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Abstract

This thesis presents a study of the centre bifurcation and chaotic behaviour of

three dimensional Lotka-Volterra systems. In two dimensional systems, Christo-

pher (2005) considered a simple computational approach to estimate the cyclicity

bifurcating from the centre. We generalized the technique to estimate the cyclic-

ity of the centre in three dimensional systems. A lower bounds is given for the

cyclicity of a hopf point in the three dimensional Lotka-Volterra systems via cen-

tre bifurcations. Sufficient conditions for the existence of a centre are obtained

via the Darboux method using inverse Jacobi multiplier functions. For a given

centre, the cyclicity is bounded from below by considering the linear parts of

the corresponding Liapunov quantities of the perturbed system. Although the

number obtained is not new, the technique is fast and can easily be adapted to

other systems. The same technique is applied to estimate the cyclicity of a three

dimensional system with a plane of singularities. As a result, eight limit cycles

are shown to bifurcate from the centre by considering the quadratic parts of the

corresponding Liapunov quantities of the perturbed system.

This thesis also examines the chaotic behaviour of three dimensional Lotka-

Volterra systems. For studying the chaotic behaviour, a geometric method is used.

We construct an example of a three dimensional Lotka-Volterra system with a

saddle-focus critical point of Shilnikov type as well as a loop. A construction of the

heteroclinic cycle that joins the critical point with two other critical points of type
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planar saddle and axial saddle is undertaken. Furthermore, the local behaviour

of trajectories in a small neighbourhood of the critical points is investigated. The

dynamics of the Poincare map around the heteroclinic cycle can exhibit chaos by

demonstrating the existence of a horseshoe map. The proof uses a Shilnikov-type

structure adapted to the geometry of these systems. For a good understanding

of the global dynamics of the system, the behaviour at infinity is also examined.

This helps us to draw the global phase portrait of the system.

The last part of this thesis is devoted to a study of the zero-Hopf bifurca-

tion of the three dimensional Lotka-Volterra systems. Explicit conditions for the

existence of two first integrals for the system and a line of singularity with zero

eigenvalue are given. We characteristic the parameters for which a zero-Hopf equi-

librium point takes place at any points on the line. We prove that there are three

3-parameter families exhibiting such equilibria. First order of averaging theory is

also applied but we show that it gives no information about the possible periodic

orbits bifurcating from the zero-Hopf equilibria.
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Chapter 1

Introduction

We consider the N-dimensional Lotka-Volterra system:

u̇i = ui(ri +
N∑
j=1

ai,juj), i = 1, 2, ..., N, (1.1)

where ri and ai,j (i, j = 1, ..., N) are real parameters. For ri > 0 and ai,j < 0, the

system described by equation (1.1) is called a competitive system, this is a subject

of special investigation, but we consider all parameter values here. This system is

a basic model of predator-prey interactions. Such systems were first considered by

American biophysicist Lotka (1925), and Italian mathematician Volterra (1926).

In this thesis, we are interested in studying the system in the case N = 3, i.e. the

three dimensional case. The three dimensional Lotka-Volterra system has eight

finite critical points, the origin, the three axial critical points, the three planar

critical points and the interior critical point. We are interested in bifurcation from

the interior point. Without loss of generality, we can scale the coordinates such

that this point is at (1, 1, 1), in which case ri = −
∑3

j=1 ai,j. The critical point

(1, 1, 1) can be transformed to the origin by setting xi = ui − 1, i = 1, 2, 3, then
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Chapter 1. Introduction

the system becomes:

ẋi = (xi + 1)(
3∑
j=1

ai,jxj), i = 1, 2, 3. (1.2)

Zeeman (1993) gave a full classification of the competitive three-dimensional

Lotka-Volterra system and identified thirty-three stable equivalence classes. She

showed that there are no periodic solutions for the first twenty-five classes and,

together with van den Driessche, also eliminated classes thirty-two and thirty-

three (Zeeman and van den Driessche, 1998). Then, the only classes that can

have limit cycles are classes twenty-six to thirty one.

Zeeman’s classification has opened the door to some questions about the oc-

currence of limit cycles with its maximum numbers and much research has been

done on this. First of all, Hofbauer and So (1994) constructed an example with

two limit cycles in class twenty-seven and they conjectured that two limit cycles

was the maximum number. In addition, Xiao and Li (2000) have proved that

if the competitive three-dimensional Lotka-Volterra system has no heteroclinic

polycycles in R3
+, then the number of limit cycles of the system is finite. Af-

ter that, in 2002, Lu and Luo (2002) built five examples for each of the classes

twenty-six to twenty-nine and one non-competitive system where two limit cycles

are created via Hopf bifurcation. In (Gyllenberg and Yan, 2009b), it has been

proved that the classes thirty and thirty-one in the classification of Zeeman have

two limit cycles without a heteroclinic cycle. Lu and Luo (2003) formed an exam-

ple of the system of class twenty-seven and showed that it has three limit cycles

with a heteroclinic cycle. By this pioneering work, the conjecture of Hofbauer

and So has been refuted. In 2006, Gyllenberg et al. (2006) proved that the class

twenty-nine of Zeeman’s classification has three limit cycles without a heteroclinic

polycycle, Gyllenberg and Yan (2009a) have shown that the class twenty-seven
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has four limit cycles with a heteroclinc cycle, and also in 2011, Wang et al. (2011b)

found some singular point quantities for the corresponding Hopf bifurcation which

are algebraic equivalent to Lyapunov quantities and which shows that the class

twenty-nine has four limit cycles. Four limit cycles is the maximum number that

has been found till now. However, the maximum number of limit cycles that

can appear in Zeeman’s classes twenty-six to thirty-one still remains as an open

problem.

Work on the subject of limit cycles for the non-competitive Lotka-Volterra

system has attracted less attention. Computing up to now has relied on full

expression of the so-called Lyapunov quantities of the system. In general, it

is very difficult to calculate due to growth of the complexity of the Liapunove

quantities in these system. In (Wang et al., 2011a), the authors have constructed

an example with four limit cycles. In their work, four singular point quantities

which are equivalent to the Liapunov quantities corresponding to Hopf bifurcation

equation are found.

In this thesis, we use a new technique examining centre bifurcations to es-

timate the cyclicity of system (1.2), which is explained in chapter four. Based

on (Christopher, 2005) the technique can be applied to other differential systems

in R3 and we hope that it will be useful for a wider audience. In two dimen-

sional systems, such a technique was used by Christopher (2005) to show that

at least eleven and seventeen limit cycles can bifurcate from a cubic centre and

a quadratic non-degenerate centre, respectively, with at least twenty-two limit

cycles for another quadratic system globally.

In addition to examining cyclicity, chaotic behaviour of the three dimensional

Lotka-Volterra systems has also been investigated. Chaos is one of the more

interesting and complex subjects in the dynamical system. Many authors had

studied the chaotic behaviour of a non-linear system, but the use of the word

3



Chapter 1. Introduction

chaos in dynamical systems was introduced by Li and Yorke in 1975 (Li and

Yorke, 1975). Chaotic behaviour of Lotka-Volterra systems has been studied by

many authors (see Coste et al. (1979); Gilpin (1979); Kuznetsov et al. (1992);

Rinaldi et al. (1993); Sabin and Summers (1993); Schaffer (1985); Ushiki (1982)).

According to the Poincare-Bendixan theory, N ≥ 3 is the only case where chaotic

motion may occur. Numerical evidence of the existence of chaotic motion for

N ≥ 3 is presented in Arneodo et al. (1982); Hofbauer and Sigmund (1998);

Takeuchi (1996) and the references therein. However, attempting an analytical

proof of the existence of chaotic behaviour of the Lotka-Volterra systems has

received less attention.

Lotka-Volterra systems with N species and n resources have been studied in

(Kozlov and Vakulenko, 2013). The existence of chaotic behaviour for the system

with few resources and many species is shown. The method of realization of vector

fields (RVF) proposed by Polácik (2002) is used to prove the existence of chaotic

large time behaviour. These gives an example of a Lotka-Volterra system with

Lorenz dynamics consisting of ten species and three resources.

In the case where N = 3, Gardini et al. in (Gardini et al., 1989) reported

numerical evidence of transition to chaotic dynamics from the Hopf bifurcated

limit cycle. It was expected that the subharmonic cascade is a common route

to chaos in such systems. Furthermore, Christie et al. (2001) studied a slowly

varying three-dimensional perturbed Lotka-Volterra equation and showed that

the corresponding unperturbed system possesses a heteroclinic cycle. Melnikov’s

method was used to obtain sufficient conditions for the perturbed system to have a

transverse heteroclinic cycle. According to the Smale-Birkhoff homoclinic theorem

(Wiggins, 1992; Wiggins and Shaw, 1988), the existence of such a cycle implies

the existence of chaotic behaviour for the system.

In the case where N = 4, the occurrence of chaos in Lotka-Volterra competitive
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system has been studied in (Vano et al., 2006). It was shown that chaos occurs in

a narrow region of parameter space by finding some numerical conditions on the

largest Lyapunov exponent. Symbolic dynamics were used to study the dynamic

of the attractor for a maximally chaotic case. In this thesis, we study chaotic

behaviour using a geometrical method. In the case where N = 3, an example of

a Lotka-Volterra system is constructed, where we can show that the three dimen-

sional Lotka-Volterra system can exhibit chaos by demonstrating the existence of

a horseshoe map.

As well as the above two topics, the zero-Hopf bifurcation for 3DLVS is also

studied. A zero-Hopf equilibrium point is an equilibrium point of a three dimen-

sional autonomous differential system which has a zero eigenvalue and a pair of

purely imaginary eigenvalues. When an infinitesimal periodic orbit bifurcates from

the equilibrium point, such a kind of bifurcation is called zero-Hopf bifurcation.

This type of bifurcation has been analysed by Guckenheimer (1981); Gucken-

heimer and Holmes (2013); Han (1998); Kuznetsov (2004); Scheurle and Marsden

(1984). It has been shown that from the isolated zero-Hopf equilibrium point

complicated invariant sets could be bifurcated under some conditions. In some

cases, chaotic behaviour has been obtained as can be seen in the work of Bal-

doma and Seara, Baldom and Seara , Broer and Vegter, Champneys and Kirk

and Scheurle and Marsden in (Baldomá and Seara, 2006, 2008; Broer and Vegter,

1984; Champneys and Kirk, 2004; Scheurle and Marsden, 1984) respectively.

The averaging method is a classical and a useful computational technique for

analysing nonlinear oscillations. It has been used by many authors to study the

bifurcating periodic orbits from a zero-Hopf equilibrium point. Using the first

order of averaging theory, Castellanos et al. (2013) studied the tritrophic food

chain model and proved that two periodic orbits can bifurcate simultaneously

each one from one of the two zero-Hopf equilibrium of the model. Garćıa et al.
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Chapter 1. Introduction

(2014) showed that one periodic orbit can bifurcate from the zero-Hopf equilibrium

point of a slow-fast system with two slow variables and one fast variable. Llibre

(2014) found two one-parameter families exhibiting a zero-Hopf equilibrium of the

Rössler system. He proved that only one periodic orbit can bifurcate from one

of the family and no periodic orbits from the other. In (Llibre et al., 2015), it

has proved that two periodic orbits can bifurcate from the zero-Hopf equilibrium

point of the Chen-Wang differential system.

The averaging theory of the second order has been applied to a quadratic

polynomial differential system in R3 in (Llibre et al., 2009) to show that at most

three limit cycles can bifurcate from a zero-Hopf equilibrium point. In addition,

an example has been provided where exactly three limit cycles bifurcate from

such an equilibrium point. Llibre and Prez-Chavela in (Llibre and Pérez-Chavela,

2014) applied the averaging theory to a class of three dimensional autonomous

quadratic polynomial differential systems of Lorenz-type to show the existence

of one periodic orbit from an equilibrium point of zero-Hopf type. Llibre and

Xiao (2014) studied the periodic orbits bifurcating from a non-isolated zero-Hopf

equilibrium point of a three differential system. In their work, the averaging

theory of second order was used to find explicit conditions for the existence of one

or two periodic orbits bifurcating from such a zero-Hopf type point. In (Euzébio

et al., 2014), the first and second orders of averaging theory were used to study the

bifurcating periodic orbits of the FitzHugh-Nagumo system. They found two two-

parameter families for which the equilibrium point at the origin is a zero-Hopf and

showed that only one periodic orbit can bifurcate from the origin in each case using

the first order of averaging theory. Moreover, for the other two equilibrium points,

three two-parameter families exhibiting a zero-Hopf equilibrium were found and it

was proven that at most three periodic orbits can bifurcate from each equilibrium

points. In (Llibre and Euzebio, 2014), the authors studied the Chua system and
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showed that it has three 4-parameter families for which the equilibrium points is

a zero-Hopf. After perturbation, only one periodic orbit was obtained from one

family using first order averaging theory and at most three periodic orbits were

obtained from the other two families by using second order averaging theory. In

this thesis, first order averaging theory is applied to 3DLVS to study the possible

limit cycles bifurcating from a line of singularity of type zero-Hopf.

The format of the thesis is as follows. Chapter Two presents the general back-

ground on three dimensional systems that are used in this thesis. Some general

background material on Hopf bifurcations, centre-focus problem and inverse Ja-

cobi multiplier are given. There is also an explanation of the relation between

the Poincaré return map and the Liapunov Quantities. Furthermore, some ba-

sic notions on the Darboux theory of integrability for three dimensional system

are given. The third chapter is devoted to studying the centre of the three di-

mensional Lotka-Volterra system. In addition to the three invariant algebraic

surfaces, a fourth invariant algebraic surface which passes through the interior

critical point was found and this was used to construct an inverse Jacobi multi-

plier for the system. In Chapter Four, a new technique for bifurcating from centres

was investigated and an examination of the cyclicity of the centres of the Lotka-

Volterra system was undertaken by using centre bifurcation. More precisely, by

using a centre bifurcation, it has been demonstrated that four limit cycles can be

bifurcated from the centre. Furthermore, this technique is then applied to exam-

ine the cyclicity of the centre of a system that has a plane of singularities. In

this case, we can show the existence of three dimensional quadratic system with

eight limit cycles. Some aspects of chaotic behaviour, such as the Horseshoe map

with its symbolic dynamics and the Shilnikov phenomena, are given in Chapter

Five. In Chapter Six, the existence of the heteroclinic cycle for the three dimen-

sional Lotka-Volterra systems connecting three critical points A1, A2 and A3 is

7



Chapter 1. Introduction

studied in the first section. The second section is devoted to a study of the local

behaviour in a small neighbourhood of these critical points. In the next section,

an investigation of the behaviour at infinity were conducted. In the final section,

we show the existence of chaos via a horseshoe map for the three dimensional

Lotka-Volterra system. The last chapter of this thesis consists of two sections, the

first one presents some sufficient conditions for the existence of a line of singu-

larities with two first integrals for the three dimensional Lotka-Volterra systems.

The last section is devoted to studying the zero-Hopf conditions of the line of

singularities and also to an investigation of the possible limit cycles bifurcating

from such equilibria.
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Chapter 2

Background

Understanding the results that are obtained in this thesis requires a basic back-

ground of certain fundamental concepts and tools. In this introductory chapter,

we give an overview of three dimensional systems. We first make a short descrip-

tion of the Hopf bifurcation. Then we explain how the inverse Jacobi multiplier

can solve the centre-focus problem. The relation between the Poincaré return

map and the Liapunov quantities is shown in the next section. Furthermore, we

explain the concept of the Darboux theory of integrability and also the relation be-

tween the invariant algebraic surfaces and first integral as a Darboux first integral

was given. In general, this chapter provides definitions, notation and background

information that will be used uniformly throughout the thesis.

2.1 Hopf Points in Three Dimensional Systems

The aim of this section is to present some basic background on Hopf bifurcation.

A sufficient condition for a Hopf bifurcation in the three dimensional system (it

possess two pure imaginary and one non-zero real eigenvalue) is illustrated below.

9



Chapter 2. Background

Consider the family of three dimensional systems

U̇ = AU + F (U ;µ), (2.1)

with parameter µ ∈ RN , variable U ∈ R3, the dot denotes derivation with respect

to time t and F is an analytic function satisfying F (0;µ) = 0 and DU(0;µ) = 0 for

all µ, where DU(0;µ) is the determinant of Jacobian matrix of F (U ;µ) at U = 0.

Let

λ3 − Tλ2 −Kλ−D = 0, (2.2)

be the characteristic polynomial for system (2.1) where

T = Trace of the Jacobian matrix of system (2.1) at the origin and T =
3∑
i=1

ai,i ;

D = Determinant of the Jacobian matrix of system (2.1) at the origin;

K = −(A1 + A2 + A3);

where A1 = a2,2a3,3 − a2,3a3,2 , A2 = a1,1a3,3 − a1,3a3,1 and A3 = a1,1a2,2 − a1,2a2,1

and ai,j, i, j = 1, 2, 3 are elements of the Jacobian matrix of system (1.2) at the

origin. Then the Hopf bifurcation occurs at a point (which is called a Hopf point)

where

TK +D = 0; K < 0 and T 6= 0. (2.3)

Moreover, the square matrix A in equation (2.1) has two complex eigenvalues

α ± iβ, β 6= 0, and a non-zero eigenvalue γ. By a non-singular linear change of

coordinates and the time rescaling τ = βt, such a system can be written in the

10



2.1. Hopf Points in Three Dimensional Systems

form

ẋ1 = α1x1 − x2 + F1(x1, x2, x3;µ),

ẋ2 = α1x2 + x1 + F2(x1, x2, x3;µ), (2.4)

ẋ3 = λx3 + F3(x1, x2, x3;µ),

where α1 = α
β
, λ = γ

β
, Fi(x1, x2, x3;µ) =

∑∞
k=2 F

k
i (x1, x2, x3;µ), i = 1, 2, 3 and

F k
i (x1, x2, x3;µ) are homogeneous polynomials of degree k. At α1 = 0, the critical

point of equation (2.4) at the origin is a Hopf point, that is, it possesses two

purely imaginary eigenvalues, ±i , and a non-zero eigenvalue λ. A good source for

background information on bifurcation from a Hopf point in Rn is (Marsden and

McCracken, 1976). At the Hopf point system (2.4) can be written of the form

ẋ1 = −x2 + F1(x1, x2, x3;µ),

ẋ2 = x1 + F2(x1, x2, x3;µ), (2.5)

ẋ3 = λx3 + F3(x1, x2, x3;µ),

and the associated vector field of family (2.5) is denoted by X , that is

X = (−x2 + F1(x1, x2, x3;µ))
∂

∂x1
+ (x1 + F2(x1, x2, x3;µ))

∂

∂x2

+ (λx3 + F3(x1, x2, x3;µ))
∂

∂x3
. (2.6)

The set of all parameters µ1, µ2, ..., µN of F1, F2 and F3 is denoted by Λ and K ∈

RN is the corresponding parameter space. Since system (2.5) has two eigenvalues

with zero real part at the origin Hopf point, then the Centre Manifold Theorem

implies that system (2.5) has a local 2-dimensional centre manifold, W c(0) (Carr,

1981). This manifold is invariant in a small neighbourhood of the origin (for

11
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sufficiently small ‖x1‖ and ‖x2‖) and there exists a function h of class Ck, k ≥ 1

in a small neighbourhood of the origin such that h(0, 0;µ) = Dh(0, 0;µ) = 0,

where Dh(0, 0;µ) is a Jacobian matrix of h at the origin. The 2-dimensional

centre manifold, W c(0), is defined by

W c(0) = {(x1, x2, h(x1, x2;µ);µ) ∈ R3 : (x1, x2) ∈ a small neighbourhood of the origin}

After substituting x3 = h(x1, x2;µ) into the third component of equation (2.5)

and using the chain rule the following quasilinear partial differential equation is

obtained:

Dh(x1, x2;µ)

−x2 + F1(x1, x2, h(x1, x2;µ);µ)

x1 + F2(x1, x2, h(x1, x2;µ);µ)

 = λ h(x1, x2;µ) + F3(x1, x2, h(x1, x2;µ);µ).

(2.7)

Substituting x3 = h(x1, x2;µ) into the first two components of equation (2.5),

we obtain the following two dimensional differential system with linear part of

centre-focus type which is called the reduced system (bifurcation equation) to the

centre manifold,

ẋ1 = −x2 + F1(x1, x2, h(x1, x2;µ);µ),

ẋ2 = x1 + F2(x1, x2, h(x1, x2;µ);µ). (2.8)

We note that the Hopf point at the origin of system (2.5) need not generally have

a unique centre manifold. This can be illustrated by the following simple example

below

12



2.2. The Centre-Focus Problem and Inverse Jacobi Multiplier

ẋ1 = −x2 − x1(x21 + x22),

ẋ2 = x1 − x2(x21 + x22), (2.9)

ẋ3 = −x3.

Polar coordinates x1 = rcos(θ) and x2 = rsin(θ) bring system (2.9) to the follow-

ing equations

ṙ = −r3,

θ̇ = 1,

ẋ3 = −x3,

and its solution is given by x3 = x3(0) e
−1

2(x21+x
2
2) which is the centre manifold for

system (2.9). Thus, the Hopf point at the origin for system (2.9) does not have

a unique centre manifold. However, the centre manifold of system (2.5) at the

Hopf point is unique if it has a centre at the origin, for more detail see (Sijbrand

(1985); Burchard et al. (1992)).

2.2 The Centre-Focus Problem and Inverse Ja-

cobi Multiplier

The centre-focus problem is one of central problems in the qualitative theory

of planar differential equations and is known as Poincaré centre-focus problem.

Aulbach (1985) has shown that the origin saddle centre/focus of (2.5) on the

centre manifold is either a weak focus or a centre. If there exists a neighbourhood

U of the origin on the local centre manifold such that all orbits are periodic on

13
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it, the origin is called centre, otherwise is a saddle focus that the orbits spiral

around the origin critical point. The problem of distinguishing between centre

and focus is called the centre-focus problem. The centre problem at the Hopf

point can be solved by two main methods. The critical point at the origin is a

centre for (2.5) if and only if (2.5) admits a real analytic local first integral of

the form F (x1, x2, x3) = x21 + x22 + · · · in a neighbourhood of the critical point in

R3. This is the classical Lyapunov Centre Theorem, for more detail see (Bibikov,

1979). An alternative method is given by inverse Jacobi multiplier. The real

valued function V which is defined in an open subset U ⊂ R3 and satisfies the

linear first order partial differential equation

div(X/V ) = 0 or X (V ) = V div(X ), V 6= 0, (2.10)

where X is a vector field associated to (2.5) and div refers the divergence operator,

is called an inverse Jacobi multiplier. The reader interested in a detailed exposi-

tion of this subject should consult (Berrone and Giacomini, 2003). The inverse

Jacobi multiplier solves the centre problem by the following theorem, which is

proved by Buică et al. in (Buică et al., 2012).

Theorem 1. The analytic system (2.5) has a centre at the origin if and only if it

admits a local analytic inverse Jacobi multiplier of the form V (x1, x2, x3) = x3+. . .

in a neighbourhood of the origin in R3. Moreover, when such V exists, the local

analytic centre manifold, W c, lies in V −1(0).

Remark 1. The origin is a centre of (1.2) if and only if it admits a local analytic

inverse Jacobi multiplier V at the origin with ∇V (0) 6= 0, where 0 ∈ R3 is a Hopf

point of (1.2). This follows directly from the above theorem.
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2.3. The Poincaré Return Map and the Liapunov Quantities

2.3 The Poincaré Return Map and the Liapunov

Quantities

To study the relation between the Poincaré return map and the Liapunov quan-

tities on the centre manifold, we start from the bifurcation equation (2.8). Under

the polar coordinates x1 = rcos(θ), x2 = rsin(θ), the reduced system (2.8) can

be transformed into

ṙ = r2(F
(2)
1 (cos(θ), sin(θ), h(cos(θ), sin(θ);µ);µ)cos(θ)

+ F
(2)
2 (cos(θ), sin(θ), h(cos(θ), sin(θ);µ);µ)sin(θ) + ...),

θ̇ = 1− r(F (2)
1 (cos(θ), sin(θ), h(cos(θ), sin(θ);µ);µ)sin(θ)

− F (2)
2 (cos(θ), sin(θ), h(cos(θ), sin(θ);µ);µ)cos(θ) + ...).

We can rewrite above equation as follows

dr

dθ
=

r2F (r, cos(θ), sin(θ);µ)

1 + rG(r, cos(θ), sin(θ);µ)
= R(r, θ;µ), (2.11)

where R(r, θ;µ) is a smooth function over the cylinder {(r, θ;µ) ∈ R×S1 : |r| < δ}

for sufficiently small value of δ > 0 and is a periodic function of θ of period 2π.

The Hopf point at the origin for equation (2.5) corresponds to R(0, θ, µ), so that

r = 0 is a solution of equation (2.11). We can expand the function R(r, θ;µ) in a

power series in r,

dr

dθ
= R(r, θ;µ) = r2R2(θ;µ) + r3R3(θ;µ) + ...+O(rn), (2.12)

whereRk(θ;µ) are 2π−periodic functions of θ and satisfyRk(θ+π;µ) = (−1)kRk(θ;µ),

k = 2, 3, ... (see (Liu, 2001; Wang et al., 2010)). Here, the solution of system (2.12)
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with the initial condition θ = θ0 and r = r0 is denoted by r = f(θ, θ0, r0;µ)

and also f(θ, θ0, 0;µ) = 0. Since the reduced system on the centre manifold at

the origin has two complex eigenvalues with zero real part (the origin of sys-

tem (2.5) is of centre-focus type), then in a sufficiently small neighbourhood of

the origin every trajectory crosses each ray θ = c, 0 ≤ c < 2π. This prop-

erty implies that all trajectories of the system are passing through the segment

Σ = {(x1, x2) : x2 = 0, 0 ≤ x1 ≤ δ} for δ sufficiently small, this set of points

is equivalent to θ0 = 0, that is, all solutions r = f(θ, 0, r0;µ). We expand

f(θ, 0, r0;µ) in a power series in r0,

r = f(θ, 0, r0;µ) = w1(θ;µ)r0 + w2(θ;µ)r20 + w3(θ;µ)r30 + ...+ O(rn0 ), (2.13)

which satisfies equation (2.12). Hence,

ẇ1(θ;µ)r0 + ẇ2(θ;µ)r20 + ẇ3(θ;µ)r30 + ... = R2(θ;µ)(w1(θ;µ)r0 + w2(θ;µ)r20+

w3(θ;µ)r30 + ...)2 +R3(θ;µ)(w1(θ;µ)r0 + w2(θ;µ)r20 + w3(θ;µ)r30 + ...)3 + ...+ O(rn0 ).

Equating the coefficients of ri0, i = 1, 2, ..., we obtain the following differential

equations

ẇ1(θ, µ) = 0,

ẇ2(θ, µ) = R2(θ;µ)w2
1(θ;µ),

ẇ3(θ, µ) = 2R2(θ;µ)w1(θ;µ)w2(θ;µ) +R3(θ;µ)w3
1(θ;µ), (2.14)

...
...

The initial condition r = f(0, 0, r0;µ) = r0 leads to w1(0;µ) = 1, wi(0;µ) = 0 for

all i > 1. Integrating the equations in (2.14) and using the above initial condition,
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the functions wi(θ;µ), i ≥ 1 will be obtained. In particular, we have w1(θ;µ) = 1.

To obtain the next intersection point of the trajectory r = f(θ, 0, r0;µ) on Σ,

we set θ = 2π in the solution function. Thus, r = f(2π, 0, r0;µ) is the point on Σ

where the trajectory of the system next intersects Σ. The map R : Σ ⊂ R −→ R

which is defined by

R(r0;µ) = f(2π, 0, r0;µ) = η̃1r0 + η2r
2
0 + η3r

3
0 + ...+ O(rn0 ), (2.15)

for |r0| < δ, where η̃1 = w1(2π;µ) = 1 and ηi = wi(2π;µ) for i > 1 is called

Poincaré first return map or just the return map. The difference between the

first return map and its starting point, d(r0, µ), is given by

d(r0;µ) = R(r0;µ)− r0

= η1r0 + η2r
2
0 + η3r

3
0 + ...+ O(rn0 ), (2.16)

and is called the difference function. In equation (2.16) the coefficient ηi, i ∈ N is

called the ith Liapunov number at the origin on centre manifold of system (2.5)

which are functions of µ. We note from the above two equations that, the first

Liapunov number is zero and zeros of equation (2.16) correspond to cycles. Iso-

lated zeros correspond to isolated closed orbits which are known as limit cycles.

Liu (2001) presented an expression of the relation between the coefficients of

ri0, i = 1, 2, ... in equation (2.16). He proved that for every positive integer

m = 1, 2, ..., there exist an expression of the form

η2m =
1

2

m−1∑
k=1

ξ(k)m η2k+1, (2.17)

where ξ
(k)
m , k = 1, 2, ...,m − 1 are polynomials in w1(π), w2(π), ..., w2m(π) and

17



Chapter 2. Background

η̃1, η2, ..., η2m with rational coefficients. We note in expression (2.17), if for each

1 ≤ k ≤ m − 1, η2k+1 = 0 then η2 = η4 = ... = η2m = 0 and the first non-zero

coefficient of r0 in equation (2.16) is the coefficient of an odd power of r0.

The origin of (2.5) is centre if for a fixed parameter µ∗ ∈ K, η̃1(µ
∗) =

1 (η1(µ
∗) = 0) and ηi(µ

∗) = 0, i ≥ 2. In this case the difference function d(r0;µ
∗)

is zero. Otherwise, the difference function is non-zero and the origin is a focus. If

for some k ∈ N, η1 = η2 = η3 = ... = η2k = 0 and η2k+1 6= 0, then the origin of (2.5)

is called the fine focus or weak focus of order k. The coefficient η2i+1 in (2.16) is

called the ith Liapunov quantity at the origin on centre manifold and denote it by

L(i). If the origin is a fine focus of order k at µ = µ∗, that is, L(i) = 0 for i < k

and L(k) 6= 0, then d(r0;µ
∗) has order 2k + 1. Thus, at most k limit cycles can

be bifurcated from the point under perturbation. Moreover, the independence of

the Liapunov quantities give us the exact number of limit cycles. That is, if we

choose a parameter µ∗ ∈ K so that L(i) for 1 ≤ i ≤ k − 1 are independent in a

neighbourhood of the origin,( this will happen if the Jacobian matrix of the L(i)’s

with respect to the parameters Λ at µ∗ has rank k − 1 ) then k − 1 limit cycles

can be produced by choosing one by one successively

|L(i− 1)| ≤ |L(i)|, L(i− 1)L(i) < 0,

working from L(k − 1) to L(0).

The above method for finding Liapunov quantities from the return mapR(r0;µ)

on the centre manifold is not the most efficient way to proceed. Instead, a method

which is equivalence to it can be used. In this method, we only need to calculate

the Liapunov quantities L(k) modulo the previous L(i) for i < k. The first Lia-

punov quantity is multiple of α1, therefore the first Liapunov quantity of (2.8) is

always zero. To find the Liapunov quantities of system (2.8), we seek a Lyapunov
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function of the form

F (x1, x2) = x21 + x22 +
∞∑
k=3

Fk(x1, x2;µ),

where Fk is a polynomial in x1, x2 of degree k and the coefficients of F satisfy

X (F ) = L1D + L2D
2 + L3D

3 + ..., (2.18)

where D = (x21 + x22) or x21 or x22 or (x21 + x22)
2 or other suitable forms (for more

detail see Andronov et al. (1971); Lu and Luo (2002); Wang (1991)). Here, Li, i =

1, 2, 3, ... is a polynomial in the parameter µ of the system also called the ith

Liapunov quantity. If the linear part of the system is not of the canonical form,

we can transform the system or we can replace the term x21 + x22 in the Liapunov

function F by an equivalent positive definite quadratic form which is annihilated

by the linear part of the vector field X .

Recently, an algorithm of computing the singular point quantities on centre

manifold for the three dimensional system was introduced by Wang et al. in

(Wang et al., 2010). This algorithm is more useful to investigate the multiple

Hopf bifurcation at the origin of the three dimensional system (2.5). By the

transformation

X = x1 + ix2, Y = x1 − ix2, Z = x3, T = it, i =
√
−1 ,

system (2.5) can be transformed into the following complex system

Ẋ = X +G1(X, Y, Z;µ) = G̃1(X, Y, Z;µ),

Ẏ = −Y +G2(X, Y, Z;µ) = G̃2(X, Y, Z;µ), (2.19)

Ż = −iλZ +G3(X, Y, Z;µ) = G̃3(X, Y, Z;µ),
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where X, Y, Z and the coefficients of the Gi, i = 1, 2, 3 are complex and sys-

tem (2.5) and (2.19) are called concomitant. In (Wang et al., 2010), a program

of term by term calculations is presented for determining the formal power series

below:

F (X, Y, Z) = XY +
∞∑

α+β+γ=3

CαβγX
αY βZγ , (2.20)

such that

XF =
∂F

∂X
G̃1(X, Y, Z;µ) +

∂F

∂Y
G̃2(X, Y, Z;µ) +

∂F

∂Z
G̃3(X, Y, Z;µ)

=
∞∑
m=1

µm(XY )m+1 , (2.21)

where C110 = 1, C101 = C011 = C200 = C020 = 0, Ckk0 = 0, k = 2, 3, ... and the

coefficient µm in equation (2.21) is called the mth singular point quantity at the

origin on centre manifold of system (2.19) or (2.5). There exist a relationship

between the mth singular point quantity µm and the mth focal value η2m+1 (mth

Liapunov quantity) at the origin on centre manifold of system (2.5). This relation

is proved in (Wang et al., 2010) and is given by

η2m+1 = iπµm + iπ
m−1∑
k=1

ξ(k)m µm ,

where ξ
(k)
m , k = 1, 2, ...,m − 1 are polynomial functions of coefficients of sys-

tem (2.19). The above expression is usually called algebraic equivalence and writ-

ten as η2m+1 ∼ iπµm. A good resource that provides a summery of the singular

point quantities, focal values and their relationship for a critical point of three

dimensional system is (Wang and Huang, 2012).

The existence of a power series F in (2.20) for system (2.19) is equivalent to
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the existence of a power series

F (x1, x2, x3) = x21 + x22 +
∞∑
k=3

Fk(x1, x2, x3;µ) , (2.22)

where

Fk =
k∑
i=0

i∑
j=0

Ck−i,i−j,j x
k−i
1 xi−j2 xj3 ,

and the coefficients of F satisfy equation (2.18). In this method it does not

necessary to find a centre manifold and the reduced system on it. We shall use

this method in our calculations in chapter four.

2.4 The Darboux Theory of Integrability in 3DS

The studying of integrability of systems of differential equations is an enduring

area of research in the theory of ordinary differential equations. Integrable sys-

tems are important in studying various mathematical models, especially when we

perturb them, we obtain a rich picture of bifurcations. The structure of inte-

grals helps us to understand such bifurcations. The problem of integrability for

three dimensional systems has received much attention (see Aziz and Christopher

(2012); Berrone and Giacomini (2003); Cairó and Llibre (2000); Christodoulides

and Damianou (2009); Gao and Liu (1998); Hu et al. (2013); Llibre et al. (2012)).

The existence of a first integral is the key feature of integrability and leads to

a reduction in order of the differential system by one. A non-constant analytic

function φ : U −→ R of system (2.5) where U is an open subset of R3 is called

first integral if it is constant on every solution curve (x1(t), x2(t), x3(t)) of (2.5)

on U . That is, φ(x1(t), x2(t), x3(t)) = c with c ∈ R for every time t for which

the solution (x1(t), x2(t), x3(t)) is defined on U . This means that φ satisfies the
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partial differential equation

X (φ) = (−x2 + F1)
∂φ

∂x1
+ (x1 + F2)

∂φ

∂x2
+ (λx3 + F3)

∂φ

∂x3
= 0.

It is well known that the phase portrait of a two dimensional system is determined

completely by the existence of a single first integral. With three dimensional

systems, when there is one first integral then the system is partially integrable but

when there are two independent first integrals the system is completely integrable

and its trajectories are determined by intersection of the level curves of that two

first integrals (Cairó and Llibre, 2000). In general, the n−dimensional system

will be completely integrable if it has (n− 1) independent first integrals (Zhang,

2008). Many different methods have been used for studying the existence of first

integrals. The algebraic theory of integrability is a classical one, which provides a

link between the existence of first integrals of differential systems and the number

of their invariant algebraic surfaces. This type of integrability is usually called

Darboux integrability and it was found by Darboux in 1878 for curves in two

dimensional systems (Darboux, 1878). He proved that if a planar polynomial

differential system of degree n has at least n(n+1)
2

invariant algebraic curves, then

it has a first integral which is an explicit function of the invariant algebraic curves.

This method of integrability was extended by many authors such as Jouanolou

(1979), Christopher (1994), Christopher and Llibre (1999) and Llibre and Zhang

(2009).

The starting point in the Darboux theory of integrability in three dimensional

systems is the concept of the invariant algebraic surface. The existence of invari-

ant algebraic surfaces play an important role in the studying of integrability for

polynomial differential systems. Given a polynomial V ∈ C[x1, x2, x3], a surface

V = 0 is called an invariant algebraic surface of system (2.5), if the polynomial
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V satisfies the equation

X (V ) = (−x2 + F1)
∂V

∂x1
+ (x1 + F2)

∂V

∂x2
+ (λx3 + F3)

∂V

∂x3
= KV, (2.23)

for some polynomial K ∈ C[x1, x2, x3]. The polynomial K is called the cofactor

of the invariant algebraic surface V = 0. From equation (2.23), it is easy to see

that the degree of the cofactor K is less than the degree of the invariant algebraic

surface V = 0 by at least one. If system (2.5) admits several invariant algebraic

surfaces, let us say f1, f2, ..., fn, then the function

V = Πn
i=1f

λi
i , (2.24)

where the cofactors ki, i = 1, 2, ..., n satisfy
∑n

i=1 λiki = 0 and λi ∈ R not all

zero, is called a Darboux first integral (Hu et al., 2013). For a nice summary of

this subject see (Pan and Zhang, 2013). A function V which is defined in (2.24)

is called inverse Jacobi multiplier of Darboux type for system (2.5) if satisfies

n∑
i=1

λiki − div(X ) = 0,

where the fi are invariant algebraic surfaces for the system, ki are the correspond-

ing cofactors and λi ∈ R not all zero.
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Chapter 3

The Existence of Centre in

3DLVS Via the Darboux Method

Using Inverse Jacobi Multipliers

In this chapter, sufficient conditions for the existence of a centre on a local centre

manifold for the three dimensional Lotka-Volterra system were obtained by using

the inverse Jacobi multiplier functions which are defined in a small neighbourhood

of the Hopf point. The system always has three invariant algebraic surfaces given

by the axis planes. However, for particular parameter values an additional fourth

invariant algebraic surface which passes through the interior critical point can

be found and this can be used to construct an inverse Jacobi multiplier for the

system. This can be used to show the existence of a centre via Theorem 1.
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Inverse Jacobi Multipliers

3.1 The Inverse Jacobi Multiplier Function of

Darboux Type

Here, we recall a function V = Πn
i=1f

λi
i is an inverse Jacobi multiplier of Darboux type

for system (1.2) if satisfies

div(X ) =
n∑
i=1

λiki,

where the fi are invariant algebraic surfaces for the system, ki are the correspond-

ing cofactors and λi ∈ R not all zero. This function can be used to study the Hopf

point of the three dimensional Lotka-Volterra system (1.2). Invariant algebraic

surfaces play an important role in constructing this type of map, therefore we now

state and prove two main properties of invariant algebraic surfaces.

Proposition 1. Let f1, f2 ∈ C[x1, x2, x3]. We assume that f1 and f2 are relatively

prime in the ring C[x1, x2, x3]. Then for the three dimensional system (1.2),

f1f2 = 0 is an invariant algebraic surface with cofactor K if and only if f1 = 0

and f2 = 0 are invariant algebraic surfaces with cofactors k1 and k2 respectively.

Moreover, K =
∑2

i=1 ki.

Proof. Suppose f1 = 0 and f2 = 0 are invariant algebraic surfaces of (1.2) with

cofactors k1 and k2 respectively, then X (f1) = k1f1, and X (f2) = k2f2 and

X (f1f2) = (X f1)f2 + f1(X f2)

= (k1f1)f2 + f1(k2f2)

= (k1 + k2)f1f2

= Kf1f2.
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Thus, f1f2 = 0 is an invariant algebraic surface of (1.2) with cofactor K.

Conversely, suppose f1f2 = 0 is an invariant algebraic surface of (1.2) with cofactor

K, then

(X f1)f2 + f1(X f2) = X (f1f2) = Kf1f2. (3.1)

Since f1 and f2 are relative prime polynomials, then there is no a polynomial of

positive degree in C[x1, x2, x3] that divides both f1 and f2. From equation (3.1),

we obtain that f1 divides X (f1) and f2 divides X (f2). That is, there exist two

polynomials k1 and k2 with X (f1) = k1f1 and X (f1) = k1f1. Then, f1 = 0

and f2 = 0 are invariant algebraic surfaces of (1.2) with cofactors k1 and k2

respectively.

Proposition 2. We suppose V ∈ C[x1, x2, x3] and let V = fλ11 fλ22 ... fλnn , where

fλii are irreducible factor over C[x1, x2, x3]. Then for system (1.2), V = 0 is an

invariant algebraic surface with cofactor KV if and only if fi = 0 is an invariant al-

gebraic surface with cofactor ki for each i = 1, 2, ..., n. Moreover, KV =
∑n

i=1 λiki.

Proof. We assume that fi = 0 is invariant algebraic surface of (1.2) with cofactor

ki, i = 1, 2, ..., n, then

X (V ) = X (fλ11 fλ22 fλ33 ...fλnn )

= (fλ22 fλ33 ...fλnn )X (fλ11 ) + (fλ11 fλ33 ...fλnn )X (fλ22 ) + ...+ (fλ11 fλ22 ...f
λn−1

n−1 )X (fλnn )

= (fλ22 fλ33 ...fλnn )(λ1f
λ1−1
1 X (f1)) + (fλ11 fλ33 ...fλnn )(λ2f

λ2−1
1 X (f2)) + ...

+ (fλ11 fλ22 ...f
λn−1

n−1 )(λnf
λn−1
n X (fn))

= (fλ22 fλ33 ...fλnn )(λ1k1f
λ1
1 ) + (fλ11 fλ33 ...fλnn )(λ2k2f

λ2
2 ) + ...+ (fλ11 fλ22 ...f

λn−1

n−1 )(λnknf
λn
n )

= V (λ1k1 + λ2k2 + ...+ λnkn)

= KV V.
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Therefore, V = 0 is an invariant algebraic surface of (1.2) with cofactor KV .

Now, we shall prove the converse statement. Suppose V = 0 is an invariant

algebraic surface of (1.2) with cofactor KV . From Proposition 1, we note that

V = 0 is an invariant algebraic surface with cofactor KV if and only if fλii = 0 is an

invariant algebraic surface for each i = 1, 2, ..., n with cofactor kλi . Furthermore,

KV =
∑n

i=1 kλi . Thus, fλii = 0, is an invariant algebraic surface of (1.2) with

cofactor kλi , i = 1, 2, ..., n. Then,

kλif
λi
i = X (fλii ) = λif

λi−1
i X (fi).

The above equation is equivalent to

X (fi) =
kλi
λi
fi . (3.2)

We denote
kλi
λi

= ki, therefore X (fi) = kifi i = 1, 2, ..., n. That is, fi = 0 is an

invariant algebraic surface with cofactor ki such that kλi = λiki, i = 1, 2, ..., n.

Remark 2. According to the definition of inverse Jacobi multiplier, from Propo-

sition 2 if the cofactor KV = div(X ), then V = 0 is an inverse Jacobi multiplier

of (1.2).

3.2 Centre Conditions of 3DLVS

The aim of this section is to find sufficient conditions for the critical point at the

origin to be a centre for the three dimensional Lotka-Volterra system (1.2) by

using an inverse Jacobi multiplier. The explicit inverse Jacobi multiplier formula

for system (1.2) is given by the following theorem.

Theorem 2. For system (1.2), if there exists an invariant algebraic surface L

which is passing through the origin with cofactor given by λ+
∑3

i=1 βixi, βi ∈ R,
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i = 1, 2, 3, and λ =
∑3

i=1 ai,i , then there exists αi ∈ R, i = 1, 2, 3 such that the

function

V (x1, x2, x3) = (x1 + 1)α1(x2 + 1)α2(x3 + 1)α3L, (3.3)

is an inverse Jacobi multiplier of the Lotka-Volterra system (1.2). In addition, if

the critical point at the origin is a Hopf point and ∇L(0) 6= 0, then the critical

point at the origin is a centre of (1.2) .

Proof. Since (x1+1)α1 , (x2+1)α2 and (x3+1)α3 are always invariant algebraic sur-

face of system (1.2) with cofactors, Ki = αi(
∑3

j=1 ai,jxj), i = 1, 2, 3 respectively,

we can apply (2.10) to system (1.2) to obtain:

3∑
i=1

ai,1αi =
3∑
i=1

ai,1 + a1,1 − β1,

3∑
i=1

ai,2αi =
3∑
i=1

ai,2 + a2,2 − β2, (3.4)

3∑
i=1

ai,3αi =
3∑
i=1

ai,3 + a3,3 − β3.

From equation (2.3), it is clear that the determinant of the matrix of coefficients

of system (3.4) is non-zero, then system (3.4) has a unique solution. As a result,

the function V which is defined in equation (3.3) is an inverse Jacobi multiplier

of the Lotka-Volterra system (1.2). Since

∇V (0) = (
∂

x1
L+ α1L,

∂

x2
L+ α2L,

∂

x3
L+ α3L)|(x1,x2,x3)=(0,0,0)

= ∇L(0) 6= 0,

then Theorem 1 guarantees that the critical point at the origin is a centre.

We give two examples of three dimensional Lotka-Volterra systems (1.2) where

we can apply the theorem above.
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Proposition 3. The system (1.2) has an invariant algebraic surface of conic type

if the following conditions are satisfied,

a1,1 + a2,3 = 0, a1,2 = a3,3 = 0, a1,3 + a2,3 = 0, a2,1 − 2a2,3 = 0, a2,2 + a2,3 = 0,

a3,1 − a2,3 = 0, a3,2 − a2,3 = 0, and a2,3 6= 0. (3.5)

Under these conditions the critical point at the origin is a centre on the centre

manifold.

Proof. Suppose that the Lotka-Volterra system (1.2) satisfies the above conditions.

Using equation (3.3) where αi = 0, i = 1, 2, 3 and L = x1x2 + a1x1 + a2x2 +

a3x3; ai ∈ R, i = 1, 2, 3 and not all zero. It is easy to show that, under the

conditions (3.5), L = 0 is an invariant algebraic surface and the system has the

inverse Jacobi multiplier

V (x1, x2, x3) = x1x2 + x1 − x2 + x3,

with its cofactor K = a2,3(−2 + x1 − x2). It is not difficult to check that under

conditions (3.5) the critical point at the origin is a Hopf point and ∇V (0) 6= 0,

and hence the origin is a centre (see Figure 3.1).

Proposition 4. The system (1.2) has an invariant plane that is passing through

the origin if the following conditions hold,

a1,1 + a3,3 = 0, a1,3 +
a3,3((2− k)a3,3 + a3,1)

a3,1(1− k)
= 0, a2,1 = a2,3 = a3,2 = 0,

provided that a2,2 6= 0, k ∈ R\{1} and a3,3(a3,1+a3,3)

k−1 < 0. Under these conditions

the critical point at the origin is a centre on the centre manifold of (1.2).
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Proof. Assume the above conditions hold. From equation (3.3) where L = a1x1 +

a2x2 + a3x3; ai ∈ R, i = 1, 2, 3 and not all zero, the following invariant algebraic

surface can be found

V (x1, x2, x3) = a2x2(x1 + 1)k(x2 + 1)
(1−k)a1,2+a2,2

a2,2 (x3 + 1)
(k−2)a3,3+a3,1

a3,1 ,

with its cofactor

K = a2,2 + (a3,1 − 2a3,3)x1 + (a1,2 + 2a2,2)x2 + (2a3,3 +
a3,3((2− k)a3,3 + a3,1)

a3,1(k − 1)
)x3.

Since K = div(X ), then the invariant algebraic surface V is an inverse Jacobi

multiplier for system (1.2). Moreover, ∇V (0) 6= 0, then Theorem 1 allows us to

decide the Lotka-Volterra system (1.2) admits a centre at the origin on a local

centre manifold (see Figure 3.2).

Remark 3. From equation (3.3), we can obtain more than the above two neces-

sary conditions for the origin to be a centre for system (1.2). However, only two

are presented here as an example, the others give the same number of limit cycles.

The number of bifurcating limit cycles are illustrated in the next chapter.
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Figure 3.1: The zero set of the inverse Jacobi multiplier (3.3) where L is an
invariant algebraic surface of conic type. The parameters satisfy the conditions of
Proposition 3 and a2,3 = 1.

32



3.2. Centre Conditions of 3DLVS

Figure 3.2: The zero set of the inverse Jacobi multiplier (3.3) where L is of type
plane, the parameters satisfy the conditions of Proposition 4 with a1,2 = 1, a2,2 =

1, a3,1 = − 2√
3
, a3,3 =

√
3, a2 = 1 and k = 0.
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Chapter 4

Centre Bifurcations

This chapter investigates the cyclicity of the centres of the three dimensional

Lotka-Volterra system by using centre bifurcations. We prove that two and four

limit cycles can be bifurcated from the centre on a planar and a conic invariant

surface respectively. Our technique is to use the linear and quadratic terms of the

Liapunov quantities. Moreover, we apply the same technique to a quadratic 3DS

having a plane of singularities and show that eight limit cycles can bifurcate from

the centre.

4.1 The Basic Technique for Estimating Cyclic-

ity from Centre

Bifurcation of limit cycles from critical points is the current research area in the

bifurcation theory. A limit cycle is obtained by perturbing a focus or centre. One

common approach is the centre bifurcation which is used to estimate the cyclicity

and also to study the bifurcation of limit cycles from the centre (see (Bautin,

1952; Yu and Han, 2004)).
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Christopher (2005) investigated a technique to examine the cyclicity bifurcat-

ing from centre in two dimensional systems by linearizing the Liapunov quantities.

We generalized the technique to three dimensional systems to estimate the cyclic-

ity of the centre. The idea of the technique used here to estimate the cyclicity

in three dimensional differential system can be illustrated by the following steps.

Firstly, a point on a centre variety will be chosen, after that, the Liapunov quan-

tities about this point will be linearized. If the codimension of the point that was

chosen on a centre variety is r provided that the first r linear terms of Liapunov

quantities are linearly independent, then r − 1 is the cyclicity. That is, we can

bifurcate r − 1 limit cycles by a small perturbation.

We recall the construction of the Liapunov quantities. We seek a function of

the form

F (x1, x2, x3) = x21 + x22 +
∞∑
k=3

Fk(x1, x2, x3),

where Fk =
∑k

i=0

∑i
j=0Ck−i,i−j,jx

k−i
1 xi−j2 xj3 for system (2.4) and the coefficients

of Fk satisfy

X (F ) = L1(x
2
1 + x22) + L2(x

2
1 + x22)

2 + L3(x
2
1 + x22)

3 + ..., (4.1)

where Li, i = 1, 2, ... are polynomials in the parameters of the system and the Li

is called the ith Liapunov constant (focal value).

Explaining the technique in more detail, it is assumed that the centre critical

point of (2.4) corresponds to 0 ∈ K, by using a perturbation technique in param-

eters.
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This can be written:

X = Xo + X1 + ...,

F = Fo + F1 + ..., (4.2)

Li = Li0 + Li1 + ..., i = 1, 2, ...,

where Xo, Fo and L0i are calculated at the unperturbed parameters and X1, F1

and L1i are obtained at a perturbed parameters of first order (they contain the

terms of degree one in Λ), and so forth. The Liapunov function Fi and the

Liapunov quantity Li have degree i in parameters. Putting equation (4.2) into

equation (4.1) and we obtain:

XoFo = 0, X0F1 + X1Fo = L11(x
2
1 + x22) + L21(x

2
1 + x22)

2 + ... , (4.3)

and more general,

XoFi + ...+ XiFo = L1i(x
2
1 + x22) + L2i(x

2
1 + x22)

2 + ... (4.4)

The linear terms of the Liapunov quantities Lk (modulo the Li, i < k) would

be obtained by solving the pair of equations (4.3) simultaneously by linear alge-

bra. Equation (4.4) is used to generate the higher order terms of the Liapunov

quantities.

4.2 Centre Bifurcation for the 3DLVS

Here, the technique which was shown in the previous section is applied to the

3DLVS. The system which satisfies the conditions of Proposition 3 and 4 are

given individuality. As a result, we obtain the following theorems.
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Theorem 3. If the parameters in the three-dimensional Lotka-Volterra system (1.2)

satisfies the conditions that are mentioned in Proposition 3, then four limit cycles

can bifurcate from the origin critical point.

Proof. Assume that the parameters in the three dimensional Lotka-Volterra sys-

tem (1.2) satisfies the conditions of Proposition 3, then at the origin critical point,

we obtain:

D = −2a32,3,

T = −2a2,3,

K = −a22,3.

For a2,3 6= 0, system (1.2) satisfies the Hopf bifurcation conditions which are

mentioned in equation (2.3). More precisely, the linear part of system (1.2) at

the origin has one non-zero real eigenvalue −2ω and a pair of pure imaginary

eigenvalues ±iω, where ω = a2,3. Using the linear transformation

X = PY, P =


1 1 1

−1 1 −3

−2 0 1

 , (4.5)

where X = (x1, x2, x3), Y = (y1, y2, y3), the linear part of system (1.2) at the

origin, A =


−ω 0 −ω

2ω −ω ω

ω ω 0

 , can be written in the real canonical form as


0 −ω 0

ω 0 0

0 0 −2ω

 ,
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and the new system is given by

Ẏ = (P−1AP )Y + P−1 diag(PY )APY, (4.6)

where

P−1AP =


0 −ω 0

ω 0 0

0 0 −2ω


and diag(PY ) is the diagonal matrix of PY . It is easy to construct the Liapunov

function Fo of equation (4.6) which satisfies XFo = 0. The same transformation

in equation (4.5) is used for perturbed vector field part of system (1.2) which is

obtained by putting ai,j = ai,j+bi,j, i, j = 1, 2, 3, where ai,j and bi,j are parameters

before and after perturbation in the system, respectively. Using computer algebra

package MAPLE, equation (4.3) give us the following linear independent terms of

Liapunov quantities:

1. L1 =
1

5
(b2,1 − b3,1 + 2b2,2 + 3b3,2 + 3b1,2 + 4b1,1 − b1,3 + 4b3,3 + b2,3).

2. L2 =
1

50
(−28b1,1+4b1,2+7b1,3−12b2,1−4b2,2+3b2,3+12b3,1−16b3,2−23b3,3).

3. L3 =
−1

552500
(95712b3,3 + 90909b3,2 + 12197b3,1 + 51553b2,3 + 56356b2,2 −

12197b2,1 − 4803b1,3 + 129159b1,2 + 78712b1,1).

4. L4 =
1

26203196500000
(1553756234648b3,3+1322203912761b3,2−1530482987287b3,1

−1046458652663b2,3−814906330776b2,2+1530482987287b2,1−231552321887b1,3−

2115656380089b1,2 + 2852686900048b1,1).

5. L5 =
0.00001

675112268015688425
(9437762895902019945664b3,3 +

7976044124727350992153b3,2 + 116103583125678781609b3,1 +
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3665440297404232235501b2,3+5127159068578901189012b2,2−116103583125678781609b2,1−

1461718771174668953511b1,3+9922940335761587971883b1,2+7859940541601672210544b1,1).

The origin of system (1.2) is a weak focus of order 4 if and only if

1. b3,1 = b2,1 + 4b1,1 + 2b2,2 + 3b3,2 + 3b1,2 − b1,3 + 4b3,3 + b2,3.

2. b1,1 = −3
4
b2,3 − 2b1,2 + 1

4
b1,3 − b2,2 − b3,2 − 5

4
b3,3.

3. b1,3 = 15
7
b2,3 + 6b1,2 + 22

7
b2,2 + b3,3.

4. b2,2 = −b2,3 − 3b1,2.

Since

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂L1

∂b3,1

∂L1

∂b1,1

∂L1

∂b1,3

∂L1

∂b2,2

∂L2

∂b3,1

∂L2

∂b1,1

∂L2

∂b1,3

∂L2

∂b2,2

∂L3

∂b3,1

∂L3

∂b1,1

∂L3

∂b1,3

∂L3

∂b2,2

∂L4

∂b3,1

∂L4

∂b1,1

∂L4

∂b1,3

∂L4

∂b2,2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

63

845000
6= 0,

then by suitable perturbation of the coefficients of Liapunov quantities, four limit

cycles can be bifurcated from the origin of system (1.2) in the neighbourhood of

the origin.

Theorem 4. Two limit cycles can be bifurcated from the origin, when the three

dimensional Lotka-Volterra system (1.2) satisfies the conditions in Proposition 4

with the additional conditions a1,2 6= 0, a2,2− ω2

a3,3
6= 0 and a3,3−

(ω2±
√
ω4−a42,2)ω2

a32,2
6=

0, where k = 0.

Proof. When the system (1.2) satisfies the conditions in Proposition 4, its char-

acteristic polynomial is given by

λ3 − a2,2λ2 −
a3,3(a3,1 + a3,3)

k − 1
λ+

a2,2a3,3(a3,1 + a3,3)

k − 1
= 0,
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4.2. Centre Bifurcation for the 3DLVS

its coefficients satisfy equation (2.3) and the eigenvalues are ±iω and a2,2, where

a3,1 = −a23,3+ω
2(k−1)

a3,3
. The linear transformation (4.5) bring system (1.2) to sys-

tem (4.6) where

P=


a3,3
ω

1 a1,2(a2,2−a3,3)
ω2+a22,2

0 0 1

a23,3+ω
2(k−1)

ωa3,3
0

−a1,2(a23,3+ω2(k−1))
a3,3(ω2+a22,2)

 , A=


−a3,3 a1,2

a3,3(a23,3+ω
2)

a23,3+ω
2(k−1)

0 a2,2 0

−(a23,3+ω2(k−1))
a3,3

0 a3,3



and P−1AP =


0 −ω 0

ω 0 0

0 0 a2,2

 .
The same transformation is also used for perturbed vector field. As we referred

in the previous theorem and after applying (4.3) the following linear independent

terms of Liapunov quantities are obtained, where k = 0:

1. L1 =
1

a3,3(a22,2 + ω2)
(a1,2b2,3a

2
3,3+a1,2b2,1a

2
3,3+a3,3b3,3ω

2+a3,3a
2
2,2b1,1+a

2
2,2a3,3b3,3+

ω2a3,3b1,1 − a3,3a2,2a1,2b2,1 − ω2a1,2b2,3).

2. L2 =
−1

4ω2a33,3(a
6
2,2 + 6ω2a42,2 + 9ω4a22,2 + 4ω6)

(b3,3a
5
3,3a

6
2,2+b1,1a

5
3,3a

6
2,2+4ω8b3,3a

3
3,3+

4ω6b3,3a
5
3,3+4ω6b1,1a

5
3,3+4ω8b1,1a

3
3,3+2a43,3a1,2a

4
2,2b2,3ω

2+5a63,3a1,2a
2
2,2b2,3ω

2−

3ω6a1,2a
2
2,2b2,3a

2
3,3−2ω4a1,2a

4
2,2b2,3a

2
3,3−4ω2a53,3a1,2a

3
2,2b2,1−ω6a1,2b2,1a

3
3,3a2,2−

ω6a1,2a
2
2,2b2,1a

2
3,3 + ω8a1,2b2,1a3,3a2,2 − 4ω4a1,2a

3
2,2b2,1a

3
3,3 − ω2b2,1a

3
3,3a

5
2,2a1,2 −

2ω4a53,3a1,2b2,1a2,2+4ω2b2,3a
5
3,3a

3
2,2a1,2+4ω4b2,3a

5
3,3a2,2a1,2−ω4a43,3a1,2a

2
2,2b2,3+

4ω4a43,3a1,2a
2
2,2b2,1−6ω4a33,3a1,2a

3
2,2b2,3+2ω6a1,2a

3
2,2b2,3a3,3−6ω6a33,3a1,2b2,3a2,2+

2ω8a1,2b2,3a3,3a2,2+5a63,3a1,2a
2
2,2b2,1ω

2+2ω6b2,1a
4
3,3a1,2−ω8a1,2a

2
2,2b2,3−2ω8a1,2b2,1a

2
3,3+

9ω4b3,3a
5
3,3a

2
2,2+6ω4b3,3a

3
3,3a

4
2,2+9ω4b1,1a

5
3,3a

2
2,2+6ω4b1,1a

3
3,3a

4
2,2+9ω6a33,3a

2
2,2b1,1+

9ω6a33,3a
2
2,2b3,3+6ω2b3,3a

5
3,3a

4
2,2+ω2b3,3a

3
3,3a

6
2,2+6ω2b1,1a

5
3,3a

4
2,2+ω2b1,1a

3
3,3a

6
2,2+

4ω4a63,3a1,2b2,1 − b2,1a53,3a52,2a1,2 − 4ω6a1,2b2,3a
4
3,3 + 4a63,3a1,2b2,3ω

4).
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3. L3 =
−1

288ω4a53,3(9ω
2 + a22,2)(4ω

2 + a22,2)
2(ω2 + a22,2)

3
(252ω18a1,2a

2
2,2b2,3−252ω18a1,2a2,2a3,3b2,1−

504ω18a1,2a2,2a3,3b2,3+504ω18a1,2a
2
3,3b2,1−288ω18a1,2a

2
3,3b2,3−1008ω18a33,3b1,1−

1008ω18a33,3b3,3+573ω16a1,2a
4
2,2b2,3−573ω16a1,2a

3
2,2a3,3b2,1−1650ω16a1,2a

3
2,2a3,3b2,3+

1398ω16a1,2a
2
2,2a

2
3,3b2,1 − 2612ω16a1,2a

2
2,2a

2
3,3b2,3 + 2340ω16a1,2a2,2a

3
3,3b2,1 +

7032ω16a1,2a2,2a
3
3,3b2,3−4680ω16a1,2a

4
3,3b2,1+2736ω16a1,2a

4
3,3b2,3−3640ω16a22,2a

3
3,3b1,1−

3640ω16a22,2a
3
3,3b3,3 + 7056ω16a53,3b1,1 + 7056ω16a53,3b3,3 + 186ω14a1,2a

6
2,2b2,3 −

186ω14a1,2a
5
2,2a3,3b2,1 − 1518ω14a1,2a

5
2,2a3,3b2,3 + 945ω14a1,2a

4
2,2a

2
3,3b2,1 −

1445ω14a1,2a
4
2,2a

2
3,3b2,3 + 3043ω14a1,2a

3
2,2a

3
3,3b2,1 + 16530ω14a1,2a

3
2,2a

3
3,3b2,3 −

8086ω14a1,2a
2
2,2a

4
3,3b2,1 + 316ω14a1,2a

2
2,2a

4
3,3b2,3 − 4620ω14a1,2a2,2a

5
3,3b2,1 −

26136ω14a1,2a2,2a
5
3,3b2,3+10872ω14a1,2a

6
3,3b2,1−12240ω14a1,2a

6
3,3b2,3−4991ω14a42,2a

3
3,3b1,1−

4991ω14a42,2a
3
3,3b3,3+25480ω14a22,2a

5
3,3b1,1+25480ω14a22,2a

5
3,3b3,3−7056ω14a73,3b1,1−

7056ω14a73,3b3,3+9ω12a1,2a
8
2,2b2,3−9ω12a1,2a

7
2,2a3,3b2,1−390ω12a1,2a

7
2,2a3,3b2,3+

204ω12a1,2a
6
2,2a

2
3,3b2,1 + 750ω12a1,2a

6
2,2a

2
3,3b2,3 + 1864ω12a1,2a

5
2,2a

3
3,3b2,1 +

11742ω12a1,2a
5
2,2a

3
3,3b2,3 − 4816ω12a1,2a

4
2,2a

4
3,3b2,1 − 9794ω12a1,2a

4
2,2a

4
3,3b2,3 −

14713ω12a1,2a
3
2,2a

5
3,3b2,1− 58410ω12a1,2a

3
2,2a

5
3,3b2,3 + 25786ω12a1,2a

2
2,2a

6
3,3b2,1−

5428ω12a1,2a
2
2,2a

6
3,3b2,3 − 372ω12a1,2a2,2a

7
3,3b2,1 + 36744ω12a1,2a2,2a

7
3,3b2,3 +

936ω12a1,2a
8
3,3b2,1+24912ω12a1,2a

8
3,3b2,3−3220ω12a62,2a

3
3,3b1,1−3220ω12a62,2a

3
3,3b3,3+

34937ω12a42,2a
5
3,3b1,1+34937ω12a42,2a

5
3,3b3,3−25480ω12a22,2a

7
3,3b1,1−25480ω12a22,2a

7
3,3b3,3−

15120ω12a93,3b1,1−15120ω12a93,3b3,3−18ω10a1,2a
9
2,2a3,3b2,3+9ω10a1,2a

8
2,2a

2
3,3b2,1+

319ω10a1,2a
8
2,2a

2
3,3b2,3 + 702ω10a1,2a

7
2,2a

3
3,3b2,1 + 2310ω10a1,2a

7
2,2a

3
3,3b2,3 −

828ω10a1,2a
6
2,2a

4
3,3b2,1 − 9816ω10a1,2a

6
2,2a

4
3,3b2,3 − 13858ω10a1,2a

5
2,2a

5
3,3b2,1 −

39510ω10a1,2a
5
2,2a

5
3,3b2,3 + 17680ω10a1,2a

4
2,2a

6
3,3b2,1 + 25466ω10a1,2a

4
2,2a

6
3,3b2,3 +

5521ω10a1,2a
3
2,2a

7
3,3b2,1 + 84270ω10a1,2a

3
2,2a

7
3,3b2,3 − 3922ω10a1,2a

2
2,2a

8
3,3b2,1 +

46664ω10a1,2a
2
2,2a

8
3,3b2,3 + 6840ω10a1,2a2,2a

9
3,3b2,1 − 17136ω10a1,2a2,2a

9
3,3b2,3 −

15120ω10a1,2a
1
3,30b2,1−15120ω10a1,2a

10
3,3b2,3−994ω10a82,2a

3
3,3b1,1−994ω10a82,2a

3
3,3b3,3+

22540ω10a62,2a
5
3,3b1,1+22540ω10a62,2a

5
3,3b3,3−34937ω10a42,2a

7
3,3b1,1−34937ω10a42,2a

7
3,3b3,3−
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54600ω10a22,2a
9
3,3b1,1−54600ω10a22,2a

9
3,3b3,3+16ω8a1,2a

10
2,2a

2
3,3b2,3+124ω8a1,2a

9
2,2a

3
3,3b2,1+

66ω8a1,2a
9
2,2a

3
3,3b2,3+8ω8a1,2a

8
2,2a

4
3,3b2,1−2258ω8a1,2a

8
2,2a

4
3,3b2,3−5490ω8a1,2a

7
2,2a

5
3,3b2,1−

7470ω8a1,2a
7
2,2a

5
3,3b2,3 + 4038ω8a1,2a

6
2,2a

6
3,3b2,1 + 24120ω8a1,2a

6
2,2a

6
3,3b2,3 +

10756ω8a1,2a
5
2,2a

7
3,3b2,1 + 59106ω8a1,2a

5
2,2a

7
3,3b2,3 − 7204ω8a1,2a

4
2,2a

8
3,3b2,1 +

15845ω8a1,2a
4
2,2a

8
3,3b2,3 + 23850ω8a1,2a

3
2,2a

9
3,3b2,1 − 40740ω8a1,2a

3
2,2a

9
3,3b2,3 −

39192ω8a1,2a
2
2,2a

10
3,3b2,1−39192ω8a1,2a

2
2,2a

10
3,3b2,3−140ω8a102,2a

3
3,3b1,1−140ω8a102,2a

3
3,3b3,3+

6958ω8a82,2a
5
3,3b1,1+6958ω8a82,2a

5
3,3b3,3−22540ω8a62,2a

7
3,3b1,1−22540ω8a62,2a

7
3,3b3,3−

74865ω8a42,2a
9
3,3b1,1−74865ω8a42,2a

9
3,3b3,3+7ω6a1,2a

11
2,2a

3
3,3b2,1+2ω6a2,1a

10
2,2a

4
3,3b2,1−

104ω6a1,2a
10
2,2a

4
3,3b2,3−910ω6a1,2a

9
2,2a

5
3,3b2,1−234ω6a1,2a

9
2,2a

5
3,3b2,3+436ω6a1,2a

8
2,2a

6
3,3b2,1+

5450ω6a1,2a
8
2,2a

6
3,3b2,3 + 5142ω6a1,2a

7
2,2a

7
3,3b2,1 + 12090ω6a1,2a

7
2,2a

7
3,3b2,3 −

1656ω6a1,2a
6
2,2a

8
3,3b2,1 − 8514ω6a1,2a

6
2,2a

8
3,3b2,3 + 26664ω6a1,2a

5
2,2a

9
3,3b2,1 −

29820ω6a1,2a
5
2,2a

9
3,3b2,3−30645ω6a1,2a

4
2,2a

10
3,3b2,1−30645ω6a1,2a

4
2,2a

10
3,3b2,3−7ω6a122,2a

3
3,3b1,1−

7ω6a122,2a
3
3,3b3,3 + 980ω6a102,2a

5
3,3b1,1 + 980ω6a102,2a

5
3,3b3,3 − 6958ω6a82,2a

7
3,3b1,1 −

6958ω6a82,2a
7
3,3b3,3−48300ω6a62,2a

9
3,3b1,1−48300ω6a62,2a

9
3,3b3,3−49ω4a1,2a

11
2,2a

5
3,3b2,1+

28ω4a1,2a
10
2,2a

6
3,3b2,1+272ω4a1,2a

10
2,2a

6
3,3b2,3+904ω4a1,2a

9
2,2a

7
3,3b2,1+510ω4a1,2a

9
2,2a

7
3,3b2,3+

140ω4a1,2a
8
2,2a

8
3,3b2,1 − 3223ω4a1,2a

8
2,2a

8
3,3b2,3 + 11343ω4a1,2a

7
2,2a

9
3,3b2,1 −

6540ω4a1,2a
7
2,2a

9
3,3b2,3−6726ω4a1,2a

6
2,2a

10
3,3b2,1−6726ω4a1,2a

6
2,2a

10
3,3b2,3+49ω4a122,2a

5
3,3b1,1+

49ω4a122,2a
5
3,3b3,3 − 980ω4a102,2a

7
3,3b1,1 − 980ω4a102,2a

7
3,3b3,3 − 14910ω4a82,2a

9
3,3b1,1 −

14910ω4a82,2a
9
3,3b3,3+49ω2a1,2a

11
2,2a

7
3,3b2,1+26ω2a1,2a

10
2,2a

8
3,3b2,1−184ω2a1,2a

10
2,2a

8
3,3b2,3+

1938ω2a1,2a
9
2,2a

9
3,3b2,1−324ω2a1,2a

9
2,2a

9
3,3b2,3−297ω2a1,2a

8
2,2a

10
3,3b2,1−297ω2a1,2a

8
2,2a

10
3,3b2,3−

49ω2a122,2a
7
3,3b1,1 − 49ω2a122,2a

7
3,3b3,3 − 2100ω2a102,2a

9
3,3b1,1 − 2100ω2a102,2a

9
3,3b3,3 +

105a1,2a
11
2,2a

9
3,3b2,1 − 105a122,2a

9
3,3b1,1 − 105a122,2a

9
3,3b3,3).

The origin is a weak focus of order two for system (1.2) if and only if the following

conditions are held

1. b1,1 =
−ω2b3,3a3,3 − a22,2b3,3a3,3 + ω2a1,2b2,3 − b2,3a23,3a1,2 − b2,1a23,3a1,2 + a1,2b2,1a3,3a2,2(

ω2 + a22,2
)
a3,3

.
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2. b2,1 =
b2,3(ω

2 − a23,3)(ω4a22,2 − 2ω4a2,2a3,3 − 4ω4a23,3 − ω2a32,2a3,3 − 3ω2a22,2a
2
3,3 + a32,2a

3
3,3)

a3,3(ω2 + a23,3)(ω
4a2,2 − 2ω4a3,3 + a32,2a

2
3,3)

.

Since the Jacobian determinant of the functions (L1, L2) with respect to (b1,1, b2,1)

is given by

J =

∣∣∣∣∣∣∣
∂L1

∂b1,1

∂L1

∂b2,1

∂L2

∂b1,1

∂L2

∂b2,1

∣∣∣∣∣∣∣ =
−
(
ω2 + a23,3

)
(−a2,2a3,3 + ω2)

(
a32,2a

2
3,3 − 2ω4a3,3 + ω4a2,2

)
a1,2

4a23,3
(
4ω2 + a22,2

) (
ω2 + a22,2

)2
ω2

6= 0,

then two limit cycles can be bifurcated from the origin of the three dimensional

Lotka-Volterra system (1.2) in the neighbourhood of the origin.

Remark 4. In addition to the first order terms in the expansion of the Liapunov

quantities L(i), the second order terms can also be calculated. However, in the two

cases above, the new results were the same as obtained by first order perturbation.

4.3 Perturbing the 3DS Having a Plane of Sin-

gularities

In this section, we consider the three dimensional system

ẋ1 = −x2(1− x1 − x2 − x3),

ẋ2 = x1(1− x1 − x2 − x3), (4.7)

ẋ3 = x3(1− x1 − x2 − x3).

This system has the plane x1 + x2 + x3 = 1 of critical points, in addition to the

origin, which is a centre. We perturbed system (4.7) inside the family of polyno-

mial differential systems of degree two in R3 starting with terms of degree two.
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Here, we apply the technique that is presented in the previous section to study

the limit cycles bifurcating from the periodic orbits at the invariant plane x3 = 0.

The following theorem is the main result in this section.

Theorem 5. We consider the family of systems

ẋ1 = −x2(1− x1 − x2 − x3) + F1(x1, x2, x3),

ẋ2 = x1(1− x1 − x2 − x3) + F2(x1, x2, x3), (4.8)

ẋ3 = x3(1− x1 − x2 − x3) + F3(x1, x2, x3),

where Fi, i = 1, 2, 3 are polynomials of degree two starting with terms of degree

two. Then, up to second order, eight limit cycles can be bifurcated from the centre

at the origin respectively.

Proof. Let

F1 =
2∑
i=0

i∑
j=0

a2−i,i−j,jx
2−i
1 xi−j2 xj3,

F2 =
2∑
i=0

i∑
j=0

b2−i,i−j,jx
2−i
1 xi−j2 xj3,

F3 =
2∑
i=0

i∑
j=0

c2−i,i−j,jx
2−i
1 xi−j2 xj3.

where a2−i,i−j,j, b2−i,i−j,j and c2−i,i−j,j, i, j = 0, 1, 2 are real parameters. Using the

same method as the previous section, we calculate the following expressions for

the linear and quadratic terms of the Liapunov quantities in the parameters.

1. L1 = 0.

2. L2 =
1

4
(3a200 + a110 + b200 + 3b020 + a020 + b110) +

1

20
(−2a011c020− a011c110 +

2a011c200+5a020a110+10a020b020−9a101c020−2a101c110−11a101c200+5a110a200−
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10a200b200−11b011c020 +2b011c110−9b011c200−5b020b110−2b101c020−b101c110 +

2b101c200 − 5b110b200).

3. L3 = 1
4
(a200 +a110 +b200 +b020 +a020 +b110)+ 1

480
(−300a011c020−60a011c110−

108a011c200 + 65a2020 − 470a020a200 + 60a020b020 − 110a020b110 − 120a020b200 −

180a020c020−48a020c110−60a020c200−516a101c020−300a101c110−420a101c200+

55a2110 − 180a110a200 − 10a110b020 − 120a110b110 − 130a110b200 − 144a110c020 −

36a110c110 + 24a110c200 − 555a2200 − 360a200b020 − 470a200b110 − 540a200b200 −

348a200c020−216a200c110−372a200c200−420b011c020−108b011c110−84b011c200+

195b2020 − 300b020b110 − 10b020b200 − 360b020c020 + 84b020c110 − 300b101c020 −

60b101c110 − 108b101c200 − 175b2110 − 240b110b200 − 180b110c020 − 48b110c110 −

60b110c200 − 185b2002− 144b200c200 − 36b200c110 + 24b200c200).

4. L4 =
1

16
(5a020+5a110+3a200+3b020+5b110+5b200)+

1

32640
(−42096a011c020−

14400a011c110 − 18288a011c200 + 9605a2020 − 4080a020a110 − 65450a020a200 +

15300a020b020−13430a020b110−22440a020b200−45684a020c020−10452a020c110−

9804a020c200−65568a101c020−42096a101c110−47040a101c200+595a2110−54060a110a200−

3910a110b020−22440a110b110−31450a110b200−42180a110c020−15084a110c110−

11676a110c200 − 95115a2200 − 38760a200b020 − 65450a200b110 − 84660a200b200 −

62028a200c020−48300a200c110−65268a200c200−47040b011c020−18288b011c110−

10080b011c200 + 56355b2020 − 15300b020b110 − 3910b020b200 − 47580b020c020 +

10188b020c110+10044b020c200−42096b101c020−14400b101c110−18288b101c200−

23035b2110 − 40800b110b200 − 45684b110c020 − 10452b110c110 − 9804b110c200 −

32045b2200 − 42180b200c020 − 15084b200c110 − 11676b200c200).

5. L5 =
1

16
(7a020+7a110+3a200+3b020+7b110+7b200)+

1

424320
(−1058436a011c020−

457356a011c110−498756a011c200+273819a2020−132600a020a110−1631422a020a200+

711620a020b020−247962a020b110−636480a020b200−1569972a020c020−407688a020c110−

324804a020c200−1570644a101c020−1058436a101c110−1067316a101c200−114699a2110−
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1816620a110a200−30498a110b020−636480a110b110−1024998a110b200−1572888a110c020−

663612a110c110−606744a110c200−2664597a2200−742560a200b020−1631422a200b110−

2373540a200b200−1816788a200c020−1543560a200c110−1889460a200c200−1067316b011c020−

498756b011c110−283332b011c200+1922037b2020+154700b020b110−30498b020b200−

1057272b020c020+284532b020c110+436392b020c200−1058436b101c020−457356b101c110−

498756b101c200−521781b2110−1140360b110b200−1569972b110c020−407688b110c110−

324804b110c200−910299b2200−1572888b200c020−663612b200c110−606744b200c200).

6. L6 =
1

32
(21a020+21a110+7a200+7b020+21b110+21b200)+

1

62799360
(−299383152a011c020−

147872304a011c110− 148882800a011c200 + 90184133a2020− 39249600a020a110−

460463224a020a200+295271470a020b020−39429494a020b110−190360560a020b200−

548103888a020c020−161777040a020c110−119895888a020c200−430244112a101c020−

299383152a101c110−285245904a101c200−60746933a2110−609922430a110a200 +

22176024a110b020−190360560a110b110−341291626a110b200−578642688a110c020−

269637744a110c110−250443840a110c200−809498469a2200−161577520a200b020−

460463224a200b110−733558670a200b200−576082800a200c020−511909488a200c110−

594183984a200c200−285245904b011c020−148882800b011c110−89756496b011c200+

647920949b2020 + 171635230b020b110 + 22176024b020b200− 256244256b020c020 +

97525584b020c110+166151328b020c200−299383152b101c020−147872304b101c110−

148882800b101c200−129613627b2110−341471520b110b200−548103888b110c020−

161777040b110c110−119895888b110c200−280544693b2200−578642688b200c020−

269637744b200c110 − 250443840b200c200).

7. L7 =
1

32
(33a020+33a110+9a200+9b020+33b110+33b200)+

1

549494400
(−5000767422a011c020−

2697387546a011c110−2591142078a011c200+1746198350a2020−635352900a020a110−

7726161105a020a200+6386727620a020b020−113660300a020b110−3262623000a020b200−

10722852210a020c020−3511522140a020c110−2520916230a020c200−7016498454a101c020−

5000767422a101c110−4603446246a101c200−1402764350a2110−11491301640a110a200+
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921588785a110b020−3262623000a110b110−6411585700a110b200−11740337280a110c020−

5857027050a110c110−5401512060a110c200−14265757740a2200−2108684760a200b020−

7726161105a200b110−13191299940a200b200−10547693310a200c020−9627938880a200c110−

10814191290a200c200−4603446246b011c020−2591142078b011c110−1643879454b011c200+

12157072980b2020+4686729320b020b110+921588785b020b200−3566332140b020c020+

1988265930b020c110+3402899640b020c200−5000767422b101c020−2697387546b101c110−

2591142078b101c200−1859858650b2110−5889893100b110b200−10722852210b110c020−

3511522140b110c110−2520916230b110c200−5008821350b2200−11740337280b200c020−

5857027050b200c110 − 5401512060b200c200).

8. L8 =
1

256
(429a020+429a110+99a200+99b020+429b110+429b200)+

1

17583820800

(−306026164416a011c020 − 175825776672a011c110 − 163947688128a011c200 +

122013309925a2020 − 36404004000a020a110 − 477767473170a020a200 +

471501683380a020b020 + 26426837450a020b110 − 201870505200a020b200 −

744465814344a020c020 − 264901558152a020c110 − 187611303096a020c200 −

421273784736a101c020 − 306026164416a101c110 − 275559010272a101c200 −

106284032725a2110 − 771878218020a110a200 + 88991026930a110b020 −

201870505200a110b110 − 430167847850a110b200 − 837273825864a110c020 −

439412974392a110c110 − 400975375416a110c200 − 912323221875a2200 −

102741715440a200b020 − 477767473170a200b110 − 860278129620a200b200 −

697063072440a200c020 − 647624052600a200c110 − 711505214280a200c200 −

275559010272b011c020 − 163947688128b011c110 − 108321820320b011c200 +

809581506435b2020+383101771780b020b110+88991026930b020b200−175723324728b020c020+

146011411896b020c110 + 243342558648b020c200 − 306026164416b101c020 −

175825776672b101c110−163947688128b101c200−95586472475b2110−367337006400b110b200−

744465814344b110c020−264901558152b110c110−187611303096b110c200−323883815125b2200−

837273825864b200c020 − 439412974392b200c110 − 400975375416b200c200).
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9. L9 =
1

256
(715a020 + 715a110 + 143a200 + 143b020 + 715b110 + 715b200) +

1

2162809958400
(−72168505453800a011c020 − 43497962460792a011c110 −

39764608597224a011c200 + 32315363560025a2020 − 7916222386800a020a110 −

114401258119070a020a200+128416519433280a020b020+13889177861650a020b110−

47784582518400a020b200−194973558969672a020c020−74207530798128a020c110−

52307242311240a020c200−97793060806728a101c020−72168505453800a101c110−

64036208589192a101c200− 29358396820025a2110− 196515664609680a110a200 +

28180131064670a110b020−47784582518400a110b110−109458342898450a110b200−

223843642260336a110c020−122227923315960a110c110−110438527315536a110c200−

223595631389715a2200−19686398322240a200b020−114401258119070a200b110−

214637646487680a200b200−175641472336680a200c020−165220771821840a200c110−

178674322123080a200c200−64036208589192b011c020−39764608597224b011c110−

27136661228712b011c200 + 203909233067475b2020 + 110294537555280b020b110 +

28180131064670b020b200−31760983766736b020c020+40457388568968b020c110+

65123767738512b020c200−72168505453800b101c020−43497962460792b101c110−

39764608597224b101c200 − 18426185698375b2110 − 87652942650000b110b200 −

194973558969672b110c020−74207530798128b110c110−52307242311240b110c200−

80099946078425b2200−223843642260336b200c020−122227923315960b200c110−

110438527315536b200c200).

We note that, only the first three of the Liapunov quantities L1, L2 and L3 have

independent linear parts. Therefore, by considering the first order of the liapunov

quantities, two limit cycles can bifurcate from the centre. Now, we are interesting

in second order perturbation. For that reason, we perform the following analytic

change of coordinates in parameters

1. a020 = −3a200−a110− b200−3b020− b110 +
1

5
(2a011c020 +a011c110−2a011c200 +

9a101c020+2a101c110+11a101c200+5a2110+10a110a200+25a110b020+5a110b110+
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5a110b200+30a200b020+10a200b200+11b011c020−2b011c110+9b011c200+30b2020+

15b020b110 + 10b020b200 + 2b101c020 + b101c110 − 2b101c200 + 5b110b200).

2. a200 = −b020 +
1

20
(−3a011c110−13a011c200−21a101c110−13a101c200 +20a2110 +

20a110b110+20a110b200+a110c110+7a110c200−13b011c110+11b011c200+25b020c110+

31b020c200− 3b101c110− 13b101c200 + 20b110b200 + b200c110 + 7b200c200− 21a011−

25a101 + 3a110 − 13b011 − b020 − 21b101 + 3b200).

Under these substitution, the linear parts of the rest of the Liapunove quantities

will become zero. Now, we expand the Liapunov quantities L4, L5, L6, L7, L8 and

L9 in terms of the rest of the parameters. The order of the first non-zero terms

of each of these Liapunov quantities is two. In this case, the Liapunov quantities

can be written of the form

Li = hi(a110, a101, a011, a002, b200, b110, b101, b020, b011, b002, c200, c110, c101, c020, c011, c002) + ...

where hi, i = 4, 5, ..., 9 are homogeneous polynomials of degree two. The first five

of these homogeneous polynomials hi have a common zero at wich the sixth does

not vanish if the following conditions hold:

1. a101 =
−1

(692 + 362c200 + 513c110)
(362a011c110 + 269a011c200 + 244a110c110 +

435a110c200+269b011c110+216b011c200−1162b020c110−1557b020c200+362b101c110+

269b101c200 + 244b200c110 + 435b200c200 + 513a011 + 7a110 + 362b011− 653b020 +

513b101 + 7b200).

2. a011 = (−1/(83656c2110+101362c110c200+27660c2200+200898c110+118505c200+

124781))(535271a110c
2
110+760032a110c110c200+226924a110c

2
200+101362b011c

2
110+

117219b011c110c200 + 27974b011c
2
200 − 1469039b020c

2
110 − 2131163b020c110c200 −

652170b020c
2
200+83656b101c

2
110+101362b101c110c200+27660b101c

2
200+535271b200c

2
110+

760032b200c110c200 + 226924b200c
2
200 + 1507394a110c110 + 1186363a110c200 +
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285817b011c110+173348b011c200−4066527b020c110−3276055b020c200+200898b101c110+

118505b101c200+1507394b200c110+1186363b200c200+981027a110+200898b011−

2589949b020 + 124781b101 + 981027b200).

3. a110 = (−1/(7069574c3110+13180278c2110c200+7430940c110c
2
200+1302764c3200+

24863682c2110+29894343c110c200+7343787c2200+30583155c110+18749598c200+

12801983))[373444b011c
3
110+681198b011c

2
110c200+425580b011c110c

2
200+100354b011c

3
200−

20088390b020c
3
110−37497240b020c

2
110c200−21016080b020c110c

2
200−3607230b020c

3
200+

7069574b200c
3
110+13180278b200c

2
110c200+7430940b200c110c

2
200+1302764b200c

3
200+

1026282b011c
2
110 + 101992b011c110c200 + 211182b011c

2
200 − 71512200b020c

2
110 −

86623245b020c110c200−21397815b020c
2
200+24863682b200c

2
110+29894343b200c110c200+

7343787b200c
2
200+1031460b011c110+408978b011c200−88655085b020c110−55021860b020c200+

30583155b200c110+18749598b200c200+391558b011−37231275b020+12801983b200].

4. c020 = 1 and c110 = α where α is a real root of the equation below (it has

exactly two real roots as we see in Figure 4.1.a, it was proved using Sturm

sequence routine in Maple)

h(x) = 1645079678071649x6 + 14962324997859279x5 + 58385391188383563x4+

124809867725124797x3 + 153170409627863643x2 + 101457081348131271x+

27728667159920858 = 0. (4.9)

5. c200 =
1

6176836600663893
(6580318712286596α5 + 49874416659530930α4 +

157938617665759247α3 + 262914062348203945α2 + 223502331891049690α+

79253734075676899).

Thus, the origin of system (4.8) can be bifurcated to give a weak focus of order

eight. To bifurcate eight limit cycles, therefore using Theorem 3.1 in (Christopher,

2005), it is only necessary to verify that the Liapunov quantities are independent at
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the bifurcate point. This is easily verified since the first three Liapunov quantities

including L0 are linear and the Jacobian determinant of the next five of hi with

respect to the parameters a101, a011, a110, c110 and c200 is also non-zero. To make

this calculation easier, we fix the free parameters as follows:

b011 = 0, b020 = 1, a002 = 0, c101 = 0, c011 = 0, c002 = 0, b200 = 0, b110 = 0,

b101 = 0, and b002 = 0.

The Jacobian determinant of the quadratic parts of the functions (h4, h5, h6, h7, h8)

with respect to the parameters (a1,0,1, a0,1,1, a1,1,0, c1,1,0, c2,0,0) is defined by

J(α) =
0.00001

15162124591158147075067820875860242754158183691798600176735960117056256

(−29779011607008337163515660667217916723047505859810631064278677541α5

− 241772852861251445203456457251002581431062835921434369129606596262α4

− 823092183040455619727324046790090039421460012901667365121475176463α3

− 1479017166073315675228451877186866716902202423724504102039004310110α2

− 1410958339653967061999414560604220683192656866109491277670750848395α

− 583108016922419337904344794136550896794540377813610666345479238928).

(4.10)

It is easy to see that this Jacobian determinant is non-zero or we can note from

Figure 4.1.b. Then in a neighbourhood of the origin, eight limit cycles can bifur-

cate from the origin of the system (4.7).
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Figure 4.1: (a) The graph of function h(x) in (4.9) has exactly two real roots. (b)
The Jabian determinant function J(x) in (4.10) at these two real roots of function
h(x) is not equal zero.
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Chapter 5

Some Chaotic Behaviour in Three

Dimensional Systems

The aim of this chapter is to present some basic concepts relating to chaotic

behaviour which will be useful in understanding the results which are shown in the

next chapter. Until recently there has been no universally accepted mathematical

definition of chaos. However, there are many possible definitions of chaos put

forward, such the definition of Devaney, Wiggins and Lyapunov (Devaney, 2003;

Wiggins, 1992; Robinson, 1995). The reader can consult these for more detailed

information.

This chapter will not provide new results on chaotic behaviour, but will rather

present some background on the horseshoe map including symbolic dynamics as

well as the Shilnikov phenomena.

5.1 The Horseshoe Map

To define the horseshoe map, we consider a square region S = [0, 1]× [0, 1] in the

plane. We define a map F : S→ R2 so that F(S) ∩ S consists of two components

which are mapped rectilinearly by F. The horseshoe map F takes S inside itself
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by following steps. First, F linearly contracts S by factor λ < 1
2

and expands S by

factor µ > 2 in the horizontal and vertical direction respectively, so that S is long

and thin. Then F folds S and places it back over S as displayed in Figure 5.1. We

note that the folding portion falls outside the square region S, F maps the two

horizontal boundaries AB,DC linearly onto the two horizontal intervals of length

λ and F is one-to-one but is not onto, therefore the inverse of F is not globally

defined (for more detail on this subject consult (Guckenheimer and Holmes, 2013;

Hirsch et al., 2013)).

Figure 5.1: The geometrical Horseshoe map. The solid curves depict the Horse-
shoe map F and the dotted curves depict inverse of the Horseshoe map F−1.

Since F−1(F(S)∩S) = S∩F−1(S), the preimage of F consists of two horizontal

rectangles H0 = [0, 1]× [a, a+µ−1] and H1 = [0, 1]× [b, b+µ−1] which are obtained
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by reversing the compressing, stretching and folding where a, b ∈ R. In addition,

F has a constant Jacobian on each of them given by

∓λ 0

0 ∓µ


with positive signs on H0 and negative signs on H1 (in addition to being compress-

ing in the horizontal direction by factor λ and stretching in the vertical direction

by factor µ, H1 is also rotated 1800, thus the matrix elements are negative).

Therefore the two horizontal rectangles H0 and H1 are mapped linearly onto the

two vertical rectangles V0 and V1 on F(S) ∩ S and the width of these is λ, this

means that:

F : H0 → V0 and F : H1 → V1. (5.1)

We note from equation (5.1) that the map F takes linearly the horizontal and

vertical lines in Hi to horizontal and vertical lines in Vi, i = 0, 1. The relationship

between the length of the horizontal line h with its image F(h) and the length of

the vertical line v whose image lies in S and its image F(v) are illustrated below:

length of F(h) = λ× (length of h),

length of F(v) = µ× (length of v).

We are interested in describing the set of all points whose orbits remain in S

when the map F is iterated. We describe the forward and backward orbits for

each point x ∈ S. The forward orbit of x ∈ S is given by {Fn(x)| n ≥ 0}. The

set of all points that always remain in S under forward iterates of F is denoted
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by Λ+ and defined by

Λ+ = {x ∈ S | Fn(x) ∈ S for n = 0, 1, 2, ...} .

If x ∈ Λ+ then F(x) ∈ S, so we must have either x ∈ H0 or x ∈ H1. Since

F2(x) ∈ S as well, we must also have F(x) ∈ H0 ∪H1, so that x ∈ F−1(H0 ∪H1).

In general, since Fn(x) ∈ S, we have x ∈ F−n(H0 ∪H1). Thus we may write the

set Λ+ as follows:

Λ+ =
∞⋂
n=0

F−n(H0 ∪H1). (5.2)

We denote one of the horizontal strips of height h that connects the right and left

boundaries of S as H, then a pair of narrower horizontal strips of height hµ−1

one in each of H0 and H1 are obtained from F−1(H) and their image under F are

given by H ∩ V0 and H ∩ V1. Thus F−1(Hi) consists of a pair of horizontal strips

each of height µ−2 with one in H0 and the other in H1. Similarly, F−2(Hi) gives

us four narrower horizontal strips of height µ−3. In general, F−n(Hi) consist of

2n narrower horizontal strips of height µ−(n+1), therefore F−n(H0 ∪ H1) consists

of 2n+1 narrower horizontal strips of height µ−(n+1) (it can be symbolized by

Hs0s1...sn , si ∈ {0, 1}, i = 0, 1, ..., n) and each strip can be labelled by a sequence of

0′s and 1′s of length n. When n −→∞, we obtain an infinite number of horizontal

strips and the height of each of these strips is given by limn−→∞( 1
µ
)n+1 = 0, µ > 2.

Thus, Λ+ consists of an infinite number of horizontal lines and each line can be

labelled by a unique infinite sequence of 0′s and 1′s. The intersection of all these

horizontal strips ( n approaches ∞) which is denoted by Λ+ forms a Cantor set

of horizontal lines (see (Guckenheimer and Holmes, 2013)).

The backward orbit of a point x ∈ S is given by {x ∈ S | F−n(x) ∈ S, n =

1, 2, 3, ...}, provided that F−n(x) is defined and in S. The set of all points whose
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backward orbit is defined and lies wholly in S is denoted by Λ− and defined by

Λ− =
{
x ∈ S | F−n(x) ∈ S for n = 1, 2, ...

}
.

If we take x ∈ Λ−, then we have F−n(x) ∈ S, ∀ n ≥ 1, which implies that

x ∈ Fn(S), ∀ n ≥ 1 and x ∈ Fn(H0 ∪H1), ∀ n ≥ 1. Thus we may write the set

Λ− as follows:

Λ− =
∞⋂
n=1

Fn(H0 ∪H1). (5.3)

If x ∈ S and F−1(x) ∈ S, then we must have x ∈ F(S) ∩ S which consists of a

pair of narrower vertical strips of width λ, one of them will be V0 and the other

is V1. Similarly, if F−2(x) ∈ S, we must have x ∈ F2(S) ∩ S which consists of

four narrower vertical strips of width λ2 (pictorially, this is described in Figure

5.2). In general, if F−n(x) ∈ S, we must have x ∈ Fn(S) ∩ S , which consists of

2n narrower vertical strips of width λn (it can be symbolized by Vs−1s−2...s−n , s−i ∈

{0, 1}, i = 1, ... n) and each strip can be labelled by a sequence of 0′s and 1′s of

length n. When n −→∞, we obtain an infinite number of vertical strips of width

zero, since limn−→∞λ
n = 0 for 0 < λ < 1

2
. Thus, Λ− consists of an infinite number

of vertical lines and each line can be labelled by a unique infinite sequence of 0′s

and 1′s. The intersection of all vertical strips ( n approaches∞) which is denoted

by Λ− forms a Cantor set of vertical lines (see (Guckenheimer and Holmes, 2013)).

Let

Λ = Λ+ ∩ Λ− =
∞⋂

n=−∞

Fn(H0 ∪H1) (5.4)

be the intersection of these sets. The set Λ constructs an invariant set, therefore

if a point x ∈ Λ, then both its forward and its backward orbits lie completely in

S. The map F restricted to its invariant set Λ, has a countable infinity of periodic

orbits of all periods, an uncountable infinity of non-periodic orbits and a dense
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orbit (Wiggins, 2003) .

Figure 5.2: The second iteration of the Horseshoe map F: Vi,j = F 2(Hi,j), i, j =
1, 2.

5.2 Symbolic Dynamics

Now, we represent the invariant set Λ+ which is defined in (5.2) by using symbolic

dynamics. When n = 0 in equation (5.2), by definition of the Horseshoe map

F, H0 ∪ H1 = S ∩ F−1(S) consists of two horizontal strips H0 and H1 of height

µ−1 (see Figure 5.1). This set is denoted by Λ+ where,

Λ+ = H0 ∪H1

= S ∩ F−1(S)

=
⋃

s0∈{0,1}

Hs0 (5.5)

= {p ∈ S : p ∈ Hs0 , s0 ∈ {0, 1}}.

When n = 1, since H0 and H1 intersect both vertical boundaries of V0 and V1,

the set (H0 ∪ H1) ∩ F−1(H0 ∪ H1) = S ∩ F−1(S) ∩ F−2(S) consists of four nar-
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rower horizontal strips, two each in H0 and H1, with each of height µ−2. Using

equation (5.5) we have

Λ+ = (H0 ∪H1) ∩ F−1(H0 ∪H1)

= S ∩ F−1(S) ∩ F−1(S ∩ F−1(S))

= S ∩ F−1(S) ∩ F−2(S)

= S ∩ F−1(S ∩ F−1(S))

= S ∩ F−1(
⋃

s1∈{0,1}

Hs1). (5.6)

In the equation above, after substituting the value of S∩F−1(S) we have changed

the subscript s0 on Hs0 to s1, because si is merely a dummy variable and has no

real effect. Since F−1(Hs1) can not intersect all of S but only H0 ∪ H1, so that

equation (5.6) becomes

Λ+ =
⋃

si∈{0,1}
i=0,1

(Hs0 ∩ F−1(Hs1))

=
⋃

si∈{0,1}
i=0,1

Hs0s1

= {p ∈ S : p ∈ Hs0 , F(p) ∈ Hs1 , si ∈ {0, 1}, i = 0, 1}. (5.7)

This is represented pictorially in Figure 5.2.

For n=2, using the same reason as in the previous steps the set (H0 ∪ H1) ∩

F−1(H0 ∪H1) ∩ F−2(H0 ∪H1) consists of eight horizontal strips, four each in H0

and H1 and each having height µ−3. This can be denoted as

Λ+ = (H0 ∪H1) ∩ F−1(H0 ∪H1) ∩ F−2(H0 ∪H1)

= S ∩ F−1(S ∩ F−1(S) ∩ F−2(S))
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= S ∩ F−1(
⋃

si∈{0,1}
i=1,2

Hs1s2)

=
⋃

si∈{0,1}
i=0,1,2

(Hs0 ∩ F−1(Hs1s2))

=
⋃

si∈{0,1}
i=0,1,2

Hs0s1s2 (5.8)

= {p ∈ S : p ∈ Hs0 , F(p) ∈ Hs1 , F2(p) ∈ Hs2 , si ∈ {0, 1}, i = 0, 1, 2}.

If we continually repeat this procedure, it is not hard to see that at the kth step

(n = k − 1) we obtain 2k horizontal strips, 2k−1 each in H0 and H1 with each of

height µ−k and each strip can be labelled uniquely with sequence of 0′s and 1′s of

length k. This is denoted by

Λ+ =
k−1⋂
n=0

F−n(H0 ∪H1)

= (H0 ∪H1) ∩ F−1(H0 ∪H1) ∩ ... ∩ F−(k−1)(H0 ∪H1)

= S ∩ F−1(S) ∩ F−2(S) ∩ ... ∩ F−k(S)

= S ∩ F−1(S ∩ F−1(S) ∩ ... ∩ F−(k−1)(S))

= S ∩ F−1(
⋃

si∈{0,1}
i=1,2,...,k−1

Hs1s2...sk−1
)

=
⋃

si∈{0,1}
i=0,1,2,...,k−1

(Hs0 ∩ F−1(Hs1s2,...sk−1
))

=
⋃

si∈{0,1}
i=0,1,2,...,k−1

Hs0s1s2,...sk−1
(5.9)

= {p ∈ S : Fi(p) ∈ Hsi , si ∈ {0, 1}, i = 0, 1, 2, ..., k − 1}.

Now, letting n −→ ∞, since a decreasing intersection of compact sets is non-

empty, then we obtain an infinite number of horizontal strips of height zero which

62



5.2. Symbolic Dynamics

is obtained by limn→∞( 1
µ
)n+1 = 0, µ > 0. Each line can be labelled by a unique

infinite sequence of 0′s and 1′s as follows

Λ+ =
∞⋂
n=0

F−n(H0 ∪H1)

=
⋃

si∈{0,1}
i=0,1,2,...

(Hs0 ∩ F−1(Hs1s2...sk...))

=
⋃

si∈{0,1}
i=0,1,2,...

Hs0s1s2...sk...

= {p ∈ S : Fi(p) ∈ Hsi , si ∈ {0, 1}, i = 0, 1, 2, ...}. (5.10)

Now, we describe the invariant set Λ− by using symbolic dynamics. When n =

1 in equation (5.3), by definition of the Horseshoe map F , F(H0∪H1) = S∩F(S)

and it consists of the two vertical strips V0 and V1 of width λ (see Figure 5.1).

This set is denoted as follows

Λ− = F(H0 ∪H1)

= S ∩ F(S)

= V0 ∪ V1,

we denote V0 ∪ V1 =
⋃
s−1∈{0,1} Vs−1 , therefore

Λ− =
⋃

s−1∈{0,1}

Vs−1 (5.11)

= {p ∈ S : p ∈ Vs−1 , s−1 ∈ {0, 1}}.

When n = 2, since F(H0 ∪H1) = S ∩ F(S) consists of two vertical strips V0 and

V1 that intersecting the horizontal boundaries of H0 and H1, then F(H0 ∪H1) ∩

F2(H0 ∪H1) = S ∩ F(S) ∩ F2(S) corresponds to four vertical strips, two each in
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V0 and V1, with each of width λ2. Using equation (5.11), we have

Λ− = F(H0 ∪H1) ∩ F2(H0 ∪H1)

= S ∩ F(S) ∩ F(S ∩ F(S))

= S ∩ F(S ∩ F(S))

= S ∩ F(
⋃

s−2∈{0,1}

Vs−2). (5.12)

In the above equation, after substituting the value of S∩F(S) we have changed the

subscript s−1 on Vs−1 to s−2, because si is only a dummy variable. Since F(Vs−2)

can not intersect all of S but only V0 ∪ V1, so that equation (5.12) becomes

Λ− =
⋃

s−i∈{0,1}
i=1,2

(Vs−1 ∩ F(Vs−2))

=
⋃

s−i∈{0,1}
i=1,2

Vs−1s−2 (5.13)

= {p ∈ S : p ∈ Vs−1 , F−1(p) ∈ Vs−2 , s−i ∈ {0, 1}, i = 1, 2}.

Pictorially, the second positive iterate for the Horseshoe map F is described in

Figure 5.2.

For n=3, F(H0 ∪H1) ∩ F2(H0 ∪H1) ∩ F3(H0 ∪H1) = S ∩ F(S) ∩ F2(S) ∩ F3(S),

using the same reason as in the previous steps this set consists of eight vertical

strips, four each in V0 and V1, with each of width λ3. This can be represented as

Λ− = F(H0 ∪H1) ∩ F2(H0 ∪H1) ∩ F3(H0 ∪H1)

= S ∩ F(S ∩ F(S) ∩ F2(S))

= S ∩ F(
⋃

s−i∈{0,1}
i=2,3

Vs−2s−3)
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=
⋃

s−i∈{0,1}
i=1,2,3

(Vs−1 ∩ F(Vs−2s−3))

=
⋃

s−i∈{0,1}
i=1,2,3

Vs−1s−2s−3 (5.14)

= {p ∈ S : p ∈ Vs−1 , F−1(p) ∈ Vs−2 , F−2(p) ∈ Vs−3 , s−i ∈ {0, 1}, i = 1, 2, 3}.

Continuing this procedure, at the kth step we obtain 2k vertical strips, 2k−1 each

in V0 and V1 with each of width λk and each of the strips can be labelled uniquely

with sequence of 0′s and 1′s of length k. That is

Λ− = F(H0 ∪H1) ∩ F2(H0 ∪H1) ∩ ... ∩ Fk(H0 ∪H1)

= S ∩ F(S ∩ F(S) ∩ ... ∩ Fk(S))

= S ∩ F(
⋃

s−i∈{0,1}
i=2,3,...,k

Vs−2s−3...s−k)

=
⋃

s−i∈{0,1}
i=1,2,3,...,k

(Vs−1 ∩ F(Vs−2s−3...s−k))

=
⋃

s−i∈{0,1}
i=1,2,3,...,k

Vs−1s−2s−3,...,sk (5.15)

= {p ∈ S : F−i+1(p) ∈ Vs−i , s−i ∈ {0, 1}, i = 1, 2, 3, ... k}.

As in the case of the horizontal strip, we let n −→ ∞, since limn→∞(λ)n = 0, for

0 < λ <
1

2
, it is clear that we obtain an infinite number of vertical strips of width

zero. Thus, we have shown that

Λ− =
∞⋂
n=1

Fn(H0 ∪H1)

=
⋃

s−i∈{0,1}
i=1,2,...

(Vs−1 ∩ F(Vs−2s−3...s−k...))
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=
⋃

s−i∈{0,1}
i=1,2,...

Vs−1s−2s−3...s−k...

= {p ∈ S : F−i+1(p) ∈ Vs−i , s−i ∈ {0, 1}, i = 1, 2, 3, ...}. (5.16)

This set consists of an infinite number of vertical lines and each line can be labelled

by a unique infinite sequence of 0′s and 1′s .

Since each horizontal line in Λ+ and each vertical line in Λ− are intersected in

a unique point, then equation (5.4) indicates that the invariant set Λ consists of

an infinite set of points and each point x ∈ Λ can be labelled uniquely by a bi-

infinite sequence of 0′s and 1′s. From equation (5.10) and (5.16), we can describe

the invariant set Λ as follows

Λ =Λ+ ∩ Λ−

=
⋃

s∓i∈{0,1}
i=0,1,2,...

(Hs0s1s3.... ∩ Vs−1s−2s−3....)

={p ∈ S : Fi(p) ∈ Hsi , i = 0,±1,±2, ...} (5.17)

since F(Hsi) = Vsi .

Now, we explain the direct relationship between any point p ∈ Λ and the bi-

infinite sequence of 0′s and 1′s. Let s−1s−2...s−k... be a particular infinite sequence

of 0′s and 1′s, then Vs−1s−2...s−k... corresponds to a unique vertical line. We let

s0s1s2...sk... be another particular infinite sequence of 0′s and 1′s, then Hs0s1s2...sk...

be a unique horizontal line. Since each vertical line intersects each horizontal line

in a unique point p, then there is a well-defined map from p ∈ Λ to infinite

sequence of 0′s and 1′s, which is called the itinerary map I.

To present symbolic dynamics into the horseshoe map F, a doubly infinite

sequence (bi-infinite sequences) of 0′s and 1′s corresponding to each point in Λ
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will be chosen. For x ∈ Λ, the itinerary map I from Λ into sequence space Σ

where

Σ = {s = (...s−2s−1.s0s1s2...), si = 0, or 1}

is defined by

I(x) = (...s−2s−1.s0s1s2...)

where si = 0 or 1, si = k if and only if Fi(x) ∈ Hk and the decimal point refers

to separate the forward and backward parts of the sequences. We define the shift

map σ : Σ→ Σ as follows

s = (...s−2s−1.s0s1s2...) ∈ Σ

σ(s) = (...s−2s−1s0.s1s2...)

or, more compactly,

(σ(s))i = si+1

that is the map σ shifts each sequence in Σ one unit to the left. This map has

inverse, shifting one unit to the right gives us its inverse and also the map is chaotic

in Σ (see (Wiggins, 2003)). Suppose x ∈ Λ and I(x) = (...s−2s−1.s0s1s2...), then

we have x ∈ Hs0 ,F(x) ∈ Hs1 , F−1(x) ∈ Hs−1 and so forth. And also we have

F(x) ∈ Hs1 , F(F(x)) ∈ Hs2 , x = F−1(F(x)) ∈ Hs0 and so forth. Therefore,

I(F(x)) = (...s−2s−1s0.s1s2...) = σ(I(x))

I ◦ F = σ ◦ I ⇒ F = I−1 ◦ σ ◦ I.
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This is a conjugacy equation, this means that the itinerary map I gives a topo-

logical conjugacy between the shifting map σ on Σ and the horseshoe map F on

Λ. Since the itinerary map I : Λ → Σ is a homomorphism (for the proof see

(Wiggins, 1992, 2003)), then the orbit of x ∈ Λ under the horseshoe map F and

the orbit I(x) under the shift map σ in Σ are directly corresponding. This means

that the whole orbit structure of σ on Σ and F on Λ are identical. Therefore, the

horseshoe map F is chaotic in the invariant set Λ (Wiggins, 2003).

5.3 The Shilnikov Phenomena

In this section, we consider a three dimensional system in which there is a homo-

clinic loop to a saddle-focus critical point.

5.3.1 Saddle-Focus and Saddle Index

We consider a three dimensional system of the form

ẋ = µx− ωy + F1(x, y, z),

ẏ = ωx+ µy + F2(x, y, z), (5.18)

ż = λz + F3(x, y, z),

where Fi, i = 1, 2, 3 are real analytic functions in the neighbourhood of the origin

in R3 and with their derivatives vanish at the origin. It is clear that the origin is

a critical point of saddle type and the eigenvalues of (5.18) linearized about the

origin are given by λ1,2 = µ± ωi, ω 6= 0 and λ3 = λ. We assume that

λ > −µ > 0 ,
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by this algebraic assumption, the saddle-focus critical point at the origin possesses

a two dimensional stable manifold, W s, which is a surface that is tangent to the

plane z = 0 and a one dimensional unstable manifold, W u, which is a curve that is

tangent to the z−axis at the origin. The unstable manifold consists of the origin

and two separatrices that tend to the point as t −→ −∞. If we restrict the system

to the stable manifold only, the above assumption indicates that the critical point

at the origin will be a stable focus, i.e. when t −→ +∞ the orbits on the stable

manifold, W s, spiral onto the critical point. Therefore, in the full system, the

critical point at the origin is called a saddle-focus. The second assumption, which

is a geometric assumption, is that equation (5.18) possesses a homoclinic orbit Γ

connecting the origin to itself which is a trajectory bi-asymptotic to the origin

as t −→ ±∞ (Γ ∈ W s ∩W u). Now, we introduce the other ingredients of the

Shilnikov phenomena which are saddle index υ = −µ
λ

and saddle value (saddle

quality) σ = µ + λ. Depending on the sign of the saddle value σ, or whether

the saddle index υ is less or greater than 1, the dynamics of (5.18) near the

homoclinic loop Γ is simple if the saddle index υ is greater than 1 (saddle value

σ < 0) (Shilnikov, 1963), or complex if the saddle index υ is less than 1 (saddle

value σ > 0). The condition υ < 1 (σ > 0) is known as the Shilnikov condition.

5.3.2 Poincaré Map

In order to analyse the nature of the orbit structure near the homoclinic loop

Γ, we construct a two dimensional Poincaré map T on a small cross-section Π1

perpendicular to Γ at M+. This map is obtained by dividing the trajectory close

to the critical point at the origin and its unstable manifold. The first part is the

local map T1 which is defined by trajectories near the origin which takes points

from Π1 to the second cross-section Π2. This second cross-section Π2 is transversal

to unstable manifold, W u, (parallel to the stable manifold W s) which intersects
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Γ at M− . The second part, the global map T2, is defined by trajectories close

to Γ and takes points on Π2 and brings them back to Π1. The composition of T1

and T2 constructs the Poincaré map T, i.e. T = T2 ◦T1.

We observe that the stable manifold, W s, breaks the cross section Π1 into the

top Π+
1 and bottom Π−1 components. The orbits that start at the bottom part Π−1

leave a small neighbourhood of the origin in the opposite direction of the loop Γ

and therefore do not intersect Π2. The orbits that start at the upper part Π+
1 , will

intersect Π2 and then follow the loop Γ until they return to Π1. If the returning

orbits intersect Π−1 , then they leave the neighbourhood of Γ; otherwise they follow

the loop Γ to construct another circuit and return to Π1 and so forth. Hence, the

map T1 is defined only on the top part Π+
1 ( T1 : Π+

1 −→ Π2). Let Π1 and Π2 be

two rectangles are defined as follows

Π1 = {(x, y, z) ∈ R3 | x = 0, εe
2πµ
ω ≤ y ≤ ε, 0 < z ≤ ε}

Π2 = {(x, y, z) ∈ R3 | z = ε}.

The cross-section Π1 is taken as a small rectangle on yz−plane, such that each

trajectory only strikes Π1 once when it spirals into the origin. The flow generated

by (5.18) linearized about the origin which starts from (0, y, z) at t = 0 and ends

at z = ε at t = τ must satisfy the relation

x(τ)

y(τ)

 = e

τ


µ −ω

ω µ

0

y

 = eµτ

cos(ωτ) − sin(ωτ)

sin(ωτ) cos(ωτ)


0

y

 (5.19)

z = εe−λτ .

The time τ from (0, y, z) ∈ Π1 to Π2 which is called the flight time is given by
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τ = −1
λ

ln(
z

ε
). Substituting this expression into equation (5.19), we obtain the

formula for the local map T1 : Π1 −→ Π2 which is given by

T1 :

 y

z

 7→
 x1

y1

 = y
(z
ε

)υ sin(ω
λ

ln( z
ε
))

cos(ω
λ

ln( z
ε
))

 , (5.20)

where z > 0 and υ be a saddle index. From the above equation, we can see that

the image T1(Π
+
1 ) on the cross-section Π2 spirals onto the point M− as we see in

Figure 5.3. The global map T2 maps this spiral difformorphically into the cross-

section Π1 and takes the point M− on Π2 to the point M+ on Π1. This map also

preserves the spiralling shape too. It intersects the stable manifold, W s, infinitely

many times close to M+. Combing the local and global maps, the Poincaré return

map T = T2 ◦ T1 is obtained. We strip Π+
1 down into a countable number of the

segments Σk provided that the image of the segment Σk and the bounded region

between the segment and its successive segment Σk+1 spirals rotate to 2π in the

x1y1−plane. The global map T2 sends the image of T1(Σk) to the half-curl on

Π+
1 and it also brings the image of T1(Σk∗) ( where Σk∗ is a bounded region of

Σk and Σk+1) to the next half-curl on Π−1 (see Figure 5.3). The relation between

the position z ∼ zk of Σk (distance of the top of Σk from the stable manifold W s)

and its image under the local map T1 ( distance of T1(zk) of the half-curl T1(Σk)

from the origin in Π2) is follows

T1(zk) ∼ zυk .

Since the global map T2 preserves the distance i.e. the distance of the half-curl in

Π+
1 from M+ is of the same order, then

T (zk) ∼ zυk .
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Suppose zk = e
−2πk
ω , k = 1, 2, 3, ..., then T (zk) ∼ e

−2πkυ
ω . Thus, when υ > 1, there

is no intersection between the segment Σk and T (Σk), in this case the image of

Σk lies below its pre-image. On the contrary, when υ < 1, for each k large enough

the intersection of Σk with its image T (Σk) is non-empty and consists of two

connected components. This leads to a form Smale horseshoe, thus the chaos in

the return map is defined near the homoclinic orbit. This is geometrically evidence

for having fixed point on each components of the Poincaré return map, T . We

recall that a fixed point of the Poincaré return map corresponds to a periodic orbit

of the system. As a result, if the saddle index υ < 1 ( or saddle value σ > 0),

then there exist infinitely many saddle periodic orbits in any neighbourhood of

the homoclinic loop Γ. For more detailed justification on this subject the reader

should consult references (Glendinning and Sparrow, 1984; Shilnikov et al., 2001).

In this thesis, we try to construct an example of a three dimensional Lotka-

Volterra system to apply these ideas. Since the 3DLVS has always three invariant

planes, therefore none of the planar critical points have a homoclinic loop. How-

ever, by using some specific parameters, we try to construct a loop connecting

three critical points so that the product of their ratio of eigenvalues around the

loop is less than 1. This condition plays the same role as the Shilinikov condition.
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Figure 5.3: The Shilnikov phenomena.
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Chapter 6

The Existence of Horseshoe

Dynamics in 3DLVS

This chapter focuses on the chaotic behaviour of the three dimensional Lotka-

Volterra system. The sufficient conditions on parameters for the existence of the

horseshoe map for the three dimensional Lotka-Volterra system were obtained.

6.1 A Heteroclinic Cycle

In this chapter, we consider the three dimensional Lotka-Volterra system

ẋ1 = x1(r1 − x1 − x2 − x3),

ẋ2 = x2(r2 − 2x1 +
5

2
x2 + a2,3x3), (6.1)

ẋ3 = x3(r3 + x1 − 3x2 − x3).

The main goal in this section is to investigate the heteroclinic cycle that connects

the following three critical points:

A1(
r1 − r3

2
, 0,

r1 + r3
2

), A2(
5r1 + 2r2

9
,
4r1 − 2r2

9
, 0) and A3(r1, 0, 0).
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For the sake of simplicity, we can scale such that the first planar critical point

is A1(1, 0, 1) in this case r1 = 2 and r3 = 0.

In the first subsection below, a line that connects A1 to A2 is found and it

satisfies the conditions of invariant and non-singularity of the line. In the two

subsequent subsections, isoclines are used to collect some information of the orbit

directions. This information is useful to show that the three dimensional Lotka-

Volterra system in this study has a heteroclinic orbit.

6.1.1 A Heteroclinic Orbit Between Two Different Planar

Critical Points

In this subsection, some conditions on the parameters of the three dimensional

Lotka-Volterra system have been found for a heteroclinic orbit that joins two

planar critical points to exist. A line C is called an invariant of system (6.1) if

any trajectory which starts in or enters C and remains in C. This is equivalent to

the vector field (6.1) and the direction vector for the given line being parallel and

have a zero cross product. Such a line is a heteroclinic orbit if it joins two critical

points.

The line that joins the two above planar critical points A1 and A2 is defined

by:

x1 = 1 +
1

9
(2r2 + 1)t,

x2 =
2

9
(4− r2)t,

x3 = 1− t , t ∈ [0, 1] .

The above line is invariant if the following conditions are held:

a2,3 =
9

2
and r2 = −1

2
.
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After scaling the first planar critical point A1 and applying the above invariant

conditions, the three critical points and the invariant line will be:

A1(1, 0, 1), A2(1, 1, 0), A3(2, 0, 0) and

x1 = 1, x2 = t, x3 = 1− t, t ∈ [0, 1] . (6.2)

The above line is a heteroclinic orbit that joins the two planar critical points

A1 and A2.

6.1.2 A Planar Heteroclinic Orbit on the x1x2-plane

To show that the three dimension Lotka-Volterra system (6.1) has a heteroclinic

orbit on x1x2-plane that connecting the planar critical point A2 and axial critical

point A3 we study the isoclines. That is, the lines with equal slope. These lines are

used to help to draw the phase portrait. It is easy to know where the trajectories

have vertical and horizontal tangent lines by finding the isoclines for ẋ1 = 0 and

ẋ2 = 0. If ẋ1 = 0 and ẋ2 = 0, then there are no motion horizontally and vertically

respectively. The vertical trajectories are given by x1 = 0, and x1 + x2 = 2 which

are obtained from ẋ1 = 0 and the horizontal trajectories are given by x2 = 0 and

4x1 − 5x2 = −1 which are obtained from ẋ2 = 0.

Since the planar critical point A2 is in the first quadrant in x1x2-plane, we are

interested in collecting the information in the first quadrant. We fix a value of

x1 and suppose x2 is above the isocline x1 + x2 = 2, in this case we can write

x2 = 2 − x1 + ε, ε ∈ R+ and we obtain ẋ1 = −εx1 < 0. The reverse holds if

x2 is below the line, in this case ẋ1 = εx1 > 0. Similarly, if x2 is above the line

4x1 − 5x2 = −1 which is obtained from ẋ2 = 0, then ẋ2 = 5
2
εx2 > 0, with the

opposite being true when x2 is below i.e. ẋ2 = −5
2
εx2 < 0.

When a trajectory of the system crosses an isocline, it is either horizontal or
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vertical because either ẋ1 or ẋ2 is zero there. Moreover, with x1 = 0, one seems

that ẋ2 < 0 when x2 ∈ (0, 1
5
) and ẋ2 > 0 when x2 >

1
5

and x2 < 0. A similar result

holds when x2 = 0 in this case ẋ1 > 0 when 0 < x1 < 2, otherwise ẋ1 < 0 . Now

we have sufficient information to sketch the orbit directions of the system. The

vertical and horizontal information on the isoclines tell us how arrows must bend.

As shown in Figure 6.1, any separatrix of A2 passing through the region that is

bounded by the four isoclines in x1x2−plane tends toward the critical point A3.

This separatrix is called heteroclinic orbit and its image is depicted by a dotted

curve (see Figure 6.1).

Figure 6.1: Isoclines and their analysis for system (6.1) on x1x2−plane with het-
eroclinic orbit that connects the two critical points A2 and A3 which is depicted
by a dotted curve.
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6.1.3 A Planar Heteroclinic Orbit on the x1x3-plane

To show that a heteroclinic orbit that connects the axial critical point A3 with

the planar critical point A1 exist, we consider the isoclines again. The vertical

trajectories are given by x1 = 0 , x1 + x3 = 2 and the horizontal trajectories

are given by x3 = 0 , x1 − x3 = 0 which are obtained from ẋ1 = 0 and ẋ3 = 0

respectively.

Since the planar critical point A1 is belong to the first quadrant of x1x3-plane,

we are only interested in collecting the information in the first quadrant. We fix

a value of x1 and suppose x3 is above the isocline x1 + x3 = 2, in this case we

can write x3 = 2 − x1 + ε, ε ∈ R+ and we obtain ẋ1 = −εx1 < 0 but if x3 is

below the isocline, ẋ1 = εx1 > 0 is obtained. Similarly, if x3 is above the isocline

x1− x3 = 0, then ẋ3 = −εx3 < 0 and if x3 is below the isocline then ẋ3 = εx3 > 0

will be obtained. This means that the trajectory that starts in this region spiral

toward A1.

In addition to the above information, to sketch the phase portrait, the orbit

directions information on the axial isoclines are needed. On the axial isoclines

x1 = 0 and x3 = 0 the following information are obtained. On the line x1 = 0

always ẋ3 is negative and on the line x3 = 0, ẋ1 is positive where 0 < x1 < 2

otherwise it is negative. After combining these information, sufficient information

for sketching the orbit directions are obtained which are shown in Figure 6.2. The

spiral orbit that connects the axial critical point A3 with planar critical point A1

is the heteroclinic orbit.

Combining the three heteroclinic orbits which are obtained from the above

subsections give us the heteroclinic cycle (see Figure 6.3).
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Figure 6.2: Isoclines and their analysis for system (6.1) on x1x3−plane with het-
eroclinic orbit that connects the two critical points A3 and A1 which is depicted
by a dotted curve.

6.2 The Local Study of Trajectories

In this section, we investigate the local behaviour of the three dimensional Lotka-

Volterra system that possesses a heteroclinic cycle joining the three critical points,

they are of type planar saddle-focus, another planar saddle and the third of type

axial saddle. Here, we do not examine the full system. Instead, a linear part of

the three dimensional system in a neighbourhood of the critical points is studied.

According to the Grobman-Hartman Theorem (Zhang, 2005) the nonlinear and

its linear system are locally topologically equivalent near the hyperbolic critical

points, for the sake of simplicity we assume that the three dimensional system (6.1)
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Figure 6.3: The Heteroclinic cycle connecting the three critical points.

is linear near the three chosen critical points. The study of the expected phenom-

ena depends on the qualitative properties of the linear system and the heteroclinic

assumption.

6.2.1 Planar Saddle-Focus Critical Point

In this subsection, the local behaviour of trajectories of the three dimensional

Lotka-Volterra system in a small neighbourhood of the critical point A1 is stud-

ied. A linear system of the three dimensional system in a certain cylindrical

neighbourhood of the planar saddle-focus critical point A1 is analyzed. In this

case, the system has two complex eigenvalues µ ± ωi where µ < 0, ω 6= 0 and

positive eigenvalue λ, provided that λ > −µ (Shilnikov condition). Then, the

system has a two-dimensional stable surface which lies on x1x3-plane on which

the trajectories spiral toward the critical point and a one-dimensional unstable
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curve which is a heteroclinic orbit that joins the two planar critical points.

The linearized system of the three dimensional Lotka-Volterra system (6.1) at

A1(1, 0, 1) is given by

ẋ1 = −x1 − x2 − x3,

ẋ2 = 2x2, (6.3)

ẋ3 = x1 − 3x2 − x3.

We use the transformation

Xold = PXnew, P =


1 0 1

0 −1 0

−1 1 1

 ,

where Xold = (x1, x2, x3) and Xnew = (y1, y2, y3). Then, system (6.3) can be

transformed to the normal form

ẏ1 = −y1 − y3,

ẏ2 = 2y2, (6.4)

ẏ3 = y1 − y3.

The associated eigenvalues are µ ± iω and λ where µ = −1, ω = 1 and λ = 2,

hence the origin is a saddle-focus critical point. To analyse the flow near the

critical point, we introduce the cylindrical region S1 of R3 given by y21 + y23 ≤ r2o

and 0 ≤ y2 ≤ a. The flow φt generated by system (6.4) is given by

y1(t) = eµt(y01 cos(ωt)− y03 sin(ωt)),

y2(t) = y02e
λt, (6.5)
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y3(t) = eµt(y01 sin(ωt) + y03 cos(ωt)).

Using polar coordinates in the y1y3-plane where y1 = r cos(θ) and y3 = r sin(θ),

solutions in S1 are given by

r(t) = r0e
µt,

y2(t) = y02e
λt, (6.6)

θ(t) = θ0 + ωt.

This system has a one dimensional unstable manifold lying on the y2-axis and

a two dimensional stable manifold lying on y1y3-plane. Note that the boundary

of the cylindrical region S1 consists of two pieces: the upper disk D1 given by

y2 = a, r ≤ r0, where a ∈ R+, which can be parametrized by r and θ, and the

cylindrical boundary C given by r = r0, 0 ≤ y2 < a, which can be parametrized

by θ and y2.

Depending on the eigenvalues, any solution of this system originating in C

must eventually leave S1 through D1 and it has the shape of a spiral. Hence, we

can define a map Ψ1 : C → D1 given by following solution curves starting in C

until they first meet D1. We denote the time taken for the solution curves to passes

from a point (y02, θ0) in C to D1 by T = T (y02, θ0). We compute directly from

the second equation in (6.6) that T = − ln( λ
√
y02/a). Clearly, the time increases

logarithmically when the initial point goes closer to the stable manifold. Thus,

we obtain

Ψ1 :


r0

θ0

y02

 7→


r1

θ1

a

 , (6.7)
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where r1 = r0(
λ
√
y02/a)−µ, θ1 = θ0 − ω ln( λ

√
y02/a) and (r1, θ1) are polar the

coordinates on D1. We note that the map Ψ1 brings the vertical line θ = θ∗ in C

to the spiral in D1:

y02 → (r0(
λ

√
y02/a)−µ, θ∗ − ω ln( λ

√
y02/a)). (6.8)

Since, as y02 → 0 in equation (6.8), ln( λ
√
y02/a) → −∞ and θ∗ − ω ln( λ

√
y02/a) →

∞, the image of the vertical line θ = θ∗ spirals down to the point r1 = 0 in

D1. Geometrically, the circles y2 = Γ in C are mapped by Ψ1 to circles r1 =

r0(
λ
√

Γ/a)−µ centred at r1 = 0 in D1.

In another way, in order to know what the image of any strips look like, we

introduce two cross sections. The first one, Π0, lies in the y1y2−plane and the

second one, Π1, is parallel to y1y3−plane ( it coincides with D1 ). The flow, φt,

generated by system (6.4) is also given by (6.5) where (y01, y
0
2, y

0
3) lies in Π0 and the

flight time of trajectories starting on Π0 to reach Π1 is also given by T = ln( λ

√
a

y02
).

Thus the map Ψ1
1 : Π0 → Π1 is given by

Ψ1
1 :


y1

y2

0

 7→


y1

(
a
y2

)µ
λ

cos(ω
λ

ln a
y2

)

a

y1

(
a
y2

)µ
λ

sin(ω
λ

ln a
y2

)

 . (6.9)

This map is not a diffeomorphism, hence we restrict it to the cross section Π0 as

follows

Π0 =
{

(y1, y2, y3) ∈ R3| y3 = 0, ae
2πµ
ω ≤ y1 ≤ a, 0 ≤ y2 ≤ a

}
. (6.10)

Thus, the map Ψ1
1 : Π0 −→ Π1 is a diffeomorphism . Now, we want to describe
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the geometry of Ψ1
1(Π0) on Π1. In polar coordinates, Ψ1

1(Π0) is defined as follows

 r

θ

 =

 y1

(
a
y2

)µ
λ

ω
λ

ln a
y2

 . (6.11)

From the above equation, we note the following. Firstly, a vertical line y1 =

constant in Π0 is mapped to a logarithmic spiral. Secondly, a horizontal line

y2 = constant in Π0 is mapped to a radial line emanating from the point (0, a, 0).

To illustrate this, we consider a closed set

Rk = {(y1, y2, y3) ∈ R3| y3 = 0, ae
2πµ
ω ≤ y1 ≤ a, ae

−2π(k+1)λ
ω ≤ y2 ≤ ae

−2πkλ
ω }.

Studying the behaviour of the image of the horizontal and vertical boundaries of

the closed set Rk gives us a geometric picture of the image of Rk under Ψ1
1. We

denote these four boundaries of Rk as

Hu = {(y1, y2, y3) ∈ R3| y3 = 0, y2 = ae
−2πkλ
ω , ae

2πµ
ω ≤ y1 ≤ a},

H l = {(y1, y2, y3) ∈ R3| y3 = 0, y2 = ae
−2π(k+1)λ

ω , ae
2πµ
ω ≤ y1 ≤ a},

V r = {(y1, y2, y3) ∈ R3| y3 = 0, ae
−2π(k+1)λ

ω ≤ y2 ≤ ae
−2πkλ
ω , y1 = a},

V l = {(y1, y2, y3) ∈ R3| y3 = 0, ae
−2π(k+1)λ

ω ≤ y2 ≤ ae
−2πkλ
ω , y1 = ae

2πµ
ω }.

The image of these boundaries under Ψ1
1 are given by

Ψ1
1(H

u) = {(r, θ, y2) ∈ R3| y2 = a, θ = 2kπ, ae
2(k+1)πµ

λ ≤ r ≤ ae
2kπµ
λ },

Ψ1
1(H

l) = {(r, θ, y2) ∈ R3| y2 = a, θ = 2(k + 1)π, ae
2(k+2)πµ

λ ≤ r ≤ ae
2(k+1)πµ

λ },

Ψ1
1(V

r) = {(r, θ, y2) ∈ R3| y2 = a, 2kπ ≤ θ ≤ 2(k + 1)π, r = ae
µ
ω
θ},

Ψ1
1(V

l) = {(r, θ, y2) ∈ R3| y2 = a, 2kπ ≤ θ ≤ 2(k + 1)π, r = ae(2π+θ)
µ
ω }.
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The closed set Rk and its horizontal and vertical boundaries are displayed in

Figure 6.5. The geometry of this figure is a fundamental part of showing that a

horseshoe map may happen in the three dimensional system (6.1).

From equation (6.6), we note that the ratio of the eigenvalues between the

stable and unstable manifold is
−µ
λ

. We denote the distance of the upper bound

of a strip on the cylindrical boundary C from the stable manifold by h1 (it means

y2 = h1) and the distance of its image under Ψ1 on D1 from the unstable manifold

by h2 ( it means r1 = h2). Thus, equation (6.8) indicates that

h2 = k1h
−µ
λ

1 , (6.12)

where k1 is a positive constant. This is shown in Figure 6.4.

Figure 6.4: The behaviour of trajectories near the planar saddle-focus critical
point where the ratio of the eigenvalues around the point is equal to −µ

λ
.

86



6.2. The Local Study of Trajectories

Figure 6.5: The boundaries of the closed region Rk with their images under Ψ1
1.

6.2.2 Planar Saddle Critical Point

In order to study the local behaviour of trajectories of the three dimensional

Lotka-Volterra system (6.1) in a small neighbourhood of the planar critical point

A2, we use a linear change of coordinates to transform the system to normal form.

The linearized system at the critical point is given by

ẋ1 = −x1 − x2 − x3,

ẋ2 = −2x1 +
5

2
x2 +

9

2
x3, (6.13)

ẋ3 = −2x3.

We apply the linear change of coordinates

Xold = PXnew, P =


2 1 0

1 −4 −1

0 0 1

 , (6.14)
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where Xold = (x1, x2, x3) and Xnew = (y1, y2, y3), to bring system (6.13) to the

normal form:

ẏ1 = α1y1,

ẏ2 = α2y2, (6.15)

ẏ3 = −λy3,

the associated eigenvalues are α1, α2 and −λ where α1 = −3
2
, α2 = 3 and

λ = 2, hence the origin is a saddle critical point. We note that system (6.15)

has one positive and two negative eigenvalues, therefore it has a one-dimensional

unstable manifold (the unstable subspace Eu coincides with the y2-axis) and a two

dimensional stable manifold (the stable subspace Es is the y1y3-plane). We recall

the extended stable invariant subspace Ese and the extended unstable invariant

subspace Eue as follows

Ese = Es ⊕ EuL,

Eue = Eu ⊕ EsL,

where ⊕ is a direct sum and EuL, EsL are unstable and stable leading respec-

tively. Furthermore, the leading subspace, EL, is defined by EL = Ese ∩ Eue.

Here, the y1-axis is the stable leading subspace EsL and y3-axis is the stable non-

leading subspace Ess. The extended stable subspace Ese is the entire space R3

and y1y2-plane is the extended unstable invariant subspace, Eue, and is also the

leading subspace, EL.
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In a small neighbourhood of the origin we introduce two cross sections

S2 =
{

(y1, y2, y3) ∈ R3 : |y1|≤ ε, |y2|≤ ε, y3 = ε
}
,

D2 =
{

(y1, y2, y3) ∈ R3 : |y1|≤ δ, y2 = δ, 0 ≤ y3 ≤ δ
}
, δ, ε ∈ R+

as a transverse to the stable manifold and unstable manifold respectively. The

stable manifold of A2 divides the cross section S2 into three parts which are

denoted by S0
2 S+

2 and S−2 . The first portion S0
2 is the set of all points on S2

belonging to the intersection of S2 with the stable manifold and any trajectory

starts or passing through it will approach the critical point A2. The second portion

S+
2 is the set of all points on S2 belonging to one side of the stable manifold, any

trajectory that starts or passes through it leaves the small neighbourhood of the

origin and moves directly towards the stable critical point at infinity which lies

on the positive y2−axis (opposite side of the cross section D2, see the Figure

6.10). The third portion S−2 is the set of all points on S2 belonging to the other

side of the stable manifold and any trajectory that starts or passes through it

tends toward the cross section D2. Thus, a local map Ψ2 : S−2 → D2 can be

defined. The solution (y1(t), y2(t), y3(t)) of equation (6.15) that starts from a

point (y01, y
0
2, ε) ∈ S−2 at t = 0 and ends up the point (y11, δ, y

1
3) ∈ D2 when t = T

is written as follows:

y1(T ) = y01e
α1T ,

y2(T ) = y02e
α2T , (6.16)

y3(T ) = ε e−λT .

The flight time T = −1
α2

ln(
y02
δ

) of the trajectory connecting the cross sections

can be evaluated from the second equation in (6.16). Clearly, the time increases
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logarithmically fast when the initial point goes closer to the stable manifold.

Substituting the value of T into the first and third equation of (6.16) gives the

map

Ψ2 :


y1

y2

ε

 7→


y11

δ

y13

 =


y1(

y2
δ

)αυ

δ

ε(y2
δ

)υ

 , (6.17)

where υ = λ
α2
< 1 and α = −α1

λ
< 1. Since υ < 1 and αυ < 1, from the above

equation we observe the following notes. Firstly, in a small neighbourhood of

the critical point A2, the y1coordinate of the image gets becomes smaller when

y1 > 0 and it gets become bigger when y1 < 0, this means there is a contraction

in the y1direction. Secondly, the y3 coordinates in S−2 are mapped to ε(y2
δ

)υ in D2

and the value of ε(y2
δ

)υ > y2 in a small neighbourhood of the critical point. This

indicate that the expansion will be happen in the vertical direction. As a result,

the map Ψ2 contracts the region S−2 in the y1−direction (horizontal) and expands

the reign S−2 in the y3−direction (vertical), as shown in Figure 6.7. Moreover,

if the starting points approach the stable manifold of A2 on S2 (i.e. y2 −→ 0),

then the contracting becomes infinitely strong. From the above map the bellow

relation is obtained

y11 = (
y1
εα

)(y13)α.

If we take the maximum and minimum values of y1 on S2 i.e. y1 = ±ε, then their

images on D2 are given by

y11 = ±(ε)1−α(y13)α
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and the values of y11 satisfies the following relation

C2(y
1
3)α ≤ y11 ≤ C1(y

1
3)α, where C1,2 = ±(ε)1−α.

Thus, the rectangle S−2 mapped by Ψ2 to a curvilinear wedge on D2 and the wedge

adjoins to the point (0, δ, 0) on D2, as shown in Figure 6.7 .

To find a relation between the trajectories and the stable and unstable manifold

of the planar saddle critical point, we let the distance between the starting point of

a trajectory and the stable manifold on S2 is h2 ( it means y2 = h2) and we denote

the distance between the image of h2 under Ψ2 and the unstable manifold on D2

by h3 (it means y3 = h3), as we see in Figure 6.6. Thus, from equation (6.17), the

following relation is obtained

h3 = k2h
−λ
α2
2 , (6.18)

where k2 is a positive constant.

Remark 5. Since the value of δ is positive, therefore equation (6.17) will indicate

that the map is defined only for non-negative values of y2.

6.2.3 Axial Saddle Critical Point

This subsection is devoted to studying the local behaviour of trajectories of the

three dimensional Lotka-Volterra system (6.1) in a small neighbourhood of the

axial critical point A3. The linearized system at A3 is given by

ẋ1 = −2x1 − 2x2 − 2x3,

ẋ2 = −9

2
x2, (6.19)

ẋ3 = 2x3.

91



Chapter 6. The Existence of Horseshoe Dynamics in 3DLVS

Figure 6.6: The behaviour of trajectories near the planar saddle critical point
where the ratio of the eigenvalues around the point is equal to λ

α2
.

The linear change of coordinates

Xold = PXnew, P =


1 1 0

0 5
4

0

0 0 −2

 , (6.20)

where Xold = (x1, x2, x3) and Xnew = (y1, y2, y3), brings the system (6.19) to the

normal form

ẏ1 = β1y1,

ẏ2 = β2y2, (6.21)

ẏ3 = β3y3,
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Figure 6.7: The image of S2 under Ψ2, which shows the local behaviour of trajec-
tories near the critical point A2. On S2, the solid curves depict the points that
tend toward the cross section D2 and the doted curves depict the points that tend
toward infinity. Double arrows label the stable non-leading (strong stable).

where β1 = −2, β2 = −9
2

and β3 = 2. Since system (6.21) has one positive and

two negative eigenvalues, thus it has a one dimensional unstable manifold (y3-axis)

and a two dimensional stable manifold (y1y2-plane). In a small neighbourhood of

the origin we introduce the cross sections

S3 =
{

(y1, y2, y3) ∈ R3 : |y1|≤ ε, y2 = ε, 0 ≤ y3 ≤ ε
}
,

D3 =
{

(y1, y2, y3) ∈ R3 : |y1|≤ δ, 0 ≤ y2 ≤ δ, y3 = δ
}
, δ, ε ∈ R+

as a transverse to the stable and unstable manifold of the critical point A3. If a

trajectory that starts or passes through the intersection points of the cross section

S3 with the stable manifold, then the trajectory approach the point (0, 0, δ) on D3.

Any trajectory that starts or passes through any other points on S3 goes toward

the cross section D3. Thus, a map Ψ3 : S3 → D3 can be defined. the solution

(y1(t), y2(t), y3(t)) of equation (6.21) that starts from a point (y01, ε, y
0
3) ∈ S3 at
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t = 0 and ends up the point (y11, y
1
2, δ) ∈ D3 when t = T is written as follows:

y1(T ) = y01e
β1T ,

y2(T ) = εeβ2T , (6.22)

y3(T ) = y03e
β3T .

The dwelling time T = − 1
β3

ln(
y03
δ

) of the trajectory connecting the cross sections

can be evaluated from the third equation in (6.22). Clearly, the time increases

logarithmically fast when the initial point will closer the stable manifold. Sub-

stituting the value of T into the first and second equation of (6.22) gives the

map

Ψ3 :


y1

ε

y3

 7→


y11

y12

δ

 =


y1(

y3
δ

)αυ

ε(y3
δ

)υ

δ

 , (6.23)

where υ = −β2
β3
> 1 and α = β1

β2
< 1. From equation (6.23), we note the following.

Firstly, in a small neighbourhood of the critical point A3, the y1-coordinate of the

image gets become smaller and bigger when y1 > 0 and y1 < 0 respectively, this

means there is a contraction in the y1 direction. Secondly, since υ > 1, in a small

neighbourhood of the critical point, the map Ψ3 is also contraction with respect

to the non-leading coordinate y2 as well. Finally, if the starting points come near

the stable manifold of A3 on S3 (i.e. y3 −→ 0), then the contracting becomes

infinitely strong. As a result, the map Ψ3 contracts the region S3 in both the

y1−direction (horizontal) and the y2−direction (vertical), as shown in Figure 6.8.
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Figure 6.8: The image of S3 under Ψ3, which shows the local behaviour of tra-
jectories near the critical point A3. Double arrows label the stable non-leading
(strong stable).

From equation (6.23), it is easy to obtain the relation below

y11 = (
y1
εα

)(y12)α.

The image of the maximum and minimum values of y1 on D3 (y1 = ±ε, respec-

tively) are given by

y11 = ±(ε)1−α(y12)α

and the values of y11 satisfies the following relation

C2(y
1
2)α ≤ y11 ≤ C1(y

1
2)α, where C1,2 = ±(ε)1−α.
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Thus, the map Ψ3 takes the cross section S3 onto a curvilinear wedge on D3 and

the wedge touches the extended unstable subspace Eue ( y1y3−plane ) at the

point (0, 0, δ) on D3, as shown in Figure 6.8.

To explain the relation between the trajectories and the stable and unstable

manifolds of the axial saddle critical point, we denote the distance between a

starting point of a trajectory and the stable manifold on S3 by h3 (it means y3 = h3

) and distance between the image of h3 under Ψ3 and the unstable manifold on

D3 by h̃ (it means y2 = h̃ ) as shown in Figure 6.9. From (6.23), the following

relation is obtained

h̃ = k3h
−β2
β3

3 , (6.24)

where k3 is a positive constant.

Figure 6.9: The behaviour of trajectories near the axial saddle critical point where
the ratio of the eigenvalues around the point is equal to −β2

β3
.
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6.3 The Behaviour at Infinity

In this section, we shall examine the global phase portrait for the three dimensional

Lotka-Volterra system (6.1) by studying the behaviour at infinity. The plane at

infinity is a projective plane that is added to the affine 3-space. Finding them

including critical points and studying the behaviour at infinity of system (6.1) is

very important to an understanding its global dynamics. For this purpose, the

three below nonlinear change of variables are used individually.

X =
1

x1
, Y =

x2
x1

and Z =
x3
x1

; x1 6= 0. (6.25)

X =
x1
x2
, Y =

1

x2
and Z =

x3
x2

; x2 6= 0. (6.26)

X =
x1
x3
, Y =

x2
x3

and Z =
1

x3
; x3 6= 0. (6.27)

The points (0, Y0, Z0), (X0, 0, Z0) and (X0, Y0, 0) where Ẋ, Ẏ and Ż vanish are

obtained from the nonlinear change of coordinates (6.25), (6.26) and (6.27) re-

spectively. These are the critical points of the new system that is corresponding

to the critical points at infinity for system (6.1).

Applying the nonlinear change of variables (6.25) on system (6.1) and after a

rescaling of the variables the new system is obtained

Ẋ = X(1− 2X + Y + Z),

Ẏ =
1

2
Y (−2− 5X + 7Y + 11Z), (6.28)

Ż = 2Z(1−X − Y ).

The above system has two critical points x1∞(0, 0, 0) and L1∞(0, 2
7
, 0) where xi ≥

0, i = 1, 2, 3. The first one is the intersection point of the line at infinity L∞ =
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{X = 0} and x1−axis, the system at that point has Jacobian matrix

J =


1 0 0

0 −1 0

0 0 2

 ,

with one negative −1 and two positive eigenvalues 1, 2, therefore the critical point

is unstable. The Jacobian at the second critical point L1∞(0, 2
7
, 0) is given by

J =


9
7

0 0

−5
7

1 11
7

0 0 10
7

 ,

with three positive eigenvalues 10
7
, 1 and 9

7
, the critical point is also unstable.

The system below is obtained when we apply the nonlinear change of variables (6.26)

on system (6.1) after a rescaling of variables

Ẋ =
1

2
X(−7 + 2X + 5Y − 11Z),

Ẏ =
1

2
Y (−5 + 4X + Y − 9Z), (6.29)

Ż =
1

2
Z(−11 + 6X + Y − 11Z).

Corresponding to the critical points at infinity of (6.1) where xi ≥ 0, i = 1, 2, 3,

system (6.29) has only two critical points x2∞(0, 0, 0) and L2∞(7
2
, 0, 0). We note

that the second one is coincidental with the critical point L1∞(0, 2
7
, 0). At the first
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critical point x2∞(0, 0, 0), system (6.1) has Jacobian matrix

J =


−7

2
0 0

0 −5
2

0

0 0 −11
2

 ,

which it has three negative eigenvalues −7
2
,−5

2
and −11

2
. Therefore such criti-

cal point is stable. If we apply the last change of variables (6.27) to the three

dimensional Lotka-Volterra system (6.1) then this system would be obtained

Ẋ = 2X(−X + Y + Z),

Ẏ =
1

2
Y (11− 6X + 11Y − Z), (6.30)

Ż = Z(1−X + 3Y ).

The system (6.30) has only one critical point x3∞(0, 0, 0) which corresponds to

the critical point at infinity of (6.1) where xi ≥ 0, i = 1, 2, 3 and has a Jacobian

matrix:

J =


0 0 0

0 11
2

0

0 0 1

 .

This matrix has three eigenvalues 0, 11
2

and 1.

The diagram 6.10 below shows the dynamics behaviour at an affine plane and

also at infinity, which exams a good understanding of the global behaviour of the

three dimensional Lotka-Volterra system (6.1). Moreover, diagram 6.11 shows all

eigenvector directions of the Jacobian matrices of the system at the critical points.

The sum of the ratio of eigenvalues of either line is unity according to an index
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formula by Lins Neto (Lins Neto, 1988).

Figure 6.10: Global phase portraits of Lotka-Volterra system (6.1) for xi ≥ 0, i =
1, 2, 3.
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Figure 6.11: The eigenvalues at the origin, axial and infinity critical points for the
three dimensional Lotka-Volterra system (6.1).
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6.4 The Horseshoe Map of the 3D Lotka-Volterra

System

In this section, we will show that the three dimensional Lotka-Volterra system (6.1)

can exhibit a horseshoe map. Firstly we choose two cross sections C1 = {(x1, x2, x3) ∈

R3 : x3 = 0.5} and C2 = {(x1, x2, x3) ∈ R3 : x2 − x3 = 0}, the first one is trans-

verse to the heteroclinic orbit connecting the two critical points A3 and A1, the

second one is transverse to the invariant line introduced in equation (6.2). Then,

we define a map Ft : C1 −→ C2 by the trajectories close to the homoclinic cycle.

Under the effect of the planar saddle-focus critical point A1, the map Ft takes

C1 inside C2 by some steps. Firstly, the map Ft contracts C1 in the horizontal

direction (x1−axis direction) and expands C1 in the vertical direction ( x2−axis

direction). Then it folds the cross section C1. The shape of the image Ft(C1) on

C2 is a spiral around the invariant line that is introduced in equation (6.2) having

the appearance of a snail shell shape. These behaviour of the critical points have

been obtained under the assumption that the vector field was given by its linear

parts. Since around the critical points the nonlinear system differs from the sys-

tem given by its linear terms due to a C1 transformation tangent to the identity,

then the behaviour of trajectories for the linear and nonlinear systems will be C1

equivalent.

The stable manifold of the critical point A2 divides the image Ft(C1) on C2

into two parts: C1
2 and C2

2 . The first one C1
2 is the set of all points on Ft(C1)∩C2

belonging to one side of the stable manifold where Ft(C1) tends toward a stable

critical point at infinity on the positive x2-axis as t −→ ∞. These leave the

cross section C2 and never return. The second one C2
2 is the set of all points on

Ft(C1)∩C2 belonging to the other side of the stable manifold where the trajectories
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turn towards the positive x1x3−plane to intersect C1 and then follow the invariant

line introduced in (6.2) until they intersect C2. If the orbit passes through C1
2 ,

then it will leave the neighbourhood of the heteroclinic cycle towards the stable

critical point at infinity and never return; otherwise it will make another round

following the heteroclinic cycle and return to C1 again and so forth. We denote

Ft
−1(C2

2) by Hk which are horizontal strips on C1, then Ft(Hk) lie in C2
2 and

the flow continues to intersect C1 and the image of Ft(Hk) is a horseshoe shaped

region that crosses Hk twice as shown in Figure 6.15. It is geometrically evident

that there is a fixed point of Ft within each of the components of H. These fixed

points correspond to a periodic orbit of the system. Thus the Poincaré map with

respect to C1 contains a horseshoe. Such a map Ft is called a horseshoe map.

The sufficient condition for the intersection of Hk and Ft(Hk) on C1 is de-

termined by the value of the ratio of eigenvalues. In addition to the maps

Ψi, i = 1, 2, 3 which are introduced in (6.7), (6.17) and (6.23) there are three

other diffeomorphism maps Φi, i = 1, 2, 3. The first one Φ1 : D1 → S2, maps the

spirals on D1 diffeomorphically into the cross section S2 and takes the intersection

point of the invariant line (6.2) with cross section D1 to the intersection point of

the given line with cross section S2. The second one, Φ2 : D2 → S3, maps the

intersection point of the cross section D2 with the heteroclinic orbit connecting

A2 and A3 to the intersection point of cross section S3 with the heteroclinic orbit.

The last one, Φ3 : D3 → C, maps the intersection point of the cross section D3

with the heteroclinic orbit connecting A3 and A1 to the intersection point of the

cross section C with the heteroclinic orbit. These maps locally preserve the shapes

of these structures. From equations (6.12), (6.18)and (6.24), for system (6.1), we

obtain

h2 ∼ k1h
ρ1
1 , h3 ∼ k2h

ρ2
2 , and h̃ ∼ k3h

ρ3
3 ,
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where ρ1 =
−µ
λ
, ρ2 =

λ

α2

and ρ3 =
−β2
β3

. The composition of the maps Ψi and

Φi, i = 1, 2, 3 gives the following relation

h̃ ∼ chρ1, (6.31)

where ρ = ρ1ρ2ρ3 and c is a positive constant (see Figure 6.12). In our case, the

ratio of eigenvalues ρ =
3

4
< 1. This property plays the same role as the saddle

index in Shilnikov theory. Here, we explain how the intersection of the horizontal

strip, Hk, and its image, Ft(Hk), on the cross section C1 is non-empty. We denote

the distance of the upper and lower boundaries of the horizontal strip, Hk, from

the stable manifold of the critical point A1 by dk and dk+1 respectively, where

dk+1 = adk, 0 < a < 1.

Let

dk = e−nk, n ∈ R+ and k = 1, 2, ....

From (6.31), the following relation is obtained

d̃k ∼ c(e−nk)
3
4 ,

d̃k+1 ∼ c(ae−nk)
3
4 ,

where d̃k and d̃k+1 are images of dk and dk+1 on the cross section C1 respectively.

Since,

d̃k
dk
∼ ce

1
4
nk,

d̃k+1

dk+1

∼ c1e
1
4
nk, c1 = ca

−1
4
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d̃k+1

dk
∼ c2e

1
4
nk, c2 = ca

3
4

and e
1
4
nk approaches∞ as k tends to∞. Thus, the intersection of Hk and Ft(Hk)

is non-empty and consists of two connected components for k sufficiently large.

We have performed a numerical simulation to obtain the horseshoe map visually

(see Figure 6.15).

Figure 6.12: The Poincaré return map around the cycle.

The technique of choosing the horizontal strip Hk in this thesis is illustrated

below. Its left and right sides are the backward orbits of the lines θ = 39
20
π and

θ = 1
20
π of the cylinder parallel with the line that is introduced in (6.2) having

centre A1 and radius 0.3 respectively, provided that their images lie on that side of

the stable manifold of the critical point A2 where the trajectories goes toward the

positive x1x3− plane. The upper and bottom of the strip are the backward orbits
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of the curve that connecting the end points of the images of the lines θ = 39
20
π

and θ = 1
20
π on the stable manifold of the critical point A2. The image of the

horizontal strip Hk on C1 and Ft(Hk) on C2 are shown in Figure 6.13 and 6.14

respectively.

Figure 6.13: The horizontal strip Hk on C1.

Figure 6.14: The image of Ft(Hk) on C2.
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The image of Ft(Hk)

The strip Hk

Figure 6.15: The image of the horizontal strip Hk and its image under Ft on the
cross section C1.
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Chapter 7

The Integrability and the

Zero-Hopf Bifurcation of the

3DLVS

This chapter focuses on examining the zero-Hopf bifurcation of the three dimen-

sional Lotka-Volterra systems. First order averaging theory is used to study the

possible periodic orbits bifurcating from a line of singularities, where every point

on the line is of type zero-Hopf.

7.1 The Darboux Integrability of the 3DLVS

This section studies the integrability and the existence of a line of singularity for

the three dimensional Lotka-Volterra systems. Some invariant plane conditions

are found to construct the fourth invariant algebraic surface. In addition, suffi-

cient conditions for the existence of a line of singularities with a zero eigenvalue

are obtained. Under these conditions, a function of Darboux type produces two

linearly independent first integrals.
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Proposition 5. The three dimensional Lotka-Volterra system (1.1) always has

three invariant algebraic surfaces fi(x1, x2, x3) = xi with cofactor ki = ri +∑3
j=1 ai,jxj, i = 1, 2, 3 . The surface f4(x1, x2, x3) = 1 − x1 − x2 − x3 is also

an invariant algebraic surface of the three dimensional system (1.1) with cofactor

k4 = −(
∑3

i=1 rixi) if and only if the following conditions hold:

ai,i = −ri and ai,j = −(ri + rj + aj,i), (i, j = 1, 2, 3, j > i) (7.1)

Proof. It is easy to check that X (fi) = kifi where fi and ki, i = 1, 2, 3 are defined

above. Therefore, the fi = 0, i = 1, 2, 3 are invariant algebraic surfaces of the

three dimensional system (1.1).

To prove the second part, firstly we suppose that the surface f4(x1, x2, x3) = 0 is

an invariant algebraic surface for the three dimensional system (1.1), then from

the equation X (f4) = k4f4 the conditions (7.1) are obtained.

Conversely, If the conditions (7.1) hold, then it is easy to show that X (f4) = k4f4.

Thus the surface f4(x1, x2, x3) = 0 is invariant algebraic surface for the three

dimensional system (1.1).

Theorem 6. Suppose a ∈ S, where

S =
{

(r1, r2, r3, a2,1, a3,1, a3,2) ∈ R6 : r1r3 + r1a3,2 + r3a2,1 − r2a3,1 = 0
}
, (7.2)

then for the three dimensional Lotka-Volterra system (1.1) satisfying (7.1) the

following results are obtained:

1. The system has a line of singularities with a zero eigenvalue.

2. The system is integrable. More precisely, it has two independent first inte-

grals.
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Proof. A straight computation shows that in addition to the critical points (1, 0, 0),

(0, 1, 0) and (0, 0, 1) the system has a line of singularities, if

a2,1 = −r1(r3 + a3,2)− r2a3,1
r3

, (7.3)

then the line of singularities will be defined by

L = {(x1, x2, x3) ∈ R3 : x1 = −r3 + (r2 + a3,2)t

r1 + a3,1
, x2 = t, x3 =

r1r3 + (r1a3,2 − r2a3,1)t
r3(r1 + a3,1)

}.

(7.4)

To prove the second part of the theorem, we try to construct a Darboux first

integral of the form

V = Π4
i=1f

λi
i , (7.5)

where fi are invariant algebraic surfaces of the system and their cofactors Ki are

defined in Proposition 5. From
∑4

i=1 λiki = 0, the following equation is obtained:

(−r1λ1 + a2,1λ2 + a3,1λ3 − r1λ4)x1 + (−(r1 + r2 + a2,1)λ1 − r2λ2 + a3,2λ3 − r2λ4)x2+

(−(r1 + r3 + a3,1)λ1 − (r2 + r3 + a3,2)λ2 − r3λ3 − r3λ4)x3 + r1λ1 + r2λ2 + r3λ3 = 0.

This equation is equivalent to the following matrix equation:



−r1 a2,1 a3,1 −r1

−(r1 + r2 + a2,1) −r2 a3,2 −r2

−(r1 + r3 + a3,1) −(r2 + r3 + a3,2) −r3 −r3

r1 r2 r3 0





λ1

λ2

λ3

λ4


=



0

0

0

0


. (7.6)

We note that the determinant of the matrix of this system is equal to −(r1r3 +
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r1a3,2 +r3a2,1−r2a3,1)2. Therefore, if we take a point belonging to S, then there is

a solution set with an infinite number of solutions, this means that ∃ λi ∈ R not all

zero such that
∑n

i=1 λi ki = 0. Thus, the system has first integral of Darboux type.

Under the assumption a2,1 satisfies equation (7.3) , the matrix equation (7.6)

has the following non-trivial solutions

(λ1, λ2, λ3, λ4) −→ (−r3, 0, r1, r3 + a3,1),

(λ1, λ2, λ3, λ4) −→ (−r2, r1, 0,−
r1r3 + r1a3,2 − r2r3 − r2a3,1

r3
).

Therefore the following functions are first integrals

Φ1 = x−r31 xr13 (1− x1 − x2 − x3)(r3+a3,1),

Φ2 = x−r21 xr12 (1− x1 − x2 − x3)
(−
r1r3 + r1a3,2 − r2r3 − r2a3,1

r3
)

.

It is easy to check that ∇Φ1 and ∇Φ2 are linearly independent, hence the above

two first integrals are independent. Thus, the three dimensional Lotka-Volterra

system (1.1) satisfying (7.1) is integrable.

7.2 Zero-Hopf Bifurcation

This section is devoted to the study of the zero-Hopf bifurcation of the three di-

mensional Lotka-Volterra systems. In the first subsection, we recall the averaging

theory of the first order and some related concepts to it. The second subsection

shows that there are three 3-parameter families of the system exhibiting a zero-

Hopf equilibrium located at the line of singularities and the averaging theory is

also applied to the system.
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7.2.1 The First Order Averaging Method for Periodic Or-

bits

Averaging methods are useful tools for investigating the number of periodic orbits

for some differential systems. Many researchers have devoted their effort to study

the existence of periodic orbits via this method which has a long history as we see

in the work of Marsden and McCracken (1976), Chow and Hale (1982), Sanders

et al. (2007), Buică and Llibre (2004), Buică et al. (2007) and references therein.

We consider the system

ẋ = F0(t, x), (7.7)

with F0 : R×D −→ Rn a C2 function, T−periodic in t and D is an open subset

of Rn. We assume that all solutions of (7.7) are T−periodic i.e. the system has a

submanifold of periodic solutions and also assume that the system is isochronous.

The isochronous means that all closed orbits of the system have the same period.

The linearization of (7.7) along the periodic solution x(t, u) satisfying the initial

condition x(0, u) = u is denoted by

ẏ = DxF0(t, x(t, u))y, (7.8)

where DxF0 is the Jacobian matrix of F0 with respect to x. Here, we denote

the fundamental matrix solution of (7.7) by Mu(t) and also assume that there

exists an open set V with Cl(V ) ⊂ D such that for each u ∈ Cl(V ), x(t, u) is a

T−periodic.

Consider the following perturbation of (7.7)

ẋ = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), (7.9)
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where ε is a sufficiently small positive parameter ( called the small perturbation

parameter), F1 : R×D −→ Rn, F2 : R×D× (−ε0, ε0) −→ Rn are C2 functions,

T−periodic in the first variable. Averaging theory reduces the problem of finding

T−periodic solutions of (7.9) to the problem of finding the simple zeros of a

function which is called the bifurcation function.

In this section, we will recall the averaging theory that relates to the perturbing

of isochronous systems. The averaging methods have different presentations, here,

we present one of them which was obtained by Buica et al. in (Buică et al.,

2007) which gives a sufficient condition of bifurcating periodic solutions from the

T−periodic solutions x(t, u).

Theorem 7 (Perturbations of an isochronous system). We assume that there

exists an open set V with Cl(V ) ⊂ D and such that for each u ∈ Cl(V ), x(t, u)

is a T−periodic. Consider the function F : Cl(V ) −→ Rn given by

F(u) =

∫ T

0

M−1
u (t)F1(t, x(t, u))dt. (7.10)

If there exist a ∈ V with F(a) = 0 and det(DuF(a)) 6= 0, then there exists a

T−periodic solution γ(t, ε) of system (7.9) such that γ(t, ε) −→ a as ε −→ 0.

7.2.2 Periodic Orbits in the Zero-Hopf Bifurcation of the

3DLVS

The proposition below shows that there exist three 3-parameter families of the

three dimensional Lotka-Volterra systems for which the equilibrium point at any

point on the line of singularities defined in (7.4) is a zero-Hopf equilibrium point.

Proposition 6. The three dimensional Lotka-Volterra system (1.1) with condi-

tions (7.1) and (7.3) has a zero-Hopf equilibrium point which is located at the line

of singularities (7.4) if one of the following conditions is satisfied.
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i. r2 = 0, a3,2 = 0 and
r1r3(r3 + a3,1)

r1 + a3,1
< 0.

ii. r2 = r3, a3,2 = −r3 and
r1r3(r3 + a3,1)

r1 + a3,1
< 0.

iii. r2 = r1, a3,2 = a3,1 and
r1r3(r3 + a3,1)

r1 + a3,1
< 0 .

Proof. The three dimensional Lotka-Volterra system (1.1) with conditions (7.1)

and (7.3) is written as follows

ẋ1 = x1(r1 − r1x1 + (
r1a3,2 − r2(r3 + a3,1)

r3
)x2 − (r1 + r3 + a3,1)x3),

ẋ2 = x2(r2 + (
r2a3,1 − r1(r3 + a3,2)

r3
)x1 − r2x2 − (r2 + r3 + a3,2)x3), (7.11)

ẋ3 = x3(r3 + a3,1x1 + a3,2x2 − r3x3).

The characteristic polynomial P (λ) of the linearization of system (7.11) at any

point of the line (7.4) is given by

P (λ) = λ3 −Gλ,

where

G =
(r2 + a3,2)(r1a3,2 − r2a3,1)(r1r3 + r1a3,2 − r2r3 − r2a3,1 + r3a3,1 − r3a3,2)

r23(r1 + a3,1)
t2+

r1a3,2(r1r3 + r1a3,2 − 2r2r3 − 2r2a3,1 + r23 + 2r3a3,1 − r3a3,2) + r2a3,1(r3 + a3,1)(r2 − r3)
r3(r1 + a3,1)

t

+
r1r3(r3 + a3,1)

r1 + a3,1
. (7.12)

The eigenvalues associated at any point on line (7.4) will have pure imaginary

eigenvalues if the value of G in equation (7.12) is negative and will not depend

on the value of t. In that case, every point on the line of singularities becomes

a zero-Hopf equilibrium point. By solving the coefficients of t in equation (7.12)
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with respect to r2 and a3,2, and choosing the value of G remains negative, then

the set of conditions will be obtained. The line of singularities which satisfies the

first set of the above conditions is shown in Figure 7.1.

Now, we apply the averaging theory described in Theorem 7 to the three

dimensional Lotka-Volterra systems.

Theorem 8. Consider the three dimensional Lotka-Volterra system (1.1) with

condition (7.1) and condition (i) in Proposition 6 where a3,1 = −r1(ω
2 + r23)

ω2 + r1r3
,

ω > 0. Let

a2,1 = −r1 + εα,

where α 6= 0 and ε be a sufficiently small positive parameter. Using First order

averaging theory (Buică et al., 2007) , we can not find periodic orbits bifurcating

from the zero-Hopf equilibrium point satisfying condition (i) in Proposition 6 and

located on the interior equilibrium point of the system.

Proof. If a2,1 = −r1 + εα, then after transforming the interior equilibrium point

to the origin, the 3DLVS satisfying the above conditions is written as follows

ẋ1 =
−(A1x1 + r3(ω

2 + r1r3))

(ω2 + r1r3)A1

(r1(ω
2 + r1r3)x1 + αε(ω2 + r1r3)x2 + r3(ω

2 + r21)x3),

ẋ2 =
1

A1

(A1x2 + ω2(r1 − r3))((αε− r1)x1 − r3x3), (7.13)

ẋ3 =
−(A1x3 + α(ω2 + r1r3)ε− (ω2 + r1r3)r1)

(ω2 + r1r3)A1

(r1(ω
2 + r23)x1 + r3(ω

2 + r1r3)x3),

where A1 = αε(ω2 + r1r3)− r1r3(r1− r3). By rescaling the variables (x1, x2, x3) =

(εX, εY, εZ), system (7.13) becomes

Ẋ =
−(A1εX + (ω2 + r1r3)r3)

(ω2 + r1r3)A1

(r1(ω
2 + r1r3)X + αε(ω2 + r1r3)Y + r3(ω

2 + r21)Z),
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Ẏ =
1

A1

(A1εY + ω2(r1 − r3))((αε− r1)X − r3Z), (7.14)

Ż =
−(A1εZ + αε(ω2 + r1r3)− r1(ω2 + r1r3))

(ω2 + r1r3)A1

(r1(ω
2 + r23)X + r3(ω

2 + r1r3)Z).

When ε = 0, the linearized system of (7.14) at the origin is not of the real

Jordan form i.e. as 
0 0 −ω

0 0 0

ω 0 0

 .

For doing that, we consider the linear change of coordinates


X

Y

Z

 = P


y1

y2

y3

 , (7.15)

where

P =


−r3(ω(ω + r1)− r3(ω − r1))

r1(ω2 + r23)
0
−r3(ω(ω − r1) + r3(ω + r1))

r1(ω2 + r23)
−ω(ω − r3)(r1 − r3)

r1(ω2 + r23)
1

−ω(ω + r3)(r1 − r3)
r1(ω2 + r23)

1 0 1

 .

Then in the new variables (y1, y2, y3), system (7.14) becomes

ẏ1 = −ωy3 +
ε

2r1r3ω(r1 − r3)2(ω2 + r1r3)(ω2 + r23)
[αω2(r1 − r3)(ω2 + r23)

2(ω2 + r1r3)y1

− αr1(ω2 + r1r3)
2(ω2 + r23)y2 − αω2(r1 − r3)(ω2 + r1r3)(ω

2 + r23)
2y3

+ ωr1r
2
3(r1 − r3)3(ω + r3)(ω

2 − ωr1 + ωr3 + r1r3)y
2
1 − 4ω2r1r

2
3(r1 − r3)3(ω2 + r1r3)y1y3

− ωr1r23(r1 − r3)3(ω + r3)(ω
2 − ωr1 + ωr3 + r1r3)y

2
3] +O(ε2),
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ẏ2 = 0 +
ε

r1(r1 − r3)(ω2 + r23)
[α(ω2 + r23)(ω

2 + r1r3)y2 + r1r3(r1 − r3)2(ω + r3)y1y2

− r1r3(r1 − r3)2(ω − r3)y2y3] +O(ε2), (7.16)

ẏ3 = ωy1 +
ε

2r1r3ω(r1 − r3)2(ω2 + r1r3)(ω2 + r23)
[αω2(r1 − r3)(ω2 + r23)

2(ω2 + r1r3)y1

+ αr1(ω
2 + r1r3)

2(ω2 + r23)y2 − αω2(r1 − r3)(ω2 + r1r3)(ω
2 + r23)

2y3

+ ωr1r
2
3(r1 − r3)3(ω − r3)(ω2 + ωr1 − ωr3 + r1r3)y

2
1 + 4ω2r1r

2
3(r1 − r3)3(ω2 + r1r3)y1y3

− ωr1r23(r1 − r3)3(ω − r3)(ω2 + ωr1 − ωr3 + r1r3)y
2
3] +O(ε2),

we note that the previous system is written as a differential system of the form (7.9).

It is a normal form for applying the averaging theory described in Theorem 7. The

first requirement is to find the solution of the unperturbed system of (7.16). The

solution x(t, u) = (y1(t), y2(t), y3(t)) of system

ẏ1 = −ωy3,

ẏ2 = 0, (7.17)

ẏ3 = ωy1,

satisfying the initial condition (y1(0), y2(0), y3(0)) = (x0, y0, z0) ∈ R3 is written as

y1(t) = x0cos(ωt)− z0sin(ωt),

y2(t) = y0, (7.18)

y3(t) = x0sin(ωt) + z0cos(ωt).

These solutions are periodic of period
2π

ω
when (x0, y0, z0) 6= (0, 0, 0). Therefore,

the unperturbed system (7.17) of (7.16) is isochronous and we can apply Theo-

rem 7. The fundamental matrix solution Mu(t) of the unperturbed system (7.17)
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and its inverse M−1
u (t) is given by

Mu(t) =


cos(ωt) 0 −sin(ωt)

0 1 0

sin(ωt) 0 cos(ωt)

 and M−1
u (t) =


cos(ωt) 0 sin(ωt)

0 1 0

−sin(ωt) 0 cos(ωt)

 .

The bifurcating function (7.10) is given by

F(u) =

∫ 2π

ω

0

M−1
u (t)F1(t, x(t, u))dt

=


−πα(ω2 + r23)

r1r3(r1 − r3)
z0

2πα(ω2 + r1r3)

ωr1(r1 − r3)
y0

πα(ω2 + r23)

r1r3(r1 − r3)
x0

 (7.19)

In system (7.19), F(u) = 0 does not have any nontrivial solutions, therefore the

averaging theory described in Theorem 7 does not provide any information about

the possible periodic orbits bifurcating from the zero-Hopf equilibrium point.
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Figure 7.1: The red line depicts the line of singularities and blue cycles depict the
periodic orbits a round one of the zero Hopf equilibrium points on the invariant
plane x1 + x2 + x3 = 1, where the parameters satisfy conditions (7.1), (7.3),
condition (i) of Proposition 6, r1 = −2, r3 = 1 and a3,1 = −10

3
.
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algébriques, volume 708 of Lecture Notes in Mathematics, pages 136–156.

Springer Berlin Heidelberg.

Kozlov, V. and Vakulenko, S. (2013). On chaos in Lotka-Volterra systems: an

analytical approach. Nonlinearity, 26(8):2299–2314.

Kuznetsov, Y. A. (2004). Elements of applied bifurcation theory, volume 112 of

Applied Mathematical Sciences. Springer-Verlag, New York, third edition.

Kuznetsov, Y. A., Muratori, S., and Rinaldi, S. (1992). Bifurcations and Chaos

in a Periodic Predator-Prey Model. International Journal of Bifurcation and

Chaos, 02(01):117–128.

Li, T.-Y. and Yorke, J. A. (1975). Period Three Implies Chaos. The American

Mathematical Monthly, 82(10):985–992.

Lins Neto, A. (1988). Algebraic solutions of polynomial differential equations and

foliations in dimension two. In Holomorphic dynamics (Mexico, 1986), volume

1345 of Lecture Notes in Math., pages 192–232. Springer, Berlin.

Liu, Y. (2001). Theory of center-focus for a class of higher-degree critical points

and infinite points. Science in China Series A: Mathematics, 44(3):365–377.

Llibre, J. (2014). Periodic Orbits in the Zero-Hopf Bifurcation of the Rössler
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Wang, D. (1991). Mechanical manipulation for a class of differential systems.

Journal of symbolic computation, 12(2):233–254.

Wang, Q. and Huang, W. (2012). The equivalence between singular point quanti-

ties and Liapunov constants on center manifold. Advances in Difference Equa-

tions, 2012(1):78.

Wang, Q., Huang, W., and Li, B.-L. (2011a). Limit cycles and singular point quan-

tities for a 3D Lotka-Volterra system. Applied Mathematics and Computation,

217(21):8856–8859.

Wang, Q., Huang, W., and Wu, H. (2011b). Bifurcation of Limit Cycles for

3D Lotka-Volterra Competitive Systems. Acta Applicandae Mathematicae,

114(3):207–218.

129



References

Wang, Q., Liu, Y., and Haibo, C. (2010). Hopf bifurcation for a class of three-

dimensional nonlinear dynamic systems. Bulletin des Sciences Mathmatiques,

134(7):786–798.

Wiggins, S. (1992). Chaotic transport in dynamical systems, volume 2 of Interdis-

ciplinary Applied Mathematics. Springer-Verlag, New York.

Wiggins, S. (2003). Introduction to applied nonlinear dynamical systems and

chaos, volume 2 of Texts in Applied Mathematics. Springer-Verlag, New York,

second edition.

Wiggins, S. and Shaw, S. W. (1988). Chaos and Three-Dimensional Horseshoes

in Slowly Varying Oscillators. Journal of Applied Mechanics, 55(4):959–968.

Xiao, D. and Li, W. (2000). Limit Cycles for the Competitive Three Dimensional

Lotka-Volterra System. Journal of Differential Equations, 164(1):1–15.

Yu, P. and Han, M. (2004). Twelve limit cycles in a cubic order planar system with

Z2 symmetry. Communications on Pure and Applied Analysis, 3(3):515–525.

Zeeman, M. L. (1993). Hopf bifurcations in competitive three-dimensional Lotka-

Volterra systems. Dynamics and Stability of Systems, 8(3):189–216.

Zeeman, M. L. and van den Driessche, P. (1998). Three-Dimensional Competitive

Lotka–Volterra Systems with no Periodic Orbits. SIAM Journal on Applied

Mathematics, 58(1):227–234.

Zhang, W.-B. (2005). Differential equations, bifurcations, and chaos in economics,

volume 68 of Series on Advances in Mathematics for Applied Sciences. World

Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.

Zhang, X. (2008). Analytic normalization of analytic integrable systems and the

embedding flows. Journal of Differential Equations, 244(5):1080–1092.

130


	Abstract
	Acknowledgements
	Dedication
	Author's Declaration
	List of Abbreviations
	Introduction
	Background
	Hopf Points in Three Dimensional Systems
	The Centre-Focus Problem and Inverse Jacobi Multiplier
	The Poincaré Return Map and the Liapunov Quantities
	The Darboux Theory of Integrability in 3DS

	The Existence of Centre in 3DLVS Via the Darboux Method Using Inverse Jacobi Multipliers
	The Inverse Jacobi Multiplier Function of Darboux Type
	Centre Conditions of 3DLVS

	Centre Bifurcations
	The Basic Technique for Estimating Cyclicity from Centre
	Centre Bifurcation for the 3DLVS
	Perturbing the 3DS Having a Plane of Singularities

	Some Chaotic Behaviour in Three Dimensional Systems
	The Horseshoe Map
	Symbolic Dynamics
	The Shilnikov Phenomena
	Saddle-Focus and Saddle Index
	Poincaré Map


	The Existence of Horseshoe Dynamics in 3DLVS
	A Heteroclinic Cycle
	A Heteroclinic Orbit Between Two Different Planar Critical Points
	A Planar Heteroclinic Orbit on the  x1x2-plane
	A Planar Heteroclinic Orbit on the x1x3-plane

	The Local Study of Trajectories
	Planar Saddle-Focus Critical Point
	Planar Saddle Critical Point
	Axial Saddle Critical Point

	The Behaviour at Infinity
	The Horseshoe Map of the 3D Lotka-Volterra System

	The Integrability and the Zero-Hopf Bifurcation of the 3DLVS
	The Darboux Integrability of the 3DLVS
	Zero-Hopf Bifurcation
	The First Order Averaging Method for Periodic Orbits
	Periodic Orbits in the Zero-Hopf Bifurcation of the 3DLVS 



