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ABSTRACT 

Artificial soils have been employed within the Biomes of the Eden Project since its 

construction in 2000. Produced from sand, bark, composted green waste and lignite 

clay, these soils were designed to have their nutrient concentrations controlled through 

careful fertiliser applications. However, following variable environmental conditions, 

management practices and planting, the soils across the site are performing variably 

with regard to nutrient retention and storage. Experiments were conducted to assess the 

performances of an artificial soil in terms of nutrient cycling. This was carried out in 

three phases: 

Firstly, soils from the Humid Tropics and Outdoor biomes were sampled and examined, 

using a range of analytical techniques, to determine the nutrient characteristics of the 

established artificial soils from across the Eden Project site. This demonstrated that 

many of the nutrient concentrations of the artificial soils were consistent with those 

reported for naturally formed soils within comparable environments. All soil samples 

were of sandy loam texture (ISO 14688-1), with the sand-sized fraction representing > 

50 % of the particle size composition. Statistical analyses suggested that management 

practices had a greater impact on the nutrient characteristics of artificial soils than 

environmental conditions.  

Secondly, an artificial soil was produced, following the Eden Project protocol, to 

examine its performance under controlled environmental conditions. This was packed 

into 4 columns (1 m height by 110 mm diameter), maintained at 15 
o
C and subjected to 

an irrigation regime (delivering 0.14 mL cm
-2 

18.2 MΩ cm
-1

 water) for 52 weeks. 

Following 26 weeks of irrigation, 2 of the 4 columns were fertilised. Leachate was 

analysed for dissolved constituents as were solid samples of the fresh soil and of soil 

samples collected from the columns following 52 weeks irrigation.  

Leachate concentrations for all nutrients, excepting phosphate, were observed to decline 

over the irrigation period. Leached phosphate concentrations increased from weeks 0 to 

2, and then remained relatively constant. Low nitrogen concentrations within the 

leachate from weeks 2 to 38 were caused by nitrogen immobilisation within the soil, 

whilst subsequent mineralisation resulted in increased concentrations from Week 38. 

Analyses of solid phase constituents determined little variation with depth. Fertiliser 

application demonstrated a significant (p < 0.05) increase in leachate concentrations for 

some dissolved organic nitrogen and nitrate, phosphate, magnesium and calcium and a 

decrease in pH. Fertiliser application observations showed less prominent differences 

for the extracted and solid phase constituents. 

Thirdly, biochar was applied to the artificial soil at three concentrations (10 %, 5 % and 

2 %) plus a control (0 %), to determine whether biochar application may improve 

nutrient characteristics of artificial soils. The biochar amended soils were packed into 

mesocosms and maintained at 15 
o
C for 6 weeks. In general, leachate analyses 

demonstrated a decrease in nutrient losses to leaching with increasing biochar 

concentration, highlighting the potential for improved nutrient retention within the soils. 
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1.1 Overview 

The Eden Project is an environmental and educational project located in a disused china 

clay pit in Cornwall, SW England. It opened in 2001 and has since become one of the 

UK’s leading visitor attractions. It is split into three ecological zones, or Biomes, 

namely the Humid Tropics, Mediterranean and Outdoor Biomes. The Eden Project 

designed and constructed artificial soils, from horticultural grit, lignite clay, composted 

green waste and bark, and used these to support plant growth within the Biomes. The 

recipe has had a large measure of success as approximately 80,000 tonnes have been 

deployed onsite. However, inconsistent environmental conditions, plantings and 

fertiliser additions have led to variable soil performance with respect to nutrient 

retention.  

There are 17 identified essential soil nutrients. These may be classified as either 

macronutrients or micronutrients, based upon the quantities required by plants. 

Nitrogen, phosphorus and potassium are often identified as key nutrients for study 

within soil science because they are required in the largest quantities by plants. As such, 

they are commonly the limiting nutrients.  

Soil conditions, such as temperature, moisture content, pH, cation exchange capacity, 

texture, water holding capacity and biological community composition, are viewed to 

have a large impact upon nutrient cycling. As a result they are key factors to consider in 

the design and execution of nutrient studies. 
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1.2 Background  

1.2.1 The Eden Project 

The Eden Project (EP) is an environmental and educational project, built in a previously 

disused china-clay pit in Cornwall, England. The site is split into three climatic and 

ecologically defined areas, referred to as biomes; the Humid Tropics (Rainforest), 

Warm Temperate (Mediterranean) and Outdoor Biomes (Figure 1.1). Each biome 

houses a diverse ecosystem, containing thousands of plant species and a wide variety of 

birds, lizards and frogs from across the world. Since its opening in March 2001, the 

management practices at the Eden Project have changed little and it is therefore 

necessary to review and assess aspects of the site to ensure best practice. This project 

focuses upon improving the understanding of the site’s soils. 

 

Figure 1.1: View of the Eden Project: The Outdoor Biome is highli ghted in orange, 

Humid Tropics Biome in yellow and the Mediterranean Biome in blue (Google Maps, 

2012).  
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At the time of acquisition the site contained no suitable natural soil. Sourcing and 

transporting sufficient quantities of natural soils, combined with potential problems 

such as inconsistency of quality and weed and disease problems, meant that this option 

was unfeasible. Thus the Eden Project developed its own protocol to prepare 

approximately 80,000 tonnes of soil for application across the site.  

The focus of this work was on soils within the Outdoor and Humid Tropics biomes. The 

Humid Tropics biome is the larger of the two greenhouse structures, covering an area of 

1.5 ha and features tree and plant species from the across world’s tropical regions. The 

temperature within the Humid Tropics biome ranges from 18 to 35 
o
C, while a network 

of misting sprays and a 10 m high waterfall maintain the humidity at approximately 

90.% at night, and 60 % during the day. Ground level irrigation pipes provide drip 

irrigation across the biome.  

The Outdoor biome surrounds the two indoor biomes and contains a range of plants 

from temperate regions of the world, including Europe, the Americas and parts of Asia 

(Eden-Project, 2009).  The Outdoor biome is irrigated predominantly by rainfall, with 

sprinkler and irrigation systems employed during times of low rainfall. 

1.2.2 Artificial soils 

Artificial soils are constructed from a mixture of materials with the intention of 

replicating the properties of a natural soil, whilst bypassing the long timescale 

associated with natural soil formation. With global soil supplies diminishing, there are a 

range of negative consequences, including the loss of agricultural productivity and 

increased release of greenhouse gases. The development of effective artificial soils 



 

Chapter 1 

5 

 

offers an alternative to the detrimental removal of natural topsoils, serving to reduce the 

pressure on this finite resource.  

The understanding and knowledge of natural soils has reached a level which allows for 

the development of artificial soils as a means of alleviating issues associated with the 

degradation of natural soils. As a result, artificial soils offer the potential for soils to be 

designed and produced with a wide variety of characteristics to fulfil a range of 

functions. 

Laboratory-based toxicity protocols such as those produced by the Organisation for 

Economic Co-operation and Development (OECD) and the International Organisation 

for Standardisation (ISO) use specific artificial soil compositions to minimise the 

impact of variable soil properties on results and promote precision and comparability 

between studies. De Silva and van Gestel (2009) reported that certain compositions 

incorporate components which are not widely available, such as sphagnum peat (which 

is becoming increasingly scarce) and proposed coco peat as a viable alternative. A 

significant complication is that, whilst the amount of each compound used for 

preparation is precisely defined, specific properties of the constituents (kaolin clay and 

quartz sand) are only briefly defined and may vary between suppliers, leading to 

variation between soils. 

Artificial soils may also be employed in instances where soil has been lost from a site 

through processes such as degradation or removed due to contamination. In such 

instances it is common for lost soil to be replaced with translocated natural topsoil, 

which can be expensive and may result in detrimental environmental consequences 

associated with land use change. The Eden Project soils represent an important example 
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of the effective implementation of artificial soil in a large scale land remediation 

project. 

The Eden Project soil was produced from locally-sourced raw materials, the main 

components were: horticultural grit (a mixture of graded sand 2 to 5 mm with 33 % fine 

particles, < 2 mm, when oven dried and ungraded sand 2 to 5 mm with 65 % fine 

particles, < 2 mm when oven dried), lignite clay (a carbonaceous sedimentary rock 

containing a large fraction of decomposed vegetation), composted bark and composted 

green waste. Earthworms were also added to the artificial soils around the site to 

encourage mixing and aeration within the soil (Whitbread-Abrutat, 2004). The resulting 

Eden Project soils contained a large sand fraction so the focus of this introduction is on 

soils with sandy texture. 

The artificial soil compositions reported for the OECD and ISO protocol for use in 

toxicology studies, and the Eden Project soils, are shown in Table 1.1. When compared 

to the OECD and ISO soils, the Eden Project soil has a larger organic matter fraction 

(10 % and 65 %, respectively) whilst the clay-sized particle fraction is greater within the 

OECD and ISO soils. It would not have been viable for the Eden Project to employ 

locally sourced materials were it to replicate the soils outlined by the OECD and ISO 

protocol. Further to this, the use of sphagnum peat may have led to the introduction of 

unwanted weed seeds into the soil mix, creating problems within the biomes, It should 

also be acknowledged that these soils were designed for different purposes, as 

highlighted by the differences in composition, and would be expected to perform 

differently. 
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Table 1.1:  Composition of OECD and ISO artificial soil compared to the Eden Project 

soil composition.  

 

Artificial soil Composition 

OECD (1984) and ISO (11268-1, 

2012) 

10.0 % sphagnum peat 

20.0 % kaolin clay 

~ 69.0 % quartz sand 

~ 1.00 % CaCO3
 
 (adjusting to pH ~ 6.0) 

Eden Project topsoil 

32.5 % composted green waste 

32.5 % bark  

25.0 % horticultural grit 

10.0 % lignite clay 

 

Whilst artificial soils have been employed in the study of toxicology (De Silva and van 

Gestel, 2009; Ellis et al., 2007; Saint-Denis et al., 2001; Stabnikova et al., 2005) and 

waste efficacy studies (Belyaeva and Haynes, 2009; Dayton et al., 2010; Stabnikova et 

al., 2005), few have characterised an established artificial soil or measured nutrient 

retention. The work presented in this thesis represents a primary study to directly 

observe the characteristics of an artificial soil with a view to its performance and 

potential for improvement. 

As an emerging technology, artificial soils have, to date, not been extensively studied; 

this therefore leaves large scope for their research. In order to select a focus for research 

the Eden Project was consulted and upon finding that large quantities of fertiliser were 

required in order to sustain the plant population within the Biomes it was decided that 

nutrient retention and storage characteristics would serve as the focus for the project. 

The Eden Project soils represent an early example of the large scale implementation of 

artificial soils, as such; their performance is particularly relevant as an indicator of how 

more recently produced artificial soils may perform over a similar timescale. Since their 

time of installation, the Eden Project soils have not been the subject of any detailed 

study. The conclusions and recommendations drawn from this study may be used to 
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inform management practices for other existing artificial soils and also for the 

development of future soil compositions.  

1.3 Essential soil nutrients 

The nutrient supply within a soil governs the efficacy of nutrient acquisition by plants. 

A soil is subjected to a number of pressures during the process of plant growth. One of 

the most significant of the pressures is the demand for nutrients. There are 17 essential 

elements, which are required for healthy plant growth. Carbon (C), hydrogen (H) and 

oxygen (O) are taken-up from atmospheric carbon dioxide (CO2) and water (H2O), 

whilst the other 13 nutrients are taken-up from the soil and are usually grouped as 

primary macronutrients (nitrogen, phosphorus and potassium), secondary 

macronutrients (calcium, magnesium and sulphur) and micronutrients (copper, iron, 

manganese, nickel, zinc, boron, chlorine and molybdenum) (Brady and Weil, 2008). 

Macronutrients are required by plants in relatively large amounts and represent > 0.1 % 

of dried plant tissue, may be further divided into primary and secondary nutrient groups 

(Table 1.2). The primary nutrients – nitrogen (N), phosphorus (P) and potassium (K) - 

are consumed by plants in the largest quantities, whereas the secondary nutrients – 

calcium (Ca), magnesium (Mg) and sulphur (S) - are required in smaller amounts. 

Micronutrients – copper (Cu), iron (Fe), Manganese (Mn), Nickel (Ni), Zinc (Zn), 

Boron (B), Chlorine (Cl) and Molybdenum (Mo) - are required in trace amounts, found 

to represent < 0.1 % dried plant tissue. 
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Table 1.2:  Essential nutrients present within soils (Brady and Weil, 2010; White and 

Greenwood, 2012) 

 

Macronutrients  (> 0.1 % of dry plant tissue) Micronutrients (< 0.1 % of dry 

plant tissue) Non-mineral Primary Secondary 

Mostly from air 

and water 

Mostly from soil 

solids 

Mostly from soil 

solids 
From soil solids 

 

Carbon (CO2) 
 

Cations: 

 

Cations: 

 

Cations: 

Hydrogen (H2O) Nitrogen (NH4
+
) Calcium (Ca

2+
) Copper (Cu

+
, Cu

2+
, Cu chelates) 

Oxygen (O2) Potassium (K
+
) Magnesium (Mg 

2+
) Iron (Fe

2+
,
  
Fe

3+
 chelates) 

   Manganese (Mn
2+

, Mn chelates) 

   Nickel (Ni
2+

, Ni chelates) 

   Zinc (Zn
2+

, Zn chelates) 
 

 Anions: Anions: Anions: 

 Nitrogen (NO3
-
) Sulphur (SO4

2-
) Boron (H3BO3, H4BO4

-
) 

 Phosphorous 

(H2PO4
-
, HPO4

2-
) 

 Chlorine (Cl
-
)  

Molybdenum (MoO4
2-

) 

 

1.3.1 Properties affecting nutrient characteristics 

Nutrient availability in soils is characterised by complex interactions between the 

nutrients and other chemical, physical and biological components of a soil. The balance 

between the essential nutrients within a soil is important. If more than one nutrient is 

deficient, the effect of supplying only one of the nutrients will have limited benefit and 

possibly be harmful (Davies et al., 1993). The possibilities for increasing soil 

productivity are often constrained by the supply of nutrients, in particular N and P 

(Spiro and Stigliani, 1996).  

The quantity of any given nutrient within a soil is a balance between inputs and outputs. 

There are a number of ways through which the soil system gains and loses nutrients. 

Nutrient losses are costly and wasteful, and can be a source of environmental 

contamination when they reach lakes, rivers and groundwater. Sources of these soluble 

nutrients in soil, and the ways in which they can be lost, are shown in Table 1.3. 
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Many important soil chemical properties are controlled by reactions between the soil 

solution and particle surfaces (Rowell, 1994). Soil solution contains low concentrations 

of a range of cations, anions and organic molecules (Brady and Weil, 2008). There is a 

dynamic interface between the soil solution and soil particle surfaces, with the main 

processes being dissolution and precipitation of salts and minerals and adsorption and 

desorption on the surfaces of clay and organic matter (Rowell, 1994). Therefore the 

composition of the soil solution is subject to continuous changes dependent upon 

temperature, plant uptake of nutrients, wetting, drying and mineralisation of organic 

matter (Rowell, 1994). 

Table 1.3:  Processes contributing to nutrient loss and gain in soils (adapted from 

Bierman and Rosen (2005).  

 

Nutrient Gain Nutrient Loss 

Decomposition of plant residues, animal remains and 

soil micro-organisms. 

Runoff where dissolved nutrients are lost in water 

moving across the soil surface. 

Organic amendments such as manures, composts, 

bio-solids, kelp etc. 

Erosion through wind or water movement removing 

soil particles from the land surface. 

Ground rock products including lime, rock phosphate 

and greensand. 

Leaching where dissolved nutrients are lost to 

groundwater or through field drains. 

Inorganic industrial by-products such as wood ash or 

coal ash. 

Gaseous losses to the atmosphere (primarily losses of 

different N forms) 

N-fixation by legumes. Crop removal from the soil during harvesting. 

Weathering of soil minerals.  

Fertiliser applications.  

Atmospheric deposition such as N and S from acid 

rain or N-fixation by lightning discharges. 
 

Deposition of nutrient-rich sediment from erosion and 

flooding 
 

 

1.3.1.1 Climatic conditions 

Climatic conditions can affect soil nutrient concentrations, with plant-availability and 

plant tolerance to differing conditions varying significantly. Moisture within an 

unsaturated soil is influenced by water exchange with both the atmosphere and 

groundwater, through precipitation, evaporation and transpiration, and is essential in 
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processes which affect soil ecosystem dynamics and biogeochemical cycles (Chen and 

Hu, 2004). Low moisture availability within a soil can lead to the plant being unable to 

absorb water from a soil, leading to wilting. 

Microbial populations within the soil are significantly affected by climatic conditions, 

increasing with increasing temperature and moisture. The rate of soil organic matter 

decomposition therefore increases with increasing temperature and moisture (Brady and 

Weil, 2008). 

1.3.1.2 Physicochemical properties 

1.3.1.2.1 pH 

The pH of a soil affects the chemical reactions taking place within, and significantly 

influences the plant-availability of nutrients (Sims, 1986). As shown in Figure 1.2, 

nutrient availability varies with pH, and optimal nutrient availability is observed at pH 

5.5 to 7.0 (Brady and Weil, 2008). Nutrient uptake may alter soil pH; for example, the 

form of N used by the plants. N can be adsorbed as either a cation or anion, for each 

cation that is absorbed by the plant, an H
+
 is released into the soil solution, which over 

time lowers the pH (Mattson et al., 2009). When anions are absorbed by the plant, an 

OH
-
 is released into the soil solution, which may promote higher pH values. Over time 

the H
+
  react with the OH

-
 to form water (H2O) giving more neutral pH (Lambers et al., 

1998; Mattson et al., 2009). The breakdown of soil organic matter also lowers the pH 

through release of organic acids into the soil solution. Many soils possess a buffering 

capacity, which minimises the impact of such releases and serves to maintain healthy 

plant growth conditions (Brady and Weil, 2008). 
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Figure 1.2:  Nutrient availability for plant use as influenced by soil pH for a mineral 

soil.  Bar width represents the proportion which is available to plants. Adapted from 

Brady and Weil (2008).   

 

1.3.1.2.2 Surface charges 

The surfaces of soil clay minerals and organic matter particles have associated electrical 

charges (Rowell, 1994). These charges may be either positive, which will retain anions, 

or negative, which will retain cations. Cations and anions retained electrostatically are 

easily exchanged with cations and anions in the soil solution. Thus, a soil with a higher 

cation exchange capacity (CEC) or anion exchange capacity (AEC) has a greater 

capacity to maintain adequate nutrient quantities (White and Greenwood, 2013). 

 Sandy mineral soils tend to have a low number of cation exchange sites because they 

contain fewer clay minerals and organic matter surfaces. This commonly results in a 

lower nutrient retention than in clay or highly organic soils (Ross and Ketterings, 1995). 

The electrical charges on some clay mineral and organic matter particles change with 
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pH, being mainly positive at low pH (increased anion retention) and mainly negative at 

high pH (increased cation retention)  (Rowell, 1994). 

The CEC of a soil defines its capacity to adsorb and exchange all types of cations by 

electrostatic forces (Ross and Ketterings, 1995; White and Greenwood, 2013). These 

cations are termed exchangeable and those most commonly considered are K, Ca, Mg 

and NH4
+
. The Na content increases at higher pH and exchangeable Al and H

+
 

concentrations increase at lower pH (Rowell, 1994). The CEC is an important soil 

property because of the influence it has over the extent to which soils can meet plant 

demands (White and Greenwood, 2013). When combined with other measures of soil 

fertility, CEC is a good indicator of soil quality and productivity (Ross and Ketterings, 

1995).  

1.3.1.2.3 Texture 

Soil texture is determined by particle size distribution and has a significant impact upon 

soil nutrient retention and storage properties. Soil particles may be comprised of either 

rock fragments or combinations of inorganic and organic materials cemented together in 

a porous structure (Barber, 1995). Soil texture determines the surface area of a soil, 

which has a significant influence on soil properties. Soils composed of mostly clay 

particles have a larger surface area than soils composed of mostly sand-sized particles 

(Brady and Weil, 2008). Greater surface area presents a larger number of charged 

surfaces (cation and anion exchange sites) within the soil, promoting greater nutrient 

retention and storage (Brady and Weil, 2008). 
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1.3.1.2.4 Structure 

Soil structure regulates a number of functions including water infiltration, percolation 

and retention, gas exchange, soil organic matter and mineral nutrient dynamics, plant 

root penetration, soil microbial diversity and activity and susceptibility to soil erosion 

(Bottinelli et al., 2015). The structure of a soil is influenced by a number of variables: 

parent material, topography, climate, land use management and biological activity 

(Bottinelli et al., 2015). 

1.3.1.2.5 Water holding capacity 

Water holding capacity refers to the amount of water a soil can hold against the force of 

gravity (Acharya et al., 2014; Milly and Dunne, 1994) and is heavily influenced by the 

structure, texture, depth and stoniness of a soil (Rowell, 1994). A soil with a low water 

holding capacity is more likely to lose significant quantities of nutrients to leaching. 

1.3.1.3 Biological properties 

Plant roots, microbes and animals that makeup the soil biological community produce 

intracellular and extracellular enzymes, which are responsible for much of the 

biogeochemical cycling within the soil (Killham, 1994). Many of the main cellular 

components are composed of essential nutrients, sorbed from the soil as simple 

inorganic compounds and then converted to organic constituents within the cell 

(Killham, 1994). The death and decomposition of organisms and their tissues then 

results in the release of inorganic ions to the soil, where the cycle is repeated.  

Within a soil ecosystem stability and resilience are encouraged by the presence of 

multiple organisms, which carry out each required task within the soil (Brady and Weil, 

2008). In general, it is observed that the abundance and diversity of the soil faunal 
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community is greatest in soils with minimal disturbance, such as those under permanent 

grassland and natural woodland (Killham, 1994).  

Along with the direct impact on nutrient cycling, fauna also have indirect effects on the 

soil. Macrofauna (soil invertebrates larger than 2 mm), such as earthworms, termites 

and ants, are considered to play an important role in controlling soil structure dynamics  

through incorporation of organic material into the soil, which significantly impacts soil 

porosity and aggregate stability and, therefore, nutrient availability (Bottinelli et al., 

2015; Tisdall and Oades, 1982). 

The rate of biological productivity in soils is largely affected by water availability and 

temperature (Austin et al., 2004; Schwinning and Sala, 2004). As such, climate has a 

significant effect on soil biogeochemical cycles. 

1.3.2 Nitrogen 

Nitrogen (N) is a constituent of a number of plant components, including all proteins, 

nucleic acids, and chlorophyll (Brady and Weil, 2010; Russell, 1973). Soil N changes 

form as a result of the activities of plants and microorganisms (Rowell, 1994). The 

principal pools and forms of N, and the processes by which they interact within the N 

cycle, are described below and illustrated in Figure 1.3.  
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Figure 1.3:  Essential components of the nitrogen cycle (adapted from Cresser et al. 

(1993) and Rowell, (1994)).  

 

1.3.2.1 Nitrogen transformations within the soil 

The inorganic nitrate (NO3
-
) and ammonium (NH4

+
) ions are the principal forms in 

which N is taken up from the soil by plant roots (Brady and Weil, 2010; Eshani et al., 

1999), though plants may also sorb low molecular weight dissolved organic nitrogen 

(DON) compounds, such as amino acids and peptides (Burton et al., 2007; Chapin et al., 

1993; Farrell et al., 2013; Hill et al., 2011; Jones et al., 2005a). The uptake of NH4
+
 

raises the pH of the rhizosphere soil, whilst the uptake of NO3
-
 lowers it (Brady and 

Weil, 2010). These pH changes influence the uptake of other ions such as heavy metals, 

phosphate (PO4
3-

) and micronutrients (Dijkshoorn et al., 1983).  

1.3.2.1.1 Fixation 

Soil nitrogen is primarily derived from the N2 present within the atmosphere (Brady and 

Weil, 2010; Rowell, 1994). The N2 molecule is very stable (bond energy of 945 kJ 
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mole
-1

), which means that N2 is not generally directly available for plant uptake and 

must first be converted to another form (Brady and Weil, 2010). Nitrogen fixation 

requires the destruction of the triple bond and is carried out by specialist soil micro-

organisms (both free-living and symbiotically associated with plants) and by lightning 

(Brady and Weil, 2010; Rowell, 1994).  

1.3.2.1.2 Nitrification 

The process of nitrification involves the transformation of NH4
+
 to NO2

-
 and then NO3

-
  

by autotrophic nitrifying soil bacteria (Brady and Weil, 2010). Under favourable 

conditions the nitrification process will occur in two stages: (1) NH4
+
 is converted to 

NO2
-
 by Nitrosomonas bacteria and (2) the NO2

-
 is then immediately acted upon by a 

Nitrobacter bacteria, producing NO3
- 
(Brady and Weil, 2010). The enzyme oxidation 

process releases energy for the bacteria as shown in equations 1.1a and 1.1b. 

 
𝑁𝐻4

+

𝐴𝑚𝑚𝑜𝑛𝑖𝑢𝑚
 + 1½ 𝑂2  

𝑁𝑖𝑡𝑟𝑜𝑠𝑜𝑚𝑜𝑛𝑎𝑠 
𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

→            

 
𝑁𝑂2

−

𝑁𝑖𝑡𝑟𝑖𝑡𝑒
 + 2𝐻+ + 𝐻2𝑂 + 𝑒𝑛𝑒𝑟𝑔𝑦               (1.1a)   

 
𝑁𝑂2

−

𝑁𝑖𝑡𝑟𝑖𝑡𝑒
 + ½ 𝑂2  

𝑁𝑖𝑡𝑟𝑜𝑏𝑎𝑐𝑡𝑒𝑟
𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎
→         

 
𝑁𝑂3

−

𝑁𝑖𝑡𝑟𝑎𝑡𝑒
 +  𝑒𝑛𝑒𝑟𝑔𝑦       (1.1b)  

1.3.2.1.3 Immobilisation  

Inorganic N ions are converted to organic forms through immobilisation (Equation 1.2). 

Immobilisation may occur through both biotic and abiotic processes (Brady and Weil, 

2010). Biotic immobilisation occurs during the metabolism of organic residues, such as 

amines (R–NH2), where microorganisms require more N than can be obtained from the 

decomposing residues, this causes them to scavenge NO3
-
 and NH4

+
 from the soil 

solution (Brady and Weil, 2010), which are then temporarily bound within the soil 
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microorganisms, to be returned to the soil through mineralisation following the death of 

the microorganisms (Johnson et al., 2005).  

𝑅 − 𝑁𝐻2 

+𝐻2𝑂
⇌

−𝐻2𝑂
𝑂𝐻− + 𝑅 − 𝑂𝐻 + 𝑁𝐻4

+
+𝑂2
⇌
−𝑂2

4𝐻+ + 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑁𝑂2
− 
+ ½ 𝑂2
⇌

−½ 𝑂2

 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑁𝑂3
−    (1.2)    

𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 

𝐼𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 

 

Studies have shown abiotic immobilisation to be most common in forest soils (Colman 

et al., 2007). Little is known about abiotic immobilisation processes, though it is 

thought that rapid chemical reactions involving compounds with high C : N ratios are 

involved (Brady and Weil, 2010). It has been hypothesised, by Colman et al. (2007), 

that abiotic immobilisation involves the incorporation of NO3
-
 and NH4

+
 into soil 

organic matter (SOM), where it is immobilised as organic nitrogen. Under reduced 

concentrations of O2, denitrifying bacteria may also produce some NO and N2O, which 

are potent greenhouse gases (Brady and Weil, 2010; Butterbach-Bahl et al., 2002). 

The amount and composition of organic N within a soil may be influenced by both 

biological and abiotic factors, including soil type, quantity and quality of organic matter 

input, microbial communities, management practices and environmental conditions 

(Burton et al., 2007). Within many soils, organic N comprises > 90 % of the total N 

pool (Barbarick, 2006; Brady and Weil, 2008; Fagotti et al., 2012; Haque et al., 2007). 

Through the process of mineralisation, organic N is converted to the more easily 

accessed NH4
+
 and NO3

-
.  
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1.3.2.1.4 Mineralisation 

Mineralisation is the reverse of the immobilisation process shown in Equation 1.2 

(Brady and Weil, 2008), where organic N contained within the SOM is converted into 

plant available inorganic forms by the heterotrophic activities of soil microorganisms 

(Brady and Weil, 2008; Haygarth et al., 2013). Under favourable conditions the second 

part of the reaction follows the first closely enough to prevent the accumulation of the 

plant-toxic NO2
-
 (Brady and Weil, 2010). 

1.3.2.1.5 Denitrification 

Where soil oxygen levels are insufficient, denitrification will occur. This is where 

microorganisms utilise oxygen from NO3
-
, and through this process NO3

- 
is rapidly 

converted to NO(g), N2O(g) and N2(g)
 
and released into the atmosphere (Equation 1.3)  

(Barbarick, 2006; Brady and Weil, 2010). Denitrification causes soil N to become 

unavailable to plants and under poorly aerated conditions this transformation can result 

in significant loss of NO3
-
 from the soil (Barbarick, 2006).   

 
2𝑁𝑂3

−

𝑁𝑖𝑡𝑟𝑎𝑡𝑒((
 
−2𝑂
→  

 
2𝑁𝑂2

−

𝑁𝑖𝑡𝑟𝑖𝑡𝑒( 
 
−2𝑂
→   

 
𝑁𝑂 ↑

𝑁𝑖𝑡𝑟𝑖𝑐 𝑜𝑥𝑖𝑑𝑒(
 
–𝑂
→  

 
𝑁2𝑂 ↑

𝑁𝑖𝑡𝑟𝑜𝑢𝑠 𝑜𝑥𝑖𝑑𝑒(
 
–𝑂
→   

 
𝑁2  ↑

𝐷𝑖𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛
     (1.3)   

1.3.2.1.6 Ammonia volatilisation 

Ammonia (NH3) volatilisation occurs as a result of the conversion of NH4
+
 to gaseous 

NH3, which is released into the atmosphere (Equation 1.4) (Johnson et al., 2005). NH3 

volatilisation is greatest when urea (CH4N2O) fertiliser is applied to a soil, but its 

movement into the soil is restricted (Rawluk et al., 2001). Conditions that affect NH3 

volatilisation include temperature and moisture levels, pH and CEC (Brady and Weil, 
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2010). The NH3 gas is in equilibrium with dissolved NH4
+ 

 according to Equation 1.4 

(Brady and Weil, 2010).   

    
𝑁𝐻4

+ + 𝑂𝐻− ⇌      𝐻2𝑂 + 
𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑖𝑜𝑛𝑠  

 
𝑁𝐻3 ↑ 
𝐺𝑎𝑠

          (1.4) 

1.3.2.2 Nitrogen fertilisation 

In crop-based plant systems, N demand frequently exceeds supply. Therefore, in order 

to promote healthy plant growth and maintain an adequate yield, it is common for 

fertilisers containing N to be applied to the soils. A range of materials are employed as 

N fertilisers, with urea (CH4N2O) the most widely used in agriculture owing to its high 

N content and low cost (Taufik et al., 2011). In order to ensure maximum efficiency and 

yield returns, application of fertilisers must be synchronised with crop uptake (Delin 

and Engstrӧm, 2010). 

In circumstances where organic materials with a high C : N ratio, such as wood, are 

added to a soil, a decrease in the plant available N pool may be observed (Fog, 1988). 

Within such materials there are large quantities of degradable carbon compounds; 

however, N is not available for microorganisms to utilise (Jackson and Wright, 2009). 

This leads the microorganisms to draw on the N within the soil solution pool, 

diminishing plant-available N supplies (Jackson and Wright, 2009). 

Nitrate (NO3
-
) is not efficiently retained by soil particles and is the N-form most 

vulnerable to leaching (Barbarick, 2006). This has an economic cost and is also a water 

quality concern (Johnson et al., 2005) as it can have environmental (eutrophication) and 

human health (blue baby syndrome and stomach cancer) consequences.  
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1.3.3 Phosphorus 

Phosphorus (P) is a major constituent of many plant cell components, playing a role in 

key processes, such as photosynthesis, respiration, energy storage and transfer, cell 

division and enlargement (Mullins, 2009; Shen et al., 2011).  

Soil P is subject to a range of complex chemical and microbiological reactions (Mullins, 

2009), as shown in Figure 1.4. Soil P originates from the weathering of primary 

minerals and from P additions in the form of fertilisers, animal and plant residues and 

small quantities from atmospheric deposition (Mullins, 2009). Whilst P is one of the 

most abundant elements on earth, when compared to other primary plant nutrients its 

plant availability in soil is relatively low under most soil conditions (Brady and Weil, 

2008; Hinsinger, 2001). This is because P ions are highly reactive within soil and water 

systems and so is readily bound and immobilised (Brady and Weil, 2008; Hinsinger, 

2001). 

 

Figure 1.4:  The phosphorus cycle (adapted from Brady and Weil (2008) and Rowell 

(1994)).  
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1.3.3.1 Inorganic phosphorus 

Phosphorus (P) in its primary state is found within geological deposits, predominantly 

as apatite, an insoluble inorganic calcium-phosphate mineral with the formula 

Ca3(PO4)2X, where X may be OH, F or Cl and the Ca may also be substituted for Mn, 

Sr or Y (Börling, 2003; Gray, 2011). Through the slow process of weathering, P is 

released into the soil solution (Mullins, 2009), where it is plant available; however, it is 

also subject to rapid immobilisation and precipitation processes. 

Phosphorus (P) is available to plants as dissolved inorganic phosphate (DIP) within the 

soil solution. Its dominant form is dependent on the localised chemical environment, 

either H2PO4
-
 in acidic soils, or HPO4

2- 
in alkaline soils, with a balance in near-neutral 

soils (Brady and Weil, 2008; Gray, 2011; Rowell, 1994). When the pH is maintained at 

6.0 to 7.0, DIP
 
precipitation is at its lowest and therefore plant availability is highest 

(Brady and Weil, 2010). 

Movement of DIP from the soil solution to plant root surfaces is slow. In order to 

combat this, high root proliferation is found in zones where DIP ions are present and 

symbiosis occurs between plants and mycorrhizal fungi (Brady and Weil, 2008). The 

low mobility of inorganic P is due to the reactivity of DIP ions relative to other soil 

constituents, which also causes high retention (Hinsinger, 2001). As shown in Figure 

1.4, DIP may enter the soil solution in a number of ways.  

Phosphate
 
ions are easily absorbed to mineral surfaces of which, two groups are 

important: (1) those containing Ca, (calcite) and (2) those containing Fe and Al 

(variscite and strengite) (Brady and Weil, 2008). Soil pH has a significant impact on 

which of these two groups are dominant. At higher pH Ca compounds are stable and 
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relatively insoluble, so becoming the dominant form. Acidic conditions lead to the 

dissolution of Ca compounds and their release into the soil solution, leaving Fe and Al 

compounds as the dominant forms (Brady and Weil, 2008; Gray, 2011; Mullins, 2009). 

Under both alkaline and acidic conditions, P undergoes reactions, which produce P-

containing compounds of decreasing solubility, which are therefore less plant available 

(Brady and Weil, 2008).  

1.3.3.2 Organic phosphorus 

Once sorbed by a plant, a fraction of the P becomes part of the plant tissues (Brady and 

Weil, 2008). As the plants shed leaves and their roots die, or when they are consumed 

by animals or humans, P is returned to the soil in the form of plant residues, leaf litter 

and wastes from animals and humans (Brady and Weil, 2008). Organic P typically 

accounts for 30 to 65 % of total soil P (Turner, 2008).  

Organic P, contained within the soil organic matter, is released to the soil solution as 

DIP, through decomposition and mineralisation, as shown in Equation 1.5 (Hedley et 

al., 1982; Mullins, 2009). The rate of mineralisation is influenced by soil moisture and 

temperature, with the highest rates occurring at warmer temperatures, within well 

drained soils (Brady and Weil, 2008; Hinsinger, 2001). These residues are decomposed 

by microorganisms, which temporarily immobilise P within their cells, but this is 

eventually released through mineralisation (Brady and Weil, 2008). Net immobilisation 

of P is most likely to occur where residues added to the soil have a C : P mass ratio 

above 300, where P is required by soil microbes for the breakdown of organic matter, 

while net mineralisation is likely when this ratio is below 200, as the concentration 

available P is greater than that required by soil microbes (Brady and Weil, 2008). 
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𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑃 
𝑀𝑖𝑐𝑟𝑜𝑏𝑒𝑠

⇌ 𝐻2 𝑃𝑂4
−

𝑆𝑜𝑙𝑢𝑏𝑙𝑒 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒

𝐹𝑒3+𝐴𝑙3+𝐶𝑎2+

⇌ 𝐹𝑒, 𝐴𝑙, 𝐶𝑎 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒𝑠

𝐼𝑛𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑓𝑖𝑥𝑒𝑑 𝑃

  (1.5) 

                  𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛       𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 

                 𝐼𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛      D𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 

 

1.3.3.3 Phosphorus management 

Plant P demand often far exceeds the available supply, making it difficult to achieve 

high crop yields within agricultural systems (Ohno et al., 2005). In view of this the use 

of P-containing fertilisers is prevalent. The introduction of soluble P to a soil results in 

the rapid removal of P from solution (Brady and Weil, 2008), which means that only a 

small fraction (10 to 15 %) of the P applied in fertilisers and manures is taken up by 

plants in the year of application (Brady and Weil, 2008). This has led to widespread 

over-application of P fertilisers, often resulting in the loss of P from the soil to aquatic 

environments (Pote et al., 1996).  

The introduction of P to the aquatic environment can stimulate algal growth, leading to 

eutrophication and a range of detrimental outcomes. P losses from soils are dependent 

on the source factors and the transport mechanisms (Börling, 2003; Gburek et al., 2000). 

This means that fertiliser applications require careful management in order to avoid 

these detrimental effects. 

Phosphorus (P) applied as fertiliser is often sourced through the mining of geological 

deposits. The minerals are then reacted with acids to bypass the weathering process, 

with the resultant P applied to the soils as fertiliser. Due to the low solubility and 

mobility, ore-forming processes are restricted, limiting global P supply and making P a 

finite resource (Oelkers et al., 2008). This means that P is a finite material, which in 
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recent years this has led to a significant increase in the cost of P-based fertilisers 

(Gilbert, 2009). 

1.3.4 Carbon and organic matter 

Carbon (C) is an essential component for all living organisms. As such, it plays a highly 

important role within the soil environment. Secondary to the oceans, the terrestrial C 

reservoir represents a large proportion of global C storage with a capacity over three 

times larger than the deeper lithosphere and two and a half times larger than the 

atmosphere (Grotzinger et al., 2006). The interactive processes between the soil, plant 

and atmosphere are shown in Figure 1.5.  

 

Figure 1.5: The  carbon cycle within the soil environment  (adapted from Brady and Weil 

(2008)).  

 

There are two types of soil C: inorganic and organic. Soil inorganic C is derived from a 

reaction between Mg
2+

 and/or Ca
2+

 and carbonic acid in the soil solution, resulting in 

the formation of carbonates (Brady and Weil, 2008; Sparks, 2003; Wu et al., 2009), 

such as calcite and dolomite (Lal, 2007), or as calcrete (Walcott et al., 2003). Inorganic 
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C compounds are an important regulators of atmospheric C dioxide over very long 

timescales (Walcott et al., 2003), which means that it is relatively stable. Owing to this, 

soil inorganic C is often overlooked where agricultural production and C sequestration 

are concerned (Trumbone and Torn, 2003). 

Soil organic C (SOC) is a substantial component of SOM, accounting for approximately 

50 % of its mass (Brady and Weil, 2008). As such, SOC is commonly used as a 

measurement of SOM (Walcott et al., 2003). This C fraction of SOM is highly 

influential with regard to microbial activities within the soil and serves as an important 

regulator with regard to the mineralisation of other key plant nutrients. 

SOM is derived from plant and animal residues at various stages of decomposition, 

including; cells, tissues of soil organisms and substances synthesised by the soil 

population (Brady and Weil, 2008). Components of SOM may be subdivided, as shown 

in Figure 1.6, based on their origin and stage of decay, with their physical, biological 

and chemical properties influencing soil functions and determining their role as either a 

sink or source within the global C cycle (Walcott et al., 2003). The living organic matter 

group is comprised of plants, microbes and animals, which plays an important role in 

the decomposition of the non-living group and, therefore, nutrient cycling. However, 

owing to its changeable nature, it is generally disregarded (Walcott et al., 2003).  

The major elemental component of SOM is C, though, a range of other nutrients, 

including N, P, and K, are present within the various constituents. SOM, therefore, acts 

as a nutrient reservoir within the soil. The rate of SOM decomposition is highly 

influential with regard to the turnover of plant available nutrients. Within the non-living 

SOM group, the rate of turnover is highly variable. Historically, non-living organic 



 

Chapter 1 

27 

 

materials were sub-divided into fast, slow and passive turnover pools, based on their 

composition; however, a study by Dungait et al. (2012) suggests that rate of turnover is 

governed by accessibility. 

 

Figure 1.6: Components of soil organic matter (adapted from Walcott et al. (2003)).  

 

SOM is a major contributor to the pH buffering capacity of soils (Sparks, 2003) and is 

also fundamental to the maintenance of soil fertility, serving to affect the mineralisation 

of key nutrients, the retention of nutrient cations within the soil, structural stability and 

water holding capacity (Rowell, 1994).  

SOM has a net negative surface charge at pH above 3, which increases with increasing 

pH as a result of dissociation of H
+
 from functional groups (Sparks, 2003). This surface 

charge combined with the large surface area, means that SOM has a greater CEC that 

clay minerals (Powlson et al., 2013), and may account for up to 80 % of a soil’s CEC 

(Stevenson, 1994). SOM is particularly important within sandy soils, where the clay 
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content is lower (Sparks, 2003), which serves to reinforce the significance of the role of 

SOM in the retention of soil nutrients. 

1.3.5 Carbon : nitrogen ratio 

The breakdown of organic matter by microbes is significantly impacted by the C : N 

ratio (Hoorman and Islam, 2010). Organic C, is utilised by soil microorganisms, which 

require C for energy and for building organic compounds (Brady and Weil, 2010). 

However, the microorganisms also require N for use in the construction of amino-acids, 

proteins and DNA (Hoorman and Islam, 2010). 

The C : N ratio of organic residues within a soil indicates the rate of decomposition and 

therefore, N availability (Brady and Weil, 2008; Thomas et al., 1998). Typically, the C : 

N ratio of an organic material applied to a soil will decrease with time (Post et al., 

1985). This is because, as decomposition proceeds, easily decomposed material is lost 

and N is immobilized in microbial biomass and other decay products, leaving behind 

more recalcitrant material, with slower decomposition rates and lower C : N ratios 

(Hoorman and Islam, 2010; Post et al., 1985). Factors slowing the decay rate include 

high lignin content, cool temperatures and poor soil aeration (Post et al., 1985; 

Waksman, 1936). 

For effective breakdown of organic material, soil microbes require 24 g C for every 1 g 

N (Brady and Weil, 2010). This means that SOM with C : N mass ratios below this are 

subject to rapid decomposition. The presence of organic matter with a high C : N ratio 

encourages competition between soil microorganisms (Brady and Weil, 2008), resulting 

in slower decomposition rates and often causes in the immobilisation of NO3
-
 and NH4

+
, 

depleting the plant available N pool (Brady and Weil, 2010; Russell, 1973). 
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Where C : N ratio is expressed as a ratio of the content by mass, it is relatively constant 

for a specific soil, even under a range of management conditions (Russell, 1973). Table 

1.4 contains data for soils from different fields at Rothamsted Research, UK. Here, 

despite a wide range of C contents and land uses the C : N ratio only varies from 8.5 to 

12.8. 

Table 1.4:  The carbon and nitrogen contents and C:N ratio of some Rothamsted soils 

(Russell, 1973). The carbon content was been measured using the loss on ignition method 

and nitrogen by Kjedahl digestion. Data are presented on a dry weight basis.  

 

Soil Percent C Percent N C:N 

Old Woodland 12 – 17 cm 2.38 0.250 9.5 

Park Grass, old pasture 0 – 22 cm    

     Unfertilised  pH approx. 6 3.4 0.28 12.1 

     Fertilisers and lime pH approx. 7 3.7 0.32 11.6 

     Fertilisers and no lime pH approx. 5 3.2 0.25 12.8 

     Subsoil 22 – 45 cm pH approx. 6.5 1.4 0.14 10.0 

Broadbalk 0 – 22 cm    

     No manure since 1839 0.84 0.099 8.5 

     Complete fertilisers (annually since 1843) 1.00 0.115 8.7 

     35 t ha-1 farmyard manure (annually since 1843) 2.59 0.251 10.3 

 

1.3.6 Potassium  

Potassium (K) is the third most likely nutrient, following N and P, to limit plant 

productivity (Brady and Weil, 2008). Within plants, K is not incorporated into any cell 

structures; rather it remains within solution in cells or acts as an activator for a large 

number of enzymes. As such, it is essential for a wide range of plant processes (Brady 

and Weil, 2008). The cycling and availability of K (Figure 1.7) within soils is dynamic 

and readily influenced by management practices.  

The K content of soils is predominantly derived from primary minerals, such as micas 

(biotite and muscovite) and K feldspar (orthoclase and microcline) (Brady and Weil, 

2008). The weathering of these minerals releases K into soil solution. 
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There are four forms of K present in soils: (1) within the crystalline structure of primary 

minerals, (2) in non-exchangeable positions in secondary minerals, (3) in exchangeable 

form on soil colloid surfaces and (4) ions within soil solution (Brady and Weil, 2008; 

White and Greenwood, 2013). All plants are able to access dissolved and exchangeable 

K within the soil solution and on the colloid surfaces. However, the availability of K 

from the primary and secondary mineral structures is dependent upon the plant species 

(Brady and Weil, 2008). 

 

Figure 1.7: The potassium cycle in soils (adapted from Brady and Weil (2008)).  

 

Sources of K include plant residues, composts, animal manures and minerals. A small 

portion of this K may also be leached from plant foliage by rainwater and returned to 

the soil solution (Brady and Weil, 2008; White and Greenwood, 2013). As K is highly 

mobile within the soil solution, significant losses are incurred through leaching and 
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runoff (Alfaro et al., 2004). As high amounts are also required for uptake by plants, it is 

common for K to be supplemented through fertiliser applications.  

Sandy soils have relatively low concentrations of K-bearing minerals and non-

exchangeable K (Alfaro et al., 2004; Kayser et al., 2012). This is because sandy soils 

release little K through weathering and have a low CEC (Kayser et al., 2012), meaning 

that careful management is required in order to supply sufficient quantities to support 

plant growth. 

1.3.7 Secondary macronutrients 

Secondary macronutrients include calcium (Ca), magnesium (Mg) and sulphur (S). Ca 

is a major component of plant cell walls and also serves in the activation of a number of 

enzymes (Brady and Weil, 2008). In soils, Ca is principally accessed by plant roots as 

exchangeable Ca, and from readily weathered minerals, such as carbonates and apatite 

(Brady and Weil, 2008; Rowell, 1994). These plant-available pools within the soil 

solution are replenished by three forms: (1) Ca within mineral structures, such as calcite 

or plagioclase, (2) Ca within SOM (Rowell, 1994) and (3) Ca held to cation exchange 

sites on clay and humus colloids (Brady and Weil, 2008). Ca solubility decreases with 

increasing soil pH as shown in Figure 1.2 (Brady and Weil, 2008). 

Within plants, Mg is a component of chlorophyll and also serves in the activation of a 

number of enzymes (Brady and Weil, 2010). Mg is accessed by plant roots from an 

exchangeable pool on the clay-humus complex (Rowell, 1994). The exchangeable Mg 

pool is replenished by the weathering of minerals (including dolomite, biotite 

hornblende or serpentine and certain 2:1 clays), the breakdown of SOM and 

atmospheric deposition (Brady and Weil, 2010; Rowell, 1994). 
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Within plants, S is a constituent of amino acids, vitamins, enzymes and aromatic oils 

(Brady and Weil, 2010). There are three major sources of S for plant uptake: (1) SOM, 

(2) soil minerals and (3) S gases in the atmosphere (Brady and Weil, 2010). S ions 

within the soil are positively charged, and are retained within the soil by the cation 

exchange surfaces on 1:1 type clays (Brady and Weil, 2008). This dependence upon 

CEC and clay surfaces can lead to S depletion within sandy soils. 

1.3.8 Micronutrients 

Whilst still considered essential for healthy plant growth, micronutrients are required by 

plants in relatively small quantities (in dried plant tissue < 0.1 % weight) (Hossner, 

2008). Micronutrient elements include boron, manganese, iron, nickel, copper, zinc, 

molybdenum and chlorine. The occurrence of micronutrients within a soil reflects the 

nature of its soil forming factors and may also be affected locally, by mining and 

industrial activities (Harmsen and Vlek, 1985). 

The interactions between total and plant-available micronutrient contents differ between 

elements, with the total values reflecting both the relatively stable fraction and the more 

dynamic plant-available fraction, which is more readily influenced by soil and climatic 

conditions (Harmsen and Vlek, 1985).  
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1.4 Research Objectives and Aims  

1.4.1 Rationale 

At the time of the production of the artificial soils, plant nutrient retention within the 

soil was not a prime consideration, as it was initially planned that plant nutrition would 

be maintained through the use of controlled fertiliser applications (Whitbread-Abrutat, 

2004). However, after 10 years of hugely variable environmental conditions, planting, 

fertilizer practices, incidental introductions of micro-flora and micro- and meso-fauna, 

as well as general husbandry (mulching and allowing natural organic matter turnover), 

some Eden Project soils are performing better, in terms of nutrient storage, than was 

originally anticipated, whilst others remain quite poor. This project seeks to further the 

understanding of the biogeochemistry of soils manufactured by the Eden Project, 

relating this to their nutrient retention. 

1.4.2 Research aim 

To assess the performance of an artificial soil in terms of nutrient cycling. 

1.4.3 Research objectives 

1. To characterise the soils established at the Eden Project using appropriate 

analytical techniques.  

2. To construct and implement the use of soil column bioreactors to observe the 

performance of soils with regard to the cycling of key nutrients 

3. To make controlled changes to the artificial soils determine how this affects the 

sustainability of the nutrient reservoir. 

4. To make recommendations for the manufacture of an nutrient-rich soil that can 

be produced by utilising waste materials available in Cornwall and which has 

wide application for local projects. 
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2.1 Introduction 

The aims and objectives for this project were achieved through the collection and 

analysis of a large number of solid and aqueous samples. This chapter describes the 

materials and methods relating to their collection and analyses. 

Analyses were carried out within an ISO-accredited (ISO 9001:2008) laboratory at 

Plymouth University, with QEMSCAN
®
 analyses conducted at Camborne School of 

Mines, University of Exeter. Fieldwork was carried out at the Eden Project, Cornwall, 

UK. 

2.2 Cleaning Protocol and Reagents 

The high purity water (HPW) referred to in this thesis, was taken from a Millipore 

system running at a resistivity of 18.2 MΩ cm
-1

, unless otherwise stated. To minimise 

contamination, all reagents and standard solutions were prepared under a laminar flow 

hood. All plastic and glassware was cleaned under a standardised procedure, where it 

was soaked in 2 % Decon
®
 for 24 hours, rinsed with HPW, soaked in 10 % m/v HCl for 

a further 48 hours, rinsed again with HPW and dried under a laminar flow hood. 

Contamination was further avoided, by storing plastic and glassware inside two zip-lock 

polythene plastic bags. All glassware and filters used for measurement of dissolved 

organic carbon (DOC) or total dissolved nitrogen (TDN) were combusted at 450 
o
C for 

6 hours to remove organic residues (Badr et al., 2003). 

All reagents were analytical grade, obtained from Alfa Aesar (Lancashire, UK), Fisher 

Scientific (Loughborough, UK) and Sigma Aldrich (Dorset, UK). All weight 

measurements < 50 g were made using a Salter ER182A balance and recorded to 4 
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decimal places; weighing of quantities > 50 g was performed using a GF3000 balance 

and recorded to 2 decimal places. 

2.2.1 Certified reference materials 

Certified reference materials (CRMs) were used, where appropriate, to support the 

accuracy of results. There are few commercially available CRMs for soil nutrients and, 

as such, alternative nutrient CRMs were used. These CRMs were chosen because they 

contained nutrient concentrations of a similar order of magnitude to those anticipated in 

samples. Details for any of the CRMs used are recorded in the appropriate sections of 

this Chapter. 

2.3 Fieldwork 

Fieldwork was carried out at the Eden Project, and took place on a number of occasions, 

as detailed in Table 2.1. The majority of fieldwork involved soil collection and 

preparation; additional detail regarding site visits can be found in the appropriate 

chapters.  

Table 2.1:  Fieldwork dates summary.  

 

Date Summary of fieldwork 

26/09/11 Preliminary site visit 

26/01/12 Sampling across Humid Tropics and Outdoor biomes. 

11/02/13 Water sampling and irrigation rate measurement. 

25/03/13 Artificial soil production and column packing. 

23/01/14 Soil pit digging and sampling. 
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2.4 Particle-associated constituent preparation and analyses 

2.4.1 Soil sampling, preparation and storage 

To ensure the collection of enough material for laboratory analyses, approximately 

100.g of soil was collected per sample. Sampling was carried out using a plastic trowel, 

to minimise the potential for metallic contamination. For more extensive sampling, such 

as in the case of the soil pits, a metal spade was used, with a plastic trowel then 

employed to clean the sampling-face of the pit. For the initial characterisation analyses, 

bulked sampling methods were employed at each site, where a number of samples was 

taken from a set depth (e.g. 0 to 10 cm of topsoil or > 20 cm for subsoil) and 

homogenised to give one representative sample for that soil layer. In all cases, the soil 

surface was cleared of litter prior to sampling. 

All soil samples were placed in labelled, polythene zip-lock bags and transferred to the 

laboratory within 4 hours. The solid samples were then stored at 4 
o
C and liquid 

samples frozen at -20 
o
C. Sample analysis was carried out as rapidly as possible, in most 

cases within 1 month of sampling. 

Soil samples are commonly subject to unintended sorting via different particle densities, 

shapes and sizes during transport (Schumacher et al., 1990), as such samples were 

homogenised prior to analysis  This sorting can have a major influence on the results of 

chemical analyses and as such it was necessary to ensure that all samples were 

homogenised prior to analysis. To encourage homogenisation, the coning and quartering 

method (Harvey, 2000) was employed to reduce the gross sample size (Figure 2.1).  
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Figure 2.1: The coning and quartering process. 1 .  Sample was formed into a cone shape. 

2. The cone was flattened. 3. The flattened cone was then divided in half. 4.  Then divided 

into quarters. 5. The diagonally opposite quarters were taken and either used for 

laboratory analysis or, if  a smaller quantity was required, the process repeated (Harvey, 

2000).    

 

2.4.2 Total Nitrogen, Total Carbon and Organic Carbon 

Total nitrogen, carbon and organic carbon were analysed using a CHN EA1110 analyser 

(CE Instruments), which combusted the samples, converting carbon to carbon dioxide, 

hydrogen to water and nitrogen to nitrogen dioxide gas (Ryba and Burgess, 2002). The 

gases were resolved then chromatographically analysed. 

Procedure 

Approximately 10 g of sample was air dried for 48 hours in a temperature cabinet 

maintained at 40 
o
C. The samples were then ground to pass through an 80 µm sieve. 

Each sample was divided into 2 x 10 mL sample tubes one of which was used for the 

total carbon and nitrogen measurements while the other underwent direct acid digestion, 

to remove inorganic carbon, allowing for the determination of organic carbon. The acid 

digestion was performed by adding 1 mL 0.1 M HCl to a sample, which was left for 30 

minutes; the supernatant was then removed by vacuum (Figure 2.2). A further 1 mL 

HPW was added and the sample left for 30 minutes before the supernatant was 
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removed. This process was repeated until the samples ceased to effervesce (Jones et al., 

2004). Once the acid digestion process was complete, samples were dried at 40 
o
C for 

24 hours.  

 

Figure 2.2:  The vacuum system for removing supernatant waste following the acid 

digestion of a soil sample.  

 

Following the digestion process, between 6 to 8 mg of each soil sample was accurately 

weighed into tin cups, using a 5-figure balance (Mettler Toledo AT201), with 3 

replicates prepared per sample. The cups were then crushed using tweezers and re-

weighed, with the recorded values entered into the software, before being placed onto 

the auto-sampler. The CRMs used were PACS-1 and Peat Soil Standard (the C and N 

content of these CRMs is shown in Table 2.2) and empty cups were crushed and used as 

blanks. 

Table 2.2:  The certified carbon and nitrogen values for the ce rtified reference materials 

employed during the CHN analysis.  

 

Certified reference material C (%) N (%) 

PACS-1 (marine sediment) 3.69 ± 0.11 - 

Peat soil standard 15.98 ± 0.16 1.27 ± 0.04 
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Samples were completely combusted in excess oxygen, this reduced C to CO2, H to 

H2O, and N to N2
 
and NOx (Ryba and Burgess, 2002). The combustion products were 

then passed over high purity copper, heated to 600 
o
C using helium gas as an inert 

carrier (Ryba and Burgess, 2002).The copper served to remove any oxygen not 

consumed during the combustion process and converted any NOx to N2. The gases were 

then passed through absorbent traps to leave only the CO2, H2O and N2, which were 

analysed by gas chromatography with thermal conductivity detection (Ryba and 

Burgess, 2002). 

2.4.3 Mineralogical analyses using QEMSCAN
®
 

The mineralogical characteristics of the soil samples were determined using 

QEMSCAN
®
 at Camborne School of Mines, Exeter University. QEMSCAN

®
 

(quantitative evaluation of minerals by scanning electron microscopy) is a microscopy 

system which enables quantitative chemical analysis of materials and the generation of 

high-resolution, mineral maps and images as well as pore structure (Ayling et al., 2012; 

Gottlieb et al., 2000).  

The main benefit offered by QEMSCAN
®
 was the spatially resolved mineralogical data, 

inferred from chemical spectra, which provided increased information on mineral 

species (Rollinson et al., 2011).  QEMSCAN
®
 only examines solid inorganic material 

with atomic numbers between 6 (carbon) and 92 (uranium) (Rollinson, 2010), limited 

by the energy dispersive x-ray spectrometers (EDS) detectors. QEMSCAN
®
 was used to 

identify and compare any differences in major mineral phases present within a freshly 

prepared artificial soil and the same soil mix after 1 year of irrigation and management 

within the soil columns. 
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Procedure 

Approximately 5 g of each sample was dried and sieved (< 2 mm) and then sent to 

Camborne School of Mines, University of Exeter. There, they were mounted into epoxy 

resin blocks (30 mm diameter) and polished using water-based lubricants and diamond 

solutions to give a highly polished surface, as shown in Figure 2.3.  

 

Figure 2.3:  Polished resin sample blocks of freshly prepared artificial soil, analysed 

using the QEMSCAN
®

 instrument (Photograph courtesy of G.K.Rollinson, December 

2013).  

 

Samples were analysed on the QEMSCAN
®
 4300, built on a Zeiss Evo 50 SEM 

(scanning electron microscopy) platform with four light element Bruker Xflsah
®
 silicon 

drift EDS (Rollinson et al., 2011). An electron beam was rastered across the sample 

surface, causing the liberation of electrons and x-rays from the sample (Rollinson, 

2010). A background threshold was applied via atomic number, allowing particles to be 

outlined and distinguished from the background (resin mounting). This created a grey-

scaled map, based on atomic number (Rollinson, 2010), which guides the x-ray 

analysis.  

X-rays from every point were detected by the energy dispersive x-ray spectrometer 

detectors and sent to the pulse processors (Rollinson, 2010). The spectra were then 

compared to a database, allowing for the assignment of each analysis point to a specific 
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mineralogy and chemistry (Ayling et al., 2012; Rollinson, 2010). Data was collected 

using iMeasure 4.2 and processed using iDiscover 4.2 & 4.3 to provide an accurate and 

focussed report, in line with procedures outlined by Rollinson et al. (2011). This 

involved ensuring the mineral identifications are correct (quality control), developing 

the database as required and outputting appropriate data. 

2.4.4 Moisture content and organic carbon content 

Moisture content and organic carbon content were measured concurrently using a two-

stage process (Rowell (1994). Moisture content was measured by drying a known 

weight of soil in an oven at 105 
o
C; the difference between the weight of the field moist 

sample and the oven-dried sample represented the moisture content. Organic carbon 

content was determined using loss on ignition, by heating the same sample to 450 
o
C, at 

which temperature organic matter is burnt off, the sample was then reweighed (Rowell, 

1994). 

Procedure 

The weight of an empty crucible was recorded using a 4-figure balance, then 

approximately 10 g of sample was accurately weighed into the crucible before drying at 

105 
o
C for 16 hours. The crucible was then placed in a desiccator until cool and then 

reweighed to give the dry soil weight.  

For the determination of loss on ignition the crucible was placed in a muffle furnace at 

450 
o
C for 6 hours, then cooled in a desiccator to cool and reweighed. Moisture content 

was reported as a percentage relative to the oven-dried sample mass. Loss on ignition 

was expressed relative to the mass of oven-dried soil in g per 100 g oven-dried soil 

(Rowell, 1994). 
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2.4.5 Particle size distribution 

Particle size analysis was carried-out on a Malvern Mastersizer 2000, using laser 

diffraction to determine the particle size distribution of soil samples. 

Procedure 

Approximately 10 g of each sample was dried at 80 
o
C for 16 hours.  Any aggregates 

were then gently broken up using a mortar and pestle and passed through a 1 mm sieve. 

Each sample was then subdivided into 2 g sub-samples and transferred to sample tubes.  

The presence of organic matter (OM) within a sample may cause flocculation of 

particles, which can lead to erroneous results within samples, so the OM was removed 

with hydrogen peroxide (H2O2) prior to particle size analysis. Each sample was digested 

in 3 mL 3 % H2O2 solution for 16 hours, after which a further 3 mL of 6 % H2O2 

solution was added and digested for a further 16 hours. Samples were then placed in a 

water bath at 90 
o
C to remove any remaining H2O2 solution; the effervescence produced 

by heating caused any fibrous material to rise to the surface, where it was then removed. 

This process was repeated 4 times and samples were then dried overnight at 90 
o
C.  

Samples were moistened with water immediately prior to analysis and mixed to a 

homogenous paste before being positioned in the auto-sampler. Throughout the analysis 

sodium hexametaphosphate was added to each suspension to complex cations which 

may have been bound to clay and silt particles, creating aggregates (particularly Ca
2+

, 

Al
3+

 and Fe
3+

); this substance also acted to suspend any organic matter still present on 

the surface of the samples. 

Particle size was measured by laser diffraction as the suspension passed through a 

focused laser beam (Malvern Instruments Ltd., 2006). This provided a particle size 
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distribution range from 0.1 to 2000 µm.  The particles scattered the incident light at 

angles inversely proportional to their size and the angular intensity of the scattered light 

was then measured using a series of photosensitive detectors (Malvern Instruments 

Ltd.Malvern, 2006). The particles were then divided into size fractions, based on the 

results of these analyses.  Table 2.3 outlines the particle size classifications used by ISO 

14688-1:2002.  

Table 2.3:  Soil particle size classifications (ISO 14688-1:2002). 

 

 Basic soil type Sub-type Particle size (μm) 

Fine soil 

Clay 
 

< 2.0 

Silt 

Fine silt 2.0 – 6.3 

Medium silt 6.3 – 20.0 

Coarse silt 20 – 63 

Coarse soil 

Sand 

Fine sand 63 – 200 

Medium sand 200 – 630 

Coarse sand 630 – 2000 

Gravel 

Fine gravel 2000 – 6300 

Medium gravel 6300 - 20000 

Coarse gravel 20000 - 63000 

Very coarse soil 
Cobbles 

 
63000 - 200000 

Boulders 
 

> 200000 
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2.5 Dissolved constituents 

2.5.1 Sample preparation and storage 

Once collected liquid samples were filtered through combusted, HPLC grade, glass 

fibre filter papers (75 g m
-2

, 450 μm thickness) using Buchner apparatus. Filters can 

adsorb nutrients from a sample and, as such, could potentially interfere with the results. 

As a result all filters were pre-treated with a small amount of sample, prior to filtering. 

Samples were then subdivided into polypropylene centrifuge tubes (for separate 

analyses of NH4
+
, NO3

- 
+ NO2

-
, PO4

3-
 and metals) and combusted glass vials (for 

DOC/TDN analysis).  

Samples were stored in the dark at -20 
o
C prior to analysis. All bottles had a suitable 

headspace and were stored and thawed in an upright position (Kirkwood, 1996). This is 

because the last few millilitres to freeze often have a different composition to the bulk 

of the sample, and if the bottle volume is completely filled, some of this liquid may be 

expressed past the closure during the freezing process, leading to unrepresentative 

results (Kirkwood, 1996). Leaving a sufficient headspace also helped to prevent 

breakage of storage tubes and vials. Prior to analysis, frozen samples were allowed to 

thaw to room temperature over a period of 24 hours. 

2.5.2 Total dissolved nitrogen and dissolved organic carbon 

Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured 

using the Shimadzu TOC (total organic carbon) 5000A analyser, coupled with a Sievers 

NCD (nitrogen chemilluminescence detector) 255 detector as shown in Figure 2.4, 

following the method outlined by Badr et al. (2003).  
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Figure 2.4:  Schematic diagram showing the coupled Shimadzu TOC 5000A HTCO -

Sievers NCD 255 nitrogen chemilluminescence detector and the associated hardware 

(Badr et al., 2003).  

 

Calibration 

Combined DOC/TDN standards were produced using potassium hydrogen phthalate for 

carbon and glycine for nitrogen. Concentrations ranges were 60 – 600 µM C and 10 to 

100 µM N for carbon and nitrogen, respectively. The peak area values for each sample 

were converted to concentrations using a calibration graph derived from the peak area 

of the standard solutions. Figure 2.5 shows examples of a typical TDN (a) and DOC (b) 

calibration graphs. 
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Figure 2.5: a)  Calibration graph as produced and used for total dissolved nitrogen 

(TDN) analyses (data generated on 15/4/14). b)  Calibration graph as produced and used 

for dissolved organic carbon (DOC) analyses (data generated on 10/3/14).  

 

Procedure 

Samples were acidified to pH 2 using 2 M HCl (100 μL per 100 mL sample) prior to 

analysis. Samples of approximately 15 mL volume were loaded on to the autosampler in 

combusted glass vials. Where dilutions were necessary, HPW was used. A deep sea 

water standard was used as a CRM for each run (the DOC and TDN content of this 

CRM is shown in Table 2.4).  

Table 2.4:  The certified carbon and nitrogen values for the certified reference materials 

employed during the CHN analysis.  

 

Certified reference material C (µM) N (µM) 

Deep sea water 41 – 44 31.50 – 33.75 
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The first stage of analysis was the removal of dissolved inorganic carbon, by sparging 

(ca. 8 min
-1

 at 75 mL min
-1

) using bottled, high-purity (99.999 %) oxygen (Badr et al., 

2003). The sample was then injected into the combustion column, where the TDN and 

DOC in the sample were oxidised to CO2, NO and H2O at 680 
o
C, in the presence of a 

platinum catalyst (Badr et al., 2003).  

The combusted gases were dried using an electronic dehumidifier and purified using a 

halogen scrubber (Badr et al., 2003). The CO2 was detected by a non-dispersive infra-

red detector (NDIRD), the gases exiting the NDIRD were pulled into the nitrogen 

chemilluminescence detector (NCD) unit using a vacuum pump connected in series, 

with the chemilluminescence detector (Badr et al., 2003). Any remaining water vapour 

was removed using a gas dehumidifier. The NO in the combustion gas was then reacted 

with O3 to produce NO2 species (equation 2.1a), which chemiluminesced on decay to its 

ground state (equation 2.1b). The emitted light (hʋ) was collected by a photomultiplier 

tube and the resulting voltage recorded using a data-acquisition/integration system 

(Badr et al., 2003). The voltage was stoichiometrically proportional to the total 

extracted N (Badr et al., 2003).  These processes are further illustrated in Figure 2.3. 

2𝑁𝑂 + 2𝑂2  →  𝑁𝑂2
∗ + 2𝑂2       (2.1a)   

𝑁𝑂2
∗  →  𝑁𝑂2 +  hʋ        (2.1b)  

2.5.3 Nitrate + nitrite and phosphate 

Dissolved nitrate + nitrite (NO2
-
 + NO3

-
) and phosphate (PO4

3-
) were analysed 

simultaneously with a Skalar SAN
++ 

analyser, using a continuous flow method on a 

four-channel system, supplied by an auto-sampler, following the protocol outlined by 
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Kirkwood (2011). The NO3
-
 + NO2

-
 value was referred to in the results sections as NO3

-
, 

as NO2
-
 represents an intermediate fraction. 

Buffer solution (nitrate ± nitrite) 

Ammonium chloride (50 g) was dissolved in approximately 800 mL HPW, which was 

then adjusted to pH 8.2 with ammonia solution (35 %). Sodium hydroxide (5.5 g) was 

then added and the solution made up to 1000 mL with HPW. The buffer solution was 

then de-gassed using helium before 3 mL Brij 35 was added. 

Colour reagent (nitrate ± nitrite) 

Phosphoric acid (150 mL) was added to approximately 700 mL HPW, 10 g 

sulphanilamide and 0.5 g N-(1-Naphthyl)ethylene diamine dihydrochloride were then 

added. This was then made up to 1000 mL with HPW. 

Ammonium molybdate (phosphate) 

Potassium antimony tartate (0.23 g) was dissolved in approximately 800 mL HPW, 69.4 

mL sulphuric acid was added whilst swirling constantly. Once cooled, 6 g ammonium 

molybdate were dissolved. This was then made up to 1000 mL with HPW and 2 mL 

FFD6 added. 

Ascorbic acid (phosphate) 

Ascorbic acid (11 g) was dissolved in approximately 800 mL HPW. Acetone (60 mL) 

was added, then made up to 1000 mL with HPW and 2 mL of the anionic surfactant 

FFD6 added. 

Standard solutions 

Combined nitrate and phosphate standards were made up within a concentration range 

of 0 to 15 mg L
-1

 for nitrate and 0 to 500 µg L
-1

 phosphate. Sample concentrations were 
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determined using a calibration curve derived from the peak heights of the standard 

solutions. 

The peak height values for each sample were converted to concentrations using a 

calibration graph produced through the analysis of standards. Figure 2.6 shows an 

example calibration graph for, nitrate + nitrite (a) and phosphate (b). 

 

Figure 2.6: a)  Calibration graph as produced and used for nitrate + nitrite analyses (n 

= 3); data generated on 16/11/13). b)  Calibration graph as produced and used  for 

phosphate analyses (n = 3) (data generated on 8/11/13).  

 

Procedure 

Approximately 10 mL sample was transferred to autosampler vials then injected into the 

system, where it reacted as illustrated in Figure 2.7.  
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Figure 2.7:  Schematic diagram showing the phosphate and nitrate + nitrite channels of 

the Skalar San
++

 analyser.  

 

As direct colorimetric determination of nitrate was not possible, the method proceeded 

via reduction of nitrate to nitrite (Grabowski et al., 2011) on a column, containing 

granulated copper-cadmium (Sparks, 2003). The nitrite then reacted with 

sulphanilamide and coupled with N-(1-naphthyl)ethylenediamine dihydrochloride, to 

form an intense pink azo dye, which was measured at 540 nm (Kirkwood, 1996; Skalar, 

2012a). In order to establish the efficiency of the cadmium column, in converting nitrate 

to nitrite, two 3 mg L
-1 

standards, one nitrate and one nitrite, were prepared and run at 

the beginning and end of each set of analyses, standard column efficiency was in the 

region of 97 ± 0.5 %. 
 

Phosphate reacted with ammonium molybdate and potassium antimony tartate in the 

ascorbic acidic medium, forming an antimony-phospho-molybdate complex (Kirkwood, 

1996). This complex was then reduced by ascorbic acid to produce a blue-coloured 
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complex, the intensity of which was measured at 880 nm (Kirkwood, 1996; Skalar, 

2012b) 

The phosphate concentration in some samples exceeded the linearity of the calibration 

curve and, as such, required dilution. Where dilutions were necessary the nitrate + 

nitrite and phosphate analyses were carried out separately and samples were diluted in 

HPW. Figure 2.8 demonstrates the extent of the linearity for the phosphate calibration.   

 

Figure 2.8:  Calibration graph displaying the extent of the calibration line arity for 

phosphate analyses (n = 3) (data generated on 10/12/13) .  

 

2.5.4 Ammonium 

Ammonium concentration was measured on a Hitachi F-4500 fluorescence 

spectrometer, using the OPA (о-phthalaldehyde) fluorescence spectrophotometry 

method, as outlined by Holmes et al. (1999) and Kérouel & Aminot (2011). 

Working reagent 

Sodium tetraborate (40 g) was dissolved in 1000 mL HPW, in a glass, amber 

Winchester bottle. Sodium sulphite (0.4 g) was diluted in 50 mL HPW; 5 mL of which 

was added to the Winchester bottle, followed by a solution of -phthalaldehyde (OPA) 
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(5 g dissolved in 50 mL ethanol).  The working reagent was prepared a minimum of 48 

hours prior to use and was stored in the dark at room temperature. 

Standard solutions 

Standard solutions were prepared using NH4Cl to give a concentration range from 0 to 

50 µM. The fluorescence values for each sample were converted to a concentration 

using a calibration graph produced through the analysis of standard solutions. Figure 2.9 

shows an example calibration curve for ammonium. 

 

Figure 2.9:  Calibration graph as produced as used for ammonium analyses ( n = 3)(data 

generated on 30/10/13).  

 

Background fluorescence and matrix effects 

Background fluorescence (BF) occurs as a result of the auto-fluorescence of substances 

within the samples, and must be subtracted from the observed value in order to correctly 

determine the fluorescence due to ammonium in the sample (Holmes et al., 1999). The 

BF was measured using sodium tetraborate solution only. 

A matrix effect (ME) occurs when substances in the sample, such as organic material, 

alter the intensity of the fluorescence by reacting with OPA (Holmes et al., 1999). The 

ME for a sample set was measured using the procedure described in Holmes et al. 
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(1999) in which 4 samples were analysed using the sample matrix and HPW (Table 

2.3). Equation 2.2 was used to calculate the ME of the sample, with the letters 

corresponding to the solutions identified in Table 2.5. 

𝑀𝐸 = 
((𝐴−𝐵)−(𝐶−𝐷))

(𝐴−𝐵)
 ×  100 %         (2.2)   

 

Procedure 

A 2.5 mL aliquot of each sample or standard solution was transferred into a 20 mL 

polypropylene scintillation vial and 10 mL of working reagent added. This was 

performed in triplicate for all samples and standards, excluding the blank standard, 

which had a minimum of 5 replicates. For the background fluorescence, 2.5 mL of 

sample was mixed with 10 mL sodium tetraborate solution; the ME samples were 

prepared as shown in Table 2.5.  

Table 2.5:  Matrix effect sample composition as employed during the ammonium a nalyses.  

 

Solution Working reagent Sample High purity water 30 μM Standard 

A 10 mL - 1.25 mL 1.25 mL 

B 10 mL - 2.5 mL - 

C 10 mL 1.25 mL - 1.25 mL 

D 10 mL 2.5 mL - - 

 

Once prepared, samples and standards were incubated in the dark for 2 to 3 hours then 

analysed on the fluorescence spectrophotometer. The excitation and emission 

wavelength bandwidths used were 340 to 360 and 380 to 600 nm, respectively (Holmes 

et al., 1999). The slit width used on the detector was 5 mm.  

The reaction of OPA with ammonium produced a fluorophore (Holmes et al., 1999).  

Fluorescence occurred when the fluorophore was excited into a higher energy state, 

through the absorbance of an incident photon (Lakowicz, 2006); the source in this 
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instance being a xenon lamp.  The fluorophore emits a photon (Lakowicz, 2006), which 

produced a signal. The energy and relative intensity of the signal could be measured 

within a wavelength range and the sample ammonium concentration determined using a 

calibration graph produced from the standard solution data.  

2.5.5 Dissolved Organic Nitrogen and Extracted Organic Nitrogen 

Dissolved organic nitrogen (DON) and extracted organic nitrogen (EON) were 

measured. DON represented the soluble organic N fraction present within the soil 

solution, whilst EON referred to the soil organic N fraction released through extraction 

with fixed volumes of 2M lithium chloride and HPW. Both DON and EON were 

measured after filtration through GFF filters (75 g m
-2

, 450 μm thickness). 

DON and EON were determined indirectly as the difference between the TDN and DIN 

(NO2
-
 + NO3

-
 and NH4

+
) concentrations as shown in Equation 2.3a. Equation 2.3b 

shows the standard error calculations used for the separate analyses, allowing the 

standard error for the calculation to be estimated.  

𝐷𝑂𝑁 𝑜𝑟 𝐸𝑂𝑁 = 𝑇𝐷𝑁 𝑜𝑟 𝑇𝐸𝑁 − (𝑁𝑂3
− + 𝑁𝐻4

+)     (2.3a)   

𝛿𝐷𝑂𝑁 𝑜𝑟 𝛿𝐸𝑂𝑁 = √(𝛿𝑇𝐷𝑁 𝑜𝑟 𝛿𝑇𝐸𝑁)2 + (𝛿𝑁𝑂3−)2 + (𝛿𝑁𝐻4
+)2  (2.3b) 

2.5.6 Nutrient analyses using ICP-OES 

The column leachate and extractant solutions were analysed for dissolved K, P, Ca and 

Mg (macronutrients) and Fe (a micronutrient), using an iCAP 7000 series inductively 

coupled plasma – optical emission spectrometer (ICP-OES).  
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Standards 

Mixed standards were prepared using certified standards in 2 % nitric acid to give a 

suitable calibration range for the 6 elements (Table 2.6).  

Table 2.6:  Concentrations of the mixed standard solutions employed for the ICP -OES 

calibration.  

 

Ca. Mg, P (mg L-1) K (mg L-1) Fe (mg L-1) 

0 0 0.00 

20 100 0.02 

50 200 0.05 

100 500 0.10 

200 1000 0.20 

 

Procedure 

Nitric acid (2 %) was used as a wash solution between each sample, with the mid-

standard used to recalibrate the instrument every 10-15 samples. Between 5 and 10 mL 

of each sample was required for analyses. The wavelengths used for analyses are listed 

in Table 2.7.  

Table 2.7:  Wavelengths employed for the elemental analyses with ICP -OES. 

 

Element Wavelength (nm) 

Mg 285.21 

Ca 317.93 

K 766.49 

P 177.50 

Fe 259.94 

 

The sample was introduced to the ICP-OES in liquid form, where it was nebulised to an 

aerosol using argon gas. Larger droplets went to waste, whilst smaller droplets were 

introduced into the plasma flame, where the sample collided with electrons and charged 

ions and was itself, broken down into charged ions. The various molecules from the 

sample broke up into their respective atoms, which then lost electrons and recombined 

repeatedly in the plasma, giving off light at the characteristic wavelengths. The emitted 
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light was separated into its component wavelengths and its intensity measured to 

provide quantification for each sample. 

2.5.7 pH and Eh 

The pH and Eh of sample solutions were determined within 30 minutes of sample 

collection and solid sample pH measured within 2 weeks of collection. The pH probe 

used was a standard glass electrode (VWR) with a Mettler Delta 340 milli-voltmeter, 

calibrated using buffer solutions of pH 4 and 7, prepared with tablets (Fisher Scientific) 

dissolved in HPW. The pH of the solid soil samples was measured according to Rowell 

(1994), as detailed below. 

The analysis of solid samples was carried out by drying the sample for 48 hours in an 

oven at 40 
o
C. Sub-samples of 10 g were weighed into 6 centrifuge tubes and 25 mL of 

HPW added to 3 replicates each per sample (Nelson, 1982; Rowell, 1994). The 

centrifuge tubes were then placed on a rotary shaker at 120 rpm for 30 minutes, then left 

to stand for 1 hour before the pH was measured using the calibrated pH meter. 

The Eh of soil solution was measured using a double junction potassium chloride ORP 

electrode (Cole Palmer) with a Metler Delta 340 milli-voltmeter. The voltage measured 

was then corrected to be consistent with a standard hydrogen reference electrode (+200 

mv in this case).  

2.5.8 Cation Exchange Capacity 

Cation exchange capacity (CEC) was determined through the use of the ammonium 

acetate method as described by Schollenberger and Simon (1945). 
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The analysis of solid samples was carried out on air dried soils (40 
o
C for 48 hours), 5 g 

of which were weighed into Erlenmeyer flasks (250 mL) and 25 mL of 1 M ammonium 

acetate added to 3 replicates per sample and allowed to stand for 16 hours.  

The sample was then filtered, with the entire sample transferred to a Buchner funnel, 

light suction was applied. The soil was then leached with ammonium acetate 5 times 

using 25 mL each time to ensure maximum cation exchange. Ethanol (95 %) was then 

used to wash the soil, removing excess ammonium acetate, this was repeated 5 times.  

The soil was then leached using 50 mL 1 M potassium chloride to displace the 

ammonium ions. This leachate collected and analysed for ammonium concentration 

using the method described in Section 2.5.4. CEC was then calculated using equation 

2.4. 

CEC (𝑐𝑚𝑜𝑙𝑐 𝑘𝑔
−1) =  

(𝑁𝐻4
+−𝑁 𝑖𝑛 𝑙𝑒𝑎𝑐ℎ𝑎𝑡𝑒− 𝑁𝐻4

+−𝑁 𝑖𝑛 𝑎𝑚𝑚𝑜𝑛𝑖𝑢𝑚 𝑎𝑐𝑒𝑡𝑎𝑡𝑒) 

𝑅𝑀𝑀 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛
           (2.4) 

2.5.9 Fluorescein Diacetate Hydrolysis 

The fluorescein diacetate (FDA) method reported by Adam and Duncan (2001) was 

used for measurement of enzymatic activity within solid soil samples. A procedure was 

developed and utilised for the FDA analysis of liquids, which was applied successfully 

to the analysis of enzymatic activity within leachate samples. Reagents used for these 

analyses were adapted according to the sample matrix (i.e. solid or liquid).  

Sodium phosphate buffer solution (pH 7.6) 60 mM (for solid) 

This was prepared by dissolving 22.74 g sodium phosphate tribasic (Na3PO4·H2O) in 

1.L of HPW. Sodium phosphate monobatic dihydrate was then added to achieve pH 7.6. 
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The solution was stored at 4 
o
C and the pH checked on the day of use. For liquid FDA 

measurements the final concentration of buffer solution was 120 mM. 

Fluorescein Diacetate Solution (1000 µg FDA mL
-1

) 

The FDA solution was prepared by dissolving 0.1 g fluorescein diacetate (Sigma 

Aldrich) in 100 mL AR grade acetone and was stored at 4 
o
C. 

Standard solutions 

Standard solutions were prepared using fluorescein sodium salt (Sigma Aldrich) in the 

appropriate pH 7.6 sodium phosphate buffer solution (60 mM for solid analyses and 

120.mM for liquid analyses). The concentrations used for the calibration curve ranged 

from 0 to 5 mg L
-1

. Standards were prepared on the day of analyses. The absorbance 

values were converted to concentrations using a calibration curve, an example of which 

is shown in Figure 2.10. 

 

Figure 2.10: Fluorescein calibration curve used to determine sample fluorescein 

diacetate concentrations (n = 3)  (data generated on 3/2/14) .  

 

Soil analysis procedure 

The method of Adam and Duncan (2001) was followed for the analysis of soil samples, 

with the exclusion of the termination step. Fresh, field-moist soil sample (2 g) was 
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weighed into a 50 mL centrifuge tube and 15 mL of 60 mM sodium phosphate buffer 

(pH 7.6) was added. To start the reaction 0.2 mL FDA solution (1000 µg FDA mL
-1

) 

was added and the centrifuge tubes shaken to mix. The centrifuge tubes were heated in a 

water bath at 30 
o
C for 30 minutes then centrifuged at 2000 rpm for 5 minutes. The 

supernatant was immediately analysed at 490 nm on a Hewlett-Packard 8453 UV-vis 

spectrometer. The fluorescein produced in the reaction gave the supernatant a 

fluorescent yellow colour; Figure 2.11 demonstrates then colour range within the 

calibration standards. 

A control was used for each soil sample where instead of 0.2 mL FDA solution (1000 

µg FDA mL
-1

), 0.2 mL acetone was added. This allowed for a background measurement 

of fluorescence to be made. 

 

Figure 2.11:  Fluorescein standards are yellow in colour. Here they increase in 

concentration from left to right ranging from 0 to 5 mg L
- 1

.  

 

Liquid sample procedure 

Individual parameters of the fluorescein diacetate hydrolysis reaction were studied to 

optimise the assay for the measurement of leachate samples. These factors included the 

effect of leachate quantity, amount of substrate and incubation time. Based on reported 

data and methodology, both temperature (30 
o
C) and pH (7.6) were unchanged. It was 
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found that incubating the soils for 30 minutes at 30 
o
C produced the greatest response, 

as demonstrated in Figure 2.12. 

 

Figure 2.12:  Fluorescein concentration per hour given for a range of incubation times 

using a leachate sample of unknown concentration (n = 3)  (data generated on 4/2/14) .  

 

Leachate was collected from the soil columns and 14.5 mL was immediately pipetted 

into a 50 mL centrifuge tube, with 15 mL 60 mM sodium phosphate buffer (pH 7.6) 

then added. To initiate the reaction, 2 mL of FDA solution (1000 µg FDA mL
-1

) was 

added and the centrifuge tubes shaken, before being heated in a water bath at 30 
o
C for 

30 minutes. The supernatant was then analysed at 490 nm. 

A chloroform methanol (2:1 v/v) mixture has been widely proposed for the termination 

of reactions. However, this step was not adopted as some studies reported an 

interference with the spectrometry. Instead the incubations were instead carried out at 

staggered time intervals, allowing the immediate measurement of absorbance.  

As with the solid analyses, a control was used for each soil sample where the FDA 

solution was substituted for 2 mL acetone. This allowed for a background measurement 

to be made.  
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2.6 Extraction of nutrients from soil samples 

2.6.1 Extraction method development 

The extractant represents the chemical solution added to the soil sample to dissolve, 

desorb or exchange a portion of the total amount of a nutrient within the soil sample 

(Poon and Schmidt, 2010). Typical extractants used for soils vary depending on soil 

type, pH and climatic conditions some of the most commonly encountered are listed in 

Table 2.8. When carrying out soil nutrient extractions there are a number of factors 

impacting the outcome (1) extractant, (2) soil to extractant ratio, (3) soil extractant time 

and (4) extractant temperature (Li et al., 2012).  

Table 2.8:  Literature reported use of soil extractants for different target nutrients.  

 

Target 

nutrients 

Extracting 

solution 
Reference 

NH4
+
, NO3

-
, 

NO2
-
 

Water (Haney et al., 2006; Moldes et al., 2007) 

KCl (Haney et al., 2006) 

K2SO4 (Atiyeh et al., 2001) 

CaCl2 (Moldes et al., 2007) 

P 

Mehlich 3 (Azeez et al., 2013; Haney et al., 2006) 

Bray (Azeez et al., 2013; Haney et al., 2006) 

Olsen P (Azeez et al., 2013; Haney et al., 2006) 

Water (Fuhrman et al., 2005; Moldes et al., 2007) 

CaCl2 (Fuhrman et al., 2005) 

H2SO4 (Dieter et al., 2010) 

HCO3
-
 resin (Delgado and Torrent, 1997) 

K 
Water (Moldes et al., 2007) 

CaCl2 (Moldes et al., 2007) 

 

For the initial site characterisation (Phase 1 - Chapter 3) it was intended to determine 

the maximum extractable fraction within the soil across the biomes, as such, a strong 

extraction solution was identified for use. Typically KCl would be employed for this, 

however, due to the intention to measure K through extraction of soils, it was concluded 

that KCl would not represent an appropriate extractant and as such LiCl and HPW were 
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examined as potential alternatives. For the later experimental stages (Phase 2 - Chapter 

3, Chapters 4 and 5) the soil extractions were implemented as a means of estimating the 

concentrations of nutrients susceptible to leaching by rainwater or irrigation. On this 

basis HPW was employed as the extraction solution. 

2.6.1.1 Preliminary extraction study 

Preliminary extractions in order to compare LiCl, KCl and HPW were carried out on a 

loam soil certified reference material (CRM) in order to determine the optimal 

extractant, extractant concentration and soil to extractant ratio.  

Lithium chloride (LiCl), potassium chloride (KCl) and HPW were tested as extractants 

for N fractions. Three concentrations of LiCl and KCl used were 0.5, 1.0 and 2.0 M; 

these concentrations were chosen as the most frequently reported concentrations for 

such investigations. The solid KCl and LiCl were pre-treated by combustion in a muffle 

furnace at 450 
o
C for 6 hours in order to remove any residual nitrogen.  

Approximately 0.4 g of CRM was accurately weighed into 50 mL polypropylene 

centrifuge tubes and 40 mL of extractant added. Three replicates were used for each 

extractant and three controls (i.e. no CRM was added). 

The samples were placed on a rotary shaker for 2 hours at 120 rpm, after which time 

they were centrifuged at 3000 rpm for 5 minutes. The supernatant was then removed 

and filtered through Fisher brand HPLC grade GFF papers (75 g m
-2

, 450 μm thickness) 

pre-treated with the appropriate extractant. Following the removal of the supernatant, 

fresh extractant was added to make the volume up to 40 mL and the sample agitated and 

filtered again; this process was repeated 5 times for each sample. The supernatant was 
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then stored in acid-washed, combusted glass vials and frozen until 24 hours prior to 

analysis, at which time the samples were defrosted.  

The supernatant was analysed for extractable organic carbon, total extractable nitrogen 

(Figure 2.13) and extractable ammonium, then an appropriate extractant was selected.  

 

Figure 2.13: Total extracted nitrogen  (TEN) concentrations (µg g
-1

) from extractant 

trials (n = 3) (data generated 12/1/12).  

 

Based on the results 2 M LiCl was chosen as the most efficient extractant. Following 

the initial site characterisation, Phase 2 (Chapter 3) extractions were carried out, where 

a less intensive extractant was required for allow for the comparison of the soil column 

data gathering during the irrigation of the soil columns (Chapter 4). The intention here 

was to estimate nutrient concentrations susceptible to leaching, which called for the use 

of HPW as the extracting solution. The final extraction protocol is described below. 

2.6.2 Lithium Chloride extractions 

A 0.4 g sample of each soil was weighed into polypropylene centrifuge tubes and 

40.mL 2 M LiCl solution added. Each extraction was carried out in triplicate with a 2 M 

LiCl solution used as a control (n = 3). Samples were placed on a rotary shaker for 
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2.hours at 120 rpm and then centrifuged at 3000 rpm for 5 minutes. The supernatant was 

then decanted into a 50 mL syringe and filtered through a 25 mm 450 µm thickness 

glass microfibre filter membrane, pre-treated with 2 M LiCl. A fresh volume of 2 M 

LiCl was then added to the centrifuge tube to make it up to 40 mL before being agitated 

and filtered again. This process was repeated 5 times per sample.  

2.6.2 Extractions with high purity water 

Extractions with HPW were carried out by accurately weighing approximately 4 g of 

soil into a centrifuge tube, to which 40 mL HPW was added. The centrifuge tube was 

then placed on an orbital table for 2 hours at 120 rpm, and then centrifuged at 3000 rpm 

for 5 minutes. The supernatant was then removed and filtered through pre-treated, 

Fisher brand HPLC grade glass fibre filter papers (75 g m
-2

, 450 μM thickness). 

Following the removal of the supernatant, a fresh aliquot of HPW was added to make 

the volume up to 40 mL and samples were replaced on the rotary shaker; this process 

was repeated 3 times per sample. The samples were analysed for DOC/TDN, NH4
+
, and 

NO3
-
 + NO2

-
/PO4 as described in section 2.5. 
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2.7 Data Evaluation 

Where appropriate, data was converted to mass/volume units following analyses. The 

limits of detection for each method are shown in Table 2.9 and have been calculated to a 

95 % confidence, using the 3 x standard deviation (3σ) of the blank (Miller and Miller, 

2000), excepting TDN, Mg, Ca, K, Na and Fe where it was calculated from 3σ lowest 

standard (Badr et al., 2003). 

Table 2.9:  Typical operational limits of detection for the analytical measurements made 

during soil column leachate  and extracted phase analyses.  

 

Analyses Limit of Detection Units 

Total Dissolved Nitrogen 0.04 mg N L-1 

Nitrate + Nitrite 0.11 mg N L-1 

Phosphate 3.82 µg P L-1 

Dissolved Organic Carbon 115 µg C L-1 

Ammonium 26.8 µg N L-1 

Magnesium 0.46 mg L-1 

Calcium 0.23 mg L-1 

Potassium 2.82 mg L-1 

Sodium 1.67 mg L-1 

Iron 3.33 µg L-1 

 

Statistical analyses were performed using Minitab® 16, where it was determined 

whether normal distribution was observed, before the appropriate tests were selected. 

Further detail of statistical procedures is referred to in the appropriate chapters. 

Graphical representations of the results were produced using Grapher
®
 (version 7.0) and 

Excel (Microsoft Office 2010). 
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CHAPTER 3 

 

 

 

The chemical characterisation of established artificial soils from the Eden Project, 

Cornwall, UK 
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3.1 Overview  

This chapter characterises the established artificial soils within the outdoor and humid 

tropics biomes at the Eden Project, in order to determine their condition and assess the 

level of variation across the site. Five topsoil samples, one sub-soil sample and two 

depth profiles at 5 cm resolution were collected from the Eden Project site and analysed 

for a range of properties and nutrient concentrations.  

The statistical analyses, performed upon the data, suggested that management practices 

and soil age had a greater impact on the soil properties than differing environmental 

conditions. It was also found that all topsoil samples were classified within the sandy 

loam textural class (ISO 14688-1), which has potentially negative connotations for 

nutrient retention within the soils. 
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3.2 Introduction  

3.2.1 Rationale 

In order to address the overall aim for the project and make recommendations for the 

maintenance of a fertile artificial soil with a large reservoir of slow-release nitrogen, it 

was first necessary to determine the condition of the soils already established at the 

Eden Project site.  

The Eden Project’s artificial soils comprise a topsoil layer of approximately 15 to 30 cm 

depth, below which is a subsoil layer of a further 40 to 100 cm depth, on top of an 

impermeable clay layer at the base. It was expected that management practices would be 

a key influence on nutrient characteristics across the site. It was, however, considered 

important to explore the nutrient status at various soil sites before any further studies 

were carried out. 

Since the soils were first laid at the Eden Project site, in 2001, they have been subject to 

a wide range of management practices; as such, there is considerable variability across 

the site with regard to soil performance. In order to understand the extent of this 

variation and its impact on nutrient characteristics of the soil, characterisation was 

carried out on soil samples from a number of locations across the Eden Project site.  

Characterisation sampling was split into two Phases. For Phase 1, 6 samples (5 surface 

samples and 1 sub-surface) were taken from locations in both the Outdoor and Humid 

Tropics Biomes. Phase 2 focused on the soils within the Humid Tropics Biome, where 

two soil depth profile studies were carried out. 
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3.2.2 Research objective 

This chapter addresses research objective 1: 

- To characterise the soils established at the Eden Project using appropriate 

analytical techniques.  

3.3 Experimental design and specific methodology 

3.3.1 Sampling strategy 

All field sampling took place at the Eden Project site, within the Humid Tropics and 

Outdoor Biomes. Sampling locations were selected based on discussions with the Eden 

Project, in which a number of sites were selected to be representative of the range of 

environments and management practices present at the Eden Project. Phase 1 sampling 

took place on 26/01/12 at locations marked on Figures 3.1a and 3.1b. Phase 2 sampling 

was carried out on 23/01/14 in the Humid Tropics Biome; these locations are marked on 

Figure 3.1a.  

Whilst the two sample sets were collected 2 years apart, sampling on both occasions 

took place in January, as a means of keeping the sampling conditions as constant as 

possible, to generate comparable data-sets. 

The sampling sites for Phase 1 were selected to provide a representative characterisation 

of soils from the Outdoor and Humid Tropics Biomes across contrasting management 

histories. There were two sampling locations within the Humid Tropics Biome (Figure 

3.1a) and three within the Outdoor Biome (Figure 3.1b). Upon collection, samples were 

numbered and details of the sampling location, soil composition and management 

histories were recorded (Table 3.1). 
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In Phase 2, two soil pits were dug to allow for the sampling of a depth profile. The sites 

selected were both in the Humid Tropics Biome (Figure 3.1a). Locations provide 

examples of differing soil age, one original soil (~13 years old) and one relatively 

recently prepared soil (~2 years old), under similar management practices within the 

Humid Tropics Biome. 

 

Figure 3.1a:  Map of the Rainforest Biome at the Eden Project including landscape cover 

and sampling locations.  
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Figure 3.1b:  Map of the Outdoor Biome at the Eden Project including landscape cover 

and sampling locations.  

 

3.3.2 Soil sampling  

The composition of the soils originally applied to the locations sampled, and the 

management practices, are detailed in Table 3.1 

Phase 1: Initial sampling 

Top soil samples were taken from the upper 0 to 10 cm depth, with litter cleared from 

the surface of the sampling site. Samples 1a, 1b and 2 were taken from the Humid 

Tropics Biome. Samples 1a and 2 were topsoil samples from locations with contrasting 

soil management practices, whilst sample 1b was a subsoil sample, taken from 25 to 30 

cm depth at the same location as sample 1a. The top-soil depth was subject to variation 

across the site, typically starting between 10 and 30 cm depth. Samples 3 to 5 were all 

topsoil samples (0 to 10 cm) from the Outdoor Biome. Sample 3 was taken from a steep 
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slope, which was subject to biannual fertiliser applications (20 g m
-2

 Vitax
®
 214). 

Sample 4 was taken from a flat area which was subjected, annually, to a large number of 

fertiliser and compost applications. Sample 5 was taken from an area where the base 

material has been scarified and allowed to mature without fertiliser additions.  

Phase 2: Depth profile sampling 

The soil pits were dug until the depth of the base material was reached, which was 

marked by an immediate transition to a very dense clay layer at the base of the former 

china-clay pit, which could not be penetrated by the spade. Soil samples of ca. 100 g 

were taken at 5 cm depth intervals throughout the profile. Photographs of the soil 

profiles are shown in Figure 3.2. Neither of the areas from which Profile 1 and 2 were 

taken were planted at the time of sampling. 
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Table 3.1:  Details of the soil samples collected from the Eden Project on 26/01/2012 

(samples 1 to 5 and 23/01/14 (Phases 1 and 2), including the original composition. These 

original soils have subsequently been subject to considerable amendment with mulches 

since the opening of the EP.  

 

Sample 

location  
Location description Soil composition Notes 

Phase 1 

1a 

Humid Tropics 

Biome, under fruit 

trees, 0 – 10 cm. 

25 % graded sand**, 65 % composted bark, 

10 % lignite clay. 

Amended biannually with 

fertiliser (Vitax® 214) and 

with regular applications of 

composted green waste. 

1b 

Humid Tropics 

Biome, under fruit 

trees, 25 – 30 cm. 

65 % graded sand**, 25 % composted bark, 

10 % lignite clay. 
Sub-soil 

2 

Humid Tropics 

Biome, leaf litter area, 

0 – 10 cm depth. 

65 % graded sand**, 25 % composted bark, 

10 % lignite clay. 

Amended biannually with 

fertiliser (Vitax® 214) and 

leaf litter left on the soil 

surface. 

3 

Outdoor Biome, 

adjacent to bridge 

leading to biomes, 0 – 

10 cm depth. 

(General mix for outdoors beds) 65 % 

ungraded* sand (china clay waste product), 

25 % composted green waste, 10 % lignite 

clay. 

Amended biannually with 

fertiliser (Vitax® 214). 

4 

Outdoor Biome, 

Global Garden area, 0 

– 10 cm depth. 

(General mix for outdoors beds) 65 % 

ungraded* sand (china clay waste product), 

25 % composted green waste, 10 % lignite 

clay. 

Amended biannually with 

fertiliser (Vitax® 214) and 

regular applications of 

composted green waste. 

5 

Outdoor Biome, 

scarified clay surface, 

0 – 10 cm depth. 

Rock base-layer, scarified in two directions 

at right angles to a depth of approximately 

500 mm at 1 m centres. 

Base material which has 

been planted and allowed 

to colonise. 

Phase 2 

1 

Humid Tropics Biome 

Malaysian garden 

area. 

Top 10 cm: 25 % graded sand**, 65 % 

composted bark, 10 % lignite clay. 

>10 cm: 65 % graded sand**, 25 % 

composted bark, 10 % lignite clay. 

Amended biannually with 

fertiliser (Vitax® 214) and 

regular applications of 

composted green waste. 

Original soil (approx. 13 

years old). 

2 

Humid Tropics 

Biome, under fruit 

trees. 

Top 10 cm: 25 % graded sand**, 65 % 

composted bark, 10 % lignite clay. 

>10 cm: 65 % graded sand**, 25 % 

composted bark, 10 % lignite clay. 

Amended biannually with 

fertiliser (Vitax® 214) and 

regular applications of 

composted green waste. 

Recently produced soil 

(approx. 2 years old). 

 

* Sand deemed ungraded if its particle size is 2 – 5 mm with 65 ± 10 % fines (< 2 mm) when oven dried. 

** Sand deemed graded if particle size is 2 – 5 mm with 33 ± 5 %) fines when oven dried. 

 

Profile 1 was located within the Malaysian Garden area of the Humid Tropics Biome. 

This site is one of the Biome’s shallower soils, with a depth of ca. 60 cm. It has been 

subject to a biannual fertilisation regime and regular composted green waste application, 

typical of what has been used throughout the majority of the Humid Tropics Biome. 
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There were 2 distinct horizons visible within the soil profile, which are highlighted in 

Figure 3.2. 

 

Figure 3.2:  Soil pits,  dug at the Eden Project on 23/01/14, with lines indicating visible 

horizons within the soil profile. Green/white bands show 10 cm i ncrements, though the 

scale is lost in Profile 2, due to difficult camera angle. Photographs were taken at the 

time of soil depth profile sampling.  

 

Profile 2 was located in the fruit tree area of the Humid Tropics Biomes. Until recently 

(2 years ago) this area had been under a banana plantation, however, due to an outbreak 

of Panama disease (Fusarium oysporum f. sp. cubense Tropical race 4), which required 

the soil in this area to be removed and replaced with a newly prepared mix. The depth of 
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this pit was ca. 80 cm and this area had been subjected to biannual fertiliser application 

and frequent mulch applications, in order to maintain a high organic matter content. 

Figure 3.2 highlights the position of 3 visible soil horizons within the soil profile, which 

indicate changes in soil composition. 

3.3.3 Analytical Measurements 

Following collection, samples were stored at 4 
o
C and analysed within 3 months, as 

recommended in ISO:10381-6 (1993). Both Phase 1 and 2 samples were analysed for 

pH, moisture content, total particulate carbon, total particulate nitrogen and particle 

size. For the Phase 1 samples sequential extractions using 2 M LiCl were used to 

measure exchangeable solid phase analytes, whilst the Phase 2 samples were extracted 

using high purity water (HPW). The extractants were analysed for nitrate + nitrite 

(referred to as nitrate), phosphate, ammonium, organic carbon and total nitrogen. 

Fluorescein diacetate analyses were carried-out on the Phase 2 samples to estimate 

enzymatic activity levels; these analyses were performed within 24 hours of sample 

collection.  

Between Phase 1 and Phase 2 it was decided that HPW would be employed as an 

extractant for soil nutrients in place of the 2M LiCl. Details for all the general methods 

used for the characterisation of the soils collected during Phases 1 and 2 are described 

Chapter 2 and summarised in Figure 3.3. Results are reported in Sections 3.3 and 3.4. 
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3.3.4 Statistical analyses 

In order to determine the extent and significance of any differences between two sets of 

mean values, such as the Outdoor Biome against the Humid Tropics Biome, the 

fertilised against the unfertilised soils and between the two soil profiles, a one-way 

analysis of variance (ANOVA) test was employed. This allowed the determination of 

whether there were any significant differences between the two datasets (Miller and 

Miller, 2000).  

For the Phase 1 and 2 samples a Pearson product-moment correlation coefficient (PCC) 

was also employed. This test allowed for the determination of whether a linear 

relationship existed between two datasets, making no assumption as to whether one 

variable is dependent on the other. The PCC test yields a value between -1 and 1, the 

closer the value is to 0 the greater the variation between the data points around the line 

of best fit. A positive value suggests positive correlation and a negative value suggests 

negative correlation.  

The dataset for the Phase 1 soils is small and, as such, any correlations found through 

statistical analyses of the data suggest a relationship between the soil characteristics 

rather than offering any definitive confirmation. 
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3.4 Phase 1: Site characterisation 

3.4.1 Results: Initial characterisation 

Results for the characterisation of soils across the Eden Project site were comprised of 

three observations: a comparison of all sampling locations, the average values for soils 

from the Outdoor and Humid Tropics Biomes, and the average for two management 

practices:, regular fertiliser addition and no addition. 

ANOVA analysis indicated that there was no significant difference (P > 0.05) between 

the Outdoor and Humid Tropics Biomes for any of the characteristics analysed (Table 

3.2a). The ANOVA analysis of the management practices (Table 3.2b) suggested that 

significant differences exist between the TPN, TPC and sand and silt particle size 

fractions of the analysed soils.  

Table 3.2a: ANOVA comparison of the key soil characteristics a t sites within the 

Outdoor Biome (samples 1a, 1b and 2) vs. the Humid Tropics Biome (samples 3, 4 and 5).  

 

Soil characteristic F value P value 

TPN 1.95 0.236 

TEN 1.07 0.360 

NO3
- + NO2

- 0.24 0.649 

NH4
+ 5.26 0.084 

EON 3.24 0.146 

NH4
+ : NO3 + NO2 ratio 2.06 0.225 

PO4
3- 0.06 0.821 

TPC 0.37 0.575 

POC 2.23 0.157 

EOC 5.05 0.088 

C : N ratio 5.52 0.079 

pH 0.72 0.445 

Moisture content 0.86 0.405 

Sand 0.17 0.701 

Silt 0.18 0.691 

Clay  0.75 0.436 

Red = significant p values 

Blue = insignificant p values 
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Table 3.2b:  ANOVA comparison of the key soil characteristics at sites subjected to 

different management practices, under regular fertiliser application (samples  1a, 3, and 

4) vs. no regular fertiliser application (samples 2 and 5).  

 

Soil characteristic F value P value 

TPN 12.3 0.025 

TEN 6.92 0.058 

NO3
- + NO2

- 1.75 0.256 

NH4
+ < 0.001 0.989 

EON 2.25 0.209 

NH4
+ : NO3 + NO2 ratio 0.61 0.478 

PO4
3- 0.76 0.432 

TPC 12.6 0.024 

POC 35.2 < 0.001 

EOC 1.45 0.295 

C-N ratio 5.63 0.077 

pH 0.24 0.651 

Moisture content 0.88 0.402 

Sand 12.8 0.023 

Silt 13.1 0.022 

Clay  0.57 0.491 

Red = significant p values 

Blue = insignificant p values 

 

3.4.1.1 Nitrogen  

Results from the N analyses are shown in Figure 3.4. Values demonstrate little variation 

between soils. The comparison of results from each Biome indicated no significant 

differences between any N fractions. However, when management practices were 

compared, a significant difference (p = 0.025, Table 3.2b) between the TPN values was 

observed. 

The TPN concentration was highest in soil 4 (11.3 ± 2.5 mg N g
-1

), with soils 1a (5.98 ± 

1.45 mg N g
-1

) and 3 (6.79 ± 0.25 mg N g
-1

) also displaying high concentrations. TEN 

represented the combined extractable inorganic (NO3
-
 + NO2

-
 and NH4

+
) and EON 

concentrations in the soils. The TEN concentrations for all soils were significantly 

lower than the TPN values, representing between 1.27 % and 4.78 % of the TPN. Non-

extractable N fractions consistently represented > 95 % of TPN for all soils.  
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Figure 3.4:  Concentration of N fractions and species for each sampling location within 

the Eden Project Biomes.  Mean and standard deviation were calculated from triplicate 

soil samples: a)  TPN concentration (mg N g
-1

) b)TEN concentration (µg g
-1

).c)  NO3
-
 

concentration (µg N g
-1

) and NH4
+

 concentration (µg N g
-1

) d) EON concentration (mg N 

g 
-1

).  

 

The lowest TEN concentrations occurred in soils 1b (28.8 ± 14.8 µg N g
-1

) and 5 (20.4 

± 3.1 µg N g
-1

). TEN concentrations were highest in soils 3 (149 ± 33 µg N g
-1

) and 4 

(149 ± 14 µg N g
-1

), both of which were outdoor soils and subject to regular fertiliser 

applications, as described in Table 3.1. The representative percentage N fractions from 

which the TEN was composed for each soil sample are shown Table 3.3. 
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Table 3.3:  Percentage composition of the total extracted nitrogen fraction extracted from 

the soils using 2 M LiCl.  

 

Sample 
Percentage composition 

TEN NO3
- 

NH4
+ 

EON 

1a 100 40.6 23.9 35.5 

1b 100 35.8 58.5 5.65 

2 100 74.9 3.05 22.1 

3 100 32.9 0.12 67.0 

4 100 58.7 1.27 40.0 

5 100 9.69 2.00 88.3 

 

The inorganic N concentrations (NO3
-
 and NH4

+
) are shown in Figure 3.4. NO3

-
 

concentrations were highest for soils 2 (57.1 ± 8.3 µg N g
-1

), 3 (49.0 ± 1.1 µg N g
-1

) and 

4 (87.3 ± 0.2 µg N g
-1

), which had comparatively low NH4
+
 concentrations (2.33 + 0.39 

µg N g
-1

, 0.17 + 0.10 µg N g
-1 

and 1.88 + 1.12 µg N g
-1 

respectively). NH4
+
 

concentrations were highest in soils 1a (17.2 ± 0.7 µg N g
-1

) and 1b (16.9 ± 2.5 µg N g
-

1
), with the latter exceeding the NO3

-
 concentration. Soil 5 had considerably lower 

concentrations of NO3
-
 (1.98 ± 0.76 µg N g¯¹) and NH4

+
 (0.41 ± 0.46 µg N g

-1
). The 

highest extracted organic nitrogen (EON) concentrations (Figure 3.4) were observed for 

sample 3 (up to 99.9 µg N g
-1

), whilst the lowest (1.63 ± 1.56 µg N g
-1

) were observed 

within sample 1b.  

Mean NH4
+
 : NO3

-
 ratios are shown in Figure 3.5. Soil 1b, the sub-soil sample, had the 

highest NH4
+
 : NO3

-
 ratio (1.63), with soils 1a and 5 having intermediate values (0.59 

and 0.21 respectively). Ratios for soils 2 and 4 were low (0.04 and 0.02, respectively) 

and the ratio for soil 3 was 0.00, due to particularly low NH4
+
 concentrations. ANOVA 

analyses suggested that there was no significant difference between either 

environmental conditions (p = 0.225, Table 3.2a) or management practices (p = 0.478, 

Table 3.2b). 
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Figure 3.5: NH4
+

 : NO3
-
 ratios for each soil sampling location. Calculated using the 

mean values from the ammonium and nitrate + nitrite analyses.  

 

3.4.1.2 Phosphate 

PO4
3-

 concentrations, (Figure 3.6) were highest in soils 2 (5.54 ± 0.10 μg g
-1

), 3 (5.12 ± 

1.46 μg g
-1

) and 4 (4.59 ± 1.02 μg g
-1

). PO4
3-

 concentration was lowest in soil 5 (0.82 ± 

0.05 μg g
-1

). ANOVA analyses determined that there was no significant difference 

between either of the Biomes (p = 0.821, Table 3.2a) or management practices (p = 

0.432, Table 3.2b). 

 

Figure 3.6: PO4
3-

 concentrations for each sampling location. Mean and standard 

deviations were calculated from triplicate samples at each location.  
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3.4.1.3 Carbon 

TPC and EOC results are shown in Figure 3.7. TPC concentrations were highest in soils 

1a (172 ± 11.3 mg g
-1

) and 4 (136 ± 53 mg g 
-1

), which was consistent with the regular 

mulch applications to the surface of these soils. Soil 1b had the lowest TPC 

concentration (53.8 ± 10.8 mg g
-1

), which was anticipated for a subsoil sample. Soil 2 

had the lowest TPC concentration of the top soil samples (83.5 ± 8.2 mg g 
-1

). ANOVA 

analyses suggest that there is a significant difference in TPC concentration between the 

different management practices (p = 0.024, Table 3.2b). 

Soil organic carbon (SOC) concentrations were highest in soils 1a (135 ± 17 mg g
-1

) and 

4 (127 ± 20 mg g
-1

). The lowest concentration was within sample 1b (sub-soil) (29.6 ± 

6.7 mg g
-1

) and the lowest topsoil concentration in sample 2 (38.9 ± 11.4 mg g
-1

). 

ANOVA analyses suggest a significant difference in SOC concentration between the 

different management practices (p < 0.001). 

Extracted organic carbon (EOC) concentrations were highest in soils 3 (2.62 ± 0.18 mg 

g
-1

) and 4 (3.05 ± 0.09 mg g
-1

) and lowest in soil 1 with the topsoil sample (1a) having 

the lowest concentration amongst the topsoils (1.05 ± 0.17 mg g
-1

). With the exception 

of soil 1a, EOC values followed a similar pattern to the TPC values. ANOVA analyses 

revealed no significant differences between either the Biomes (p = 0.088, Table 3.2a) or 

the management practices (p = 0.295, Table 3.2b).  
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Figure 3.7: Concentration of C fractions for each sampling location within the Eden 

Project Biomes.  Mean and standard deviation calculated from triplicate samples. a)  TPC 

concentrations (mg g
-1

), b)  POC concentrations (mg g
-1

), c) EOC concentration (µg g
-1

).  

 

3.4.1.4 Carbon : nitrogen ratio 

Mean C : N ratios were calculated from the total particulate carbon and total particulate 

nitrogen data shown in Figure 3.8. The values varied with regard to management 

practices and Biome across the Eden Project site; however, ANOVA analyses indicate 

that these differences were not significant (p = 0.077 environmental conditions, p = 

0.079 management practices). Soil 1b (sub-soil) had the highest ratio (32.6) and soils 

1a, 2 and 5 ratios were similar (20.4, 23.6 and 20.3, respectively). Soils 3 and 4 showed 

the lowest values, which were also similar (11.2 and 11.3 respectively).  
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Figure 3.8: Carbon : nitrogen ratios for each sampl ing location. Calculated from total 

particulate carbon and total particulate nitrogen  

 

3.4.1.5 Physio-chemical characteristics 

Figure 3.9 shows the pH values. Soils 1a and 2, the two topsoil samples from the Humid 

Tropics Biome, were very similar (pH ~ 6.7). The Outdoor Biome soils demonstrated a 

wider pH range, (6.0 to 7.9). ANOVA analyses confirmed that there was no significant 

inter-sample variation (p = 0.445, Table 3.2a - environmental conditions, p = 0.651, 

Table 3.2b - management practices). 

 

Figure 3.9:  pH values for each sampling location. Mean and standard deviation 

calculated from triplicate samples.  
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Moisture content (Figure 3.10) in top soils ranged from 34.0 ± 1.7 %, (soil 4) to 24.4 ± 

0.3 % (soil 3). The sub soil sample (1b) had a moisture content of 14.1 ± 1.1 %. 

ANOVA analyses indicated no significant variation between the either the Biomes or 

management practices. 

 

Figure 3.10:  Moisture content values for each sampling location. Mean and standard 

deviation calculated for triplicate samples from each location.  

 

Particle size fraction analyses results are shown in Figure 3.11. There was little 

variation in the clay content between soil samples (p = 0.436, Table 3.2a - 

environmental conditions, p = 0.491, Table 3.2b - management practices), with all soils 

having a clay fraction < 1 %. The largest fraction was sand, which accounted for > 50 % 

in all soils. There was a significant difference between management practices with 

regard to the proportions of sand (p = 0.023, Table 3.2b) and silt (p = 0.022, Table 3.2b) 

within the samples (ANOVA). Figure 3.12 indicates that all soils fell within the sandy 

loam texture category based on the data in Table 3.6. 
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Figure 3.11:  Particle size fractionation for each sampling location. Mean and standard 

deviations were calculated for triplicate samples from each location.  

 
Figure 3.12:  Sampling location texture classes according to ISO14688-1 classification.  
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Biome, may be explained, in part, by the plant types present at this location, as some 

plants will take up NO3
-
 in preference to NH4

+
 (Serna et al., 1992). Before N can be 

utilised by a plant, it must first be metabolised from its assimilated form. NH4
+
 is 

metabolised rapidly following uptake, within the roots of a plant, where it reacts with 

sugars transported from the production site in the leaves, to the roots. NO3
-
, however, is 

transported to the plant’s leaves to be metabolised, where it is first reduced to NH4
+
, 

before reacting with the sugars. At higher temperatures, a plant’s respiration rate is 

increased (Brady and Weil, 2008), causing the plant to consume sugars at a faster rate. 

This makes the sugars less available for transport to the roots and involvement in NH4
+
 

metabolism (Brady and Weil, 2008).   

It could, however, also be argued that the plants present within the Humid Tropics 

Biome are those which have evolved in warmer regions and, therefore, should be 

capable of functioning efficiently at higher temperatures. The differences observed may 

be further accounted for by the differing management practices, with regular composted 

green waste applications and biannual fertiliser applications being employed at the site 

of samples 1a and 1b, whereas site 2 was subjected to biannual fertiliser applications, 

with the leaf litter remaining on the soil surface. 

C : N ratios were > 20 for all Humid Tropics Biome soils and one of the Outdoor Biome 

soils. This was high compared with a number of reported values, such as subtropical 

forest (11 to 14), arable (9.6 to 15.0) and grass pasture (9.4 to 12.5) (Brady and Weil, 

2008; Brookes et al., 1985; Burton et al., 2007; Hood-Nowotny et al., 2010). However, 

it was consistent with the wide range of values commonly found within the A horizons 

in tropical regions, where ratio values > 30 are not uncommon (Brady and Weil, 2010). 
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Sample 1b had the highest C : N ratio (32.63), whilst the TPC concentration within 

subsoil sample 1b (35.8 ± 10.8 mg C g
-1

) was lower than that of sample 1a (172 ± 11 

mg C g
-1

); the TPN concentration was lower still, in relative terms(1a = 5.98 ± 1.40 mg 

N g
-1

 and 1b = 0.91 ± 0.30 mg N g
-1

). The high TPC concentration within sample 5 (136 

± 53 mg C g
-1

) was determined to be mostly attributable to inorganic C, through 

subtraction of the SOC concentration (5.74 mg C g
-1

), which may suggest that the soil 

contained a high carbonate concentration, which is a consequence of the soil being 

composed of the scarified surface of the former china-clay pit floor.  

Phosphate is thought to be relatively immobile in most soils because it binds to mineral 

surfaces (Brady and Weil, 2010; Oelkers et al., 2008), and dissolved PO4
3-

 tends to be 

removed from the soil solution, forming compounds which have low solubility (Brady 

and Weil, 2010). It has been suggested that exchangeable PO4
3-

 concentration is closely 

related to soil pH, with maximum solubility found in soils with pH 5 to 7 (Brady and 

Weil, 2010). The pH range in samples 1a to 4 was 5.99 ± 0.02 to 6.96 ± 0.02, with 

sample 5 having a pH of 7.90 ± 0.04, therefore, it may be inferred that PO4
3-

 is at a high 

solubility within soils 1a to 4, however, in order to further support this a greater number 

of samples would be required with soils with a range of pH values. 

Sand represented a substantial size fraction (> 50 %) within all soil samples, with the 

clay fraction comprising < 1 %. This implies that the soil surface area is relatively small 

and, as such, the number of potential exchange sites is reduced. Whilst a larger sand 

fraction aids the drainage of water through the soil, it is possible that if drainage is too 

efficient nutrients may be leached from the soil, leading to low concentrations of 

inorganic N, which is more labile than organic N (Brady and Weil, 2010). One 
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explanation for the small clay fraction is that over time the smaller fractions have been 

transported down through the soil profile to be lost in leachate, resulting in the high 

proportion of larger soil particles. An alternative explanation may be that the clay 

fraction was lost during the laboratory preparation and analysis stage. However, steps 

were taken to ensure that any loss was minimised and standard errors between samples 

are low, which supports the idea that the clay fraction was low for all soils. 

Soils within the Humid Tropics Biome (samples 1a, 1b and 2) were watered using drip 

irrigation systems, whereas soils within the Outdoor Biome (3, 4 and 5) were watered 

mainly through natural precipitation, with irrigation employed at times of low rainfall. 

Despite the differing watering mechanisms, moisture content was relatively consistent 

across the site (ranging from 24.4 ± 0.3 to 33.2 ± 0.32 %), with the exception of sample 

1b (14.1 ± 1.1 %), which was anticipated, as it was a subsoil sample, and by design, 

contained a large sand fraction to aid drainage. The moisture content was likely to have 

been affected by the particle size composition of the samples and, with similar 

compositions it follows that they would have similar moisture contents. The use of drip 

irrigation within the Humid Tropics Biome may also account for the lower nutrient 

concentrations observed within the samples from the Humid Tropics, particularly 1a, 

which was subject to the same fertiliser and amendment regime (Table 3.1) as samples 3 

and 4, but displayed significantly lower nutrient concentrations. 

Considering the minimal variation in the base composition of the soil mix for locations 

1 to 4, it is unsurprising that little variation was observed between sampling locations, 

further to this, the results suggest that soil management practices, such as amendment  
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additions and plantings had a greater impact on the soil characteristics than the 

difference in environmental conditions between the two Biomes. Sample 5, which 

consisted of the scarified and colonised floor of the china-clay pit, differed from the 

other samples and for a number of characteristics may be considered anomalous.  

3.5 Phase 2: Depth profiles of Humid Tropics soils 

3.5.1 Results: Depth profiles 

The Phase 2 samples were collected to observe the effect of profile depth on soil 

parameters and chemistry for 2 separate locations of differently aged soils, under similar 

management practices within the Humid Tropics Biome as described in Table 3.1 

(locations shown in Figure 3.1a). Profile 1 was located within the Malaysian garden 

area of the Humid Tropics Biome, which was 60 cm depth and subjected to regular 

fertiliser (Vitax 214) applications over the 13 years since the Eden Project’s opening. 

Profile 2 was located in the fruit trees area of the Humid Tropics Biome and due to a 

recent disease break out, the soil in this area was a relatively new mix (2 years old). 

Neither of the areas from which Profile 1 and Profile 2 were taken were planted at the 

time of sampling. 

Data for both profiles were analysed using the one-way ANOVA statistical test (Table 

3.4). The results show that only TEN, NO3
-
 + NO2

-
, EON, extracted Ca, extracted Fe 

and enzymatic activity levels were significantly different. 

In general both profiles showed a gradual decline in nutrient concentrations with 

increasing depth. Pearson correlation coefficient analysis found that all nutrient 

characteristics (excepting EOC) showed a significant (p < 0.05) negative correlation 
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with depth in both soil profiles (shown in Tables 3.5a and b). In general, there was 

variation in correlating characteristics between Profiles 1 and 2. Phosphate 

concentration and moisture content correlated with all nutrient characteristics. This 

suggests that these two properties were either dependent on or influential over other 

nutrient properties within both soils. 

Table 3.4:  ANOVA values for key soil parameters within profiles 1 and 2  (n =9). 

 

Soil characteristic F value p value 

TPN 2.21 0.157 

TEN 10.16 0.006 

NO3
- + NO2

- 11.44 0.004 

NH4
+ 0.25 0.623 

EON 10.50 0.005 

NH4
+ : NO3 + NO2 ratio 4.07 0.061 

PO4
3- 1.71 0.209 

TPC 1.30 0.272 

POC 1.62 0.222 

EOC 0.96 0.342 

Extracted Mg 2.01 0.177 

Extracted Ca 7.36 0.015 

Extracted K 0.84 0.372 

Extracted Fe 15.49 0.001 

C : N ratio 1.51 0.237 

pH 1.99 0.178 

Moisture content 1.15 0.299 

Sand 0.01 0.924 

Silt 0.01 0.915 

Clay 0.01 0.915 

Enzymatic activity 5.82 0.028 

Red = significant p values 

Blue = insignificant p values 
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3.5.2.1 Nitrogen  

Results from the analyses of N components are shown in Figure 3.13. Profile 2 had 

higher concentrations of TPN within the upper 50 cm of the Profile (shown in Figure 

3.13a). The highest TPN concentrations occurred within the upper 5 cm of soil for both 

Profiles, and concentrations decreased with depth. The lowest concentration for both 

Profiles occurred below 45 cm, being 1.11 ± 0.10 mg N g
-1

 at 45 to 50 cm in Profile 1 

and 1.00 ± 0.04 mg N g
-1

 at 55-60 cm in Profile 2. The smallest N fraction was NH4
+
, 

concentrations of which ranged from 0.44 ± 0.02 to 3.03 ± 0.45 µg N g
-1

 for Profile 1 

and from 0 (< LOD) to 5.37 ± 0.83 µg N g
-
¹ for Profile 2.  

A N concentration gradient can be seen throughout both profiles, with higher N 

concentrations observed in the upper layers. In general, the Profile 2 soil had higher N 

concentrations than profile 1.  

TPN concentrations (Figure 3.13a) were consistently higher in Profile 2 than 1 from 0 to 

50 cm depth, though this was not statistically significant (p > 0.05, Table 3.4).  Profiles 

1 and 2 showed a distinct decrease in TPN concentration with increasing depth.  
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Figure 3.13:  Concentrations of N fractions for each sampling depth within soil profiles 1 

and 2. Means and standard deviations were calculated from triplicate samples.  a)  TPN 

concentration (mg N g
-1

).  b)  TEN concentration (µg g
-1

). c)  NO3
-
 concentration (µg N g

-

1
).  d)  NH4

+
 concentration (µg N g

- 1
). e) EON concentrations ( (µg N g

-1
).  
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Non extractable N represents > 97.9 % of the TPN in profile 1 and > 94.3 % of TPN in 

profile 2, suggesting that the vast majority of N present within the soil was in an 

unavailable form. Whilst the concentration of TEN decreased with increasing depth, the 

percentage of TPN composition represented by TEN increased with depth in each case. 

The percentage of N comprised of the NO3
-
 fraction increased with increasing depth in 

both profiles, being 35.9 to 41.4 % and 34.0 to 49.2 % in profiles 1 and 2, respectively. 

NH4
+
 and DON fractions decrease in both concentration and proportion of composition 

with increasing depth. The ANOVA analyses comparing mean TEN values in the two 

Profiles showed a significant difference (p = 0.006, Table 3.4). The representative 

percentage N fractions from which the TEN was composed for each soil sample are 

shown in Table 3.6. 

Table 3.6:  Percentage composition of the total extracte d nitrogen fraction extracted from 

the soils soil depth profiles using HPW.  

 

Sample 

depth 

Percentage composition 

TEN NO3
- 

NH4
+ 

EON 

Pit 1 

0 – 5 100 35.87 2.59 61.55 

5 – 10 100 37.06 5.79 57.14 

10 – 15 100 38.44 5.59 55.98 

15 – 20 100 36.40 6.06 57.54 

25 – 30 100 44.38 3.52 52.11 

35 – 40 100 39.83 2.58 57.59 

45 – 50 100 45.40 2.98 51.62 

55 – 60 100 41.39 1.95 56.66 

Pit 2 

0 – 5 100 34.02 4.77 61.21 

5 – 10 100 34.66 3.26 62.08 

10 – 15 100 37.22 2.43 60.35 

15 – 20 100 35.85 3.55 60.60 

25 – 30 100 34.55 1.79 63.66 

35 – 40 100 38.12 1.94 59.94 

45 – 50 100 41.04 1.39 57.57 

55 – 60 100 38.66 0.41 60.93 

65 – 70 100 36.54 0.00 63.46 

75 – 80 100 49.18 0.11 50.71 
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The distribution of NO3
-
 followed a similar pattern to the TEN distributions for both 

Profiles (Figure 3.14c). The highest concentration for profile 1 was 22.3 ± 0.8 µg N g
-1

 

at 0 to 5 cm and for profile 2 48.8 ± 2.2 µg N g
-1

 at 10 to 15 cm. As with TEN, the NO3
-
 

concentrations showed an abrupt decrease in concentration from 20 cm depth and 

results from the ANOVA comparison of the two Profiles revealed a significant 

difference (p = 0.004, Table 3.4). 

Extracted organic nitrogen concentrations were significantly higher in Profile 2 than 

Profile 1 (p = 0.005, Table 5.4). The highest concentration in Profile 2 was 79.1 ± 14.1 

µg N g
-1

 at 10 to 15 cm depth and within Profile 1 was 38.33 ± 2.32 µg N g
-1

 at 0 to 5 

cm depth. Within Profile 2 the lowest concentration (18.6 ± 9.5 µg N g
-1

) was observed 

at 75 to 80 cm depth and within Profile 1 was at 25 to 30 cm depth (7.60  3.02 µg g
-1

). 

Figure 3.13d displays the NH4
+
 concentrations for each profile. Profile 1 concentrations 

were highest at 5 to 10 cm depth (3.03 ± 0.45 µg N g
-1

) and decreased to 0.44 ± 0.02 µg 

N g
-1

 at 55 to 60 cm. The NH4
+
 concentrations for Profile 2 also showed a gradual 

decline, from 5.37 ± 0.83 at 0 to 5 cm to <LOD at 65 to 70 cm. Mean ammonium : 

nitrate ratios (Figure 3.14) were relatively low at all depths for both soil Profiles (Figure 

3.15). This highest values were 0.17 (15 to 20 cm) 0.14 (0 to 5 cm) for Profiles 1 and 2, 

respectively. 
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Figure 3.14:  The NH4
+

: NO3
-
 ratios for each sampling depth within soil profiles 1 and 2.  

 

3.5.2.2 Phosphate 

PO4
3-

 concentrations are shown in Figure 3.15; concentrations decreased with depth for 

both soil Profiles. Soil Profile 2 had the highest overall PO4
3-

 concentrations, however 

ANOVA confirmed that there was no significant inter-profile difference (p = 0.209, 

Table 3.4). The highest concentration for soil profile 1 was 20.3 ± 2.5 µg P g
-1

 (10 to 15 

cm) and lowest concentration 0.65 ± 0.35 µg P g
-1

 (55 to 60 cm). Soil Profile 2 

contained the highest mean PO4
3-

 concentration of 43.7 ± 2.3 µg P g
-1

 5 to 10 cm depth 

though this was not significantly different from the 0 to 5 cm depth (43.1 ± 3.5 µg P g
-

1
),  and lowest of 4.26 ± 0.39 µg P g

-1
 at 75 to 80 cm depth. 
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Figure 3.15:  Extracted PO4
3-

 concentration for each sampling depth within soil profiles 

1 and 2. Mean and standard deviations were calculated from triplicate samples.  

 

3.5.2.3 Carbon 

TPC results are shown in Figure 3.16a. TPC concentrations for both Profiles varied little 
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highest concentration for profile 1 was 113 ± 1 mg g
-1 

at 10 to 15 cm and the lowest 
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-1

 at 25 to 30 cm. The TPC concentration for Profile 2 

showed a gradual decrease with depth, from 155 ± 3 mg g
-1
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mg g
-1

 at 55 to 60 cm. ANOVA found no significant difference between the two soil 

Profiles (p = 0.272, Table 3.4). 

SOC concentrations (Figure 3.16b) were highest in the upper 20 cm of Profile 1, whilst 

Profile 2 demonstrated a gradual concentration decrease. The highest SOC 
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-1
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 Profile 1,  Profile 2 

 

 

Figure 3.16: Concentration of carbon fractions for each sampling depth within profiles 1 

and 2.  Mean and standard deviations were calculated from triplicate samples. a) TPC 

concentration. b)  EOC concentration.  
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-1

 at 25 to 30 cm. The highest EOC concentration for Profile 2 was 1.23 

± 0.12 mg g
-1

 at 25 to 30 cm, and the lowest was 0.60 ± 0.05 mg g
-1

 at 15 to 20 cm. 

ANOVA determined that there was no significant difference between the two Profiles (p 

= 0.342, Table 3.4). 
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3.5.2.4 Carbon : Nitrogen ratio 

The carbon : nitrogen ratios, shown in Figure 3.17, ranged from 22.0 to 45.0 for Profile 

1, and from 15.7 to 44.4 for Profile 2. The lowest values for both Profiles occurred at 0 

to 5 cm and both increased with depth. 

 

Figure 3.17:  Carbon : nitrogen ratio for each sampling depth within soil profiles 1 and 

2. Mean and standard deviations were calculated from triplicate samples.  

 

3.3.2.5 Other extracted ions 

Figure 3.18 shows the concentrations (µg g
-1

) recorded for Mg, Ca, K, Na and Fe. For 

Profile 1 concentrations of Mg, Ca, K and Fe decreased with depth; Na concentrations 

were more variable, with the highest concentration occurring at 15 to 20 cm. For Profile 
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concentration varied with depth, the highest concentration occurring at 45 to 50 cm. 
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Figure 3.18:  Extracted ions for each sampling depth within profiles 1 and 2. Mean and 

standard deviations were calculated from triplicate samples.  a)  Mg, b)  Ca, c)  K, d)  Na 

and e)  Fe. 
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3.3.2.6 Physio-chemical characteristics 

The pH decreased with depth in both Profiles (Figure 3.19). The highest pH value for 

Profile 1 was 5.53 ± 0.01 (0 to 5 cm) and the lowest was 4.24 ± 0.01 (10 to 15 cm). 

Below 10 to 15 cm the pH for Profile 1 increased slightly to 4.78 ± 0.06 at 55 to 60 cm. 

The pH of Profile 2 was higher than Profile 1 from 0 to 25 cm, with a pH of 7.04 ± 0.01 

at 0 to 5 cm which declines gradually until it reaches 4.67 ± 0.06 at 25 to 30 cm, after 

which it remains relatively stable. ANOVA showed there to be no significant difference 

in pH between the two profiles as a whole (p = 0.178, Table 3.4), however a significant 

difference was observed from 0 to 25 cm depth (p < 0.001). 

 

Figure 3.19:  pH throughout soil profiles 1 and 2.  Mean and standard deviations were 

calculated from triplicate samples.  

 

Overall the water content was lower in Profile 1 than profile 2 (Figure 3.20), although, 

ANOVA determined no significant differences (p = 0.299, Table 3.4). The water 

content for Profile 1 increased with depth from 16.4 ± 0.9 % at 0 to 5 cm to 19.4 ± 1.5 

% at 10 to 15 cm, after which lower concentrations between 9.35 ± 0.38 % and 11.7 ± 

2.3 % were observed. Water content in Profile 2 decreased in from 31.5 ± 1.0 % (0 to 5 

cm) to 9.24 ± 3.52 % (75 to 80 cm). 
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Figure 3.20:  Moisture content throughout soil profiles 1 and 2.  Mean and standard 

deviation calculated from triplicate samples.  

 

The particle size distribution, shown in Figure 3.21a and b, was consistent for the 2 soil 

Profiles. Both had a very small clay fraction (< 1.01 %) and contained a mixture of 

sandy loam and loamy sand texture classes (according to the ISO 14688-1 

classification). This suggested a relatively small particle surface area within the soil 

samples.  

 

Figure 3.21a: Particle size composition throughout soil depth profile 1.  
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Figure 3.21b:  Particle size composition throughout soil depth profile 2.  

 

3.3.2.7 Enzymatic activity 

Enzymatic activity, expressed as µg Fl g
-1

 hr
-1

, was highest in the upper 20 cm of Profile 

1, ranging from 158 ± 11 to 171 ± 64 mg Fl g
-1

 hr
-1

 (Figure 3.22). Concentrations 

decreased abruptly from below 20 cm. Profile 2 values varied, ranging from 61.2 ± 8.6 

to 124 ± 13 mg Fl g
-1

 hr
-1

. The difference in enzymatic activity between the two Profiles 

was significant (p = 0.028, Table 3.4).  

 

Figure 3.22:  Enzymatic activity,  expressed as  µg Fl g
-1

 hr
- 1

,  in soil profiles 1 and 2.  

Mean and standard deviations were calculated from triplicate samples.  
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3.5.2 Discussion: Depth profile characterisation 

The results from Phase 2 provide high resolution observations of nutrient characteristics 

for 2 soil Profiles, of different ages, subjected to similar management practices within 

the Humid Tropics Biome at the Eden Project site. This discussion focuses on the effect 

of the varying management practices at these two locations. 

The concentrations for a number of the parameters were significantly higher in the 

upper part of the Profile (0 to 20 cm) for both soil Profiles. There was a distinct change 

in nutrient concentrations with increasing depth from 20 cm, which corresponds well 

with the upper horizon depth (0 to 22 cm depth for Profile 1 and 2) to as measured at the 

time of sampling (pictured in Figure 3.3). It was observed that the upper horizons of 

both Profiles had a darker colour, which suggested a higher organic matter content, and 

this was consistent with the TPC and EOC results.  The concentrations within this 

horizon were larger for Profile 2 than Profile 1, which may be attributed to the lesser 

age of the soil at Profile 2.  

The concentrations within Profile 2 were consistently higher than those in Profile 1. 

This may be attributed to Profile 2 being a more recently prepared soil mix (2 years 

old), whilst the management practices at the two locations was similar, with the addition 

of green waste compost and fertiliser (Vitax
®
 214) applied to the soil surface at both 

locations. This suggests that the age of the soil played a significant role in increasing the 

levels of moisture, enzymatic activity, pH, N (TPN, TEN and NO3 + NO2), P (PO4), 

TPC and K at the location of Profile 2. The soil composition of the Eden Project soils 

contains a high proportion (65 %) of organic components (32.5 % composted green 

waste and 32.5 % bark). The recent preparation of Profile 2 suggests that the organic 
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matter component of the soil mix may still be under decomposition by soil microbes, 

which releases various nutrients in to the plant available pool. Whilst, the aged soil in 

Profile 1 is reliant upon composted green waste and fertiliser applications for nutrients. 

This may serve to explain the significant differences observed between the two Profiles 

for many of the nutrient analytes and the C : N ratio. It is interesting to note that EOC 

concentration demonstrated no significant difference between the two Profiles at the 

upper depths, but at depths > 25 cm, Profile 2 contained significantly higher 

concentrations.  

Whilst initial observations suggest that the younger age of the soil from Profile 2 

increased the nutrient concentration, records do not show at what time the composted 

green waste additions were made relative to sampling and so it is difficult to determine 

whether Profile 2 was subject to a more recent applicator than Profile 1 and therefore, 

this may be a short-term effect in response to a recent application, or a more long-term 

result of the amendment, or whether it is a more long-term effect of the newer soil mix. 

Enzyme activity levels determined throughout the Profiles were within the range of 

values reported for freshly amended soils, ranging from 90 to 300 µg FL g
-1 

soil hr
-1

 

(Sánchez-Monedero et al., 2008). Results for the soil profiles suggest that the higher 

organic matter component may have caused the increased the enzyme activity, 

indicating greater microbial abundance within the upper 20 cm of the soil profile. 

Profile 1 (averaging 116 ± 39 µg Fl g
-1

 hr
-1

) demonstrated greater enzymatic activity 

levels than Profile 2 (87.6 ± 24.3 µg Fl g
-1

 hr
-1

), which was surprising given the higher 

SOC levels determined within Profile 2 (91.9 ± 51.3 mg g
-1

 in Profile 2 and 65.5 ± 28.1 

mg g
-1

 in Profile 1) . However, the more recent production of the soil comprising Profile 
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2 may serve to explain the difference, with the microbial population of Profile 1 being 

better established and more extensive than Profile 2. 

The gradual decrease in N, PO4
3- 

and K concentrations with depth for both profiles may 

be attributable to the fertiliser and composted green waste being added to the surface of 

the soil and gradually leached through the profile. NO3
-
 and K are considered to be 

particularly prone to leaching and the large sand fraction present throughout the soil 

profile would have facilitated transport of nutrients down the soil profile. Alternatively, 

the nutrients were possibly being retained and stored within the upper 20 cm of the 

profile, with only a small quantity being leached through to the lower profile.  

Other possible mechanisms of nutrient loss are: surface runoff, though, the drip 

irrigation system within the Humid Tropics Biomes will aid nutrient incorporation in to 

the soil profile in the time following fertiliser additions, minimising loss through this 

pathway; volatilisation, which is particularly common under warm conditions and in the 

case of nitrogen; and denitrification, which is more common under anaerobic conditions 

in saturated soils. The moisture content and large sand fraction observed throughout 

both soil Profiles, suggests that the conditions were aerobic and, as such, nitrogen loss 

through denitrification should account for only a small amount of loss. 

The difference between the nutrient concentrations for the two soil Profiles supports 

earlier findings from the Phase 1 characterisation, that there was a significant degree of 

inter-site variation. This variation, over a relatively small area, is typical of what would 

be expected with natural soils (Owens et al., 2008; Shen et al., 2011) and demonstrates 

the effect of varying management practices and plantings, as well as the difference 

between soils of different ages.   
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3.6 Synthesis 

In combination the results from Phase 1 and 2 support each other in their demonstration 

of the impact of management practices at the Eden Project site on the nutrient 

concentrations found within the soils,  

ANOVA suggested no significant differences (p > 0.05) between the environmental 

conditions of the Outdoor and Humid Tropics Biomes. However, there were significant 

differences between management practices expressed as differing TPN and TPC 

concentrations and the sand and silt particle fractions. TPN concentrations were 

consistent with values reported for a variety of soils (Table 3.7).   

Table 3.7:  Reported TPN concentrations for a variety of soil types.  

 

Soil Type 

Total particulate nitrogen 

concentration range 

(mg N g-1 soil DW) 

Soil characteristics for 

top soil samples (< 30 cm 

depth) 

Source 

This study Phase 1 0.9 – 11.3 
Texture: Sandy loam 

pH: 6.00 – 7.90 
 

This study Phase 2 1.0 – 9.8 
Texture: Sandy loam 

pH: 4.45 – 7.04 
 

Arable, Michigan, 

USA 
4.1 – 4.4 

Texture: Sandy clay loam  

pH: 5.7 – 5.8 

(Agehara and 

Warncke, 2005) 

Wilderness 

(Broadbalk), UK 
1.3 – 3.7 

Texture: Silt loam  

pH 5.22 – 6.91 (Brookes et al., 

1985) Permanent grass 

(Park grass), UK 
2.1 – 4.0 

Texture: Silt loam 

pH: 5.49 – 6.81 

Subtropical forest 2.1 – 7.5 
Texture: Clay  

pH: 6.0 – 6.6 
(Burton et al., 2007) 

Grassland, Austria 4.8 
*Texture: Sandy loam 

pH: 5.67 (Hood-Nowotny et 

al., 2010) 
Arable, Austria 1.5 – 3.3 

*Texture: Sandy loam 

pH: 6.21 – 7.15 

Forest, Ivory coast 1.6 
*Texture: Sandy clay loam 

pH: 6.0 – 6.1  
(Tie et al., 2010) 

Arable, Ivory coast 1.2 - 1.3 
* Texture: Sandy clay loam 

pH: 6.1 – 6.4  

 

*Texture calculated from particle size distribution data using ISO 14688-1:2002 classification. 

 

Adani et al. (2007) demonstrated that composted green waste addition to a soil over a 4 

year period has a significant effect on the composition of the soil organic matter 
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component. In view of this, that the Eden Project soils are demonstrating variation by 

management practices is logical, particularly as the original soil compositions 

demonstrate small variation across the site (Table 3.1). 

Limitations 

It is important to recognise and acknowledge limitations associated with the work 

described above. As the sample set for Phase 1 was small (n = 6) any statistical 

significance should be treated as an association. However, this dataset provides a 

valuable insight into nutrient concentrations and characteristics across the Eden Project 

site and the careful consideration given to the selection of sampling locations means that 

the samples represented the variety of the soils in use. 

It is well reported that soil properties are highly spatially variable. Thus a certain 

amount of uncertainty is associated with depth profiles from a small area. In an ideal 

situation a minimum of three soil profiles would have been analysed as a means of 

providing a higher confidence level with regard to the findings from the characterisation 

of a particular soil. This would have allowed for more robust statistical analyses to be 

carried out on the dataset. However, this would have resulted in a greater number of 

samples for analyses and also a greater amount of disruption at the Eden Project site. To 

counter this, the two sampling sites for the depth profiles were carefully selected based 

on the performance, management and age of the soils in the two locations. 

The use of 2M LiCl as the extraction solution for the initial characterisation allowed for 

the estimation of the extent of extractable nutrients present within the soils, however, 

caused problems with the Shimadzu TOC-V analyser. As a result of the combination of 

a high chloride concentration and the presence of soil colloids within the samples, the 
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halogen scrubber and catalytic column components had to be replaced. For Phase 2 

depth profiles HPW was used as the extracting solution, giving an estimation of the 

leachable nutrient concentrations within the soils and further, alleviating the problems 

associated with the Shimadzu TOC-V analyser.  

3.7 Conclusions 

The reproducibility of the characterisation experiments was good, as demonstrated by 

the low experimental errors. This is important as it allows for the data to be compared 

confidently with values reported within the literature and further data from this project. 

The upper 20 cm of each profile contained higher nutrient concentrations. The higher 

organic matter content of the upper horizon may have helped to regulate and retain 

nutrients.  Greater nutrient concentrations were observed within Profile 2, which may be 

attributed to the greater quantity of organic matter present within this soil through the 

regular composted green waste additions, which have served as a source of nutrients as 

well as providing a charged surface for its retention within the soil. With increasing 

depth the difference between the 2 profiles was lower for most characteristics, 

suggesting that the effect of soil age diminishes with depth in the soil profile, and that 

the increased retention of nutrients within Profile 2 only took place in the upper 20 cm 

of the profile.  

There was a limited degree of variation in soil characteristics at the Eden Project site, 

despite differing environmental factors. This may be answerable to there being little 

variation between the original soil compositions across the Eden Project site, with the 

only differences between the soils being introduced through differing management 
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practices. It may therefore be perceived that the variation in management practices and 

soil age have had a more significant impact on the soil characteristics than 

environmental conditions.  
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CHAPTER 4 

 

 

 

Investigation of nutrient retention characteristics of a freshly prepared artificial soil 

during irrigation and fertilisation amendment 
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4.1 Overview 

A column study was devised and implemented to allow for the detailed observation of 

the nutrient dynamics of a freshly prepared artificial soil, under controlled 

environmental conditions and drip irrigation for 52 weeks. The artificial soil was 

produced from a mix of horticultural grit, lignite, bark and composted green waste, 

following the Eden Project protocol and packed into 4 columns. Following 26 weeks of 

irrigation, 2 of the 4 columns were fertilised using Vitax 214 (applied at a N/P/K ratio 

of 20 g N m
-2

/ 9 g P m
-2

 / 33 g K m
-2

) according to the Eden Project protocol, whilst the 

remaining two columns were unfertilised, serving as controls. Leachate was regularly 

collected from the base of each column and analysed for dissolved constituents, 

physicochemical and biological properties. The freshly prepared soil and a 5 cm 

resolution depth profile of each column, taken following 52 weeks, were analysed for 

extractable and solid phase constituents, including mineralogical analyses, and 

physicochemical and biological properties. 

Results from the column studies demonstrated significant N immobilisation within the 

soil, leading to low concentrations of inorganic N within the soil solution. The cause of 

this is proposed to be the high C : N ratio of the bark component within the artificial soil 

mix. The soil was generally found to have a high proportion of large sized particles, 

which was not conducive to nutrient retention. 

Following 52 weeks the characteristics for all columns displayed little variation with 

depth. Fertiliser application gave rise to an increase in leachate concentrations of DON, 

NO3
-
, PO4

3-
, Mg

2+
 and Ca

2+
 and a decrease in pH. Differences between fertilised and 

unfertilised columns for extracted and solid phase constituents were less prominent. 
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4.2 Introduction 

4.2.1 Research objective 

The research outlined in the Chapter addresses research objective 2. 

- To construct and implement the use of soil column bioreactors to observe the 

performance of the current artificial soil composition with regard to the cycling 

of key nutrients. 

4.2.2 Rationale 

In order to address research objective 2, a long-term soil column study was devised to 

quantify the nutrient dynamics of the artificial soils typically deployed within the Eden 

Project Biomes. This served to improve understanding of the nutrient concentrations 

within the Eden Project soils and to establish the susceptibility of nutrients to loss 

through leaching. Time series measurements for a number of elements in the soil 

column leachate, including nitrogen, phosphorus and potassium, allowed for 1) the 

performance of the artificial soil to be assessed; 2) the nutrient concentrations to be 

compared to the established soils sampled from within the Eden Project Biomes. 

After monitoring the leachate for 52 weeks the contents of the columns were extruded 

and sampled at a 5 cm depth resolution. In conjunction with data from the fresh soil, 

this served to identify any changes in soil characteristics, which could be related to 

nutrient storage and retention within the soils.  
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4.3 Experimental design and specific methodology 

 

Figure 4.1  Soil column bioreactors used to assess the nutrient retention characteristics 

of Eden Project soils.  

 

Lewis and Sjöstrom (2010) define a soil column as a discrete block of soil, located 

either outdoors or in a laboratory, which allows for the control or measurement of 

infiltration. Soil columns are recognised as providing a suitable means of studying soils, 

allowing for the control of environmental conditions with minimal variability between 

samples, whilst, also enabling the study of soil properties (Derby et al., 2002).  

4.3.1 Column design  

Column diameter is a key factor affecting soil dispersivity  (Bromly et al., 2007), 

defined as, the number of flow pathways through the soil. Higher dispersivity is 

achieved through the use of wider columns (Bromly et al., 2007). 
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The potential for the formation of preferential flow pathways was a concern, as they can 

create localised chemical environments, with higher C, N and Fe, and lower pH (Bogner 

et al., 2012). Packing the top of the columns with glass marbles (10 mm diameter) atop 

a perforated polypropylene disc on the soil surface (as shown in Figure 4.2) was devised 

as a means of dispersing the flow across the surface of the soil in order to minimise the 

occurrence of any preferential flow pathways, through dispersing water, supplied by 

drip irrigation, across the soil surface. 

Each of the 4 columns (Figure 4.2) had an internal diameter of 110 mm, a height of 

1000 mm and was manufactured from opaque polyvinylchloride (PVC) to help 

minimise the potential for algal growth within the columns.  

 

Figure 4.2:  Experimental setup - a)  The top of the column contained glass marbles on 

top of a perforated polypropylene disc. b)  The base plate at the bottom of the column 

contained nylon mesh (100 µm) located between 2 perforated polypropylene discs.  
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Table 4.1:  Materials used to prevent drainage problems at the base of the column.  

 

Author Material 

Cornu et al. (2001) Nylon mesh, silicon bead layer and a sintered glass disk 

Chakrabarti et al. (2005) Filter paper 

Favaretto et al. (2012) Filter paper and cheese cloth 

Hodson and Langan (1999) Nylon mesh, filter paper, polythene beads and quartz wool 

Köhne and Mohanty (2005) Nylon mesh 

Nakamura et al. (2004) Stainless steel mesh and glass beads 

Zhou et al. (2006) Nylon mesh 

Güngör and Ünlü (2005) Stainless steel mesh 

 

A number of materials have been used to sustain drainage at the base of soil columns 

(Table 4.1); the most frequently reported materials were filter papers and nylon mesh. 

For this experimental set-up, a base plate was employed to minimise particulate losses 

and clogging of the drainage tubing and tap, whilst also being durable. The base plate 

comprised a layer of nylon mesh (100 µm) located between two perforated 

polypropylene discs, allowing the water to pass through into the collection vessel, 

whilst preventing clogging of the tap (Figure 4.2). Nylon, PVC, polypropylene and 

glass were chosen as materials because of their inert nature, posing a low contamination 

risk. In order to reduce evaporative losses each column had a cap at the top and base.  

A number of leachate collection systems have been described by reported studies, 

including, vacuum extraction (Derby et al., 2002), tension plates (Cole, 1958), ceramic 

suction cups (Wagner, 1962) and gravity drainage (Mali et al., 2007). Whilst gravity 

drainage requires the water content of the soils to exceed field capacity (Derby et al., 

2002; Lewis and Sjöstrom, 2010), it was determined that at irrigation rates consistent 

with those employed at the Eden Project would allow for this method to be effective and 

thereofre that gravity drainage was the most representative mode of leachate collection. 

The effective use of gravametric drainage requires a saturated zone at the base of the 

column before any leachate flow may occur (Lewis and Sjöstrom, 2010), to minimise 
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the impact of this on the soil a layer of horticultural grit was placed at the base of each 

column, which served as the saturated zone rather than the soil mix. 

It is well known that plant-soil interatctions play an important role with regard to soil 

biodiversity and ecosystem functioning (Bardgett et al., 2013; Chapin et al., 2009; 

DeVries et al., 2015). Amoungst the various experimental set-ups reported within the 

literature, a range of planting conditions were observed. Whilst the inclusion of plants 

within the experimental set-up allows for nutrient loss by plant uptake to be observered, 

there are a wide range of negative implications. The choice of plant for such 

experiments is difficult, particularly given the wide variety of plants found within the 

Eden Project Biomes, identification of an appropriate and representative species would 

be highly difficult. Plants may be inconsistent, with certain crops failing, this calls for 

the use of a greater number of replicate samples. There exist a number of numerical 

models (SWAP (VanDam et al., 1997) and LEACHM (Hutson and Wagenet, 1987)) 

which, with the appropriate data inputs, have been used to estimate values for nutrient 

uptake by a range of plant types from soils, through the assumption that data aquired is 

derived from studies of unvegetated soils. The ability to employ numerical models in 

such a manner helps to lower the demands upon the laboratory-based experiments, 

allowing for focus upon consistency of environmental conditions in which the columns 

are maintained and further for the focus to remain upon analysis of nutrient 

concentrations, rather than plant husbandry. Based on these factors it was decided to 

exclude plants from the experimenta set-up. 



 

Chapter 4 

122 

 

4.3.2 Soil composition 

The soil composition was designed to represent that employed at the Eden Project at the 

present time of experimental set-up; consequently, the soil composition employed for 

this study differs from that examined in Chapter 3 as a result of composition 

development by the Eden Project over the time since its opening. The mix was designed 

to have high porosity for effective drainage, whilst it was intended for nutrients to be 

maintained through regular amendments. The soil mix was developed by the Eden 

Project under tight time constraints, which have led to some of the nutrient retention 

issues outlined in Chapter 3. Through reproducing and studying the top soil mix it may 

be possible to determine methods by which retention of plant available nutrients might 

be improved. 

The soils were manufactured at the Eden Project site on 25/3/13. The upper 70 cm of 

the soil column comprised topsoil mix. The materials used for the topsoil were 

composted green waste (composted for 15 weeks), bark, horticultural grit (a locally 

sourced sandstone based material, particle size range 2 to 6 mm, incorporated to 

improve drainage) and lignite clay (Table 4.2). The topsoil materials were mixed on a 

volume basis using a rotary mixer to achieve a homogenous mix of the soil constituents. 

Table 4.2:  Composition of the soil mixture used to make the top soil used in the  soil 

columns following current Eden Project protocol.  

 

Material Volume (L) Composition (%) 

Composted green waste 16.25 32.5 

Bark 16.25 32.5 

Horticultural grit 12.50 25.0 

Lignite clay 5.00 10.0 

 

The lower 15 cm of each column was packed with 2.5 L (volume) of horticultural grit to 

simulate a sub-soil, and as a means of maintaining flow at the base of the column. 
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4.3.3 Column packing 

The soil was packed in each column in a manner which encouraged homogeneity and 

the uniform distribution of particle sizes throughout the profile. Lebron and Robinson 

(2003) observed that the most effective way to achieve a homogenous mixture was to 

stir the grains with a small amount of water where the attractive cohesive forces 

between the water molecules and the particle surfaces hold the soil together.  

Sidewall flow may occur as a result of improper packing of the soil or flexing of the 

column walls (Lewis and Sjöstrom, 2010), where the soil has separated from the walls 

of the column, creating an airspace (Corwin, 2000). Incidences of sidewall flow have 

been reported where a soil contains a large-sized soil particle fraction, such as sandy 

soils (Sentenac et al., 2001). The soils characterised in Chapter 3 displayed a large sand 

fraction, as such, careful attention was given to column packing to minimise sidewall 

effects. 

The soils were packed into the 4 columns by loading a standard quantity (approximately 

100 mm depth) into each, in turn, thereby minimising any difference between the 

columns and ensuring that a consistent volume of soil mix was added to each column. 

The soil mixture was moist at the time of loading, which helped to maintain the 

homogeneity of the mix. Each layer of soil added was gently tapped down to achieve 

tight packing whilst avoiding air entrapment. The surface of each soil layer added to the 

column was left uneven before adding the next layer to ensure vertical hydraulic 

connectivity between layers.  
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Once the columns were installed and packed with soil, they were allowed to stabilise at 

15 
o
C, for 2 weeks. This was to allow the soils to settle prior to the commencement of 

irrigation and leachate collection. 

4.3.4 Environmental conditions 

It is possible to exercise greater control over both temperature and moisture within 

laboratory-based column studies. Therefore, there is the potential to implement a wide 

range of environmental conditions for soil column experiments; this is reflected within 

the reported studies. Table 4.3 summarises the environmental conditions used in a 

number of soil column experiments. It is important to tailor the conditions used for 

column experiments to meet the aims and objectives of the particular investigation. 

The average moisture content for the Eden Project soils was 26.5 ± 8.0 and 24.9 ± 

11.0.% for the Rainforest and Outdoor Biomes, respectively. The temperatures ranged 

from 15 to 35 
o
C in the Rainforest Biome and 4 to 19 

o
C within the Outdoor Biome.  

Throughout the experiment, the columns were maintained at 15 
o
C in a controlled 

temperature room. This temperature was chosen to be representative of a temperature 

encountered within the Outdoor, being sufficiently warm to encourage soil processes at 

such a rate that they may be observed at the chosen sampling resolution and timescale 

of the study. The irrigation regime was designed to simulate the one employed within 

the Humid Tropics Biome and Outdoor Biome during times of low rainfall at the Eden 

Project, outlined in Section 4.3.6.  
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Table 4.3:  Conditions reported for the implementation and maintenance of soil columns.  

 

Author 
Condition 

Moisture and Watering Temperature System 

Burgos et al. (2006) 
Maintained at 70 % WHC*. 

Simulated rainfall at 415 mm yr-1. 
28 oC 

Crop production in 

sandy texture 

Favaretto et al. (2008) Saturated 
19  – 22 oC Night  

24 – 27 oC Day 

Crop production in 

silt loam texture 

Favaretto et al. (2012) 
100 % WHC and irrigated with 

deionised water at 0.5 mL min-1 
Not specified 

Crop production in 

silt loam texture 

Hilger et al. (2000) 15 % WHC Not specified 
Landfill cover, 

sandy loam texture 

Hubbard et al. (2011) Saturated Not specified 
Contrasting redox 

zones 

Köhne and Mohanty 

(2005) 
Saturated 22 oC 

Sand at low bulk 

density 

Nakamura et al. (2004) Saturated 20 oC 
Sandy loam and 

sand textures 

Cornu et al. (2001) 
16 mm day-1 Rainy season 

5 mm day-1 Dry season 
18 oC 

Subtropical, 

ferralsol 
 

* WHC = water holding capacity 

 

4.3.5 Irrigation water 

Irrigation variables, such as intensity and duration, have a major effect on the 

infiltration rate of the water.  For example, higher intensity and long duration of 

irrigation  result in increased pore-water pressure in the soil, leading to inter-granular 

pressure; this is potentially damaging to the soil structure (Mitchell, 1962).  

Water inflow was controlled using a peristaltic pump, with outflow monitored for 

volume, flow rate and chemical characteristics. Figure 4.3 illustrates the irrigation 

system used, with four parallel transparent PVC tubes (internal diameter: 3.175 mm) 

running through the peristaltic pump to ensure that the same volume of water was 

delivered to each column.  
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Figure 4.3:  Column irrigation set-up with peristaltic pump. The column watering tubes 

were made of transparent PVC and had an internal diameter of 3.175 mm. The tubi ng ran 

in parallel to ensure that all columns received the same volume of water.  

 

The quality of water used for irrigation of columns was an important consideration. 

High purity water was used for the irrigation of laboratory-based soil columns in a 

number of studies (Burgas et al., 2006; Cornu et al., 2001; Favaretto et al., 2012), whilst 

simulated rainwater was used in others (Hodson and Langan, 1999; Yang et al., 2006). 

To determine the most appropriate type of water for use in this experiment a preliminary 

investigation was carried out, which compared the nutrient content of the Eden Project 

irrigation water with high purity (18.2 MΩ cm
-1

) water available at Plymouth 

University. The Eden Project irrigation water samples were collected from the point of 

delivery and were immediately analysed for pH. Sub-samples were then analysed for 

NH4
+
, NO2

-
 + NO3

-
, PO4

3-
, TDN and DOC. It was found that concentrations of all 
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analytes measured within the Eden Project water were below the LOD (values reported 

in Table 2.6). Therefore, due to the lack of significant difference between the two water 

sources and for reasons of convenience it was decided to employ HPW (18.2 MΩ cm
-1

) 

(adjusted to pH 7 with CaCO3) as irrigation water for the duration of the experiment. 

During the column experiment, samples were regularly collected from the irrigation 

water supply and analysed to give baseline concentrations for key measured 

characteristics. These were consistently below the LOD, with pH approximately neutral 

throughout. 

The Outdoor Biome at the Eden Project is watered naturally (by rainfall) throughout 

most of the year, with irrigation systems employed to deliver water during times of low 

rainfall and drought. The Humid Tropics Biome was irrigated using recirculated 

rainwater at a daily rate of 0.14 mL water cm
-2

 and the irrigation flow rate used for the 

columns was calculated to accurately replicate this. As a result, each column received 

80 to 90 mL of irrigation water daily, delivered over a five minute period six times a 

day, through drip irrigation regulated by the timer-controlled peristaltic pump. The flow 

rate of the peristaltic pump, with regard to irrigation water delivery was also checked on 

a regular basis to ensure that a constant rate was maintained.  

Unsaturated soil columns have a negative pressure potential, which means that in order 

to extract pore-water, suction must be applied to unsaturated soil (Lewis and Sjöstrom, 

2010). This would require the use of a vacuum pump and a porous material at the base 

of the column. Another approach, commonly used, is to allow the free drainage of 

leachate from the base of the soil column without the application of any suction (Lewis 

and Sjöstrom, 2010). This approach relies on the presence of a saturated zone at the 
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base of the column to allow flow to occur (Lewis and Sjöstrom, 2010).  With this in 

mind, a layer of horticultural grit was included at the base of the column to aid drainage 

at the base and reduce the impact of saturation on the soil profile. 

Hydrological properties are often measured in terms of the average amount of time that 

water remains in its various reservoirs (Pidwirny, 2007). It may take weeks to months 

for water to move through drainage networks depending upon the complexity of the 

system (Pidwirny, 2007). 

4.3.6 Fertiliser application 

The Eden Project employs biannual fertiliser applications across the site in order to 

maintain the supply of key nutrients (N – P – K) present within the soil; however, little 

is known regarding the fate of these applications. In order to further examine the fate of 

applied fertiliser, applications were made to 2 of the 4 columns, using an application 

rate consistent with that employed in the Eden Project Biomes. Two of the columns 

remained unfertilised in order to serve as a baseline for soil performance. The columns 

were fertilised in Weeks 27 and 48 of the trial (10/11/13 and 02/04/14), these sampling 

dates were chosen to represent the 6 monthly fertiliser application employed across 

most of the Humid Tropics Biomes at the Eden Project. Vitax
®
 Natural 214 fertiliser 

was employed, which has an N – P – K ratio of 4.5 – 2.0 – 7.5 and was applied to each 

of the two columns at 20 g N m
-2

/ 9 g P m
-2

 / 33 g K m
-2

. The fertiliser was composed of 

a range of materials (Table 4.4), many of which were organic, suggesting that the 

nitrogen component was also organic, encouraging a slow release following application. 
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4.3.7 Sampling strategy 

4.3.7.1 Leachate Sampling 

Sample collection was carried out by free drainage of water from the base of the soil 

column, without the application of any suction. Each column was capped at the top, in 

order to reduce water loss through evaporation. The columns were unplanted, which 

meant that there were no water losses due to plant uptake and horizontal translocation of 

water was ruled out by the non-porous sidewalls. This meant that water, which would 

otherwise be lost through alternative pathways, travelled through the profile and 

contributed to the leachate. Further to this, the unplanted nature of the columns may 

have led to greater nutrient concentrations within the leachate and solid samples, than 

might be expected within planted columns and as such this must be acknowledged when 

considered nutrient concentrations. 

 The leachate collection strategy is outlined in Table 4.4. Leachate samples were 

collected daily for the first 3 weeks of column irrigation, then every 3 days (Week 4 to 

9) and then weekly (from Week 10). From Weeks 1 to 26 all four columns were subject 

to the same conditions with leachate data averaged for all columns. After fertiliser 

additions to two of the columns, leachate data was averaged for the duplicate 

unfertilised (UF) and of fertilised (F) columns. 

Immediately following the fertiliser applications the frequency of leachate collection 

was increased. Leachate was collected in 120 mL, acid washed, polyethylene bottles, 

filtered through Fisher brand HPLC grade glass fibre filter papers (75 g m
-1

, 450 μM 

thickness) and stored at -20 
o
C prior to analysis. 
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Table 4.4:  Leachate sampling strategy employed throughout the column experiment.  

 

Week Leachate sampling  

1 - 3 Daily  

4 – 9 Every 3 days 

10 - 26 Weekly  

Fertiliser application 1  

(20 g N m
-2

/ 9 g P m
-2

 / 33 g K m
-2

) 27 - 30 Daily 

31 - 33 Every 3 days 

34 - 36 Every 2 weeks 

37 - 47 Weekly  

Fertiliser application 2  

(20 g N m
-2

/ 9 g P m
-2

 / 33 g K m
-2

) 48 - 50 Daily 

51 -53 Every 3 days 
Column extrusion 

  

4.3.7.2 Soil Sampling 

Following 52 weeks of irrigation, the soils were extruded from the columns, using a 

piston mechanism (Figure 4.4) to apply even force across the base of the soil profile, 

whilst minimising disturbance to the soil. Samples were collected at a depth resolution 

of 5 cm.  

Samples were recovered from the centre of the soil column in order to minimise any 

edge-effects (e.g. during irrigation or drag against the column edge during the column 

extrusion).  Once sampled, the soils were placed in labelled polythene zip-lock bags and 

stored at 4 
o
C prior to analysis. 
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Figure 4.4 The column extrusion apparatus. The PVC piston was inserted at the base of 

the column. The column itself was gently and evenly forced down over the piston, 

extruding the soil from the column for sampling at 5 cm depth intervals.  

 

4.3.8 Analytical measurements  

Leachate and solid samples from the columns were separated and analysed as indicated 

in Figure 4.5, following methods described in Chapter 2. The leachate samples were 

analysed for the following dissolved analytes: TDN, NH4
+
, NO3

-
 + NO2

-
, PO4

3-
, K, Fe, 

Ca, Mg (as ions) and DOC. The pH of the leachate was measured throughout while Eh 

and enzymatic activity in leachate were monitored during Weeks 48 to 52. 

Solid samples of freshly-prepared artificial soil and extruded column sections were 

analysed for their mineralogical composition, TPN and TPN, pH, CEC, SOM, particle 
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size distribution, enzymatic activity and the following water-extractable fractions: TEN, 

NH4
+
, NO3

-
, PO4

3-
, K, Fe, Ca, Mg and EOC.   

The mineralogical analysis was performed on both freshly prepared soil and extruded 

samples from the 10 to 15 cm depth interval within the UF and F soil column profiles. 

This allowed for the observation of any significant changes to the mineral composition 

over the course of the experiment, whilst also facilitating a comparison between UF and 

F column samples. The 10 to 15 cm depth was selected as this represents the top soil 

portion of the soil profile, whilst avoiding the potential disturbance common to the 

upper layers of a soil profile. 

As mineralogical analysis was restricted in terms of the number of samples, freshly 

prepared soil was analysed in triplicate, with the analyses of samples from the irrigated 

columns run on single samples. This approach was used as the standard deviation for 

triplicate analyses of freshly prepared soil was low (RSD = 0.00 to 2.13 %). 

NO3
-
 + NO2

-
 was analysed using the Skalar San

++
 system, however, NO2

-
 represents an 

intermediate form, which is usually present in soil in only trace quantities, thus NO3
-
 + 

NO2
-
 will henceforth be referred to as NO3

-
. 

4.3.9 Statistical analyses 

Leachate data was determined to be of un-normal distribution. As such it was 

appropriate to use non-parametric tests on this dataset. The Mann-Whitney U test was 

employed to determine the extent and significance of any differences between leachate 

from the UF and F columns. A Spearman’s rank correlation was used to determine any 

linear relationships between the characteristics of the UF and F columns. 
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The solid and extracted phase data was determined to be of normal distribution and as 

such a one-way analysis of variance (ANOVA) was used to determine the extent and 

significance of any differences between the UF and F columns. The test was applied to 

solid and extracted phase analyses, the multiple groups of data generated by the 

QEMSCAN
®
 analysis and to compare the results from the freshly prepared soil to those 

subjected to 52 weeks of irrigation. 

A Pearson correlation coefficient (PCC) was used to determine any linear relationships 

between the solid and extracted phase characteristics for the UF and F columns. This 

test allowed for the determination of whether a linear relationship existed between two 

datasets, making no assumption as to whether one variable was dependent on the other. 

Both the PCC and the Spearman’s rank tests yield a value between -1 and 1; the closer 

the value is to 0 the greater the variation between the data points around the line of best 

fit. A positive value suggests positive correlation and a negative value suggests negative 

correlation.  
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4.4 Results 

The results from this experiment are split into three parts: (1) leachate data; (2) solid 

soil phase data and (3) water extracted soil constituent data. Data presented for (2) and 

(3) are on soils extruded from the columns and freshly prepared soil samples. 

4.4.1 Results overview 

Throughout the 52 week irrigation term the key observations with regard to leachate 

properties were:  

(1) All analysed N fractions, excepting NH4
+
 (which was consistently below the LOD), 

demonstrated an overall decrease in concentration over the first 27 weeks of irrigation: 

TDN decreased by 89.3 % (from 14.6 ± 7.6 to 1.51 ± 0.6 mg N L
-1

) from irrigation 

Week 6 to 27, DON decreased by 82.6 % (from 14.3 ± 0.5 to 2.25 ± 0.2 mg N L
-1

) from 

Week 6 to 27, NO3
-
 decreased by 95.2 % (from 6.73 ± 0.92 to 0.25 ± 0.04 mg N L

-1
) 

within the first 2 weeks of irrigation. N concentrations within the leachate increased 

from week 27 for both UF and F columns. Within the UF columns concentrations 

increased by 95.9 % for NO3
-
 (from 0.24 ± 0.01 to 5.87 ± 2.18 mg N L

-1
)
 
and 75.2 % for 

DON (from 2.25 ± 0.02 to 9.08 ± 3.94 mg N L
-1

), between weeks 27 and 52.  

(2) PO4
3-

 concentration increased by an average of 5.55 mg P L
-1

 over the first 6 weeks 

of irrigation, and from then remained stable until the end of the experiment, with a mean 

value of 5.31 ± 0.59 mg P L
-1

.  

(3) Mg, Ca, K and Fe each demonstrated an overall decrease in concentration. For Mg 

and Ca, losses were greatest over the first 6 weeks where leachate concentration 

declined by 76.8 % and 55.9 %, respectively. K and Fe concentrations showed an initial 
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increase of 316 mg L
-1

 and 0.17 mg L
-1

, respectively from Week 1 to 3, following which 

a gradual and sustained decline was observed throughout the irrigation period where K 

concentration decreased by 97.1 % and Fe by 66.2 %. 

(4) Over the 52 week irrigation term, the pH of the leachate decreased for both UF and 

F columns, from 6.62 ± 0.51 to 5.96 ± 0.09 and 5.74 ± 0.04, respectively. Eh and 

enzymatic activity were analysed from Week 48 to 52 and displayed no significant 

changes (p > 0.05) for either the UF or F columns. 

(5) Following the 2 fertilisation events, a significant difference (p < 0.05) was observed 

between the UF and F columns for all TDN, NO3
-
, DON, PO4

3-
, pH, Mg and Ca. No 

significant difference was observed between UF and F columns for DOC, K, Fe, Eh and 

enzymatic activity. 

Following analysis of solid samples and extracted constituents of the freshly prepared 

soils and the UF and F column soils at the end of the 52 week irrigation period, key 

observations were: 

(1) Significant differences in the proportions of some mineral constituents were 

observed between freshly prepared, UF and F samples following 52 weeks of irrigation. 

The greatest differences were observed in the proportions of quartz, tourmaline and 

apatite between the freshly prepared soil and both the UF and F column samples. 

(2) Significant differences (p < 0.05) between the UF and F columns were observed for 

moisture content, SOC, enzymatic activity, C : N ratio, extracted Mg, extracted Ca, 

extracted Fe and particle size distribution.  
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(3) There were significant differences (p < 0.05) between the freshly prepared soil and 

both the UF and F column soils for TPN, C : N ratio, EOC, TEN, EON, extracted PO4
3-

, 

moisture content and particle size distribution (CEC, NH4
+
 - UF only and extracted Fe - 

F only). 

4.4.2 Leachate analyses 

Leachate samples were collected from each column on a regular basis over 52 weeks, as 

outlined in Table 4.4. Values, reported below, are averages for the columns, n = 12 from 

Weeks 1 to 26 (after which 2 columns were fertilised), and n = 6 from Week 27.  

4.4.2.1 Statistics  

Statistical analyses of key characteristics for the leachate data were carried out using a 

Mann-Whitney U test (Table 4.5). A comparison between the UF and F columns using a 

Man-Whitney U test (Table 4.5a) revealed significant differences between the UF and F 

column leachates. 

Table 4.5:  Man-Whitney U test  results from a comparison key leachate characteristics in 

UF and F column leachate.  

 

Characteristic U value P value 

DOC 0.68 0.109 

TDN 4.04 0.040 

NO3
- 6.31 0.003 

DON 8.21 0.005 

PO4
3- 48.02 < 0.001 

Mg 9.77 0.027 

Ca 11.18 0.005 

K 2.98 0.094 

Fe 1.84 0.124 

pH 14.21 0.004 

Eh 0.01 0.984 

Enzymatic activity 2.34 0.460 

Leachate volume 54.0 0.474 

Red = significant p values 

Blue = non-significant p values 
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Cumulative nutrient losses over the 52 week irrigation period (Table 4.6) were 

estimated from the leachate data. 

Table 4.6:  Estimated cumulative nutrient losses to leaching . 

 

Characteristic Unit Unfertilised Fertilised 

Total leachate volume L 30.7 ± 4.1 30.1 ± 3.4 

TDN g 70.9 ± 2.4 81.4 ± 1.0 

- NO3
- g 18.1 ± 0.9 28.0 ± 1.3 

- DON g 53.1 ± 1.5 55.3 ± 1.3 

PO4
3- g 55.0 ± 0.3 61.1 ± 0.4 

DOC g 783 ± 8 759 ± 8 

K g 1775 ± 14 1636 ± 14 

Ca g 463 ± 4 470 ± 4 

Mg g 128 ± 2 131 ± 2 

Fe g 2.02 ± 0.04 1.96 ± 0.03 

 

4.4.2.2 Nitrogen  

The leached TDN concentrations for all columns are displayed in Figure 4.6. 

Concentrations within the first 5 weeks of irrigation ranged from 9.2 ± 1.1 to 

14.6.±.1.4.mg N L
-1

, with a relatively large standard deviation for each sampling, 

suggesting a large inter-column variation. From Week 6 to 27 the concentrations within 

all 4 of the unfertilised columns declined steadily, at an average rate of decrease of 

0.28.mg N L
-1 

Week
-1 

 from 14.6 ± 1.4 to 1.51 ± 0.6  mg N L
-1

. 

The TDN concentrations from the UF columns increased from irrigation Week 28, 

reaching 10.6 ± 4.43 mg N L
-1

 by Week 52. The leachate concentration from the F 

columns increased from Week 32. The concentrations from both the UF and F columns 

were relatively constant from Week 39 to 48, after which another increase was observed 

in the F columns. The second fertiliser application occurred in Week 48 and whilst both 

the UF and F TDN concentrations increased, the greater increase occurred in the F 

columns (up to 24.4 ± 4.3 mg N L
-1

 and 16.4 ± 4.2 mg N L
-1

 for UF and F, 
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respectively). Mann Whitney-U indicated a significant difference between the values 

from UF and F columns (p = 0.040, Table 4.5a).  

The F column leachate displayed a strong positive correlation with time (p < 0.001, 

Table 4.5c), which demonstrated an overall increase in TDN concentration throughout 

the experimental timescale. 

 

Figure 4.6: TDN concentrations (mg N L
- 1

) for column leachate. Analyses were carried 

out in triplicate on samples collected from each column. L eachate was collected from 4 

columns (n = 12) from Weeks 0 to 26. From Week 27 analyses were carried out on  2 sets 

of 2 columns (UF and F) (n = 6). Red lines represent fertiliser application .  

 

Dissolved NO3
-
 concentrations are displayed in Figure 4.7. An initial decrease in 

concentration, from 6.73 ± 0.92 to 0.36 ± 0.04 mg N L
-1

, occurred over the first 2 

weeks. From irrigation Week 2 to 27 the concentration in the UF columns remained 

relatively constant, averaging 0.28 ± 0.17 mg N L
-1

.  
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Figure 4.7:  NO3
-
 concentrations (mg N L

- 1
) within the column leachate. Analyses were 

carried out in triplicate on samples collected from each column. L eachate was collected 

from 4 columns (n = 12) from Week 0 to 26. From Week 27 analyses were carried out on  

2 sets of 2 columns (UF and F) (n = 6) . Red lines represent fertiliser application 

timings.  

 

Following fertiliser application in Week 27, an increase in NO3
- 

concentration was 

observed almost immediately within the F columns. The NO3
-
 concentration within the 

UF column also increased, though, initially at a slower rate than the F column 

(0.41.mg.N L
-1

 week
-1

 vs. 0.59 mg N L
-1

 week
-1

 respectively), increasing from 

0.24.±.0.01 to 5.87 ± 2.18 mg N L
-1

 for the UF columns and 0.84 ± 0.47 to 

7.54.±.0.01.mg N L
-1

 for the F columns. It appeared that leaching of NO3
-
 (Figure 4.7) 

was the principal reason for the increase in TDN concentration (Figure 4.6). Over the 

experimental period a significant increase in concentration was observed in both the UF 

and F column leachates from Week 27 (p = 0.003, Tables 4.5b and c). The difference 

between the UF and F column treatments was also significant (p = 0.013, Table 4.5a). 

NH4
+
 concentrations were monitored on a monthly basis and were found to be 

consistently below the LOD (< 1.12 µg N L
-1

). 
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The DON concentrations within the leachate were calculated by subtracting the sum of 

the DIN fractions (NO3
-
 and NH4

+
) from the TDN concentration (Figure 4.8). There was 

an increase in DON concentration, (2.4 ± 3.4 to 14.3 ± 0.5 mg N L
-1

) between Weeks 1 

and 5. From irrigation Weeks 6 to 9, the concentration declined at an average rate of 

1.89 mg N L
-1

 Week
-1

, then at 0.21 mg N L
-1

 Week
-1

 until Week 27. 

Fertilisation of the columns appeared to have no immediate effect on the DON fraction, 

as levels continued to decline. From Week 27 the DON concentration increased in the 

UF columns and from Week 32 in the F columns, similar to the behaviour of the TDN 

fraction. The increase in concentration within the UF columns was relatively small (up 

to 9.08 ± 3.94 mg N L
-1

 on Week 47). The DON concentration from the F columns 

exceeded this (up to 16.60 ± 2.32 mg N L
-1

 on Week 52). A significant difference 

(p.=.0.005, Table 4.5a) in DON concentration between the leachate from the UF and F 

columns was observed from Week 48 to 52. 

 

 

Figure 4.8:  a)  DON concentrations (mg N L
-1

) of column leachate. Analyses were carried 

out in triplicate on samples from each column. Leachate was collected from 4 columns (n 

= 12) from Week 0 to 26. From Week 27 analyses were carried out on 2 sets of 2 columns 

(UF and F) (n = 6). Red lines represen t fertiliser application timings.  
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4.4.2.3 Phosphate 

PO4
3- 

concentrations (Figure 4.9) increased over the first 6 weeks of irrigation, from 

0.02 ± 0.01 mg P L
-1

 in Week 1 to 5.57 ± 1.23 mg P L
-1

 in Week 6, an average increase 

of 1.12 mg L
-1

 Week
-1

. The PO4
3-

 concentration in the UF column leachate remained 

relatively stable from Weeks 6 to 39, ranging from 5.80 ± 1.04 to 4.13 ± 0.31 mg P L
-1

.    

 

Figure 4.9:  PO4
3 -

 concentrations (mg P L
- 1

) within the column leachate. Analyses were 

carried out in triplicate  on samples from each column. Leachate was collected from 4 

columns (n = 12) from Week 0 to 26. From Week 27 analyses were carried out on 2 sets 

of 2 columns (UF and F) (n = 6). Red lines represent fertiliser application timings.   

 

A significant increase in PO4
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3-

 was observed in all columns, 
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increase of dissolved PO4
3-

 with time (p <0.001 for both UF and F columns, Tables 4.5b 

and c).  

4.4.2.4 Dissolved organic carbon 

DOC concentrations of leachate (Figure 4.10) decreased significantly (P <0.001) for 

both the UF and F columns. The initial concentrations were variable and a general 

increase was observed from Weeks 1 to 4 (72 ± 30 to 272 ± 29 mg C L
-1

).  

Between Weeks 2 and 4 the mean DOC concentration decrease was lower 

(6.39.mg.C.L
-1

 Week
-1

) than from Weeks 4 to 14 (19.6 mg C L
-1

 Week
-1

). The lowest 

rate of concentration decrease was for Weeks 29 to 52 (0.75 mg C L
-1 

Week
-1

). 

Fertilisation had no significant effect on the leachate DOC concentrations (p > 0.05, 

Table 4.5a).  

 

Figure 4.10:  DOC concentrations (mg C L
-1

) within the column leachate. Analyses were 

carried out in triplicate on samples from each column. Leachate  was collected from 4 

columns (n = 12) from Week 0 to 26. From Week 2 7 analyses were carried out on 2 sets 

of 2 columns (UF and F) (n = 6). Red lines represent fertiliser application timings.  
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4.4.2.5 Metals 

Mg concentrations in leachate (Figure 4.11a) decreased over the first 5 weeks of 

irrigation, from 38.6 ± 2.2 to 9.8 ± 1.8 mg Mg L
-1

. The concentration remained 

relatively stable thereafter, (9.8 ± 2.0 mg Mg L
-1

 from Weeks 5 to 52). The fertiliser 

applications appeared to affect the leachate Mg concentrations as there was a significant 

difference between the UF and F columns (p = 0.027, Table 4.5a). 

Leached Ca concentration profiles (Figure 4.11b) were similar to those of Mg. After an 

initial concentration decrease (87.5 ± 3.8 mg Ca L
-1

 to 42.4 ± 8.5 mg Ca L
-1

) during 

Weeks 1 to 4, the concentrations varied little (36.4 ± 7.4 mg Ca L
-1

) in the UF columns. 

Both fertiliser applications resulted in an increase in dissolved Ca within the leachate, 

with a larger increase observed following the second fertiliser application. The 

difference in dissolved Ca concentration between the UF and F columns was significant 

(p = 0.005, Table 4.5a). 

Dissolved K concentrations in the column leachate (Figure 4.11c) initially increased 

from 193 ± 39 mg K L
-
¹ at the end of Week 1, to 509 ± 53 mg K L

-
¹ after 3 weeks. From 

Week 3 the concentration then declined at a steady rate of 9.80 mg K L
-1

 Week
-1

 (UF 

columns) with the concentration reaching 18.0 ± 0.3 mg K L
-
¹ at the end of Week 52. 

The fertiliser additions resulted in no significant difference in dissolved K 

concentrations between columns (p = 0.094, Table 4.5a).  
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Figure 4.11:  Concentrations of dissolved metals (mg g

-1
) a)  Mg, b)  Ca, c)  K and d)  Fe 

within the column leachate.  Analyses were carried out in triplicate on samples from each 

column. Leachate was collected from 4 columns (n = 12) from Weeks 0 to 26. From Week 

27 analyses were carried out on  2 sets of leachate from 2 sets of columns (UF and F) (n 

= 6). Red lines represent fertiliser application ti mings.  
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Dissolved Fe concentrations (Figure 4.11d) increased from < LOD (0.003 mg Fe L
-1

) to 

0.74 ± 0.27 mg Fe L
-1

 between Weeks 1 and 4. The Fe concentration then decreased at a 

rate of 0.091 mg Fe L
-1 

Week
-1

 from Week 5 to 8, then slowed to 0.007 mg Fe L.
-1 

Week
-1

 until Week 26. From Week 31 the dissolved Fe concentration was relatively 

stable, with the column fertilisation having no significant effect (p = 0.124, Table 4.5a). 

4.4.2.6 Physicochemical characteristics 

The pH of the leachate samples (Figure 4.12) decreased significantly with time (UF p < 

0.001, F p < 0.001, Tables 4.5b and c). The initial mean pH was 6.62 ± 0.51, which 

decreased to 5.96 ±
 
0.09 and 5.74 ± 0.04 in the leachate from the UF and F columns, 

respectively. The F column leachate pH was significantly lower than that of the UF 

columns (p = 0.004, Table 4.5a). The pH correlated significantly with all characteristics 

(p < 0.05, Tables 4.5b and c), excluding enzymatic activity for both UF and F columns 

and dissolved PO4
3-

 for the UF columns. 

 

Figure 4.12:  pH for column leachate. Analyses were carried out in triplicate on samples 

from each column. Leachate was collected from 4 columns (n = 12) from Week 0 to 26. 

From Week 27 analyses were carried out on  2 sets of 2 columns (UF and F) (n = 6). Red 

lines represent fertiliser application timings.   
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The Eh for each leachate sample was measured from Weeks 48 to 52, following the 

second fertiliser application (Figure 4.13). The columns demonstrated no significant 

difference between them (p = 0.984, Table 4.5a). The highest Eh values for both 

treatments were recorded during Week 49 (401.±.1 and 401 ± 4 mV for UF and F 

columns, respectively).  

 

Figure 4.13:  Eh (mV) within the column leachate following the second fertilisation of the 

soil columns. Analyses were carried out in triplicate on samples from each column. 

Leachate was collected from 4 columns (n = 12) from Week 48 to 52. Analyses were 

carried out on 2 sets of 2 columns (UF and F) (n = 6).  

 

4.4.2.7 Enzymatic activity  

Enzymatic activity within the column leachate was monitored following the second 

fertiliser application, from Weeks 48 to 52 (Figure 4.14). The results indicated no 

significant differences between the two treatments (p = 0.460, Table 4.5a); however, 

between Weeks 47 and 50 the average enzymatic activity was higher in the F column 

samples. The enzymatic activity was then highest in the unfertilised samples. Overall 

there was no significant correlation between enzymatic activity and any other measured 

characteristics (p > 0.05, Tables 4.5b and c).  
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Figure 4.14:  Enzymatic activity  (mg Fl mL
-1

 hour
-1

) within the column leachate samples 

following the second fertilisation of the columns. Analyses were carried out in triplicate 

on samples collected from each column. Leachate was collected from 4 columns (n = 12) 

from Week 48 to 52. Analyses were carried out on  2 sets of 2 columns (UF and F) (n = 

6).  

 

4.4.2.8 Leachate volume 

The leachate volume from each column was monitored for each sample (Figure 4.15) 

and varied between 75 to 90.mL.day
-1

.  There was observed to be no significant 

difference between the leachate volume from the UF and F columns (p > 0.05, Table 

4.5a).  

 

Figure 4.15: Leachate volume (mL) from each column. Leachate was collected from 4 

columns (n = 4) from Weeks 0 to 26. From Week 27 analyses were carried out on  2 sets 

of 2 columns (UF and F) (n = 2).  
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4.4.3 Statistical examination of solid phase and extract analyses 

The soils were extruded from the columns after 52 weeks and sampled at a 5 cm depth 

resolution. For the TPN and TPC, water extractions and particle size analyses, the 0 to 

20 cm depth interval was analysed at a 5 cm resolution, with the 20 to 50 cm depth 

interval analysed at a 10 cm resolution. The pH, moisture content and enzymatic 

activity measurements were carried out at 5 cm resolution throughout the column. The 

values reported below are means for each pair of UF and F columns (n = 6). At the time 

of packing the columns contained 70 cm of soil, but the soil had compacted following 1 

year of irrigation to give a soil depth of approximately 50 cm in each column.  

The freshly-prepared artificial soils were analysed for various characteristics, in order to 

identify any significant changes they may have undergone during the column study; the 

results from the fresh soil analyses are shown in Table 4.7.  
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Table 4.7:  Characteristics of the freshly prepared artificial soil as packed into the soil 

columns.  

 

Characteristic Units Value 

TPN mg N g-1 10.2 ± 0.2 

TPC mg C g-1 185 ± 1 

SOC μg C g-1 108 ± 9.6 

C : N ratio  22.6 ± 0.4 

pH  5.91 ± 0.04 

Moisture content % 13.0 ± 0.3 

Sand fraction % 59.8 

Silt fraction % 39.3 

Clay fraction % 1.0 

CEC cmolc kg-1 5.76 ± 0.28 

TEN μg N g-1 253 ± 14 

Extracted NO3
- μg N g-1 166 ± 102 

Extracted NH4
+ μg N g-1 < LOD (26.8) 

EON μg N g-1 246 ± 103 

Extracted PO4
3- μg P g-1 104 ± 4 

EOC μg C g-1 970 ± 80 

Extracted Mg μg Mg g-1 5.20 ± 1.86 

Extracted Ca μg Ca g-1 22.0 ± 4.7 

Extracted K μg K g-1 63.4 ± 3.9 

Extracted Fe μg Fe g-1 9.48 ± 1.13 

 

The mean percentage change to concentrations of each analyte following 52 weeks of 

irrigation was calculated for the UF and F columns (Table 4.8). Results demonstrated 

that within the UF and F columns most nutrients, excepting Mg and Ca and NO3
- 
to F 

column only, decreased in concentration during the irrigation period, this is addressed in 

greater detail within Section 4.5. 
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Table 4.8:  Mean percentage differences between the UF and F soils at t = 0, and 

following 52 weeks of irrigation. The positive values indicate and increase in 

concentration while negative values indicate a concentration decrease).   

 

Characteristic Unfertilised Fertilised 

TPN -7.06 ± 0.3 -9.9 ± 0.3 

TPC -5.95 ± 3.42 -4.32 ± 7.08 

EOC -82.7 ± 38.1 -81.4 ± 22.8 

TEN -80.1 ± 4.7 -72.8 ± 18.5 

Extracted NO3
- -88.0 ± 26.4 85.1 ± 2.8 

EON -89.8 ± 1.7 -84.0 ± 5.6 

Extracted PO4
3- -48.6 ± 6.4 -45.4 ± 2.6 

Extracted K -90.6 ± 1.3 -26.7 ± 5.7 

Extracted Ca 49.6 ± 4.2 -45.5 ± 0.7 

Extracted Fe -14.1 ± 0.2 -56.5 ± 0.1 

Extracted Mg 15.8 ± 0.1 55.8 ± 0.0 

pH 0.00 ± 0.01 0.85 ± 0.01 

CEC -26.7 ± 6.64 11.5 ± 1.3 

C : N ratio -42.5 ± 0.1 -37.1 ± 0.3 

SOC -4.79 ± 1.09 1.85 ± 0.91 

Sand fraction -20.4 ± 5.0 -11.9 ± 4.2 

Silt fraction 27.0 ± 4.8 -88.5 ± 4.7 

Clay fraction 149 ± 5 110 ± 7 

 

Statistical analyses were performed using a one-way ANOVA to determine the 

significance of any difference between the UF and F soil profiles and the freshly 

prepared soil following extrusion of the columns (Table 4.9). These analyses indicated 

that many of the measured characteristics had changed significantly during the 

experiment (p < 0.05). 
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Table 4.9:  Comparison of the characteristics of the freshly prepared artificial soil to the 

results obtained following 1 year of irrigation, using a one -way ANOVA. 

 

Characteristic 

Freshly prepared v 

unfertilised soil 

Freshly prepared v 

fertilised soil 

p value p value 

TPN 0.030 0.030 

TPC 0.152 0.152 

SOC 0.096 0.053 

C : N ratio 0.002 0.003 

pH 0.836 0.631 

Moisture content < 0.001 < 0.001 

Sand fraction 0.003 0.025 

Silt fraction 0.006 0.038 

Clay fraction < 0.001 < 0.001 

CEC 0.187 0.561 

TEN < 0.001 < 0.001 

Extracted NO3
- 0.400 0.201 

Extracted NH4
+ 0.006 0.097 

EON < 0.001 < 0.001 

Extracted PO4
3- 0.011 < 0.001 

EOC < 0.001 < 0.001 

Extracted Mg 0.705 0.055 

Extracted Ca 0.445 0.183 

Extracted K 0.807 0.240 

Extracted Fe 0.766 0.028 

Red = significant p values 

Blue = insignificant p values 

 

The one-way ANOVA tests (Table 4.10a) determined that there were significant 

differences (p < 0.05) between the TEN, EON, pH, moisture content, SOC, enzymatic 

activity, C : N ratio, Mg, Ca, Fe and sand, silt and clay particle size fractions within the 

UF and F column profiles.  

Pearson’s correlation coefficient (PCC) analyses between key soil characteristics 

(Tables 4.10b and c) suggests only a few instances of significant correlation (p < 0.05) 

between soil characteristics, with some results displaying correlation for the unfertilised 

profiles, but not for the fertilised profiles and vice versa.   
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Table 4.10a:  One-way ANOVA results for key characteristics between UF and F column 

profiles.  

 

Characteristic ANOVA p Value 

TPN 1.78 0.207 

TPC 1.15 0.304 

SOC 13.3 0.002 

C : N ratio 5.99 0.031 

pH 0.79 0.386 

Moisture content 2.98 0.087 

Sand 17.7 0.001 

Silt 15.7 0.002 

Clay 29.5 < 0.001 

CEC 3.97 0.093 

Enzymatic activity 45.0 < 0.001 

TEN 5.56 0.036 

Extracted NO3
- 0.52 0.483 

Extracted NH4
+ 0.10 0.755 

EON 0.31 0.586 

Extracted PO4
3- 0.48 0.502 

EOC 0.18 0.681 

Extracted Mg 18.1 0.001 

Extracted Ca 15.6 0.002 

Extracted K 1.90 0.193 

Extracted Fe 15.7 0.002 

Red = significant p values 

Blue = insignificant p values 
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Individual components of the freshly prepared soil mixture were analysed for TPN and 

TPC concentrations, with results displayed in Table 4.11. The TPC concentration was 

highest in the bark component (416 ± 42 %) and lowest in the composted green waste 

component (196 ± 45 %). The TPN concentration was highest in composted green waste 

(15.1 ± 3.7 %) and lowest in the lignite clay component (3.5 ± 0.4 %).  

Table 4.11:  TPC (mg C g
-1

) and TPN (mg N g
- 1

) concentrations and C : N ratios for each 

component used in the production of the artificial soil.  

 

Analyses 
TPC 

(mg C g-1) 

TPN 

(mg N g-1) 
C : N ratio 

Composted green waste 196 ± 45 15.1 ± 3.7 13.0 + 3.0 

Bark 416 ± 42 12.4 ± 2.2 33.5 + 4.0 

Lignite 234 ± 2 3.5 ± 0.4 67.9 + 2.1 

 

The C : N ratio was calculated from the TPC and TPN values (Table 4.11). It was found 

that the ratio was highest in the lignite component (67.9) of the soil mix, with bark also 

having a mid to high value (33.5). The composted green waste component displayed a 

much lower value (13.0). 

4.4.4 Solid phase analysis 

4.4.4.1 Mineralogical analyses 

The freshly prepared artificial soil samples were analysed in triplicate, along with single 

samples from the UF and F columns. The freshly prepared soil results were compared to 

those of the irrigated soils; where the value for the irrigated soils lay outside the 

standard deviation of the fresh soils, there was deemed to be a difference. 

The results of the mineralogical analyses, by QEMSCAN
®
, for the freshly prepared soil 

and the UF and F samples are shown in Table 4.12, with the false colour fieldscan 

images displayed in Figure 4.16. For the freshly prepared soil n = 3 and for the UF and 
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F soils n = 1. Comparative study suggested that a small number of mineral proportions 

were different between the freshly prepared soil and the UF or F soils (Table 4.12). 

Differences in the proportion of quartz, tourmaline, Mn phases and apatite were 

observed when comparing the freshly prepared soil with both the UF and F soils. The 

results suggest that changes in biotite / zinnwaldite / phlogopite, other silicates and 

ilmenorulite had occurred within the UF soil, and in topaz, and calcite in the F soil.  

 

Figure 4.16:  False colour fieldscan images of resin mounted samples. a)  An example of 

the freshly prepared artificial soil. b)  Unfertilised column soil from 10  to 15 cm depth 

following 52 weeks of irrigation. c)  Fertilised column soil sampled from 10  to 15 cm 

depth following 52 weeks of irrigation.  

 

  



 

Chapter 4 

158 

 

Table 4.12: Mineral composition for the  irrigated fertilised (10 to 15 cm)and unfertilised 

(10 to 15 cm) soils and of freshly prepared artificial soil.  Analysis carried out using 

QEMSCAN
®

.  

 

Mineral 
Mineral volume (%) 

Fresh soil Fertilised Unfertilised 

Quartz 64.1 ± 0.46 66.48 68.04 

K-Feldspar 8.70 ± 0.44 8.83 8.13 

Plagioclase feldspar 2.87 ± 0.41 2.42 2.75 

Biotite/ Zinnwaldite/ Phlogopite 2.23 ± 0.96 3.40 2.33 

Muscovite/ Lepidolite 8.40 ± 2.13 6.81 6.40 

Tourmaline 1.68 ± 0.37 0.88 2.18 

Topaz 4.30 ± 0.58 4.49 3.15 

Kaolinite 6.84 ± 0.77 6.32 6.10 

Chlorite/Almandine 0.35 ± 0.26 0.12 0.33 

Other silicates 0.06 ± 0.01 0.02 0.07 

Zircon < 0.01 ± 0.00 < 0.01 < 0.01 

Fe-Ox/CO3 0.03 ± 0.02 0.03 0.30 

Mn phases 0.01 ± 0.00 0.02 0.02 

Rutile 0.05 ± 0.01 0.04 0.05 

Ilmenorutile 0.01 ± 0.00 0.02 0.01 

Calcite 0.25 ± 0.13 0.03 0.06 

Apatite 0.13 ± 0.01 0.06 0.04 

Rare earth element minerals < 0.01 ± 0.00 < 0.01 < 0.01 

Pyrite/Jarosite 0.01 ± 0.00 0.01 0.01 

Others 0.01 ± 0.00 0.02 0.02 
 

Red – result different from freshly prepared soil 

Blue – no difference from freshly prepared soil 

 

Quartz has a silicate-oxygen tetrahedral structure and represents the major portion of the 

sand and silt fraction for most soils (Barber, 1995). Quartz weathers slowly, which 

suggests that the decline in the representative proportion observed over the irrigation 

period (Table 4.12) was caused by the transport of these molecules, rather than by their 

breakdown. Feldspars have an alumina-silicate tetrahedral of either potassium (K-

feldspar), sodium and calcium (plagioclase feldspar) (Barber, 1995).  

Apatite is a group of phosphate minerals; the most common forms have the formula 

Ca5(PO4)3(F/Cl/OH)2. Apatite minerals are primarily employed in the production of 
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fertiliser and, as such, are an important source of PO4
3-

 in soils. Given the high levels of 

PO4
3-

 leached during this study, apatite appeared to be particularly important. 

4.4.4.2 Nitrogen  

TPN concentrations were relatively uniform with depth (Figure 4.17). The average TPN 

concentrations within the profile of the UF columns were higher than those of the F 

columns, though no significant difference was determined (p = 0.207, Table 4.10a) 

between either of the treatments and there was no correlation with depth (p = 0.472 for 

UF, p = 0.675 for F, Table 4.10b and c). The highest TPN concentration for both 

treatments occurred at 0 to 5 cm depth (10.4 ± 1.1 mg N g
-1

 and 9.62 ± 1.45 mg N g
-1

 in 

the UF and F columns, respectively) The lowest concentrations occurred at 5 to 10 cm 

depth in the UF columns (8.91 ± 0.87 mg N g
-1

), and at 10 to 15 cm depth in the F 

columns (8.81 ± 0.78 mg N g
-1

).  

 

Figure 4.17:  TPN content (mg N g
- 1

) for the UF and F profiles,  following 1 year of 

irrigation. Mean and standard deviations calculated from 2 sets of 2 columns (UF and 

F). Analyses were run in triplicate for each sample  (n = 6).  
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4.4.4.3 Carbon 

The TPC results are displayed in Figure 4.18. Concentrations remained uniform 

throughout the depth profiles for both UF and F columns (173 ± 6 to 183 ± 3 mg C g
-1

). 

Statistical analyses using a one-way ANOVA demonstrated no significant difference 

between treatments (p = 0.304, Table 4.10a). 

 

Figure 4.18:  TPC content (mg C g
- 1

) for the UF and F profiles,  following 1 year of 

irrigation. Mean and standard deviation calculated from 2 sets of 2 columns (UF and F). 

Analyses were run in triplicate for each sample  (n = 6).  

 

The SOC content (Figure 4.19) within the fertilised profiles ranged from 77.5 ± 98.0 to 

104 ± 3 mg C g
-1

 (UF columns) and 88.5 ± 5.8 to 133 ± 35 mg C g
-1

 (F columns). There 

was no correlation of SOC with depth (UF p = 0.784; F p = 0.192; Table 4.10b and c). 

In general, the SOC content was significantly higher in the F column profiles, (p = 

0.002, Table 4.10a). 
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Figure 4.19:  SOC content (mg C g
-1

) for the UF and F profiles,  following 1 year of 

irrigation, determined through loss on ignition . Mean and standard deviation s were 

calculated from 2 sets of 2 columns (UF and F). Analyses were run in triplicate for each 

sample (n = 6) 
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4.4.4.4.1 Carbon : nitrogen ratio 

The C : N ratios (Figure 4.20) were calculated using TPC and TPN concentrations. 
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Figure 4.20:  Carbon :nitrogen ratios for the UF and F profiles, following 1 year of 

irrigation. The data were calculated from TPC and TPN values (n = 6).  

 

4.4.4.4.2 Carbon : nitrogen : phosphorus ratio 

Table 4.13 shows the C : N : P ratios for both UF and F columns and, with the exception 

of the freshly prepared soil, shows limited variation from the ‘Redfield-like’ ratio (186 : 

13 : 0.1) proposed by Cleveland and Liptzin (2007), who observe that this ratio may 

vary depending on the microbial community present within the soil, however on 

average it is well-constrained. 

Table 4.13: C : N : P ratios for each depth within the UF and  F profiles following 1 year 

of irrigation. The data were calculated from TPC , TPN and PO4
3-

 values (n=6).  

 

Depth range (cm) 
Unfertilised Fertilised 

C N P C N P 

0-5 181 10.4 0.06 181 9.62 0.06 

5-10 171 8.89 0.04 174 8.90 0.05 

10-15 173 9.77 0.05 174 8.81 0.05 

15-20 175 9.32 0.05 177 8.91 0.05 

25-30 178 9.29 0.05 183 9.33 0.06 

35-40 160 9.15 0.06 173 9.57 0.06 

45-50 177 9.58 0.07 176 9.15 0.06 

Freshly prepared soil 150 6.65 0.01 
   

Redfield ratio 186 13.0 0.10 
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4.4.4.5 Physicochemical characteristics 

The pH (Figure 4.21) within both the UF and F columns increased with depth, to a 

degree that was statistically significant (unfertilised p <0.001, fertilised p <0.001, 

Tables 4.10 and c). There was no significant difference between the UF and F profiles 

(p = 0.386, Table 4.10a). The minimum and maximum pH for the UF columns were 

5.77.± 0.02 (5 to 10 cm depth) and 6.03 ± 0.04 (40 to 45 cm depth). The minimum and 

maximum pH measured for the F columns were 5.65 ± 0.13 (0 to 5 cm depth) and 

6.03.±.0.03 (45 to 50 cm depth).  

 

Figure 4.21:  pH for the UF and F column profiles, following 1 year of irrigation. Mean 

and standard deviation calculated from 2 sets of 2 columns (UF and F).  Analyses were 

run in triplicate for each sample  (n = 6).  

 

The moisture content (Figure 4.22) of the columns ranged from 32.1 ± 0.6 to 

39.7.±.0.8.% within the UF columns and from 30.3 ± 0.0 to 36.4 ± 1.1 % in the F 

columns. There was no significant difference between the UF and F columns (p = 0.087, 

Table 4.10a). There was a significant correlation between depth and moisture content 

within both treatments (UF p = 0.029, F p = 0.007, Tables 4.10b and c). 
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Figure 4.22:  Moisture content for the UF and F profiles, following 1 year of irrigation. 

Mean and standard deviations were calculated from 2 sets of 2 columns (UF and F). 

Analyses were run in triplicate for each sample  (n = 6).  

 

There was little measured particle size variation with depth (Figure 4.23). Sand and silt 

comprised the largest fractions with depth for both treatments. Changes in particle size 

distribution were observed (Table 4.7), with the sand fraction decreasing from 59.8 % 

for the freshly prepared soil to 50.5 and 51.0 % within the UF and F columns, 

respectively. The clay fraction comprised the smallest proportion of the texture 

composition (< 2.60 %) in all samples. According to the ISO 14688-1 texture 

classifications, all samples were classified as either sandy loam or silt loam (ISO14688-

1:2002).  
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Figure 4.23:  Particle size distribution for the a) UF and b) F profiles.  Mean calculated 

from 2 sets of 2 columns (UF and F). Analyses were run in triplicate for each sample (n 

= 6).  

 

Figure 4.24 shows the CEC values for two depths within the column profiles. The F 

column samples had the highest CEC values (6.47 ± 1.16 cmolc kg
-1

 at 5.– 10 cm and 

6.36 ± 3.50 16 cmolc kg
-1

 at 35 to 40 cm). The UF column sample CEC values, at 

5.68.±.0.28 cmolc kg
-1

, demonstrated no significant difference from those of the freshly 

prepared soil (p > 0.05, Table 4.9). There was no significant difference between the UF 

and F column CECs (p = 0.093, Table 4.10a). 
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Figure 4.24:  CEC (cmolc  kg
-1

) for a typical  root zone (5  to 10 cm) and at 35 to 40 cm 

depth. The mean and standard deviation were calculated from 2 sets of 2 columns (UF 

and F). Analyses were run in triplicate for each sample  (n = 6).  

 

4.4.4.6 Enzymatic activity 

The mean enzymatic activity was highest at all depths within the UF columns (Figure 
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-1

).  

The enzymatic activity was correlated with depth in both profiles, though positively 
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the two profiles (p < 0.001, Table 4.10a).  
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Figure 4.25:  Enzymatic activity (mg Fl g
-1

 hr
- 1

) for the UF and F profiles, following 1 

year of irrigation. Mean and standard deviations were calculated from 2 sets of 2 

columns (UF and F).  Analyses were run in triplicate for each sample  (n = 6).  

 

4.4.5 Extracted constituent analyses 

4.4.5.1 Nitrogen 

Results from the N fraction analyses are shown in Figure 4.26. Non-extractable N 
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between mean values (p = 0.036, Table 4.10a).  
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There was a decrease in TEN concentration with depth for both the UF and F profiles, 

though this was not significant (p = 0.447 for UF, p = 0.225 for F, Tables 4.10b and c). 

The largest decrease occurred in the F column (42.0 μg N g
-1

).  

The extracted NO3
-
 concentrations (Figure 4.26b) were highest at 0 to 5 cm depth for 

both the UF and F soil profiles, though there was no significant difference (p = 0.483, 

Table 4.10a) in concentration (UF = 47.2 ± 6.3 μg N g
-1

 and F  = 45.7 ± 8.1 μg N g
-1

).  

In the F columns concentrations decreased below 0 to 20 cm; in the UF columns the 

concentration dropped below 5 cm depth and remained fairly constant from 5 to 20 cm 

(ranging from 9.6 to 10.9 μg N g
-1

), before increasing towards the bottom of the profile.  

NH4
+
 represented the smallest N fraction at all depths within both the UF and F columns. 

The F columns displayed the largest variability in NH4
+
 concentration (Figure 4.26c), 

with the concentration increasing with depth; a minimum occurred at 10 to 15 cm (2.51 

± 0.50 μg N g
-1

) and a maximum at 45 to 50 cm depth (8.69 ± 2.25 μg N g
-1

), though 

this was not a statistically significant correlation with increasing depth in the soil profile 

(p = 0.221, Table 4.10c). The NH4
+
 concentration in the UF columns varied less 

(3.68.±.0.87 to7.36 ± 0.86 μg N g
-1

). 

EON concentrations varied with depth (Figure 4.26d). There was no significant 

difference between the UF and F column concentrations (p = 0.586, Table 4.10a). 
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Figure 4.25:  Extracted N fraction concentrations (µg N g

-1
) for a)  TEN, b)  NO3

-
,  c)  NH4

+
 

and c)  EON for the UF and F profiles, following 1 year of irrigation. Mean and standard 

deviation calculated from 2 sets of 2 columns (UF and F). Analyses run in triplicate for 

each sample (n = 6).  
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both treatments (UF: 74.9 ± 4.7 μg P g
-1

; F: 6.16 ± 1.11 μg P g
-1

). Whilst the highest 

concentration occurred within the UF profiles, the overall average for all depths within 

the profile was greater in the F column (56.8 ± 4.6 μg P g
-1

 compared with 53.5 ± 11.9 

μg P g
-1

). There was no significant difference in PO4
3-

 concentration between the two 

treatments (p = 0.502, Table 4.10a). 

 

Figure 4.27:  Extracted PO4
3 -

 concentrations (µg P g
-
¹) for the UF and F profiles, 

following 1 year of irrigation.  Means and standard deviations were calculated from 2 

sets of 2 columns (UF and F). Analyses were made in triplicate for each sample (n  = 6).  
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treatments (p = 0.681, Table 4.10a). 
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 Figure 4.28:  EOC concentrations (µg C g
-1

) for the UF and F profiles, following 1 year 

of irrigation.  Means and standard deviations were calculated from 2 sets of 2 columns 

(UF and F), with analyses run in triplicate (n = 6). 

 

4.4.5.4 Metals 
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) of Mg, Ca, K and Fe with depth in the 

columns. The metal concentrations followed a similar profile in the UF columns, with 

the lowest concentrations occurring at mid-depth profile followed by an increase to the 

highest concentrations.  The F columns contained higher concentrations of Mg, Ca and 

Fe at depth, with the highest concentrations occurring 30 to 40 cm depth.  
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Figure 4.29:  Concentrations of extracted metals (µg g

-1
) a) Mg, b)  Ca, c)  K and d)  Fe 

for the UF and F profiles, following 1 year of irrigation.  Means and standard deviations 

were calculated from 2 sets of 2 columns (UF and F), with analyses run in triplicate 

(n.=.6).  
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4.5 Discussion 

This discussion aims to interpret the data from the leachate and soil profile analysis, 

focusing on the observed changes to the soil and leachate characteristics which occurred 

during the 52 week experimental term. 

4.5.1 Nitrogen 

Nitrate concentrations within the leachate (Figure 4.7) decreased by 95 % during the 

first 2 weeks of irrigation (from 6.73 to 0.36 mg N L
-1

), with the NO3
-
 concentrations in 

the leachate remaining low (< 0.83 mg N L
-1

) from Weeks 2 to 27. DON was therefore 

the principal form of N within the leachate, declining much slower from Weeks 5 to 32 

(from 11.1 to 1.6 mg N L
-1

). Only low molecular weight DON (e.g. peptides, amino 

acids, urea, polyamines, small polypeptides ) is available for plant uptake (DiTomaso et 

al., 1992; Jones et al., 2005b). It has, however, been suggested that most DON within 

soil solution is of a high molecular weight (Jones et al., 2005b), and thus, most is 

unavailable for plant uptake. 

After the initial flush of leachable inorganic from the columns brought about by the 

commencement of the irrigation, the inorganic N concentration within the leachate 

remained low. This may be attributed to immobilisation of inorganic N, through its 

utilisation by the soil microorganisms in the breakdown of soil organic matter, of which 

there were large quantities within incorporated into the soil mix. Blagodatsky et al. 

(1998) reported rapid N immobilisation, following an application of N-containing 

fertiliser to a silt loam soil. The C : N ratio of organic materials within the soil is of 

particular significance with regard to N immobilisation, affecting the ease with which 

the organic material may be decomposed by soil microorganisms (Nicolardot et al., 
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2001). The high C : N ratio of the organic bark component within the soil mix will thus 

have had a significant impact upon the immobilisation of N within the soils, discussed 

in further detail below. 

From Week 28 a significant increase in the TDN concentration was observed for both 

the UF and F soil columns (Figure 4.6). This increase in TDN was driven by an increase 

in NO3
-
 and DON concentrations (Figures 4.7 and 4.8) (NH4

+
 concentrations were 

consistently below the LOD). Whilst the increase in leached N concentration in F 

columns coincided with the application of fertiliser, it was also observed within the UF 

columns. It must therefore be assumed that the concentration increase was caused by the 

mineralisation and subsequent release of previously immobilised N, through the 

mineralisation process, triggered by a shift in the soil microbial population. The 

decomposition of organic material within the soil is a major driver of such processes, 

with the characteristics of an organic material having a substantial effect on its 

decomposition (Thomas et al., 1998). 

During the decomposition of organic material, microorganisms utilise the C component 

to produce CO2. In order to do this effectively the microbial population multiplies 

rapidly, requiring readily-available N for incorporation into their cells (Brady and Weil, 

2008). Where sufficient N is not available within the decomposing organic material, the 

microorganisms exploit the inorganic N within the soil solution (Cheshire et al., 1999). 

Through this process the inorganic N is converted to organic forms, which are 

unavailable for direct plant uptake (Cheshire et al., 1999) resulting in low NO3
-
 

concentrations within the leachate, as seen between Weeks 2 and 28 (< 0.83 mg N mL
-1

, 
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Table 4.7). A similar immobilisation trend was observed by Blagodatsky et al. (1998) 

over a 2 week experimental period. 

There are a number of factors which influence the rate and impact of the decomposition 

of organic matter within the soil, including: C : N ratio, particle size, lignin content of 

the organic matter and environmental conditions (soil pH, moisture, aeration and 

temperature). Organic material represented 65 % of the composition of the artificial soil 

mix, of which half was comprised of composted green waste and half bark. The 

composted green waste, which had a lower C : N ratio (13.0) than the overall soil mix 

(22.6), would have been rapidly decomposed by soil microorganisms (El-Sharkawi, 

2012). However, the bark had a high C : N ratio (33.5), and may, therefore, have 

promoted N immobilisation within the soil. This also suggests that N was the limiting 

factor in the decomposition of the bark component of the soil.  

Organic matter decomposition is reported to cause N immobilisation within soils, 

Barney and Colt (1991) and Boyer et al. (2012) reported significant N immobilisation 

within bark amended soils. The bark component of the soil mix had a relatively large 

particle size, which meant that a smaller surface area was exposed to physicochemical 

and microbial attack (Thomas et al., 1998). The composted green waste however, had a 

considerably smaller particle size, which exposed a larger surface area for microbial 

decomposition. Whilst the composition of both the bark and the composted green waste 

has not been explored in great depth by this investigation, it may be hypothesised that 

bark had a high lignin content, which made it more resistant to microbial 

decomposition, whilst the composted green waste may have contained a lower lignin 

content allowing for  it to be readily decomposed (Thomas et al., 1998). In view of this 
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it may be suggested that the more easily-decomposed composted green waste 

component would have been decomposed in preference to the bark component.  

The temperature and irrigation regime, under-which the columns were maintained, 

remained relatively constant throughout the experiment. Whilst they may have been a 

limiting factor to the rate of organic material decomposition, the effect remained fixed 

throughout. The leachate pH values were observed to decline (by 0.66 (UF) and 0.88 (F) 

within the leachate) throughout the irrigation term, though, no significant pH difference 

was observed between the freshly prepared and UF and F soils (p > 0.05, Tables 4.9 and 

4.10a). This suggests that the pH decrease may have been brought about by the release 

of soluble organic acids through the breakdown of the organic matter (Ritchie and 

Dolling, 1985), however leachate DOC concentrations declined throughout irrigation 

(from 213 mg C mL
-1

 at Week 2 to 14.9 mg C mL
-1

 (UF) and 10.6 mg C mL
-1

 (F) by 

Week 52) and without further DOC fractionation it is difficult to determine the extent to 

which this may have contributed to the decline in pH.  

Studies have demonstrated that fungal activity plays a much greater role in N 

immobilisation than bacteria (Cheshire et al., 1999; Thomas et al., 1998), with specific 

species favouring the breakdown of different organic materials (Thomas et al., 1998). It 

may therefore be hypothesised that different groups of microorganisms were 

responsible for the decomposition of different organic matter components within the 

soil. Group 1 was partially responsible for the initial NO3
- 
release (Weeks 1 to 2), where 

the composted green waste was rapidly decomposed, and Group 2 was responsible for 

the decomposition of the more recalcitrant bark, causing the NO3
- 

release seen from 

Week 28. This is supported by the findings of Henriksen and Breland (1999) who 
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modelled N immobilisation in soils through a microcosm experiment and determined 

that the application of organic residues (e.g. straw) to soils served to retard N 

mineralisation and resulted in greater N immobilisation. 

Further, the following may be speculated. Subsequent to the decomposition of the 

composted green waste, the microbial population size of Group 1 decreased, releasing 

inorganic N into the soil through cell lysis and subsequent mineralisation. The irrigation 

then served to flush this from the soil to be collected as leachate. Following this a 

population transformation occurred, where microorganisms more adept in the 

decomposition of more recalcitrant materials (Group 2) became prominent. In order to 

decompose this recalcitrant material - with a high C : N ratio, inorganic N from the soil 

solution was utilised by the Group 2 microorganisms, lowering the plant availability and 

leachable concentrations. The population size of the Group 2 microorganisms was 

eventually constrained by environmental factors, such as nutrient availability, leading to 

a stationary phase, with the population remaining constant. The exponential growth and 

stationary phases may be reflected from Weeks 2 to 28 within the NO3
-
 data, where 

concentrations remained low and stable as the Group 2 microorganisms decomposed the 

more recalcitrant organic matter. 

Once the decomposition had progressed to a point where the C : N ratio of the OM had 

been lowered through the release of CO2 into the atmosphere, causing C to become 

limiting, the population underwent logarithmic decline, where NO3
- 
was released as a 

result of the lysis of the microbial cells, demonstrated by increased dissolved NO3
-
 

concentration from Week 28 onwards. Figure 4.30 demonstrates the theoretical 

relationship between concentrations of NO3
-
 and changes in the microbial population. 
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Figure 4.30:  A proposed model for the relationship between NO3
-
 concentrations within 

the leachate and responses of the microbial population during decomposition of the 

organic matter component of the soil mix . a) The theoretical microbial population 

dynamic curves b) concentrations of NO 3
-
 measured within the column leachate. The 

microbial growth curve adapted from Killham (1994). The orange line represents 

population of microorganisms which favour the easily -decomposed composted green  

waste, whilst the green line represents the population facilitating the breakdown of more 

recalcitrant organic material. The proposed stages of the microbial population dynamics 

in relation to NO3
-
 concentration are: 

1a.  The composted green waste within the soil mix was decomposed rapidly by the 

microbial population; once the majority of this material ha d been decomposed there was 

a decline in populat ion size, leading to the release of inorganic N into the soil through 

cell lysis; this release is shown in the graph  and occurred during the initial flushing 

effect of irrigation on dissolved NO3
-
 concentrations.2.  A short lag phase - where the 

microbial population adjusted to the alternative organic matter (bark), through changes 

in the dominant microorganism from those which can utilises easily-decomposed organic 

matter (orange line),  to  species which can better utilises more recalcitrant organic 

matter (green line). During this phase the population size remained  stable. 3.  As the 

microbial population began to breakdown the bark component of the soil,  it s numbers 

increased exponentially.4.  A point was reached where the population size was limited by 

environmental factors other than food supply, the stationary phase. The exponential 

growth and stationary phases cause the NO3
-
 concentrations to remain low and stable 

throughout, as a result of N immobilisation within the cells of the increasing microbial 

population. 1b.  Once the C : N ratio of the bark component within the soil had been 

sufficiently lowered, the microbial population declines, with NO 3
-
 being released as a 

result of cell lysis demonstrated here by the logarithmic decline phase.  
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The timescale over which the Group 1 microorganisms decomposed the more easily-

accessed organic matter cannot be determined from the data. However, given that the 

columns were allowed to stabilise for 2 weeks prior to the start of irrigation, it may be 

presumed that the majority of green waste decomposition took place during this period. 

The microbial immobilisation and subsequent mineralisation, as described above, is 

supported by the decrease in TPC relative to TPN concentrations within the soil, which 

was brought about through either the increase in N present within the soil or, more 

likely, through the breakdown and release of soil carbon as CO2 by the microbial 

population (Brady and Weil, 2008). Burgos et al. (2006) reported similar 

immobilisation and re-mineralisation of N over a 40 week period following the 

application of a range of materials with high C : N ratios to sandy textured soils. 

Nitrate accounted for 21.0 to 67.6 % of the TEN concentration as NH4
+ 

in the leachate 

was below the LOD (<1.12 µg N L
-1

). This suggests that, either the conditions within 

the soil favoured rapid conversion of NH4
+
 to NO3

-
 via nitrification, or that NH4

+
 was 

strongly bound to the surface of soil particles and was not easily leached from the soil 

(Li et al., 2012); however the higher proportion of large size particles suggests a small 

surface area and an associated low number of binding sites must be acknowledged as 

probable. 

A mass balance was calculated to estimate the overall losses of N and to identify the 

fractions involved (values shown in Table 4.14). A greater overall N loss occurred 

within the F than the UF columns (1.01 mg N g soil
-1

 in the F and 0.72 mg N g soil
-1

 

within the UF columns). A significant fraction of N was unaccounted for (0.72 mg N g 

soil
-1

 in F and 0.42 µg N g soil
-1 

in UF columns) suggesting an alternative mode of N 
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loss from the soil columns. Within a natural system N may be lost from soils through 

crop removal, denitrification, erosion, runoff, leaching and volatilisation (Gentry et al., 

2009). Within the column system denitrification, volatilisation and leaching represent 

the means through which N loss may occur.  

Ammonia (NH3) may be volatilised when ammonium (NH4
+
) is dissolved in water at 

near neutral to alkaline pH (Rochette et al., 2013). The pH conditions within the column 

were consistent with those required for NH3 volatilisation, solid phase pH ranged from 

5.65 to 6.03 and within the leachate 5.69 to 7.19. Denitrification is the production of 

nitrous oxides through the reduction of nitrate, commonly occurring in environments 

with limited O2 (Ussiri and Lal, 2013). Stehfest and Bowman (2006) reported that N2O 

emissions increase with increasing SOC concentration due to increased availability of 

substrate for the microbial community in soils. The SOC content of the columns 

decreased over the irrigation period suggesting that the availability of SOC was greater 

during the earlier phase of the experiment, so any denitrification occurring as a result of 

SOC availability may have occurred during this period. 

Table 4.14:  Nitrogen mass balance estimated from the solid and leachate values from 

this experiment making the assumption that the column masses remained unchanged 

throughout the experimental period.  

 

 

Unfertilised Fertilised 

Freshly 

prepared soil 

Following 52 

weeks 

irrigation 

Freshly 

prepared soil 

Following 52 

weeks 

irrigation 

TPN in column (g) 97.2 90.3 84.3 75.9 

TPN in column (mg N g-1) 10.2 9.48 10.2 9.19 

Column N loss (mg N g-1) 

 

0.72 

 

1.01 

N loss by leaching(mg N g-1) 0.30 0.29 

% N loss form column 7.06 9.90 

% loss represented by leaching 41.4 28.3 

Unaccounted loss (mg N g -1) 0.42 0.72 
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4.5.2 Phosphorus 

When compared with other major nutrients, under most soil conditions, P is the least 

mobile and least plant available (Hinsinger, 2001). In the environment P is most 

commonly found in the form of dissolved inorganic phosphate (DIP) (Barancíková et 

al., 2007) and its low mobility is attributed the highly reactive nature of DIP ions 

relative to other soil nutrients, resulting in the long-term retention of P in unavailable 

forms (Hinsinger, 2001). For this investigation DIP was measured as PO4
3-

. 

Following a lag-period of 1 week with little change in concentration, the PO4
3-

 

concentrations in the leachate increased for 5 weeks until Week 6, when concentrations 

become relatively stable. This was consistent with results reported Li et al. (1997) and 

Broschat (1995). They measured nutrient concentrations within the leachate of compost 

amended-soils and also observed a period of minimal concentration increase for 

dissolved PO4
3-

, lasting from between 6 days and 4 weeks, before an increase in 

concentration. Broschat (1995) suggested that fixation within the soil may have caused 

the initially low dissolved PO4
3-

 concentrations, which then increased following 

saturation of the soil’s adsorption capacity.  

Phosphorus losses from soils are dependent on source factors and transport mechanisms 

(Börling, 2003; Gburek et al., 2000) and the PO4
3- 

concentrations within the leachate 

may be explained through PO4
3- 

buffering, where PO4
3- 

is sorbed to - or desorbed from - 

soil particles. Within the environment this refers to a two stage process: (1) rapid 

surface adsorption onto - or desorption from - reactive particle sites, followed by (2) a 

slow penetration by solid-state diffusion of this PO4
3-

 into - or out of - sub-surface 

horizons within the interior of particles (Froelich, 1988). The equilibrium between solid 
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and solution is governed by the environmental conditions Eh, pH, CEC and organic 

matter (Froelich, 1988; Reddy et al., 2005).  

Apatite is a primary source of mineral P in soil. The weathering process is typically too 

slow to provide sufficient P to meet crop demand (Shen et al., 2011). However, direct 

application of PO4
3- 

rocks has been demonstrated to be relatively effective for crop 

growth in acidic soils (Shen et al., 2011). Whilst the conditions within the soil column 

were slightly acidic (pH 5.9) this is unlikely to explain the extent of P concentration 

within the leachate. Soil fungi are known to increase plant available P concentrations 

through the promotion of the dissolution of various PO4
3- 

minerals, including apatite 

(Rosling et al., 2007). The role of fungi in the breakdown of soil organic matter was 

supported by the leachate N concentrations. 

It should be noted that comparison of apatite values from the freshly prepared soils and 

those from the UF and F columns suggests a decrease in the relative composition 

represented by apatite over the irrigation period (-0.06 and -0.04 % for UF and F 

columns respectively, Table 4.11). Minerals within the apatite group vary in their 

solubility (ranging from log K ~ -122 to log K ~ -107.5) (Guidry and Mackenzie, 2003), 

depending on the particle size and the soil pH (Oelkers et al., 2008).  

Whilst it is possible that the decrease in apatite may have been caused by transport 

through the soil profile, the relative stability of most other mineral components 

occurring within the soil during this study suggest that the decline may have been 

caused by the breakdown of this mineral, though this cannot be verified. Mass balance 

calculations (Table 4.13) suggest that cumulative PO4
3-

 losses within the leachate for the 

52 weeks experiment account for an additional 0.14 and 0.21 mg g
-1

 of the water 
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extracted PO4
3-

 within the UF and F columns respectively, when compared to the 

freshly prepared soil. This suggests that PO4
3-

 was converted from a previously 

unavailable form and released into the soil solution. The mass balance calculations 

(Table 4.15) estimate that approximately 0.17 and 0.13 mg g
-1

 of PO4
3-

 were lost 

through the breakdown of in apatite from the UF and F columns respectively, which 

may account for some of the leached PO4
3-

,with organic matter decomposition 

providing another source.  

Table 4.15:  Phosphate and apatite mass balance estimated from solid and leachate 

values from this experiment making the assumption that the column messes remained 

consistent throughout the exper imental period.  

 

 

Unfertilised Fertilised 

Freshly 

prepared soil 

Following 52 

weeks 

irrigation 

Freshly 

prepared soil 

Following 

52 weeks 

irrigation 

Extracted PO4
3- (g) 0.95 0.48 0.83 0.50 

Extracted PO4
3- (mg P g-1) 0.10 0.05 0.10 0.06 

Column loss of PO4
3- (mg P g-1) 

 

0.05 

 

0.04 

PO4
3- loss by leaching (mg P g-1) 0.19 0.25 

% PO4
3- loss from column 50.0 40.0 

% PO4
3- loss represented by leaching 191 246 

Apatite 

Representative composition (%) 0.13 0.04 0.13 0.06 

Total apatite in columns (g) 12.4 3.81 10.7 4.96 

Apatite loss (g) 

 

8.58 

 

5.78 

Apatite loss (%) 69.2 53.8 

Apatite lost (mol) 0.02 0.01 

Total PO4
3- in apatite loss (g) 1.60 1.08 

PO4
3- in apatite loss (mg P g-1) 0.17 0.13 

 

It has been observed that compost may serve as a major source of bioavailable P in soil 

(Barker, 1997) and may be reasoned that the trends observed for the PO4
3-

 

concentrations within the leachate were caused by P mineralisation, through the 

decomposition of the soil organic matter component. Initially the PO4
3- 

released through 

the decomposition of organic material within the soil mix may have been adsorbed by 
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minerals, becoming insoluble. With the continued decomposition of the organic matter 

component and associated PO4
3-

 release, the available adsorption sites within the soil 

became saturated, resulting in the loss of PO4
3-

 from the soil through leaching. The 

stabilisation of the leachate PO4
3-

 concentration was likely as a result of an equilibration 

between the soil and irrigation water. This trend is supported by studies of Garcia-

Albacete et al. (2014) and Spohn and Kuzyakov (2013), who identified the significance 

of organic matter decomposition by the soil microbial population to the mineralisation 

of P within soils. 

Adsorption is of PO4
3-

 is closely related to soil texture (Sposito, 1989), with smaller 

particles containing the highest number of charged binding sites. The addition of a small 

quantity of clay or Al or Fe oxides can greatly reduce PO4
3- 

transport within soils 

(Favaretto et al., 2012). Studies by Leinweber et al. (1999) and Liu et al. (2012) 

reported relatively high levels of PO4
3- 

leaching in soils with a relatively small clay 

fraction. The small clay fraction results in fewer binding sites for solubilised PO4
3- 

ions 

to sorb to, leading to greater PO4
3- 

loss through leaching, consistent with this 

experimental data.  

4.5.3 Carbon 

The DOC concentrations within the leachate samples decreased at a steady rate 

throughout the irrigation study, with the concentration remaining stable for the final 6 

weeks of irrigation. This final trend suggests that a equilibrium state between the 

irrigation water and the soil was reached. There was a significant (p < 0.05, Table 4.7) 

decrease in EOC for both the UF and F soils by the end of the 52 weeks of irrigation 

(82.7 and 81.5.%, respectively). However, there was no significant difference in EOC 
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concentration throughout the depth profile (p > 0.05, Table 4.8a) suggesting that loss of 

particulate C was relatively even throughout the profile. Over the 52 week irrigation 

period a larger concentration of EOC was leached from the UF soil (62.0 µg g
-1

) than 

the F soil (44.9 µg g
-1

); however a higher percentage of EOC losses from the F soil were 

unaccounted for by leached concentrations (76.9 % in F soil, 61.2 % in UF soil), 

suggesting alternative modes of C loss from the soil. 

As discussed above, the C content of the soils has a significant effect on the nutrient 

cycling processes within the soils. The TPC concentrations demonstrated no significant 

differences between UF and F profiles (p > 0.05, Table 4.8a). All depths, in both UF 

and F columns, demonstrated a differing levels of decrease in TPC concentration 

ranging from 0.89 to 13.4 %, though this was not found to be significantly different (p > 

0.05, Table 4.7). The decline in TPC between the freshly prepared soil and both the UF 

and F soils following 52 weeks of irrigation is reflected in the decreased C : N ratio (T0 

= 22.6  UF = 16.7 to 19.7 and F = 17.4 to 19.7). The reduction in TPC content within 

the soil over the irrigation period may be attributed to the decomposition of organic 

matter within the soil and its subsequent release through respiration and leaching. 

4.5.4 Physicochemical and biological properties 

Typically, a higher proportion of organic matter is present within the upper layers of a 

soil, resulting in greater moisture content within this organic horizon. However, this was 

not observed within the columns, where moisture content was highest at depth. This 

may be explained in terms of this experiment, where the soil mix was homogenised and 

packed into the columns, resulting in a relatively uniform soil composition throughout 

the profiles and further to this, there were no applications of organic material, which 
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increases water retention, to the surface of the columns. In view of this it may be 

inferred that the variation in moisture content was more likely to have been caused by 

gravitational movement rather than variations in water holding capacity throughout the 

profile. 

The pH of the soil influences nutrient availability, affecting the oxidation state and 

solubility of ions present within the soil (as demonstrated in Figure 1.2) thereby 

affecting the activity of micro-organisms responsible for breaking down organic matter 

and chemical transformations in the soil (Lambers et al., 1998). The pH decreased 

throughout the experimental term, and may have influenced nutrient solubility, as 

demonstrated by significant positive correlations between pH and nutrient 

concentrations (DOC, TDN, NO3, Mg, Ca, K, Fe and Eh (and PO4-UF only)) (Tables 

4.5b and 4.5c). 

Silt- and sand-sized particles represented the majority of the particle fraction throughout 

the column profiles, with the clay sized fraction consistently small (< 2 %). This 

suggests that the overall surface area of soils throughout the column profiles was small, 

resulting in fewer nutrient binding sites than in soils with a larger clay fraction. 

Comparison of the UF and F columns following 52 weeks irrigation with the particle 

size distribution data for the freshly prepared artificial soils demonstrated little change 

over the irrigation period.  

The CEC of a soil is of particular importance for nutrient retention and storage. The 

CEC values for the artificial soils were consistent with those reported for sandy loam 

soils, which range from 2 to 12 cmolc kg
-1 

 (Brady and Weil, 2008; Rowell, 1994). Soils 

with a larger clay fraction report much higher CEC values (up to 60 cmolc kg
-1

) and 
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therefore better support nutrient retention (Rowell, 1994). Typically, organic matter is 

reported to have a net negative charge, which suggests that soils with a higher organic 

matter content may have a greater CEC (Sparks, 2003).  

4.5.5 Fertiliser application 

There were no significant differences between the TPC concentrations found in the UF, 

F or freshly prepared soils.  However, the C : N ratios throughout the profiles of both 

treatments were significantly lower than those of the freshly prepared soils. This 

suggests that the change in C : N ratio was more influenced by changes to the total 

nitrogen concentrations than carbon concentrations. 

A significant difference in the leachate pH was observed between the UF and F 

columns; with the latter being lower (p < 0.001, Table 4.5a). The fertiliser was 

composed of a range of materials (detailed in Appendix A) including kali vinasse, fish 

meal and kieserite, all of which contain sulphur and are commonly applied to soils to 

reduce pH (Modaihsh et al., 1989). However, this effect was not reflected within the 

solid phase as overall there was no significant difference between the pH of the freshly 

prepared soil, and the UF or F soils (p > 0.05, Table 4.7), which suggests that there may 

have been a buffering effect taking place within the soil caused by the addition of 

metals (K) within the fertiliser. 

The effect of the fertiliser applications on the leached N concentrations was small in 

comparison to the overall N increase which occurred in both the UF and F columns, as 

discussed previously. The second fertiliser application led to a significant (p = 0.005, 

Table 4.7) increase in the N leachate concentration. This may be attributed to the first 

fertiliser application coinciding with the large N release, with the N concentration 
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within the leachate already increasing, whilst the second fertiliser application took place 

once the N concentration within the leachate had stabilised. The DON concentration 

demonstrated the greatest increase, which may have been attributable to the fertiliser 

containing a large organic N fraction; relative to inorganic N fractions (components are 

detailed in Appendix A).   

The extractable Mg, Ca and Fe and leachate Mg, Ca and K concentrations were 

significantly different between the UF and F soil columns and co-varied with pH 

throughout the profiles, which was confirmed by a close correlation between the values 

(p <0.05, Tables 4.8b and 4.8c). These changes may have been caused by changes to the 

CEC of the soil as a result of the fertiliser application. The organic nature of a number 

of components within the fertiliser would have provided a greater number of exchange 

sites within the soil, however, no statistically significant difference (p > 0.05, Table 

4.10a) between the CEC in the UF and F columns were observed.  

The leached PO4
3-

 concentrations in the F columns increased following fertiliser 

application. However, there was no significant difference (p > 0.05, Table 4.8a) 

measured between the extracted PO4
3-

 concentrations of the UF and F soils. This further 

supports that the P leached from the soil was being controlled by equilibrium with the 

irrigation water. 

The enzymatic activity values from the solid samples were significantly lower 

throughout the depth profile of the F columns. It should be noted that no significant 

difference was observed between the enzymatic activity values within the leachate of 

either the UF or F columns. This corresponds with a study by Ramirez et al. (2010), 

where microbial respiration rates were observed to decrease as a result of N-containing 
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fertiliser applications, and responses were observed to be similar across a range of 

ecosystems. Ramirez et al. (2012) suggests that this reduction in microbial activity is 

caused by the shifting of metabolic capabilities of soil bacterial community in response 

to the N application, yielding communities less capable of decomposing the more 

recalcitrant soil carbon pools. The SOC data from the soil columns may support this 

theory. With less microbial decomposition of organic matter occurring within the F 

columns as a result suppression from the N fertiliser application the significantly (p = 

0.002, Table 4.9a) higher SOC content observed within the F columns (Figure 4.19) 

may be explained. Further support for this theory may have been obtained through 

monitoring CO2 fluxes from the columns, it would have been anticipated that with less 

decomposition of organic matter occurring within the F column, the CO2 release from F 

columns would have been lower than that of the UF columns. 

4.5.6 Synthesis 

Results suggest that irrigation rate may have been one of the main processes influencing 

nutrient losses from the soil, with equilibrium reached for PO4
3-

 and DOC. This 

suggests that the EP could benefit from reduction of their irrigation rate within the 

Biomes. 

Nitrate was quickly leached from the soil, after which low N concentrations persisted, 

possibly due to the immobilisation of N during the breakdown of more recalcitrant 

organic material. A mass balance (Table 4.14) of N throughout the experiment showed a 

decrease of 7.06 % in the total N content within the UF columns and a decrease of 

9.90.% in F columns. Significant proportions (58.6 % for UF and 71.7 % for F) are 

unaccounted for, and may be attributed to NH3 volatilisation and denitrification. 
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The pH of the soil decreased throughout the experimental term and influenced nutrient 

availability by solubilising ions present within the soil. The concept of pH change may 

impact the activity of micro-organisms responsible for breaking down organic matter 

and most chemical transformations in the soil (Lambers et al., 1998). As indicated in 

Figure 1.2, mineral soils with pH ranging from 6.5 to 7.5 have the greatest nutrient 

availability.  

The extractable PO4
3-

 concentration in the solid samples extruded from the column after 

52 weeks were lower than in the freshly prepared soil. This was consistent with high 

concentrations measured in the leachate throughout the experiment and the calculated 

PO4
3-

 release from apatite minerals.  

The initial concentrations of nutrients within the leachate collected from the columns 

were variable; with a large standard deviation (for example during the first 9 weeks of 

irrigation for TDN and DOC variations of 44.5 and 26.4 % respectively, were 

measured). This suggests that there was a stabilisation period within the columns, 

lasting approximately 9 weeks (17 % of experimental period) from the time that 

irrigation commenced. The variation then decreased to average 14.0 % and 12.9 % 

(RSD) for TDN and DOC respectively.  

In soils the potential for significant hydrologic loss of mobile nutrients is directly 

related to the size of the exchangeable nutrient pool and the proportion in solution at 

any given time (Robertson et al., 1999). Field-moist soils were used for the 

determination of water-extractable nutrient concentrations in this study, meaning that a 

significant proportion of the concentrations presented above will have been present 

within the soil solution and extractable phase. However, the data give an indication of 
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the concentrations present within the soil profiles relative to each other, thereby serving 

to meet the aim of the investigation. The drying of soils has been reported to 

significantly affect the K and P concentrations within a soil sample (Attoe, 1947; 

Dowdy and Hutchenson, 1963; Pote et al., 1999). 

Particle size distribution is a key factor with regard to nutrient dynamics in any soil 

(Silver et al., 2000). In this instance it appears that the high proportion of large sized 

particles served to limit the nutrient retention and storage capabilities of the soil, 

through their proportionately small surface area and associated lack of charged sites to 

which nutrients may bind. 

4.6 Conclusion 

Column experiments provide an important means of examining the behaviour of soil 

nutrients within a controlled system. This experiment was designed to control 

potentially important physicochemical variables such as temperature and moisture 

content, which would undoubtedly have significant impacts on the experimental 

outputs. In restricting these variables a valuable insight has been gained into the 

behaviour of the nutrients within the soils, and a greater understanding of the 

mechanisms taking place. This study represents the first time the Eden Project soils 

have been studied in such detail and further, to the best of the author’s knowledge, the 

first time the nutrient characteristics and retention of artificial soils have been observed 

in such a manner. 

The microbial population has been suggested to have had a significant impact on the 

nutrient concentrations observed within the soil leachate, particularly N and P. The 
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immobilisation of N within the soil columns was most likely caused by the 

decomposition of organic material, with bark having the most significant effect as a 

result of its high C : N ratio. This bark decomposition resulted in later re-mineralisation 

of N and transfer into soil solution.  

PO4
3- 

was suggested to have been released through the microbial decomposition of 

organic matter within the soil. The initial lag-phase displayed by the leachate 

concentrations, suggested P adsorption within the soil, with the subsequent increase in 

leached PO4
3- 

resulting from saturation of available adsorption sites, with PO4
3-

 being 

leached in response to changes in the equilibrium between the soil and the irrigation 

water. It would therefore be anticipated that in the long-term these values would begin 

to decline as the decomposable organic matter stocks within the soils decreased. 

The clay-sized particulate component of the soil was small, and consistent with that 

found within the Humid Tropics Biome soil pits (as described in Chapter 3). Hence, the 

overall surface area of the soils was small, meaning that there were a lower number of 

charged binding sites within the soil. A potential consequence of this is that nutrients 

released through the breakdown of organic residues and fertiliser application, are highly 

susceptible to leaching from the soil, particularly under the continuous drip irrigation 

system employed at the Eden Project. This reduces the nutrient residence time in the 

soil and the timescale over which plant uptake of the nutrients may occur. Thus, a 

continuous supply of nutrients from an external source is thought to be required in order 

to meet the plant demands. 

The Eden Project soils have been in place since 2001, and have been subjected to 

inconsistent regimes of mulch and fertiliser application. Whilst the high N and PO4
3-
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concentrations observed within the leachate at the termination of the column experiment 

were not likely to have been sustained long term, regular application of mulch and 

fertiliser, as practiced at the Eden Project, is likely to lead to recurring nutrient leaching. 

The NO3
-
 immobilisation observed as a result of the bark application would exercise 

significant impact on the performance of plants and, as such, planting should be avoided 

during the period of high immobilisation, following application of any high C : N ratio 

materials.  

The readiness with which N and PO4
3-

 nutrients were leached from the soils within the 

columns may be extrapolated to reflect the performance of the Eden Project soils. This 

means that in order to maintain sufficient N and PO4
3-

 concentrations for the support of 

healthy plant growth, large quantities of fertiliser application are required. Alongside 

the negative impacts on the plants, the high levels of nutrients lost from the soils have 

negative implications for the environment (Spiro and Stigliani, 1996).  

In order for the soil nutrient retention and storage capabilities to improve, it will be 

necessary to amend the soil composition, particularly within the root zone. A reasonable 

first step would be to increase the soil surface area, through increasing the clay content, 

thus increasing the number of nutrient binding sites and reducing the potential for losses 

and increasing the long-term nutrient availability within the soil.  

Improvements to nutrient retention within the Eden Project soils, and other similar 

artificial soils, will have important implications, not only with regard to plant growth 

and economic savings (lower fertiliser costs), but also through improvements in water 

quality in the form of lower concentrations of N and P in the water draining from the 

soils. 
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The effect of biochar amendments on nutrient retention of Eden Project soils   
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5.1 Overview 

A study was devised to determine the potential for biochar to improve the nutrient 

retention of artificial soils. Biochar was added to the artificial soil mix at 3 

concentrations (10 %, 5 % and 2 %) plus a control (0 %) and packed into mesocosms. 

These were maintained under controlled environmental conditions with irrigation for 6 

weeks. Leachate was collected on 6 occasions and analysed for dissolved constituents, 

physicochemical and biological properties. Samples were of the freshly amended soil 

and of the irrigated amended soils were taken and analysed for solid-phase and 

extractable constituents and physicochemical and biological properties. 

Many of the observations detailed within the results section are consistent with those 

reported for other biochar studies. Results demonstrated that biochar application helped 

to reduce losses of key nutrients through leaching, however on a mass basis there was 

no clear distinction between biochar concentrations. Overall nutrient leaching decrease 

may be attributed to the reduced leachate volume, leading to the inference that biochar 

application increased the water holding capacity. Enzymatic activity was increased 

following biochar application, suggesting that biochar encourages the biological 

community, with this having potentially significant implications for the breakdown of 

SOM and nutrient cycling within the soils. With appropriate management the 

application of biochar at the Eden Project site could lead to greater soil resource 

efficiency.  
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5.2 Introduction 

5.2.1 Research objectives 

The research outlined in this chapter addresses research objective 3. 

- To make controlled changes to the artificial soils determine how this affects the 

sustainability of the nutrient reservoir. 

5.2.2 Rationale 

The experimental plan for the project included the investigation included the 

exploration of the potential for amendment to the soil composition used by the Eden 

Project. If justified on the basis of data obtained from the soil column experiments, 

trials to measure improvements in the nutrient retention and storage capability of the 

artificial soil resulting from amendments would be made. Observations recorded within 

Chapters 3 and 4 demonstrate a range of soil characteristics and processes, which have 

been identified as detrimental to the nutrient retention and storage capabilities of the 

soil. Key characteristics and behaviours included a very small (<1 %) clay fraction with 

particle size being consistently large throughout the soils, a low CEC, high levels of N 

immobilisation by the soil microbial population and the subsequent N release following 

remineralisation, sustained P leaching from the soil as a result of organic matter 

decomposition. On the basis of these observations it was decided that through 

increasing the number of available charged binding sites within the soil, improvements 

to the nutrient retention and storage capabilities may follow.  

Following consultation with the Eden Project, biochar was identified as the amendment 

for this study due to the Eden Project’s intention to install a pyrolysis unit for the 
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production of biochar from the site’s green waste material. This chapter reports on the 

efficacy of biochar applied to the artificial soil used by the Eden Project. Observations 

reported in Chapters 3 and 4 indicated that the Eden Project artificial soils had poor 

nutrient retention and storage capabilities, relating to the high proportion of large sized 

particles, resulting in low water holding capability and a small surface area on to which 

nutrients may bind.  

5.2.3 Biochar 

Biochar is a fine-grained carbonaceous form of charcoal, manufactured with the 

intention of being applied to a soil in a deliberate manner (Lehmann et al., 2011). It is 

produced through pyrolysis: the thermo-chemical decomposition of organic materials, 

in the absence of oxygen (Lehmann and Joseph, 2010). The physical characteristics of 

biochar depend upon both the feedstock and the pyrolysis conditions under which it is 

manufactured. An additional factor influencing the choice of studying biochar as an 

amendment was the intention to install a pyrolysis unit on site at the Eden Project. 

Historically, biochar has been connected with soil management practices. One example 

is the Terra Preta (black earth) soils within the Amazon basin, which boast distinctly 

greater fertility than soils in the immediate surroundings and have been dated as far 

back as 9000 years B.P. (Sohi et al., 2010). It is thought that the pre-Columbian people 

created and managed this area through the addition of incompletely combusted 

remnants from domestic fires, and by carrying out controlled in-field burning. The 

extent of these deposits suggests that applications were increasingly deliberate, 

presumably as a management strategy to address low soil fertility (Sohi et al., 2010). 
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Residually, the Terra Preta soils still display elevated SOC content, and enhanced N, P, 

K, and Ca status (Sohi et al., 2010). 

The application of biochar as a soil amendment in more recent times has been reported 

to have a significant impact on soil properties, processes and functions. Increased pH 

and water holding capacity, improved soil structure, increased nutrient retention, 

decreased N2O and CH4 emissions, reductions in leaching of inorganic N, adsorption of 

anthropogenic chemicals (e.g. steroid hormones) and adsorption of heavy metals have 

all been reported (Anderson et al., 2011; Downie et al., 2010; Manyà, 2012; Spokas et 

al., 2009). The potential of biochar to increase the retention of soil moisture and 

nutrients was of particular interest to this study. 

Biochar is reported to offer manifold benefits as, further to its application as a soil 

amendment, it offers a means of long-term C sequestration, and a source of bio-energy 

and waste disposal (Laird, 2008). As the Eden Project aims to operate sustainably the 

production and use of biochar onsite aligns with their ethos. 
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5.3 Experimental design 

5.3.1 Overview of experimental design 

As a preliminary step to explore the potential for soil improvement through the 

application of biochar to the artificial soils, a short-term mesocosm experiment was 

devised.  

 

Figure 5.1: Replicate soil mesocosms used to measure the effect of biochar application 

on nutrient retention in artificial soils at the Eden Project.  

 

A biochar was produced from waste organic residues (predominantly softwood 

chippings), sourced onsite at the Eden Project. It was mixed with the artificial soil at 3 

concentrations (2, 5 and 10 %), plus a control (0 %). Mesocosms were then established 

in triplicate using the soil-biochar mixes (Figure 5.1). The mesocosms were maintained 

under the same conditions as the soil columns (Chapter 4) and were irrigated and 

incubated for 6 weeks, during which time leachate was sampled. Following the 6 week 

incubation period, the mesocosm soil was extruded and analysed for physicochemical 

and biological characteristics. 
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5.3.2 Mesocosm design 

In order for a plant population to benefit from the application of biochar to soil, it needs 

to be present at depths commonly accessed by roots (Blackwell et al., 2010) and at 

which biochar can easily be incorporated in the soils already established at the Eden 

Project. In view of this, a mesocosm of 100 mm depth was selected.  

 

Figure 5.2:  Mesocosm set-up as used for the amendment study Mesocosms were made up 

in PVC pots which were 110 mm diameter by 100 mm height.   

 

The mesocosms were opaque PVC containers, with an internal diameter of 110 mm at 

the top and 90 mm at the base with a depth of 100 mm. As shown in Figure 5.2 the 

mesocosms were suspended above a collection tray, which directed the leachate to an 

acid washed 100.mL polyethylene collection bottle. The base of each mesocosm had 10 

outlets (5.mm diameter) in order to aid drainage. A mesh (100 µm pore size) was laid at 

the base of each mesocosm, prior to soil packing, in order to minimise soil loss through 

the outlets. 
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5.3.3 Environmental conditions and irrigation 

The mesocosms were maintained within a controlled temperature room at 15 
o
C for the 

duration of the study. This temperature was chosen to represent temperatures found 

within the Eden Project Biomes and was consistent with the temperature to which the 

soil columns were subjected. 

Irrigation of the mesocosms was performed by hand on a daily basis, using pH-adjusted 

18.2 MΩ cm
-1

 water. Each mesocosm received 0.84 mL m
-2

 irrigation water day
-1

 

(10.mL day
-1

), consistent with the irrigation rate used at the Eden Project. 

5.3.4 Soil composition 

The artificial soil base used for these experiments was from the same batch used for the 

soil column experiments, prepared onsite at the Eden Project on 25/03/13. This soil was 

used because the soil column study (Chapter 4) provided valuable insight to its 

behaviour and characteristics under irrigation, allowing for the generation of a dataset 

comparable to that from Chapter 4. 

5.3.5 Biochar production 

5.3.5.1 Feedstock 

A varied selection of feedstock materials for the production of biochar have been 

reported, which can be broadly divided into 3 categories: wastes (e.g. municipal solids), 

crop residues and purpose grown feedstock (Hammond, 2010).  

During the biochar production (pyrolysis) process the volatile organic compounds 

within the feedstock structure are lost, which causes the biochar to retain the 

rudimentary porosity and structure of the feedstock (Blackwell et al., 2010). Hence the 
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feedstock used to produce the biochar has a large impact upon its physical and chemical 

properties and, therefore, on its effectiveness as a soil amendment (Downie et al., 2010; 

Sun et al., 2014; Zhao et al., 2013).  

The Eden Project generates large quantities of plant residue, which would typically be 

composted on site and either used as a component of the soil mix or applied to the soil 

as a mulch amendment. As plant residue was readily available at the site, it was chosen 

as the feedstock.  

5.3.5.2 Pyrolysis 

Aside from the effect of different feedstock materials, biochar characteristics are further 

influenced by production variables such as temperature, time and pyrolysis atmosphere 

(Zhao et al., 2013). Reported pyrolysis methods are listed in Table 4.1. 

Table 5.1:  Reported pyrolysis conditions producing biochar.  

 

Author 
Pyrolysis 

Temperature (oC) Heating rate and time Yield (%) 

Cheng et al. (2006) 350 16 hours at constant temperature 33.2 

Fang et al. (2015) 450 and 550 
5 – 10 oC min-1 held for 40 minutes at peak 

temperature 
/ 

Herath et al. (2013) 350 and 500 
3.1 and 5.1 oC min-1 respectively, until 

temperature reached and then cooled 
27.0 – 35.0  

Hossain et al. (2011) 300, 400, 500 and 700 
10.0 oC min-1 until temperature reached and 

then cooled 
52.4 – 72.3  

Keith et al. (2011) 450 and 550 
5 – 10 oC min-1 held for 40 minutes at peak 

temperature 
/ 

Mukherjee et al. (2011) 400 and 650 
26 oC min-1 held for 3 hours at peak 

temperature 
/ 

Rondon et al. (2007) 350 1 hour at constant temperature / 

Sun et al. (2014) 200, 300, 400 and 600 5 hours at constant temperature 22.7 – 48.4 

Wardle et al. (1998) 450 15 minutes at constant temperature / 

Yuan et al. (2011) 300, 500 and 700 
20 oC min-1 held for 4 hours at peak 

temperature 
9.24 – 34.9  

Zhao et al. (2013) 200, 350, 500 and 650 
18 oC min-1 held for 4 hours at peak 

temperature 
26.8 – 45.1 
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In general, pyrolysis conditions demonstrate a trend with regard to certain soil 

properties displayed by the resultant biochar. Higher pyrolysis temperatures (> 600 
o
C) 

have been observed to reduce biochar yields and increase alkalinity (Demirbas, 2004; 

Hossain et al., 2011; Manyà, 2012; Yuan et al., 2011). The concentration of N was 

found to decrease with increasing temperature, whilst P, K and micronutrient (Ca, Fe, 

Mg, S, Cu and Zn) concentrations increased (Hossain et al., 2011; Zhao et al., 2013). 

Higher pyrolysis temperatures tend to produce biochar with a larger surface area 

(Downie et al., 2010). 

In view of these variations, it was important to consider the aim of the biochar 

application, which in the case of the Eden Project soil, was to determine the potential 

for biochar amendment to reduce nutrient loss through leaching and, in so doing, 

enhance plant available nutrient concentrations (particularly N, P and K). To best meet 

this aim, a mid-range pyrolysis temperature of 450 
o
C was chosen. 

Raw material was dried at 60 
o
C for 48 hours prior to pyrolysis, which was performed 

using a muffle furnace programmed to increase from room temperature (approximately 

21 
o
C) to 450 

o
C at a rate of 5 

o
C min

-1
. The final temperature was held for 15 minutes, 

before cooling to room temperature. The average yield obtained during the biochar 

production was 22.2 ± 1.0 %, which is low compared to larger scale production systems 

using equivalent conditions (35 % yield) (Bridgwater, 2012). 

5.3.6 Preparation for incubation 

A study by Lehmann et al. (2003) suggested that biochar with a particle size of 

approximate 20 mm behaved identically to biochar sieved to below 2 mm, with regard 

to nutrient uptake and crop yield. This further suggests that biochar particle size does 
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not play an overriding role in soil fertility enhancement and may, therefore, be chosen 

as a function of practicality or cost. 

Ideal biochar particle sizes have not been determined, however, where biochar particle 

size is fine there is increased risk of particles and bound nutrients being leached from 

the soil. The probability of this occurring in the Eden Project soils, which have a coarse 

texture, would be high. It was therefore decided that the biochar would not be finely 

ground but passed through a 2 mm sieve, prior to application to the soil.  

Content refers to the quantity of biochar applied to the soil (% w/w) and has been 

demonstrated to be of significance with regard to the magnitude of changes witnessed 

within the soil. The literature reports a range of biochar contents, summarised in Table 

5.2.  For this investigation 3 contents were chosen: 10 %, 5 % and 2 % with a control 

(0.%) w/w (henceforth referred to as BC10, BC5, BC2 and BC0, respectively). These 

contents were chosen to observe the effect of varying biochar quantities on soil 

properties, with a view to determining the most suitable treatment for the Eden Project 

soils. 

Table 5.2:  Biochar contents reported in the literature.  

 

Author Content (% w/w) 

Cheng et al. (2006) 4 

Keith et al. (2011) 1, 2 and 4  

Hyland et al. (2010) 0.2, 0.5, 2 and 7 

Novak et al. (2009) 0.5, 1 and 2 

Rondon et al. (2007) 3, 6 and 9 

Yuan et al. (2011) 1 

Zheng et al. (2013) 1, 2, 5 

 

Once the biochar was added to the soils and mixed, samples were packed in to the 

mesocosms. The mix was loaded into triplicate mesocosms, in 2 cm layers in turn, to 
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minimise any composition difference between each, whilst also ensuring a consistent 

volume of soil mix in all samples. To help maintain homogeneity, the soil-biochar 

mixes were moist at the time of loading. As with the packing of the soil columns 

(Chapter 4), each layer of added soil mix was gently tapped down to achieve tight 

packing and avoid air entrapment, with the surface of each layer remaining uneven as a 

means of encouraging hydraulic connectivity throughout the mesocosm. 

5.3.7 Sampling strategy 

5.3.7.1 Leachate sampling 

The leachate from the triplicate samples for each content was collected as illustrated in 

Figure 5.2, without the use of any suction. As with the column study in Chapter 4 the 

mesocosms were designed with a cap, non-porous sidewalls and remained unplanted, 

which removed the potential for water loss through evaporation, translocation or plant 

uptake. There was a 3.5 week delay between commencing irrigation and yielding 

leachate from all treatments, at which point sample collection took place on a 4 day 

cycle as outlined in Table 5.3.  

Table 5.3: Sampling strategy employed throughout the column experiment.  

 

Date Action 

03/05/14 Biochar applied to soils and commencement of daily irrigation 

27/5/14 

Leachate collection date 

31/5/14 

04/06/14 

08/06/14 

12/06/14 

14/06/14 Final leachate collection and mesocosm extrusion 

 

The weights of filtered particulates were recorded during leachate filtration to measure 

effects of biochar application on particulate losses.   
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5.3.7.2 Solid sampling 

After 6 weeks of irrigation the mesocosms were extruded. In order to reduce the impact 

of any edge effects, which may have occurred throughout the irrigation period, soil 

samples were taken from the centre of each mesocosm. Samples were placed in labelled 

polythene zip-lock bags and stored at 4 
o
C prior to analysis. 

5.3.8 Analytical measurements 

Leachate and solid samples from the mesocosms were analysed using the strategy 

outlined in Figure 5.3, according to the analytical methods described in Chapter 2. The 

leachate samples were analysed for the following dissolved analytes: TDN, NH4
+
, NO3

-
, 

PO4
3-

, K, Fe, Ca, Mg and SOC. The pH was monitored throughout the study. 

Solid samples were taken from the freshly prepared soil and the extruded mesocosms; 

these samples were analysed for TPN and TPC, pH, CEC, SOC, particle size 

distribution, enzymatic activity and the following water extractable analytes: TDN, 

NH4
+
, NO3

-
 + NO2

-
, PO4

3-
, K, Fe, Ca, Mg and DOC (Figure 5.3).   
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5.3.9 Statistical analyses 

Statistical analyses were carried out to allow for the comparison of leachate and solid 

data for each biochar application, and to compare the freshly amended samples with 

those sampled after 6 weeks of irrigation. The data was determined to follow normal 

distribution and as such parameter statistical analyses were employed. The Dunnett’s 

and Tukey’s tests were used for this purpose, alongside a one-way ANOVA. The 

Dunnett’s test is a parametric multiple comparison procedure, which allows the mean 

for each treatment to be compared to the control in order to determine whether a 

specific biochar application had a significant difference on the measured characteristics 

(Cardinal and Aitken, 2006). The Tukey’s test varies from the Dunnett’s test, in that it 

allows for the comparison of each treatment to all other treatments, including the 

control. 

A Pearson correlation coefficient (PCC) was used to determine any linear relationships 

between the characteristics and the biochar content (BC) and irrigation time, both for 

leachate and solid phase characteristics. This test allowed for the determination of 

whether a linear relationship existed between the datasets, making no assumption as to 

whether one variable was dependent on the other.  
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5.4 Results 

The results from this experiment are split into three parts: (1) the analyses of the 

leachate collected throughout the 6 weeks of irrigation; (2) analyses of the solid and (3) 

extracted phase components of the freshly prepared soils and of soils following their 

extrusion from the mesocosms. 

5.4.1 Results overview 

Throughout the 6 week irrigation term the key observations, with regard to leachate 

properties, were:  

(1) Statistical analyses determined that for all analysed characteristics at least one 

biochar content yielded significantly different values compared to the control. Leachate 

volumes decreased with increasing biochar content (BC2 =7.58 %, BC5 = 12.5 %, 

BC10 = 19.7 % decrease, compared to control) as did particulate loss within the 

leachate (BC2 = 34.0 %, BC5 = 39.6 %, BC10 = 66.0 % decrease, compared to control). 

(2) The TDN, NO3
-
, NH4

+
, Mg and Ca losses through leaching were less in soils with 

greater biochar content. Whilst biochar application reduced losses of PO4
3-

, DOC and K, 

there was no correlation with biochar content. Increasing biochar content also increased 

the pH and Eh within the leachate. Losses of DON and Fe increased with increasing 

biochar application. 

Following analysis of solid samples and extracted constituents of freshly amended soils 

and amended soils following the 6 week irrigation period, key observations were: 

(1) In general there was a decrease in nutrient concentration over the 6 week irrigation 

period, which was significant for TPN, TPC, TEN, NO3
-
, EON, Mg, Ca and K. 
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Typically the representative size of the concentration decrease was observed to decrease 

with increasing biochar content. 

(2) For BC2 soils it was observed that for all characteristics, except pH, TPC, PO4
3-

, 

sand and silt particle size fractions, there was no significant difference from the control. 

The BC5 soils were significantly different to the control soils for pH , TPC, SOC, PO4
3-

, 

extracted Mg, extracted Fe, sand and silt particle size reactions. The BC10 soil data 

were significantly different from the control for the same characteristics as BC5 plus 

TPN, clay particle size fraction, moisture content and enzymatic activity. 

5.4.2 Leachate analyses 

Leachate samples were collected from each biochar treatment on a regular basis from 

Weeks 3 to 6, as outlined in Table 5.3. One-way ANOVA of the leachate demonstrated 

that for all analysed characteristics, at least one biochar content yielded significantly 

different values (Table 5.4). The Dunnett’s test further served to identify which of the 

treatments produced values significantly different from the control (Table 5.5); box plot 

diagrams for each leachate parameter are contained in Appendix C. The results of the 

Dunnett’s test demonstrated that all characteristics, excluding Fe, were significantly 

different (p < 0.001, Table 5.4) from the control values. The Tukey’s test revealed that 

for a number of characteristics there was no significant difference between the BC2 and 

BC5 soils. 

  



 

Chapter 5 

211 

 

Table 5.4:  Results for one-way ANOVA results with Dunnett’s test to confirm whether the 

average values (n = 18) for any  treatments were significantly different from the control .  

The Tukey’s test was used to confirm which treatments were significantly different from 

one another.  

 

Characteristic 

One-way 

ANOVA 
Dunnett’s test Tukey’s Test 

p BC2 BC5 BC10 BC0 BC2 BC5 BC10 

DOC < 0.001    D C B A 

TDN < 0.001    C B B A 

NO3
- < 0.001    D C B A 

DON < 0.001    C B B A 

PO4
3- < 0.001    B A A A 

pH < 0.001    D C B A 

Mg < 0.001    C B B A 

Ca < 0.001    C B B A 

K < 0.001    B B AB A 

Fe < 0.001    B B B A 

Eh < 0.001    D C B A 

Leachate volume < 0.001    C B B A 

Leached particulate weight < 0.001    C B B A 
 

Boxes containing a tick () demonstrate a significant difference from the control. 

Boxes which do not share a letter are significantly different. 

 

The leachate collection method meant that there was the potential for leachate losses 

through evaporation. To minimise the impact of this on the experimental outcomes the 

collection trays were covered and the data processed in terms of percentage difference 

alongside concentration values. The average values for replicate samples (n = 3) 

collected on 6 sampling occasions (n = 18) for each analyte/parameter are shown in 

Table 5.5. The average percentage change throughout the 6 weeks of irrigation was 

calculated for each biochar content. The data demonstrate that most analytes/parameters 

had changed as a result of the biochar applications; predominantly the most significant 

changes occurred in samples from the highest biochar application.  
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Table 5.5:  Mean concentration values (n = 18) for leachate samples, with the percentage 

difference of each treatment from the control concentrations.  

 

Characteristic 
Average concentration % change from control 

BC0 BC2 BC5 BC10 BC2 BC5 BC10 

DOC 

(mg C L-1) 
34.0 ± 1.4 22.2 ± 0.8 24.2 ± 0.6 28.3 ± 1.4 34.7 ± 3.4 28.9 ± 2.4 16.7 ± 5.0 

TDN 

(mg N L-1) 
147 ± 15 110 ± 4 102 ± 4 82.3 ± 3.3 25.1 ± 11.7 24.0 ± 11.6 39.0 ± 12.2 

NO3
-  

(mg N L-1) 
72.7 ± 2.2 65.3 ± 1.3 60.2 ± 1.4 52.1 ± 2.6 10.1 ± 2.0 17.1 ± 2.3 20.2 ± 4.9 

DON 

(mg N L-1) 
75.0 ± 12.9 45.0 ± 3.5 41.9 ± 3.5 30.2 ± 2.4 39.9 ± 7.8 44.1 ± 8.3 59.8 ± 8.1 

PO4
3-  

(mg P L-1) 
33.3 ± 3.1 19.2 ± 1.1 17.4 ± 4.2 21.0 ± 3.6 42.5 ± 5.9 48.0 ± 24.2 36.9 ± 17.0 

Mg  

(µg Mg L-1) 
27.9 ± 4.7 16.3 ± 0.7 13.1 ± 0.7 7.69 ± 0.93 -3.17 ± 0.33 -6.53 ± 0.33 -8.51 ± 0.52 

Ca  

(µg Ca L-1) 
83.4 15.0 49.2 ± 2.3 39.3 ± 2.0 23.7 ± 1.6 41.1 ± 4.1 52.8 ± 5.0 72.4 ± 12.2 

K 

(µg K L-1) 
400 ± 35 343 ± 10 350 ± 7 372 ± 8 41.0 ± 4.7 52.9 ± 5.1 71.6 ± 6.5 

Fe  

(µg Fe L-1) 
0.04 ± 0.00 0.03 ± 0.00 0.04 ± 0.01 0.12 ± 0.02 14.2 ± 3.0 12.6 ± 2.1 7.1 ± 2.2 

pH 

 
6.15 ± 0.02 6.35 ± 0.02 6.55 ± 0.02 6.67 ± 0.04 31.1 ± 15.3 -9.49 ± 33.8 -206 ± 18 

Eh  

(mV) 
378 ± 2 381 ± 2 390 ± 3 396 ± 1 -0.97 ± 0.46 -3.22 ± 0.73 -4.77 ± 0.31 

Leachate 

volume (mL) 
9.10 ± 0.28 8.41 ± 0.39 7.96 ± 0.23 7.31 ± 0.34 / / / 

 

A Pearson correlation coefficient (PCC) was calculated to determine whether the 

biochar content and irrigation time correlated with the characteristics analysed within 

the leachate (Table 5.6). All characteristics, except DOC and K, correlated with the 

biochar content. The PCC values correlated negatively, apart from pH, Fe and Eh, 

suggesting that an increase in biochar content reduced the leachate concentrations of 

most measured constituents. None of the characteristics correlated significantly with 

time. 
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Table 5.6:  Pearson correlation coefficient values for comparison between biochar 

content and irrigation time against measured leachate characteristics.  

 

Characteristic 
Biochar application Irrigation time 

PCC value p value PCC value p value 

DOC -0.192 0.369 0.036 0.869 

TDN -0.872 < 0.001 -0.165 0.442 

NO3
- -0.957 < 0.001 -0.049 0.820 

DON -0.806 < 0.001 -0.209 0.326 

PO4
3- -0.488 0.016 -0.071 0.740 

pH 0.948 < 0.001 -0.072 0.739 

Mg -0.870 < 0.001 -0.163 0.446 

Ca -0.864 < 0.001 -0.179 0.403 

K -0.174 0.417 -0.313 0.136 

Fe 0.850 < 0.001 0.158 0.461 

Eh 0.948 < 0.001 0.003 0.990 

Red = significant p values 

Blue = non-significant p values 

 

Cumulative nutrient losses over the 6 week irrigation period (Table 5,7) were estimated 

from the leachate data. 

Table 5.7:  Estimated total leached nutrient concentrations for each biochar content.  

 

Characteristic Unit 
Biochar content (%) 

0 2 5 10 

Total leachate volume L 234 ± 12 204 ± 9.3 197 ± 12 178 ± 13 

TDN mg 87.3 ± 0.7 55.3 ± 0.0 50.3 ± 0.1 39.8 ± 2.7 

- NO3
- mg 42.7 ± 1.1 33.2 ± 0.0 29.75 ±  0.1 25.6 ± 1.7 

- DON mg 16.6 ± 1.3 21.2 ± 0.1 21.3 ± 0.1 37.1 ± 2.5 

PO4
3- mg 202 ± 5 98.0 ± 0.1 87.7 ± 0.1 106 ± 7 

DOC mg 200 ± 3 112 ± 0 118 ± 0 137 ± 9 

K g 2.41 ± 0.07 1.75 ± 0.02 1.73 ± 0.02 1.84 ± 0.12 

Ca mg 552 ± 3 254 ± 0 196 ± 0 117 ± 8 

Mg mg 173 ± 1 84.1 ± 0.0 65.5 ± 0.0 38.0 ± 2.6 

Fe mg 0.23 ± 0.02 0.14 ± 0.00 0.21 ± 0.00 0.58 ± 0.04 

 

5.4.2.1 Leachate volume 

The average leachate volumes decreased with increasing biochar content (Figure 5.4). 

The control (BC0) had the highest average leachate volume (9.10 ± 0.28 mL day
-1

) and 

BC10 the lowest (7.31 ± 0.34 mL day
-1

). Statistical analyses suggested that differences 
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in leachate volumes were significant (p < 0.001, Table 5.4) with all biochar treatments 

having significantly lower leachate volumes than the control (Table 5.4). There was no 

significant difference between the BC5 and BC2 soils, as determined by Tukey’s test 

(Table 5.2). 

 

Figure 5.4:  Average leachate volume collected from each biochar treatment over 24 

hours collection was carried out on dates shown in Table 5.3 (n = 6).  

 

The average particulate loss within the leachate for each biochar application was 

calculated (Figure 5.5a). The biochar content had a significant impact on the particulate 

loss in leachate (p < 0.001, Table 5.4). The control sample had the highest particulate 

loss, with the lowest observed within the BC10 soil, most likely attributed to the 

decrease in soil proportion with increasing biochar content. Figure 5.5b further 

illustrates the difference in particulate loss between biochar contents. 
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Figure 5.5a:  Average loss of particulate in leachate for each biochar content over 6 

week leachate collection period (n = 6).  

 

 

Figure 5.5b:  Filters following filtration of leachate from mesocosms, sampled on 8/6/15.  

 

5.4.2.2 Nitrogen  

The TDN concentrations within the leachate samples are shown in Figure 5.6. All 

amended soils had significantly lower concentrations within the leachate compared to 

the control  (14.5 ± 1 mg N L
-1

; p < 0.001, Table 5.6), with the BC10 soil having the 

lowest average concentration (8.11 ± 0.3 mg N L
-1

). However, no significant difference 

was observed between the BC5 and BC2 biochar content soils (10.6 ± 0.6 mg N L
-1 
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10.9 ± 0.4 mg N L
-1

, respectively). The control concentrations decreased over the 
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5.6b). The biochar applications reduced TDN losses, through leaching, by 24.0 to 39.0 

% (Table 5.5).   

 

Figure 5.6:  TDN concentrations within leachate samples taken from each biochar 

treatment. a)  Time series for leachate from each biochar treatment.  b)  Average 

concentrations within the leachate for each biochar treatment.  

 

Concentrations of dissolved NO3
-
 in leachate are shown in Figure 5.7; they decreased 

significantly as a consequence of the biochar applications (p < 0.001, Table 5.4). All 

amendment contents were significantly different from the control (average 

7.27.±.0.22.mg N L
-1

). The leached NO3
-
 concentrations decreased with increasing 

biochar content. The BC10 amended soil had the lowest concentrations (mean 

5.2.±.0.3.mg N L
-1

), while the BC2 and BC5 soils had concentrations of 6.53 ± 0.13 and 

6.02.± 0.14 mg N L
-1

, respectively. There was a large difference in NO3
-
 concentration 

within the leachate between the control and BC2 soil, which suggests that even a small 

quantity of biochar serves to improve the retention of these N species within the soil. 

On average the biochar applications reduced NO3
-
 losses by 10.1 to 20.2 % (Table 5.5). 
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Figure 5.7:  NO3
-
 concentrations within leachate samples taken from each biochar 

treatment. a)  Time series for leachate from each biochar treatment.  b)  Average 

concentrations within the leachate for each biochar treatment.  

 

NH4
+
 concentrations (Figure 5.8) within the leachate were consistently below the LOD 

(1.2 µg N L
-1

) for all BC10 and most BC5 samples. The control treatment 

concentrations decreased with time, consistent with the soil column data, with any 

dissolved or loosely-bound NH4
+
 quickly leached from the soil. 

 

Figure 5.8:  NH4
+

 concentrations within the leachate samples taken from each biochar 

treatment. Dissolved concentrations were below the limit of detection for all BC10 and 

all, but 2 BC5 sample.  

 

DON concentrations within the leachate (Figure 5.9) were significantly higher in the 

control (7.14 ± 1.22 mg N L
-1

) content compared with BC2, BC5 and BC10 (p < 0.001, 
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Table 5.4). The BC10 leachate had the lowest DON concentrations 

(2.89.±.0.24.mg.N.L
-1

) with no significant difference between content BC2 and BC5 

concentrations (4.03 ± 0.34 mg N L
-1

 and 4.31 ± 0.34 mg N L
-1 

respectively). On 

average biochar application reduced DON leachate concentrations by 39.9 to 59.8 % 

(Table 5.5). 

 

Figure 5.9:  DON concentrations in leachate. The DON concentration was calculated by 

subtracting the NO 3
-
 and NH4

+
 (where values >LOD) concentrations from those for total 

dissolved nitrogen.  

 

5.4.2.3 Phosphate 

Dissolved PO4
3-

 concentrations (Figure 5.10) were consistently highest in the control 

sample leachate (33.3 ± 3.1  compared with a range of 17.4 ± 4.2 to 21.0 ± 3.6 mg P L
-1 

for the amended soils). Biochar application had a significant effect on dissolved PO4
3-

 

concentrations within the leachate (p < 0.001, Table 5.4), though results from the BC10, 

BC5 and BC2 contents were variable, with no significant difference observed between 

them (p > 0.05, Table 5.4). On average the biochar applications reduced PO4
3-

 losses 

through leaching by 36.9 to 47.9 % (Table 5.5). 
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Figure 5.10:  Dissolved PO4
3 -  

concentrations in leachate sampled from each biochar 

treatment. a)  Time series for leachate from each biochar treatment.  b)  Average 

concentrations within the leachate for each biochar treatment.  

 

5.4.1.4 Carbon 

DOC concentrations (Figure 5.11) were highest in the control samples 

(34.0.±.1.4.mg.C.L
-1

) and lowest in BC2 samples content (22.2 ± 0.8 mg C L
-1

), a 

reduction of 34.7 %. The DOC concentrations of all biochar applications were found to 

be significantly different from the control concentrations (p < 0.001, Table 5.4). 

 

Figure 5.11:  DOC concentrations for the leachate samples of each biochar treatment. a)  

Time series for leachate from each biochar treatment.  b)  Average concentrations within 

the leachate for each biochar treatment.  
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5.3.2.5 Metal ions 

Dissolved Mg concentrations in the leachate are shown in Figure 5.12a; they decreased 

with increasing biochar content, with the highest and lowest concentrations measured in 

the control (27.9 ± 4.7 µg L
-1

) and BC10 (7.69 ± 0.93 µg L
-1

), respectively. Leachate 

samples from all biochar contents were found to be significantly different from the 

control samples (Table 5.4), with no significant difference measured between BC2 and 

BC5. The biochar amendments reduced Mg loss through leaching by 41.4 to 72.4 % 

(Table 5.5). The dissolved Mg concentration in control leachate decreased with time, 

whilst concentrations from the biochar applied samples remained stable. 

The concentrations of Ca within the leachate were similar in trend to Mg (Figure 5.12b), 

with the control samples containing the highest dissolved concentrations (83.4 ± 15.0 

µg L
-1

) and BC10 having the lowest (23.7 ± 1.6 µg L
-1

). The control leachate 

concentration decreased over the experimental period, whilst the biochar amended 

samples remained relatively stable, as demonstrated by the lower standard deviation 

values (Figure 5.12b). Concentrations for the biochar amended samples were found to 

be significantly different from the control, with there being no significant difference 

between the BC2 and BC5. Biochar applications reduced the dissolved Ca leachate 

concentrations by 41.0 to 71.6 % (Table 5.5).   
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Figure 5.12:  Dissolved concentrations (µg L
-1

) of selected metals within leachate 

samples of control soils and biochar amendments.  The analyses were carried out in 

triplicate on samples collected from each treatment. a)  Mg,  b)  Ca,  c)  K,  d)  Fe. 
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Dissolved K leachate concentrations (Figure 5.12c) were highest in the control samples 

(400 ± 35 µg L
-1

) and lowest, on average, in the BC2 samples (343 ± 10 µg L
-1

). 

Concentrations within the leachate from the control samples decreased throughout the 

experimental period to give concentrations consistent with the biochar applied samples 

between weeks 4 and 5. On average, the values for all biochar applied samples were 

significantly different from the control values according to Dunnett’s test data (Table 

5.4).  However, the concentrations were variable so that that there was no significant 

difference between average concentrations for different biochar applications as 

determined using the Tukey test (Table 5.4). 

Dissolved Fe concentrations in the leachate samples are shown in Figure 5.12d. There 

was no significant difference between the control concentrations and those from BC2 

and BC5 according to data from a Dunnett’s test (Table 5.4). The BC10 concentrations 

were significantly higher than all other samples (average 0.12 ± 0.02 µg L
-1

). 

5.4.2.6 Physicochemical characteristics 

The pH of the leachate samples remained stable for all treatments throughout the 

sampling period (Figure 5.13). Biochar application resulted in a significant increase in 

leachate pH, with all biochar containing samples having a significantly higher pH than 

the control (p < 0.001, Table 5.4). The highest (6.67 ± 0.04) and lowest (6.15 ± 0.02) 

average pH were measured in leachate from BC10 and control samples, respectively. 
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Figure 5.13:  Leachate pH data for biochar-amended and control samples. a)  time series 

data for each biochar treatment, b)  average pH for all treatments over the sampling 

period.  

 

The Eh values increased with increasing biochar content (Figure 5.14). BC10 samples 

had the highest average Eh (399 ± 1 mV) with the lowest values measured in the control 

(377 ± 2 mV). This suggests that the biochar addition increased the water holding 

capacity of the soil, which is commonly attributed to the porosity of the biochar material 

(Joseph et al., 2010). 

 

Figure 5.14: Eh measured in leachate samples of biochar -amended and control soils. a)  

Time series data for each biochar treatment, b)  average Eh for all treatments over the 

sampling period.  
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5.4.3 Statistical analysis of solid phase and extract analyses 

The soils were extruded from the mesocosms following 6 weeks of irrigation and 

analysed for the analytes and parameters shown in Figure 5.3. The data reported below 

are averages for each biochar application quantity (BC10, BC5, BC2 and BC0). Fresh 

biochar amended soils were also analysed in order to identify any significant changes. 

One-way ANOVA was performed to determine whether the irrigation period had any 

significant effect on the characteristics of the four different biochar contents, to indicate 

the resilience of the biochar application in the short-term. Results from the one-way 

ANOVA are shown in Table 5.8. The TPN, TPC, TEN, NO3
-
, EON, Mg, Ca, and K 

displayed significantly different results following the 6 week irrigation period (p < 0.05, 

Table 5.8).  

Table 5.8:  Results for one-way ANOVA to test for significant differences in analyte 

concentrations and parameters of biochar-amended soils before and after the 6 weeks of 

irrigation.  

 

Characteristic p value 

pH 0.110 

TPN 0.003 

TPC 0.002 

C : N ratio 0.734 

EOC 0.083 

TEN < 0.001 

Extracted NO3
- < 0.001 

EON < 0.001 

Extracted PO4
3- 0.190 

Extracted Mg < 0.001 

Extracted Ca < 0.001 

Extracted K < 0.001 

Extracted Fe 0.302 

Sand fraction 0.637 

Silt fraction 0.568 

Clay fraction 0.239 

SOC 0.768 

CEC 0.121 

Red = significant p values 

Blue = insignificant p values 
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The one-way ANOVA was applied to compare the values for the 3 treatments and 

control before and after irrigation (Table 5.8). The test revealed that the different 

biochar applications had significantly different pH, TPN and TPC, C : N ratios, sand 

and silt particle size fractions, SOC and enzymatic activity. A number of characteristics 

did not change significantly in response to biochar content.  

A Dunnett’s test was performed in addition to ANOVA to determine whether data for 

each biochar application content were significantly different from the control (Table 

5.8). This demonstrated that for all characteristics except pH, TPC, PO4
3-

, sand and silt, 

the BC2 sample did not differ significantly from the control. The content BC5 data were 

significantly different from the control for pH, TPC, PO4
3-

, Mg, Fe, sand and silt 

particle size fractions, and SOC. The BC10 soil data was significantly different from the 

control for the same characteristics as BC5 plus TPN, clay particle size fraction, 

moisture content and enzymatic activity. 
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Table 5.9:  Results for the one-way ANOVA showing differences between contents for a 

range of soil characteristics following 6 weeks of irrigation.  Dunnett’s test was used to 

confirm which treatments were significantly different from the control (indicates a 

significant difference from the control) .  

 

Characteristic 
ANOVA test Dunnett’s Test 

p value BC2 BC5 BC10 

pH 0.024    

TPN 0.030    

TPC 0.016    

SOC 0.024    

C : N ratio 0.016    

EOC 0.079    

TEN 0.168    

Extracted NO3
- 0.204    

EON 0.223    

Extracted PO4
3- 0.027    

Extracted Mg 0.080    

Extracted Ca 0.935    

Extracted K 0.112    

Extracted Fe 0.069    

Sand fraction 0.024    

Silt fraction 0.024    

Clay fraction 0.082    

Moisture content 0.041    

CEC 0.622    

Enzymatic activity 0.041    

Red = significant p values 

Blue = non-significant p values 

 

The average percentage change to each analysed characteristic following 6 weeks of 

irrigation was calculated for each biochar content sample (Table 5.9). Results 

demonstrated that most nutrients decreased in concentration during the irrigation period. 

These losses generally decreased with increasing biochar content. 
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Table 5.10:  Average percentage differences between the biochar-amended soils at t = 0, 

and following 6 weeks of irrigation. The positive values indicate and increase in 

concentration while negative values indicate a concentration decrease).  

 

Characteristic 
Biochar content (%) 

0 2 5 10 

TPN 

(mg N g-1) 
-6.87 ± 0.00 1.09 ± 0.00 -7.93 ± 0.00 -4.29 ± 0.00 

TPC 

(mg C g-1) 
-0.08 ± 0.00 9.13 ± 0.00 -6.36 ± 0.03 -13.7 ± 0.1 

EOC 

(μg C g-1) 
-35.2 ± 19.9 -20.6 ± 9.2 22.7 ± 3.2 -4.00 ± 0.63 

TEN 

(μg N g-1)  
-73.9 ± 19.9 -44.5 ± 9.2 -12.7 ± 3.4 -41.8 ± 19.9 

Extracted NO3
- 

(μg N g-1) 
-72.0 ± 2.0 -55.1 ± 0.8 -29.0 ± 0.4 -55.2 ± 0.5 

EON 

(μg N g-1) 
-71.5 ± 3.8 -42.5 ± 6.8 -12.6 ± 2.5 -40.2 ± 14.0 

Extracted PO4
3- 

(μg P g-1) 
-3.67 ± 0.36 -10.33 ± 5.4 -0.32 ± 0.55 -6.74 ± 6.21 

Extracted K 

(μg K g-1) 
-69.6 ± 14.0 -43.6 ± 1.35 -46.1 ± 10.6 -40.6 ± 15.5 

Extracted Ca 

(μg Ca g-1) 
-73.4 ± 14.1 -25.6 ± 2.2 -23.9 ± 1.5 -34.3 ± 5.2 

Extracted Fe 

(μg Fe g-1) 
-35.2 ± 0.1 -24.2 ± 0.0 42.0 ± 0.4 26.4 ± 0.0 

Extracted Mg 

(μg Mg g-1) 
-49.1 ± 0.5 -51.2 ± 1.0 -33.4 ± 0.1 -59.7 ± 0.2 

pH -0.95 ± 0.00 -3.25 ± 0.00 -3.73 ± 0.00 0.83 ± 0.00 

CEC 

(cmolc kg soil -1) 
0.25 ± 0.00 -31.2 ± 0.0 5.34 ± 0.00 8.42 ± 0.00 

C : N ratio 7.56 ± 0.01 8.02 ± 0.01 4.84 ± 0.01 -5.32 ± 0.05 

SOC -3.04 ± 0.00 0.22 ± 0.00 17.8 ± 0.1 -40.0 ± 1.2 

Sand fraction -4.07 ± 0.09 1.58 ± 0.02 5.94 ± 0.04 12.0 ± 0.1 

Silt fraction 6.43 ± -0.09 -2.72 ± 0.03 -11.3 ± 0.0 -22.9 ± 0.1 

Clay fraction -9.24 ± 0.00 20.8 ± 0.0 -4.57 ± 0.00 -23.0 ± 0.0 

 

5.4.4 Solid phase analyses 

5.4.4.1 Nitrogen 

The TPN concentrations are shown in Figure 5.15. There was a small, but significant 

decrease in concentration following the irrigation period for the control (BC0), BC5 and 

BC10 contents (p = 0.003, Table 5.8). Statistical analyses indicated that biochar content 

had a significant effect on the TPN concentrations (p = 0.030, Table 5.9). 
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Figure 5.15:  TPN concentrations for each biochar content amendment at t  = 0 and 

following 6 weeks of irrigation, (T 0 samples n = 3, for week 6 samples n = 9).  

 

5.4.4.2 Carbon 

TPC concentration (Figure 5.16) increased with increasing biochar content, from 

170.±.1 mg C g
-1

 within the fresh control (0 %) sample to 401 ± 6 mg C g
-1

 within the 

freshly amended BC10 biochar samples. Following the 6 week irrigation period the 

largest reduction in TPC occurred in BC10, decreasing by 13.7 ± 0.1 % (Table 5.10). 

The BC2 and control (0 %) TPC concentrations increased following irrigation, by 

9.13.±.0.00 % and 0.08 ± 0.00 %, respectively. Statistical analyses indicated that 

biochar content and irrigation resulted in significant differences in TPC concentrations 

within the soil (p < 0.016 and p = 0.002 respectively, Tables 5.8 and 5.9). 
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Figure 5.16:  TPC concentrations for each biochar amendment at t = 0 and foll owing 6 

weeks of irrigation, (T 0 samples n = 3, for week 6 samples n = 9).  

 

The SOC concentrations are shown in Figure 5.17. The BC10 content sample had the 

highest average concentration (232 ± 9.6 %), however, there was no significant 

difference between the BC10 and BC5 content samples. The biochar amended soils 

were significantly different from the control (0 %) values (p = 0.024, Table 5.9). 

Interestingly, there was no significant difference in SOC concentration as a result of the 

irrigation period (p > 0.05, Table 5.8).  

 

Figure 5.17:  SOC concentrations for each biochar amendment at t  = 0 and following 6 

weeks of irrigation, (T 0 samples n = 3, for week 6 samples n = 9).  
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5.4.4.3 Carbon – nitrogen ratio 

The C : N ratio increased with increasing biochar content (Figure 5.18). The highest 

ratio was 25.3 ± 1.8 in BC10 at T0 and the lowest occurred in the freshly prepared 

control sample at T0. There was no significant difference in C : N ratio after 6 weeks of 

irrigation (p > 0.05, Table 5.8), though a significant difference was observed between 

samples with different biochar content (p < 0.016, Table 5.9). 

 

Figure 5.18:  C : N ratios for each biochar application, both for freshly amended samples 

and after 6 weeks of irrigation. The ration was calculated from soil organic carbon and 

total particulate nitrogen  concentrations within the solid phase.  

 

5.4.4.4 Physicochemical characteristics 

The pH increased with increasing biochar content (Figure 5.19). The highest pH 

occurred in BC10 samples (6.87 ± 0.13) and the lowest occurred in the control (0 %) 

sample (5.85 ± 0.13), both following the 6 week irrigation period. ANOVA analyses 

indicated a significant difference between the different biochar samples (p < 0.001, 

Table 5.9). There was a significant difference between the freshly amended samples and 

following 6 weeks of irrigation (p = 0.024, Table 5.8).  
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Figure 5.19:  pH values for each biochar application, both as freshly amended samples 

and following 6 weeks of irrigation. The mean values and standard deviations were 

calculated from 3 replicates analysed in tri plicate (n = 9).  

 

The moisture content of samples increased with increasing biochar content (Figure 

5.20). BC10 content had the highest value (21.4 ± 0.22 %) and the control sample the 

lowest (13.0 ± 0.3 %). The difference between treatments was statistically significant 

(p.= 0.041, Table 5.9). 

 

Figure 5.20:  Moisture content values for each biochar application, following 6 weeks of 

irrigation. The mean values and standard deviations were calculated from 3 replicates 

analysed in triplicate (n = 9) .  
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The particle size fraction data for each sample are shown in Figure 5.21. The largest 

sand sized fraction was observed in the BC10 samples for the freshly amended soil (T0; 

65.6 %) and the lowest occurred within the control sample following 6 weeks of 

irrigation. Whilst the sand fraction increased with increasing biochar content, the silt 

fraction concurrently decreased significantly (p = 0.024, Table 5.9). This suggests that 

the biochar particles were within the sand sized fraction (63 to 2000 µm). The average 

values suggest a decline in the sand size fraction over the irrigation period for all 

samples, though this was not statistically significant (p > 0.05, Table 5.8).  

 

Figure 5.21:  Soil particle size distribution for each biochar application, both as freshly 

amended samples and following 6 weeks of irrigation. The mean values and standard 

deviations were calculated from 3 replicates analysed in triplicate (n = 9).  

 

The CEC for each biochar application is shown in Figure 5.22. The biochar content and 

6 week irrigation period had no significant effect on the CEC (p > 0.05 for both, Tables 

5.8 and 5.9), with the values ranging from 4.38 ± 1.70 to 6.03 ± 1.22 cmolc kg soil
-1
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Figure 5.22:  CEC for each biochar application, both as freshly amended sampl es and 

following 6 weeks of irrigation. Mean and standard deviation calculated from 3 

replicates analysed in triplicate (n = 9).  

 

5.4.4.5 Enzymatic activity 

Enzymatic activity (Figure 5.23) was highest in the 6 week irrigated BC10 samples 

(46.1 ± 0.49.µg.Fl.g
-1.

hr
-1

) and lowest in the control samples (14.7 ± 6.0 µg Fl g
-1

 hr
-1

). 

The one-way ANOVA determined that biochar had a significant impact on the 

enzymatic activity of the samples (p = 0.041, Table 5.9). However, the Dunnett’s test 

(Table 5.9) further indicated that only the BC10 sample had a significantly different 

enzymatic activity value to that of the control (BC0).  

 
Figure 5.23:  Enzymatic activity values for each biochar application, following 6 weeks 

of irrigation. The mean and standard deviatio ns were calculated from 3 replicates 

analysed in triplicate (n = 9).  
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5.4.5 Extracted constituent analyses 

5.4.5.1 Nitrogen 

Results from the N fraction analyses are displayed in Figure 5.24. The non-extractable 

N fraction represented 98.0 to 99.2 % of the TPN present, alluding to a substantial 

unavailable N fraction within the samples. The TEN concentrations (Figure 5.24a) were 

significantly reduced for all treatments over the 6 week irrigation period (p < 0.001, 

Table 5.8). However, there were no significant differences between the different biochar 

contents (p > 0.05, Table 5.9). NH4
+
 concentrations were below the LOD for BC10 and 

BC5 within the freshly amended soils and 32.3 ± 5.6 and 46.9 ± 5.9 µg N g
-1

 in BC2 

and the control, respectively. NH4
+
 concentrations were consistently below the limit of 

detection for all samples following 6 weeks of irrigation. 

The highest TEN concentration was measured in the fresh BC0 sample (233 ± 12 µg N 

g
-1

) and the lowest in the control following the 6 week irrigation period (83.8 ± 38 µg N 

g
-1

). This suggests that whilst the control had the highest TEN concentration within the 

T0 samples, it was subject to the largest decrease in concentration (73.9 ± 19.9 %; Table 

5.10). The biochar amended samples had a much lower percentage decrease after the 6 

week irrigation period, with the smallest loss occurring in sample BC5 (12.7 ± 3.4 %). 



 

Chapter 5 

235 

 

 

 
 

Figure 5.24: N fraction concentrations for each biochar content. The means and 

standard deviations were calculated from 3 replicates analysed in triplicate. a)  TEN (µg 

N g
-1

).b) NO3
-
(µg N g

-1
). c)  EON (µg N g

- 1
).  

 

The NO3
-
 concentrations are shown in Figure 5.24b. The trends were similar to the TEN 

data, with all concentrations decreasing significantly following irrigation (p < 0.001, 

Table 5.8). Statistical analyses indicated no significant difference between the 

treatments following the irrigation period (p > 0.05, Table 5.9). The highest NO3
-
 

concentrations were measured in the BC2 samples pre-irrigation (33.1 ± 2.5 µg N g
-1

, 

respectively). The lowest concentrations occurred in the post-irrigation control (BC0) 

samples (9.27 ± 6.8 µg N g
-1

). As for TEN, the largest percentage decrease in NO3
-
 post-
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irrigation was measured in the control sample (72.0 ± 2.0 %, Table 5.9), while the 

smallest decrease occurred in the BC5 samples (29.0 ± 0.4 %, Table 5.10). 

The EON concentrations (Figure 5.24c) reflected the same trend as the other extracted 

N fractions; with the control sample showing the largest percentage decline in 

concentration (71.5 ± 3.8 %, Table 5.10) and the BC5 samples the smallest (29.0 ± 0.4 

%). Irrigation had a significant impact on the EON concentrations within the samples 

(p.< 0.001, Table 5.8). There was no significant difference between the biochar samples 

following the 6 week irrigation period (p > 0.05, Table 5.9).  

5.4.5.2 Phosphate 

The PO4
3-

 concentration for each biochar content is shown in Figure 5.25. Statistical 

analyses indicated that the data for all biochar contents was significantly different from 

the control (BC0) sample (p = 0.027, Table 5.9). The highest PO4
3-

 concentration was 

observed in the pre-irrigation BC10 sample (199 ± 25 µg P g
-1

) and the lowest 

concentration within the control (BC0) sample post-irrigation (118 ± 5 µg P g
-1

). 

Irrigation caused a small decline in concentration for all samples, which was not 

significant (p > 0.05, Table 5.8). 
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Figure 5.25:  PO4
3-

 concentrations for each biochar sample. The means and standard 

deviations were calculated from 3 replicates analysed in triplicate (n = 9).  

 

5.4.5.3 Carbon 

The EOC concentration for each biochar application is shown in Figure 5.26. The 

highest and lowest EOC concentrations were measured in the pre- and post-irrigation 

control (BC0) samples (255 ± 21 and 170 ± 7 µg C g
-1

, respectively). Overall there were 

no significant differences between each treatment or as a result of irrigation (p > 0.05, 

Table 5.8 and 5.9). 

 

Figure 5.26:  EOC concentrations for each biochar sample. The means and standard 

deviations were calculated from 3 replicates analysed in triplicate (n =  9).  
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5.4.5.4 Metals 

Extracted Mg concentrations (Figure 5.27a) were highest in the pre-irrigation control 

sample (31.0 ± 3.4 µg g
-1

) and lowest in irrigated BC10 sample (4.18.±.1.43.µg.g
-1

). 

Results display an overall decline with increasing biochar content. The irrigation period 

had a significant impact on the Mg concentrations (p < 0.001, Table 5.8) and following 

the 6 weeks of irrigation there was no longer any significant difference between biochar 

contents (p = 0.08, Table 5.9). The Dunnett’s test suggested that the BC10 and BC5 

sample concentrations were significantly different to the control.  

Extracted Ca concentrations are shown in Figure 2.27b and demonstrate variability 

between contents in the pre-irrigation samples, with the control concentration being 

substantially higher (92.4 ± 0.00 µg g
-1

) than the BC10, BC5 or BC2 samples 

(58.5.±.0.2 to 66.8 ± 10.5 µg g
-1

). Following irrigation there was no significant 

differences observed between the contents (p > 0.05, Table 5.9); however, there was a 

significant concentration decline in extracted Ca for all treatments (p < 0.001, Table 

5.8). The largest percentage decline was observed in the control sample (73.4 ± 14.1 %) 

and the smallest within the 5 % sample (23.9 ± 1.5 %). 

The extracted K concentrations, shown in Figure 2.27c, were not significantly different 

between samples (p > 0.05, Table 5.9), though, a significant decline was measured 

following the irrigation period (p < 0.001, Table 5.8). The largest percentage decrease 

occurred in the control sample (69.6 ± 14 %), with little variation between biochar-

containing samples (40.6 ± 15.5 % to 46.1 ± 10.6 %).  

The extracted Fe concentration (Figure 5.27d) was highest in the pre-irrigation control 

samples (8.88 ± 2.39 µg g
-1

) and lowest in the pre-irrigation BC10 samples 
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(2.89.±.0.47.µg g
-1

). In general, the extracted Fe concentration decreased with 

increasing biochar content, though, no significant difference between treatments was 

observed (p > 0.05, Table 5.9). The behaviour of Fe was variable; as concentrations 

increased following irrigation in the BC5 and BC10 and samples and decreased in the 

BC2 and control (BC0) samples. Irrigation had no significant effect on the results (p > 

0.05, Table 5.8); however, the largest percentage decline in concentration was observed 

in the control samples (35.2 ± .0.4 %). 

 

 

 
Figure 5.27:  Extracted ions for each biochar application for freshly amended samples  

and following 6 weeks of irrigation . Mean and standard deviation calculated from 3 

replicates analysed in triplicate  (n = 9). a)  Mg, b)  Ca, c)  K and d)  Fe. 
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5.5 Discussion 

This discussion will use the data described in Section 5.3 to further examine the 

potential for biochar application to improve the nutrient retention and storage 

capabilities of the artificial soils at the Eden Project, and more generally. 

Many of the observations encountered within the results section are consistent with 

those reported for other biochar studies (Anderson et al., 2011; Downie et al., 2010; 

Manyà, 2012; Spokas et al., 2009). Nutrient concentrations within the leachate collected 

from the mesocosms were, with the exception of DON and Fe, lower in the biochar 

amended soils than in the control sample, demonstrating that biochar serves to retain 

nutrients within the soils, through increasing the surface area of the soil mix and 

therefore the number of nutrient binding sites, though, no significant difference in CEC 

was observed between the amended and control samples.  

5.5.1 Nitrogen 

The mass balance calculations for N within the biochar amended soils (Tables 5.7 and 

5.11) demonstrate that, in general, biochar application reduced the total N loss (BC0 

0.89 mg N g
-1

, BC2 0.46 mg N g
-1

, BC5 0.36 mg N g
-1 

and BC10 0.64 mg N g
-1

, Table 

5.11). The unaccounted for N loss from the control sample over the 6 week irrigation 

period  (0.72 mg g
-1

) was equal to that of the F columns and greater than that of the UF 

columns (0.42 mg g
-1

) over 52 weeks (Table 4.14, Chapter 4). This suggests that there 

was a greater amount of N lost through means other than leaching within the soil mix 

for this study than the column study. Biochar treatment significantly decreased the 

leached N concentration within the soils the extent of which was consistent across all 

treatments (BC0 0.17 mg N g
-1

 and BC2, BC5 and BC10 0.10 to 0.11 mg N g
-1

, Table 
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5.11). The proportion of N loss represented by leaching was variable across the 

treatments (BC0 19.2 %, BC2 22.7 %, BC5 29.1 % and BC10 16.5 %, Table 5.11), 

however represented a smaller percentage than found within UF columns (41.4 %, 

Table 4.14, Chapter 4). This suggests that biochar treatment may have had some impact 

upon the N concentrations within the leachate, though this is not consistent across all 

treatments. 

Table 5.11:  Nitrogen mass balance estimated from the solid and leachate values from 

11this experiment making the assumption that the mesocosm masses remained unchanged 

throughout the experimental per iod.  

 

  Biochar content (%) 

  
0 2 5 10 

TPN in mesocosm (mg) Time 0 5238 5257 4894 3555 

 
6 weeks 4784 5012 4721 3314 

Total N lost from mesocosm (mg N g-1) 0.89 0.46 0.36 0.64 

Total N lost in leachate (mg N g-1) 0.17 0.10 0.11 0.11 

% N loss from mesocosm 8.68 4.65 3.53 6.77 

% N loss represented by leaching 19.2 22.7 29.1 16.5 

Unaccounted N loss (mg N g-1) 0.72 0.35 0.26 0.53 

 

Whilst inorganic N concentrations within the leachate decreased with increasing biochar 

content, the DON concentrations increased. On a mass basis, the BC2 application 

demonstrated the lowest percentage N loss through leaching and the BC5 application 

the lowest overall N loss. Unaccounted (non-leached) N losses from the mesocosms 

were observed to be lower in biochar amended soils than the control. However, this 

effect did not increase with biochar application rate, with the BC2 application 

demonstrating the lowest non-leached N loss. It has been reported that NO3
-
 

concentration within the leachate may be reduced as a result of more easily degradable 

C presence within biochar produced through lower temperature pyrolysis, which leads 

to greater N immobilisation, thus reducing NO3
-
 leaching (Clough et al., 2013), 
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however, lower NO3
-
 concentrations within the leachate may also be attributed to loss of 

NO3
-
 through denitrification stimulated by the additional C (Clough et al., 2013). 

Leached NH4
+
 concentrations were below the LOD (26.8 µg N L

-1
, Table 2.9, Chapter 

2) in the BC5 and BC10 samples. This is consistent with reported behaviours within 

biochar amended soils (Clough et al., 2013; Schomberg et al., 2012), which is inferred 

to be attributable to increased CEC, however, there were found to be no significant CEC 

differences between treatments, Saleh et al. (2012) suggest that physical entrapment 

within the biochar pore structures may be responsible for the reduction in leached NH4
+
. 

The uncertainty surrounding the understanding of these mechanisms highlights the 

requirement to advance the understanding of mechanisms responsible for the adsorption 

of N forms onto biochar surfaces. 

5.5.2 Phosphate 

The PO4
3-

 mass balance (Table 5.12) demonstrates that whilst the total leached PO4
3-

 

decreased within increasing biochar content, when considered on a mass basis, biochar 

content was observed to have a varied impact on upon the leached PO4
3-

 losses. The 

effects of biochar application on P availability have been noted to be inconsistent across 

differing soils, treatments and timescales (Nelson et al., 2011). The inconsistency of the 

effect of biochar application on P availability is reported by Xu et al. (2014). DeLuca et 

al. (2010) explore the mechanisms by which biochar may directly and indirectly 

influence the P cycle, either as (1) a direct source of soluble P salts and exchangeable P. 

Biochar contains a large amount of P and thus may serve as a direct source of P. (2) 

Biochar acts as a modifier of soil pH and ameliorator of P complexing metals (Al
2+

, 

Fe
3+/2+

 and Ca
2+

), which has significant implications for the sorption and desorption 
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reactions in soils. (3) Biochar acts as a promoter of microbial activity which therefore 

impacts P mineralisation. 

Table 5.12:  Phosphate mass balance estimated from the solid and leachate values from 

11this experiment making the assumption that the mesocosm masses remained unchanged 

throughout the experimental period.  

 

  Biochar content (%) 

  
0 2 5 10 

Total water extracted PO4
3- (g) Time 0 62.6 89.5 76.3 70.0 

 6 weeks 60.3 84.2 75.2 67.4 

PO4
3- lost from mesocosm (mg P g-1) 4.61 9.81 2.15 6.91 

PO4
3- lost in leachate (mg P g-1) 0.40 0.18 0.18 0.28 

% P loss from mesocosm 3.75 5.84 1.35 3.73 

% P loss represented by leaching 8.59 1.88 8.54 4.06 

Unaccounted P loss (mg g-1) 4.22 9.63 1.96 6.63 

 

5.5.3 Carbon 

As anticipated, biochar application increased the C content of the soil. However, 

observations demonstrate that over the 6 week irrigation period significant 

concentrations of SOC were lost from the BC5 and BC10 mesocosms and TPC from the 

BC0, BC5 and BC10 mesocosms. The source of the SOC loss may be the 

decomposition of the composted green waste or bark components of the soil mix, or 

potentially the degradation of the biochar. Results reported within Chapter 4 suggested 

that the decomposition of organic matter components within the soil mix may have 

contributed to N immobilisation within the soil over 27 weeks, during which time N 

concentrations within the leachate were low. In order to explore the potential source of 

C loss within the soil a C mass balance was calculated for the study (Table 5.13).  

Whilst this investigation employed the same soil mix as studied in Chapter 4, the results 

from this investigation suggest that the C content within the BC0 and BC2 remained 

relatively unchanged (+ 0.2 g within BC0 and + 11 g within BC2) over the 6 week 
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experimental period. This suggests that the decomposition of the organic material 

within the soil mix was had a lesser impact upon the decrease in TPC and SOC within 

the samples, further suggesting that C may have been leached through biochar 

degradation. 

Table 5.13:  Carbon mass balance estima ted from the solid and leachate values from 

11this experiment making the assumption that the mesocosm masses remained unchanged 

throughout the experimental period.  

 

  Biochar content (%) 

  
0 2 5 10 

TPC in mesocosm (g) Time 0 86.7 110 131 152 

 
6 weeks 86.9 121 123 131 

Total C lost from mesocosm (mg C g-1) / / 17.6 54.7 

Total C lost in leachate (g) 0.39 0.21 0.25 0.36 

SOC lost from mesocosm (g) 4.03 / 21.2 49.3 

% C loss from mesocosm / / 6.44 13.6 

% of C loss represented by leaching / / 1.40 0.66 

Unaccounted C loss (mg g-1) / / 17.4 54.4 

 

Although biochar C is generally viewed as a stable form of C, there is evidence of 

biochar degradation in soils (Cheng et al., 2008; Nelson et al., 2011). The high C : N 

ratio of biochar means that biochar degradation would result in N immobilisation and 

has been cited as an explanation for reduced N uptake and visual N deficiencies in some 

biochar-amended soils (Cheng et al., 2008; Lehmann et al., 2003). 

The impact of biochar upon the metal concentrations was variable. Biochar application 

was observed to decrease potassium leaching from the soil, though the biochar 

application quantity had variable effect. Ca and Mg decreased with increasing biochar 

application quantity and Fe was highly variable with no significant difference between 

the control and biochar amended samples. 
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5.5.4 Physicochemical characteristics 

Biochar application significantly reduced the leachate volume with increasing biochar 

content, from which it may be inferred that biochar increased the soil water holding 

capacity. Increased water holding capacity further explains the reduction in leached 

nutrient concentrations with increasing biochar content. 

The pH of both the leachate and the solid samples increased significantly with 

increasing biochar content, suggested to have been caused by metal oxides present 

within the biochar as a result of the pyrolysis process.  

A key characteristic of Eden Project soils, revealed during the solid column experiments 

(Chapter 4), was the significant loss of nutrients via leaching from the soil. This was 

attributed to the consistently large sand, and small clay fractions within the soil samples, 

resulting in a smaller soil surface area and so fewer charged particle surface sites to 

which nutrients may bind. The biochar applications increased the sand sized fraction 

within the soil, but the large surface area, which is typical of biochar particles (Lehmann 

and Joseph, 2010; Mukherjee et al., 2011), likely resulted in an increase in the number 

of available sites to which nutrients could attach, so reducing loss to leaching. 

Biochar application to soils is reported to increase the soil CEC (Major et al., 2010), 

with the biochar particles having a negative surface charge caused by carboxylate 

groups on the surface of the biochar itself, and exposed carboxylate groups of organic 

acids sorbed by the biochar (Cheng et al., 2006; Novak et al., 2009). Whilst CEC did 

not change significantly in the amended samples (p > 0.05, Table 5.9), Cheng et al. 

(2006) observed that CEC was greater in aged rather than fresh biochar. 
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The pH of both the leachate and the solid samples increased significantly with 

increasing biochar content. This may have been caused by metals (primarily K
+
, Ca, Si 

and Mg), present within the feedstock, forming metal oxides during the pyrolysis 

process (Novak et al., 2009; Steiner et al., 2007). Once present within the soil 

environment, these oxides trigger the release H
+
 and Al

3+
 species into solution, through 

exchange, altering the soil pH (Novak et al., 2009; Sparks, 2003). The application of 

biochar to the Eden Project soil resulted in a pH close to 7, which is the optimum pH for 

availability of many important soil nutrients to plants (Figure 1.2).  

5.5.5 Enzymatic activity 

Enzymatic activity was increased following biochar application, which suggests that 

biochar encourages the biological community, with potentially significant implications 

for the breakdown of SOM and nutrient cycling within the soils. 

Biochar has been shown to change the composition and abundance of the biological 

community within a soil and, as such, may have an indirect impact on plant growth 

(Lehmann et al., 2011). Changes in the microbial community composition, or increases 

in activity (Figure 5.23) induced by biochar application, may further affect nutrient 

cycling, plant growth and the cycling of SOC (Lehmann et al., 2011; Wardle et al., 

1998). 

It is suggested that the application of biochar with high levels of volatile organic 

compounds (VOCs) may cause the inhibition of Nitrosomonas bacteria, leading to 

decreased nitrification within the soil (Nelson et al., 2011). This resulted in increased 

NH4
+
 concentrations within the soil; however, this was not evident within the results 

from this investigation.  
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5.5.6 Synthesis 

The impact on the analyte concentrations within the leachate, solid and extractable 

phases were unclear, with some of the analysed characteristics displaying no significant 

relationship between biochar content and nutrient retention. Causes of this variation 

may be either that the biochar has an effect on selected nutrients within the soil, 

retaining some nutrients whilst encouraging the leaching of others or the biochar itself 

serving as a source of nutrients and thereby directly contributing to the available 

nutrient pool (Nelson et al., 2011). 

Biochar application significantly reduced the leachate volume, which decreased with 

increasing biochar content, implying that biochar increased the soil water holding 

capacity. This was consistent with the increasing moisture content measured in biochar-

amended samples. The increased water retention in the biochar-amended soils may be 

related to altered percolation patterns, residence time and flow pathways, brought about 

by changes in the soil surface area, bulk density, porosity, pore size distribution and 

aggregation of soil (Manyà, 2012; Thies and Rillig, 2009; Zheng et al., 2013). The 

reduction in nutrient leaching may be attributed to this increased water holding capacity, 

leading to a slower percolation velocity, and increased residence time for nutrients at the 

soil surface. A further advantage of increased water holding capacity is a reduced 

irrigation volume requirement. 

As results from the soil column (Chapter 4) experiments indicated, the leachate initially 

contained high concentrations of TDN which gradually decreased over the first 20 

weeks. Although the time scale for this experiment was considerably shorter, nutrient 

concentrations in the leachate and solid samples were comparable to those measured in 
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the soil columns (Chapter 4) and certain soil properties changed significantly over the 

experimental period.  

The data from these amendments provided an important insight into the behaviour of a 

biochar amended soil. It provided little indication of the long term performance, though, 

Major et al. (2010) reported that a single biochar application improved crop yield for at 

least 4 years following application. This suggests that, whilst improvements to soil 

properties and yield might not be permanent, they provide improvements in soil quality 

over a longer period than fertiliser or mulch applications have demonstrated (Chapter 

4). As such, biochar offers a less labour intensive, more cost effective approach to 

maintaining the nutrient concentrations within the Eden Project soils. 

Prior to any large scale biochar application at the Eden Project site, a number of issues 

require further investigation in order to fully utilise the benefits available. The biochar 

used for this study was produced from a mixture of plant residue material of varying 

size and type, collected on site. To avoid differing and unpredictable biochar properties, 

this material would require homogenising prior to pyrolysis to ensure effective 

implementation across the Eden Project site. Alternatively, the biochar could be 

processed to optimise the particle size. A more detailed study to determine the most 

effective feedstock composition would be advisable. The pyrolysis method used for this 

study had a low yield, averaging 22.2 ± 0.1 %. A number of studies have reported 

higher yields, whilst maintaining the beneficial properties of the biochar (Table 5.1). 

This suggests that it may be beneficial to develop pyrolysis procedure in order to 

optimise yield and biochar properties. 
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Whilst care was taken, variation in the packing of the mesocosm may have led to 

variations in the flow patterns between samples, however, the use of replicate samples 

reduced this uncertainty. 

This investigation focused upon providing a detailed insight into the effects of biochar 

application on the properties of artificial soils. Typically biochar would be applied to 

the organic horizon within the soil, where it would have the greatest impact on nutrient 

availability to plants through the root zone. Observing the effects of biochar application 

on plant growth would provide further means of determining the extent to which 

biochar application may improve nutrient availability.  

5.6 Conclusion 

In general biochar application appears to have decreased the total N and P loss within 

the soils, however, the effect of this did not increase with biochar content. The 

representative proportion of N and P loss to leaching was decreased by biochar 

application, though results were also found to be variable with application quantity. 

Biochar application led to an increase in nutrient retention within the artificial soil. The 

increased nutrient retention observed within the biochar amended samples, 

demonstrated by the leached nutrient load values (Table 5.7), could be attributed to the 

increased water holding capacity, which reduced nutrient leaching within the soil, 

increasing nutrient residence time and availability to plant roots. The pH was most 

likely altered by the introduction of metal oxides into the soil mixture, which caused an 

increase in soil pH. The biochar application served to increase the soil pH to close to 7 

(neutral), which would improve availability of nutrients to plant roots within the soil. 



 

Chapter 5 

250 

 

With appropriate management the application of biochar at the Eden Project site could 

lead to greater resource efficiency, which would serve to reduce fertiliser requirement 

and increase run-off water quality. However, further investigations to determine the 

optimal combination of feedstock and pyrolysis conditions would be highly advisable, 

together with small scale application trials within the Biomes to determine whether the 

beneficial outcomes determined by this laboratory-based investigation may be 

extrapolated to the Eden Project Biomes under various plantings. 

The data suggests that the BC10 biochar sample produced the greatest changes to soil 

properties in this investigation; however, this was not consistent across all nutrients with 

variable performance noted for N and P leachate concentrations. The 10 % application 

quantity also may be uneconomical, with regard to the amount of feedstock required to 

produce enough biochar for such an application rate. As such, smaller application of 

biochar may be more realistic across the site, with higher contents used selectively for 

areas with lowest quality soil performance.  
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Conclusions and recommendations 
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6.1 Overview 

The aim of the work presented in this thesis was to make recommendations for the 

production of a fertile artificial soil with a large reservoir of slow-release nutrients that 

meet the nutrient requirements of the plants at the Eden Project. 

This chapter summarises the main findings of this thesis and presents the research 

conducted in context, making recommendations for the improvement of the Eden 

Project’s artificial soil and suggesting directions for future research. The first 3 research 

objectives have been met through the experimental studies detailed within the preceding 

chapters and research objective 4 is addressed within Section 6.3 of this chapter. 

6.2 Summary and conclusions 

The Eden Project is a rare example of an established artificial soil. The variety of plant 

species, environmental conditions and management techniques mean that it is an ideal 

location to study a wide range of artificial soil processes that are relevant to other 

artificial soils. Whilst artificial soils have been referred to across a number of 

disciplines, it is rarely studied as the primary subject, commonly used as a substrate 

with consistent composition within toxicological studies.  

This thesis represents one of the first systematic studies in artificial soils research and 

has taken a direct approach to their study, using a broad range of techniques to 

thoroughly examine their nutrient dynamics, with a view to improving their nutrient 

retention. The main findings and conclusions from this study are presented here with 

reference to the corresponding research objective. 
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6.2.1 To characterise the soils established at the Eden Project using appropriate 

analytical techniques.  

The observations in Chapter 3 of this thesis demonstrate that the nutrient concentrations 

for a number of artificial soils sampled across the Humid Tropics and Outdoor Biomes 

at the Eden Project site were found to be highly variable with regard to soil 

characteristics, particularly nutrient concentrations. The variation between soils was 

observed to be influenced more greatly by management practices and age, than 

environmental conditions. 

Within the established artificial soils, the greatest nutrient concentrations were observed 

within the upper 20 cm of the soil profiles, where it is suggested that the greater organic 

matter content served to regulate and retain nutrients. Particle size was generally large, 

with soil samples classified as sandy loam texture, resulting in lower soil surface area 

and the associated lowered nutrient retention capabilities, particularly lower down the 

profile where the organic matter content was lower. 

The limited information regarding historic management practices across the Eden 

Project site has restricted the ability of this investigation to determine the full extent to 

which the variation in management practices has impacted the nutrient retention 

capabilities of the soil; however, it is clear that disconnected management has had a 

detrimental effect on the overall soil health across the site. 



 

Chapter 6 

254 

 

6.2.2 To construct and implement the use of soil column bioreactors to observe the 

performance of the currently artificial soil composition with regard to the cycling of 

key nutrients. 

An artificial soil was produced from a mix of horticultural grit, lignite, bark and 

composted green waste, following the Eden Project protocol and packed into 4 columns. 

The columns were irrigated over a 52 week period with leachate collected from the base 

of each and analysed for key nutrients and physicochemical properties. After 28 weeks 

irrigation 2 of the 4 columns were fertilised with Vitax
®
 214. Following 52 weeks 

irrigation the columns were extruded and analysed for solid phase and extractable phase 

characteristics.  

 Inorganic N concentrations within the leachate quickly decreased and remained low for 

a significant period (approximately 26 weeks), following which significant quantities of 

both inorganic and organic N were released. This behaviour suggests that the N had 

previously been immobilised, with the increase in leached N a result of mineralisation. 

It has further been postulated that this immobilisation occurred as a result of the 

microbial decomposition of recalcitrant organic material within the soil mix. 

Phosphate
 
concentration within the leachate displayed an initial increase from which 

time it remained stable and high. The PO4
3-

 is suggested to have been released through 

the decomposition of organic matter within the soil mix, with the stability of the PO4
3-

 

concentrations being cause by the equilibrium between the irrigation water and the soil. 

This therefore suggests that following the completion of organic matter decomposition 

within the soil would result in the decrease in PO4
3- 

concentrations within the soil, 

leading to the requirement for supply through either fertiliser applications or further 
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organic matter additions to the soil. Other nutrient concentrations behaved much as 

anticipated within a closed system, demonstrating a decrease in leachate concentrations 

throughout the 52 week experimental period. 

Solid samples demonstrated relatively uniform distribution of nutrients throughout the 

soil profiles with regard to depth, which was in contrast to what would be anticipated 

within natural soils and with the results from Chapter 3: Phase 2. Typically, natural or 

anthropogenic additions to the soil (e.g. litter, organic matter, and fertiliser) over time 

lead to the formation of soil horizons, which have distinct physical, chemical and 

biological characteristics. This was not unexpected within this investigation as there 

were only fertiliser applications to 2 of the 4 columns. 

Fertiliser application resulted in significant differences in a range of leachate 

characteristics including all N fractions (except NH4
+
), PO4

3-
, Mg, Ca and pH. In the 

solid phase significant differences between the UF and F samples were observed in 

SOC, C : N ratio, TEN, Mg, Ca, Fe and enzymatic activity. It was observed that the 

fertiliser application had a greater effect on the concentrations of leached nutrients, than 

nutrients within the solid and extracted phases, which suggests that the effects of 

fertiliser application to the soils were short-lived. 

6.2.3 To make controlled changes to the artificial soils determine how this affects the 

sustainability of the nutrient reservoir. 

Biochar was employed as a means of determining the potential for improvement to the 

nutrient retention of the artificial soils. Biochar was identified for study owing to its 

manifold reported benefits following soil application and also due to the intention for 

the installation of a pyrolysis unit at the Eden Project site. Biochar was incorporated 
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into the soil at 3 concentrations (10 %, 5 % and 2 %), plus a control (0 %). The soil-

biochar mixtures were packed into mesocosms, and were irrigated under controlled 

environmental conditions for 6 weeks.  

In general, it was found that biochar application reduced the losses of key nutrients 

through leaching. However, the effect of nutrient leachate reduction was did not 

increase with increasing biochar content, particularly for N and P, where the 5 % 

application content demonstrated the lowest losses. Biochar application had no 

significant effect on the CEC of the soils, which suggests that in this instance the 

increased nutrient retention may be attributed to the increased water holding capacity 

rather than sorption of nutrients to biochar surfaces. 

6.3 Recommendations 

The fourth research objective for this project was to make recommendations for the 

manufacture of a nutrient-rich soil that can be produced by utilising waste materials 

available in Cornwall and which has wide application for local projects.  

Whilst the effect of the following recommendations would require close monitoring, to 

ensure that plant available nutrient concentrations within the soil are sufficient, they 

may offer beneficial outcomes for the Eden Project from both an economic and 

environmental standpoint.  

Recommendation 1- Discontinue the use of bark within the soil mix.  

Results from Chapter 4 determined that, whilst promoting other beneficial soil 

properties relating to structure and nutrient retention, the inclusion of a significant bark 

component within the soil mix resulted in significant levels of nitrogen immobilisation 
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within the soil columns. Through the reducing the proportion of the high C : N ratio 

organic matter component, bark, within the soil mix and by instead increasing the 

proportion of the lower C : N ratio composted green waste, there will be a lower amount 

of N immobilisation occurring within the soil. This will lead to greater plant N 

availability within the soil thereby reducing the requirement for fertiliser supplement. 

Recommendation 2 - Prepare soils 1 year in advance of use.  

The artificial soil mix within the columns demonstrated a stabilisation period, during 

which time organic material was decomposed by the microbial population and nutrients 

were subsequently released in response to the microbial behaviour. Following the 52 

weeks irrigation, nutrient concentrations (excepting N) within the leachate were 

determined to have stabilised, therefore, by allowing a 1 year stabilisation period 

between soil preparation and implementation, allowing the organic matter 

decomposition to take place and promoting the formation of a more stable humic 

material.  

The combination of Recommendations 1 and 2 may mean that a stabilisation period of 

less than 52 weeks may be employed; however, further investigative work would 

confirm this and serve to optimize the process.  

Recommendation 3 - Increased proportion of clay 

The CEC of the soil was determined to be consistently low throughout the columns. 

This may be attributed to the low clay content of the soil. Therefore the use of a higher 

proportion of clay within the soil mix would serve to provide a greater number of 

charged exchange surfaces to which nutrients may bind, thereby increasing the nutrient 

retention capabilities of the soil. 
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One alternative to the use of a greater lignite clay component would be the use of clay 

balls, which may incorporated into the soil to serve as localised areas of high CEC, 

whilst their shape and size also serving to limit compaction within the soils. 

Recommendation 4 – Lower overall particle size 

Results from Chapters 3 and 4 demonstrate a consistently large particle size within the 

soils across the Eden Project site. Through decreasing the representative proportion of 

the sand fractions and in doing so, lowering the overall soil particle size would serve to 

increase the surface area of the soil. Increased surface area would provide a greater 

number of potential nutrient binding sites, aiding nutrient retention within the soil. This 

would further offer benefit through increasing the water holding capacity of the soil, 

thereby increasing the soil solution residence time, prolonging the time nutrients are 

within the plant root zone. 

The use of a consistently sized sand fraction (e.g. 2.5 mm sand particles) in place of 

horticultural grit may aid porosity and aeration, whilst also resisting compaction as 

demonstrated in Figure 6.1. The use of such a strategy would also serve to encourage 

drainage through-out the soil profiles. 

 

Figure 6.1:  a) Mixed particle sizes – fewer pore spaces, due to filling by organic matter 

and smaller sized particles. b) Consistently sized particles – more air-filled pore space.  
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Recommendation 5 – Reduction of rock phosphate application to organic matter 

amended soils 

The results from the column study outlined in Chapter 4, demonstrated that the freshly 

prepared artificial soil leached significant quantities of PO4
3-

 during the column 

experiment as a result of organic matter decomposition. This observation has led the 

Eden Project team to reduce its applications of rock-phosphate, which has the potential 

to reduce the concentrations of PO4
3-

 through leaching, whilst also serving to lower the 

cost and quantity of the finite material used. 

Recommendation 6 – Reduction of irrigation rate 

The nutrient concentrations determined within the leachate collected from the soil 

columns, demonstrate that is a significant pathway through which nutrients are lost from 

the Eden Project soils. The transport of nutrients, particularly P and N, leached from 

soils to water-bodies has potentially detrimental environmental effects (e.g. 

eutrophication). In this scenario P is more harmful than N, as the ratios required are 

16:1 (N : P ratio). Whilst the Eden Project minimises the extent of this through 

collecting all leachate and runoff from its soils, treating and reusing it as irrigation water 

the potential for harm may be further circumvented through reconsidering the irrigation 

volume supplied to the Biomes. Through the design of targeted systems, where water is 

distributed according to specific plant demand, the quantity of nutrient loss through 

leaching may be further reduced and potentially detrimental environmental effects 

avoided. 
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6.4 Future research 

The recommendations outlined in Section 6.3 have been tailored to address the low 

nutrient retention within the artificial soil. The observations discussed within this thesis 

have highlighted the need for further research within a number of areas in order to 

further develop the potential of artificial soils. These suggestions are outlined below and 

could serve to provide greater insight into the effective use of artificial soils both at the 

Eden Project site and on an industrial scale. 

Variation of environmental conditions 

The examination of the effect of different environmental stresses on the experimental 

outcomes would be particularly interesting with regard to determining the magnitude of 

their impact on the nutrient dynamics within the soil.  This would be relevant with 

regard to the development of artificial soil production protocol for a range of 

environmental conditions. In particular, it is suggested that temperature and moisture 

have a significant effect on the rate of organic matter decomposition (Kirschbaum, 

2006), which as determined in Chapter 4 has a significant impact on nutrient 

availability.  

The Eden Project soils are also subject to annual temperature fluctuations the extent of 

which is highly likely to have an impact on the nutrient dynamics within the soil. In 

studying these effects it may be possible to tailor the management practices across the 

Eden Project site to the environmental conditions. 

Influence of microbial population 

Through closely studying the microbial populations within the soil it may be possible to 

determine the immobilisation and mineralisation processes within the soil, which may 
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serve to confirm the nitrogen immobilisation and re-mineralisation hypothesis within 

Section 4.5.1, or allow for the exploration of an alternative hypothesis.  

Impact of plant growth 

Assessment of the extent to which plant uptake affects the nutrient dynamics within the 

soil, and also determining the effect of any of the recommended changes to the soils 

may have on plant growth, through growth of plants within soil columns (e.g. 

mycorrhizal associations). The selection of an appropriate plant species would require 

careful consideration, particularly in the case of the Eden Project, where an extensive 

range of plants are grown over a relatively small area. The successful propagation of 

plants may vary between species and as such it would be interesting to compare a plant 

considered to be easily cultured at the Eden Project against a more difficult to culture 

species, to determine the suitability of the soil to support a range of species 

Further study of biochar 

The 10 % biochar application had the greatest impact on leachate nutrient levels, 

assuming a biochar production yield equalling that reported within large scale 

production (35 %), application at this rate within only the Humid Tropics Biome would 

require approximately 104 tonnes of feedstock. Whilst biochar application would be on 

a less frequent basis than current fertiliser or mulch applications, the production of this 

quantity of biochar would be a significant undertaking. It is therefore advised that a 

lower content, between 2 and 5 %, should be applied, along with the use of targeted 

applications across the site. A long-term biochar study would also determine whether 

the behaviours observed within the columns study (Chapter 4) are encountered within 

biochar amended soils. 
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A more detailed understanding of the composition of the carbon within the biochar, 

particularly the carboxylate group characteristics would enable further understanding of 

the potential for increased cation exchange capacity with biochar amended soils (Cheng 

et al., 2006). This could be achieved through analysis of the biochar by nuclear 

magnetic resonance spectroscopy (
13

C).  

Variation of irrigation water volume 

Assessment of water requirement by plants across the site may allow for the 

development of a targeted irrigation water regime, where the delivery of excess 

irrigation water may be avoided. As demonstrated by the data within Chapters 4 and 5, 

large concentrations of nutrients were lost from the soils within the leachate. By 

reducing the volume of irrigation water supplied to the soils, the amount of nutrients 

lost through leaching may be reduced.  

Longer time series experiments 

An extension of the timescale for the experiments with chapters 4 and 5 would have 

allowed for the further monitoring of the nutrient dynamics. In particular, further 

monitoring of N concentrations and fractions within the leachate to determine how long 

the increased N concentrations were sustained and observe the rate of decline and the 

timescale over which this would have occurred, to provide greater insight into the extent 

of the mineralisation process within the soil. Further to this a longer experimental 

period for a biochar study would give greater insight into the long term benefits offered 

by biochar application.  
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By extending the timescale over which the nutrient dynamics within the soil are 

observed there above recommendations may be tailored for the further improvement of 

the nutrient retention within the artificial soils. 

Impact of differing components 

It is important that soils produced using the same protocols perform consistently with 

regard to nutrient retention. Exploring the variations in the properties of soils produced 

following the same protocol using materials sourced from different suppliers, would 

provide insight into the variability between batches and may offer further information 

on the variability in the performance of the soils across the Eden Project site.  

The materials from which artificial soils are produced should be sustainable and readily 

available. In certain situations materials required by the soil production protocol may be 

unavailable, exploring the potential for the substitution of materials would further the 

potential for the widespread use of artificial soils. 

Exploration of the potential for designer soils 

Many of the above suggestions require decisions to be made as to plants species or 

environmental conditions, which highlights the requirement for a range of artificial soil 

protocols for specific purposes. This gives rise to the concept of designer soils, wherein 

a soil may be tailored for function based on the specific requirements, conditions and 

material availability. It is equally important for artificial soils to be produced from 

sustainable materials sourced locally to the site of their intended use. This would be an 

exceptionally large undertaking, with protocol for soil production varying on both a 

national and international basis. 
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Appendix A 

 

The MSDS sheet for the Vitax (111, 214 and high K) fertiliser shows the materials from 

which the fertiliser was composed. 
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VITAX SAFETY INFORMATION SHEET  
IDENTIFICATION OF PREPARATION  

NATURAL PELLETED 111, 214 AND HIGH K  
Packaging: 25 kg LDPE sacks  

AND COMPANY  Vitax Ltd, Owen Street, Coalville, LE67 3DE, Tel: 01530 510060  

COMPOSITION  Pelleted Compound fertiliser for Organic Farming & Growing Systems  

Analyses:  111   4.5  4.5  4.5  

214   4.5  2.0  7.5  

High K   0.5  0.5  20  

Products contain a mixture of some of the following:  

Cocoa shell   Kali Vinasse   Composted Breeder  

Fish Meal   Calcified Seaweed  Poultry Litter  

Gypsum   Kieserite   Rock Phosphate  

Extracted Cocoa Meal  Lignite    Reddslag  

Extracted Rape Meal  Sand    Fritted Trace Elements  

HAZARDS IDENTIFICATION Not classified as dangerous  

FIRST AID MEASURES Accidental over exposure may result in the following symptoms:  

Eye Contact – dusty/gritty material expected to cause irritation to eyes.  

Skin Contact – repeated and/or prolonged contact may cause irritation.  

Ingestion – small quantities are unlikely to be harmful. Large quantities may 

give rise to gastro intestinal disorders.  

Inhalation – high concentration of dust may be irritating to trachea and lungs.  

Inhalation of decomposition gases (eg in a fire) may cause serious lung effects.  

Eye Contact – irrigate eyes with copious amounts of eyewash solution or  

water for at least 15 minutes. Obtain medical advice if the symptoms persist.  

Skin Contact – wash the affected area with soap and water. If the irritation 

persists obtain medical advice.  

Ingestion – do not induce vomiting. Rinse mouth and give water to drink. 

obtain medical attention if more than small quantities have been swallowed.  

Inhalation – remove from source of exposure to dust. Keep warm and at rest. 

Obtain medical advice if symptoms persist. Persons who have inhaled 

decomposition gases (eg in a fire) should seek medical advice and be kept 

under medical supervision for at least 48 hours.  

FIRE FIGHTING MEASURES When the fertiliser is not directly involved in the fire use the best 

means available to control the fire.  

When the fertiliser is involved in the fire avoid breathing the fumes and 

wherever possible wear an approved mask when fighting the fire or when 

fumes are being emitted. Call the fire brigade. Use plenty of water and open 

doors and windows to give maximum ventilation. If the water containing the 

fertiliser enters any drain or water course, inform the appropriate water 

authorities immediately.  

ACCIDENTAL RELEASE MEASURES Clean up spillage promptly. Sweep up spills carefully to 

minimise dust. Transfer to heavy duty plastic bags or drums suitably labelled 

and keep safe for disposal. Dispose of by use on farm, by spreading thinly on 

open ground or to authorised waste facility. Take care to avoid the 

contamination of water courses and drains. Inform the appropriate water 

authority in the event of accidental watercourse contamination. Refer to 

exposure controls/ personal protection and disposal consideration for further 

details.  



 

Appendix 

282 

 

HANDLING & STORAGE Store in original containers, tightly closed in a secure, well ventilated, cool 

but frost-free, dry area away from foodstuffs and herbicides. Do not block 

stack pallets.  

EXPOSURE CONTROLS/ Occupation exposure standards have been established for nuisance dusts.  

PERSONAL PROTECTION Normal good hygiene practices should be observed. Do not eat, drink or 

smoke when handling spillage. Wear gloves, overalls, goggles and dust mask 

where dust cannot be adequately controlled by engineering measures.  

PHYSICAL & CHEMICAL  Appearance   brown pellets  

PROPERTIES    Odour    faint organic odour  

pH   ca.7  

Boiling point   decomposes under intense heat  

Melting point   decomposes under intense heat  

Flash point   none  

Flammability   not flammable  

Autoflammability  none  

Explosivity   none  

Oxidizing properties  none  

Vapour pressure   N/A  

Bulk density   900-1400 kg/m3  

Solubility   partly soluble in water  

Other data   none  

STABILITY AND REACTIVITY Product decomposition under intense heat may release toxic nitrogen 

and sulphur oxide fumes. Stable under normal conditions. Avoid high 

temperatures.  

TOXICOLOGICAL INFORMATION Based on product components, ingestion of large quantities may 

cause abdominal pain, nausea, vomiting and diarrhoea.  

To the best of our knowledge physical, chemical and toxicological properties 

have not been fully investigated.  

ECOLOGICAL INFORMATION Product contains nutrients essential to plant growth. Do not exceed 

recommended application rates.  

DISPOSAL CONSIDERATIONS Dispose of waste through a reputable waste disposal contractor and 

in accordance with the Environmental Protection Act 1990.  

TRANSPORT INFORMATION   Not classified as dangerous for carriage.  

REGULATORY INFORMATION  Not classified as dangerous for supply.  

Occupational Exposure Standards for nuisance dusts in air 

10 mg/m3 (8 hr), total inhalable 5 mg/m3 (hr) respirable.  

Other Regulations  

Health & Safety at Work Act 1974  

Environmental Protection Act 1990.  

OTHER INFORMATION  The product label provides information on the use of the 

product: do not use otherwise, unless you have assessed any 

potential hazard involved and the safety measures required.  

Prepared by VITAX LTD for Health & Safety purposes 

from the best knowledge available at the time of printing.  

 

December 2000 
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Appendix B 

 

Box plot diagrams for nutrient concentrations (DOC, TDN, NO3- + NO2-, DON PO43-, 

Mg, Ca, K, Fe) and physicochemical analyses (pH, Eh and volume) of leachate sampled 

from each biochar concentration in Chapter 5. Biochar application was demonstrated to 

significantly reduce the concentration of nutrients within the leachate with increasing 

biochar content.  
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