easier. An online demo of the face detection capabilities of Au-

rora Computer Services’ system can be found online1, and the output can be seen

in Figure 2.3. In terms of algorithms, the de facto standard for many years has

been the Viola–Jones algorithm (Jones and Viola, 2001), mainly because of its high

computational e�ciency which is one of the most important requirements in most

applications above mentioned. This e�ciency is achieved due to two main factors:

the simplicity of the algorithm (looks for simple features) and the cascade structure

which eliminates a large number of candidate faces in the early, more e�cient stages

1
https://auroracloudapi.azurewebsites.net/
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of the cascade. More details of the algorithm will be introduced later in this chapter.

Also, face recognition is a very important and popular topic nowadays (Senior and

Bolle, 2002). It has been successfully used in security applications inside airports,

such as matching between the passport photo and a live photo, used to allow or deny

passengers to go through the passport control. Another example application is the

enrolment of the passengers at the check in desks and the verification at the gate,

in order to determine if the passenger that checked in and holds the boarding pass

is the same that is entering the aircraft at the gate. One of the main limitations

of such systems is the di�culty to deal with large variations of lighting conditions,

which often occurs in open environments such airports. A common solution to over-

come the illumination challenges is to use infra-red cameras and illumination (Kong

et al., 2005). Using such technology face recognition systems can achieve very high

recognition rates.

Another popular application in the field of face recognition is the recognition of

social media type images. Unlike in the airport environment, in the social media

images there is no degree of restriction in the environment in which the images were

taken. They can have virtually any kind of lighting conditions, pose, rotation and

the person is often wearing accessories such as hats, sun glasses, etc. Therefore the

recognition in such conditions is much more challenging. To create a common ground

to develop and compare face recognition algorithms that can be used in images from

the web, a database containing thousands of this kind of images and a methodo-

logy to compare algorithms was proposed by the University of Massachusetts: the

Labelled Faces in the Wild Face Database (Huang et al., 2007), and became the



2.1. FACE DETECTION AND RECOGNITION IN COMPUTER VISION 17

(a)

(b)

Figure 2.3: Examples of faces detected using the face Analysis online demo

from the Aurora Computer Services. (a) Example of successfully detected hu-

man face. Animal face is not detected. (b) Example of successfully detec-

ted human faces across di↵erent poses. Online demo can be found in ht-

tps://auroracloudapi.azurewebsites.net/ .
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standard test for this type of face recognition algorithms.

2.1.3 Face detection

Viola Jones algorithm

citetjones-fr-boosted-local-feat-2001 presented an algorithm that became the stand-

ard for face detection, mainly because of its computational e�ciency. This algorithm

has four main components: a set of features extracted from the input image, an in-

termediate image representation referred as integral image, a method for selecting

the best features from the large pool of all possible features, and, finally, a cascade

classification method to improve the speed of classification.

The simple rectangular features used in this approach are similar to those proposed

by Papageorgiou et al. (1998). These features respond to the di↵erence of intensity

among rectangular regions. There are three kinds of such features see Figure 2.4.

One that responds to di↵erences between two adjacent rectangular regions. A second

feature that responds to the di↵erence between the sum of two outside rectangles

and a third inner rectangle. Finally, the third feature responds to the di↵erences of

two pairs of diagonal rectangles.

One key element in the e�ciency of this algorithm is the integral image. This repres-

entation contains in each position (x, y) the sum of all pixel values for the positions

x0  x and y0  y. With this representation, any of the features can be computed in

constant time. For instance a rectangle defined by its top-left corner (x1, y1), top-

right corner (x2, y2), bottom-left corner (x3, y3), and bottom-right corner (x4, y4) can

be computed using the integral image I as follows: I(x4, y4)+ I(x1, y1)� [I(x2, y2)+

I(x3, y3)].
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Despite the low computational cost of evaluating each feature, the number of pos-

sible features for each search window is prohibited. For instance, for a window of

24x24 pixels, if we combine all the possible features with di↵erent sizes and posi-

tions, the total number of features to be computed exceeds 180,000. This is only

for one window, which would be multiplied by the number of windows necessary

to cover the entire image and also the number of di↵erent scales to be evaluated.

For this reason, a method for selecting the most discriminative features was also

presented, which is similar to the one presented by (Freund and Schapire, 1997). In

order to select the features, each of them is used individually to classify the train-

ing data by applying a simple threshold to separate the faces and non-faces. This

threshold is chosen individually in order to minimise the classification error. This

error is weighted according to each training sample. The weights for each training

sample are uniformly distributed at the beginning. Only the miss-classifications are

added to the error. Finally, the classifier with the lowest weighted error is selected

for the current round. Before moving to the next round, the weights of the misclas-

sified samples are increased and the correctly classified are kept as they are. After

a pre-determined number of rounds, or when the combined classification perform-

ance is satisfactory, the features (and corresponding thresholds) selection process

is finished. Each feature/threshold combination is also referred as weak classifier.

The final strong classifier weights each weak classifier according to the error it had

and produces a final classification. Despite this weak classifier selection process,

there are still a considerable number of features to be evaluated for each window,

which is multiplied by the di↵erent scales and the number of windows necessary to
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(a) (b)

(c) (d)

Figure 2.4: Di↵erent kinds of features shown relative to the enclosing search window.

The values of the pixels from the grey rectangles are subtracted from the sum of

the pixels in the white rectangles. This sum can be calculated e�ciently using an

integral image. (a) and (b) show two-rectangle features. (c) Three-rectangle feature.

(d) Four-rectangle feature. Illustration from Jones and Viola (2001).
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cover the whole image in a sliding window approach. Therefore a second stage is

added to this algorithm, which is known as cascading. The idea is that we can used

smaller groups of weak classifiers with low false acceptance rate at the beginning in

order to quickly reject non-face windows. The selection strategy proposed consists

in reducing the false positive rate and the detection rate at each stage, by setting a

target for the false positive rate and a maximum decrease in detection and adding

new classifiers to the stage until reaching the targets. New stages are added until

the global target for false positive and detection rates is met.

2.1.4 Face recognition

Artificial neural networks

Artificial Neural Networks (ANN) have been used to develop face recognition sys-

tems.

Lawrence et al. (1997) propose a method that combines a self-organising map (SOM)

neural network with a convolutional neural network to perform face recognition after

local image sampling is performed. The authors also compared this approach with

others where the SOM is replaced by a Karhunen–Lo’eve transform, which is a

method for reducing dimensionality that has been used in several machine learn-

ing methods, and the convolutional network is replaced by a multi-layer perceptron

(MLP), but the results show that the original approach achieves better performance,

particularly in the case of the convolutional network comparing to the MLP.

Lin et al. (1997) present a successful usage of a probabilistic decision-based neural

network in a face recognition system. This is a complete system which performs

from face detection to recognition. For the recognition part, only a sub-area of the
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face image is used, which includes eyes, eyebrows, and nose but excludes mouth.

A radial basis function as neural classifier for face recognition has also been pro-

posed by Er et al. (2002). The features are extracted and their dimension reduced

by using PCA and Fisher’s linear discriminant analysis.

More recently, Taigman et al. (2014) and Sun et al. (2014) presented an approach

that combines a 3D alignment of the face with the deep neural networks approach

(Bengio et al., 2013). Firstly a 3D model of the face based on landmark localisa-

tion is built. Then a nine-layer deep neural network calculates a face representation

from the raw Red, Green and Blue (RGB) pixel values, using a reduced number of

convolutional layers, alternated with a max-pooling layer (Bengio et al., 2013), and

followed by several other locally or fully connected layers. This approach improved

the state of the art results considerably in both the Labelled Faces in the Wild

(Huang et al., 2007) and YouTube Faces (Wolf et al., 2011) datasets.

Elastic bunch graph matching

The algorithm briefly described in this section was presented by Wiskott et al. (1997)

and is broadly based in a previous paper from Buhmann et al. (1990).

The algorithm relies on two main concepts: Jets and Graphs.

Jets are based on a Gabor wavelet transform. The wavelet transformation is com-

puted for a discrete set of orientations and spacial frequencies. The Jet is then

defined as a set of wavelet coe�cients which contains local edge information regard-

ing di↵erent orientations and scale description at several levels Therefore a jet is a

rich local feature descriptor. Phase information is often discarded because its coe�-

cients vary greatly with small shift in the position, degrading the position invariance.
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Figure 2.5: Face Bunch Graph. Each node has a set of Jets, each one corresponding

to some variation in pose, expression, shape, etc. Illustration from Wiskott et al.

(1997).

The Jets can be compared according to a similarity function (Wiskott et al., 1997).

Graphs are usually labelled with an identity and represent a face by N nodes con-

nected by E edges. Usually the nodes are placed in fiducial points like corners of the

mouth, pupils, etc. In order to cover the wide range of possible variations caused by

di↵erent expressions, positions and shapes of the facial features, a set of individual

model graphs, called face Bunch Graph (FBG), is combined (see Figure 2.5).

Using these two concepts the algorithm is able to perform face detection and recog-

nition. Face detection (Elastic Bunch Graph Matching) can be done automatically

when there is a FBG large enough to cover all possible variation. The authors ar-

gue that this is achieved with 70 graphs. Face detection is then basically done by

maximising the similarity between and image graph and the FBG over all positions.
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Face recognition is performed very e�ciently after the extraction of the model graphs

from the gallery images and image graphs for the probe images, by comparing the

image graph to all model graphs and selecting the one with higher similarity value.

In Wiskott et al. (1997), the similarity function used is the average over the simil-

arities between pairs of corresponding jets.

Several people have followed and improved this work. For instance, Günther and

Würtz (2009) presented several maximum likelihood classifiers on this Gabor graphs

and Müller and Würtz (2009) designed an automatic method for learning how to

generalise over pose and Illumination.

Combination of 2D and 3D information

Some authors combined 2D with 3D information in order to attempt to improve the

2D-only traditional methods.

Wang et al. (2002) combine 2D Gabor filter responses with 3D information in the

form of point signature (Chua and Jarvis, 1997). In this approach, both 2D and 3D

feature vectors are projected into the corresponding PCA subspaces and combined

to form a unique augmented feature vector which represents an individual face. The

classification is then performed using either a similarity function or a support vector

machine.

Bronstein et al. (2004) introduce a method of generating 2D illumination and expres-

sion invariant face representation from a combination of 3D geometric information

with albedo of the face. From the generated 2D representation standard techniques

can be then applied.
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3D approach

A face recognition method relying only on 3D information was published by Lu et al.

(2004). They introduce a method for building a gallery of 3D faces by combining

information from 2.5D face scans from di↵erent viewpoints. This 2.5D face scans

are basically augmented 2D representations where for each (x,y) position the depth

information is associated. Furthermore a method for comparison of face repres-

entations based on interactive closest point algorithm is presented. This algorithm

minimises the distance between two clouds of points.

Bronstein et al. (2005) present a method for 3D only face recognition in order to

achieve expression invariance by assuming that it is possible to model the facial

expressions as isometries of the face surface. Isometric surfaces preserve their length

across deformations, i.e., do not stretch and do not tear, therefore preserving the

surface metric. Other authors presented methods for face recognition based on 2.5D

and 3D features such as curvatures (Gordon, 1992; Tanaka et al., 1998).

2.1.5 Dimensionality reduction and Feature extraction

Principal component analysis

The use of Eigenfaces is probably the most popular approach in face recognition (see

Turk and Pentland, 1991). Despite the original system having been outperformed by

many others, the core idea still applies in many modern face recognition algorithms.

This approach relies on Principal Component Analysis (PCA) for extracting the

principal components based on a set of training images. The calculation of the

subspace is done in three main steps:
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1. Calculate the covariance matrix of the input dataset over all dimensions of the

features vectors

2. Calculate the orthogonal eigenvectors and eigenvalues of the covariance matrix

3. Sort the eigenvectors in the descending order of the corresponding eigenvalues

4. Select the principal components: the eigenvectors that keep a good description

of the input data

5. Project the input data-points into the new basis

These principal components characterise a subspace with a smaller dimension than

the original space and into which the test images are projected before classification.

Pentland et al. extended the original approach by introducing a view-based multiple-

observer Eigenspace technique to tackle the problem of pose variance (Pentland et

al., 1994). In the same publication they also introduced a method to integrate

features of the human face such as eyes, nose and mouth by means of a modular

eigenspace description technique.

Most of the algorithms used in face recognition don’t use colour information, even

though Torres et al. (1999) studied the importance of this discarded information

in the case of PCA and concluded that by including this extra information the

recognition can be enhanced.

Later, Yang et al. (2004) extended the PCA to be able to handle directly 2D matrices

representing the images rather than the traditional 1D vectors, i.e., the image matrix

does not need to be converted in a 1D vector as a preliminary step for the covariance

matrix computation. This new approach also results in a smaller covariance matrix.

Finally, Perlibakas (2004) tested 14 distance measures and some more modifications
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of those that can be used with PCA to compare feature vectors in order to find

which one gives best recognition rates.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) was applied to the problem of face recognition

for the first time by Etemad and Chellappa (1997). This approach finds the vectors

that characterise the subspace that best discriminates the di↵erent classes while

keeping the within classes distances low. This is done by maximising the di↵erence

between class means while keeping the within class distances to a minimum.

This approach finds a linearly separable space, but unlike PCA, its basis vectors are

not necessarily orthogonal.

LDA su↵ers from the small sample size problem, i.e., when the number of samples is

much smaller than the number of dimensions of the input space the algorithm doesn’t

perform optimally. Several publications present possible solutions to overcome this

problem (Cevikalp et al., 2005; Chen et al., 2000).

Liu and Wechsler (2002) applied a related approach named Fisher Discriminant

Analysis to a Gabor feature space derived from the Gabor wavelet transform of the

face images. The main advantage of this method is the robustness according to

changes in illumination and facial expression.

Independent component analysis

An Independent Component Analysis (ICA) based face recognition method was

published by Bartlett and Sejnowski (1997) and Bartlett et al. (2002). This is a

statistical method which minimises not only the second order dependencies, like
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Figure 2.6: ICA based face recognition diagram showing the relationships between

the source image S, the face images X, the mixing process A, separated outputs U

and learned weights W (Bartlett and Sejnowski, 1997).

PCA, but also the higher order dependencies and finds a basis for representation

of faces. The proposed method considers a set of images X which are the result

of an unknown mixing process of the source images S and the mixing matrix A.

The sources can be recovered by a matrix of filters W which is found using an

unsupervised learning algorithm. These filters produce statistically independent

output images U , i.e., U = WX (see Figure 2.6). The rows of U are then used as

the basis for face representation.

Liu and Wechsler (2003) extended this method by applying it to a vector of fea-

tures extracted from the PCA reduced Gabor feature vector, instead of the original

pixel vector.
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2.1.6 Memory models

Barwinski (2008) presents a neurocomputational model of memory acquisition for

novel faces in which each face is represented by a point in a multidimensional space.

A given identity is defined by all the points representing di↵erent images of the

same subject. A locally-linear embedding (LLE) algorithm is used for generating

the face space and a linear mapping algorithm, graduated non convexity (GNC), to

find an explicit function that expresses the dependence between input and output

vectors. The face space can be either norm based or exemplar based. On one hand,

the norm based face space has all the vectors placed on a hypersphere, i.e., all the

faces are at the same distance from the centre. In the exemplar based face space, in

the other hand, each vector is not normalised, so all the points are not contained in

any particular structure. In terms of face recognition and novelty detection, both

face spaces achieve good performance. These face spaces can then be used for face

recognition and novelty detection. Based on the distances between a new test image

and the existing images on the free space, one can evaluate if the new image has

the same identity of some of the images present in memory or if it is new. One of

the interesting results presented in his thesis is that the exaggeration of samples, or

caricatures, improves recognition, which is in accordance to psychological evidence.

The result of exaggerating all sample vectors is that the identity centre moves closer

to the origin of the face space. This means that often the vector belonging to one

class that best improves classification and false positive rates is not the middle one

but some on the borders.

Borisyuk et al. (2013) present a memory model for memorising sequences based in
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spiking neural networks, which is capable of solving some ambiguities in sequences

containing repeated elements. This model pretends to be a generic memorisation

mechanism that is biologically inspired and takes into account several mechanism

well known in neurobiology, namely neural groups oscillations and synaptic-time-

dependent plasticity. Therefore it is a good candidate for memorisation of faces,

and can be adapted and used as a memory model for di↵erent appearances of the

same individual. This model will be discussed and a theoretical application for face

recognition presented in a separate chapter.

Finally, other models of memory and memory organisation for face recognition have

been presented by DiCarlo and Cox (2007), Okada and Malsburg (2002), and Jitsev

and Malsburg (2009).

2.1.7 Classification

Bayesian framework

Moghaddam et al. (1996, 1998, 2000) use the Bayesian Framework in the problem

of face recognition. Their approach is based on a probabilistic similarity meas-

ure, which uses a Bayesian analysis of images di↵erences. This approach takes into

consideration the typical variations occurring between intra and inter-personal im-

ages, rather than a more traditional Euclidean nearest-neighbour matching used in

the Eigenfaces technique which disregards these variations. Therefore the proposed

similarity measure is expressed as follows:

S(I1, I2) = P (� 2 ⌦
I

) = P (⌦
I

|�) (2.1)
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where P (⌦
I

|�) is the a posteriori probability given by Bayes rule using P (� 2 ⌦
I

)

and P (� 2 ⌦
E

) which are estimates of the likelihoods. These estimates are derived

from the training data by using an method for density estimation of high-dimensional

data (Moghaddam and Pentland, 1997).

Hidden Markov models

Nefian and Hayes (1998) presented a solution based on Hidden Markov Models

(HMM). As they explain is this paper, “HMM consist of two interrelated processes:

(1) an underlying, unsolvable Markov chain with a finite number of states, a state

transition probability matrix and an initial state probability distribution and (2) a

set of probability density functions associated with each state.”. In this approach,

the nodes chosen for the 1D HMM represent directly facial features as eyes, mouth,

etc.

Support vector machine

Phillips (1999) introduced a Support Vector Machine (SVM) method for face recog-

nition. Due to the binary nature of the SVMs, the face recognition problem was

reformulated. The concept of di↵erence space was introduced were the dissimilar-

ities between two facial images are stored. The two classes that can be handled by

the SVM are then formulated in this di↵erence space: faces from the same subject

and faces from di↵erent subjects.

(Guo et al., 2000) published a di↵erent approach to the binarization of the problem.

They used a binary tree where in each level only a binary decision has to be made

and the process continues in the winner sub-tree until the top of the tree where the
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unique class appears.

Finally a comparison between di↵erent SVM approaches (holistic and components-

based approach) was presented by Heisele et al. (2001). They concluded that the

components-based approach outperformed the holistic approach. Support vector

machines are linear classifiers which find a hyperplane that best separates positive

and negative examples. Figure 2.7 illustrates the basic concepts of support vector

machines, and their mathematical representation is:

• Data points x
i

can only assume labels y
i

2 �1, 1

• Support vectors: x
i

· w + b ± 1, where w is separating plane’s normal vector,

and b is the distance from origin

• Distance between point and hyperplane: kx
i

·w+bk
kwk

• Margin: 2
kwk

The task of the classifier (SVM) is to maximise the margin, with the constraint of

correctly classifying all training data. Assuming that the data has been normalised,

and the data is linearly seperable, this task can be formulated as follows:

y
i

= 1 ) x
i

· w + b � 1

y
i

= �1 ) x
i

· w + b  �1

! y>
i

(x
i

· w + b) � 1 (2.2)

This is a quadratic optimisation problem, and can be solved with quadratic program-

ming. This approach works well if the data is separable. But there are solutions for

non-separable data.

The first solution is to use soft margins SVM (Cortes and Vapnik, 1995).

The second solution is to map the data in to a higher-dimensional space - non-linear

SVM (see figure 2.8).
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Figure 2.7: Support Vector Machines (Savarese S., PLUS School, Genoa, 2011). The

dotted lines mark the boundaries of each class, which are determined by the sup-

port vectors (highlighted by black circles). The margin corresponds to the distance

between the two boundanormalisedries, marked with the red double arrow.

The SVMs described above account only for two class problems. The usual

solution for multi-class problems is to combine multiple two-class SVMs. For this

purpose there are two alternatives:

• Classify one class against all others

– Training: learn an SVM for each class vs. the others

– Testing: apply each SVM to test example and assign to it the class of the

SVM that returns the highest decision value

• Classify classes in pairs

– Training: learn an SVM for each pair of classes

– Testing: each learned SVM “votes” for a class to assign to the test ex-
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Figure 2.8: Lift transformation. The data x is mapped into a higher-dimentional

space by the ' transformation. The goal of this transformation is to make the data

separable in the new space. Illustration from Andrew Moore.

ample

Boosting

The AdaBoost algorithm was applied to the face recognition problem by Guo and

Zhang (2001) and Guo et al. (2001). This algorithm performs a classification between

two classes, so their approach is to divide a C class face recognition problem (C is

the number of face images) into C(C�1)/2 two class problems. With this approach,

a di↵erent set of features can be chosen for each pair, so only the most discriminative

features are kept. After this step, the AdaBoost classifier is trained for each pair

with the corresponding features. The test process is also done in two steps, first

the test image is compared with all classes by a pairwise classification and then the

results of all these classifications are combined to perform the final classification.
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2.2 Face detection and recognition in neuroscience

The face detection and recognition process in the brain starts with a representation of

the world which is based on the sensing of the light by the retina. This representation

is generated from the responses of cones and rods, which are photosensitive cells in

the retina that have the role of sensing the light. Due to their di↵erent sensibilities,

cones and rods cells operate under di↵erent light conditions, daylight and dim light,

respectively. Then neural impulses in the brain are triggered through the ganglion

cells, the optic chiasm and the lateral geniculate nucleus (LGN).

An important property of this information pathway is that the responses in the

visual cortex are organised topographically in the same way as the retina, hence

these maps in the visual cortex are also called retinotopic maps. Image 2.9 shows

the pathway from the retina to the visual cortex.

The processing of the visual information in the primary visual cortex is executed

in a hierarchical manner. In the early stages there are cells that respond to very

simple features, such as oriented bars, and are invariant to shifts, therefore their

receptive fields are very well defined. Then, the complexity of the features and

the invariance increases as the higher levels of the cortex are reached. In the higher

levels of complexity there are groups of cells responding to faces (face detectors) and

other groups of cells responding to particular faces (face identifiers). This kind of

cells are often referred as grandmother cells and have been observed experimentally

by Quiroga et al. (2005). This biological system achieves a remarkable degree of

accuracy for familiar faces. People can recognise familiar faces under a very high
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Figure 2.9: Diagram of the pathway from the retina to the primary visual cortex.

Illustration from The Brain from Top to Bottom, http://thebrain.mcgill.ca/.

degree of variability of lighting, pose and age conditions, among others factors such

as partial occlusion that occurs when wearing glasses, hats, etc. The Labelled Faces

in the Wild Face database published the results of human performance for the task of

face matching. For the funnelled images (which were preprocessed using an advanced

alignment preprocessing method), the mean classification accuracy is 0.9920. This

indicates the very high accuracy of humans in this task. It is important to note that

the database contains mainly images of famous people, therefore the results reflect

in many cases matches of familiar faces, while the results by artificial algorithms

are generated with completely blind test sets. Despite recently several artificial
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algorithms achieved similar results using deep neural networks (Sun et al., 2014;

Taigman et al., 2014), the human capability in recognising faces still outperforms

the artificial systems, particularly under di�cult conditions. Therefore there are

lessons to be learnt from the way our brain works in order to develop robust artificial

face detection and recognition systems.

Some of the mechanism described in this section have a central role in the biological

visual processing and therefore face detection and recognition. They have been well

studied in the literature, thus in the next section these mechanisms will be described

in more detail.

2.2.1 Neural mechanisms for face detection and recognition

Probably the most influential discovery from neuroscience with practical applica-

tion in the development of computer vision algorithms, in particular artificial face

recognition, was done by two Nobel prize recipients: Torsten Wiesel and David Hu-

bel. By studying the cat’s striate cortex they discovered that in the early stages

of visual processing there are single cells tuned to respond to specific edge orienta-

tions and motion (Hubel and Wiesel, 1959, 1962, 1963a,b). These cells are the so

called “simple cells“, and they are organised in cortical columns where the orienta-

tion response changes smoothly from cell to cell. There are other cells with similar

properties which are called “complex cells”. The main di↵erence is that these kind

of cells have a high degree of spacial invariance, i.e., they respond to similar stimuli,

but over a larger receptive field. This kind of responses can be simulated by the so

called Gabor filters (Jones and Palmer, 1987), which makes this an interesting and

widely used biologically inspired feature extractor for computer scientists.
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These low level orientation features are only the first stage of what is believed to be

a complex hierarchical and distributed object recognition mechanism in the brain.

This system is distributed in the sense that the representation of di↵erent features

or characteristics (like colour, texture, and context) takes place in di↵erent areas of

the brain and only in a later stage there is a convergence of all these cues, which

contribute to the final classification. It also seems that there is a hierarchical repres-

entation of features. As mentioned before, in the primary visual cortex the features

are as simple as edge orientations, but when moving towards higher cortical areas

the complexity increases as well as the size of the receptive fields so there are groups

of neurons responding to a class of objects. Figure 2.10 illustrates this hierarchical

architecture. A good review about these mechanisms underlying visual object recog-

nition was written by Palmeri and Gauthier (2004). Back in 1981, ambitious work

was published by Baron (1981) where a computational model of the whole system

behind face recognition is presented. In this model “Several fundamental processes

are implicated: encoding of visual images into neural patterns, detection of simple

facial features, size standardisation, reduction of the neural patterns in dimension-

ality, and finally correlation of the resulting sequence of patterns with all visual

patterns already stored in memory.”. Although this is a very complete work and

the author tries to find the correspondences of the several artificial neural networks

used in this system and the brain anatomy, he admits that numerous questions re-

main unanswered, which is not surprising, since 30 years after this publication the

scientists keep looking for many answers in this field.

Many other face recognition computational models inspired by the brain have been
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Intermediate 
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Figure 2.10: Hierarchical architecture of the visual system, illustrating a possible

face detection/recognition neural network. From the input stimulus at the top of the

figure, basic features such as edges are extracted. Then by combining several basic

features, more complex features such as corners and other more complex shapes

emerge. Finally, in the higher levels of the network there are groups of neurons that

can respond to high level concepts such as faces. Face Image from Georghiades et al.

(2001).
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developed but in this review only three of them are included due to their higher

biological plausibility. A face recognition algorithm was presented by Wiskott et

al. (1997), which is based in the mapping of a low level representation similar to a

hyper-column-like activation pattern onto a higher order representation which main-

tain the 2D relative relations and spatial values. This is known as the Elastic Bunch

Graph Matching algorithm. Biederman and Kalocsais (1997) used this model to

compare the di↵erences between face and general object recognition.

The second model was published by Delorme and Thorpe (2001) and is based on

the idea of rapid feed-forward spike propagation suggested by the short response

latencies of the face selective neurons in the inferotemporal cortex. The authors

present a network of three layers organised in a retinotopic fashion using a synaptic

time dependent plasticity learning rule which can be trained to recognise faces.

Finally, Jitsev and Malsburg (2009) present a generic recognition system which was

applied to the human face recognition problem. This system is based on the evid-

ence that the visual cortex encodes, stores and retrieves objects in a parts-based

fashion, although some authors believe that in the case of face recognition a more

holistic approach takes place in the brain (Farah, 1996). The hierarchical memory

model presented supports storage and recall of the parts’ representations and relies

in a process based on a slow bidirectional synaptic plasticity together with a ho-

moeostatic unit activity regulation, both relying on a fast activity dynamics and a

winner-take-all mode modulated by an oscillatory rhythm.

One of the most asked questions from scientists is which brain cells respond to a

face stimulus. Perrett et al. (1982) present a study where several neurons from the
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fundus of the superior temporal sulcus (STS) in the cortex where recorded. The

results suggests that these neurons integrate a system specialised in facial features

coding, relating then the damage of this system to prosopagnosia. Rolls and Baylis

(1986) also studied the responses of these neurons located in the STS to face stim-

ulus, and the invariance to size and contrast of these neurons. They concluded that

the neurons show a high degree of variance according to these two parameters. The

same author also studied the primate temporal lobe cortical visual areas’ role in

invariant face and object recognition. He says that temporal cortical visual areas

have similar properties in terms of neuronal populations as the primate temporal

lobe. So the author argues that these populations code for objects and faces, so the

study of both sets of neurons is giving some help in solving a very hard computa-

tional problem which is invariant object recognition (Rolls, 2000). More recently,

Rolls (2008) presented a more general model that tries to connect di↵erent areas of

face processing. This model covers from the neurons’ invariant responses to posi-

tion, size, view and spacial frequency in the inferior temporal visual cortex (for face

and other objects stimulus), to brain regions responsible for face processing such

as the orbitofrontal cortex and amygdala. The author argues that the invariant

representations provided by the neurons in the inferior temporal visual cortex have

ideal properties to be used as input to the other areas referred before. In a di↵erent

approach, Haxby et al. (2002) state that the visual recognition and perception of

faces are performed in di↵erent areas. In the occipitotemporal regions in extrastriate

visual cortex the analysis of the faces’ visual features is performed while in other

areas such as the amygdala the analysis of more emotional properties related to
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faces is carried out.

Recently, Quiroga et al. (2005) have shown evidence of single cells located in the

medial temporal lobe (MTL) which responds for individual faces. More precisely, it

is suggested that this neurons respond to the identity of a certain person, so stimuli

like the written name of the subject will activate the same neuron as a face image

of this person. Perrett et al. (1998) considers a population of cells instead of single

cell’s activity in the temporal cortex. The authors related the time course of this

activity to the variation of the speed of recognition from di↵erent viewing perspect-

ives, arguing that this variation is due to a specialisation of the visual mechanisms

for the most familiar views and not to a metal transformation from the canonical

view.

A di↵erent mechanism involved in face recognition, memory, has been studied by

Haxby et al. (1996). The authors found that the human neural systems that perform

the coding of memories for faces is dissociated of the system used for recall of the

same faces.

Another interesting finding is that by simply reversing the contrast polarity of the

input image, the recognition is severely impaired despite all edges and spatial fre-

quencies remaining the same (George et al., 1999). The reason for this is unknown

but George et al. (1999) showed that “bilateral posterior areas in fusiform gyrus re-

sponded more strongly for faces with positive than with negative contrast polarity.

An anterior, right-lateralized fusiform region is activated when a given face stimulus

becomes recognisable as a well-known individual”.

Haan et al. (2002) show evidence that newborns have some predefined preference
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to face stimuli which could indicate that and their cortical face processing systems

are subject to specialisation mechanisms during the development. Moscovitch et al.

(1997) also shows evidence about the specialisation for faces by studying a man with

object agnosia and dyslexia caused by a closed-head injury. They conclude that face

recognition relies on two systems. One system is face-specific and performs recogni-

tion in a holistic manner, and a second system that is not face-specific. The second

system is shared by other recognition tasks and relies on the parts rather than the

whole, i.e., relies on the internal object features individually.

DiCarlo and Cox (2007) give an overview of the current state of brain inspired ob-

ject recognition. Their aim is to put together several ideas into a unified framework,

which they believe is the core of any future brain inspired object recognition sys-

tem. To do so, the authors explicitly ignore some mechanisms that may interfere

with recognition such as tracking, similarity estimation, texture recognition, etc.

It is claimed that the key point on recognition is to understand the neural coding

from the ganglion cells through the ventral stream. In particular how this high-

dimensional representation of the input stimulus, can in each stage of the visual

processing be untangled, until reaching a high level representation in the IT area,

where every object can be approximated by a manifold or a single point in the high-

dimensional space where the separation between di↵erent identities is more clear.

This is a purely theoretical work, therefore much can be done in order to implement

models of the idea of untangled feature space.
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2.2.2 Computational models of biological face recognition

David Marr’s work about the visual system (Marr, 1982) integrates all the aspects

of vision like colour, shape, motion, and object representation in a single frame of

models. Probably the most important contribution of this work is a hierarchical sys-

tem of representation of visual scenes. This system is divided into three main stages.

First the low level “raw primal sketch” which represents the retinal image. Then

a “2.5D sketch”, where depth and orientation information is integrated. Finally at

the higher level the objects are represented by a simplified 3D model which is used

for scene interpretation (for example, face recognition). Although the details of the

actual brain mechanisms might be di↵erent from David Marr’s model, a hierarchical

representation of visual features, with increasingly higher complexity, seems to be

one of the key mechanisms underlying the human vision.

Marr’s book is an incomplete work due to his short life. Despite there are some

inconsistencies with the actual knowledge of the brain’s visual system, nevertheless

his work is still an important reference for those who develop brain inspired visual

systems.

Brunelli and Poggio (1993) compares two commonly used approaches on face recog-

nition, geometrical features and template matching. The authors concluded that

the second more holistic approach leads to better results than the first parts-based

approach. But interestingly 10 years later, Heisele et al. (2003) concludes the exact

opposite: parts-based approaches are better than holistic for face recognition.

A common problem in face recognition is that the face can be recorded from an

infinite number of di↵erent views. Beymer (1994) present a possible approach to
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solve this problem by basically representing di↵erent poses by the corresponding

templates in the gallery. To classify a new face the pose is estimated first and then

the classification procedure takes place taking into account the actual pose of the

input. A di↵erent solution for this problem by Lam and Yan (1998) only needs one

training image.

Jeng et al. (1998) proposes a method for face feature detection and a geometrical

face feature model which could be used as basis for building face recognition systems

based of facial features.

Recently, Meyers and Wolf (2008) have shown that it is possible to use biologically

inspired features (i.e. features which are similar to those extracted by neurons in the

visual cortex) and still perform as good as some of the most successful artificial face

features representations such as local binary partterns, and histogram of gradient

features. This observation motivates biologically inspired face recognition systems,

such as the one presented in this thesis.

Riesenhuber and Poggio (1999) describe and analyse an hierarchical model of the

visual processing and object recognition in the cortex. Their model is based on

physiological data from the inferotemporal cortex, which is responsible for visual

processing in the brain. Namely two observations are taken into account. Firstly,

the model builds upon the simple and complex cells concept (Hubel and Wiesel,

1962). The neighbouring simple cells feed into a single complex cell, which results

in the complex cell being phase-invariant. Secondly, the observation that in the

macaque inferotemporal cortex (IT) cells that respond to a specific view of objects

such as faces are thought to have an important role in invariant recognition was
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also incorporated into the model (Bruce et al., 1981). The network presented has

an hierarchical structure starting with a layer of simple cells (S1) that receives in-

put directly from the input stimulus (image), followed by a complex cell layer (C1).

Then, a second layer of simple cells (S2) receives input from the previous layer (C1),

which then feeds another complex cells layer (C2). Finally, an array of view-tuned

cells finishes the hierarchy. This last layer of view-tuned units receives input from

the C2 layer. There is the possibility that some connections skip certain layers, for

instance, some neurons from C1 can feed directly to C2 neurons. The simple cells

perform a weighted sum operation. While the complex cells perform a max oper-

ation. The view invariance is achieved with view-tuned units while the scale and

translation invariance is achieved by the architecture of the network. The authors

compare the use of max and sum operations in the complex cells and concluded that

the nonlinear max operation allows the cell to respond to the most salient feature,

which is a good way to pool the a↵erent responses and achieve a good invariance

and seems to be in line with neurophysiological data. Furthermore they investigate

if the proposed model could achieve a degree of selectivity and invariance similar to

the findings from the physiology. To do so, a network trained with 21 view-tuned

units was tested with samples rotated in three dimensions, scaled and translated

around the preferred view. The responses to the test samples were compared to

those responses generated by distractors, and the results show a clear degree of in-

variance and selectivity.

Delorme and Thorpe (2001) also propose a feed-forward network capable of perform-

ing face identification which is inspired in biological and psychophysical studies that
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suggest that a very fast, automatic, feed-forward mechanism can produce highly

selective responses in the visual system. This network uses spiking neurons and a

rank order coding (Gautrais and Thorpe, 1998) which is in line with previous find-

ings that suggest that the highly complex recognition tasks can be perfomed under

150 ms by the visual system (Thorpe et al., 1996), and provides a very e�cient way

of encoding information. The network consists of three layers of retionotopic maps

of integrate-and-fire neurons. The three layers are a simplification of the primate

visual system. The first layer corresponds to the retina, the second layer to the

V1 region and the third and last layer corresponds to the V4/IT region. Therefore

the network as an increasingly complex structure in terms of features represented

at each layer. The network presented is simulated using SpikeNet (Delorme and

Thorpe, 2003; Delorme et al., 1999) which is an e�cient software package that can

simulate a large number of asynchronously firing integrate-and-fire neurons. The

results show that the network is capable of determining the identity of a person

from views that are not present in the training data, and the network shows good

robustness to noisy and low-contrast inputs.

2.3 Face recognition in psychology

In psychology there are several studies related to face recognition which give some

insights about the mechanisms and features that are important to humans for per-

forming such task. These insights can be an important source of inspiration in

building artificial face recognition systems. Perhaps these studies are not so suit-

able as neuroscience’s in order to give an almost direct guidance to the structure
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and architecture of such artificial systems, but they do help by providing bench-

marks for artificial systems, and specific examples of limitations of the human and

primates performance in face recognition, as well as in which cases humans excel

such task. This data can therefore be used as a comparison benchmark for ar-

tificial systems, and also help develop and improve such systems by providing a

better understanding of the variables that improve or disrupt the performance of

a face recognition system. These studies cover many aspects of human and prim-

ates face recognition. Yin (1970) suggest that face recognition is a special case of

object recognition and concluded about di↵erent mechanism for recognising upright

and inverted faces by comparing performance on recognising faces between patients

with no brain damage and others with brain damage. These di↵erences between

recognition of inverted and upright faces are presented in several other publications

(Eimer, 2000; Tanaka and Sengco, 1997). Probably the most studied area are the

features used by humans on face recognition. Patterson and Baddeley (1977) studies

the e↵ect of disguises (changes on features appearance), pose and expression in the

face recognition performance. The authors concluded that changes in pose and ex-

pression don’t compromise the recognition but major disguises can severely impair

the recognition. It has been concluded that the usage of personality characteristics

improves the recognition performance. This last conclusion will not be taken into

account in this thesis because of the complexity of incorporating such personality

features in any artificial system. Later, Ellis et al. (1979) studies the e↵ect of in-

ternal and external features by comparing the recognition of familiar and unfamiliar

faces using internal and external features. The authors argue that both features
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are used on recognition but the recognition of familiar faces rely more heavily on

internal features whereas recognition of unfamiliar faces rely more on external fea-

tures. Configuration of the features seems to have an important role on recognition

according to Tanaka and Sengco (1997). In their experiments, the authors found

that facial features are better recognised when placed in the original configuration

than when their configuration is changed (for instance when eyes are more close

together or more separated). The recognition performance is even more degraded

when the features are presented isolated. Haig (1984) also concluded that the po-

sition of the face features is highly important for recognition, namely “the vertical

positioning of the mouth, followed by eyes, and then the nose, as well as high sens-

itivity to close-set eyes, coupled with marked insensitivity to wide-set eyes”.

A developmental perspective of face recognition can be also found in the literature.

Evidence that newborns have a preferred attention to faces and that this is due to

the fact that infants are born already with the information about the face structure

has been shown (Morton and Johnson, 1991). Also Nelson (2001) agrees that face

recognition is di↵erent from other recognition tasks, when he clearly states that

“Evidence from fields as diverse as cognitive, evolutionary, and developmental psy-

chology, as well as cognitive neuroscience, has increasingly pointed to the ‘special’

nature of face recognition”. In the same paper the author also argues that there

are evidences that faces start being seen as di↵erent, when comparing to any other

objects, in 6 months old infants. Carey et al. (1980) also studies the development

of face recognition between 6 and 16 years old children and he concludes that the

performance is improved between 6 and 10 years of age and then stabilises before
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improving again at the age of 16. This study suggests again that face recognition is

a special case of object recognition. The special nature of face recognition has been

concluded by Farah (1996) as well. By studying brain damaged and normal subjects,

the author concludes that the mechanisms and brain areas used for face recognition

di↵er from the ones used in general object recognition. Furthermore, it is claimed

that the representation of objects and faces are di↵erent. Having individual features

is more importance in object recognition and a more holistic approach is beneficial

in face recognition (Farah, 1996).

Other authors studied the face recognition problem with a more broad approach.

For instance, Bruce and Young (1986) presented a theoretical model of face recog-

nition and perception. According to their work, recognition of familiar faces is done

by matching what they refer as structural encoding products with previously stored

ones. The authors argue that the cognitive system has a main role on the first de-

cision about the actual identity of a new face or if its only possible to identify as a

resemblance. To finalise this section, two books on the psychological perspective of

face recognition and perception are introduced. Young (1998) deals with a broader

concept than face recognition - face perception, which is the process of interpreting

the face not only in terms of identity, but also emotions, race, gender and other

attributes. Nevertheless face recognition is approached in this work by a collection

of research review papers and gives some insights on the brain mechanisms behind

recognition, recall of faces, and errors in disguised face recognition. Also, Li and Jain

(2005) present several chapters with a psychological perspective on face recognition,

from which two main conclusions can be drawn. Firstly, the dynamic nature of face
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recognition and face processing is presented in one of the papers, which indicates

that motion has a important role in enhancing the amount of information avail-

able, therefore improving and enabling better face recognition and interpretation.

Secondly we can conclude that human face recognition is very robust and invariant

to several factors such as pose, age gap and lighting. This robustness is visible only

when recognising familiar faces. When unfamiliar faces are used to test the human

capabilities, the overall recognition performance is much worst, and some artificial

algorithms can even outperform humans.

2.4 Conclusions

In this literature review we have covered the most important aspects of face de-

tection and recognition, from three di↵erent perspectives: psychology, neuroscience

and computer vision.

The main conclusions from the psychological point of view are that face recognition

is a very important cognitive function for humans from birth, and there is actually

evidence that we have some tendency to look at faces and we are able to recognise

familiar faces from early days of life. There is also evidence that we have a mechan-

ism for face recognition separated from the general object recognition, and we rely

of internal and external features for the recognition according to the familiarity of

the subject. Finally the human performance in this task is very high, and robust to

changes in pose and expression.

From a neuroscience point of view, the evidence in the literature indicates that the

face detection and recognition is implemented in the brain by a hierarchical mech-
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anism of increasing feature complexity. In the first stages of this hierarchical system

are the simple and complex cells of the V1 region of the primary visual cortex,

which are selective to oriented bars. In the end of the hierarchy neurons responding

to very complex features such as faces and with a high degree of complexity have

been experimentally observed.

Finally, from the computer vision algorithms related to face detection and recogni-

tion, which were analysed in this review we concluded that these algorithms follow

mostly this sequence of steps: a feature extraction method, followed by a dimen-

sionality reduction step, then a storage and recall system (memory), and, finally, a

classifier.

To perform the feature extraction, several methods for extracting discriminative

features from the image pixel values are presented. These features combined gen-

erate highly dimensional feature vectors representing the faces, therefore several

methods to reduce this dimensionality, and often increase the separability of the

feature space, are also presented. Then, we introduced several memory models for

storing, organising and retrieving feature vectors, and, finally, several classification

algorithms were presented.

The main contributions from this chapter are:

• A review of the state of the art in face detection and recognition algorithms,

models and methods from psychology, neuroscience and computer vision

• Identification of the expected behaviour of a biologically inspired face detection

and recognition model, from a psychological point of view

• Identification of the main blocks of a biologically inspired face detection and
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recognition model

• Identification of the typical sequence of algorithms and methods used in an

artificial face detection and recognition algorithm.
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Chapter 3

Modelling of the face features

extraction and face detection

In this chapter we start by presenting a biologically inspired model of face features

extraction developed by Masquelier and Thorpe (2007). This model is biologically

plausible and is capable of learning the features which can discriminate faces from

other classes of objects, therefore it can be used as a face detector. Although the

model performance is good, a mechanism to determine the region of interest cor-

responding to a face is missing. Furthermore it required several improvements. For

example, the size of the receptive fields is rather small and has to be adjusted.

Therefore we have studied the model properties and modify them to improve the

model performance to the level which is required for reliable Face recognition.

In section 1 the original model by Masquelier and Thorpe (2007), is described in

detail. This model has been implemented in Matlab by the original authors and

the code has been used for the experiments presented in this thesis. In section 2

55
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we present the original contribution from this thesis, which consists in modifica-

tions and improvements of the previous model. The conclusions of this chapter are

presented in the last section.

3.1 Model description

As we have seen in the literature review, there are several approaches that are com-

monly used in many object recognition tasks and, in particular, in face detection.

We have also considered several artificial face recognition algorithms widely used by

the Computer Vision and Image Processing communities that actually implement

approximations of some of these popular mechanisms. Taking into consideration the

literature review, a biologically inspired model for learning visual features introduced

by Masquelier and Thorpe (2007) was chosen as a starting point for building a face

detector. It is based on a well-known hierarchical visual processing model known as

HMAX (Riesenhuber and Poggio, 1999) which is a feedforward hierarchical convo-

lutional network with four layers. It relies on a synaptic-time-dependent plasticity

rule (STDP) for adjusting the intermediate connections strengths. The network can

learn input patterns in a completely unsupervised manner, by repeatedly displaying

many examples of one category, such as faces. After being trained, the network

can respond very quickly when stimulated with an input from a category previously

learned, which is in line with findings that indicate that after only 100ms the neural

responses can discriminate the nature of the input (Hung et al., 2005).

The four layers can be seen as representing four di↵erent types of cells found through

the ventral pathway. V1 simple cells, V1 complex cells, V4 cells and V4/IT cells.
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Figure 3.1 shows a schematic representation of the neural network for face detection.

The first layer is composed of four groups of orientation selective simple cells. In

this thesis, these are referred to as V1 simple cells since they have properties similar

to the real V1 simple cells, i.e., they are selective to specific orientations and they

have a good degree of invariance regarding changes in illumination. The V1 simple

cells are implemented as simplified versions of Gabor filters, more precisely, they are

convolution kernels of 5x5 pixels which are basically edge detectors (see Figure 3.2).

The Gabor filter has wavelength of 5 pixels and e↵ective width of 2. There are four

preferred orientations: ⇡/8, 3⇡/8, 5⇡/8, and 7⇡/8. The orientation ⇡/8 was chosen

as a starting point in order to avoid focusing on horizontal and vertical edges which

are rarely informative, since they occur very often in nature. Figure 3.2 displays the

four kernels used. The responses of the Gabor filters are converted to spike latency

according to the following formula: l = |r|�1, where l is the latency and r is the

convolution value. This conversion is made because the order or rank of each spike

is the main coding element of this network.

The latency of each cell (Gabor filter) is inversely proportional to the activation

strength, i.e., the closer orientation a given neuron is presented to, regarding its

own preferred orientation, the stronger it will respond, and therefore the earlier it

will fire.

At this stage, there is a competition mechanism in place that limits the length of

the spike train by enforcing a winner-take-all mechanism at each location, by set-

ting all other responses values to zero, i.e., only the neuron which has the preferred

orientation closer to the stimulus will fire.
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Input

V1 
Simple 

Cells

V1 
Complex 

Cells

V4 
Cells

V4/IT Cells

Figure 3.1: Simplified representation of the four layer feedforward network capable

of learning face features. The input image is greyscale and the resolution is 640x480

pixels. The input is replicated at 5 di↵erent scales. The first three layers are

replicated for each processing scale. The V1 simple cells layer contains four maps

corresponding to di↵erent orientations of the Gabor filters. The V1 complex cells

layer performs a max operation of a square region from the previous layer (in the

picture a 2x2 area is shown just for illustration purposes). The V4 layers take

inputs from maps corresponding to di↵erent orientations, therefore resulting in a

more complex features, such as faces. In our model we use either 1 or 3 V4 cells.

The last layer integrates input from all the processing scales, in order to be more

robust to scale variations. In each layer, di↵erent colours represent di↵erent kinds

of neurons. Each of which responds to a particular feature (bars of a particular

orientation in the lower layers, and face features in the higher layers). Face images

from the Yale Face Database B (Georghiades et al., 2001).
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Figure 3.2: Convolution kernels used in the model as edge detectors. These kernels

are a rough approximation of the real part of Gabor filters. Gabor filters can be

expressed by the following equation: g
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60 CHAPTER 3. MODEL OF FACE FEAT. EXTRACT. AND FACE DET.

The second layer of this network contains neurons corresponding to the complex

cells in the primary visual cortex, which are spatially invariant up to a certain de-

gree. For this reason we refer to this layer as the V1 complex cells layer. Each cell

from this layer performs a max-pooling operation, i.e., each cell propagates only the

maximum response from its receptive field, which is basically a square region of 7⇥7

simple V1 neurons, and takes only the spike from that region as input, i.e., the spike

with the lowest latency. This means that the V1 complex cell map sub-samples a

V1 simple cell map. There is an overlap of 1 neuron between each 7 ⇥ 7 region.

This mechanism reduces the dimensionality of the input data by a factor of 36 (6 x

6 pixels, considering the overlap) as well as makes the system shift invariant, while

being biologically plausible (Riesenhuber and Poggio, 1999). Furthermore, at the

same level, lateral inhibition is introduced, which is another mechanism which is

also inspired by the brain. A cell that is exited inhibits the neighbouring neurons

with the same preferred orientation in a 11⇥ 11 region. The scale of this inhibition

is proportional to the distance from the exited neuron, and can vary linearly from

5% inhibition, for the farthest neurons, to 15% inhibition, for the adjacent neurons.

This mechanism ensures the suppression of regions dominated by a particular ori-

entation, because the cells with the same preferred orientation inhibit each other.

The third layer corresponds to the V4 cells. The cells from this layer are selective to

features of intermediate complexity such as a combination of di↵erent orientations

which can be seen as individual features such as the eyes and mouth, or as the whole

or parts of the face. In our experiments we used either one map of V4 cells (cor-

responding to the whole face) or three kinds, corresponding each one to a slightly
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di↵erent region/di↵erent scale of the face. We would like to notice that in this

model the first three layers are replicated for five di↵erent input scaled images, in

order to introduce scale invariance to the system. These five scales are respectively:

100%, 71%, 50%, 35%, and 25%, therefore there are 4 x 5 = 20 S1 maps, the same

number of C1 maps, and either 5 x 3 = 15 V4 maps or 5 x 1 V4 maps, depending

on the configuration. The weights of the connections between the V1 complex cells

and the V4 cells are shared among the five di↵erent maps. Each map of V4 cells

receives spikes from the corresponding processing scale in the V1 complex cells maps

only, i.e., it receives spikes from four maps corresponding to the four orientations

represented in the previous layer, for the same processing scale. The receptive field

of the V4 cells in this model is a square region of 16 ⇥ 16 cells, which corresponds

to receptive fields with various sizes in the original image because of the di↵erent

processing scales. Note that the synaptic connections between V1 Complex cells and

V4 cells are modelled by using weights, and all other connections simply transmit

the pre-synaptic neurons. In this model there is no need for a leakage mechanism

because the spike waves are propagated one by one and the potentials are reset

before each wave. The threshold used for the V4 cells is 64, which is one quarter of

the number of a↵erent cells (16⇥ 16⇥ 1/4), and considering that the initial weights

are randomly generated with mean 0.8 and standard deviation 0.05. At this stage

a winner-take-all mechanism is adopted, therefore only one replicated cell can be

excited, i.e., the first cell for each map among all processing scales to fire is the

winner. Furthermore a mechanism to balance the number of of cells that fire among

all processing scales is introduced in order to avoid that only neurons from certain
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scales would be selected. This is implemented by limiting the number of cells firing

at each stage to k (a k-winner-take-all approach). This is an important mechanism

during the learning phase in order to avoid that in the beginning only patterns from

certain scales are selected. In addition, a local inhibition mechanism is activated in

this layer during the learning period in order to avoid that di↵erent prototype cells

(cells from di↵erent maps) learn the same pattern. If the inhibition area was too

large the di↵erent prototype cells could’t learn di↵erent parts of the same object,

and if too small the inhibition wouldn’t work as a deterrent for learning the same

pattern. Therefore, a local area corresponding to half of the height and width of the

receptive field is used. This archived by preventing other prototype cells from firing

in a region of 8 ⇥ 8 around the first prototype cell to fire.

The learning of the face patterns is done by presenting images, one by one, i.e., by

stimulating the first layer. When the spikes that have been propagated from the

first layer through the whole network reach the V4 cells layer, a STDP mechanism

is triggered. This mechanism is defined according to the following rules:
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where i and j are respectively post- and pre-synaptic neurons, t
i

and t
j

are the

spike times for the neurons i and j, the synaptic weight adjustment is given by

�w
ij

, and the change factors for increasing and decreasing the connection strength

are, respectively, a+ and a�. These two values, a+ and a�, are respectively positive

and negative values. Furthermore, a+ and |a�| are increased as the STDP learning

process evolves. The initial value of a+ is 2�6, and this value is doubled every 400
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post-synaptic spikes until it reaches 2�2. The value of a� is set and proportionally

adjusted in order to keep the ratio a+/a� fixed at (�4/3). The reason for starting

with a very small increase and decrease in the STDP learning process is to avoid

learning quickly when the weights are random (in the beginning) which could lead

to learning erroneous patterns. In this way, only when the weights have already

been modified according to the input stimulus, they will be increased in order to

converge quickly to the preferred pattern. The weights are kept in the range [0, 1]

because of the term w
ij

· (1 � w
ij

), which has soft-bound like properties: when the

weight value approaches zero or one, the weight adjustment �w
ij

tends to zero. One

simplification in this model is the fact that the weight adjustment is not proportional

to di↵erence in time from the pre- and post-synaptic spikes, despite this is a very

important mechanism in the brain, because it allows to distinguish between spikes

from di↵erent events. Nevertheless, this temporal information is implicit through

the spike order. As defined in the formula above, the change in this model is related

to the sign of di↵erence t
j

� t
i

, therefore only the order of the spikes is taken into

consideration, not the precise timing. This simplification is possible because in this

model only one spike per neuron is propagated, and it is assumed that the time

to spike is fairly short (in the region of 20-30ms), therefore the decreasing e↵ect in

the STDP rule is negligible. There is also a long-term depression to the weights of

synapses coming from pre-synaptic neurons that never fire. This mechanism reduces

the initial noise introduced by the random weights.

Finally, the last and fourth layer corresponds to the V4/IT region in the brain. Its

cells are selective to faces or parts of faces, like in the third layer (of V4 cells), but
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in this case there is a degree of spacial and scale invariance. In order to achieve

this degree of scale and location invariance, each of the cells in this layer take the

maximum response (the first spike) from each of the maps from the previous layer,

therefore performing a max-pooling operation.

This model was trained and tested using the face and background datasets from

the California Institute of Technology1. Both face and background images have

a resolution of 896 x 592 pixels, have jpeg format and have been converted to

greyscale. The face images are not segmented and contain 27 unique people, with

di↵erent lighting, expressions and backgrounds. Figure 3.3 shows some examples of

both sets of images.

Both sets were split in two parts, one for training and another for testing. These

tests showed a very good capacity for learning face features, which is the most rel-

evant feature for the purpose of this thesis. To be more precise, the training was

performed by repeatedly presenting half of the face dataset images in random order

until the weights converge. Then the system is tested by turning o↵ the STDP

mechanism and presenting faces and background images. Finally the classification

is based on the number of output neurons that fired. The threshold for the classi-

fication is set by running the network on a new set of images of faces and non-faces

and selecting a value where the percentage of wrongly accepted images (false accept-

ance rate) is equal to the percentage of wrongly rejected images (false rejection rate).

With this method, 96.5% of the images are correctly classified as face/non face. This

figures can be improved by using more advanced classification methods as shown by

Masquelier and Thorpe (2007), but throughout this thesis, the first method will

1
Images are available at http://www.vision.caltech.edu/html-files/archive.html.
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be used because its performance is satisfactory and it is more biologically plausible

than the alternatives.

3.1.1 Methods

Table 3.1 summarizes the parameters for each of the layers, and table 3.2 contains

the convolution kernels used to approximate the Gabor filters with 4 preferred ori-

entations.

STDP parameters

The synaptic connections between V1 Complex and V4 cells are modelled using

weights. Initially these weights are randomly generated with mean 0.8 and standard

deviation 0.05. During training the weights are adjusted according to a rule similar

to STDP:
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i and j are respectively post- and pre-synaptic neurons. t
i

and t
j

are the spike

times for the neurons i and j. �w
ij

is the synaptic weight adjustment. a+ and

a� are the change factors for increasing and decreasing the connection strength are,

respectively. The initial value of a+ is 2�6, and this value is doubled every 400

post-synaptic spikes until it reaches 2�2. The value of a� is set and proportionally

adjusted in order to keep the ratio a+/a� fixed at (�4/3).
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Other Parameters

In this model only one spike per pixel is propagated. The first three layers are

processed at 5 di↵erent scales: 100%, 71%, 50%, 35%, and 25%. The V4 cells

threshold = 1/4 of the number of cells in the receptive field. At the V4 cells layer

there is a winner-take-all mechanism among all replicated cells, and also there is a

limit to the number of of cells that fire among at each scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Examples of images used to train the network. Background images such

as (a), (c) and (e) were used as negative examples and face images like (b), (d) and (f)

were used as positive examples during training. More examples of images from these

datasets can be found at http://www.vision.caltech.edu/html-files/archive.html.
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Table 3.1: Layers parameters.

Name Size
Receptive

field

Neuron

type

Inhibitions
Firing

mechanism

Input
640x480;454x341

320x240 ; 224x168;160x120

- - - -

Simple V1
4x640x480;4x454x341

4x320x240;4x224x168;4x160x120

5x5 Spiking -
Latency inverse to

Gabor response

Complex V1
4x107x80;4x76x57

4x53x40;4x38x28;4x27x20

7x7

(1 overlap)

Spiking
Same orientation

11x11 (5-15%)

Latency

Max over RF

V4
3x5 scales or 1x5 scales

weight sharing among scales

32x32 or

64x64

Spiking
Other prototype cells

8x8 (suppress)

Integrate and fire

(no leakage)

V4/IT 3 or 1
All scales

and all positions

Spiking - Max over RF
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Table 3.2: Convolution kernels.

Orientation Kernel

⇡/8

7 9 11 9 7

1 7 14 13 9

-8 -6 0 6 8

-9 -13 -14 -7 -1

-7 -9 -11 -9 -7

3⇡/8

-7 -1 8 9 7

-9 -7 6 13 9

-11 -14 0 14 11

-9 -13 -6 7 9

-7 -9 -8 1 7

5⇡/8

-7 -9 -8 1 7

-9 -13 -6 7 9

-11 -14 0 14 11

-9 -7 6 13 9

-7 -1 8 9 7

7⇡/8

-7 -9 -11 -9 -7

-9 -13 -14 -7 -1

-8 -6 0 6 8

1 7 14 13 9

7 9 11 9 7
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3.2 Model improvements

We have modified the original model developed by Masquelier and Thorpe (2007)

with four main goals:

• To behave as a face detector, by having one output neuron behaving as a

grandmother cell

• To have a number of intermediate features large and representative enough to

be used for face recognition

• To define a Region of Interest (ROI) corresponding to a face, more precisely,

to be able to determine the area of V1 complex cells layer corresponding to

face and used ROI for face recognition

• To be able to detect faces at di↵erent poses and know which particular pose

has been detected

The modifications detailed in this section can be summarized in four points. Firstly,

a set of model parameters were modified and the model was re-trained with the new

parameters. Secondly, a mechanism to determine the region of V4 complex cells

layer has been introduced in order to use this region as input for a face recognition

algorithm. Thirdly, several versions of the model have been trained to respond to

a particular pose, resulting in a multi-pose detector. Finally, the model (excluding

the training phase) has been re-implemented completely using C++ in order to

demonstrate its capabilities in real time.
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3.2.1 Parameters adjustment

With above mentioned goals in mind, we have modified the parameters of the model

in the following manner. First we tested di↵erent configurations regarding the num-

ber of output V4/IT cells O, and the receptive field size of V4 cells S. In the first

case we used the values O = 1 and O = 3, which means that the output layer

will respond to a single face feature (the whole face), or to three di↵erent features

(di↵erent parts of the face or di↵erent levels of detail), respectively. The first set-up

is the most natural since the output neuron corresponds to the whole face region,

therefore can be seen as simple binary face detector, or as a grandmother cell for

faces. The second set-up, with three output neurons, was introduced in order to

measure the e↵ect of redundancy in the face recognition phase. With the three

output neurons we expect to have some redundancy in terms of the area covered by

each of the output neurons. This has been observed in our experiments, as shown in

Figure 3.4, where di↵erent output neurons learn to detect the whole face at di↵erent

scales and di↵erent centres, bringing in this way several levels of detail to the final

representation. The e↵ects of these two di↵erent representations will be analysed

in the following two chapters. Another motivation for using three output neurons

comes from the psychological studies, which indicates that we look at parts of the

face at a time (Tanaka and Sengco, 1997), which can be represented by the di↵er-

ent output neurons, each one corresponding to a face feature such as eyes, nose or

any other. Although, as shown in 3.4, this was not observed experimentally in our

model. Instead, what we observe is that the three di↵erent neurons would represent

the face at a di↵erent level of detail.
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Another modification to the original model was the increase of the receptive field

size of the V4 cells, in order to obtain a higher number of intermediate features to

be later used for face recognition. The receptive field size we use either 32⇥32 or

64⇥64 grid of V1 complex cells, instead of the original 16⇥16 in order to obtain a

more detailed intermediate representation, which is useful for discriminating faces

in the face recognition stage. Figure 3.5 shows the weights resulting from the set-up

with one output neuron and 32⇥32 or 64⇥64 grid of V1 complex cells. Figure 3.6

shows the weights resulting from the setup with three output neurons and 32⇥32

grid of V1 complex cells. Finally, Figure 3.7 shows the weights resulting from the

setup with three output neurons and 64⇥64 grid of V1 complex cells.

3.2.2 Mechanism for region of interest segmentation

We also introduce a mechanism to determine the regions of V1 complex cells cor-

responding to activated neurons of the output V4/IT cells layer, i.e., the Region Of

Interest (ROI) corresponding to the face, or face features in a case if there is more

than one output neuron. This can be seen as a feedback connection that drives the

attention mechanism to the face area. The implementation of this mechanism is

done by re-using intermediate variables from the original model which are saved in

memory and indicate the position in the V1 complex cells map which was ultimately

responsible for firing the output neuron. We then added a mechanism to re-calculate

the maximum orientation for each position in this region of the V1 complex cells

map, and a mechanism to save the winning orientations of the region of interest to

disk, which can then be used for further processing, in particular as input for a face

recognition algorithm. This improvement of the detection algorithm is crucial for
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the integration of the face detection system with the face recognition mechanism,

because it allows us to use only responses of V1 complex cells which relate to the

face stimulus, instead of using responses from all input neurons, therefore reducing

the dimensionality and increasing the shift and scale invariance.

Figure 3.8 shows examples of challenging successfully detected faces in extreme con-

ditions such as bad lighting and side pose. It also shows unsuccessful detections.

There are successful and unsuccessful examples for both configurations, with one

and three output neurons.

3.2.3 Multi pose face detection

As a result of the analysis of the quality of the coding presented in a later chapter

of this thesis, we concluded that the variation of pose is a challenging problem.

Therefore we improved the model in order to detect specific poses. This pose spe-

cific detection could be useful to better organise the memory of faces and therefore

improve the recognition rates.

In order to create the pose-specific face detector, we have retrained 9 di↵erent

networks, corresponding to the 9 di↵erent poses from the Yale Face Database B

(Georghiades et al., 2001). Using cardinal directions the poses can be approxim-

ately described as:

• Frontal

• North

• North West
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• West

• South West

• South

• Pronounced North West

• Pronounced West

• Pronounced South West

For each network we have selected images from a single pose for the positive training

set and non-face images for the negative training set. Each V4 cell in all of the

networks receives connections from 32 ⇥ 32 cells from the previous layers and the

number of output neurons in all of the networks is set to O = 3. The resulting

training weights for each of the specific poses, can be seen in Figures 3.9, 3.10 and

3.11, where each pose has been clearly learned for each of the 7 three output neurons,

respectively. The output neurons from this pose-specific model have parallels with

biology, and they have been proposed in the literature as view tuned cells in the top

of the hierarchical feedforward network (Riesenhuber and Poggio, 1999).

3.2.4 A demo for face detection, memorisation and recog-

nition

Two applications were developed in C++ in order to demonstrate the detection cap-

abilities of the model presented in this chapter as well as the recognition capabilities

of the model when combined with the coding scheme presented in the next chapter.

The reason for the two di↵erent versions is that the first one uses the full model for
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face detection, which requires a considerable amount of computational power, there-

fore it can run at about 3 frames per second on a desktop PC, therefore a second

version was developed which uses the Viola-Jones detection algorithm for the face

detection (Jones and Viola, 2001), and uses the features and coding presented in

this thesis for recognition. With this combination it is possible to achieve a real

time detection and recognition.

Detection and recognition demo

The entire model from Masquelier and Thorpe (2007) and the coding of face features

presented in the next chapter has been re-implemented in C++ and OpenCV in

order to build a live demo which shows the detection and recognition capabilities of

the model and coding scheme. A demo application has been written in C++ and

using the QT library. The entire project contains around 4000 lines of code.

The application has three main options:

• next image - this option captures another frame from the live video feed, uses

the c++ model for face detection and displays the image captured with the

face detected (Figure 3.12)

• add to gallery - this option adds the currently detected face to the gallery by

using the feature coding scheme presented in this thesis and prompting the

user to enter the person name (Figure 3.14)

• identify - this option compares the face currently detected to those saved in

the gallery and displays the name of the closest match
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Recognition only demo (with third party detection)

A second version of the application described above has been developed using C++,

QT and OpenCV. This version di↵ers from the first one essentially because it uses

the OpenCV implementation of the Viola-Jones face detector (Jones and Viola,

2001) for detection. For the recognition part, it uses the features and coding scheme

presented in the next chapter. This modification improves the speed of detection,

which can be performed in real time using a standard PC. Furthermore a mechanism

for multi-image enrolment and verification has been added in order to improve the

recognition performance, i.e., when a face is added to the gallery, several images

of the face are saved, and not only a single frame as in the previous demo. Also,

during the identification process, several images are used for comparison with the

gallery. Figure 3.15 shows the face capture process, Figure 3.16 shows the dialogue

for adding a new person into the gallery, and Figure 3.17 shows an example of a

successfully identified person.
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(a) (b)

(c) (d)

Figure 3.4: Examples of successfully detected faces at di↵erent poses, sizes and

positions. The size of each detection box reflects the corresponding detection scale.

(a) Frontal face detected with 32 ⇥ 32 V1 complex cells receptive field, O = 1. (b)

Side pose face detected with 32 ⇥ 32 V1 complex cells receptive field, O = 1. This

face is at a non-central position in the image and the size of the face is smaller

when compared to (a), which demonstrates a certain degree of position and scale

invariance (c) Frontal face detected with 32 ⇥ 32 V1 complex cells receptive field,

O = 3. (d) Side pose face detected with 32 ⇥ 32 V1 complex cells receptive field,

O = 3. Face Images from the Yale Face Database B (Georghiades et al., 2001).
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Figure 3.5: Visual representation of the weights between V1 complex cells and V4

cells layers after the training phase. The weights are represented in shades of grey

between 0 (white) and 1 (black). The corresponding orientation is drawn as a small

line. Weights are shared among di↵erent scales. (a) Weights for the network with

32⇥32 V1 complex cells receptive field, and O = 1. (b) Weights for the network

with 64⇥64 V1 complex cells receptive field, and O = 1.
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Figure 3.6: Visual representation of the weights between V1 complex cells and V4

cells layers after the training phase, for the network with O = 3 and 32⇥32 V1

complex cells receptive field. The weights are represented in shades of grey between

0 (white) and 1 (black). The corresponding orientation is drawn as a small line.

Weights are shared among di↵erent scales. (a) Weights for the first V4 cell. (b)

Weights for the second V4 cell. (c) Weights for the third V4 cell.
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Figure 3.7: Visual representation of the weights between V1 complex cells and V4

cells layers after the training phase, for the network with O = 3 and 64⇥64 V1

complex cells receptive field. The weights are represented in shades of grey between

0 (white) and 1 (black). The corresponding orientation is drawn as a small line.

Weights are shared among di↵erent scales. (a) Weights for the first V4 cell. (b)

Weights for the second V4 cell. (c) Weights for the third V4 cell.
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(a) (b)

(c) (d)

Figure 3.8: Examples of successfully and unsuccessfully detected faces at challenging

lighting conditions and poses. (a) Side pose with poor lighting face detected with

32⇥32 V1 complex cells receptive field, O = 1. (b) Side pose face with poor lighting

not detected with 32 ⇥ 32 V1 complex cells receptive field, O = 1. (c) Side pose

successfully detected in extreme poor lighting conditions with 32 ⇥ 32 V1 complex

cells receptive field, O = 3. (d) Side pose face with poor lighting not detected with

32 ⇥ 32 V1 complex cells receptive field, O = 3. Face Images from the Yale Face

Database B (Georghiades et al., 2001).
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Figure 3.9: Visual representation of the weights between V1 complex and the first

neuron of the V4 cells layer after the training phase, for each network corresponding

to a particular pose, which has 32⇥32 V1 complex cells receptive field. (a) Weights

for the pose 1. (b) Weights for the pose 2. (c) Weights for the pose 3. (d) Weights

for the pose 4. (e) Weights for the pose 5. (f) Weights for the pose 6. (g) Weights

for the pose 7. (h) Weights for the pose 8. (i) Weights for the pose 9.
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Figure 3.10: Visual representation of the weights between V1 complex and the

second neuron of the V4 cells layer after the training phase, for each network cor-

responding to a particular pose, which has 32⇥32 V1 complex cells receptive field.

(a) Weights for the pose 1. (b) Weights for the pose 2. (c) Weights for the pose 3.

(d) Weights for the pose 4. (e) Weights for the pose 5. (f) Weights for the pose 6.

(g) Weights for the pose 7. (h) Weights for the pose 8. (i) Weights for the pose 9.
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Figure 3.11: Visual representation of the weights between V1 complex and the third

neuron of the V4 cells layer after the training phase, for each network corresponding

to a particular pose, which has 32⇥32 V1 complex cells receptive field. (a) Weights

for the pose 1. (b) Weights for the pose 2. (c) Weights for the pose 3. (d) Weights

for the pose 4. (e) Weights for the pose 5. (f) Weights for the pose 6. (g) Weights

for the pose 7. (h) Weights for the pose 8. (i) Weights for the pose 9.
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Figure 3.12: Face detected after pressing ”next image”.
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Figure 3.13: Another face detected after pressing ”next image”.
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Figure 3.14: Adding face to the gallery for posterior identification.
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Figure 3.15: Example of live face detection.
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Figure 3.16: Example of enrolment. The currently detected face is added to the

local gallery of faces.
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Figure 3.17: Example of live identification. The face detected is matched against

the local gallery of faces and the label of the best match is displayed.
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3.3 Conclusions

In this chapter a model inspired by the hierarchical structure of the visual system

capable of learning face contours was presented. This model is in line with the

biological findings regarding the visual system and also the state of the art face re-

cognition and detection algorithms based in the deep convolutional networks, which

are a hot topic at the current moment (Sun et al., 2014; Taigman et al., 2014).

The model was improved in order to be used as a face detector and suitable for

integration in a face recognition system. The modifications and main contributions

of this chapter can be summarised as follows:

• Show that the modified model is able to detect faces using a single output

neuron performing as a grandmother cell.

• Retrain the model with three output neurons which leads to a smaller repres-

entation when compared to the ten neurons used in the original model from

Masquelier and Thorpe (2007), but keeps some of the redundancy and di↵erent

level of detail.

• Retrain the model where the level of detail of the intermediate features is

higher, by using 32 ⇥ 32 and 64 ⇥ 64 as the receptive field of the V4 cells,

which is useful to discriminate faces in the face recognition stage.

• A feedback mechanism that connects the V4/IT cells to the V1 complex cells,

which in fact highlights the region of interest in the V1 complex cells layer that

was responsible for firing the output cells, which makes the improved model a

real face detector, since it can determine the location of the face, and not only
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if there is a face or not.

• A C++ application based in this model that is a near real time web-cam live

face detector with face recognition capabilities.

In the next chapter a coding for the Gabor-like features extracted by the face re-

cognition model introduced in this chapter is presented.



Chapter 4

Coding of face features

In the previous chapter, the process of detecting a face was described in terms of

the brain mechanisms and the computer algorithms involved. A model that imple-

ments these mechanisms and performs face detection was presented. It was shown

the importance of the face detection mechanism in the face recognition process, i.e.,

every artificial or biological face recognition process has to be associated with a face

detection mechanism in order to determine the region of the image or the cortical

region corresponding to the face features (Kanwisher and Yovel, 2006; Tanaka and

Gordon, 2011; Tsao and Livingstone, 2009). Therefore we have modified the ori-

ginal model in order better integrate the face detection process in a broader face

recognition framework.

Now that we have a mechanism for detecting faces and extract low-level features

from those faces, a method for coding such features relevant to face processing is

needed. In this chapter we present the coding chosen to represent the features in

this thesis. Two alternative coding schemes are proposed, one that uses for bits

93



94 CHAPTER 4. CODING OF FACE FEATURES

to encode each feature (orientation) and another that uses two bits. In the next

chapter, an analysis of the best combination of coding scheme and model paramet-

ers is presented.

The topic of feature representation and coding has been studied by experts in neur-

oscience, psychology and computer vision. The main questions pursued are which

features better represent the face, which ones are actually used by the brain in or-

der to represent the face, and, finally, which ones are more discriminative, in order

to enable the brain to tell faces apart and ultimately recognise faces (Tanaka and

Farah, 1993).

We can divide the features in two groups. Firstly we have the high level features

which have a more direct connection to the human perception of human faces. These

features can be seen as face regions or face parts such as eyes, nose, ears, chin, eye-

brows, among others. Not always correspond these regions uniquely to a single part

but they can be a more abstract region of the face covering one or more parts, or

they can be a section of a part.

We are now going to explain the meaning of high level features in each of the fields

of study.

From a psychological point of view, the face recognition process involves consider-

ation of di↵erent face features. The process by which we look at di↵erent features

starts with several eye saccades that result in changes of our gaze direction and,

therefore, results in looking at di↵erent features or regions of the face (Yarbus,

1967). These regions correspond to the above mentioned high level features.

In neuroscience the high level features are linked to a well-studied mechanism of
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saliency maps. The saliency maps are in fact cortical regions that contain sub re-

gions that fire more actively than others, according to the input stimulus. The

most active regions are therefore the most salient, hence the name of saliency maps

(Soltani and Koch, 2010). In the case of faces, the idea is that certain regions or

features are therefore more salient in terms of the response in the the primary visual

cortex. Then, these most salient regions will serve as input for the object detection

mechanism.

Finally, in computer vision, the high level features are broadly used and have been

used mainly in algorithms that are non-holistic, i.e., use only a particular sub-set of

the data available for a given face (Wiskott et al., 1997). Non-holistic methods rely

on certain features or sections of the face to generate representations around them

and then perform classification. But sometimes the actual representation of the face

is holistic, in the sense that it uses information from all the pixels covering the face

region, but a non-holistic method relying on face features is used as a preceding

stage, where the alignment and sometimes normalisation of the face is done based

on such features. In both cases the high level features are present, and represent

usually facial landmarks such as tip of the nose, eye corners, etc (Heisele et al., 2003;

Wiskott et al., 1997).

The second kind of features are the low-level features. These are mostly studied

and used in neuroscience and computer vision, and not so much of interest for the

psychology community (Cox and Pinto, 2011; Hubel and Wiesel, 1959). Low-level

features are fine-grade representations of very small areas of the face, therefore con-

tain much less information than the high level features and usually are much less
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invariant. Nevertheless, their importance is critical, because by combining a large

number of such small features leads to a very informative representation.

In neuroscience these local features have been broadly studied, and are detected in

the primary visual cortex. They are essentially oriented bars, which when combined

generate more and more complex features, which is believed to lead to the high level

features such as face features or whole faces. Therefore, not only the individual face

features are important when combined together, but they are also an essential part

of the hierarchical process that takes part in the primary visual cortex.

In computer vision, these local features are also the basic element of most detection

algorithms. There are many di↵erent representations of such simple features, from

the most basic pixel intensity values, and the more complex Gabor filters, which

have properties similar to the orientation selective simple cells in the primary visual

cortex, to more artificial binary representations like local binary patterns, which

have been proven to be very e↵ective for the face recognition task (Ahonen et al.,

2004, 2006). As in the brain, these artificial local simple features are combined to-

gether to generate a higher level representation and further classification of faces.

The high level features are represented in our model by a single V4/IT neuron that

has a receptive field covering the whole face, or alternatively, three neurons covering

di↵erent parts of the face, with di↵erent levels of detail. These features are not

discriminative enough to di↵erentiate di↵erent faces, therefore we will focus on the

low level features in order to create a representation of the face suitable for face

recognition. Nevertheless, let’s not forget that the high level features have two very

important roles in the whole system. First, they are ultimately face detectors, or
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face-part detectors in case of three output neurons. These detectors are an essential

part of a complete face recognition mechanism. Secondly, in the case of the three

output neurons, the three slightly di↵erent regions represented by those neurons can

be seen as result of the movement of the gaze direction over several saccades, which

results in analysing di↵erent parts of the face with di↵erent levels of detail.

From the face detectors we have introduced a feedback mechanism that goes back

to the V1 complex cells in order to determine the region of interest corresponding

to the face, i.e., in order to highlight the low level features representing a particular

face. This region is the region of interest which will be used for the face recognition

stage.

The reason for choosing the edge detectors represented by the V1 complex cells for

the low level features, are explained in the next section, together with their details.

Once the features are known, an important question in neuroscience and computer

vision is how to make sense of such features, and how are they coded in the brain

or in a binary representation in the computer memory.

The neural coding problem, and how to e�ciently encode features in a information

theory perspective have been important topics of discussion in both communities,

therefore we approach this problem in the third section of this chapter. In the same

section we also present two alternative coding schemes for the face features used in

this thesis.
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4.1 Face features

The low level features chosen to represent faces in this thesis are the responses of

the V1 complex cells, which respond to oriented edges in the visible light spectrum.

This choice was based in the biological plausibility and extensive studies about these

features, which indicate a broad consensus that these cells are selective to oriented

bars, and they are very likely the first stage of a hierarchical visual system, capable

of processing and analysing visual scenes. Furthermore, these neurons’ behaviour

have some very interesting properties that are important for achieving a robust

recognition system. In particular, these oriented edge cells, implemented as Gabor

filters, have a good degree of lighting invariance, i.e., small changes in the light

or colour of the input stimulus would have no e↵ect, or a very small e↵ect in the

response of the cell. Since we are using complex cells, we can achieve a certain

degree of invariance regarding small local shifts, because these cells integrate the

maximum response over a small receptive field of the V1 simple cells.

In the brain and in computer algorithms, there is a particular coding for features.

The coding is a complex and well-studied topic. In the next section we will explain

the coding used in this thesis, and in the next chapter we will analyse the suitability

of this features and coding for face recognition.

4.2 Face feature coding

One important question in the research of visual recognition algorithms and brain

mechanism is the coding used to represent features.
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In neuroscience the big question is how the brain codes the neural responses, in

other words, how to make sense of the huge number of cell activity that takes place

in an interconnected, highly dynamical brain. There are two main interrelated ways

of analysing this activity that are widely used by the neuroscience community. The

first way is to analyse the brain activity in terms of firing neurons. The event of firing

a neuron occurs when a quick variation of the electrical potential of the cell rises

and falls in a standard manner. This event happens when the incoming potential

reaches a certain threshold. This firing can be triggered by some event, and can be

seen as a binary response (fire/non-fire). The second kind is the time, in particular,

the relative time in which two spikes take place. This relation between spikes in two

neurons will influence their synaptic connections. As we have seen in the previous

chapter, the entire face detection model presented in this thesis relies on the time,

and consequently in the firing of individual neurons as well. The remaining question

is it how to represent the features from the V1 complex cells layer, which were

chosen for the face recognition task, in order to achieve an e�cient and informative

representation of the face.

In computer vision a coding process usually takes place in order to transform the

basic features into some representation which is mode suitable for the recognition

task. The basic features can be pixel values, Gabor filter responses, or of a di↵erent

nature, but what they have in common is that when all the individual features that

cover the whole face region are combined, the resulting feature vector is of very

high dimensionality. Therefore the coding method has often the goal of reducing

the dimensionality and increasing the inter-subject separability while keeping or
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reducing the intra-subject distance.

We took into consideration both computer vision and neuroscience perspectives

when looking for the coding for the edge oriented features from the V1 complex

cells layer. Only the area corresponding to the face stimulus is coded, which is the

area determined by the propagation of the activity from the output V4/IT layer

to the V1 complex cells layer. These V1 complex cells respond to di↵erent bar

orientations. The orientation with the strongest response at each position of the

grid is then coded in a vector of binary values in order to reduce the dimensionality,

keeping the information relative to the neurons that fired. Thus, a winner take all

approach is used to prescribe the winning orientation at each pixel. Two coding

schemes are considered: coding a single orientation by 2 or 4 binary values (see

Figure 4.1).

The binary encoded orientations for each position are concatenated per row in

order to form the feature vector representing a face (see Figure 4.2).

The first coding scheme with 4 bits correspond to individual binary neurons, i.e.,

they translate directly the activity of the oriented edges neurons. In this scheme

only the bit corresponding to the preferred orientation fires. The other scheme that

uses two neurons takes advantage of the fact that only one neuron fires, because

of the winner-take-all approach, therefore it can encode the firing information of

four cells with only two. This gives a 50% dimensionality reduction. The actual

encoding is -1 -1, 1 -1, 1 1, and -1 1 for the orientations ⇡/8, 3⇡/8, 5⇡/8, and 7⇡/8

respectively. Also the closer orientations have a closer Hamming distance, while

further orientations have a higher distance. This is an important characteristic for
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Figure 4.1: (a) First coding scheme: two binary values are used to encode a partic-

ular orientation. The values chosen are such that immediate neighbour orientations

(for instance ⇡/8 and 3⇡/8) di↵er only in one of the values, while the number of dif-

ferent values between binary representations of orientations that are not neighbour

is two. (b) Second coding scheme: 4 binary values are used to encode a particular

orientation. In this case only one of the 4 binary values can be 1 at a time, defining

the orientation being coded. In this case the number of di↵erent values between any

two orientations is two.

a recognition algorithm, since it discriminates di↵erent features by setting them

apart in the feature space and and keeps similar features closer to each other. Table

4.1 illustrates the two-bit coding for each orientation and the hamming distances

between orientations. The choice for -1 as non-spike and 1 as spike value instead of

0 and 1 is related to the way the feature vectors are compared in an e�cient manner.

The details of the comparison method are presented in the next chapter.
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Figure 4.2: Feature extraction and coding process. The area shown in all layers

corresponds to the region of interest and the scale determined by one V4/PIT cell,

through the feedback process. Simple V1 shows only the direction with highest

value for each position (darker directions have higher values). Complex V1 shows

the winner orientations from the Simple V1 layer, which are coded and concatenated

to form the feature array.

Table 4.1: Hamming distances between di↵erent binary coded orientations with two

bits per orientation.

⇡/8 (-1 -1) 3⇡/8 (1 -1) 5⇡/8 (1 1) 7⇡/8 (-1 1)

⇡/8 (-1 -1) 0 1 2 1

3⇡/8 (1 -1) 1 0 1 2

5⇡/8 (1 1) 2 1 0 1

7⇡/8 (-1 1) 1 2 1 0
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4.3 Conclusions

In this chapter we presented the features selected for representing the face, which

are based in Gabor filters. We also present two alternative coding schemes for those

features as hypothesis to be tested in the next chapter.

Both the features (responses to oriented edges from the V1 complex cells layer) and

the binary coding schemes are biologically plausible. Also, the coding scheme has

very interesting properties that are desirable when building a complex recognition

system, since in one of the variants they automatically reduce the dimensionality by

half and separate the basic features nicely in the feature space.

The contributions from this chapter are summarised in the following list:

• A feature coding scheme for the oriented edges that uses 4 bits to represent

directly the activity of the V1 complex cells.

• A feature coding scheme for the oriented edges that uses 2 bits to represent the

winning orientation and has interesting properties in terms of building a face

recognition system, such as class separability and dimensionality reduction.

In the next chapter an analysis of the quality of the current coding regarding its

suitability for separating di↵erent individuals, while keeping close di↵erent repres-

entations of the same individual in the high dimensionality feature space is presented.
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Chapter 5

Analysis of the quality of coding

In the previous chapter we have presented two alternative coding schemes for the

features extracted and selected using the model introduced in chapter 3. One coding

scheme codes the one of four possible orientations at each C1 complex cells map

using 4 bits (only one is active), and the second alternative coding scheme uses

only two bits to code the winning orientation. Both alternatives are biologically

inspired. The first coding scheme implements a winner-take-all mechanism, which

has been broadly used in brain inspired models (Fukushima, 1988; Marr and Poggio,

1976). The second coding scheme also have some similarities with brain mechanisms

because the codes used for orientations that are close to each other are closer in

terms of hamming distance than those codes used for orientations that are further

apart from each other. In this chapter we analyse the quality of the coding schemes

combined with di↵erent configurations of the face detection and feature extractor

model. The quality of the code is analysed regarding the suitability of such coding

for face recognition, and compared with other approaches in the same test and

105
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training data, in order to determine if this coding is discriminative enough for a face

recognition system.

The goals of this analysis can be summarised as follows:

• Determine if the feature vectors resulting from the proposed coding are dis-

criminative, i.e., if the feature vectors from di↵erent subjects have a larger

distance between them than the distance between feature vectors from the

same subject.

• Analyse the performance of this coding scheme with regards to variations in

the lighting conditions

• Analyse the performance of this coding scheme with regards to variations in

the pose of the subject

• Analyse the e↵ects of having in the output one grandmother cell or three

output neurons corresponding to di↵erent levels of detail of the face in the

overall performance of algorithm

• Analyse the e↵ects that the variation of the receptive field of the V4 neurons

have in the overall performance of the algorithm

• Determine which alternative coding achieves the best recognition performance:

2- or 4-bits coding given that the 2-bits coding separates better individual

features

In the next sections the test results and set-up which was used to access the quality

of the code are presented.
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5.1 Geometry of multidimensional coding space

Here we investigate the geometrical structure of multidimensional space of vectors

(V ) representing faces using the coding scheme presented in the previous chapter.

We expect that a set of vectors corresponding to faces of the same person under

the variation of pose and illumination can be clustered together and has no or small

overlap with a set of vectors corresponding to faces of another person. To test

this hypothesis we study the geometrical properties of the vector space for di↵erent

schemes of face representation. The scheme of face representation by two binary

values coding the orientation in the grid 32 ⇥ 32 provides coding vectors of length

2,048 (the smallest dimension of the vector space). The highest dimension (49,152)

is provided by a scheme with four binary values coding the orientation in the grid

64 ⇥ 64, and there are three such grids corresponding to three output neurons.

5.1.1 Database of face images

The database chosen to investigate the spaces V was the Yale Face Database B

(Georghiades et al., 2001). This database contains a large variation of pose and

illumination conditions for each face. The database has 5,696 images of 10 subjects.

Figure 5.1 shows all the subjects in the database. For each subject there are 64

images with di↵erent illumination settings (see Figure 5.2) for every of the 9 di↵erent

poses (see Figure 5.3). Therefore there is a total of 576 images per subject, except

one of the subjects which only has 512.
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Figure 5.1: Ten subjects from the Yale Face Database B (Georghiades et al., 2001).

5.1.2 Procedure to compare feature vectors

Given any subset of images from the database, for instance, any of the training

subsets presented in the next section, the matrix G is constructed. We will call

this subset the gallery. Each row of G contains a binary representation of the

winning orientations of the V1 complex cells for a given face. The ROI used is

determined by the face finding algorithm presented in chapter 3. The matrix G is of

size M
G

⇥N , where M
G

is the number of images in the gallery and N is the length of

the binary vector representing a face. In a similar fashion, a matrix R is constructed

based on images which are not included in the gallery. The number of coinciding

components is a similarity measure for comparison of two face representation vectors

(respectively, the distance between two vectors is the number of non-coinciding

components). Let us assume that vector y does not belong to the gallery. To

compare this vector with gallery vectors, we use the following formula:

z = GyT (5.1)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: 9 poses per subject from the Yale Face Database B (Georghiades et al.,

2001). (a) Frontal. (b) North. (c) North West. (d) West. (e) South West. (f)

South. (g) Pronounced North West. (h) Pronounced West. (i) Pronounced South

West.
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Figure 5.3: 29 out of 64 lighting conditions per subject from the Yale Face Database

B (Georghiades et al., 2001). This particular subset shows the variation in the

azimuth of the light source. The rest of the lighting conditions are due to variations

in elevation.

The index k of the largest component of the vector z corresponds to the row of the

matrix G which is the most similar to y and therefore this index also corresponds

to the image in the gallery. Thus, the procedure for comparison of vectors can be

expressed in terms of manipulations with matrices (multiplication and finding index

of maximum element) which drastically accelerates computations. It takes only 5.62
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seconds to compare 5,696 face vectors of size 2,048 to a gallery of 5,696 faces using

Matlab on a desktop computer.

5.1.3 Results of feature vector comparison

For the scheme with vector length 8,192 (2 bit feature encoding, three output neurons

and a receptive field of 64⇥64), we tested the hypothesis that for each image from the

database, the best match is an image of the same person. The following procedure

was used: select image from the database; compare this image with all other images,

find the most similar image, and verify that the identities of selected image and the

best match are the same. Repeating this procedure for all images from the database,

it was found that the rate of correct “identification” is 0.9896. This rate means the in

the large majority of cases the nearest neighbour of any give feature vector is also a

feature vector from the same subject, but in some other cases the nearest neighbour

is a feature vector from a di↵erent subject, resulting in an identification error. After

this encouraging result, we use a more sophisticated procedure for investigating the

coding space. In order to study further the properties of the vector space in relation

to images taken under di↵erent illumination and pose conditions we used two set-ups

for defining the gallery and matching data:

1. Illumination (il): The frontal pose 1 is fixed and a fraction F of the images

with this pose but di↵erent illumination was randomly (uniformly) selected for

the gallery. The remaining images for the same pose are used for identification.

2. Pose (po): The frontal illumination2 is fixed and a fraction F of the images

1
Frontal or pose ’00’ according to Georghiades et al. (2001) specifications.

2
Frontal illumination or illumination source direction with respect to the camera axis is at 0

degrees azimuth and 0 degrees elevation according to Georghiades et al. (2001) specifications.
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with this illumination but di↵erent pose was randomly (uniformly) selected

for the gallery. The remaining images for the same illumination are used for

identification.

We studied a variety of cases corresponding to di↵erent values for the faction of

images used for the gallery F (1/2, 3/4, and 7/8), V1 complex cells receptive field

S, number of output neurons O and the number of binary values for each orientation.

For each case a gallery was generated and the matching procedure described earlier

was repeated for 50 runs.The gallery is generated independently for each run. Figure

5.4 shows one example how these images are distributed across all subjects for the

case where 3/4 of the images chosen for the gallery and 1/4 for the probe set,

as well as the correct identification rate per subject for another example, where

1/2 of the images chosen for the gallery and 1/2 for the identification set. The

mean correct identification rate (m
ir

) over 50 runs and the corresponding standard

deviation (�
ir

) are shown in Tables 5.1 and 5.2, for the cases where we have O = 1

and O = 3, respectively. The result shown in Tables 5.1 and 5.2 evidences that

a simple comparison with the gallery provides a good face “identification“ which

is comparable with results of Jaiswal et al. (2011) and Vu and Caplier (2011) in

the same dataset. The best results regarding the pose variations are are achieved

when the number of output features is 3, as opposed to a single feature covering the

whole face. In the illumination test cases, the improvements are not significant. A

possible reason for this observation is that, during the training phase, each of the

three di↵erent output neurons became more specialised in a certain pose. Therefore,

the detection across di↵erent poses can be more accurate, and this helps in the
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Figure 5.4: (a) Number of images selected in one of the runs for the gallery and

identification sets, for each subject. In this example 3/4 of the images were chosen

for the gallery and 1/4 for the identification set. (b) Example of correct identific-

ation rate for each of the subjects. The values in parentheses are the number of

identification images for a given subject. In this example 1/2 of the images were

chosen for the gallery and 1/2 for the identification set.
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S = 32 ⇥ 32 S = 64 ⇥ 64

2-bit 4-bit 2-bit 4-bit

1/2
il 0.961 (0.0083) 0.962 (0.0125) 0.967 (0.011) 0.963 (0.0116)

po 0.629 (0.0639) 0.627 (0.0832) 0.847 (0.051) 0.803 (0.0803)

3/4
il 0.964 (0.0124) 0.969 (0.0098) 0.97 (0.0163) 0.972 (0.0156)

po 0.714 (0.0781) 0.746 (0.0817) 0.908 (0.0435) 0.869 (0.0642)

7/8
il 0.971 (0.0178) 0.975 (0.0161) 0.981 (0.0169) 0.968 (0.0212)

po 0.743 (0.1172) 0.781 (0.1246) 0.892 (0.0778) 0.902 (0.0769)

Table 5.1: (m
ir

) and, in parentheses, (�
ir

) for all the di↵erent face recognition set-

tings with number of output neurons O = 1, varied receptive field size S, feature

representation (2 and 4-bit coding), gallery/matching set-ups (illumination il; pose

po) and portion of images used for the gallery (F ✏{1/2, 3/4, 7/8}). The highest cor-

rect matching rate for each gallery/matching setting is highlighted. For S = 32⇥32

and Illumination setting, 580 images were used in total; for S = 32 ⇥ 32 and Pose

setting, 88 images were used in total; for S = 64 ⇥ 64 and Illumination setting, 460

images were used in total; for S = 64⇥ 64 and Pose setting, 86 images were used in

total; These numbers reflect the number of faces available for validation, which are

only the ones that were successfully detected by the face detector. In general, the

correct matching rate for pose variation is much lower than for illumination vari-

ation. The possible reason is that the Gabor filters combined with the max-pooling

mechanism are more robust to local variations caused by di↵erent illumination than

the variations resulting from di↵erent poses which are less local.
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S = 32 ⇥ 32 S = 64 ⇥ 64

2-bit 4-bit 2-bit 4-bit

1/2
il 0.974 (0.0098) 0.956 (0.012) 0.974 (0.0077) 0.931 (0.0151)

po 0.771 (0.0647) 0.783 (0.0703) 0.947 (0.0548) 0.927 (0.0495)

3/4
il 0.982 (0.0108) 0.969 (0.0147) 0.978 (0.0105) 0.946 (0.0174)

po 0.856 (0.0683) 0.836 (0.0729) 0.983 (0.0317) 0.97 (0.0339)

7/8
il 0.983 (0.0128) 0.974 (0.0191) 0.978 (0.0161) 0.951 (0.183)

po 0.878 (0.0947) 0.866 (0.0993) 0.987 (0.0319) 0.986 (0.0337)

Table 5.2: (m
ir

) and, in parentheses, (�
ir

) for all the di↵erent face recognition

settings with number of output neurons O = 3, varied receptive field size S, feature

representation (2 and 4-bit coding), gallery/matching set-ups (illumination il; pose

po) and portion of images used for the gallery (F ✏{1/2, 3/4, 7/8}). The highest

correct matching rate for each gallery/matching setting is highlighted. For S =

32⇥ 32 and Illumination setting, 580 images were used in total; for S = 32⇥ 32 and

Pose setting, 88 images were used in total; for S = 64⇥64 and Illumination setting,

460 images were used in total; for S = 64⇥64 and Pose setting, 86 images were used

in total; This numbers reflect the number of faces available for validation, which are

only the ones that were successfully detected by the face detector. With this setting

(O = 3), the pose correct matching rates improved considerably when compared to

O = 3. The di↵erent levels of detail and slightly di↵erent face regions introduced

by having three output neurons are likely to be the reason for this improvement.

This is because of the redundancy introduced by having more output neurons and

because each neuron corresponds to a di↵erent part of the face, and some of those

parts might vary less with pose than others.
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identification of the correct face. The 2-bit representation of individual features also

leads to slightly better results than the 4-bit representation. This is expected because

the 2-bit representation minimises the similarity between further apart orientations,

and maximises the distance between closer orientations, as opposed to the 4-bit

representation where the distance between any two orientations is always constant.

For the pose test cases, it is better to use a 64⇥64 receptive field, while for the

illumination cases, a 32⇥32 receptive field leads to better results.

5.2 Conclusions

We present a face features coding scheme, which achieved identification rates at

the same level as some well-known face recognition algorithms. This outcome is

achieved with our binary coding of features that enables an e�cient representation

of faces and a quick simple comparison with other vectors, which achieved correct

identification rates higher than 0.97 in most of the cases.

This results are comparable with other algorithms that have been tested in the same

dataset, namely Jaiswal et al. (2011) and Vu and Caplier (2011). They have also

tested their systems across di↵erent illuminations variations, but not across di↵erent

poses.

The state of the art algorithms such as Taigman et al. (2014) and Sun et al. (2014)

achieve recognition rates in the same region as our approach, but in a much more

di�cult dataset, the Labelled Faces in the Wild (Huang et al., 2007). This dataset

contains a very large variation of poses, lighting, age, hair and beard styles, among

other variations that occur in images taken in ”the wild”, i.e., in an totally uncon-
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trolled environment. For this reason, the state of the art approaches should easily

outperform the ours in the smaller, easier, test set used in this chapter. Neverthe-

less the approach here presented, is much simpler and computationally much more

e�cient than the state of the art, therefore it could be used as a pre-processing stage

to filter out most of the false matches, thus reducing the search space for a more

complex algorithm.
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Chapter 6

Memory model approach for

multi-pose face recognition

One of the most challenging problems in face recognition is the large variability of

the appearance of faces from the same subject, due to changes of lighting condi-

tions, pose, etc. As shown in the previous chapter, the face detection and feature

extraction model presented in this thesis, combined with the features coding scheme

and comparison method from Chapters 4 and 5, copes better with lighting condi-

tions variations than with pose variations. Therefore we have decided to propose an

method for assisting with memorization and recall of di↵erent poses, which could

help improving the recognition performance. This problem has been broadly studied

in the literature (Chai et al., 2003; Perrett et al., 1998; Shepard and Metzler, 1971;

Sinha and Poggio, 1996; Xie and Lam, 2006; Yamaguchi et al., 1998).

In computer vision, several algorithms have been proposed to tackle this problem,

which can be divided in two main categories:

119
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• Normalisation-based algorithms

• Sequence-based recognition algorithms

On one hand, the normalisation-based algorithms try to normalise the input image

in order to bring it as close as possible to a standard view. This can be done, for

instance, by using a transformation to project a side view of a face into a frontal

view (Chai et al., 2003), or to normalise the image in order to smooth out the e↵ects

of the lighting (Xie and Lam, 2006).

On the other hand, the sequence-based recognition algorithms rely on a series of

images for recognition, instead of using a single image (Yamaguchi et al., 1998),

which increases the data available for comparing two faces, making the recognition

more robust.

Similarly, in neuroscience, there are two alternative explanations for the ability of

the brain to recognise faces from di↵erent views. The first alternative relies on a

mental transformation of the face before the recognition process (Shepard and Met-

zler, 1971), which would transform the observed face into a standard view. The

second alternative is that we learn the 3D appearance of the objects by looking at

di↵erent views (Sinha and Poggio, 1996) and then we recognise new faces according

to our previous experience, which includes several views (Perrett et al., 1998). The

later hypothesis is more in line with the hierarchical processing model we use, in

particular, with the multi-view face detector proposed in this thesis, therefore it was

the chosen alternative to tackle the problem of the input variability in our proposed

face recognition system.

In order to test this hypothesis we have assumed that there is some sort of memory
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organisation where the di↵erent views are stored in an ordered manner, and not in

a completely random way. Therefore we propose an approach based on the model of

Borisyuk et al. (2013), which is a completely new and complementary model to what

have been discussed in the previous chapters, for a multi-view memory organisation

of the faces in the brain to assist the face recognition process. The same model

could also be used for other memory organisation structures based in a transition

between views, such has transitions between light sources.

In previous chapters of the thesis we consider how to extract faces from images,

how to extract features from faces, how to code faces in an optimal way. In this

chapter we concentrate on face recognition. Our approach is based on a new idea to

use a neural network model for memorising sequences. This model consists of two

layers, the first layer deals with representation of objects of sequences to be mem-

orise and the upper layer keeps labels of sequences. During the learning process

the connections between neurons of the first layer are adjusted to realise a chain

rule of consequent memories. We use both Hebbian and anti-Hebbian learning rules

(for two separate networks) to be able to recall in forward and backward directions.

Also, all to all connections from the upper layer to the first layer are adjusted to

prescribe a tag to the objects of some particular sequence. To recall a sequence we

need to stimulate any object (or even a part of the object) from the sequence as

well as the neurons of upper layer related to the sequence tag. Stimulation of one

object of the sequence is not enough to start re-play because connections between

neurons in the first layer which have been adjusted according the chain rule are

not su�ciently strong to start recall of the sequence and additional input from the
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upper layer corresponding to this particular sequence should arrive to start replay.

After that the sequence will be played in forward and backward directions (by two

di↵erent networks) starting from the initiating object.

We use this new model of memory to recognise faces. For that we assume that each

subject is represented by some number of faces in di↵erent poses and these faces are

objects of the sequence to memorise with a tag which is prescribed to the sequence

in the upper layer. Thus we have a sequence of P poses (generally speaking it is

possible to have di↵erent number of poses for di↵erent subjects) for each subject. To

select faces, select features and code them we use methods and techniques which are

described in previous chapters of the thesis. There are S subjects and we train the

neural network to memorise S sequences with the tag prescribed to each sequence.

To recognise some face we use the face’s code as an input to the first layer and in

the upper layer we initiate a tag for sequence 1. If this particular face belongs to the

sequence 1 then the whole sequence will be re-played starting from a giving face (one

network will show a part of sequence in forward time and another network will play

another part of sequence in backward time). If the face is not from sequence 1, then

the memory model will not play a sequence because there are no proper connections

in the first layer and there are no input from the upper layer to support recall. After

that we repeat this procedure: we initiate neurons corresponding to the same face

in the first layer and the tag in the upper layer corresponding to sequence 2. The

sequence 2 will be recalled if the face belongs to the sequence 2, otherwise it will be

no replay. Thus, the maximum number of repetition of this procedure to recognise

a face is S, and this number is relatively small in comparison with a total number
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of faces which is P*S. For example if we have 100 subjects and for each subject we

have 200 poses then the total amount of faces is 20,000. For recognition of the face

we do not need to do 10,999 comparisons but 100 repetitions of the recall procedure

will be enough to recognise the face.

In this chapter we start by presenting briefly the original model for sequence mem-

orisation (Borisyuk et al., 2013; more details about this model can be found in the

bounded copy of the paper attached to the end of this thesis). Then we present our

theoretical approach for the application of this memory for sequences model to the

problem of multi-view face recognition.

6.1 Model for memorisation of sequences

The system is made of several functional units which are neural groups of inhibit-

ory and excitatory spiking neurons. These units represent di↵erent elements of a

sequence of labels, which could be assigned to events, images of other categories.

The training phase consists in presenting one element at a time by stimulating the

corresponding groups. The synaptic weights are adjusted during this phase accord-

ing to a rule similar to STDP. Finally the recall is performed stimulating only one

of the groups of the sequence.

The system consists of two layers, as shown in Figure 6.1. The top layer has several

groups of excitatory neurons. Each group has 60 neurons and represents some high

level processing task, for instance a label for a person. The neural groups in the

top layer project modifiable connections to all the neural groups in the bottom layer

that belong to a given sequence, therefore each group in the top layer is able to
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Inhibitory 
Excitatory 

Figure 6.1: Spiking neural network model. The top layer contains groups of excitat-

ory neurons. The bottom layer contains groups of coupled excitatory and inhibitory

neurons. Each neural group contains 80 excitatory neurons (in green) and 20 in-

hibitory neurons (in red). A neuron in a neural group delivers connections to all

other (both excitatory and inhibitory) neurons within the group (abbreviated as

arrows and lines with a circle end). Between excitatory neurons of di↵erent groups

or layers, there are plastic connections (shown as dotted lines).

label any sequence by helping to activate the bottom groups on the recall period.

Therefore these top-to-bottom connections have an important role during recall, but

they don’t take part in the learning phase. The bottom layer contains many groups

of low-level neurons.

Each neural group from the bottom layer has 80 excitatory and 20 inhibitory spiking

neurons. The neurons of each group are connected with all other neurons inside the

same group. These neural groups, when stimulated, produce rhythmic activity in

the gamma range. Gamma range oscillations, alongside with theta range oscilla-

tions, have been shown to have an important role in the memorization of sequences

of events among other cognitive functions (Burgess and O’Keefe, 2011) This layer

implements the chain mechanism which will be able to record the sequence of face
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views. The recording of the sequence is made adjusting the modifiable connections

among groups. These connections are always all-to-all links between excitatory neur-

ons of di↵erent neural groups.

The ionic dynamics of these individual neurons are described using Hodgkin-Huxley

equations (Hodgkin and Huxley, 1952),
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where N is the number of neurons in the layer; V
i

(t) is the membrane potential of

a neuron; X is a notation for any of the variables m
i

(t), h
i

(t), n
i

(t), where m
i

(t) is

the activation variable of the sodium conductance channel, h
i

(t) is the inactivation

variable of the sodium conductance channel, and n
i

(t) is the activation variable of

the potassium conductance channel; I lower

syn,i

(t) is the synaptic current received by

a neuron from other neurons in the lower layer; Iupper
syn,i

(t) is the synaptic current

received by a lower layer excitatory neuron from upper layer neurons; I
ext,i

(t) is the

external current induced by the external input (40 mA); I
rest

is a universal constant

current that controls the activities of the neurons (equal to -25 mA). The total

ionic current I
ion

, i(t) and the gating functions A
X

and B
X

are described using the

following equations:
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where V is the membrane potential of the neuron. The sum of ionic currents I
ion

of

a neuron is

I
ion

= g
Na

m3h(V � V
Na

) +G
K

n4(V � V
K

) + g
L

(V � V
L

), (6.9)

where V
Na

is the reversal potential for the sodium current (equal to 50 mV), V
K

is the reversal potential for the potassium current (equal to -77 mV), V
L

is the

reversal potential for the leak current (equal to -54.4 mV), g
N

a is the maximum

conductance for the sodium current (g
N

a = 120(1 + 0.02⌘)mS/cm2 , ⌘ is uniformly

distributed in [-1,1]), g
K

is the maximum conductance for the potassium current

(g
K

= 36(1 + 0.02⌘)mS/cm2, ⌘ is uniformly distributed in [-1,1]), g
L

is the max-

imum conductance for the leak current (g
L

= 0.3(1 + 0.02⌘)mS/cm2 , ⌘ is the

symmetry breaking uniformly distributed random variable in [-1,1]).

A positive external signal is received by a neuron in the bottom layer at each moment

when a member of the stimulation sequence is presented. Otherwise the external

signal is equal to zero. The external current is strong enough to transfer a neuron

into the firing state. Without external current a neuron can fire if it receives both

upper the synaptic current from the upper layer Iupper
syn,i

(t) and synaptic currents from

other modules. Synaptic conductance is described using a standard alpha-function

(see, e.g., Gerstner and Kistler, 2002). The total synaptic current of the ith neuron

in the lower layer received from the neurons of the lower layer is described by the

following equation:
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Here, WA

inh

= WA

exc

= 0.1 are constant connection strengths for inhibitory and excit-

atory connections inside the module; the alpha function is defined in the following

way: ↵
j

(t) = at exp(�bt), for t � 0 and the alpha function equals to zero for t < 0;

the parameters of the alpha function are: a = 0.6 m per second and b = 0.03 m per

second; M j is the total number of spikes from the jth neuron to the ith neuron; T
k

is the time of the kth spike generated by the jth neuron. V inhsyn is the synaptic

reversal potential of inhibitory coupling (V inh

syn

= -80 mV), WB

ij,exc

(t) is a modifiable

excitatory connection strength from the jth neuron to the ith neuron of di↵erent

modules.

The total synaptic current of the ith neuron in the lower layer received from neurons
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of the upper layer is described by the following equation:
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where WC

ij,exc

(t) is a modifiable excitatory connection strength from the jth neuron

of the upper layer to the ith excitatory neuron of the lower layer; N
i,upper

is a set of

indexes of incoming excitatory connections from neurons of the upper layer to the

ith excitatory neuron of the lower layer; the alpha function: ↵
j

(t) = at exp(�bt), for

t � 0 and the alpha function equals to zero for t < 0; the parameters of the alpha

function are: a = 0.6 m per second and b = 0.03 m per second; M j is the total

number of spikes from the jth neuron at the upper layer to the ith neuron; T
k

is

the time of the kth spike generated by the jth neuron at the upper layer; V excsyn

is the synaptic reversal potential of excitatory coupling (V excsyn = 0 mV).

Before the memorisation or training period, all the connections between di↵erent

groups are set to zero. The memorisation of a sequence is done by making each

neural group belonging to the sequence oscillate sequentially by applying and ex-

ternal current (I
ext,i

= 40). Each group is stimulated during 200 ms, and after this

period the external stimulus is withdrawn.

In order to e↵ectively record the sequence, the connection strengths have to be ad-

justed. The proposed method for changing the value is a temporally asymmetric

learning rule which is similar to Spike-Timing-Dependent Plasticity (STDP, see e.g.

Markram et al., 1997). The activity level of pre- and post-synaptic neural groups

is monitored in two subsequent time windows of 200 ms each. This time window

is in accordance with the theta rhythm observed in the hippocampus according to

Colgin and Moser (2006). When a neuron k in one group fires a spike within the
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previous time window before another neuron i in another group fires a spike within

the current time window, then the connection strength value will increase by 3 and

will decrease by 0.0001 otherwise. This small decrease was introduced to implement

a basic forgetting mechanism. The maximum value of the connection strength is 3

mS/cm2, and the minimum 0 mS/cm2.

Two types of the learning directions are proposed: one for forward recall and an-

other for backward recall. For forward recall the STDP type rule is applied (the

direction of coupling is from neuron j to neuron i) and for the backward recall,

the anti-STDP type rule is applied (the direction is from neuron i to neuron j).

Anti-STDP has been suggested by previous papers (Han et al., 2000; Rumsey and

Abbott, 2004). For simplicity, it is assumed that neural groups can be distinguished

as either STDP or anti-STDP type. All neurons in one neural group have the same

type of connection direction and they only connect to groups of the same type (i.e.

a STDP neural group only connects to another STDP group).

In parallel with the modification of the connection strengths between neurons of the

group which ”tags” the sequence being memorised to the neurons of active modules

is also modified using the same learning rule. An external current (I
ext,i

= 40) is

applied to the top neuron group that is selected to label the sequence. After a se-

quence is memorised, each neural group in the top layer will project connections to

all the neural groups in the bottom layer that belong to the corresponding sequence.

In this way the sequence is labelled by that top layer excitatory neural group. This

top layer is implemented delivering a special current to the connected bottom layer

neural groups.
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At the beginning of the recall period the neural group representing the first element

of the sequence is stimulated briefly (50 ms) by applying and external current (equal

to 40). Also the top layer neural group delivers constant current (equal to 25) to all

the labelled neural groups in the bottom layer which encode elements of the same

sequence, until the end of the recall process. Note that during recall the periods of

activation of the neural groups overlap in time, but the moments when the activity

in each group starts are ordered in the same way as during memorisation of the

sequence.

Since there are many neural groups in the bottom layer, we can assume that there

always exists a “representative” neural group for each element of the sequence, such

that that element is su�ciently identified by this neural group. There may be other

neural groups which also share the representation of that element, but they are not

required to participate in the system because the sequence can be accurately mem-

orised by connecting only those representative neural groups.

6.2 Proposed memory model for multi-pose face

recognition

The model described above is a very good candidate for a memory for faces based

in a sequence of poses for each subject.

A proof of concept was developed in C as part of this thesis, in which the model

presented above was implemented and simulations to memorise and recall sequences
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were performed.

Because of the limitations of the model, i.e., there are no real images or features vec-

tors stored in memory, we propose a theoretical approach to how this model could

help with recognition, rather then results from further experiments combining this

model with the model and coding schemes presented earlier in this thesis.

We propose that each neural group in the bottom layer of the network represents

a specific pose, and each of the top layer groups represents a subject, i.e., each top

neural group would label a particular subject. Figure 6.2 illustrates the architecture

of the proposed network structure. During the training phase a sequence of poses

are presented to the network. This sequence of poses corresponds to di↵erent views

of the same subject’s face. Such sequence of views results from the observation of a

face in movement. This is how we learn new faces in the real world, i.e., we don’t

usually look at a single image of a face, instead we look at a moving face, which can

be represented by a number of di↵erent poses.

The top layer group that labels the current subject, projects connections to all the

elements of the sequence of poses. There are two separated networks, one trained

with a STDP rule, for forward recall, and another with an anti-STDP rule, for back-

ward recall. Both are trained simultaneously in a similar manner, apart from the

rule for adjusting the weights, which would di↵er.

The training process is repeated for every new subject, therefore the resulting net-

works would have S top groups, one for each subject, and N bottom groups, one for

each pose and subject, i.e., N = S ⇤ P , where P is the number of di↵erent poses in

each sequence. The memorisation process of a sequence of four poses for one subject
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Figure 6.2: Spiking neural network model. The top layer contains groups of excitat-

ory neurons. The bottom layer contains groups of coupled excitatory and inhibitory

neurons. Each neural group contains 80 excitatory neurons (in green) and 20 inhib-

itory neurons (in red). A neuron in a neural group delivers connections to all other

(both excitatory and inhibitory) neurons within the group (abbreviated as arrows

and lines with a circle end). Between excitatory neurons of di↵erent groups or layers,

there are plastic connections (shown as dotted lines). Each set of connected groups

in the bottom layer corresponds to a sequence of poses, which is memorised in a

particular order during the memorisation process, and can be recalled in the same

or inverse order.

is illustrated in Figure 6.3. This network can be used to recall a sequence of poses

starting by activating one neural group corresponding to a pose in the sequence.

This pose would be detected by with our proposed improved model for multi-pose

face detection. Then, we stimulate the first top neural group corresponding to an

individual. This recall mechanism is illustrated in Figure 6.4 at two di↵erent levels

of detail. If, in one hand, when we stimulate the top neural group (while the bot-

tom layer group corresponding is still active) , the sequence of poses is successfully

recalled, that means that the top group which is currently stimulated, labels the
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Figure 6.3: Memorisation of a sequence of four poses for a single subject. The

memorization for the forwards and backwards recall is done in the same way, apart

from the connections adjustment algorithms, which is not shown in this figure. Each

small dot in the graph represents a neural spike. Each cluster of spikes corresponds

to one bottom layer neural group which is representative of a pose for a particular

subject.

probe face, i.e., the sequence recalled identifies the most likely subject. This recall

occurs in both directions, because we have both forward and backward recall net-

works, therefore all the available poses would be recalled independently of the start

point (Figure 6.5 illustrates the backward recall process). If, in another hand, the

top layer being stimulated does’t correspond to the subject active in the bottom

layer then the network wouldn’t recall the whole sequence. Therefore the current

top group does not label the face detected, and the recall process would restart by

stimulating the next group from the top layer, while the bottom probe group would
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(b) Recall zoom.

Figure 6.4: Each small dot in the graph represents a neural spike. (a) Forwards

recall of a sequence of four poses for a single subject, showing the subsequent firing

of neural groups with a short delay. (b) A magnified picture in the recall period of

a single group.
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Figure 6.5: Each small circle in the graph represents a neural spike. Backward

recall of a sequence of four poses for a single subject, showing the subsequent firing

of neural groups with a short delay.

still be active, and check if the recall of the sequence is performed successfully.

The main advantage of using this approach for recognition is that for a memory with

S subjects and P poses we just need to try, at most, S times to recall the sequence

of poses to find the identity of the subject. With a nearest neighbour approach we

would always have to compare a probe face with S ⇥ P faces in memory.

The second advantage is that the novelty detection is performed automatically, be-

cause if after trying starting the recall with all the top groups, the network is not

capable of recalling any sequence, this means that the probe face is a novel subject

of a novel view of an existing subject. Figure 6.6 illustrates the whole process of

memorisation, forward and backward recall of sequences of four poses for two di↵er-

ent subjects. In order to achieve a more robust recognition, we propose to compare

several views of the probe with the views stored in the memory. Therefore, after
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(a) Memorisation (0-2100ms) and recall (2500-3500ms).

0 500 1000 1500 2000 2500 3000 35000

500

1000

1500

2000

2500

3000

Time (ms)

Ne
ur
on

(b) Memorisation and (0-2100ms) and backward recall (2500-3500ms).

Figure 6.6: Each small dot in the graph represents a neural spike. (a) Memorisa-

tion of two sequences of four poses. The left part shows the activations of neurons

(memorisation period). The right part shows the first sequence recall which is ini-

tiated by the activity pattern corresponding to the first event (recall period). (b)

Memorisation and backward recall of two sequences.
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finding the group s from the top layer that successfully labelled the sequence con-

taining the first probe view, we can, for the following probe views, start the search

from the same s, knowing that, with high probability, we would be able to recall the

sequence without having to try additional top layer groups. The reason for this is

that the neighbouring probe views are probably of the same subject, with a slightly

di↵erent pose.

6.3 Conclusions

In this chapter we present an approach for the problem of memorisation of di↵erent

poses, based on the work of Borisyuk et al. (2013). The proposed memory for

sequences of poses is in line with psychological and biological studies, which indicate

that the recognition is a dynamical process, in which several views of the same object

take part in the matching and recognition. Therefore the proposed memory model

can assist in the recognition of an individual by recalling the sequence of poses,

starting from stimulating one neural group corresponding to the observed pose, and

also the top neural groups, one by one, which correspond to the identity labels, until

the sequence is successfully recalled. If the sequence is successfully recalled, there is

a strong indication that the observed pose is labelled by the top layer group being

stimulated, otherwise the network will perform novelty detection.

The main contributions of this chapter are:

• A theoretical approach to the problem of multi-view memorisation of faces

• A methodology to take advantage of the multi-view memorisation of faces for
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improved recognition, in terms of speed and accuracy

• A methodology to take advantage of the multi-view memorisation of faces for

novelty detection



Chapter 7

Summary

In this thesis we present a brain inspired approach to computational face recogni-

tion. We start by making a review of the state of the art in face recognition, which

covers the di↵erent processing stages related to this task. In particular, this review

covers aspects of face detection and face recognition, which have been looked at from

three di↵erent perspectives: psychology, neuroscience and computer vision.

From the psychology point of view there are several conclusions that can be drawn.

From birth, humans have a particular interest in looking at faces, and familiar faces

are recognised from early days. There is some evidence that there are di↵erences

in the way we recognise familiar and unfamiliar faces, in particular, by using in-

ternal or external features for recognition. Furthermore, there is evidence that face

recognition is performed separately from other objects’ recognition, and that the

human performance on this task has a good degree of invariance to changes in pose

and expression, achieving a very high degree of accuracy. This indicates the special

nature of this task as a cognitive function, and suggests that it has an important

139
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role in the child’s development.

From a neuroscience point of view, some of the mechanisms behind such an e�cient

system have been studied. Most notably, it has been experimentally observed that

an hierarchical system of increasing feature complexity and decreasing dimensional-

ity of the data places a central role in the face recognition, and visual recognition in

general. This hierarchical structure plays a central role in the main model presented

in this thesis.

Finally, from a computer vision perspective, many algorithms have been developed

in pursue of optimal verification rates. Despite a large number of di↵erent methods

having been proposed, they share mostly the same structure. Firstly a feature ex-

traction method is applied, followed by a dimensionality reduction algorithm. These

two steps produce a representation of the face, commonly denominated feature vec-

tor. Then some sort of storage method is used to create a gallery of faces, and

finally a classifier is applied in order to recognise a new face. Several methods from

all these stages have been briefly presented in our literature review. After analysing

the state of the art we propose four components that are essential in a biologically

inspired face recognition system: 1) a face detection model, 2) a mechanism to ex-

tract the features relevant to the face, 3) a coding scheme for the face features, and

4) a theoretical memory model for faces.

An existing biologically inspired face detection detection model developed by Masque-

lier and Thorpe (2007) has been studied in order to find strong and weak features in

regards to its usage in a face recognition framework context. This model is in line

with the hierarchical structure of the visual system and is capable of learning face
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features. Furthermore, several face recognition and detection algorithms which have

been recently published and became very popular due to their performance, follow

a similar structure by using deep convolutional networks for solving this problem

(Sun et al., 2014; Taigman et al., 2014). We have improved the original model

by introducing a feedback mechanism and changing some parameters in order to

be capable of detecting faces with a single output neuron, determining the region

of interest corresponding to the face, to get a face features representation better

suitable for recognition, and also we have added the capability to detect faces from

di↵erent poses, and label the pose detected. The features chosen to represent the

face are the intermediate features in this model, located in the V1 complex cells

layer. We propose two alternative binary coding schemes for the local orientations

represented by these features. The features are biologically plausible. The binary

coding schemes also implement biologically plausible mechanisms: a winner-take-

all mechanism and a representation in which similar orientations are closer to each

other in the feature space and farther away orientations are also further away in

the feature space. Furthermore, the coding scheme has very interesting properties

that are desirable when building a complex recognition system, since in one of the

variants they automatically reduce the dimensionality by half and separate the basic

features nicely in the feature space. We also have developed a demo application to

demonstrate the improved model working and detecting and recognising faces dir-

ectly from a webcam.

Then we analysed the quality of the proposed coding schemes regarding the iden-

tification rates achieved in a well-known face database (Georghiades et al., 2001),
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according to variability in pose and lighting conditions. This analysis shows that

an identification rate of 0.97 can be achieved in some of the test conditions, and

this rate is at the same level of the algorithms used for comparison tested in the

same data such as the algorithms tested by Jaiswal et al. (2011) and Vu and Caplier

(2011).

Finally we propose an approach for the face recognition problem with the mem-

orisation and recall of di↵erent poses. The proposed method uses a biologically

plausible oscillatory neural network of spiking neurons for memorisation and recall

of sequences of poses (Borisyuk et al., 2013). An STDP rule is used to adjust the

synaptic weights during the learning process. This goal approach was to improve

classification by recalling an entire memory of di↵erent views of the same subject,

from a single initial view. This approach reduces the computational cost of search-

ing the best match, and is in line with the biological and psychological findings

that indicates that the recognition is a dynamic process, that in most cases involves

matching not only a snapshot of the individual face, but rather a range of views

that changes smoothly during the time of observation.

In conclusion, we presented a complete biologically plausible approach for face re-

cognition, which covers several mechanisms, from the face detection and feature

extraction and representation to the memorisation and classification of faces.

7.1 Contributions

The main contributions and achievements of this thesis are:

• A literature review that describes the state of the art in face recognition from
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three di↵erent perspectives: Neuroscience, Psychology and Computer Vision..

• An improved version of a biologically inspired model for visual features extrac-

tion was developed. The improvements significantly increase the performance

of the model by adding the possibility of detecting faces from multiple poses,

and knowing which pose has been detected. Furthermore, the region of in-

terest corresponding to the face has been made available through a feedback

mechanism which has been added to the original model.

• A binary scheme of face features coding inspired by the brain has been pro-

posed and tested. Using this scheme, high recognition rates are achieved (Silva

Gomes and Borisyuk, 2012).

• A new biologically realistic model for memorisation and recall of sequences

of images was developed (Borisyuk et al., 2013) and a theoretical framework

was proposed for using this model to memorise sequences of poses and use the

recall capabilities to improve the face recognition process.

• A demo application for face detection, memorisation and recognition using a

webcam was developed. The goal of this application is to demonstrate how

the proposed improved model and binary coding work in a real world scenario.

7.2 Future work

The following improvements and extensions to the two models presented in this

thesis are proposed:

• Creation of a very e�cient library implementing the face coding schemes

and comparison method presented in this thesis. This implementation could
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perform very fast comparisons between two faces because the binary coding

schemes proposed in this thesis lead to a very small face feature vector, which

could have as little as 2048 bits, depending on the network configuration and

coding scheme chosen. This library could be used to very quickly narrow down

the search space of a very large scale face database that posts a problem to

many state of the art very accurate algorithms, which have a much larger

template size.

• From my experience in the development of face recognition systems in the

real world, it is clear that despite the level of sophistication of the current

artificial algorithms particularly under a controlled environment, which can

outperform humans in a one to one verification task, there is still a big room

for improvement for the performance under uncontrolled environments. This

improvement could come from bringing the ideas from biological systems, in

particular, the memory model proposed in this thesis could be used to organise

the gallery of faces and boost the performance of a one to many verification

task.
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Abstract. A computational model for face feature extraction and recog-
nition capable of achieving a high degree of invariance to illumination
and pose is presented. Similar to the complex V1 cells, the model uses
a sparse binary code to represent an edge orientation. The binary code
represents the face features for recognition. This paper investigates the
geometrical structure of the linear space of face representation vectors.
For this study the Yale Face Database B is used. It is shown that the
biologically inspired procedure provides the face representation of a good
quality: vectors representing the faces of the same person under di↵er-
ent poses and illumination conditions are grouped together in the vector
space. This code enables a very high recognition rate for both the illu-
mination invariance and pose invariance settings.

Keywords: Face Recognition, Face Detection, HMAX, V1 Features,
Complex Cells, Simple Cells.

1 Introduction

Invariant face recognition regarding a pose and illumination is a problem solved

e�ortlessly by the human brain, but computational details underlying such an

e�cient recognition are still far from clear. However, some details on face recogni-

tion in primate’s brain are known and they provide an inspiration for developing

new computational models for face recognition. (1) An hierarchical processing

has a central role in face recognition, starting with simple edge responsive cells

in the primary visual cortex and, as the information flows through the ventral

stream, new cells respond to more and more complex features [7,5] until reach-

ing the IT where there is a single cell responding to a face stimulus [4,1,10]. (2)

A highly e�cient neural coding, in conjunction with very fast and hierarchical

processing through the ventral stream, fulfills an important memory function for

faces and other objects [2]. (3) A synaptic plasticity enables the visual system to

adapt and learn new object representations, e.g., faces [8]. (4) The brain learns

the appearance of a face (or other 3D object) throughout an experience by ob-

serving the face for many times [12]. Each time a pose is di�erent as well as an

illumination condition, therefore the brain can construct a memory of the face

based upon this information.

A.E.P. Villa et al. (Eds.): ICANN 2012, Part I, LNCS 7552, pp. 427–434, 2012.
c� Springer-Verlag Berlin Heidelberg 2012
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All mechanisms mentioned above are included in our model, therefore we claim

to present a representation and face recognition system which is biologically

inspired.

This paper is organized in five sections. In the second section, we describe

briefly the face detector. In the third section we explain a process of feature ex-

traction and a coding scheme for the feature representation and memorization.

In the fourth section, a study of geometrical properties of multidimensional vec-

tor space of face representation is described. The last section is to discuss and

conclude the study of the feature vector space.

2 Face Detection

The face detection is performed using a HMAX algorithm [11] and the [8]. This

network has four layers: S1 (simple V1 cells), C1 (complex V1 cells), S2 (V4

cells), and C2 (V4/PIT cells). There are four kinds of simple V1 cells, all of

which respond to bars of di�erent orientations: �/8, 3�/8, 5�/8, and 7�/8. Due

to a hierarchical structure of the network , there is an alternation between max

and sum operations which makes the system robust to scale and shift variation.

Illumination invariance is achieved by using an edge information instead of pixel

values. Simple V1, complex V1, V4 pathway is replicated at five di�erent scales

of the input image which also makes the system to be a scale invariant.

In order to train the system to detect faces, a set of face images is presented and

connections between complex V1 cells and V4 cells are adjusted according to a

STDP rule.

We have modified the parameters of this face recognition system [8] aiming

to define which configuration will lead to best coding of faces. In particular the

number of output V4/PIT cells O, and the receptive field size of V4 cells S
have been varied. In the first case we used the values O = 1 and O = 3, which

means that the output layer will respond to a single face feature (the whole

face), or to three di�erent features (di�erent parts of the face), respectively. For

the receptive field size we use either 32⇥32 or 64⇥64 grid of complex V1 cells.

We also introduce a mechanism to determine the regions of complex V1 cells

corresponding to activated neurons of the output V4/PIT layer, i.e., the Region

Of Interest (ROI) corresponding to the face, or face features in a case if there

is more than one output neuron. This can be seen as a feedback connection

that drives the attention mechanism to the face area. This improvement of the

detection algorithm is crucial for the integration of the face detection system

with the face recognition mechanism, because it allows us to use only responses

of complex V1 cells which relate to the face stimulus, instead of using responses

from all neurons.

3 Feature Extraction and Encoding

The features used to represent the faces are the responses from the complex

V1 layer. Only the area corresponding to the face stimulus is used for this
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purpose. This area is determined by the propagation of the activity from the

output V4/PIT layer to the complex V1 layer. These complex V1 cells respond

to di�erent bar orientations. The orientation with the strongest response at

each position of the grid is then coded by a binary value in order to reduce the

dimensionality. Thus, a winner take all approach is used to prescribe the winning

orientation at each pixel.

Two coding schemes are considered: coding a single orientation by 2 or 4

binary values (see Figure 1).

π/4
(-1,-1)π/4

π/4
π/8

(1,-1)(1,1)

(-1,1)

(a)

π/4
(1,-1,-1,-1)π/4

π/4
π/8

(-1,1,-1,-1)(-1,-1,1,-1)

(-1,-1,-1,1)

(b)

Fig. 1. (a) First coding scheme: two binary values are used to encode a particular
orientation. The values chosen are such that immediate neighbour orientations (for
instance �/8 and 3�/8) have only one non-coincident components, while the number
of non-coincident components between orientations that are not neighbour is two. (b)
Second coding scheme: 4 binary values are used to encode a particular orientation. In
this case only one of the 4 binary values can be 1 at a time, defining the orientation
being coded. In this case the number of non-coincident components between any two
orientations is two.

The binary encoded orientations for each position are concatenated per row

in order to form the feature vector representing a face (see Figure 2).

Fig. 2. Feature extraction and coding process. The area shown in all layers corresponds
to the region of interest and the scale determined by one V4/PIT cell, through the feed-
back process. Simple V1 shows only the direction with highest value for each position
(darker directions have higher values). Complex V1 shows the winner orientations from
the Simple V1 layer, which are coded and concatenated to form the feature array.
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4 Geometry of Multidimensional Coding Space

Here we investigate a geometrical structure of multidimensional space of vectors

(V ) representing faces. We expect that a set of vectors corresponding to faces

of the same person under the variation of pose and illumination is a compact

set and has no or small overlap with a set of vectors corresponding to faces of

another person. To test this hypothesis we study the geometrical properties of

the vector space for di�erent schemes of face representation. The scheme of face

representation by two binary values coding the orientation in the grid 32 ⇥ 32

provides coding vectors of length 2,048 (the smallest dimension of the vector

space). The highest dimension (49,152) is provided by a scheme with four binary

values coding the orientation in the grid 64 ⇥ 64, and there are three such grids

corresponding to three output neurons.

4.1 Database of Face Images

The database chosen to investigate the spaces V was the Yale Face Database B

[3]. This database contains a large variability of each face captured in di�erent

poses and under di�erent illumination conditions. The database has 5,696 images

of 10 subjects. For each subject there are 64 images with di�erent illumination

settings for every of the 9 di�erent poses (i.e. 576 images per subject, except one

of the subjects which only has 512).

4.2 Procedure to Compare Feature Vectors

Given a subset of images from the database which we will call the gallery, the

matrix G is constructed. Each row of G contains a binary representation of the

winning orientations in the face ROI of the complex V1 cells for a given face.

The matrix G is of size MG ⇥ N , where MG is the number of images in the

gallery and N is the length of the binary vector representing a face. In a similar

fashion, a matrix R is constructed based on other images which are not included

to the gallery.

The number of coinciding components is a similarity measure for comparison

of two face representation vectors (respectively, the distance between two vectors

is the number of non-coinciding components).

Let us assume that vector y does not belong to the gallery. To compare this

vector with gallery vectors, we use the following formula:

z = GyT , (1)

where yT
is a vector-column. The index k of the largest component of the vector

z corresponds to the row of the matrix G which is the most similar to y and

therefore this index also corresponds to the image in the gallery. Thus, the

procedure for comparison of vectors can be expressed in terms of manipulations

with matrices (multiplication and finding an index of maximum element) which

drastically accelerates computations. It takes only 5.62 seconds to compare 5,696

face vectors of size 2,048 to a gallery of 5,696 faces using Matlab in a desktop

computer.
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4.3 Results of Feature Vector Comparison

For the scheme with vector length 8,192 (2 bit feature encoding, three output

neurons and a receptive field of 64 ⇥ 64), we tested the hypothesis that for

each image from the database, the best match is an image of the same person.

The following procedure was used: select image from the database; compare this

image with all other images, find the most similar image, and verify that IDs of

selected image and the best match are the same. Repeating this procedure for all

images from the database, it was found that the rate of correct “identification”

is 0.9896.
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Fig. 3. (a) Number of images selected in one of the runs for the gallery and identi-
fication sets, for each subject. In this example 3/4 of the images were chosen for the
gallery and 1/4 for the identification set. (b) Example of correct identification rate for
each of the subjects. The values in parenthesis are the number of identification images
for a given subject. In this example 1/2 of the images were chosen for the gallery and
1/2 for the identification set.
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Table 1. (m
ir

) and (�
ir

) for all the di↵erent face recognition settings (number
of output neurons O; receptive field size S), feature representation (2 and 4-bit
coding), gallery/matching setups (illumination il; pose po) and portion of images
used for the gallery (F �{1/2, 3/4, 7/8}). The highest correct matching rate for each
gallery/matching setting is highlighted. For O=1, S = 32 � 32 and Illumination set-
ting, 580 images were used in total; for O=1, S = 32 � 32 and Pose setting, 88 images
were used in total; for O=1, S = 64 � 64 and Illumination setting, 460 images were
used in total; for O=1, S = 64� 64 and Pose setting, 86 images were used in total; for
O=3, S = 32 � 32 and Illumination setting, 630 images were used in total; for O=3,
S = 32 � 32 and Pose setting, 88 images were used in total; for O=3, S = 64 � 64
and Illumination setting, 638 images were used in total; for O=3, S = 64 � 64 and
Pose setting, 88 images were used in total. This numbers reflect the number of faces
available for validation, which are only the ones that were successfully detected by the
face detector.

O = 1 O = 3

S = 32 � 32 S = 64 � 64 S = 32 � 32 S = 64 � 64

2-bit 4-bit 2-bit 4-bit 2-bit 4-bit 2-bit 4-bit

1/2
il

m
ir

0.961 0.9623 0.9671 0.9628 0.9742 0.9558 0.9735 0.9309
�

ir

0.0083 0.0125 0.011 0.0116 0.0098 0.012 0.0077 0.0151

po
m

ir

0.6286 0.6273 0.8465 0.8028 0.7714 0.7832 0.9473 0.9273
�

ir

0.0639 0.0832 0.051 0.0803 0.0647 0.0703 0.0548 0.0495

3/4
il

m
ir

0.9644 0.9688 0.9701 0.972 0.9818 0.9689 0.9775 0.946
�

ir

0.0124 0.0098 0.0163 0.0156 0.0108 0.0147 0.0105 0.0174

po
m

ir

0.7136 0.7464 0.9076 0.8686 0.8564 0.8364 0.9827 0.97
�

ir

0.0781 0.0817 0.0435 0.0642 0.0683 0.0729 0.0317 0.0339

7/8
il

m
ir

0.9714 0.975 0.9811 0.9681 0.9831 0.9741 0.9777 0.9511
�

ir

0.0178 0.0161 0.0169 0.0212 0.0128 0.0191 0.0161 0.183

po
m

ir

0.7436 0.7818 0.892 0.902 0.8782 0.8655 0.9873 0.9855
�

ir

0.1172 0.1246 0.0778 0.0769 0.0947 0.0993 0.0319 0.0337

After this encouraging result, we use more sophisticated procedure for inves-

tigating the coding space.

In order to study further the properties of the vector space in relation to

images taken under di�erent illumination and pose conditions we used two setups

for defining the gallery and matching data:

1. Illumination (il): The frontal pose

1
is fixed and a fraction F of the images

with this pose but di�erent illumination was randomly (uniformly) selected

1 Frontal or pose ’00’ according to [3] specifications.
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for the gallery. The remaining images for the same pose are used for identi-

fication.

2. Pose (po): The frontal illumination

2
is fixed and a fraction F of the images

with this illumination but di�erent pose was randomly (uniformly) selected

for the gallery. The remaining images for the same illumination are used for

identification.

We studied a variety of cases corresponding to di�erent values of F (1/2, 3/4, and

7/8), S, O and the number of binary values for each orientation. For each case a

gallery was generated and the matching procedure described earlier was repeated

for 50 runs.The gallery is generated independently from the previous runs. Figure

3 shows one example how these images are distributed across all subjects for the

case where 3/4 of the images chosen for the gallery and 1/4 for the probe set,

as well as the correct identification rate per subject for another example, where

1/2 of the images chosen for the gallery and 1/2 for the identification set.

The mean correct identification rate (mir) over 50 runs and the corresponding

standard deviation (�ir) are shown in Table 1.

The result shown in Table 1 evidences that a simple comparison with the

gallery provides a good face “identification“ which is comparable with results

of [6,9]. The best results are achieved when the number of output features is 3,

as opposed to a single feature covering the whole face. The 2-bit representation

of individual features also leads to better results than the 4-bit representation.

This is expected because the 2-bit representation minimizes the similarity be-

tween further apart orientations, and maximizes the distance between closer

orientations, as opposed to the 4-bit representation where the distance between

any two orientations is always constant. For the pose test cases, it is better to

use a 64⇥64 receptive field, while for the illumination cases, a 32⇥32 receptive

field leads to better results.

5 Conclusion

We present a face features extraction and coding scheme, which achieved identi-

fication rates at the same level as some well known face recognition algorithms.

This outcome is achieved, due to a combination of methods taken from a neurobi-

ological face recognition system and from e�cient computer science algorithms.

In particular, a process of face encoding is integrated with the face detection,

by introducing a feedback mechanism and using the already extracted features

from the complex V1 layer.

Our binary coding of features enables an e�cient representation of faces and a

quick simple comparison with other vectors, which achieved correct identification

rates higher than 0.97 in most of the cases.

2 Frontal illumination or illumination source direction with respect to the camera axis
is at 0 degrees azimuth (’A+000’) and 0 degrees elevation (’E+00’) according to [3]
specifications.
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Moreover, we have used clustering algorithm to investigate a set of face vec-

tors. The cluster analysis reveals that the vectors are divided into ten clusters

(related to ten faces in the database); each cluster mostly includes (with a small

error) the vectors corresponding to faces of the same person. Details of the cluster

analysis will be described in a separate publication.
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a  b  s  t  r  a  c  t

We  present  an  oscillatory  network  of  conductance  based  spiking  neurons  of  Hodgkin–Huxley  type  as
a model  of  memory  storage  and  retrieval  of  sequences  of events  (or  objects).  The  model  is  inspired  by
psychological  and  neurobiological  evidence  on sequential  memories.  The  building  block  of the  model
is an  oscillatory  module  which  contains  excitatory  and  inhibitory  neurons  with  all-to-all  connections.
The  connection  architecture  comprises  two  layers.  A  lower  layer  represents  consecutive  events  during
their  storage  and  recall.  This  layer  is composed  of  oscillatory  modules.  Plastic  excitatory  connections
between  the  modules  are  implemented  using  an STDP  type  learning  rule  for sequential  storage.  Excitatory
neurons  in  the  upper  layer  project  star-like  modifiable  connections  toward  the  excitatory  lower  layer
neurons.  These  neurons  in  the  upper  layer  are  used  to  tag  sequences  of  events  represented  in  the  lower
layer. Computer  simulations  demonstrate  good  performance  of the  model  including  difficult  cases  when
different  sequences  contain  overlapping  events.  We  show  that  the  model  with  STDP  type  or  anti-STDP
type  learning  rules  can  be  applied  for  the  simulation  of  forward  and  backward  replay  of  neural  spikes
respectively.

© 2013 Elsevier Ireland Ltd. All rights reserved.

In Memoriam of Prof Luigi M.  Ricciardi
It was in 1973 when I (RB) first learnt about Prof Luigi Ricciardi.

At that time I had graduated from the Moscow State University
and started my  scientific career at the Biological Centre of the
Soviet Union Academy of Science in Pushchino. My  supervisor Dr.
Vitaly Kryukov had just developed a new theory for the probabilis-
tic modeling of spiking neurons where the first passage problem
was approached using a version of the Wald’s identity adapted to
the non-constant boundary. Of course, I was told that there was a
very strong group of mathematicians in Italy, led by Professor Ric-
ciardi, working on the first passage problem with application to
the modeling of neuronal activity. Shortly after the publication of
the paper (Kryukov, 1976), an invitation from Italy arrived. Luigi
wrote to Dr. Kryukov inviting him to Naples and offering to cover
his travel and living expenses related to the visit. At that time it
was very rare for a scientist in the USSR to be allowed to travel
abroad, especially to a non-socialist country. Of course, permission
from the Communist party was required. Dr. Kryukov’s application
for the travel was immediately rejected. The main reason was that
Dr. Kryukov was a religious person and sang in a church choir. Luigi
was very surprised when he heard that Vitaly Kryukov was not able

∗ Corresponding author. Tel.: +44 1752584949.
E-mail address: r.borisyuk@plymouth.ac.uk (R. Borisyuk).

to come to Italy. No explanation was given at the time. It was only
at BIOCOMP 2002 that I told this amazing story to Luigi.

I am grateful to Laura Sacerdote for sending me  a copy of
the remarkable paper by Ricciardi and Umezawa (1967). The
paper is short but it contains many important thoughts and ideas.
Although it was written 45 years ago many questions, statements,
and approaches which were formulated in the paper are timely,
important, and of great interest. In fact, this paper formulates a
programme of brain studies for several generations of researchers.
For example, in Ricciardi and Umezawa (1967) it is suggested that
long-term memory is related to “the ground state” of a large system
of many interactive units (probably a quantum system) and “short-
term memory can be related to the existence of meta-stable excited
states”. This idea was developed in detail by our Laboratory of Neu-
ral Networks in Pushchino under the leadership of Dr. Kryukov (see
Kryukov et al., 1990). Another paper (Borisyuk and Hoppensteadt,
2004) that tried to answer the question: “How can a brain main-
tain stable memories and behaviors when its underlying electrical
and chemical structures are constantly changing?” was discussed
by the authors with Luigi Ricciardi at BIOCOMP 2002 at the stage
of manuscript preparation. Many very fruitful advises were given
by Luigi. The current paper continues this line of research on the
neuronal mechanism of memory and demonstrates how oscilla-
tory states and synchronous dynamics can be used for memorizing
sequences of events.

0303-2647/$ – see front matter ©  2013 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.biosystems.2013.03.018
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1. Introduction

Our memory is not a disordered store of incoherent items. In
most cases our brain is inclined to organize our experience in
sequences of events, actions, images, symbols, thoughts, etc. Recall-
ing or perceiving a single member of a sequence is enough to allow
us to quickly restore all the following items, which usually appear in
our memory one by one in the same order as they have been learnt.
The tasks of sequence storage and recall are not always simple.
Errors may  appear when recalling a complex sequence, especially if
it is correlated with another sequences. The recall can be improved
if the sequence is labeled by some tag associated with the context
in which the sequence has appeared. We  hypothesize that these
tags are kept in the higher areas of the cortex and that their inter-
action with representations of memorized items is implemented
through synchronization of activity between the frontal and asso-
ciative cortices which results in the modification of connections
between these regions. This mechanism has been used to design a
biologically plausible neural network to improve the recall of com-
plex sequences and to reproduce some known effects of sequence
storage.

A complex task usually consists of several consecutive steps
that should be fulfilled in a particular time order. How do we
learn sequences of memory items? What is the neural mecha-
nism of storage of sequences of events (objects)? In this paper we
address these questions and describe a neural network model for
the storage of several sequences. The model is constructed from
conductance based spiking elements of the Hodgkin–Huxley type
which are arranged into two interactive layers. A lower layer repre-
sents consecutive events of a sequence in the form of the activity of
the modules which are composed of excitatory and inhibitory neu-
rons with all-to-all coupling. Bottom-up convergent connections
are directed from the bottom layer to the upper layer which repre-
sents the “tags” that are attached to different sequences. Feedback
connections to the bottom layer allow the system to distinguish
multiple sequences during recall. The rule for synaptic modification
is of an STDP (or anti-SDP) type.

The model is biologically inspired and takes into account some
well-known facts from neurobiology. However, we  do not present
this work as a significant contribution to modeling memory and
recall processes in the hippocampus or any other brain structure.
This would demand consideration of many details of functioning
that are specific for these structures. On the contrary, we  focus on
some general principles which are hypothetically universal for dif-
ferent brain structures and which may  be helpful in avoiding some
errors in the recall. The reason to pursue this investigation is the
hope that it will give pay-offs in neuroscience as other theoretical
models do (Borisyuk et al., 1999, 2001; Borisyuk and Hoppensteadt,
2004).

Neuronal mechanisms of memory have recently come under
intensive investigation. Recent results clarify some important
details of memory processes. In particular, the hippocampal neu-
ronal activity (including place cell firing) has been studied in this
context (see, e.g., Foster and Wilson, 2006; Diba and Buzsaki, 2007).
It has been reported that when a rat reaches the end of a track, the
hippocampal place cells, which fired sequentially during the run,
can generate spikes in the reverse order in a short time window. Lee
and Wilson (2002) found that hippocampal CA1 place cells repeat-
edly fire in the correct sequential order during slow wave sleep
immediately following the experience. Davidson et al. (2009) state
that firing sequences corresponding to long runs can be robustly
replayed with high speed and that this firing is coherent with high
frequency ripple events. Thus, the feed-forward or backward replay
of behavioral sequences in the hippocampus coherent with sharp
wave ripples is considered as a possible mechanism of learning
and encoding recent experiences. The paper (Euston et al., 2007)

reports that feed-forward and backward replay of recent memory
sequences can be seen in the prefrontal cortex during sleep. This
spatio-temporal activity is coherent and compressed in time by a
factor of seven.

Significant progress has been made in the mathematical and
computational modeling of memory formation and recall. For a
review on memory encoding based on the dynamics of neural
activity, membrane potential oscillations, resonance, and bistable
persistent spiking see (Hasselmo et al., 2010).

Several challenging problems arise when creating a model for
sequence storage:

1. How to handle sequences with repeating or overlapping ele-
ments which may  lead to ambiguity during recall?

2. How to adjust a model of sequential memory to experimental
evidence, including the data supporting a role for rhythmic activ-
ity and synchronization in memory and attention tasks (Singer
and Gray, 1995; Malsburg, 2001; Fries et al., 2002; Gregoriou
et al., 2009; Melloni et al., 2007)?

None of the known models satisfies both of these demands.
Some models can distinguish complex sequences (e.g. Wang and
Yuwono, 1996; Scarpetta et al., 2002, 2010) but they are formu-
lated in terms of non-conduction based neuronal networks that
have no clear biological interpretation. Other models are in bet-
ter agreement with neurobiology (e.g. Yamaguchi, 2003; Hopfield
and Brody, 2009) but they can only deal with simple sequences.
Detailed biophysical models of the CA1 microcircuit are developed
in (Cutsuridis et al., 2010; Cutsuridis and Hasselmo, 2012). These
models include pyramidal neurons and several types of inhibitory
interneurons and can simulate the timing of firing of hippocampal
neurons in relation to the theta rhythm as well as the organization
of activity in a correct order of sequential memories. The problem
of possible ambiguity of the recall for complex sequences is left
beyond the scope of the models. Koene and Hasselmo (2008) use
different phases in the theta cycle to label different locations of a
rat. This approach requires a reliably stable period of theta oscilla-
tions while the frequency of the biological theta rhythm can vary
widely.

Generally speaking, there are two  major methods to specify the
order of the events in a sequence which have been used in previous
models:

1. Chain method: the events are linked in the order prescribed by
the sequence. This approach was put forward by Ebbinghaus
(1885/1964) in the pioneer psychological experiments on
sequence storage. Its early mathematical implementation in the
context of a Central Pattern Generator can be found in Kleinfeld
(1986).

2. Labeling method: the order of the events is prescribed by some
ordered “tags” which are attached to the events (Grossberg,
1978; Borisyuk and Hoppensteadt, 2004).

Our model combines both chain and labeling mechanisms.
The chain method is realized in the bottom layer where ordered
sequences of events are represented for storage and recall. The
“tags” are prescribed to neurons in the upper layer to associate each
neuron in this layer with a particular sequence coded in the bottom
layer. Such tags are used to assist in finding a proper order of events
in the case when a confusing situation appears with overlapping
elements being present in two different sequences.

The following advantages of our model of associative learning
and recall of multiple sequences should be emphasized:

1. The system can reliably memorize and recall several sequences
of ordered events. To start the recall we have to decide which



Author's personal copy

216 R. Borisyuk et al. / BioSystems 112 (2013) 214– 223

sequence should be replayed by presenting to the model the first
(or any other) member of the selected sequence as well as the
“tag” of the selected sequence.

2. The functioning of the model is based on oscillatory activity in
the theta band. This allows us to separate ordered events by
presenting each of the events during one theta period.

3. The whole selected sequence (or subsequence starting from the
presented event) will be replayed in the time order of the events
comprising the sequence. The recall process is reliable and short:
the sequence is replayed during one cycle of the theta rhythm.

4. The system can handle multiple sequences including those con-
taining overlapping members. The “tag” signal from the top layer
enables the model to select a proper continuation in an ambigu-
ous situation when the same event is present in two different
sequences.

5. The system with the anti-STDP learning rule allows the reverse
replay of neural activity which reflects some experimental data
observed in hippocampal place cells

6. The model is composed of biologically relevant conductance-
based spiking elements operating in the theta frequency band
and being robust against frequency variation.

The model works in continuous time but for encoding and recall
the time is divided into discrete intervals of 200 ms  duration. This
is used to reflect the experimental evidence on the discrete nature
of signal processing in the brain with time windows conditioned by
the theta rhythm (Stella and Treves, 2011). Another exciting exam-
ple of the theta state correlated with episodic memory is reported
in (Guderian et al., 2009). MEG  recordings from the temporal lobe
show that the amplitude of theta oscillations is higher in the case
of a memory event than in the case of the preparatory state.

The leaning rule used in the model for updating connection
strengths takes into account the activity of pre- and post-synaptic
neurons in two sequential time intervals. This rule is in line with
recent developments on the STDP type learning algorithm (Dan and
Poo, 2004, 2006; Clopath et al., 2010; Cutsuridis, 2013).

The paper has the following structure: Section 2 contains a
description of the model; Section 3 explains how the model rep-
resents and stores sequences of events and shows the results of
computer simulations. These results are discussed in Section 4.

2. Model formulation

2.1. Description of the currents

Our model is based on the oscillatory activity of spiking elements
and synchronous dynamics. A recent review on brain oscillatory
activity and memory (Burgess and O’Keefe, 2011) states that theta
and gamma  oscillations play a key role in storing both single events
and sequences of events, novelty detection, synaptic plasticity, etc.
The oscillatory mechanisms of memory which were first identified
in rodents also play a significant role in other species. The storage
of sequences of events represents an interesting example of the
capabilities and advantages of the oscillatory approach to the study
of memory. We  show that networks with star-like connectivity (i.e.
having a central element) can be a useful instrument for this study.

The model design is grounded on our previous experience with
oscillatory network models. It has shown to us that partial syn-
chronization of neural activity in networks with a central element
can be used as a key neuronal mechanism for the modeling of vari-
ous cognitive functions including novelty detection (Borisyuk et al.,
2001), selective visual attention (Chik et al., 2009), moving object
tracking (Borisyuk et al., 2008, 2009b), and perception of ambigu-
ous figures (Borisyuk et al., 2009a). This stimulated us to use the

Fig. 1. Model architecture. The top layer contains the groups of excitatory neurons.
The  bottom layer contains the groups of coupled excitatory and inhibitory neurons.
Each neural group contains the populations of excitatory neurons (E) and inhibitory
neurons (I). Excitatory (inhibitory) neurons deliver excitatory (inhibitory) connec-
tions to all other (both excitatory and inhibitory) neurons within the group (shown
as  arrows or lines with a circle end). Modifiable connections between excitatory
neurons of different groups or layers are shown as dotted lines. External input to
each layer is shown by a solid filled arrow.

architecture with a central element as a building block of the model
that represents a single sequence of events.

The model consists of two layers as shown in Fig. 1. The upper
layer implements the “tag” mechanism. It contains many non-
overlapping groups of neurons representing high level processing
associated with the storage of ordered sequences of events (for
example, a sequence of visual objects or a sequence of positions
of an animal in a track, etc.). Each group is responsible for encod-
ing a single sequence; therefore potentially the number of groups
should be large enough to memorize many sequences. The neurons
within a group are all-to-all coupled. In simulations the number of
neurons in each group is 60. The neural groups of the upper layer
project modifiable connections to some neural groups in the lower
(bottom) layer.

The bottom layer implements the chain mechanism. It contains
many oscillatory modules (i.e. small non-overlapping groups of
interactive excitatory and inhibitory neurons). Each module is used
for the oscillatory encoding of a single event. Different modules rep-
resent different events. In simulations each module in the lower
layer contains 100 elements: 80 excitatory and 20 inhibitory neu-
rons which are denoted in Fig. 1 as E and I, respectively. The neurons
within a module are all-to-all coupled, generating rhythmic activity
in the gamma  range. Different modules in the layer interact through
modifiable all-to-all connections between their excitatory neurons.

The dynamics of an individual neuron are described by the
Hodgkin–Huxley equations (Hodgkin and Huxley, 1952),

dVi

dt
= −Iion,i + Ilower

syn,i + Iupper
syn,i + Iext,i + Irest, (1)

dXi

dt
=AX (Vi)(1 − Xi) − BX (Vi)Xi, Xi ∈ {mi, hi, ni}, i = 1, 2, . . . , N,

(2)

where N is the number of neurons in the layer; Vi(t) is the
membrane potential of a neuron; X is a notation for any of the
variables mi(t), hi(t), ni(t) (thus Eq. (2) is a concise notation for
three equations), mi(t) is the activation variable of the sodium
conductance channel; hi(t) is the inactivation variable of the
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sodium conductance channel; ni(t) is the activation variable of the
potassium conductance channel, Ilower

syn,i (t) is the synaptic current
received by a neuron from other neurons in the lower layer;
Iupper
syn,i (t) is the synaptic current received by a lower layer excitatory

neuron from an upper layer neurons; Iext,i(t) is the external current
induced by the external input (equal to 40 mA); Irest is a universal
constant current that controls the activities of neurons (equal
to −25 mA). Details about the total ionic current Iion,i(t) and the
gating functions AX and BX can be found in Eqs. (3)–(9) of Appendix.

A positive external signal is received by a neuron in the bottom
layer at each moment when a member of the stimulation sequence
is presented. Otherwise the external signal is equal to zero. The
external current is strong enough to transfer a neuron into the firing
state. Without external current a neuron can fire if it receives both
the synaptic current from the upper layer Iupper

syn,i (t) and synaptic
currents from other modules.

Synaptic conductance is described using a standard alpha-
function (see, e.g., Gerstner and Kistler, 2002). The total synaptic
current of the ith neuron in the lower layer received from the neu-
rons of the lower layer is described by the following equation:

Ilower
syn,i =

X

j  ∈ Ninh
i

Iinh
i,j +

X

j ∈ Nexc
i

Iexc
i,j +

X

j ∈ Nexc
i,external

Iexc,external
i,j , i = 1, 2 . . . , N.

Here, the two first terms describe the sum of inhibitory and
excitatory influences, Ninh

i (Nexc
i ) is a set of indexes of incom-

ing inhibitory (excitatory) connections from neurons of the same
module; the third term describes the sum of external excitatory
influences from neurons of other modules at the lower layer,
Nexc

i,external is a set of indexes of incoming excitatory connections from
the neurons of other modules.

Iinh
i,j = wA

inh(Vi − V inh
syn)

MjX

k=1

˛j(t − Tk),

Iexc
i,j = wA

exc(Vi − Vexc
syn )

MjX

k=1

˛j(t − Tk),

Iexc,external
i,j = wB

ij,exc(t)(Vi − Vexc
syn )

MjX

k=1

˛j(t − Tk),

Here, wA
inh = wA

exc = 0.1 are constant connection strengths for
inhibitory and excitatory connections inside the module; the alpha
function is defined in the following way: ˛j(t) = at exp(−bt), for
t ≥ 0 and the alpha function equals to zero for t < 0; the parame-
ters of the alpha function are: a = 0.6 m per second and b = 0.03 m
per second; Mj is the total number of spikes from the jth neuron to
the ith neuron; Tk is the time of the kth spike generated by the jth
neuron; V inh

syn is the synaptic reversal potential of inhibitory cou-
pling (V inh

syn = −80 mV), Vexc
syn is the synaptic reversal potential of

excitatory coupling (Vexc
syn = 0 mV); wB

ij,exc(t) is a modifiable excit-
atory connection strength from the jth neuron to the ith neuron of
different modules.

The total synaptic current of the ith neuron in the lower layer
received from neurons of the upper layer is described by the fol-
lowing equation:

Iupper
syn,i =

X

j ∈ Nexc
i,upper

wC
ij,exc(t)(Vi − Vexc

syn )
MjX

k=1

˛j(t − Tk).

Here wC
ij,exc(t) is a modifiable excitatory connection strength

from the jth neuron of the upper layer to the ith excitatory

neuron of the lower layer; Nexc
i,upper is a set of indexes of incom-

ing excitatory connections from neurons of the upper layer to
the ith excitatory neuron of the lower layer; the alpha function:
˛j(t) = at exp(−bt), for t ≥ 0 and the alpha function equals to zero
for t < 0; the parameters of the alpha function are: a = 0.6 m per
second and b = 0.03 m per second; Mj is the total number of spikes
from the jth neuron at the upper layer to the ith neuron; Tk is the
time of the kth spike generated by the jth neuron at the upper
layer; Vexc

syn is the synaptic reversal potential of excitatory coupling
(Vexc

syn = 0 mV).

2.2. Memory formation

At the initial state all modifiable connections have zero connec-
tion strengths and all oscillatory modules of the lower layer work
independently. Internal connection strengths of the modules are
selected in such a way (see their values above) that each module
demonstrates fast oscillations in the gamma  range.

The storage of a sequence is paced by the theta rhythm. The
storage of one event requires a time window of duration 200 ms.
Thus, the storage of a sequence of 5 events requires five sequential
time windows with a total duration of 1 s.

Each memory (which we  call an event or object) is coded by
a prescribed set of oscillatory modules which receive an external
current (Iext,i = 40) during some particular respective time win-
dow. This current excites neurons of the coding modules and these
neurons demonstrate fast rhythmic activity during this time win-
dow. Thus, during the first time window all modules coding the
first event are active, during the second time window all modules
coding the second event are active, etc. In fact, in this paper we
consider a simple coding scheme where one event is coded by one
module.

The learning rule is inspired by Spike-Timing-Dependent Plas-
ticity rule (STDP rule; see, e.g., Markram et al., 1997). This rule is
applied to connections between all pairs of excitatory elements
where the first element is from module P and another element is
from module Q. Our approach is inspired by a temporally asymmet-
ric modification of the STDP learning rule. We  take into account the
activity of presynaptic neurons of module P and post-synaptic neu-
rons of module Q in two subsequent time windows. The connection
strength wB

ij,exc(TWi) from jth neuron of module P to ith of module Q
is modified at the time corresponding to the current time window
TWi if and only if an excitatory neuron j generates spikes within the
previous time window TWi−1 and an excitatory neuron i generates
spikes within the current time window TWi. The modified value of
wB

ik(t) increases in a stepwise manner by the value:

!wB
ij,exc(TWi) =

⇢
3, memorization,

0, otherwise.

There is no forgetting, so the modified value is kept indefinitely
long.

In parallel with the modification of connection strengths
between neurons of active modules, the connection strengths from
excitatory neurons of the group which “tags” the selected sequence
to the neurons of active modules is also modified according to the
same learning rule. A group of neurons in the upper layer, which
is selected to tag the sequence which is currently being stored,
receives an external current (Iext,i = 40) during the total time of
sequence storage. Due to this external current, the neurons of the
“tag” group demonstrate constant oscillatory activity during all
time windows corresponding to the stored sequence. Therefore,
connection wC

ij,exc(WTi) from an excitatory neuron j in the tag group
of the upper layer to an excitatory neuron i of the active module in



Author's personal copy

218 R. Borisyuk et al. / BioSystems 112 (2013) 214– 223

the time window TWi is modified. The modified value of wC
ij,exc(t)

increases in a stepwise manner by the value:

!wC
ij,exc(TWi) =

⇢
3, memorization,

0, otherwise.

After a sequence is stored, a neural group in the upper layer,
which tags the sequence, will provide additional excitation to all
the participating neural modules in the lower layer. In this way the
sequence is “tagged” or “highlighted” by selected neurons of the
upper layer.

Besides the STDP type leaning rule with the modification of the
connection from a previously active neuron to the currently active
one, we use an anti-STDP type leaning rule with the modification
of the connection from a currently active neuron to a previously
active one. The STDP type learning rule is designed to demonstrate
the forward replay of a sequence while the anti-STDP type learning
rule provides a possibility of backward recall. In the case of anti-
STDP type leaning rule, the sequence is learnt in the increased time
order (first event, second event, etc.) but during the recall process
this sequence is replayed in the reverse order (from the last to the
first event).

An anti-STDP learning rule has been suggested in some papers
(e.g. Han et al., 2000; Rumsey and Abbott, 2004). In simulations
below we demonstrate how the system works for each of these
two types of leaning rule. All neurons in one neural module have
the same type of connection direction and they only connect to
modules of the same type (i.e. an STDP neural module only con-
nects to other STDP modules and an anti-STDP neural module only
connects to other anti-STDP modules).

2.3. The recall

Let us assume that several sequences are stored in the memory.
For a recall we should decide which sequence is to be recalled. We
do not model the decision making process. In the brain this decision
making process and selection of a sequence for a recall is based on
a current context and associations. We  assume that the informa-
tion at the input of the model contains: (1) A pointer to the “tag”
group in the upper layer associated with the selected sequence.
(2) One event from the selected sequence that activates the proper
module in the bottom layer to start the recall process (it might be
the first event or any other event from the selected sequence). The
recall starts from this event and runs through all subsequent events
(ignoring all previous events).

Thus, at the beginning of the recall procedure the neural mod-
ule representing a starting event of the selected sequence is briefly
stimulated by the external current (Iext,i = 40) which is applied
to all the elements of the module for 50 ms.  In parallel another
external current of the same value is applied to all the elements of
the “tag” group in the upper layer, corresponding to the selected
sequence. This current is applied for the period of 200 ms  (the time
of the recall process). In fact, to start the recall it is enough to acti-
vate only a subset of neurons in the modules corresponding to the
starting event.

During the recall, the module corresponding to the starting
event becomes active and its activity (through the connections
which have been modified by the memorization process) propa-
gates to the next module corresponding to the second event in the
sequence. Excitation from a previous module and activation from
the upper layer simultaneously arrive and stimulate the second
module. Note that the second module becomes active with a small
time delay after the excitation of the first module. The second
module excites the following one, etc. The total time of the recall
is short and the complete period of the sequence replay is 200 ms.
During the recall, the times of activity of different modules overlap,

but starting moments of activation appear in the proper order of
events in the recalled sequence.

3. Model simulations

To demonstrate the performance of the memory model, we
show the results of three simulations. These examples provide a
basic idea of model functioning. The results of other simulations as
well as detailed description of memory capacity will be given in a
separate publication.

3.1. Storage and recall of one sequence using STDP type learning
rule

Consider a set of ten modules (M1–M10 containing 1000 neu-
rons) in the lower layer and one group of neurons in the upper layer.
A sequence of four events is coded in the following way: Event 1
is coded by module 2 (M2, neurons from 101 to 200). Event 2 is
coded by module 8 (M8, neurons from 701 to 800). Event 3 is coded

Fig. 2. Storage and recall of a sequence composed of 4 events. Each small dot in the
graph represents a spike of an excitatory neuron. (a) Storage of a sequence of four
events. The left part shows the activation of neurons during the encoding period. The
right part (after 1000 ms)  shows the direct recall which is initiated by the activity
pattern corresponding to the first event. (b) A magnified picture of the recall period.
Neural modules fire with a short delay one after another.
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Fig. 3. Each small dot in the graph represents a spike. (a) Storage and recall of eight positions of a rat along the track, represented by eight modules of neurons. The left part
shows  the activation of neurons (the encoding period). The right part shows the reverse recall which is initiated by the activity pattern corresponding to the end of the track
(the  recall period). (b) A magnified picture of the encoding period shows noisy but coherent firing of neurons within a module of the bottom layer. (c) A magnified picture in
the  recall period shows the firing of neural modules one after another (with a short delay between the modules).

by module 4 (M4, neurons from 301 to 400). Event 4 is coded by
module 6 (M6, neurons from 501 to 600).

Fig. 2a demonstrates the storage and recall of a sequence of
events. According to the encoding scheme, the Events 1–4 are rep-
resented by four neural modules in the lower layer. We  show the
activity of excitatory neurons only, i.e. the activity of neurons 1–80
in each module. The upper layer contains one group of 60 neurons.
Their activities are simply periodic (not shown).

During the encoding period of 800 ms  (left side of Fig. 2a),
the external currents are injected into the corresponding modules
in the order of events in the sequence (M2, M8,  M3,  M6). Each
module receives injection for a period of 200 ms:  M2: 0–200 ms;
M8:  200–400 ms;  M3:  400–600 ms;  M6:  600–800 ms.  The spik-
ing activity of neurons of these modules is shown in Fig. 2a.
There is no stimulation in the time interval 800–1000 ms,  no
oscillatory spiking in this time interval and therefore no mod-
ification of synaptic strengths according to the learning rule. It
means that the process of sequence encoding has stopped. We
assume that the learning rule is of STDP type and forward recall
is expected.

The recall procedure is shown in the time interval 1–1.2 s. A brief
external current (Iext,i = 40 mA) is injected to the neurons of M2  for
the period 0–20 ms.  In parallel, the same current is injected to all
the neurons of the upper layer. The recall procedure is shown in the
right hand side of Fig. 2a (a zoom of this part of the figure is shown

in Fig. 2b). During the recall, starting times of module activation are
arranged in the correct order corresponding to the encoding proce-
dure. Subsequent neural modules are activated one after another by
the synaptic currents from the previous module and the additional
current from the upper layer. There is an interesting “avalanche
effect”: the duration of reactivation of subsequent neural modules
increases along the sequence.

3.2. Storage and recall of one sequence using anti-STDP type
learning rule

This simulation is inspired by exciting recordings from the rat
hippocampus that demonstrate the phenomenon of the reverse
replay (Colgin and Moser, 2006). During a run along a linear track
the hippocampal place cells fire spikes in the theta frequency band
(about 5 Hz) sequentially in the order of positions in the track (start-
ing from the beginning of the track). When the rat is rewarded at
the end of the track, the hippocampus enters a sharp-wave mode
with the firing sequence replaying in the reverse order, from the
end to the beginning of the track. This reverse replay is fast and
the whole sequence of spikes appears in the time interval of about
200 ms  (one period of the theta rhythm).

For this simulation we  use 8 modules (M1-M8, 800 neurons,
the activity of 80 excitatory neurons is shown for each module).
The events from one to eight are coded respectively by the
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Fig. 4. Storage of two sequences (a and b) with four objects in each sequence. Note that the third object of a and the fourth object of b are the same. Also the first object of a
and  the last object of b are the same. In the simulation corresponding neural modules are activated one after another, as shown in the rastergram (c). The first sequence was
stimulated during the time 0–800 ms  (200 ms  for each object). The second sequence was  stimulated from 2000 ms  to 2800 ms.

following modules: M8 is stimulated in the interval 600–800 ms,
M7:  800–1000 ms,. . .,  M2:  1.8–2 s, M1:  2–2.2 s. The activity of the
excitatory neurons of these modules is shown in the left hand side
of Fig. 3a during the respective time intervals. Fig. 3b shows a zoom
of spiking activity of excitatory neurons of M6.  The frequency of
spiking is around 70 Hz, though individual neurons may  skip one or
two cycles. The firing pattern is noisy (see equations in Appendix)
but coherent. This is in agreement with the experimental finding
on the role of oscillations and synchronization in memory (Duzel
et al., 2010). There are no current injections in the interval 2.2–2.4 s
which means that encoding is stopped at that period of time. The
recall procedure develops in the interval 2.4–2.6 s.

The anti-STDP type learning rule is used in this simulation to
modify connection strengths of periodically spiking neurons in the
lower layer. As in the previous simulation example, the upper layer
contains one group of 60 neurons. The modifiable connections from
the neurons of this group to the lower layer are adjusted according
to the STDP type learning rule.

The replay procedure in the time interval 2.4–2.6 s is shown
in the right hand side of Fig. 3a (a zoom of this part of Fig. 3a
is shown in Fig. 3c). The neurons of the module M1  are briefly
activated and the current injection is applied to the neurons of
the upper layer. After that, subsequent modules are activated one
after another by the synaptic current from other modules and
additional influence from the upper layer. The replay is in the
reverse order. The starting times of module activation appear with
a short time shift of 5 ms  in the reverse order relative to the
ordering of events during storage. The duration of the replay is

short and takes one cycle of the theta rhythm, in accordance with
experimental results (Diba and Buzsaki, 2007; Foster and Wilson,
2006).

3.3. Storage and recall of two sequences using STDP type learning
rule

In this simulation we deal with two sequences of visual objects.
There are six objects which are represented by six modules:
Croissant: M1  (neurons 1–100); Burger: M2  (neurons 101–200);
Pineapple: M3  (neurons 201–300); Coffee cup: M4  (neurons
301–400); Cake: M5  (neurons 401–500); and Banana: M6  (neu-
rons 501–600). These objects are arranged to two  sequences of 4
objects in each sequence (see Figs. 4a and b). Also, there are two
groups of neurons in the upper layer which represent the tags “1”
and “2”, respectively.

Note that the sequences contain overlapping objects. For exam-
ple, the object “Coffee cup” is the third object of the first sequence
and the second object of the second sequence. Obviously, if only
chain connections were used for the memory model then it would
be impossible to recall any of these two  sequences without an
error because after encoding the module M4  (“Coffee cup”) would
be connected to two different modules, M2  (“Burger”) and M3
(“Pineapple”). The presence of the upper layer in the model helps
to resolve this ambiguity. The input from the upper layer which
relates to the sequence “1” will guide the recall process from
the object “Coffee cup” to the object “Pineapple” by adding addi-
tional excitation to the objects of the sequence “1”. Similarly, the
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Fig. 5. Recall in an ambiguous situation when two  sequences (a and b) contain the same elements. The system is able to correctly recall all objects starting from the first
object.  (a) and (c) Snapshots of the recall process. (b) and (d) Raster plot of spikes of excitatory neurons in the lower layer during the recall process.

input from the upper layer which relates to the sequence “2” will
guide the recall process from the object “Coffee cup” to the object
“Burger”.

Fig. 4c shows the storage process. The first sequence is stored
in the time interval 0–800 ms  which includes four time windows
corresponding to the following encoding modules: M6,  M5,  M4,  and

M3.  The second sequence is stored in the time interval 2–2.8 s (also
four time windows that correspond to encoding in the modules M1,
M4,  M2,  and M6). During sequence storage, STDP type connections
are formed between the modules.

For a recall we briefly activate the module representing the first
element of the sequence as well as the tag group of neurons in
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the upper layer. Fig. 5 shows the recall procedure in the case of
initiation of the sequence “1” or sequence “2”.

Figs. 5a and c shows the order in which objects are recalled
for the sequences “1” and “2”, respectively. Figs. 5b and d shows
the corresponding spike raster plot of excitatory neurons of the
lower layer. The results of the simulation confirm that there is no
confusion between the two sequences even though they have over-
lapping elements. This is achieved due to the influence of the upper
layer which delivers additional current to the lower layer. Since
the resting states of neurons are set far from the firing threshold,
the activation of a neural module in the lower layer requires both
the synaptic currents from the neurons of the previous module in
the chain and additional synaptic current from the upper layer. The
neurons belonging to another sequence are labeled by another neu-
ral group of the upper layer. As a result, only one neural module in
the lower layer will be activated at a time, which means that the
sequence is recalled unambiguously.

4. Discussion

The model presented in this paper is based on the assump-
tion that there is a general mechanism of storage and recall of
sequences of items that is universal for various types of items such
as events, spatial positions, or visual objects. The representation of
external information is specific at the primary stages of informa-
tion processing but it becomes abstract at higher stages when the
information is prepared for memorization.

The two-layer architecture of the model is intended for reflect-
ing the interaction between the associative regions (the associative
cortex or the hippocampus) and the prefrontal cortex. The latter is
used to control storage and recall, taking into account the exter-
nal and internal context. This context provides a modulation of
neural activity in particular neural assemblies of the prefrontal cor-
tex which can be helpful for resolving the ambiguity that appears
when different sequences have identical items. Thus according to
the model the traces of memory are formed both inside associa-
tive regions and in connections between the associative regions
and the prefrontal cortex. Connections in associative regions are
modified for “chaining” representative neural groups. The connec-
tions between associative regions and the prefrontal cortex are
modified to label all groups representing a particular sequence by
the context.

The model reproduces experimental results of the forward and
backward replay as it is observed in the hippocampal place cells
of rats. Recent biologically plausible models of sequence stor-
age are based on the mechanism of phase coding in the theta
frequency band (Yamaguchi, 2003; Koene and Hasselmo, 2008).
Unfortunately, the frequency of the theta rhythm in these mod-
els varies widely; therefore it is not clear whether phase coding
can be reliable under this condition. We  provided an alternative
approach which is more robust and gives stable results of storage
and recall. The results of computer simulations follow the experi-
mental evidence that sequence storage demands a relatively long
time (several theta cycles) while the recall can go in a short period
of a single theta cycle.

Computer simulations confirm that the system is able to resolve
some ambiguities when two sequences contain identical items.
Still, the capability of the model to avoid ambiguities is not abso-
lute. It is easy to construct an example when an erroneous recall
becomes possible. Consider two sequences S1 = (. . .A, B,. . .,  X. . .),
S2 = (. . .A, X,. . .).  Suppose that both S1 and S2 are stored in memory.
Then an attempt to recall S1 will fail since the activity in the module
MA will simultaneously induce the activity in both modules MB and
MX. It should be noted that this example represents a difficult case
when even people in real life can make a mistake. Still the model
has the potential to at least decrease the number of such errors.

The main drawback of the model is that it represents each event
(object) by a single module in the lower layer. More efficient con-
struction would be to have different modules of neurons in the
lower layer for presentations of the same object under different
contexts. This would eliminate this kind of errors but will dramat-
ically increase memory consumption. Therefore in this case the
errors may  appear due to exhaustion of memory capacity.

Another source of possible errors is the ambiguities that arise
from repeated appearances in a sequence of the same events. For
example, the model has no information to disambiguate the recall
of the sequence S = (. . .A, B. . .A, C. . .). This is a typical problem in
sequence storage. It is usually solved by taking into account sev-
eral consecutive members of the sequence or equivalently to form
“chunks” from short sequences of items which become the items of
the “higher order”. This also radically increases memory consump-
tion. However, we  expect that complicated strategies of sequence
storage that combine all these mechanisms can be used in reality.

The capacity of sequential memory C is limited by the number of
neural groups M in the upper layer because the model requires one
neural group in the upper layer to represent a ‘tag’ of the sequence.
Thus, C ≤ M.  The capacity also depends on the length n of a single
sequence which should be stored in the memory and the number
of modules N in the bottom layer. If all members in the sequences
are different, the evident estimation for C is C = [N/n], where [x]
is the integer part of x. In the case of sequences with overlapping
members the estimation of C depends on the type of overlapping.
For example, if there is only one common member in all stored
sequences and all other members in the sequences are different
the estimation for C is C = [(N − 1)/(n − 1)]. There are some other
simple examples when the estimation of C can be obtained the-
oretically, but a special study is needed to get a general view. We
think that purely statistical approach to this problem that is usually
applied in the analysis of associative memory is not very useful in
the case of sequence storage. In reality, the sequences that should
be stored are far from being random. Therefore the estimation of
the capacity should be made taking into account the structure of
sequences that appear in real experience of animals and people.
This will be a subject of our further investigation.
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Appendix A.

We  use Hodgkin–Huxley model (1)–(2) for each neuron. The
functions AX and BX X ∈ {m, h, n} in the right part of Eq. (2) are
described by the following expressions:

Am(V) = 2.5 − 0.1(V − Vrest)
exp(2.5  − 0.1(V − Vrest)) − 1

,  (3)

Ah(V) = 0.07 exp
⇣−(V − Vrest)

20

⌘
, (4)

An(V) = 0.1 − 0.01(V − Vrest)
exp(1 − 0.1(V − Vrest)) − 1

, (5)

Bm(V) = 4 exp
⇣−(V − Vrest)

18

⌘
, (6)

Bh(V) = 1
exp(3 − 0.1(V − Vrest)) + 1

, (7)
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Abstract 
We evaluate the performance of a new method of face recognition on the 
well-known benchmark Labeled Faces in the Wild (LFW) dataset [1].  The 
method, developed by the Core Technology Research Team at Aurora, 
achieves a mean classification accuracy of 93.24% on the unrestricted view 
2 test set, outperforming all other results on the LFW website. 

 

Brief Method Description 

The face recognition technology is comprised of Aurora’s proprietary algorithms, machine learning 
and computer vision techniques.  We report results using the unrestricted training protocol, applied to 
the view 2 ten-fold cross validation test, using images provided by the LFW website, including the 
aligned and funnelled [6] sets and external data used solely for alignment purposes. 

Company Background 

Aurora has 15 years’ experience in the field of biometric face recognition. For the last few years our 
team has been working on the challenging problems of uncontrolled visible-spectrum colour images, 
as detailed in this report. We have previously created infrared face recognition systems, utilising our 
bespoke hardware, to overcome typical lighting problems. Our systems are widely deployed and we 
have more installed systems in the UK than any other competitor. 

 
 



Recognition Pipeline 

The complete face recognition pipeline of a full system consists of four primary steps: face detection; 
feature point localisation; feature extraction and classification.  The verification stage (feature 
extraction and classification) constitutes proprietary descriptor extraction procedures and comparison 
metrics to produce a similarity score, which in turn is applied to a threshold for the final classification 
decision. 

 

Figure 1. Aurora’s recognition pipeline. 

Although Aurora has developed a number of highly accurate algorithms for face detection and feature 
localisation (not described here), the purpose of this investigation is to evaluate the verification stage 
(feature extraction and classification) of the pipeline as an individual component.  Therefore, we 
assume face detection and feature localisation have been completed successfully, relying on the pre-
aligned face images. 

The purpose of this investigation is to determine the maximum achievable performance, given 
accurately located feature points.  Other experiments by ourselves investigate the impact of 
automatically detected feature points. 

Evaluation Methodology 

The evaluation is carried out according to the 10-fold cross validation test under the unrestricted 
configuration, strictly following the training and test procedure that was defined in the technical report 
of LFW database [1]. 

Ten ‘folds’ of the view 2 data set are processed.  For each fold, 600 image pairs are compared to 
produce a similarity score, to which a threshold is applied to make the final classification decision.  
Images from outside of the test set pairs are used to train the face recognition model, comparison 



metric and classification threshold.  Although we do not restrict training to only those images pairs 
specified, we do ensure that no training, optimisation or fine tuning is carried out on any of the images 
present in the 600 image pairs of the test set.  Neither are any subjects in the 600 image pairs present 
in the data used for training, optimisation or fine tuning; hence each fold of the test is conducted 
blind, as required by the protocol.  The training and evaluation process is repeated for each of the ten 
folds, from which the mean classification accuracy is computed. 

Results 

Using the LFW unrestricted protocol, the Aurora face recognition engine achieves a mean 
classification accuracy of 0.9324 ± 0.0044, outperforming all other results published on the LFW 
website. 

Organisation Algorithm û ± SE 
 

Aurora Aurora-c-2014-1 0.9324 ± 0.0044 

UST China, MS Research Asia High-dim LBP [2] 0.9318 ± 0.0107 

Oxford University Fisher vector faces [3] 0.9303 ± 0.0105 

Vision Labs VisionLabs ver.1.0,aligned 0.9290 ± 0.0031 

NEC CMD+SLBP, aligned [5] 0.9258 ± 0.0136 

Face.com Face.com r2011b [4] 0.9130 ± 0.0030 
 

Table 1. Mean classification accuracy (û) and standard error (SE) of the five top performing submissions 
reported on the LFW website, compared with the Aurora algorithm. 

 

 

Figure 2. ROC curve of the “Aurora-c-2014-1” algorithm for the full ten-fold cross validation. 

  



Results and Conclusion 

The results produced by Aurora are state of the art and able to match faces in surprisingly difficult 
conditions.  Example results from the LFW dataset are shown below, all of which were correctly 
classified by the Aurora system.  The matches include extreme appearance changes such as different 
hair styles, hats and glasses, make-up and ageing, as well as more common difficulties such as pose, 
expression, poor lighting and partial occlusions.  

   

   

Figure 3. The algorithm is able to cope with changes in head angle, even matching from a partial left 
profile to partial right profile. 

   

   

Figure 4.  The algorithm has been developed to account for natural variations in expression, as evident in 
the above examples. 



   

   

Figure 5.  The above examples demonstrate how the system is able to cope with changes in appearance, 
such as hair styles (top left), beards (top right), glasses (bottom left) and aging (bottom right). 

 

   

Figure 6.  Examples of correct classification, given some partial occlusion of the facial region. 

  

  



 

   

   

Figure 7.  Examples of extremely difficult cases, correctly classified by the Aurora face recognition 
algorithm under the LFW protocol, although presenting significant challenges for face and feature 

localisation algorithms in a complete system. 
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