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Abstract

Three-Dimensional Turbulence Characteristics of the Bottom Boundary Layer

of the Coastal Ocean

Edward C. C. Steele

The form and dynamics of ocean turbulence are critical to all marine processes;

biological, chemical and physical. The three-dimensional turbulence character-

istics of the bottom boundary layer of the coastal ocean are examined using a

series of 29,991 instantaneous velocity distributions. These data, recorded by a

submersible 3D-PTV system at an elevation of 0.64 m above the seabed, represent

conditions typical of moderate tidal flows in the coastal ocean.

A complexity associated with submersible 3D-PTV in the coastal ocean is

that gaps and noise affect the accuracy of the data collected. To accommodate

this, a new Physics-Enabled Flow Restoration Algorithm has been tested for the

restoration of gappy and noisy velocity measurements where a standard PTV or

PIV laboratory set-up (e.g. concentration / size of the particles tracked) is not

possible and the boundary and initial conditions are not known a priori. This is

able to restore the physical structure of the flow from gappy and noisy data, in

accordance with its hydrodynamical basis. In addition to the restoration of the

velocity flow field, PEFRA also estimates the maximum possible deviation of the

output from the true flow.
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3D-PTV measurements show coherent structures, with the hairpin-like vor-

tices highlighted in laboratory measurements and numerical modelling, were fre-

quently present within the logarithmic layer. These exhibit a modal alignment of

8o from the mean flow and a modal elevation of 27o from the seabed, with a mean

period of occurrence of 4.3 sec. These appear to straddle sections of zero-mean

along-stream velocity, consistent with an interpretation as packets. From these

measurements, it is clear that data collected through both laboratory and nu-

merical experiments are directly applicable to geophysical scales – a finding that

will enable the fine-scale details of particle transport and pollutant dispersion to

be studied in future. Conditional sampling of the Reynolds shear stress (without

using Taylor’s hypothesis) reveals that these coherent structures are responsible

for the vertical exchange of momentum and, as such, are the key areas where

energy is extracted from the mean flow and into turbulence.

The present study offers the first assessment of the magnitude of the errors

associated with assuming isotropy on shear-based sensors of the TKE dissipation

rate and its consequential effect on the Kolmogorov microscale using 3D-PTV

data from the bottom boundary layer of the coastal ocean. The results indicate

a high degree of spatial variability associated with the flow conditions. The

averaged data supports the validity of measurements obtained by horizontal and

vertical profilers, however along-stream velocity derivatives underestimate the

TKE dissipation rate by more than 40% – a factor of two higher than for the

equivalent cross-stream and vertical estimates. This has important implications

for the deployment of these sensors and the subsequent interpretation of higher-

order statistics.
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Finally, the data have been processed to test four popular sub-grid scale (SGS)

stress models and SGS dissipation rate estimates for Large-Eddy Simulations us-

ing these in situ experimental data. When the correlation and SGS model coeffi-

cients are assessed, the nonlinear model represents the best stress models to use

for the present data, consistent with the substantial anisotropy and inhomogene-

ity associated with these flows.

The detailed measurement and analysis of coherent structures in the coastal

ocean undertaken therefore supports the development of numerical models and

assists with the understanding of all marine processes.
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Chapter 1

Overview

The rotational, eddying and dynamic motions implied by the term turbulence are

the dominant state of fluid movement on Earth. As such, turbulence is effective in

the transferral of heat and momentum in the sea, as well as dispersing, stressing

and straining both particles and living matter in the water column, while diluting

and stirring its chemical constituents (Thorpe, 2004). Turbulence in shelf-seas

has a strong influence on the large-scale distribution of biological production (Tett

et al., 1993) and suspended sediments (Jago and Jones, 1998). Tidally-generated

turbulence limits the areas of thermal stratification (Simpson and Hunter, 1974),

which in turn affects the shelf-sea “pumping” of carbon dioxide and is an im-

portant process for the global carbon cycles (Thomas et al., 2004). Modelling

work has also shown that small changes in the vertical distribution of the stress

associated with turbulence can have a strong effect on the patterns of circulation

at much larger scales (Lentz, 1995). In tidal flows, turbulence is generated near

the seabed (Heathershaw, 1974). However, while its one-dimensional character-

istics have been well-studied, little is known of its three-dimesional structure and
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subsequent development throughout the water column. On reaching the surface

of well-mixed waters, bottom-generated “boils” – areas of local upwelling and

associated eddies – have a marked impact on the dispersion of pollution and con-

tributes to the replacement of surface waters from depth (Nimmo-Smith et al.,

1999, Thorpe et al., 2008). A detailed understanding of turbulence is therefore

critical to explaining all marine processes (physical, biological and chemical) and

for the development of models that allow us to plan the sustainable exploitation

of the marine system, for example marine renewable energy, fishing and pollution

policies.

Numerical models of marine processes are usually unable to resolve all but the

largest scales of motion and so rely on the parameterisation of subgrid-scale pro-

cesses, to which these are very sensitive. Good parameterisation is only possible

with knowledge of the structure of the turbulence but, away from the surface, this

is notoriously difficult to measure. Traditionally, micro-structure profilers and

Acoustic Doppler instrumentation have been used to measure turbulence param-

eters that might reveal vertical patchiness, but these cannot show the detailed

vortex structure (size, intensity, attitude and alignment). Recently, however,

three-dimensional optical flow visualisation methods using four high frame-rate,

high resolution digital cameras have been developed, yielding unique insight into

the full vortex structures in ocean flows (Nimmo-Smith, 2008). The cameras track

suspended particles, advected by the mean flow and turbulent eddies within a 15L

sample volume, allowing the corresponding velocity field to be quantified. The

time-resolved three-dimensional velocity flow field can then be used to test as-

sumptions inherent in traditional instrumentation, as well as turbulence models
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by temporal and / or spatial filtering.

Therefore, the aim of the present thesis is to study the small-scale three-

dimensional turbulence characteristics of the bottom boundary layer of the coastal

ocean, with the purpose of aiding the interpretation of other experimental and

numerical modelling data sets.

The thesis takes the following format: Chapter 2 presents a summary of the

literature available on turbulent boundary layers and coherent structures, as well

as existing measurements and numerical modelling of these both in laboratory

/ idealised flows and in the sea. Chapter 3 presents the instrumentation used,

together with a novel physics-based processing method developed for highly sparse

optical flow visualisation data. Here, the characteristics of the data sets that will

be examined in this thesis are also summarised. Chapter 4 presents visualisations

of the instantaneous 3D form of turbulence in the bottom boundary layer of a

tidal flow. These data offer a unique insight into the spatial characteristics of

the dynamical phenomena that are responsible for the statistical properties of

ocean flows. This is extended in Chapter 5 where the dissipation characteristics

of turbulence structures are compared to 1D, 2D and 3D estimates to quantify the

response of more traditional instruments to varying vortex structures. The data

are used to test common turbulence parameterisations for numerical models in

Chapter 6. Chapter 7 presents the conclusions of the thesis and discusses possible

directions for further work.
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Chapter 2

Scientific background

2.1 Boundary Layer Turbulence

The tendency of fluid elements to adhere to a material surface, the so-called no-

slip condition, is essential for the comprehension of wall-bounded flows (Klewicki,

2010), where the mean speed decreases from an uninhibited value away from the

boundary to zero at the bed. While it is apparent that wall-bounded flow in

the ocean (the subject of this thesis) is more complicated than an idealised case,

an introduction to the turbulence characteristics of a primitive boundary layer

offers a suitable starting point for the discussion. Most importantly, it allows the

coordinate system, scaling frameworks and two-layer flow structure necessary to

understanding these wall-bounded flows to be identified.

2.1.1 Boundary layer structure

Figure 2.1A illustrates an idealised boundary layer, showing the three-dimensional

(orthogonal) coordinate system that is used for the present study. Here, the X-
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axis is aligned (along-stream) with the direction of the mean flow, the Y-axis

to perpendicular to this in the cross-stream dimension and the Z-axis is per-

pendicular to this in the wall normal dimension. Here, The associated velocity

components are labelled U (also termed U1), (V also termed U2) and W (also

termed U3), respectively, with boundary layer thickness (δ) determined statis-

tically as the height where the U(x, δ) is 99% of the free-stream velocity, U∞

(Pope, 2000). Flow within the interior of this near wall layer is represented by

the turbulent Reynolds number Rex = U∞X
υ

(where υ is the kinematic viscosity

and X is an along-stream position) that acts to locally moderate the boundary

layer thickness, as well as to exert a shear stress on the bed, often expressed as

the friction velocity, U∗:

U∗ =

√
τv
ρ

(2.1)

where, ρ is the density, and τv is the viscous stress at z = 0 (defining µ as the

dynamic viscosity):

τv = µ
∂U1

∂X3

(2.2)

The stress arising from turbulence-associated velocity components (later la-

belled u′1, u′2, and u′3, respectively) is expressed as the Reynolds stress, τr:

τ = −ρu′1u′3 (2.3)

Defining the viscous stress and the Reynolds shear stress it is therefore possible

to determine a total stress at an elevation as the sum of these two formulas:
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Figure (2.1). An illustration of the structure of the boundary layer where (A)

the coordinate system and time averaged axial velocity profile is seen relative

to (B) the two overlapping inner and outer wall layers. (C) An illustration of

the log law of the wall responsible for these divisions, presented with u+ on the

X-axis and log(z+) on the Y-axis. Note that in ocean boundary layer flows, an

inflection point typically occurs immediately below the log layer.
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τt = −ρu′1u′3 + µ
∂U1

∂U3

(2.4)

In accordance with mean velocity and stress profiles, the boundary layer is

usually divided into two overlapping layers (the inner-wall layer and the outer-

wall layer) where different processes occur (Panton, 2001). This area of overlap

is referred to as the log layer due to its local velocity characteristics.

Figure 2.1B illustrates this boundary layer structure. A viscosity difference

between the inner layer and the outer layer necessitates two different scales be

considered. The inner length scale arises from the interaction with the wall and

the associated shear force it imparts. It is expressed using the friction velocity,

U∗ and the kinematic viscosity, v, in non-dimensional wall units:

x+ =
U∗x

v
(2.5)

y+ =
U∗y

v
(2.6)

z+ =
U∗z

v
(2.7)

The inner length scales therefore represent the smallest turbulent motions

(Panton, 2001). The outer length scale, however, represents the dynamics of large-

scale fluid flows and are represented by the wall-normal eddy scales, uninhibited

by viscosity. This is therefore expressed using a boundary layer thickness, δ, i.e.

Z =
z

δ
(2.8)

Having addressed the inner/outer layer scaling issue, we will proceed to elab-

orate on boundary layer structure.

8



Following Pope (2000), after Coles (1956), it is possible to represent the de-

pendence of the mean along-stream velocity on the distance from the wall (0→ δ)

as the sum of two functions; the law-of-the-wall (dependant on v
u∗

), fw(z+), and

the law-of-the-wake, W (Z) (dependant on z
δ
):

U+ =
U

U∗
= fw(z+) +W (Z) (2.9)

Figure 2.1C illustrates this general profile, where the inner layer is typically

z+ < 100. The inner layer, in fact, consists of two sublayers – the viscous sublayer

and the buffer sublayer – as well as part of the log layer. Here, the law-of-the-

wake, W (Z), is negligible and the law-of-the-wall, fw, will represent the velocity

(Panton, 2001). The viscous sublayer is that immediately overlying the bed is

(z+ < 5). In this area, the viscous stresses exceed the Reynolds stresses (µ∂U
∂Z
�

−ρu′w′) and the law-of-the-wall is fw(z+) ≈ z+ (Pope, 2000, Dennis, 2009). This

is, in turn, succeeded by the buffer sublayer (5 < z+ < 30 or 50) that offers

transition to the log layer beyond. The log-law profile (Pope, 2000, Panton,

2001) is representative of the mean along-stream velocity at a height of between

z+ > 30 or 50 and Z � 1:

U+ =
U

U∗
= fw(z+ →∞) =

1

κ
ln(z+) +B (2.10)

where, κ is the von Karman’s constant = 0.41 and B is a positive coefficient

(dependant on the Reynolds number).

In the log layer, the Reynolds shear stress exceeds the viscous stress (−ρu′w′ �

µ∂U
∂Z

) and the flow populated with an abundance of eddies. This is in contrast

to the viscous sublayer, for example, where such turbulence is suppressed by
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near-wall viscosity. As is implied by Equation 2.10, the extent of the log layer

is proportional to its Reynolds number, Re. Somewhere in the outer layer, how-

ever, the mean velocity profile departs from the log law (Pope, 2000). This defect

at, say, Z > 0.2, is often expressed using Cole’s law-of-the-wake, W (Z) Coles

(1956). At the extent of the outer layer, δ, the mean along-stream velocity profile

evaluates to:

U+ =
U

U∗
= fw(z+

δ ) +W (Zδ) =
1

κ
ln(z+

δ ) +B +
2Π

κ
(2.11)

where Π is the flow dependent wake parameter, with all other coefficients defined

in Equation 2.10.

2.1.2 Energetics of turbulence

Turbulence consumes energy by transferral through a series of successively smaller

scales, until it is converted into heat by molecular processes. Within the context

of these energetics, the Turbulent Kinetic Energy is defined as:

ET =
1

2
q2 =

1

2
(u2

1 + u2
2 + u2

3) (2.12)

where subscript indices are the velocity components aligned with the X, Y and

Z-axis, respectively. ET is a scalar property, produced and dissipated through

the fluid motion, which is subject to change by advection and diffusion. When

conditions are horizontally uniform, w = 0. The evolution of ET is:

∂ET
δt

=
∂(u′3E

′
T )

∂z︸ ︷︷ ︸
diffusion

− 1

ρ0

(
τ1
∂U1

∂z
+ τ2

∂U2

∂z

)
︸ ︷︷ ︸

production

− gρ
′u′3
ρ0︸ ︷︷ ︸

mixing

− ε︸︷︷︸
dissipation

(2.13)
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in which the elements of diffusion, production (via the the Reynolds shear stress,

τ), mixing and dissipation are all represented.

Boundary layer turbulence comprises a continuum of wavenumber scales rep-

resented by an energy spectrum. Most energy is associated with large scale

motion (i.e. lower wavenumber than where dissipation occurs), however this

rapidly decreases with increasing wavenumber (decreasing eddy size) and more

rapidly still at scales where molecular processes dominate (Thorpe, 2004). In

high Reynolds number flows, assuming isotropy and homogeneity, there exists a

range of wavenumber scales (k = 2π/(eddy size)), where the energy spectrum has

the form:

E(k) = αε2/3k−5/3 (2.14)

where α = 1.5 is a constant and ε is the TKE dissipation rate that represents the

loss of energy through viscosity to heat, i.e.:

ε = (ν/2)〈SijSij〉 (2.15)

where, in turn, Sij = (∂ui/∂xj + ∂uj/∂xi) and i = 1, 2, 3.

The spatial (η) and velocity (Uν) scales where viscosity becomes important

are expressed by their Kolmogorov microscale and are used to parameterise the

smallest vortices within the velocity flow field, i.e.:

η =

(
ν3

ε

)1/4

(2.16)

and

Uν = (νε)1/4 (2.17)
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In the present study, the TKE dissipation rate (ε) and the Kolmogorov mi-

croscale (η) are used in Chapter 5 and Chapter 6.

2.2 Coherent structures

Turbulence appears complex, multi-scaled and seemingly random in nature. In

an attempt to understand these flows, it is common to deconstruct the dynamics

into persistent motions, called eddies or coherent structures. This approach is

often represented in the evolution equation for the Turbulence Kinetic Energy.

While not explicitly accounted for, these expressions imply an inherent organ-

isation through the correlation of the velocity components that constitutes the

Reynolds stress τ . If boundary layer turbulence was random, and no coherent

structures present, then τ must equal zero (Robinson, 1991). Clearly, this is not

the case and this τ is necessary to close the equations representing the produc-

tion and dissipation balance of turbulence in the boundary. However, while it

is apparent that such coherent structures are (likely to be) present and, indeed,

are significant to all fluid flows, there is currently no firm agreement with the

community on a universally accepted definition. Therefore, the general criteria

offered by Robinson (1991) have been adopted for the present thesis:

A coherent motion is defined as a three-dimensional region of the flow

over which at least one fundamental variable (e.g. velocity compo-

nents, density, etc.) exhibits a correlation with itself or with another

variable over a range of space and / or time that is significantly larger

than the smallest local scales of the flow.
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This is also consistent with the numerical representation in evolution equa-

tion for the Turbulence Kinetic Energy, as only spatially-coherent structures that

remain persistent over long time periods will contribute to the time-averaged

statistics of the flow. In addition, the definition used permits opportunity to fur-

ther classify these motions. The specific characteristics of streaks, bursts, sweeps,

hairpin vortices and other large-scale events are outlined below.

2.2.1 Streaks, bursts & sweeps

The inherent organisation of motions associated with boundary layer flows causes

the development of near-wall ‘streaks’ (traces of the interaction of the overlying

eddies with the wall layer fluid; Kline et al. 1967, Smith et al. 1991). These

flows therefore constitute areas of low axial momentum, occurring at a height

of between 5 < z+ and z+ < 45 or 50, characteristic of their inner layer origin.

Typically, low-speed streaks are about x+ = 1000 in the along-stream dimension

by y+ = 80 or 100 in the cross-stream dimension, with a separation between them

of approximately x+ = 100 (Smith and Metzler, 1983). While usually quiescent,

these streaks are critical for the interaction between the inner and outer layer of

the flow. Such interactions mainly occur in the form of bursts and sweeps. Bursts

occur when low-momentum fluid (such as a streak) lifts and oscillates, prior to

ejection away from the wall (Kline et al., 1967). This is subsequently followed

by fast in-rushes of water towards the wall, known sweeps. As these dynamic

motions promote the transferral of momentum, bursts and sweeps can be defined

in terms of the velocity fluctuations that contribute to the Reynolds stress, τ ,

via quadrant analysis. A burst (or ejection) consisting of the outward (u′3 > 0)
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movement of low speed fluid (u′1 < 0) is therefore considered a Quadrant 2 event,

while a sweep consisting of the inward (u′3 < 0) movement of high-speed fluid

(u′1 > 0) is considered a Quadrant 4 event. As both Quadrant 2 and Quadrant

4 events contribute to a positive (i.e. u′1u
′
3 < 0) Reynolds shear stress, bursts

and sweeps are deemed jointly responsible for the turbulence production in wall-

bounded flows. However, their two respective areas of influence, and therefore

contribution to the Reynolds shear stress in the boundary layer, are, in fact,

different (Corino and Brodkey, 1969, Grass et al., 1991). Given that ejections

originate at elevations between 5 ≤ z+ ≤ 15 and break-up at elevations between

7 ≤ z+ ≤ 30, while the in-rushes are more prominent at z+ < 15, it follows that

the area of influence of bursts is more extensive than that of sweeps occurring

near the wall. The frequency of this burst-sweep sequence is between ∼ 350s

and ∼ 550s, with events typically of the order of ∼ 10 s in duration. The cyclical

nature of such a sequence implies that these processes are self-sustaining, modified

by the characteristics of the overlying dynamical motions, e.g. horseshoe and

hairpin vortices.

2.2.2 Horseshoe and hairpin vortices

Horseshoe and hairpin vortices dominate the outer layer of wall-bounded flows

(e.g. Adrian et al. 2000b). Here, the characteristics of these motions are reviewed

through the conceptual models formed from many past laboratory and numerical

experiments. The earliest of these models, proposed by Theodorsden (1952), is

illustrated in Figure 2.2. These coherent structures are called horseshoe vortices

because of their typical form, consisting of a cross-stream vortex filament, lifted
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by an upward motion to form a head, attached to two trailing legs. As the head is

furthest from the wall, it experiences a higher mean flow velocity and so is carried

downstream faster than the legs (Adrian, 2007). The difference in advection rate

causes the legs to stretch, concentrating vorticity and resulting in subsequent

lifting. A complimentary contribution, conveying the growth of structures in

the boundary layer, was the attached eddy hypothesis proposed by Townsend

(1956). While seemingly different to horseshoe vortices, the two wall attached

cone vortices (Figure 2.3) that extend into the log layer in the latter model are

reminiscent of the two trailing quasi-streamwise legs conjectured by Theodorsden

(1952). Therefore, it may be suggested that horseshoe vortices and attached

eddies (or headless horseshoes as these are occasionally known) are synonymous

with one another. These vortices are squeezed at high Reynolds flow, where they

resemble that of a hairpin. Therefore, the terms horseshoe and hairpin vortices

are, similarly, interchangeable.

Initially, the significance of horseshoe and hairpin vortices were deemed in-

ferior to that of streaks. Using smoke visualisation, however, Bandyopadhyay

(1980) and Head and Bandyopadhyay (1981) established that hairpin vortices,

with a mean angle to the wall of approximately 45◦, are, in fact, a major con-

stituent of boundary layer turbulence. These measurements were supported by a

model where the cross-stream dimension of hairpin legs is typically y+ = 10−100

and the structures extend from the wall in a regular, increasing, sequence. Simi-

larly, in data presented by Smith (1984), the successive formation of in-line hair-

pin vortices in water flows occur. To attempt to explain these dynamics, Perry

and Chong (1982) proposed various mechanisms of boundary layer turbulence
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Figure (2.2). A conceptual model of Theodorsden’s Horshoe vortex (modified

from Panton 2001).

Figure (2.3). A conceptual model of Townsend’s attached eddy hypothesis

(modified from Panton 2001).
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involving Λ-type horseshoe and hairpin vortices. Here, individual structures (of

a hierarchy of scales, randomly scattered within the domain) were essential to

explaining the previously published near-wall dynamics. This is consistent with

the appreciable quantity of horseshoe and hairpin vortices that were modelled by

Moin and Kim (1982) and Moin and Kim (1985). These three-dimensional, time-

dependent Large-Eddy Simulations also provided a means of eddy generation, via

the deformation or roll-up of sheets of transverse vorticity. Moin and Kim (1982)

and Moin and Kim (1985) highlighted the need for the three-dimensional ap-

proach, as the vortices were not necessarily confined to a two-dimensional plane.

From an examination of low Reynolds number Direct Numerical Simulation data

Robinson (1989) came to a similar conclusion, where a hierarchy of scales were

also seen to exist, with it reported that quasi-streamwise vortices exist in the in-

ner layer, quasi-streamwise vortices and arches exist in the log layer, while arches

and hairpin vortices exist in the outer layer of wall-bounded flow. An arch is

defined by Robinson (1989) as a horseshoe head with no attached legs, whose oc-

currence was more common than complete hairpin vortices. On the occasion that

complete hairpin vortices were identified, these were predominantly one-sided,

with an appearance similar to a “walking cane” rather than symmetrical (but

also seen to exist in succession). The advent of LES and DNS modelling (Moin

and Kim, 1982, 1985, Kim and Moin, 1986, Robinson, 1989) was critical for the

development of our understanding of the three-dimensional nature of boundary

layer turbulence (Adrian, 2007). Most importantly these simulations confirmed

the two-dimensional data collected in the early experiments were, indeed, coher-

ent structures and these are the key sites where energy is extracted from the
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mean flow and into turbulence. These findings were consolidated by Smith et al.

(1991), who presented a detailed model describing the fluid dynamics of the near-

wall region, where the horseshoe and hairpin vortices were essential to explaining

both the generation of new vortices and their growth to larger scales, further from

the boundary.

As evidenced above, the succession of horseshoe and hairpin vortices in a

regular, increasing sequence is well-reported (e.g. Smith et al. 1991, Haidari and

Smith 1994, Singer and Joslin 1994). It is suggested that such vortices occur in

groups or packets with a typical velocity difference of less than ∼ 7% (Adrian

et al., 2000b, Adrian, 2007). Zhou et al. (1996, 1999) considered the processes

responsible for the genesis of these hairpin packets following a Quadrant 2 event,

with it seen that the subsequent development of the initial hairpin vortex causes

two new heads to form: one upstream and one downstream from the original.

The upstream eddy is formed from vortex roll-up, associated with the interaction

of the low-momentum fluid pumped between the legs and the high-momentum

flows above (Adrian, 2007). These flows generate an arch that will join with

the legs and the sequence is repeated. In addition, hairpin vortices lift adjacent

quasi-streamwise vortices that appear as protrusions on the downstream edge of

the head, that then become extruded into legs to form an arch, as above. The

characteristics of these two new hairpin vortices are, however, different. The

result of the former mechanism is consistent with the Attached Eddy Hypothesis,

while the latter mechanism produces vortices that are detached from the wall.

Zhou et al. (1996, 1999), and later authors, collectively refer to these processes

as ‘autogeneration’ (Figure 2.4). The effects of ‘noise’ on the autogeneration of
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Figure (2.4). An illustration of the sequence of vortices associated with the

processes of autogeneration (based on model by Zhou et al. (1996, 1999).

Figure (2.5). A conceptual model of the hierarchy of coherent packets of hairpin

vortices travelling with different convection velocities (Uc). It is suggested that

convection velocities increase with the age of hairpin packets. These structures

may be responsible for the back-flow of low-speed fluid, forming areas of low

streamwise momentum as illustrated by the grey patches (adapted from Adrian

et al. 2000b).
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these packets in fully turbulent flows were further addressed by Adrian and Liu

(2002). With the addition of 5% noise, these processes were seen to proceed

similarly to that of the clean packet. In both clean and noisy simulations, the

development of trains of vortices was dependent on the magnitude of the initial

Quadrant 2 event. Specifically, while low intensity ejections can cause an initial

horseshoe, high intensity ejections (that account for approximately 5% to 10% of

all Quadrant 2 events) are needed to stimulate continuous autogeneration of new

upstream and downstream vortices. These conclusions were supported by the

two-dimensional flow visualisation measurements of, for example, Adrian et al.

(2000b).

The characteristics of boundary layer turbulence and its associated processes

were unified in the seminal models by Adrian et al. (2000b) and Adrian (2007).

Here, the concepts of packets of hairpin vortices and the mechanism of autogener-

ation allow the velocity flow field to be defined as the summation of the complex,

multi-scaled contributions arising from a hierarchy of vortex groups, each con-

taining eddies of different size (Figure 2.5). Adrian et al. (2000b) and Adrian

(2007) therefore suggest the passage of such packets of hairpin vortices (and their

inherent zones of uniform momentum) help explain the origin of bursts, sweeps

and streaks. The conjecture is that this mechanism promotes the vertical ex-

change between wall-bounded layers. Similarly, recent quasi-instantaneous three-

dimensional flow visualisation results (Figure 2.6) obtained from an engineering

water tunnel (Dennis and Nickels, 2011a,b) offer support to models consisting of

packets of hairpin vortices although, as uncertainty about the specific manner

of the vortex interactions (e.g. Chernyshenko and Baig 2005) and the dynamics
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Figure (2.6). Visualisation of vortices with high and low momentum struc-

tures (adapted from Dennis 2009). The vortices (black) isosurface appear draped

across low momentum structures (blue) more so than high speed structures (red).

at high Reynolds flow persists within a minority of the community, the authors

accept that other researchers may wish to interpret the results using a different

paradigm.

This review of the form of the coherent structures in wall-bounded flow is

based on flat-plate, zero pressure gradient flow visualisation experiments in the

laboratory, together with equivalent numerical simulations at low Reynolds num-

ber. It is apparent, therefore, that simulations of coherent packets of hair-

pin vortices do not prove their occurrence, while two-dimensional and quasi-

instantaneous three-dimensional flow visualisation methods rely on an assumption
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of Taylor’s Hypothesis (Adrian, 2007). While it is encouraging that the results

collected by Dennis and Nickels (2011a) and Dennis and Nickels (2011b) support

these seemingly robust models, the caveat on their interpretation serves as a re-

minder that further observations, particularly in more realistic, natural flows, are

essential to understanding these dynamics. Similarly, in such conditions, it is im-

portant that individual vortices are recorded without the assumptions of Taylor’s

Hypothesis. As this thesis aims to offer qualitative and quantitative insight into

small-scale turbulence in the ocean, the additional complexity in terms of the

boundary layer structure will be highlighted prior to addressing the characteris-

tics of these flows.

2.3 Turbulence in the Sea

In situ measurements of marine bottom boundary layers collected in shallow seas

bear some resemblance to their laboratory equivalents, but also exhibit some

differences (Hackett et al., 2011). Like the flat-plate conditions detailed earlier,

a similar profile of turbulence parameters may be extracted in accordance with

the same general (layered) scaling and structure. Such profiles must, however, be

modified to account for the effects of surface irregularities, bottom roughness and

tidal flows. In addition, in areas where the depth of water is less than 0.16gt2w

(where g = 9.81 and tw is the wave period; Burchard et al. 2008), surface motions

penetrate to the bed forming a wave boundary layer. This wave boundary layer

is known to be thinner, yet much more turbulent, than its tidal equivalent and

the non-linear interactivity between the two serves to further complicate these

dynamics.
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Under quasi-steady conditions, in tidal flows, a classic velocity profile (consis-

tent with the law of the wall) will form over a plain, solid bed (Burchard et al.,

2008). This is supported by measurements by Caldwell and Chriss (1979) that

demonstrate that flow speed decreases linearly within the viscous sub-layer, from

a value of∼ 8 cm s−1 at 0.6 cm above the water-sediment interface to a value of

∼ 0 cm s−1 at the boundary (Thorpe, 2004, 2007). Similarly, above the viscous

and the buffer sublayer, the characteristics are consistent with that of the at-

mospheric boundary layers (Lueck and Lu, 1997, Lien and Sanford, 2000). This

velocity profile is well-fitted by a logarithmic expression, adjusted for the inclusion

of the roughness length to account for the possible irregularities of the boundary

(Caldwell and Chriss, 1979, Thorpe, 2004, 2007):

U(z) = (
U∗
κ

) ln(
z

z0

) (2.18)

where, κ is the von Karman’s constant = 0.41 and z0 is the ‘roughness length’

(i.e. where U(z)→ 0).

Usually, this is felt as form drag, i.e. the stress imposed by such irregulari-

ties (Chriss and Caldwell, 1982). Form drag causes a significant difference from

conditions typically expected over horizontally homogeneous surfaces, such as the

development of multiple log layers (Chriss and Caldwell, 1982). This is consistent

with measurements by Sanford and Lien (1999) in the wake of cross-stream ori-

entated ripples with typical heights of 0.3 m and wavelengths of 16 m, where two

distinct ‘log’ layers were seen between 0 m to 3 m and 5 m to 12 m, respectively.

Friction velocities in the upper log layer are higher than friction velocities in the

lower log layer. Accordingly, total stress in the upper layer is also higher (by a
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factor of three) than total stress in the lower layer, associated with the effects

of form drag (Sanford and Lien, 1999). A similar two-layered structure is also

seen in profiles of the Reynolds shear stress, although this is not as identifiable

as the velocity equivalent. In these measurements, it is suggested the height of

the transition between the upper log layer and the lower log layer 3 m to 5 m

will decrease in areas of smoother bottom roughness, as reported by Chriss and

Caldwell (1982). In addition, mobile sediment suspended into the water column

from the bed can cause density stratification that will attenuate the turbulence in

the boundary layer and generate down-slope turbidity currents, further affecting

these flows (Burchard et al., 2008, Conley and Inman, 1994).

Other differences are associated with the acceleration and deceleration of tidal

flows. Specifically, when the water column is accelerated (dU
dx

> 0) from U = 0

near the wall, the total stress propagates upward, albeit with a height-dependent

phase delay after the bed shear stress (Burchard et al., 2008). This is in agreement

with the patterns of variability of turbulent energy production and dissipation

rates that also propagate upwards (Rippeth et al., 2003). Conversely, when the

water column is decelerated (dU
dx

< 0), an adverse pressure gradient is formed

(Pope, 2000). This adverse pressure gradient is seen as an inflection in profiles

of turbulence parameters, where it is often associated with high flow instabilities

and high turbulence intensities. Similar effects occur where wave and current

boundary layers co-exist and subsequently interact. Such conditions have an ap-

pearance equivalent to the effects of increased bed roughness, corresponding to

increased friction and modified velocity profiles (Burchard et al., 2008). Accord-

ingly, the bed shear stress of a combined wave and current boundary layer is
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higher than that of an individual layer. This is consistent with measurements by

Hackett et al. (2011) at an unstable interface between wave and current boundary

layers. Hackett et al. (2011) established that the presence of waves increases the

characteristic roughness above that expected by a factor of three, shifting the

position of peak turbulence production, dissipation and Reynolds shear stress

higher in the water column. The instability at the inflection point (i.e. below

the log layer) is synonymous with the occurrence of a large number of small-scale

eddies that, in turn, increases the Turbulence Kinetic Energy dissipation at the

transition between the inner layer and the outer layer (Figure 2.1) (Hackett et al.,

2011). Note, however, that such small-scale eddies are persistent throughout the

boundary layer.

The first in situ measurements of the Reynolds shear stress associated with

coherent structures were made by Bowden and Fairbairn (1956), using a mechan-

ical current meter. This instrument was able to determine both a wall-normal

and an along-stream velocity component, the correlation of which is equal to the

Reynolds shear stress, τ . Similar sampling, conducted by Heathershaw (1974)

assessed the u′1u
′
3 trace associated with the near wall sequence of bursts over a

range of depths, flow conditions and sediment types. These events were seen to

occur in situ with typical timescales of the order of 5 s to 10 s separated by periods

of between 20 s and 100 s (Heathershaw, 1974). Like the laboratory flow, the am-

plitudes of Quadrant 2 and Quadrant 4 events both exceeded that of Quadrant 1

and Quadrant 3 interactivity, with bursts associated with local deceleration and

sweeps associated with local acceleration (Heathershaw, 1974). While such point

measurements continued to validate these early observations of intermittent mo-
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mentum transport (cf. Gordon 1974), it was not until recently that submersible

flow visualisation instrumentation allowed the corresponding eddy structures to

be recorded without the assumption inherent in the interpretation of arrays of

multiple sensors. Such data (Bertuccioli et al., 1999, Doron et al., 2001, Nimmo-

Smith et al., 2002, 2005) present a 2D cross-section of the bottom boundary layer

over a seabed consisting of sand ripples with typical heights of 0.1 m and wave-

lengths of 0.5 m. Deployments under different tidal conditions allowed a range of

combinations to be analyzed. As expected, under a weak wave/current climate

the flow is characterized by eddies of less than 2 cm diameter, with no large-scale

vortices recorded (Nimmo-Smith et al., 2005). As the current velocity increases,

the moderately quiescent conditions are punctuated by eddies of 4 cm in diam-

eter, as well as those of scalings up to 10 cm diameter, occurring intermittently.

Such large-scale eddies occur singly or in groups – the latter termed ‘gusts’ by

Nimmo-Smith et al. (2005) – with an along-stream extent in excess of 1 m. These

gusts have characteristics similar to hairpin packets identified in laboratory flows,

although a classification as such is dependent on the inferences. This likeness is

continued in the threshold nature of these events, similar to that suggested by

Zhou et al. (1996, 1999) and Adrian et al. (2000b), where large gusts occur in high

flow conditions yet are unseen during low flow. In comparable in situ 2D-PIV

measurements performed by Hackett et al. (2011), the generation and subsequent

dynamics of eddies in the boundary layer was also considered, where these are

seen to relate to roughness elements in both position of origin and typical scal-

ings. The number of eddies increases as elevation decreases until the inflection

point in the velocity profiles. A transition in size of eddies also occurs, from
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those of more than 7 cm diameter in the log layer to those of less than 2 cm at the

inflection point (Hackett et al., 2011). These in situ deployments reveal that tur-

bulence in the sea is anisotropic (Nimmo-Smith et al., 2002, 2005, Luznik et al.,

2006), requiring a fully three-dimensional approach to measurements of turbu-

lence. While development of the necessary three-dimensional flow visualisation

system has been completed (Nimmo-Smith, 2008), the opportunities that this

system offers in understanding the three-dimensional turbulence characteristics

of the bottom boundary layer of the coastal ocean are still to be explored.

Compared to laboratory / idealised flows it is not surprising that additional

complexities are to be found in the bottom boundary layers in shallow, tidal seas.

While variable flow conditions have been treated independently in the labora-

tory, it is the combined interaction of the waves and currents, together with the

complex nature of mobile bed forms that will affect the mixing near the bed (Bur-

chard et al., 2008, Hackett et al., 2011). Due to difficulties associated with data

collection in this environment, available literature on the three-dimensional co-

herent structures in the sea is scarce, and mainly comprises point-measurements.

Recent studies by Nimmo-Smith et al. (2002, 2005), Luznik et al. (2006) and

Hackett et al. (2011) offer a two-dimensional cross-section of the flow structure in

the bottom boundary layer of the coastal ocean, where turbulence characteristics

(e.g. gusts) similar to those of laboratory experiments (e.g. hairpin packets) were

seen. However, these cannot inform the full three-dimensional velocity flow field

necessary to confirm such a likeness, nor can the cross-stream scales necessary for

the understanding of lateral dispersion and anisotropy be accurately obtained. In

light of the significance of such coherent structures to transport processes, an in
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situ understanding of 3D turbulence in natural flows is essential for the accurate

parameterisation and subsequent validation of numerical models of the marine

environment. Therefore, it is this understanding of the three-dimensional turbu-

lence characteristics of the bottom boundary layer of the coastal ocean that the

present thesis explores.
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Chapter 3

Methods

3.1 Introduction

Ocean flows have traditionally been sampled using a multiplicity of methods span-

ning a one-, two- or three-dimensional domain in space/time (Chapter 2). How-

ever, these miss at least one spatial dimension, requiring assumptions to be made

to quantify turbulence statistics. In the present chapter, the specific methods

used to address the aim of the thesis, as well as some of the limitations identified

earlier, are discussed. To do so, commercially-available Acoustic Döppler sensors

(e.g. ADCP and ADV) are used to supplement the inherently four-dimensional

data that was collected by a unique submersible three-dimensional time-resolved

Particle Tracking Velocimetry (3D-PTV) system that was developed recently

(Nimmo-Smith, 2008). 3D-PTV is a robust method for the visualisation of coher-

ent structures, and has been used in the laboratory to study the boundary layer

of free-surface flow and the characteristics of grid turbulence (Virant and Dracos,

1997, Ott and Mann, 2000). The method uses multiple synchronous cameras to
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view a sample volume from different angles, wherein particles are located and

tracked in three dimensions, allowing the full velocity flow field to be determined.

Velocity measurements were made in the bottom boundary layer of a tidal

flow. All underwater instrumentation were mounted on a rigid frame that allows

simple adjustment of their position (Figure 3.1). A vane attached to the frame

align it at an angle to the mean flow direction as it is lowered to the sea-bed,

to prevent contamination of the sample volume from the wake of the 3D-PTV

system. Using the long-term mean over the 20 min time-series, the data were

then rotated in processing, such that x1 is aligned with the along-stream velocity

component, 〈u1〉, x2 is aligned with the cross-stream velocity component, 〈u2〉,

and x3 is aligned (positive upward) with the wall-normal velocity component,

〈u3〉. This is achieved by minimising 〈u2〉 and 〈u3〉. Within this frame of reference,

the zero-mean velocity (turbulence) of the flow, u′i, is established using Reynolds’

Decomposition, i.e.:

u′i ≡ ui − 〈ui〉 (3.1)

where, 〈ui〉 is the mean of the velocity component i (discussed in §3.5.3).

The ADCP, ADV and 3D-PTV instrumentation that were used are discussed

in connection with their data processing in §3.2, §3.3 and §3.4, and the char-

acteristics of the data sets that will be examined in subsequent chapters are

summarised in §3.5.
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Figure (3.1). Illustration of the submersible 3D-PTV system, ADCP and ADV

(after Nimmo-Smith (2007)).

3.2 ADCP

3.2.1 Instrumentation

An ADCP is a three-dimensional, remote-sensing, monostatic system offering

velocity measurements at a high sampling rate at multiple points along a single

profile of the water column. The system consists of four transducers, set in a

convex arrangement inclined 20 ◦ from vertical, that emit a sound pulse at a fixed

frequency and listen to echoes returning from scatterers in the water column. The

pulse-coherence and the Döppler frequency shift are used in obtaining the three

velocity components. To do so, the along-beam component is recorded along each

beam axis and these are then combined to give orthogonal measurements using
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a transformation matrix.

In the present study, two ADCPs were used in obtaining the background

flow conditions. A 600 kHz downward-looking ADCP (operated in Mode 12) was

mounted on a pole on the surface support vessel, providing a velocity profile

between the sea-bed and the sea-surface, with a vertical bin separation of 0.50 m

and a sampling frequency of 2 Hz. A complementary 1200 kHz downward-looking

ADCP (operated in Mode 11) was mounted on the underwater frame 0.50 m

upstream of the 3D-PTV sample volume, providing a velocity profile between

0.25 m and 1.25 m above the sea-bed, with a vertical bin separation of 0.02 m and

a sampling frequency of 2 Hz.

3.2.2 Data processing

The four transducers on an ADCP offers redundancy in the computation of the

three-dimensional velocity recorded by the system. This redundancy is utilised

internally to establish the data quality. Velocity measurements of insufficient data

quality are identified by the manufacturer-supplied ADCP processing software,

and these are subsequently eliminated.

3.3 ADV

3.3.1 Instrumentation

An ADV is a three-dimensional, remote-sensing, bistatic system offering velocity

measurements at a high sampling rate at single points (i.e. a single 1.49 cm3

sample volume, 15 cm from the sensors). The system consists of one transmitter
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and three (separate) receivers that work on the basis of the pulse-coherence and

the Döppler frequency shift, similar to an ADCP.

In the present study, one ADV was mounted on the underwater frame adja-

cent to, but 0.50 m downstream of, the 3D-PTV sample volume. The ADV was

used during sampling to monitor the orientation of the system to the mean flow

direction in real-time to ensure the underwater instrumentation did not interfere

with the flow structures, as well as providing auxiliary velocity measurements

and turbulence statistics used in later analysis. Therefore, triggering of the ADV

was synchronous with the 3D-PTV system, at a sampling frequency of 25 Hz. To

limit the effects of the hardware on velocity measurements, the nominal range

of the ADV was set to 100±1 cm s−1 to be able to resolve a maximum vertical

velocity of 60 cm s−1 and a maximum horizontal velocity of 210 cm s−1.

3.3.2 Data processing

ADV measurements represent the joint effects of flow velocity, as ambiguous data

generated by air bubbles, Döppler noise, and the flow rate exceeding the nominal

range of the system (Volguaris and Trowbridge, 1998). Such ambiguous data

are connected with spiking and aliasing, and must be eliminated to prevent the

contamination of turbulence statistics.

3.3.2.1 Despiking

Ambiguous data connected with spiking is characterised by a deviation from the

local velocity trend that, uncorrected, will bias flow quantities. The difficulty is

that this spiking is qualitatively similar to turbulence; a fact that complicates
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Figure (3.2). (A) ADV velocity time-series with spikes identified. (B) The

corresponding clean signal after despiking with the phase space method.

its detection (Figure 3.2). Therefore, several despiking methods have been pro-

posed, from using signal coherence parameters to using low-pass filtering, moving-

averaging or acceleration criteria.

Traditionally, manufacturer-recommended data processing methods suggest

the ADV phase correlation (COR) and signal-to-noise ratio (SnR) parameters

allows the ambiguous data to be identified where the instantaneous velocity mea-

surements of COR< 70 % and SnR< 20 dB. However, Mori et al. (2007) estab-

lished that such noise occurs randomly across the full velocity range and, contrary

to common belief, exhibit no correlation with the COR and SnR data and there-

fore phase-space methods are preferred.

Used for their accuracy, efficiency and lack of empirical tuning parameters,
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such phase-space methods were originally developed by Goring and Nikora (2002)

and modified in three-dimensions by Wahl (2003). These apply a three-dimensional

Poincaré map, where the zero-mean velocity, u′i, is plotted against its derivatives,

∆u′i and ∆2u′i. To illustrate this, ADV data in Figure 3.2A are plotted in phase-

space in Figure 3.3. The valid data are clustered within an ellipsoid, whose shape

and size are determined by the standard deviation of u′i, ∆u′i and ∆2u′i, as well

as a universal parameter, λU , determined by the length of the velocity time-

series (Donoho and Johnstone, 1994). Ambiguous data connected with spiking

are those points that plot outside the ellipsoid. This separation is exaggerated

for the derivatives, as differentiation accentuates the high-frequency components

(Graham, 2010). Despiking is completed after an iterative process, where the

quantity of valid data in all three velocity components asymptotes. Since the

ADV data are recorded along each beam axis and converted into orthogonal co-

ordinates, these are not independent such that one affected beam will bias all

three velocity components. Therefore, the equivalent data are eliminated in the

other velocity components, whether or not they contain identified spiking.

To illustrate the effectiveness of phase-space methods over manufacturer-

recommended data processing, ADV data in Figure 3.2 – processed using the

COR, SnR and phase-space methods – are presented in Table 3.1. Here, 1.01 %

of the velocity time-series consists of spiking identified in phase-space, while all

meet the COR criteria and 92.31 % fail to meet the SnR criteria. It is apparent

that filtering using the COR and SnR criteria are inadequate at providing reliable

despiking and so are avoided.
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Figure (3.3). Example of phase-space analysis of ADV data for the along-

stream velocity component.

U1 U2 U3 samples

Phase-Space 120 112 71 29999

COR Criteria 0 0 0 29999

SnR Criteria 1930 24159 1602 29999

Table (3.1). Comparison of phase-space spike detection with those identified

with reference to quality indicators (Correlation and SnR) less than manufactur-

ers recommended thresholds.

3.3.2.2 Spike replacement

Regardless of how spiking was detected it is essential that data eliminated is

refilled to preserve the temporal characteristics of the signal, as well as being
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necessary in using iterative phase-space methods. This replacement is essentially

an arbitrary process with several methods available, none with any more validity

than any other. What is critical, however, is that spike replacement does not

add any additional spiking. Therefore, in the present study, a cubic polynomial

interpolation across the affected area (consistent with Mori et al. 2007) is used.

3.3.2.3 Denoising

Similar to spiking, aliasing of Döppler noise will also bias flow quantities. This

aliasing is characterised by a folding of the signal from a higher frequency to a

lower frequency, and rectified by low-pass filtering the velocity time-series to elim-

inate any signal components exceeding the Nyquist frequency. As this Döppler

noise occurs randomly, is non-biased and Gaussian (Graham, 2010), the aliasing

effects are eliminated by low-pass filtering the velocity data using a Gaussian

smoothing function (Biron et al., 1995), i.e.:

R(t) = (2πσ2) exp

(
−t2

2σ2

)
(3.2)

where, σ is the standard deviation of the normal curve, with a half-power fre-

quency (f50) equalling fs/6:

σ =

(
ln 0.50.5

−2π2f 2
50

)0.5

(3.3)

To illustrate the loss of these higher frequency components, the power-spectra

of the raw velocity time-series (Figure 3.2) and the results of the Gaussian low-

pass filtering are compared in Figure 3.4. The raw velocity data exhibit a noise

floor between 5 m−1 to 10 m−1. Filtering removes a significant proportion of the
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Figure (3.4). Power spectral density (PSD) of the raw (red) and the Gaussian

low-pass filtered (blue) ADV time-series.

noise in the raw signal, allowing better visualisation of the characteristic k−5/3

slope.

Graham (2010) established the order that despiking and denoising are applied

have no impact on the total change these processes impart on the results. Note

that while, in the present study, these specific despiking and denoising methods

(applied in that order) are used, there is currently no firm agreement on standard

ADV data handling protocols within the community (Graham, 2010).
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3.4 PTV

3.4.1 Instrumentation

The submersible 3D-PTV system used in the present study was developed by

Nimmo-Smith (2008) at the University of Plymouth (Plymouth, UK). The system

consists of four 1004 × 1002 pixel, 30 frame/s, 8 bit digital cameras with 9 mm

lenses that view a 20×20×20 cm3 sample volume. Naturally-occurring suspended

particles are used as tracers. An aperture of f/9 allows sufficient depth-of-field

for the suspended particles to be in-focus within the sample volume, while an

exposure of 2.5 ms allows these to be recorded blur-free in a mean flow of up

to 20 cm s−1 (determined by the specifications of the cameras, the sampling rate

and the seeding density of the particles). Illumination of the sample volume is

necessary to account for the natural tracers, small aperture and short exposure

that are used, and this is yielded by four 500 W underwater lights. Since the

submersible 3D-PTV system is deployed in moving water, at an angle to the

mean flow, convection generated by these underwater lights is minimal.

Electrical power is supplied from a surface support vessel by a 50 m umbilical

cable. The umbilical cable also allows communication by RS422 – as well as

an Ethernet connection – to the 3D-PTV master computer, that synchronises

triggering of the cameras at a rate of 25 Hz. Data from each of these cameras

is transmitted by a 2 m IEEE-1394 Firewire cable to four acquisition computers,

each with 2 × 400 GB of SATA hard disk storage (3.2 TB total). Commercially

available mini-ITX computers are used for their convenience, cost and size. The

3D-PTV master and four acquisition computers run a Linux OS, that allows
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sampling to be administered remotely by special acquisition software. A real-

time kernel synchronises the processes, with a maximum jitter of 5µ s.

All underwater components are mounted such that the light scattering from

the suspended particles is maximised, while the illumination of the sea-bed is

minimised to increase the signal-to-noise ratio (SnR). The common volumes be-

tween the cameras and the lights is also minimised to limit contamination from

unfocussed particles, as shown in Figure 3.1.

3.4.2 Calibration

The calibration of the 3D-PTV system is necessary to relate the exposures from

the four independent cameras such that the three-dimensional position of the

particles is yielded. This is done in situ, just before sampling, using a moving

single-point target (1× 3 mm � Light Emitting Diode, LED) and self-calibration

methods (Svoboda et al., 2005). Here, movement of the LED within the 3D-PTV

sample volume is recorded by the cameras. After the position of this single-point

target is extracted, an iterative process of target pairing, verification, projection,

non-linear distortion estimation and re-projection is used for the refinement of

the calibration (until re-projection errors of less than 0.35 pixel are attained).

Finally, measurements between cameras are used to align the calibration with a

physical coordinate system. The scaling and the alignment of the sample volume

are verified using a moving two-point target and static three-point target. A

sequence of more than 500 tracers, with good coverage of the sample volume,

allows high-quality calibration and can also account for the refraction that occurs

within images (Nimmo-Smith, 2008).
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Figure (3.5). Verification of the calibration procedure, showing three-

dimensional views of the distribution of scale check-point within the sample

volume, shaded by variation.

The calibration of the 3D-PTV system is assessed every time it is deployed.

To do so, the movement of a reference target (that consists of 2× 3 mm � LEDs,

with a fixed separation of 50 mm between them) is recorded by the cameras. The

Particle Tracking Velocimetry software (§3.4.3), and the output from the single-

point target calibration, are used to extract the three-dimensional coordinates

of the reference target and their separation, s, is determined. The pattern of

the variation of this separation is presented in Figure 3.5. While the calibration

results in an accurate scaling of the reference target (where 53.76 % of points

exhibit < 2.5 % variation), 18.50 % of points exhibit > 5.0 % variation from the

true separation (s = 50 mm). These points are randomly scattered within the

sample volume and, as such, are resistant to a correction based on the output

from the two-point target data.
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Figure (3.6). Frequency distribution of the orientation of the system to the

two LEDs, by angle (from parallel to perpendicular), shaded by the variation.

To reconcile adjacent points exhibiting a different variation from each other,

the orientation of the system to the two LEDs must be considered. This is

necessary as an LED is not a point light source, meaning that any preferred

orientation will impact on the detection of the centroid and, subsequently, on the

separation determined. Based on the dimensions of the target and the diameters

of the LEDs, such mis-detection can account for up to 6 % variation from the true

separation (s = 50 mm).

Figure 3.6 presents a frequency distribution of the orientation of the system

to the two LEDs, by angle (from parallel to perpendicular), and shaded by the

variation, s. Despite the high degree of scatter within the data, it is apparent

that this increase of angle is accompanied by an increase of s, as confirmed by an
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r2 = 0.5631. Such artefacts have long been a persistent issue in image processing

(Davies, 2013), requiring that action must be taken in data processing (§3.4.3)

and data post-processing (§3.4.4) to mitigate against these effects.

3.4.3 Data processing

Data processing is completed in three stages using the special “Particle Tracking

Velocimetry” software developed by Maas et al. (1993) and Willneff (2003). Here,

particles are identified within the exposures from the four cameras by high-pass

filtering, segmentation and weighted-centroid methods. In addition, maximum

and minimum size criteria are used to limit contamination by noise or large

objects. The calibration parameters are then used to relate the exposures from

the four independent cameras, such that the three-dimensional positions of the

particles are yielded. Finally, tracking of the particles is done in both image- and

object-space, running the sequence in both directions so that linkages between

adjacent frames are maximised.

The new spatial-temporal tracking algorithm enhances tracking efficiency, per-

mitting higher seed densities and longer trajectories, even in complex turbulence.

Redundant tracking data, in both image- and object-space, as well as estimates

of the position of the particles, are used to limit any ambiguities. This tracking

algorithm is dependent on several parameters. Minimum and maximum velocity

criteria are used to define a search area, limited by a permissible acceleration

and angle. In cases of ambiguities, the particles with the smallest acceleration

are selected. Under optimum laboratory conditions, the 3D-PTV system can

track more than 1000 particles concurrently. These are located within the sample
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volume to within 0.25 mm, limited by the irregularities of the particles and the

specifications of the cameras.

While static parameters are adequate with a steady flow, unsteady flow (e.g.

from wave motion) causes these to be exceeded, giving poor results. Where the

amplitude of the unsteady flow is comparable to (or more than) that of the mean

flow, it is essential that dynamic parameters are used. The necessary adjustment

of the tracking software to update parameters with a velocity time-series was

developed by Nimmo-Smith (2008).

To limit the jitter arising from imaging errors, the position of the particles at

each time-step, t, is determined by low-pass filtering the position data, xi, using

a moving cubic spline:

xi(t) = ci,0 + ci,1t+ ci,2t
2 + ci,3t

3 (3.4)

The constants of Equation 3.4 are fitted to 7 points along the trajectories at

each time step, from t− 3 to t+ 3. After filtering, the velocity, ui is determined

by differentiation of Equation 3.4:

ui(t) = ci,0 + ci,1t+ ci,2t
2 (3.5)

The mean of the three velocity components are used to rotate the coordinate

system such that x1 is aligned with the along-stream component of velocity, 〈u1〉,

x2 is aligned with the cross-stream component of velocity, 〈u2〉, and x3 is aligned

(positive upward) with the vertical component of velocity, 〈u3〉.

Figure 3.7 presents an instantaneous sample of 150 particles tracked by the

3D-PTV system. Here, some of the particles are tracked over more than 60
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Figure (3.7). Instantaneous three-dimensional distribution of suspended parti-

cles as they are tracked by the 3D-PTV system (red dots). The grey tail behind

each particle shows its location in the preceding time steps.

frames (> 2.4 s) as they are carried by the mean tidal flow, weak wave motion

and turbulence. Typically, 100 particles survive the low-pass filtering at each time

step and are used in obtaining an instantaneous velocity flow field. An example

sequence of the three-dimensional instantaneous velocity flow field (of frames

up to, and that includes, Figure 3.7) is seen in Figure 3.8. The instantaneous

mean velocity, 〈ui〉, is subtracted from each of these vectors to reveal turbulence

structures. This large (10 cm �) vortex, advected through the sample volume at

10 cm s−1, is consistent with the two-dimensional data presented by Nimmo-Smith

et al. (2005). Therefore, these visualisations will allow the full three-dimensional
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Figure (3.8). Time-sequence of instantaneous distributions of the three-

dimensional velocity structure at intervals of 0.04 s. The sample volume mean

velocity components have been subtracted from each vector. Vectors are coloured

and scaled by the velocity magnitude. The reference vectors in the upper left of

the frame are for u=2.0 cm s−1, 1.5 cm s−1, 1.0 cm s−1 and 0.5 cm s−1. The mean

flow is in the direction of the x-axis.
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form of similar coherent structures to be examined.

3.4.4 Data post-processing1

The noise and gaps present in experimental measurements typically affects the

accuracy of the data collected (Westerweel, 1994, Raffel et al., 2007). The noise

arises from errors connected with the characteristics of the particles and their

representation in the images (Hart, 2000). A low seeding density complicates

these issues, as well as any subsequent analysis (Cenedese and Querzoli, 1997,

2000, Stanislas et al., 2004).

In recent years, several methods have been developed for the denoising and

restoration of such data; exploiting the statistical or the physical characteristics

of the velocity flow field.

In statistical methods, individual vectors that depart from the ensemble of

the recorded velocity flow field are identified and subsequently eliminated. Such

data post-processing commonly consists of using global-mean, local-mean or local-

median tests or using global histogram operators (Westerweel and Scarano, 2005,

Raffel et al., 2007, Duncan et al., 2010). Here, it is assumed that locally-occurring

errors are randomly scattered within the sample volume, and that a sufficient

quantity of tracers are present for the outliers to be detected. These methods

are used for their convenience, computational cost and ease of implementation.

1This material is adapted from: A. Vlasenko, E.C.C. Steele and W.A.M. Nimmo-Smith

(2015). A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements,

Measurement Science & Technology, 26, 065301 (23pp). The algorithm was developed by A.V.

and was applied to 3D-PTV by E.C.C.S. The text of the paper was jointly authored by A.V.

and E.C.C.S and included as Appendix 1.
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However, only individual vectors are eliminated and not the noise that exists

homogeneously within the sample volume.

Concomitant issues relate to infilling gaps in experimental measurements, and

are tackled after statistical denoising. The restoration of ‘gappy’ data commonly

consists of using different types of interpolation, e.g. kriging, nearest neighbour

or polynomial interpolation from linear to nth order (cf. Stuer and Blaser 2000).

Similarly, methods that employ Proper Orthogonal Decomposition have gained

popularity, remaining cost efficient while still being applicable to any type of

flow (Venturi and Karniadakis, 2004, Gunes and Rist, 2008). These exhibit good

restoration capabilities where the sparsity of these data are 50 %, but the perfor-

mance decreases as the sparsity of the data approaches 20 %.

In physical methods, hydrodynamical equations, e.g. Navier-Stokes (NSE) or

Vorticity Transport Equations (VTE), are used for the restoration of noisy and

gappy data. Typically, this is achieved by fitting numerical pre-estimates of

the (same) velocity flow field to data collected from experimental measurements

using Kalman filtering (Suzuki, 2012) or variational methods (Okuno et al., 2000,

Suzuki et al., 2009a,b), such that they are similar. Since the velocity data from

these schemes are determined from the results of the numerical hydrodynamical

model, the results of the restoration are physically-plausible yet are not limited

by the occurrence of noise or the sparsity of the data. However, this is only

feasible where numerical pre-estimates of the velocity flow field are possible (i.e.

where boundary and initial conditions are known a priori).

Contrary to methods using numerical pre-estimates, Sciacchitano et al. (2012)

suggested deriving boundary conditions directly from experimental measurements,
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that are then used to infill gappy data in a physically-plausible way. However,

this is very sensitive to noise (Sciacchitano et al., 2012).

All these methods are able to be used for the denoising and restoration of ex-

perimental measurements within the context of a well-prepared laboratory set-up,

where no unsuitable particles are present and tracers with known light scattering

characteristics are selected and seeded in the velocity flow field. Tuning labora-

tory settings (e.g. by optimising the concentration / size of the particles tracked)

results in the permissible level of gaps and noise that allows successful restoration

using existing methods. Even if gaps and noise cannot be sufficiently reduced, the

laboratory set-up offers enough details that numerical pre-estimates are possible,

as the boundary conditions or the pattern of the velocity flow field are known a

priori. However, in several cases, it is not possible for these gaps and noise to be

sufficiently reduced nor any pre-estimates to be made. An example of this is seen

in PIV and PTV measurements in ocean flows (Nimmo-Smith et al., 2002, 2005,

Nimmo-Smith, 2008) where the arrangement of usual experimental conditions us-

ing ideal tracers is not possible and naturally-occurring suspended particles are

used instead. The uneven shape of these particles, scattered inhomogeneously

within the velocity flow field, causes an increase in the occurrence of gaps and

noise that, in turn, complicates any later analysis. In addition, as only the part

of the ocean advected through the sample volume are recorded, the boundary

conditions are unknown and numerical pre-estimates are not feasible. Therefore,

restoration of such data with existing methods is debatable; requiring the de-

velopment of a new Physics-Enabled Flow Restoration Algorithm (PEFRA) for

these velocity measurements (Vlasenko, Steele, and Nimmo-Smith, 2015). This
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is founded on a hydrodynamical basis, as represented by the Vorticity Transport

Equation (VTE), however it is independent of specified boundary conditions and

the algorithm exhibits a weak sensitivity to noise, as confirmed by tests using

both artificial / numerical and in situ experimental data.

PEFRA is from the same pedigree as the Physically-Consistent and Efficient

Variational Denoising (PCEVD) algorithm developed by Vlasenko and Schnorr

(2010), but with a significant improvement that allows restoration of gappy and

noisy data. Both methods conform to a black box philosophy, requiring no specific

user-background in fluid dynamics (except in special cases) and may be applied to

any velocity time-series, formed from any type of flow and corrupted by any type

of noise. However, PCEVD is limited in the sparsity permitted, especially under

turbulence. This failing is corrected in PEFRA, and confirmed by the restoration

of a velocity flow field with only 10% of data available.

Following data processing (§3.4.3), the experimental measurements are pro-

jected from an irregular grid onto a regular grid, where only the nearest neighbour

of each of the detected particles are filled by interpolation (and all others set to

zero) to minimise noise that arises from gridding. Similarly, if the distance, D,

between each of the particles and the nearest grid node exceeds 0.5
√
h2
x + h2

y + h2
z

(where, hx, hy and hz are the spatial discretization in X, Y and Z, respectively),

these grid-points are set to zero also. Note that this algorithm is therefore adapt-

able to processor speed and memory such that, in theory, at an infinite resolution,

all the particles will fall on the grid exactly.

The quality of the subsequent restoration is assessed using the normalized

root-mean square error, ∆n, and the mean angle deviation, θ. Since the in-
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situ velocity flow field has an arbitrary turbulent pattern and the PIV or PTV

instrumentation is directionally independent, it is assumed that the noise has

zero-mean and its level in these experimental measurements is at least twice as

small as the level of the signal. In these cases, the variation between the root-

mean-square difference of the noisy and the true flow is not greater than 12% and

may be considered as approximately equal.

Consistent with past in situ 2D-PIV measurements (Nimmo-Smith et al., 2002,

2005), a variety of different conditions were recorded, as characterised by different

turbulence strengths (I =
√
u2 + v2 + w2). Here, the restoration of two different

conditions – corresponding to the 5th (I = 0.6065 cm s−1) and the 85th (I =

1.0929 cm s−1) percentile of the turbulence strengths during an example 10 min

time-series – are discussed. The sparsity of these flows are 2.14 % and 1.95 % while

their characteristic lengths are 9 and 8 grid-points, in turn. Therefore, following

Vlasenko et al. (2015), the critical sparsity equals 1.09 % where I = 0.6065 cm s−1

and 1.56 % where I = 1.0929 cm s−1. Since the sparsity of these data exceeds the

critical sparsity condition, it is expected that a successful restoration is possible.

Three orthogonal cross-sections of these flows are presented in Figure 3.9A to

Figure 3.9C and Figure 3.9D to Figure 3.9F. The vectors corresponding to the

PEFRA input (red) and the PEFRA output (black) are overlapped to illustrate

the adjustment made. The projection of the convex hull of the tracked particles,

representing the area where data were recorded, is shaded white. The subsequent

restoration of these data culminates in the vorticity iso-surfaces presented in

Figure 3.10A and Figure 3.10B. Qualitatively, Figure 3.10A exhibits small velocity

gradients typical of a low turbulence level and Figure 3.10B is consistent with that
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Figure (3.9). Row 1: cross-section of the velocity flow field corresponding

to the minimum turbulence intensities recorded. Row 2: cross-section of the

velocity flow field corresponding to the maximum turbulence intensities recorded.

In each case, the orientation of the slices are indicated by the axes. The 3D-

PTV measurements (red) and post-restoration velocity distribution (black) are

overlapped. The projection of the convex hull of the tracked particles is shaded

white.

expected of a higher turbulence level. While these cannot themselves confirm a

correct restoration, the excellent agreement between the PEFRA input and the

PEFRA output for the two different conditions, as well as that of the coherent

structures and the turbulence level (Adrian, 2007), implies the physics of these

flows have been successfully restored. Specific details of the restoration of Figure
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Figure (3.10). Vorticity iso-surfaces of the PEFRA output for the two condi-

tions presented in Figure 3.9.

3.10A and Figure 3.10B are quantified below.

Figure 3.11 presents an instantaneous velocity flow field where I = 0.6065 cm s−1.

Here, 79 particles output by the tracking software survived filtering by moving cu-

bic spline (Figure 3.11A). For the grid used (hx = hy = hz = 1 cm), D > 0.87 cm

at one of these grid-points (red ‘+’ markers). The interpolation of the velocity

components onto the remaining grid-points results in a usable number of seed-

points for the new algorithm of 78 (green ‘+’ markers). After the application of

PEFRA ∆n and θ are quantified on a particle-by-particle basis (Figure 3.11B).

The corresponding velocity flow field that has been modified by PEFRA is pre-

sented in Figure 3.11C, where the instantaneous sample volume mean velocity
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Figure (3.11). An instantaneous velocity flow field with a low turbulence

strength: (A) output from the tracking software and gridding process; (B) The

∆n (vector scale) and θ (vector colour) between the input and output velocity flow

field at each of the seed-points; (C) Velocity distribution (coloured and scaled by

the velocity magnitude) corrected by PEFRA; (D) Velocity distribution (coloured

and scaled by the velocity magnitude) not corrected by PEFRA

.

components have been subtracted from each of the vectors to reveal the three-

dimensional turbulence structures. This is similar to the pattern of the velocity

flow field presented in Figure 3.11D, where PEFRA was not applied. The cause of

this similarity is that the sparsity of the data exceeds the critical sparsity condi-

tion by a factor of two and therefore will not affect the quality of the restoration.

This, in turn, is aided by the small velocity gradients within the sample volume

meaning that both large particles and small particles will follow the streamlines
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Figure (3.12). An instantaneous velocity flow field with a higher turbulence

strength. The visualisation process is as per Figure 3.11.

alike. Consequently, neither particles increase the noise level substantially.

Figure 3.12 presents an instantaneous velocity flow field where I = 1.0929 cm s−1.

The format of these panels are the same as for the last figure, with 75 unique

seed points used (Figure 3.12A). An increase in ∆n and θ on a particle-by-particle

basis (Figure 3.12B) is visible and more adjustment seen in the velocity flow field

that was modified by PEFRA (Figure 3.12C) over that where PEFRA was not

applied (Figure 3.12D). The cause of this adjustment is that the sparsity of the

data is nearer the critical sparsity condition and therefore a very small part of

this modification is likely to be an error (that increases as the sparsity of the

data approaches the critical sparsity). This, in turn, is compounded by the large

velocity gradients within the sample volume, as large particles cannot react to
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these as quickly as small particles and are affected by differential shear along their

length.

As a verification of the adjustment made by PEFRA, the image containing a

record of each of the particles must be examined to establish whether individual

tracer characteristics (e.g. bubbles, large or heavy particles) are responsible for

these differences. Figure 3.13 presents three sections of the image, viewed from

each of the four different camera angles. The particles corresponding to the

frame minimum ∆n (0.6798) and frame minimum θ (0.0461) are highlighted in

Figure 3.13A and Figure 3.13B. Although exhibiting the differences in shape

expected of natural particles, these appear to be small in size and therefore the

lack of adjustment is in agreement with the reasoning that they will not affect the

noise level as much as a larger, more irregular particle. Accordingly, the particle

corresponding to the frame maximum ∆n (29.2589) and θ (15.9934) is revealed in

Figure 3.13C to be a larger, irregular aggregate typical of a sediment floc. Such

particles increase the noise level, and therefore need adjustment by PEFRA. Note

that this connection to individual tracer characteristics is appropriate as there

are a sufficient number of particles within the sample volume for the algorithm

not to fail, while the small distance that separates these from their nearest grid-

points (i.e. D < 0.87 cm) ensures that errors linked with interpolation will also

be small.

This approach also provides a secondary method of validation. In 3D-PTV, in-

dividual particles are tracked as they are advected through the three-dimensional

sample volume. If a time-series of the instantaneous velocity flow field is examined

(Figure 3.14A, Figure 3.14B and Figure 3.14C), it may be seen from the stream
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Figure (3.13). Three sections from the 3D-PTV image (A to C), viewed from

each of the four different camera angles. The particles nearest the grid-points

corresponding to: (A) the frame-minimum ∆n; (B) the frame-minimum θ; (C)

the frame-maximum ∆n and frame-maximum θ are highlighted.
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Figure (3.14). (A to C) Time-series of the instantaneous velocity flow field of

a three-dimensional coherent structure at intervals of 1/25 s. Visualisation pro-

cedures are as in Figure 3.11 and Figure 3.12. (D) Time-series of the adjustment

made by PEFRA to 6 particles that represent the 3 maximum and 3 minimum

∆ corrections made in (B) over a sequence of 7 frames. (E) Time-series of the

adjustment made by PEFRA to 6 particles that represent the 3 maximum and

3 minimum θ corrections made in (B) over a sequence of 7 frames.

.
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ribbons that depict the gridded PEFRA output that the same coherent vortical

structure is spatially and temporally coherent, and from the cones that depict the

gridded particle positions that these progress through the sample volume. If the

PEFRA output were incorrect, then there would be no coherence in the struc-

ture over the sequence of snapshots. Additionally, for any single particle moving

through the sample volume, a similar correction (related to the individual tracer

characteristics, as discussed with Figure 3.13) may be expected. Figure 3.14D

and Figure 3.14E presents time-series of the correction of a total of 12 differ-

ent particles associated with the maximum and minimum adjustments that were

made in Figure 3.14B to the total difference and angle deviation, respectively,

over a sequence of 7 frames. These are seen to be both spatially and temporally

invariant, giving confidence that it is the physical characteristics of the particles

that causes the errors that are successfully corrected by PEFRA.

To complement the assessment of the instantaneous velocity flow fields pre-

sented above, Figure 3.15 shows a time-series of the turbulence strength and total

particle count (Figure 3.15A and Figure 3.15B), as well as the corresponding ∆n

and θ quantities (Figure 3.15C and Figure 3.15D). An increase in the sample vol-

ume mean turbulence intensities are generally connected to the passage of large

coherent motions. This, in turn, is associated with the corresponding increase

in ∆n and θ that arises from tracking difficulties when the flow structures are

more complex. In extreme instances of swimming particles not advected through

the flow field, however, a single tracer can bias both restoration and turbulence

statistics. An example of this is presented in Figure G.19, where one particle is

seen to move very differently to that of the pattern of the velocity flow field and
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Figure (3.15). Time-series of the sample volume (A) mean turbulence strength,

(B) total particle count, (C) frame-averaged ∆n and (D) frame-averaged θ. The

black lines represent where the velocity distributions shown in (a) Figure 3.11,

(b) Figure 3.12 and (c) Figure 3.16 occurs in the sequence.
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Figure (3.16). (A) The ∆n and θ between the input and output velocity flow

field at each of the seed-points. (B) Section from the 3D-PTV image, viewed

from each of the four different camera angles, with the particle responsible for

the single large vector in (A) highlighted.

necessitates a large adjustment by PEFRA (Figure 3.16A). The examination of

the original image (Figure 3.16B) reveals that this ‘particle’ has a distinct body

and tail, is 4.0 mm in length, and swims at a speed of 5.68 cm s−1, or 14.2 body

lengths per second. These quantities are consistent with laboratory measure-

ments of the swimming speed of fish larvae (Bellwood and Fisher, 2001). This

contamination is easily eliminated by removing single outliers using local ∆n and

θ anomalies and reprocessing the affected frame, but the example also confirms

that PEFRA correctly identifies erroneous biological particles in situ.

3.4.5 3D-PTV

As an assessment of the data recorded by the 3D-PTV system and its processing,

Figure 3.17 compares an example 10 min time-series with the equivalent data

recorded by the 1200 kHz ADCP and the ADV. It is seen that a good agreement

exists between the mean 3D-PTV velocity measurements (both with and without
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PEFRA) and that from the ADCP and the ADV, all exhibiting the same effects

of mean tidal flow and small amplitude oscillatory motion from surface gravity

waves (Nimmo-Smith, 2008). Any small difference between the instrumentation

arises from the separation between, and the size of, the sample volume of each

of these systems. An additional, comprehensive, assessment of the submersible

3D-PTV system was reported by Nimmo-Smith (2007), Nimmo-Smith (2008) and

Vlasenko et al. (2015). The results confirm the potential of the system for the

study of three-dimensional turbulence characteristics of ocean flows in situ.

In contrast to traditional instrumentation, time-resolved submersible 3D-PTV

is capable of providing an instantaneous snapshot of the velocity flow field in a

20 × 20 × 20 cm3 sample volume and therefore represents an important tool for

the study of coherent structures. However, consistent with any image-based in-

strumentation, this is associated with a much higher computational cost (both in

data collection and processing) than other systems. Similarly, these are limited to

flow conditions containing sufficient particles to reveal the turbulence character-

istics but not so many as to overload the Particle Tracking Velocimetry software.

Tracking of particles is possible in a mean flow of up to 25 cm s−1, becoming more

difficult as the mean displacement between images exceeds the mean separation

of the particles, however this is adequate for the conditions typical within the

bottom boundary layer of the coastal ocean (Nimmo-Smith et al., 2002, 2005).

As with other methods that use the scattering of light and sound to determine

velocity, 3D-PTV assumes that particles act as neutrally-buoyant tracers of the

velocity flow field. Individual tracer characteristics (e.g. bubbles, large or heavy

particles) will, therefore, bias the results. However, in these cases, the use of
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Figure (3.17). Comparison between the 3D-PTV, ADV and ADCP data over

a 10 min data series. The velocity (U1) in the direction of the mean flow is

shown. (A) High-resolution ADCP data. The vertical extent of the 3D-PTV

sample volume is indicated by the dashed lines. (B) Time series of the 3D-PTV,

ADV, ADCP data. The 3D-PTV data are the instantaneous sample volume mean

(with and without PEFRA), the ADCP data are averaged over the vertical range

bounded by the dashed lines in (A) and the ADV data have been low-pass filtered

at 1Hz to account for the differently sized sample volume.
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PEFRA allows such anomalies to be detected, and the original camera images of

each of the particles checked, when these unexpected results are encountered.

3.5 Data Sets

3.5.1 Time/site

The submersible 3D-PTV system was deployed on the night of 21-22 May 2007, on

the East side of Plymouth Sound (Plymouth, UK), at 50◦22′17′′N, 04◦08′32′′W

(Figure 3.18). Here, the sea-bed is flat and consists of mud and sand without

notable ripples or bedforms, and the depth of the water decreased from 14.0 m to

10.5 m during the accelerating phase of the ebb-tide (Figure 3.19). Near-surface

currents may be of up to ∼ 0.5 m s−1 during a spring tide, however this site is

sheltered from most surface wave motion by an artificial breakwater. Although

in an area of fresh-water influence, the water column was vertically well-mixed

with no density stratification (as confirmed by a single Conductivity, Temperature

and Depth cast, not presented).

After deployment and calibration, the frame was lowered to near the sea-

bed, such that it is able to align with the mean flow direction, before being set

down. Data were collected in ten runs, each of 20 minutes (30,000 frames), with

the centre of the sample volume at the elevation of 0.64 m above the seabed.

One of these runs is presented in this thesis. The mean velocity profile that

was recorded by the two ADCPs during the run, is presented in Figure 3.20,

with the area viewed by the 3D-PTV system marked by the two dashed lines at

z = 0.54 m and z = 0.74 m. It is seen that these 3D-PTV data were collected
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within a well-developed logarithmic layer, whose statistics are quantified below.

3.5.2 Statistics

To relate the in-situ data examined in the present thesis to the body of existing

work (Chapter 1), several scaling parameters must be quantified.

The boundary layer thickness, δ, is defined as the elevation above the seabed

where the mean flow equals 99 % of the free-stream velocity, u∞. This is deter-

mined for the mean ADCP data in Figure 3.20 using:

δ = 0.99umax. (3.6)

where, umax is the maximum horizontal velocity recorded by the 600 kHz

ADCP (i.e. 21.8911 cm s−1), assumed be to equal to u∞ and the flow assumed to

be steady over the period of averaging.

This is known to be a poorly conditioned quantity, however, as it is dependant

Figure (3.18). Location map showing the position of the 3D-PTV system

deployed in Plymouth Sound, Plymouth, UK.
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Figure (3.19). Time-series of tidal elevation. Data were collected in ten runs,

each of 20 minutes (30,000 frames), with the centre of the sample volume at the

elevation of 0.64 m above the seabed. The run used is denoted by the red cross.

on measurements of small velocity differences, meaning that integral parameters

(e.g. displacement thickness, δ∗, or momentum thickness, δθ) are commonly used

(Pope, 2000):

δ∗ =

∫ ∞
0

(1− u

u∞
)dz (3.7)

δθ =

∫ ∞
0

u

u∞
(1− u

u∞
)dz. (3.8)

For the mean ADCP data in Figure 3.20, δ=9.4456 m, δ∗ = 2.0719 m and

δθ=1.5655 m (labelled in Figure 3.20A), in turn giving several Reynolds numbers

(based on these thicknesses): Reδ ≡ (u∞δ)/ν = 1.6168×106, Reδ∗ ≡ (u∞δ
∗)/ν =

3.5465×105 and Reδ∗ ≡ (u∞δ
θ)/ν = 2.6797×105 (where ν = 1.2789×106 m2 s−1

is the kinematic viscosity of seawater at the elevation 0.5 m above the seabed).

Within the boundary layer, the mean velocity profile, u(z), follows the law of

the wall:
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Figure (3.20). (A) Vertical profile of mean horizontal velocity measured by the

600 kHz ADCP (circles) and the 1200 kHz ADCP (triangles). Horizontal dashed

lines show relevant boundary thickness parameters. (B) Least-squares fit to the

mid-section of the data showing a logarithmic profile.
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u(z) =
u∗
k

ln
z

z0

(3.9)

where, k = 0.41 is the von Kármán constant, z is the distance from the seabed,

z0 is a characteristic roughness (Schlichting, 1960).

Here, the friction velocity (u∗ =
√
τ∗/ρ, where τ∗ is the shear stress at the

wall and ρ is the density of seawater) is determined by fitting the ADCP data

to the logarithmic velocity profile expressed in Equation 3.9. The vertical extent

of the data used in obtaining this fit is limited to the logarithmic velocity profile

range (between 0.54 m and 0.74 m above the seabed) and results in an r2 =

0.99 (Figure 3.20B). The characteristic roughness, z0 is, similarly, determined

by regression. For the mean ADCP data in Figure 3.20, u∗ = 0.69 cm s−1 and

z0 = 0.07 cm. These, in turn, are used to convert the physical measurements to

their dimensionless equivalents (Chapter 1). Note that due to a lack of necessary

data sufficiently near the seabed, it is not possible for these estimates of u∗ and

z0 to be compared to that from other formulae. However, based on data collected

by Kim et al. (2000) and Biron et al. (2004), it is acknowledged that the methods

used are the most variable, with a typical error of ±20%.

3.5.3 Mean flow

Throughout the present thesis, a ‘mean flow’ is defined is several ways, depending

on averaging used. For ease of reference, this terminology is consistent with that

of Luznik (2006).

A temporal average is labelled ui, and defined as:
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ui(x, y, z) =
1

N

N∑
n=1

u(x, y, z, tn) (3.10)

where N is the number of particles and tn is a velocity time series.

A spatial average is labelled 〈ui〉, and defined as:

〈ui(t)〉 =
1

A×B × C

A∑
a=1

B∑
b=1

C∑
c=1

ui(xa, yb, zc, tn) (3.11)

where the specific elements within the sample volume (or data arrays) are indexed

with a, b and c for x1 (i.e. x), x2 (i.e. y) and x3 (i.e. z).

The run mean velocity consists of a spatial average of ui or, conversely, a

temporal average of 〈ui〉, and defined as:

〈ui〉 =
1

A×B × C ×N

N∑
n=1

A∑
a=1

B∑
b=1

C∑
c=1

ui(xa, yb, zc, tn) (3.12)

Figure 3.21 presents the time-series of 〈ui〉. Here, it is apparent that 〈ui〉

represent the joint effect of the mean tidal flow and waves or scales larger than

that of the 3D-PTV sample volume (however the amplitude of this is weak when

compared to 〈ui〉). Larger-amplitude, longer-period oscillations are also seen. The

effect of waves or scales larger than the size of the sample volume are characterised

by the rms velocity, defined as:

[ui]rms =

[
1

N

N∑
n=1

(〈ui(tn)〉 − 〈ui〉)2

] 1
2

(3.13)

The 〈ui〉 and [ui]rms data for the velocity time-series are presented in Table

3.2. As expected, the rms values exceed the global average values.

To ensure that appropriate conclusions are yielded in data analysis, other

sample volume mean flow parameters must be considered.
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Figure (3.21). Time series of sample volume mean velocity components.

〈u〉 〈urms〉

u1 13.2971 13.3096

u2 0.0034 1.1217

u3 0.0168 0.5950

Table (3.2). Mean and rms statistics for the data used.
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Figure (3.22). Sample volume mean velocity profile aligned with the x-axis.

Figure (3.23). Sample volume mean velocity profile aligned with the y-axis.
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Figure (3.24). Sample volume mean velocity profile aligned with the z-axis.
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Figure (3.25). Sample volume time-averaged flow conditions (zero-mean). The

small-scale coherent structures are only present around the periphery of the sam-

ple volume, contributing to a low SnR ratio.

The sample volume mean velocity profile (ui(xj)) is defined:

(ui(xj)) =
1

A×B ×N

N∑
n=1

A∑
a=1

B∑
b=1

ui(xj, a, b, tn) (3.14)

Figure 3.22, Figure 3.23 and Figure 3.24 present the sample volume mean

velocity profile aligned with the x1, x2 and x3 components. Most importantly,

these exhibit spatial variation across the sample volume, that will bias velocity

gradient statistics. Likely to be an artefact of poor illumination, this effect is

limited by confining averaging to within the middle part of the sample volume.
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Similarly, to confirm the absence of coherent structures within the (averaged)

zero-mean conditions, a Reynolds Decomposition was applied to ui, i.e.

u′i = ui − 〈ui〉 (3.15)

Figure 3.25 illustrates small-scale velocity gradients are only present around

the periphery of the sample volume, meaning that any coherent structures recorded

within the 3D-PTV sample volume are not an artefact of the mean flow.

3.5.4 Convergence

Turbulence statistics are dependant on the sampling rate, fs, and the sampling

duration, ts (Graham, 2010). While a high fs and ts are highly desirable, in

reality these parameters represent a compromise between necessary resolution

and instrumentation constraints. Typically, the sampling rate and duration for

existing 2D-PIV measurements in the coastal ocean is up to 4000 frames at a rate

of 3.33 Hz (Nimmo-Smith et al., 2005). While this is likely to be a reflection of

sampling limits and set up, a higher sample rate is used in 3D-PTV due to the

need to follow individual particles as this is easier of very small distances and

longer trajectories (Nimmo-Smith, 2008). Here, the optimum sampling rate is

bounded by the minimum distance over which particles may be resolved and the

velocity of the flow. In the present thesis fs = 25 Hz. The optimum ts may be

estimated from the long term data of the convergence to temporal stability, with

this being defined as the shortest duration to obtain stable statistics, e.g. 10,%

of the long-term mean (Graham, 2010). Figure 3.26 presents the convergence

to stability, yielding ts ≈ 600 s (red lines). Since the data reported within the
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Figure (3.26). Time-series of convergence to long term rms value for the sample

volume mean velocity components.

present study comprises a 1200 s period, this is approximately twice the minimum

ts and therefore these statistics are deemed to be representative.

3.6 Conclusions

In this chapter, the instrumentation that will be used for turbulence measure-

ments of a tidal flow have been discussed. These consist of a vessel-mounted

600 kHz Acoustic Döppler Current Profiler (ADCP) used in obtaining background

flow conditions, a 1200 kHz Acoustic Döppler Current Profiler, Acoustic Doppler

Velocimeter and submersible three-dimensional particle tracking velocimetry sys-

tem (3D-PTV).
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The methods of processing the raw data from each of these have been estab-

lished. For the Döppler instrumentation, this involves the removal of Döppler

noise contamination and spurious spiking. In the case of the ADCP this is

achieved using manufacturer supplied ADCP processing software, whereas in the

case of the ADV a combination of Gaussian low-pass filtering and phase space

despiking have been shown to be robust and consequently are used for the post

processing of ADV data. The 3D-PTV data processing involves an initial cali-

bration, that is used to relate the exposure from the four cameras, such that the

3D-position of particles is yielded. Tracking of particles is done in both image and

object space, running the linkages between adjacent fames, contained by dynamic

tracking parameters updated using a time-series from the ADV. The position of

the particles at each time-step is then determined by low-pass filtering the po-

sition signal with a moving cubic spline from which the velocity is obtained by

differentiation.

A complexity associated with submersible 3D-PTV in the coastal ocean is

that gaps and noise affect the accuracy of the data collected. To accommodate

this, a new Physics-Enabled Flow Restoration Algorithm has been tested for the

restoration of gappy and noisy velocity measurements where a standard PTV or

PIV laboratory set-up (e.g. concentration / size of the particles tracked) is not

possible and the boundary and initial conditions are not known a priori. Imple-

mented as a black-box approach, where no user-background in fluid dynamics is

necessary, this is able to restore the physical structure of the flow from gappy

and noisy data, in accordance with its hydrodynamical basis. In addition to the

restoration of the velocity flow field, PEFRA also estimates the maximum pos-
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sible deviation of the output from the true flow. When applied to submersible

3D-PTV measurements from the bottom boundary layer of the coastal ocean, it

is apparent that using PEFRA is beneficial in processing data collected under

difficult conditions, such as where the number (and reliability) of tracer-particles

is very sparse.

An excellent agreement exists between the restored sample volume mean veloc-

ity measurements recorded by the 3D-PTV system and the mean ADCP and ADV

data, confirming the potential of the system for the study of three-dimensional

turbulence characteristics of the bottom boundary layer of the coastal ocean.

77



78



Chapter 4

Three-dimensional coherent

structures

4.1 Introduction

Turbulence in shelf-seas has a strong influence on the large-scale distribution

of biological production (Tett et al., 1993) and suspended sediments (Jago and

Jones, 1998). Tidally-generated turbulence limits the areas of thermal stratifica-

tion (Simpson and Hunter, 1974), which in turn affects the shelf-sea “pumping” of

carbon dioxide and is an important process for the global carbon cycles (Thomas

et al., 2004). Modelling work has also shown that small changes in the vertical

distribution of the stress associated with turbulence can have a strong effect on

the patterns of circulation at much larger scales (Lentz, 1995). In tidal flows,

turbulence is generated near the seabed (Heathershaw, 1974). However, while its

one-dimensional characteristics have been well-studied, little is known of its three-

dimesional structure and subsequent development throughout the water column.
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On reaching the surface of well-mixed waters, bottom-generated “boils” – areas

of local upwelling and associated eddies – have a marked impact on the dispersion

of pollution and the contributes to the replacement of surface waters from depth

(Nimmo-Smith et al., 1999, Thorpe et al., 2008).

Laboratory measurements (Adrian et al., 2000b, Ganapathisubramani et al.,

2006, Dennis and Nickels, 2011a) and numerical modelling (Zhou et al., 1999,

Adrian and Liu, 2002, Wu and Moin, 2009) indicate the energy-containing tur-

bulence of boundary layer flows comprises coherent packets of “hairpin” vortices

(Robinson, 1991). These have a specific – but rarely, if ever, perfectly symmetri-

cal – form that, in an ideal case, consists of a cross-stream arch (comprising both

head and neck components) with two counter-rotating along-stream legs (Figure

4.1A). The induction of the flow surrounding the eddy causes an upward “burst”

inboard of the head and legs. It is here that vorticity elements are focused and,

in turn, cause an area of low-momentum fluid below and upstream of the arch.

Outboard of the head and legs, fluid flows down and forward, forming a sweep.

The induction of the flow here is unfocused and so the strength of the burst ex-

ceeds that of the sweep. The opposing burst / sweep motion causes a shear layer,

inclined at 25-45 ◦ from the boundary (Adrian, 2007). Two-dimensional flow vi-

sualisation methods have shown that these coherent structures (i.e. elementary

organised motions that exhibit both spatial and temporal persistence) also exist

in the bottom boundary layer of tidal flows (Figure 4.1B). Conditional sampling

based on vorticity revealed that these coherent structures contribute most to the

Reynolds stress and, as such, are the key areas where energy is extracted from the

mean flow and into turbulence (Nimmo-Smith et al., 2005). However, questions
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remain as to the full three-dimensional form of such coherent structures, that

may eventually grow into the depth-scale boils seen at the sea surface.

Here, for the first time, we present an analysis of the instantaneous three-

dimensional form of turbulence in the bottom boundary layer of a tidal flow. The

measurements shed light on the dynamical phenomena responsible for the sta-

tistical properties that are traditionally recorded by standard instrumentation or

obtained through numerical modelling, providing in situ evidence to support an

interpretation of the bottom boundary layer of the coastal ocean as comprising

coherent structures consistent with laboratory and numerical experiments pre-

sented in the scientific literature. The impact on the Reynolds shear stress and

spatial energy spectra is also examined.

4.1.1 Vortex identification

A vortex can be identified using the characteristic roots of the velocity gradi-

ent tensor, ∇u (Chong et al., 1990, Dallman et al., 1991) and the streamlines

containing the core said to be spiralling where two of these roots form a complex-

conjugate pair (Zhou et al., 1999). The swirling strength of this core (i.e. the

magnitude of the imaginary part of these complex roots, λci) is both quantita-

tively and qualitatively similar to the vorticity, however it is only associated with

the asymmetric part of ∇u corresponding to rotation and discriminates against

the symmetric part of∇u corresponding to shear. It is frame-independent, with a

firm mathematical basis and unambiguous physical interpretation (Adrian et al.,

2000a, Chakraborty et al., 2005).

Vortices are extracted by λci > t, where T is an arbitrary threshold; typically
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Figure (4.1). (A) Sketch of the form of a hairpin vortex in a boundary layer at a

moderate Reynolds number (after Adrian, 2007). (B) Sample instantaneous zero-

mean velocity and vorticity distribution and (C) corresponding swirling strength

distribution (and the zero-mean velocity associated with these peaks), obtained

from 2D in-situ flow visualisation measurements in the bottom boundary layer

of the coastal ocean (after Nimmo-Smith et al, 2005).

82



a few percent of the data maximum. While theoretically setting T = 0 is suffi-

cient to enable vortex identification, a higher threshold of λci yields a smoother

output, facilitating visualisation. Zhou et al. (1999) established that the general

topology of a vortex is independent of the magnitude of the λci threshold used,

with characteristics such as the tilt angle of the vortex heads, the tilt angle of the

vortex legs, the along-stream distance between successive vortex heads and the

cross-stream distance between the vortex legs all remaining unaffected. However,

as both the diameter and the length of the vortex decreases as the magnitude of

the λci threshold used increases, reliable statistics are not available for the scale

of these eddies.

To limit the effect of noise, a 3× 3× 3 box filter is applied to the data and a

λci = 0.25 s−1 threshold is used. This is consistent with the approach employed

in existing in-situ two-dimensional flow visualisation measurements by Hackett

et al. (2011). To show the effectiveness of the method, the data presented in

Figure 4.1B is replotted using the swirling strength in Figure 4.1C. To prevent

erroneous inferences based on vortices consisting of only a few points (e.g. isolated

velocity vectors in Figure 4.1C), only the statistics from those occupying at least

n ≥ 1.0% of the sample volume are counted.

4.2 Results and discussion

4.2.1 Flow structures

Figure 4.2A presents a time series of the sample volume mean turbulence intensity

over the 20 minute period, revealing the patchiness within the flow. Importantly,
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the peaks do not occur randomly, nor exist in isolation, but exhibit the temporal

persistence typical of the passage of a packet of hairpin vortices through the

sample volume (Adrian, 2007). This is highlighted in Figure 4.2B for a 10 sec

subset of the data where a section of high turbulence intensity is seen to be

surrounded by sections of low turbulence intensity. Over the full 20 min duration,

each of the individual velocity flow fields where a vortex was detected is marked,

comprising a total of 1452 eddies in 1426 instantaneous realisations of the sample

volume. It is this complete data set that is analysed. To account for the same

eddies being tracked over multiple instantaneous realisations, an uninterrupted

sequence of vortices is used to compute a mean period between occurrences of

4.3 sec.

The interpretation of this is that for most (96.5 %) of the time, the flow is

quiescent, with little apparent structure, or with scales that are too small for the

instrument to resolve clearly. Figure 4.2C presents an example velocity flow field

where the sample volume mean velocity has been subtracted from each individual

velocity vector to reveal the weak motion of the turbulence. Here, the flow is

mostly laminar but small (diameter < 5 cm) vortices, such as seen on the left

hand side of the volume, may also occur. In contrast to the moderately quiescent

conditions are the example eddies presented in Figure 4.2D and Figure 4.2E.

These large vortices with a diameter of 5-15 cm occur intermittently, either singly

or in groups, and remain coherent for at least the time that they are advected

through the sample volume by the mean flow (∼ 2 sec). Of the many of different

orientations present, some vortices exhibit cores aligned approximately cross-

stream (Figure 4.2D), or “arced” cores comprising an along-stream section in their
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Figure (4.2). (A) Time-series of the sample volume mean turbulence intensity

over a 20 min sampling period. The magnified area (B) shows the temporal

persistence associated with the passage of coherent structures (marked by red

crosses). (C-E) Pairs of simultaneous views of instantaneous sample coherent

structures. To reveal the turbulence structures, the sample volume mean velocity

components (U, V and W) have been subtracted from each individual vector.

Streamlines, starting at the position of each vector and coloured by the local

velocity, illustrate the pattern of the flow. The axes are 5 cm in length, with the

x-axis aligned with the mean flow.
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Figure (4.3). Illustration of the spatial projection of temporal data, created

using a “frozen-field” approximation and offsetting the convex hull of the in-

dividual sample volumes (coloured) by the product of the sample rate and the

instantaneous mean velocity.

lower parts, that are similar to the head and neck component of hairpin vortices,

respectively. Additionally, others are aligned as along-stream legs (Figure 4.2E),

usually inclined from the seabed. This visualisation is, however, limited by the

size of the 3D-PTV sample volume, meaning that an extended volume of flow

must be considered to be able to see the eddies in context.

The larger scales of the turbulence can be revealed using a “frozen-field”

approximation (Taylor’s Hypothesis) and offsetting the data within the instanta-

neous realisations of the sample volume according to the sampling rate and the

instantaneous mean velocity. Taylor’s Hypothesis (xi = Uit) allows the spatial
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projection of temporal data (illustrated in Figure 4.3), assuming the characteris-

tics of the eddies remain unchanged with advection past the sensor and u2/U2 � 1

where, here, u2/U2 = 0.04 is the ratio of the zero-mean velocity to the mean ve-

locity (Taylor, 1938). Dennis and Nickels (2008) established that this method is

accurate over a projection distance of more than 6δ where, here, δ = 11.8 m is

the boundary layer thickness.

The velocity flow field associated with each vortex over the 20 min period

was reviewed and the hairpin-like structures found to be consistent, within the

parameters of a natural environment. As an example, the results of applying this

method to the 10 second interval around the structure presented in Figure 4.2D,

giving a volume of flow measuring 190×20×20 cm3, are presented in Figure 4.4A.

The large cross-stream vortex is readily visible (II), with a second large inclined

along-stream vortex (III) seen upstream and lower down than the first (seen in

the side view). The first vortex appears to be curling around from along-stream to

cross-stream with distance downstream (seen in the plan view). The two vortices

appear intertwined and together have an along-stream length in excess of 50 cm.

This coherent structure is surrounded by more quiescent flow conditions (I and

IV), although these again contain evidence of small scale vortical motion.

The vorticity characteristics of the extended volume are presented in Figure

4.5. This is the three-dimensional equivalent of the planar evidence provided

by Nimmo-Smith et al. (2002, 2005) and Hackett et al. (2011) that have shown

the counter-clockwise and clockwise rotation of cross-stream vortices within the

bottom boundary layer of the coastal ocean. The large cross-stream vortex (II)

exhibits clockwise rotation (negative vorticity) consistent with a “head”.
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Figure (4.4). Visualisation of velocity of coherent structures within an extended

volume created using a frozen field approximation. The velocity is viewed in (A)

3D view; (B) plan view; and (C) side view, respectively. Coherent structures

consistent with the head, neck and legs of hairpin vortices occur within sections

labelled II and III, surrounded by more quiescent flow (sections labelled I and

IV).
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Figure (4.5). Visualisation of vorticity of coherent structures within an ex-

tended volume created using a frozen field approximation. The vorticity is viewed

in (A) 3D view; (B) plan view; and (C) side view, respectively. Coherent struc-

tures consistent with the head, neck and legs of hairpin vortices occur within

sections labelled II and III, surrounded by more quiescent flow (sections labelled

I and IV).
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Figure (4.6). Visualisation of swirling strength of coherent structures within

an extended volume created using a frozen field approximation. The swirling

strength is viewed in (A) 3D view; (B) plan view; and (C) side view, respectively.

Coherent structures consistent with the head, neck and legs of hairpin vortices

occur within sections labelled II and III, surrounded by more quiescent flow

(sections labelled I and IV).

90



To complement the visualisation of the velocity and vorticity characteristics

of these flows, the spatial measurements recorded by the 3D-PTV are used to

determine λci of the fluid. Figure 4.6 presents the three-dimensional iso-surface of

λci, as well as the iso-surface of the negative and positive zero-mean along-stream

velocity (u′ = ±1 cm s−1). The agreement between the loci of the vortices and the

negative along-stream velocity are completely consistent with the pattern of the

velocity flow field expected of a packet of hairpin vortices (Adrian, 2007). These

straddle sections of negative zero-mean along-stream velocity, the part of the flow

inboard of the head and legs, while the part of the flow outboard of the head and

legs has a positive zero-mean along-stream velocity. Examination of the 3D-PTV

data suggests that vortices often appear to be asymmetric, i.e. having one leg

stronger than the other, giving an appearance similar to a“walking-cane”. This

cane-like topology is, in fact, the most probable condition (Robinson, 1991), since

individual eddies are affected by other large scale motions within the velocity flow

field. Similar results have been presented in data collected by Dennis and Nickels

(2011a), with an “ideal” hairpin only revealed through conditional sampling.

Statistical evidence of hairpin vortices (or, more accurately, “hairpin-like”

vortices - a term encompassing canes, heads, necks, legs and three-quarter-hairpin

vortices) in situ, is yielded from an assessment of their alignment and elevation

angles from the mean flow direction and the seabed, respectively. To establish

the link with laboratory measurements and numerical modelling, it is apparent

(on average) that one vortex must be aligned as a cross-stream head for every two

aligned as along-stream legs, and that these are inclined from the seabed at an

angle of 25-45 ◦ (Adrian, 2007). To compute the alignment (αxy) and elevation
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Figure (4.7). (A) Alignment angle (αxy) of vortices relative to the mean flow

direction (mean: 0.5 ◦, mode: 8.0 ◦, standard deviation: 47.8◦). (B) Elevation

(or tilt) angle (αxz) of vortices relative to the seabed (mean: 16.3 ◦, mode: 27.0 ◦,

standard deviation: 32.6◦). Sample size = 1452 vortex components (recorded in

1426 instantaneous velocity flow fields).
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(αxz) angle, all connected points within the iso-surface of λci > 0.25 s−1 are

identified. A three-dimensional least-squares line (1st order polynomial) is fitted

to each set of connected points and the minimum and maximum along-stream

coordinates are used to compute αxy and αxy trigonometrically. Note that data

are yielded from an analysis of each set of points from each of the instantaneous

realisations of the sample volume to account for the multiple component angles

within the vortex (e.g. its head, neck and legs). This is conducted using the 20 min

time-series to ensure that statistics are representative. Figure 4.7A presents a

histogram of vortex alignment, binned according to their angle (αxy) from the

mean flow. The ratio of cross-stream components (|αxy| > 45) to along-stream

components (|αxy| < 45) is 596:856, with a most common alignment of αxy = 8.0 ◦.

Figure 4.7B presents a histogram of vortex elevation, binned according to their

angle (αxz) from the seabed. Most of the vortices (72.4 %) are inclined at positive

angles, with a most common elevation of αxz = 27.0 ◦. Setting a higher threshold

of λci or n suggests that stronger vortices are inclined slightly more steeply. The

shapes of the two histograms, as well as the αxy and the αxz angles obtained

are in agreement with laboratory measurements. Like here, in data presented

by Ganapathisubramani et al. (2006) from a wind tunnel at Reθ = 2, 800 and

Dennis and Nickels (2011a) from a water tunnel at Reθ = 4, 700, vortices are seen

to be typically aligned in an along-stream direction with a most common elevation

angle of αxz = 38.0 ◦ and αxz = 26.5 ◦, respectively. These angles fall within the

nominal range of 25-45 ◦ expected of a packet of hairpin vortices, with the exact

differences between the two associated with differences in the experimental set-

up and, therefore, the way the elevation angles are computed. Similarly, these
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vortices are predominantly inclined at positive angles from the wall (87.5 %, in

data presented by Dennis and Nickels (2011a)), supporting the idea of these

boundary layer flows being made up of forward leaning cores.

These results offer the first three-dimensional evidence of hairpin-like vortices

in the bottom boundary layer of the coastal ocean. From both the qualitative

and quantitative analysis of the characteristics of these vortices recorded in situ,

it is clear that data collected through both laboratory and numerical experiments

presented in the scientific literature are directly applicable to geophysical scales.

Coherent structures have been identified as important to the resuspension of

sediment (Jackson, 1976, Cellino and Lemmin, 2004) and the vortices presented

here may act as a transport and trapping mechanism for non-neutrally buoyant

material, e.g. oil (Stommel, 1949). The cores of the vortices appear helical (e.g.

Figure 4.2D), that may lead to the separation of different-size suspended particles,

with smaller particles retained within and transported along the inner cores. It

is suggested that this will affect the characteristics of aggregates near the seabed,

since a settling floc trapped within a vortex may experience a higher number of

collisions with other particles and therefore grow in size – at least up until the

point it is sheared across the edge of the vortex.

The Reynolds numbers based on the momentum thickness (and estimated

from the ADCP) are of the order of Reθ = 267, 970 (two orders of magnitude

higher than reported by Ganapathisubramani et al. (2006) and Dennis and Nickels

(2011a) in the laboratory). These moderate levels of turbulence are typical of

other flat, coastal sites, under calm conditions, which may be encountered over

large areas of the continental shelf. However, further measurements are necessary
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to extend our understanding of the three-dimensional turbulence characteristics

of tidal flows to more extreme conditions, such as those with larger currents

and oscillatory flow over bed forms. It is clear the submersible 3D-PTV system

offers a viable method to collect this data, although upgrading the hardware

to use high-speed cameras will be necessary to allow a faster flow-rate to be

sampled. Similarly, it is anticipated that adapting the setup to allow mid-water

column measurements will complement the present study by eliciting the three-

dimensional turbulence characteristics associated with stratified conditions.

4.2.2 Impact on the Reynolds shear stress

The turbulence associated with coherent structures in boundary layer flows com-

prises an internal shear stress, whose components are summarised by the tensor:

τij = ρu′iu
′
j = ρ


u′1u

′
1 u′1u

′
2 u′1u

′
3

u′2u
′
1 u′2u

′
2 u′2u

′
3

u′3u
′
1 u′3u

′
2 u′3u

′
3

 (4.1)

where, i is the direction normal to the stress, while j is the direction of the stress

(Simpson and Sharples, 2012). Note that τij = τji giving six independent terms.

The three terms where i = j are normal stresses, whereas the three terms where

i 6= j are tangential stresses.

In ocean flows, turbulence statistics (such as τij) are contaminated by surface

wave motion that contain much more energy that the turbulence (Trowbridge,

1998). As the tangential stresses are a correlation of two orthogonal components,

this is compounded by the unknown alignment of the system to the mean flow.

In recent years, several methods have been developed for the separation of
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surface wave motion and turbulence from such data, exploiting the statistical

characteristics of the velocity flow field (Trowbridge, 1998, Shaw and Trowbridge,

2001, Feddersen and Williams III, 2007). Used for its efficiency, the methods

developed by Trowbridge (1998) assumes that the spatial separation between

two sensors is larger than the correlation scale of the turbulence but smaller

than the inverse wavenumber of the surface wave motion, and that there exists

zero-correlation between the surface wave motion and the turbulence. Doing

so allows the Reynolds shear stress to be computed from the covariance of the

velocity difference between two points, as long as this separation (ri) is sufficiently

large. Under these assuptions, issues arising from the misalignment of these

instrumentation to the mean wave flow are eliminated, as long as this angle-error

is small (< 2◦).

Following the implementation by Nimmo-Smith et al. (2002) the velocity is

decomposed into u = ūi+ ũi+u′i, where ūi is the mean of the time-series, ũi is the

surface wave motion and u′i is the turbulence. Defining ∆ui = ui(xi+ri)−ui(xi),

the covariance of the difference between the two points, or second-order structure

function, Dij(ri, xi) is equal to:

Dij(ri, xi) = ∆ui∆uj = [ui(xi + ri)− ui(xi)][uj(xi + ri)− uj(xi)] (4.2)

Assuming homogeneity,

[ui(xi)uj(xi)] = [ui(xi + ri)uj(xi + ri)] (4.3)

and

[ui(xi)uj(xi + ri)] = [ui(xi + ri)uj(xi)] (4.4)
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then

Dij(ri, xi) = 2[ui(xi)uj(xi)]− 2[ui(xi + ri)uj(xi)] (4.5)

Assuming ũiu′i ≈ 0 (i.e. zero-corrleation between wave motion and turbu-

lence), this is then decomposed as:

Dij(ri, xi) = 2
[
ũiũj + u′iu

′
j

]
− 2
[
ũi(xi + ri)ũj(xi) + u′i(xi + ri)u′j(xi)

]
(4.6)

If the wavelength, λ, of the surface wave motion exceeds the characteristic

scale of the turbulence, l, and as long as ri � λ, then:

Dij(ri, xi) = 2
[
u′iu
′
j

]
︸ ︷︷ ︸

1

− 2
[
u′i(xi + ri)u′j(xi)

]
︸ ︷︷ ︸

2

(4.7)

where term 1 (in under-brackets) is the mean stress between the two points, i.e.

the quantity of interest, and term 2 (in under-brackets) is the spatial covariance

tensor, Rij(ri), which decreases as ri increases (and disappears when ri exceeds the

characteristic scale of the turbulence). Therefore, this stress is equal to minus the

density multiplied by half the velocity difference (Trowbridge, 1998). Trowbridge

(1998) established that this method successfully reduces any wave bias present

in the velocity measurements to an acceptably low level under conditions of low

surface wave motion, as found at this site.

Using the 3D-PTV data from within the middle part of the sample volume to

overcome edge-effects (see Chapter 3), as well as data from the ADV (mounted

adjacent to, but 0.45 m downstream of, the 3D-PTV system) Dij(ri) is computed.

Unlike point-measurements, the spatial extent of the 3D-PTV data means that

characteristic scale of the turbulence does not have to be known a priori, since

a separation of up to r1 = 48 cm may be established by multiplying the velocity

difference of the two corresponding vectors. At r1 ≤ 6 cm, the vectors are located
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within the 3D-PTV sample volume alone, while at r1 ≥ 6 cm, the vectors are

located between the two sensors. Data from multiple points (but from the same

height) are used to increase the number of samples, giving estimates of the six

independent terms at the same time.

Figure 4.8 presents the mean spatial profile of −0.5D13(r1) (Figure 4.8A),

−0.5D23(r1) (Figure 4.8B) and 0.5D12(r1) (Figure 4.8C). Initially, Dij(r1) in-

creases linearly with r1, but asymptotes as the separation becomes more compa-

rable to the height of the sample volume above the seabed. As r1 jumps between

the 3D-PTV and the ADV, a difference in Dij(r1) occurs, but the sign remains

constant. Note that at 6 cm < r1 < 42 cm reliable data are not available and the

approximate shape of each profile is represented using a spline.

Interestingly, it is seen that each profile exhibits a maximum at r1 ≈ 42 cm,

whereafter Dij(r1) decreases. The exact causes of the downturn are unknown, but

it is likely that this is amplified as a consequence of the spatial inhomogeneity

of the flow (e.g. associated with the alignment of the 3D-PTV system to the

mean flow and variability within the upstream topography), as supported by

the low correlation (r2 = 0.44) between the instantaneous turbulence intensity

between the middle of the 3D-PTV sample volume and the ADV. Although not

specifically identified, this downturn is also seen in data collected by Nimmo-

Smith et al. (2002) and Nimmo-Smith et al. (2005) under low to moderate flow,

albeit to a lesser degree consistent with the 2D-PIV system being aligned to

the mean flow. A bias will also be present in point-measurements but, without

an array of sensors, this is impossible to detect. However, using the position

of the maximum, the Reynolds shear stress may be determined as: −0.5D13 =
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Figure (4.8). Spatial profile of (A) D13, (B) D23, and (C) D12 as a function

of horizontal separation (r1) using data from within the middle (7 × 7 × 7 cm3)

part of the 3D-PTV sample volume (r < 6), as well as that from an adjacent

ADV (r > 42). The approximate shape of the profiles between 6 < r1 < 42 are

represented using a spline.
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0.10 cm s−2, −0.5D23 = 0.04 cm s−2 and 0.5D12 = 0.08 cm s−2.

Statistical evidence for the impact of coherent structures on the Reynolds

shear stress is yielded from conditional sampling. Here, vortex identification

methods are used to classify each of the individual velocity flow fields into groups

of low, intermediate and high λci using an arbitrary threshold, with each of the

groups containing a corresponding third of the data (9997 frames), sorted into

ascending order. This is conducted using the 20 min time-series to ensure that

statistics are representative. However, as these groups contain 9,997 instanta-

neous snapshots of the sample volume, this is close to the minimum sampling

duration necessary for temporal stability (Chapter 3).

Figure 4.9 presents the mean spatial profile of −0.5D13(r1) (Figure 4.8A),

−0.5D23(r1) (Figure 4.9B) and 0.5D12(r1) (Figure 4.9C) classified by λci. Adrian

(2007) highlighted that coherent structures may be responsible for the vertical ex-

change of momentum via bursts and sweeps that are represented in the Reynolds

shear stress. Bursts occur when negative along-stream momentum lifts away from

the wall and sweeps occur when positive along-stream momentum moves towards

the wall. This motion is associated with the anti-correlation of the u and w com-

ponents, such that (as here) 0.5D13(r1) is negative. However, as these vortices

are not aligned completely along-stream, this motion is also associated with the

anti-correlation of the v and w components, such that 0.5D13(r1) is also negative.

While conditional sampling reveals that coherent structures contribute most to

these Reynolds shear stress components, the difference between the groups of low,

intermediate and high λci are much less for 0.5D13(r1) than for 0.5D23(r1). This

is associated with the shape of the corresponding probability density function
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Figure (4.9). Mean spatial profile of (A) −0.5D13(r1), (B) −0.5D23(r1), and

(C) 0.5D12(r1), classified into groups of low (blue), intermediate (green) and high

(red) λci. In each plot, the mean spatial profile using all data (irrespective of

λci) is illustrated in black.
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Figure (4.10). Probability Density Function of λci, used to classify the flow

into groups of low, intermediate and high λci. The threshold boundaries are

marked by red lines.

(Figure 4.10) as the sample volume mean λci of most of the velocity flow fields

are close to these threshold boundaries. Conversely, coherent structures seem

to have a lesser impact on 0.5D12(r1), however it is likely that this is biased by

the alignment of the 3D-PTV system to the mean flow (as a consequence of the

spatial inhomogeneity).

The results offer the first three-dimensional view of the impact of coherent

structures on the Reynolds shear stress, complementary to data presented by

Nimmo-Smith et al. (2005). To definitively unravel the impact of large coherent

structures on the Reynolds shear stress, it is necessary to use each of the individual

velocity flow fields where a vortex was detected as the criteria for the conditional
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sampling. However, as this flow is mostly (96.5 %) quiescent, it suggested that

this analysis is conducted using a larger database of 3D-PTV measurements to

be collected in the future.

4.2.3 Impact on the spatial energy spectra

The turbulence associated with coherent structures in boundary layer flows com-

prises a continuum of wavenumber scales, whose components are summarised by

an energy spectra.

Following the implementation by Nimmo-Smith et al. (2005), this is achieved

by mean subtraction, linear detrending and Fourier transformation:

Fi(k1, z) =
∑
n

ui(xn,z) exp(−ik1xn) (4.8)

where ki is the wavenumber and, unlike Doron et al. (2001), no window function

is used. Accordingly, the spectral energy density is:

Eii(k1) =
L

2πN2

∑
n

Fi(k1, z)F
∗
i (k1, z) (4.9)

where L is the domain length, N is the number of points and F ∗i is the complex

conjugate of Fi. Note that these spectra are determined from each instantaneous

velocity flow field recorded by the 3D-PTV system prior to averaging over the

20 min period and do not rely on Taylor’s Hypothesis (Taylor, 1938).

Using the data from the middle part of the 3D-PTV sample volume, to over-

come edge-effects (see Chapter 3), the spatial energy spectra of u1 (E11), u2 (E22)

and u1 (E33) in the along-stream (k1), cross-stream (k2) and vertical (k3) direc-

tion are determined (Figure 4.11). Where appropriate a 3/4 coefficient is used as

(assuming isotropy) the ratios are 4:3 between Eii(k1) and Eii(kj), where i 6= j.
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Figure (4.11). Mean spatial energy spectra with direction of integration in

the (A) along-stream, (B) cross-stream and (C) wall-normal directions. Inset :

Spectral ratios determined by dividing each component by E11(k1). Under con-

ditions of isotropy, these ratios should be equal to 1 (dashed line). The solid line

with a gradient of -5/3 has been included at the same position in each plot to

assist in making comparisons.
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Note that both the use of low-pass filtering (to limit the jitter arising from imag-

ing errors) and the use of PEFRA (to account for the increases in noise level

associated with tracking unevenly-shaped, naturally-occurring tracers scattered

inhomogeneously within the sample volume) have been identified as important

stages in 3D-PTV data processing (Chapter 3), however such spatial smoothing

causes attenuation at high wavenumber scales and modification of the slope of

the spatial energy spectra (Hackett et al., 2009, Vlasenko, 2010). Therefore, these

spatial energy spectra are only used to demonstrate the (substantial) anisotropy

between the velocity components.

Consistent with past in situ 2D-PIV measurements (Nimmo-Smith et al., 2005,

Luznik et al., 2006) the spatial energy spectra of the along-stream velocity compo-

nent (E11) are higher than the cross-stream (E22) and vertical velocity component

(E33), irrespective of wavenumber (Figure 4.11), as highlighted by the spectral

ratios determined by dividing each component by E11(k1) (inset). In general, it

is seen that the effect of direction of integration on these spectra are small for the

k1 and k3 component, with the large difference for the k3 component associated

with the out-of-plane motion being the most difficult of the velocity components

to resolve.

Statistical evidence for the impact of coherent structures on the spatial energy

spectra is yielded from conditional sampling using the same protocols presented

in §4.2.2. Figure 4.12 presents the spatial energy spectra classified by λci. In

all cases, anisotropy remains at all wavenumber scales and increases as λci de-

creases, suggesting that conditions of anisotropy become more prevalent under

more quiescent conditions, while vortices appear to have a regularising effect on
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Figure (4.12). Mean spatial energy spectra, classified into groups of low (A),

intermediate (B) and high (C) λci. The solid line (with a gradient of -5/3) has

been included at the same position in each plot to assist in making comparisons.

Note that the format of these panels are different to Figure 4.11.
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the flow.

As isotropy is a fundamental assumption in most turbulence measurements

(e.g. airfoil-type shear sensors), conditions of anisotropy will have significant im-

plications for the sampling of these types of flows in-situ (Smyth and Moum, 2000,

Nimmo-Smith et al., 2005). The full consequences of anisotropy on turbulence

measurements are considered in detail in Chapter 5.

4.3 Conclusions

3D-PTV measurements have been performed in the bottom boundary layer of

the coastal ocean at moderate Reynolds number. The results show that coher-

ent structures, consistent with the hairpin-like vortices highlighted in laboratory

measurements and numerical modelling, were frequently present within the loga-

rithmic layer at a height of 0.64 m (z+ = 0.35) above the seabed. These exhibit

a modal alignment of αxz = 8.0 ◦ and a modal elevation of αxz = 27.0 ◦, with a

mean period of occurrence of 4.3 sec, and appear to straddle sections of negative

zero-mean along-stream velocity, consistent with an interpretation as “packets”.

From these direct measurements, it is clear that data collected through both lab-

oratory and numerical experiments are directly applicable to geophysical scales –

a finding that will enable the fine-scale details of particle transport and pollutant

dispersion to be studied in future.

Conditional sampling of the Reynolds shear stress (without using Taylor’s

Hypothesis) reveals that coherent structures are responsible for the vertical ex-

change of momentum via bursts and sweeps (τ13 and τ23) and, as such, are the

key areas where energy is extracted from the mean flow and into turbulence.
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However, these vortices seem to have a lesser impact on τ12, although it is likely

that this is biased by the alignment of the 3D-PTV system to the mean flow (as

a consequence of the spatial inhomogeneity).

Conditional sampling of the spatial energy spectra (without using Taylor’s

Hypothesis) reveals that coherent structures appear to have a regularising ef-

fect on the flow, although it is clear that (substantial) anisotropy remains at all

wavenumber scales. As isotropy is a fundamental assumption in most turbulence

measurements (e.g. airfoil-type shear sensors), conditions of anisotropy will have

significant implications for the sampling of these types of flows in-situ. The full

consequences of anisotropy on turbulence measurements are considered in detail

in Chapter 5.
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Chapter 5

Implications for turbulence

measurements

5.1 Introduction

Measurements of the turbulence kinetic-energy (TKE) dissipation rate are of-

ten made to quantify the mixing processes that are essential to explaining the

large-scale distribution of biological production, suspended sediments and ocean

pollutants. Similarly, on this basis, vertical diffusion coefficients, friction veloc-

ities and other important parameters, such as the Kolmogorov microscale, are

determined (Osborn, 1980, Dewey and Crawford, 1988).

The TKE dissipation rate, as defined in the Reynolds-averaged TKE equation,

is:

ε = ν
∂ui
xj

(
∂ui
xj

+
∂uj
xi

)
(5.1)

where ν is the kinematic viscosity of the water, u is the velocity component and

x is the spatial (cartesian) co-ordinate (Moum et al., 1995). Tensor notation
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(i, j = 1, 2, 3) denotes summation over three components, giving nine indepen-

dent terms (i.e. 12 terms in total) that are almost always impossible to obtain

simultaneously using standard instrumentation (Stips, 2005). However, under

conditions of isotropy (i.e. the turbulence has no preferred orientation) these

terms are simply related by:

ε =
15

1
ν

(
∂u1

∂x1

)2

︸ ︷︷ ︸
1

=
15

2
ν

(
∂u1

∂x3

)2

︸ ︷︷ ︸
2

(5.2)

where formula 1 (in under-braces) applies equally to the other two components

of strain (i.e. ∂u2/∂x2 and ∂u3/∂x3) while formula 2 (in under-braces) applies

equally to the other five components of shear (i.e. ∂u1/∂x2, ∂u2/∂x1, ∂u2/∂x3,

∂u3/∂x1 and ∂u3/∂x2). The overbars seen in Equation 5.1 and Equation 5.2

denote that data are averaged over many samples. Typically, these measurements

of the individual components of shear, assuming isotropy, are made using airfoil-

type sensors (Prandke, 2005), but the possible consequences of using such an

assumption under stratified conditions and in boundary layer flows, where the

turbulence dynamics are modified, are often neglected.

Numerical modelling (Itsweire et al., 1993, Smyth and Moum, 2000) indicates

that turbulence in a stratified shear layer comprises significant anisotropy at all

scales, arising from the straining of the flow by the mean shear and the suppres-

sion of the vertical motions by the buoyancy forces. Such anisotropy causes a

difference in the TKE dissipation rate estimates depending on the shear terms

used, with the best shear-based approximations using the ∂u1/∂x2 component

and the ∂u2/∂x3component. Two-dimensional flow visualisation methods (Doron

et al., 2001, Nimmo-Smith et al., 2005) have shown that significant anisotropy

also exists within the bottom boundary layer of tidal flows, arising from the
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background shear associated with the proximity of the seabed. Comparisons of

TKE dissipation estimates, assuming isotropy and using one component of shear,

with estimates based on available in-plane data revealed that, while the instan-

taneous realisations vary, the averaged estimates for the ∂u1/∂x3 component and

the in-plane estimates agree and follow the same pattern. At the same time, the

averaged estimates for the ∂u3/∂x1 component were typically 50% less than that

of the in-plane estimates, but also follow the same pattern. However, questions

remain as to the magnitude of the errors associated with other components of

shear and how these relate to the full three-dimensional form of the turbulence.

The resurgence of measurements utilising airfoil-type shear sensors mounted

on Autonomous Underwater Vehicles (AUVs, e.g. Goodman et al. 2006 and

moored platforms (Fer and Paskyabi, 2014), renews the need to make certain these

systems are used most effectively. Here, we present an analysis of the effect of

anisotropy on measurements of the TKE dissipation rate using three-dimensional

data collected in the bottom boundary layer of the coastal ocean and consider

the consequences for higher-order quantities, such as the Kolmogorov microscale.

These measurements shed light on the statistical properties of data tradition-

ally recorded by standard instrumentation, providing crucial in situ evidence to

inform the deployment of airfoil-type shear sensors as well as the subsequent

interpretation of velocity microstructure data.

5.1.1 Implementation with 3D-PTV

Unlike standard instrumentation, 3D-PTV measurements yield an instantaneous

three-dimensional velocity distribution within a sample volume. A sequence of
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3D-PTV measurements yield a time-series of the spatial distribution. With such

data, it is possible to compute the nine independent terms of the TKE dissipa-

tion rate, as well as the isotropic formulae that use one term, directly from the

spatial derivatives of velocity without assuming Taylor’s Hypothesis. The turbu-

lence statistics are yielded through spatial and / or temporal averaging of these

measurements.

In total, nine different estimates for the TKE dissipation rate, assuming

isotropy, are compared against that presented in Equation 1 (ε3D). These esti-

mates encompass the six components of shear (e.g. ∂u1/∂x3) presented in Equa-

tion 2 (formula 2), as well as the results of combining two opposing components of

shear to represent data obtained from two orthogonally-mounted sensors profiling

in the same direction:

ε∂x1 =
15

4
ν

[(
∂u2

∂x1

)2

+

(
∂u3

∂x1

)2
]

(5.3)

ε∂x2 =
15

4
ν

[(
∂u1

∂x2

)2

+

(
∂u3

∂x2

)2
]

(5.4)

ε∂x3 =
15

4
ν

[(
∂u1

∂x3

)2

+

(
∂u2

∂x3

)2
]

(5.5)

Similarly, following Luznik et al. (2006) and assuming the missing cross-stream

components are equal to the in-plane components, the equivalent wall-normal

two-dimensional Particle Image Velocimetry (2D-PIV) data are estimated using:

ε2D = 4ν

[(
∂u1

∂x1

)2

+

(
∂u3

∂x3

)2

+
3

4

(
∂u1

∂x3

)2

+
3

4

(
∂u3

∂x1

)2

+

(
∂u1

∂x1

.
∂u3

∂x3

)
+

3

4

(
∂u1

∂x3

.
∂u3

∂x1

)]
(5.6)

The results are presented on both an instantaneous and a spatially-averaged basis

using only the data within the central half (11× 11× 11 cm3, 1331 points) of the
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sample volume to limit the effect of spatial variation at its edges (Nimmo-Smith,

2008) and ensure that measurements are averaged over a similar number of points

(typically 1025− 2050 points) as used in processing velocity microstructure data.

Note that the mean vector separation (d = 1 cm) in these 3D-PTV data are larger

than the mean Kolmogorov microscale of η = (ν3/ε)1/4 = 0.31 cm by 3.23η. Con-

sequently, the TKE dissipation rate is underestimated. Due to the limited size

of the 3D-PTV sample volume, and therefore the resolution of the spatial energy

spectra to which comparisons can be made with no assumption of Taylor’s Hy-

pothesis (Chapter 4), the magnitude the TKE dissipation rate is underestimated

cannot be established. However, past in situ 2D-PIV measurements (Nimmo-

Smith et al., 2005), with a larger sample volume (and therefore resolution of the

spatial energy spectra), but similar grid resolution and flow conditions, suggest

that this difference is likely to be between 26% and 45%. For the present study,

this impacts on the exact quantities calculated, however the relationship between

TKE dissipation rate, SGS dissipation rate and Kolmogorov microscale estimates

(considered in Chapter 5 and Chapter 6) will be unaffected.

5.2 Results and discussion

5.2.1 Dissipation rate estimates

Figure 5.1A presents a time-series of the spatially-averaged TKE dissipation

rate over the 20 min period, revealing moderate levels of turbulence (〈ε3D〉 =

1.4855e7m2 s−3). Chapter 4 established the patchiness within this flow is linked

to the presence of persistent motions, called eddies or coherent structures, as
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highlighted in Figure 5.1B for a 10 sec subset of the data. In each plot, every

individual velocity flow field where a vortex was detected in Chapter 4 is marked.

These large coherent structures occur singly or in groups, consistent with a packet

of hairpin-like vortices (Robinson, 1991). The three-dimensional dissipation char-

acteristics of this packet is revealed using a frozen-field approximation (Taylor’s

Hypothesis) and offsetting the data within individual velocity flow fields accord-

ing to the sampling rate and the instantaneous mean velocity (Figure 5.1C). Here,

a section of high TKE dissipation, associated with the position of the vortices, is

readily visible. This is surrounded by sections of lower TKE dissipation, although

these again contain small patches of enhanced turbulence associated with simple

shear layers arising from the proximity of the seabed or the passage of vortices

that are much larger than the limited size of the 3D-PTV sample volume. It is in

this context that the ten different estimates of the TKE dissipation rate for two

different flow conditions (S1 and S2) are discussed.

Figure 5.2 compares the ten different estimates of the TKE dissipation rate

against ε3D (Equation 5.1), where 〈ε3D〉 = 0.1452e−6m2 s−1. These represent

the data that are typically obtained from airfoil-type shear sensors profiled in

the along-stream direction (Figures 5.2A-C), the cross-stream direction (Figures

5.2D-F) and the vertical direction (Figures5.2G-I), with the wall-normal 2D-PIV

view presented in Figure 5.2J and the reference 3D-PTV view presented in Figure

5.2K. Clearly, the panels are not identical (as must be the case were the assump-

tion of isotropy to hold). Under these moderately quiescent conditions, the dif-

ference in the TKE dissipation rate varies from a mean underestimate of 83.7%

(∂u3/∂x1 ) to a mean overestimate of 150.1% (∂u1/∂x3). The best horizontal
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Figure (5.1). (A) Time-series of the sample volume mean TKE dissipation rate

over a 20 min sampling period. The magnified area (B) shows the TKE dissi-

pation rate associated with the passage of coherent vortical structures (marked

by crosses). (C) Visualisation of the spatial distribution of the TKE dissipation

rate within the magnified area, created using a frozen field approximation. An

example snapshot of the velocity flow field associated with typical quiescent con-

ditions (S1) and a large cross-stream vortex (S2) is also presented. Streamlines,

starting at the position of each particle tracked and coloured by the local veloc-

ity (0=black; 2=white) illustrate the pattern of the flow. The axes are 5 cm in

length with the x-axis aligned with the mean flow.

115



and vertical shear-based approximations are by the ∂u1/∂x2 (0.0618e−6m2 s−1)

and the ∂u2/∂x3 (0.1018e−6m2 s−1), while ∂u3/∂x1 (0.0239e−6m2 s−1) offers the

poorest of these estimates. Therefore, the results of combining two orthogonal

components of shear indicate that using ε∂x will underestimate ε3D by 76.1%, ε∂y

will underestimate ε3D by 63.8% and ε∂z will overestimate ε3D by 60.1%. As the

mean TKE dissipation rate computed for the 2D-PIV view is constructed using

the four terms that also appears in ε∂x and ε∂z, 〈ε2D〉 = 0.2390e−6m2 s−1. This

overestimate of ε3D by 64.6% is inflated by a high ∂u1/∂3 in particular (as is

highlighted in Figure5.2G).

Figure 5.3 compares the ten different estimates of the TKE dissipation rate

against ε3D (Equation 5.1), where 〈ε3D〉 = 0.2301e−6m2 s−1. The format of the

panels are the same as for the last figure. In contrast to the moderately qui-

escent conditions, the presence of the large cross-stream vortex appears to have

a regularising effect on the flow and, consequently, the TKE dissipation rate

varies from a mean underestimate of 77.5% (∂u1/∂x2) to a mean overestimate

of 71.5% (ε2D). The best horizontal and vertical shear-based approximations are

the ∂u1/∂x2 (0.1953e−6m2 s−1) and ∂u2/∂3 (0.2774e−6m2 s−1), while ∂u3/∂x2

(0.0518e−6m2 s−1) offers the poorest of these estimates. However, the results of

combining two orthogonal components of shear indicate that ε∂x will only frac-

tionally underestimate ε3D by 1.5% as the low ∂u2/∂x1 term (0.1953e−6m2 s−1) is

balanced by the high ∂u3/∂x1 term (0.1953e−6m2 s−1). At the same time, ε∂y will

underestimate ε3D by 46.3% and ε∂z will overestimate ε3D by 43.7%. This is in

agreement with the magnitude of the error of these two components presented in

Figure 5.3 . Similarly, ε2D (0.3947e−6m2 s−1) will also overestimate ε3D due to the
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Figure (5.2). Instantaneous dissipation rate within the sample volume at

〈ε3D >= X m2 s−1 obtained using the ten different estimates tested: (A)

∂u2/∂x1, (B) ∂u3/∂x1 (C) ∂x1, (D) ∂u1/∂x2, (E) ∂u3/∂x2, (F) ∂x2, (G)

∂u1/∂x2, (H) ∂u2/∂x3, (I) ∂x3, (J) ε2D, the wall-normal 2D-PIV view, and

(K) ε2D, the reference 3D-PTV view.
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three high estimates it comprises. To reconcile the difference in these estimates,

the spatial pattern of the TKE dissipation rate within the sample volume must

be considered in reference to the three-dimensional form of turbulence. Here, the

large cross-stream vortex exhibits a clockwise rotation (negative vorticity), bor-

dered at its upper surface by a section of positive along-stream velocity and at its

lower surface by a section of negative along-stream velocity. Therefore, the TKE

dissipation rate (ε3D) will be higher within the upper half of the vortex, where it

is associated with the elevated shear. By rotating around the three-dimensional

sample volume, it is seen that this area of slightly higher dissipation extends

slightly upstream and lower down than the core, which arises from the opposing

burst / sweep motions arising from the induction of the flow surrounding the eddy

(Adrian, 2007). The effect of the shear at the upper surface of the vortex is em-

phasised within the individual terms that make up Equation 5.1 and in ∂u3/∂x1

(Figure 5.3B) and ∂u1/∂x3 (Figure 5.3G) in particular. As the orientation of this

vortex is not completely cross-stream, but at an angle of 77o from the mean flow

direction, the cross-stream vector is non-zero, so an area of higher dissipation is

also seen in ∂u2/∂x1 (Figure 5.3 A) and ∂u2/∂x3 (Figure 5.3H). Note that the

small peaks seen in ∂u1/∂x2 (Figure 5.3D) and ∂u3/∂x2 (Figure 5.3E) occur at

the lateral edges of the sample volume and are an artefact of imaging deficiencies

associated with the limits of the camera focal range (Nimmo-Smith, 2008).

To complement the assessment of the individual velocity flow fields presented

above, Figure 5.4A compares the spatially-averaged time-series of the ten different

estimates of the TKE dissipation rate against ε3D (Equation 5.1) for the 10 sec

subset of the data. Examination of the time-series reveals that ε2D and ε3D

118



Figure (5.3). Instantaneous dissipation rate within the sample volume at

¡E3D¿=Xm2s−1 obtained using the ten different estimates tested: (A) ∂u2/∂x1,

(B) ∂u3/∂x1 (C) ∂x1, (D) ∂u1/∂x2, (E) ∂u3/∂x2, (F) ∂x2, (G) ∂u1/∂x2, (H)

∂u2/∂x3, (I) ∂x3, (J) ε2D, the wall-normal 2D-PIV view, and (K) ε2D, the refer-

ence 3D-PTV view.

119



typically are more comparable than an arbitrary selection of one of the terms

from each pair of orthogonal components, however this is less significant when the

individual components are combined together (i.e. ε∂x, ε∂y and ε∂z). In agreement

with the instantaneous realisations presented in Figure 5.2 and Figure 5.3, ε∂x

indicate a tendency to most significantly underestimate ε3D, while ε∂y, ε∂z and

ε2D all indicate a (generally) higher level of turbulence, more consistent with ε3D.

Statistical evidence of this is yielded from the analysis of the joint probabil-

ity density functions (Figure 5.4B-5.4K) and frequency histogram (Figure 5.4L)

of the spatially-averaged TKE dissipation rate over the 20 min period. As for

most (96.5%) of the time the flow has little apparent structure or with scales

that are too small for the instrument to resolve clearly (Chapter 4), it is un-

surprising that the magnitude of the error in the TKE dissipation rate from

assuming isotropy follows the same (mean) patterns as have been identified in

Figure 5.4A, where 〈ε∂x〉 = 7.1391−8m2 s−1, 〈ε∂y〉 = 1.0088e−7m2 s−1, 〈ε∂z〉 =

1.1516e−7m2 s−1, 〈ε2D〉 = 1.5464e−7m2 s−1 and 〈ε3D〉 = 1.2253e−7m2 s−1. The

three estimates using two components of shear all slightly underestimate ε3D in

an average sense, however these data show ε∂z will overestimate the turbulence

at ε3D > 5e−7m2 s−1. Increasing the number of points within each individual

realisation suggests that this pattern is robust. Similarly, in data presented by

Nimmo-Smith et al. (2005), ε∂z offers the best shear-based approximation of the

TKE dissipation rate, whereas ε∂x is consistently 55-64% smaller than ε3D. These

results are also consistent with data from numerical modelling of turbulence in a

stratified shear layer (Itsweire et al., 1993, Smyth and Moum, 2000), where the

along-stream derivatives offers the poorest of these estimates.
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Figure (5.4). (A) Time-series of the sample volume mean of ten different TKE

dissipation rate estimates over a 10 sec period. (B-J) JPDF of the sample volume

mean of ten different TKE dissipation rate estimates over a 20 min period, as

a function of E3D. (K) Histogram of the ten different TKE dissipation rate

estimates presented in (B-J). Solid line: 1:1 relationship.
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These results show the first assessment of the magnitude of the errors associ-

ated with assuming isotropy on shear-based approximations of the TKE dissipa-

tion rate using three-dimensional data recorded in situ in the bottom boundary

layer of the coastal ocean.

From both the qualitative and quantitative analysis of these estimates, it

is clear that they support the validity of measurements using airfoil-type shear

sensors mounted on Autonomous Underwater Vehicles (AUVs) and on vertical

free-fall platforms. Where data from two airfoil-type shear sensors are available,

it is recommended that these are mounted orthogonally to each other and the

results averaged to yield a more reliable estimate of the TKE dissipation rate

than an arbitrary selection of one of the terms from each pair of orthogonal

components. In addition, it is preferable that profiling in the direction of the

mean flow be avoided when planning an AUV deployment. As this is also the

recommended best practice when sampling turbulence in a stratified shear layer

(Itsweire et al., 1993, Smyth and Moum, 2000), the same sampling protocol may

be used throughout the water column.

The TKE dissipation rate has been identified as an important quantity used

in scaling parameterisations such as the Kolmogorov microscale, η, defined as

the ratio between the Kinematic viscosity and the TKE dissipation rate, and

represents the size of the smallest eddies within the velocity flow field.. Among

other things, the Kolmogorov microscale is thought to impose an upper limit

on the mean size of cohesive sediment by eddies which have length scales with

similar dimensions to the particles themselves(van Leussen, 1997) – a relationship

based on empirical evidence and typically used in modelling flocculation processes
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Figure (5.5). Visualisation of the spatial distribution of the Kolmogorov mi-

croscale within the magnified area, created using a frozen field approximation.

Figure (5.6). Time-series of the sample volume mean of ten different Kol-

mogorov microscale estimates over a 10 sec period.

(Soulsby et al., 2013).

Figure 5.5 demonstrates the inversion of the TKE dissipation rate into the

Kolmogorov microscale for the 10 sec subset of the data presented in Figure 5.1.

As expected from this inversion, the Kolmogorov microscale is smallest during

the passage of coherent structures, and largest during the quiescent periods, since

the smallest length scales occur under conditions of most shear. Examination of

the spatial distribution of the Kolmogorov microscale reveals that a difference of
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40.5% from the mean typically occur over distances <10 cm. As a consequence, a

small offset in the sample volumes measurement instrumentation used to establish

the empirical evidence between particles and turbulence (e.g. Cross 2012) will

have significant implications for the validity of the results.

To complement the assessment of the extended velocity flow fields presented

above, Figure 5.6 compares the spatially-averaged time series of the ten differ-

ent estimates of the Kolmogorov microscale (using the ten different estimates of

the TKE dissipation rate, assuming isotropy) against η3D. As a linear scale is

used, the effect of the difference between the Kolmogorov microscale estimates is

amplified. The three estimates using two components of shear all substantially

overestimate the length scales, while a good agreement exists between η2D and

η3D. Over the 20 min period, assuming isotropy in the TKE dissipation rate term

used in the computation of η, a difference in results ranging from 2.3e3 µm (η3D)

to 3.1e3 µm (η∂x) highlights the care that is necessary in interpreting velocity

microstructure data under conditions of anisotropy.

The data presented here are typical of moderate levels of turbulence (Reθ =

267, 970) within the logarithmic part of the bottom boundary layer of the coastal

ocean that may be encountered over large areas of the continental shelf. The

boundary layer thickness based on the momentum thickness (estimated from the

ADCP) is δθ = 1.9m, and therefore 17% of the water column is also likely

to be affected by anisotropy. However, further measurements are necessary to

extend our understanding of the severity of these impacts to higher in the water

column. It is clear that the submersible 3D-PTV system offers a viable method

to achieve this, and adapting the setup to allow mid-water column measurements

124



will complement the present study by eliciting the errors in the TKE dissipation

rates associated with stratified conditions.

5.2.2 Sampling decisions

Turbulence statistics are affected by sampling decisions, such as the number and

siting of samples recorded and the size of the sample volume (Figure 5.7).

Using an example 10 sec subset of the data recorded by the 3D-PTV system,

Figure 5.8A presents the TKE dissipation rate from five individual grid-points

and Figure 5.9A presents the TKE dissipation rate within an increasing size of

sample volume, over the same period. Figure 5.8B and Figure 5.9B show the

impact of these on the Kolmogorov microscale estimates.

As seen from the instantaneous velocity flow fields (e.g. Figure 5.2 and Fig-

ure 5.2) presented in §5.2.1, and immediately apparent here, is the high degree

of spatial variability associated with turbulence. These discrepancies are most

pronounced in one-dimensional measurements (where the difference within the

sample volume often exceeds a factor of three) compared to higher dimensional

Figure (5.7). The sample volume where the data used in Figure 5.8 and Figure

5.9 were extracted (A) sample volume sites. (B) Sample volume sizes.
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Figure (5.8). (A-E) TKE dissipation rate estimates, and (F-J) Kolmogorov

microscale estimates, associated with different sample volume sites (Figure 5.7)

determined using five different shear-based formulae.
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Figure (5.9). (A-E) TKE dissipation rate estimates, and (F-J) Kolmogorov

microscale estimates, associated with different sample volume sizes (Figure 5.7)

determined using five different shear-based formulae.
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estimates, such as data that are typically obtained from 2D-PIV or 3D-PTV. Con-

sequently, the difference also causes spiking in Kolmogorov microscale estimates.

In these cases, spatial and / or temporal filtering of one-dimensional measure-

ments is highly beneficial in overcoming siting issues to achieve reliable TKE

dissipation rate and Kolmogorov microscale estimates. Applied to airfoil-type

shear sensors, this is why a large bin size (typically >0.5 m-1.0 m or 1024-2050

points) is used.

The impact of an increasing size of sample volume was tested between 1 cm3

(size 1), 27 cm3 (size 2), 125 cm3 (size 3), 343 cm3 (size 4) and 1000 cm3 (size 5).

Here, the largest difference occurs between the two smallest sizes, meaning that

using a small amount of averaging to these peaks within a larger volume achieves

more representative results. This is important when two sensors with a different

size of sample volume (e.g. ADV and ADCP) are used. It is interesting to pos-

tulate that, as a consequence of the increased averaging, the comparatively large

sample volume size of the ADCP would be of benefit in obtaining reliable TKE

dissipation estimates from that instrument. However, to achieve this will need

further development of the 3D-PTV system since, in its present configuration, it

is limited by the size of the sample volume.

5.3 Conclusions

3D-PTV measurements have been performed in the bottom boundary layer of the

coastal ocean at moderate Reynolds number. These data are processed to repre-

sent the data that are typically obtained from airfoil-type shear sensors profiled

in the along-stream, cross-stream direction and vertical direction. The results
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indicate a high degree of spatial variability associated with the flow conditions,

meaning that it is recommended that pairs of sensors are mounted orthogonally

and the measurements averaged. The averaged data supports the validity of mea-

surements obtained by horizontal and vertical profilers, however the along-stream

velocity derivatives underestimate the TKE dissipation rate by more than 40%

– a factor of two higher than for the equivalent cross-stream and vertical esti-

mates. This has important implications for the deployment of these sensors and

the subsequent interpretation of higher-order statistics.

The benefit of increased data in overcoming issues of the siting of samples

and the size of the sample volume have been well documented. This is shown

using the in situ 3D-PTV data and emphasises the need to be aware of sampling

decisions at the outset.
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Chapter 6

Implications for numerical

modelling

6.1 Introduction

In Large Eddy Simulations (LES), the Navier-Stokes equations are spatially fil-

tered such that the small-scale turbulence characteristics are modelled, while the

large-scale turbulence characteristics are resolved, giving:

∂ũi
∂t

+ ũj
∂ũi
∂xj

= ν
∂2ũi
∂xj∂xj

−
∂τSGSij

∂xj
− 1

ρ

∂p̃

∂xi
+ f̃i (6.1)

where .̃.. indicates that data are spatially filtered over a filter scale of 4, f̃i is a

body force and τSGSij is a subgrid-scale (SGS) stress used to close Equation 6.1:

τSGSij = ũiuj − ũiũj (6.2)

This SGS stress is modelled using the parameters from the filtered (resolved)

velocity flow field, according to the energy continuity equation, yielded by multi-
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plying Equation 6.1 by ui, i.e.:

∂ 1
2
ũiũj

∂t
+ ũj

∂ 1
2
ũiũj

∂xj
=

∂

∂xi

[
ũj

(
2νS̃ij − τSGSij − p̃

ρ
δij

)]
− 2ν〈S̃ijS̃ij〉 − εSGS + f̃iũi

(6.3)

where S̃ij = 0.5(∂ũi/∂xj +∂ũj/∂xi) is the filtered strain rate, δij is the Kronecker

delta and εSGS is the SGS dissipation rate that represents the transferral of energy

from the filtered (resolved) velocity flow field, or the production of SGS energy:

εSGS = −τSGSij S̃ij (6.4)

Therefore, SGS stress models aim to achieve the correct levels of SGS dissipation

that, on average, will be approximately equal to the levels of TKE dissipation,

εTKE = 2ν〈S̃ijS̃ij〉, when the filter scale falls within the inertial subrange of the

turbulence (Pope, 2000). Note that unlike TKE dissipation, SGS dissipation

arises from inviscid processes and can be negative (interpreted as the backscatter

of energy from the modelled scale).

As LES is becoming an increasingly important tool in ocean modelling (e.g.

Skyllingstad et al. (1999), Skyllingstad and Wijesekera (2004), Noh et al. (2004),

Min and Noh (2004), Li et al. (2005)), it is necessary to test the SGS stress and

SGS dissipation estimates from these models using experimental data (e.g. Liu

et al. 1994, 1999, Tao et al. 2002, Chen et al. 2005, 2006). Two dimensional

flow visualisation methods (Nimmo-Smith et al., 2005, 2007) have shown that

the difference between the SGS dissipation rate and TKE dissipation rate in

the bottom boundary layer is small for strong tidal flows but large for weak to

moderate tidal flows. Conditional sampling based on vorticity reveals that this

difference is associated with the lack of coherent structures. However, questions

remain as to the impact of the missing out-of-plane component on these results.
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Here, an analysis of the SGS stress and SGS dissipation rate using three-

dimensional data collected in the bottom boundary layer of the coastal ocean

are presented for the four most popular models used (i.e. the Smagorinsky model

with static coefficients, the Smagorinsky model with dynamic coefficients, the

Structure Function model and the Nonlinear model). An outline of each of the

models is presented below.

6.1.0.1 Smagorinsky model with static parameters

The Smagorinsky model (Smagorinsky, 1963) for the deviatoric part of the SGS

stress (τij − (1/3)τSGSkk δij) is:

τS = −2 (Cs∆)2|S̃|︸ ︷︷ ︸
ν

S̃ij (6.5)

where term ν (in underbraces) is the scalar eddy viscosity, |S| =
√

(2S̃ijS̃ij) is

the strain rate magnitude, and Cs is the (static) Smagorinsky coefficent defined,

such that εS = −τSijτSij, i.e.:

C2
s =

〈εSGS〉
∆2〈|S|3〉

(6.6)

where 〈...〉 represents ensemble averaging. Typically, Cs = 0.16 (Lilly, 1967).

As Cs is, by definition, inherently positive, this Smagorinsky model is absolutely

dissipative and energy only transferred from the filtered (resolved) scale to the

modelled scale.
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6.1.0.2 Smagorinsky model with dynamic parameters

While the Smagorinsky model is often used for its simplicity, robustness and

lack of numerical instabilities, phenomena such as shear and stratification affect

the SGS dissipation rate such that a constant coefficient is not appropriate. To

overcome these limitations, Germano et al. (1991) proposed a dynamic coefficient,

determined from the filtered (resolved) scale:

C2
d =

〈LijMij〉
〈MijMij〉

(6.7)

where, Lij = ũiũj − ũiũj and Mij = −2∆2(α2|S̃|S̃ij − |S̃|S̃ij) and the overbar

denotes test filtering at a scale (α∆), yielded from the assumption of scale invari-

ance, i.e. C∆
d = Cα∆

d (Meneveau and Katz, 2000, Porte-Agel et al., 2000). This

is associated with a highly variable viscosity field, where the SGS dissipation can

be negative, causing numerical instabilities and increasing the SGS dissipation

in the positive and negative ranges. The solution to this is the use of averaging,

with the remaining (negative) SGS dissipation quantities clipped to zero.

6.1.0.3 Structure function model

Assuming a cut-off wavenumber in the inertial subrange of the energy spectra,

Metais and Lesieur (1992) expressed the energy at the cutoff using a second order

structure function at the filtered (resolved) scale, with the SGS stress determined

by:

τSFij = −2KmS̃ij (6.8)

where Km = 0.063∆[F (x)]0.5 and F (x) is the second order structure function:
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F (x) = 〈|ui(xi)− ui(xi + ri)|〉2 (6.9)

Piomelli (1999) established that, on an even grid, the structure function model

is equal to the Smagorinsky eddy-viscosity model with the strain rate replaced by

the velocity gradient tensor, i.e. F = |S|2 + |ω|2. However, comparisons suggest

that this Structure Function model is less dissipative under conditions of isotropy

but more dissipative under conditions of shear, where typically Cs = 0.18− 0.23.

6.1.0.4 Nonlinear model

The nonlinear model is known to perform significantly better in predicting the

SGS stresses that the Smagorinsky eddy-viscosity model, while overcoming the

computational cost of the secondary filtering needed for the dynamic model:

τNLij = CNL∆2 ∂ũi
∂xk

∂ũj
∂xk

(6.10)

where CNL in the Nonlinear coefficient defined such that εNL = −τNLij S̃ij. In this

model the SGS dissipation can be negative, causing numerical instabilities and

increasing the SGS dissipation in the positive and negative ranges. The solution

to this is the use of a mixed model, by combining the Nonlinear model and the

Smagorinsky eddy-viscosity model. The eddy-viscosity term increases the SGS

dissipation (as, by definition, this is inherently positive) and therefore decreases

the backscatter of energy from the modelled scale.
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6.1.1 Implementation with 3D-PTV

Unlike standard instrumentation, 3D-PTV yields an instantaneous realisation of

the three-dimensional velocity flow field within the sample volume. A sequence of

measurements yields a time-series of these spatial velocity data. With such data,

it is possible to test each SGS stress model and SGS dissipation rate estimates

for LES.

Following the implementation by Nimmo-Smith et al. (2007), the velocity is

filtered using a box (top hat) filter, i.e.:

ũi(x) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ui(x− x′)F∆d
3x (6.11)

F∆(x) =


K1 if |x| < ∆/2

0 otherwise

(6.12)

where i = 1, 2, 3 and K1 is a constant to ensure that the integral of the filter

equals unity.

To represent data that are typically obtained from LES, center-differencing of

4= 3, 5 and 7 grid-points (d = 1) are used, based on the data available. Note that

while center-differencing of 24 is more appropriate, Nimmo-Smith et al. (2007)

established that the impact of the discrepancies are small and do not justify the

loss of data that arises from the edge effects of the coarser differencing.

6.2 Results and discussion

6.2.1 Dissipation rate estimates

Figure 6.1A presents a time-series of the spatially-averaged SGS dissipation over

the 20 min period, using a filter scale of 4/d = 5. Chapter 4 established that the
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Figure (6.1). (A) Time-series of the sample volume mean SGS dissipation

rate (blue) and the sample volume mean TKE dissipation rate (green) over a

20 min sampling period. The magnified area (B) shows the temporal persistence

associated with the passage of coherent structures (marked by red crosses).

patchiness within this flow is linked to the presence of persistent motions, called

eddies or coherent structures, as highlighted in Figure 6.1B for a 10 sec subset

of the data. In each plot, each individual velocity flow field where a vortex was

detected in Chapter 4 is marked. These large coherent structures occur singly

or in groups, consistent with a packet of hairpin vortices (Robinson, 1991). As

for the TKE dissipation (also included on each plot), a section of high amplitude

SGS dissipation fluctuation, associated with the position of the vortices, is readily

visible. This is surrounded by sections of lower SGS dissipation, although these

again contain small patches of enhanced turbulence associated with simple shear

layers arising from the proximity of the seabed or the passage of vortices that are

much larger than the limited size of the 3D-PTV sample volume.
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The agreement between the loci of the vortices and the high amplitude positive

and negative SGS dissipation signal indicates that the presence of these large

coherent structures are accompanied by both a forwardscatter and a backscatter

of energy. However, the impact of spatial filtering on the limited resolution of the

3D-PTV grid (1× 1× 1 cm3) make it impossible to be more specific as to where

the peaks in positive and negative SGS dissipation occur within these vortices.

Consistent with past in situ 2D-PIV measurements (Nimmo-Smith et al.,

2007), the time average of the SGS dissipation rate (εSGS = 6.1130e−8) is an

order of magnitude less than the TKE dissipation rate (εSGS = 1.4855e−7) over

the same 20 min period. Note that substantial discrepancies between εSGS and

εTKE have also been observed in Direct Numerical Simulations of boundary layer

flows (Piomelli et al., 1991). Since SGS models aim to achieve the correct level

of SGS dissipation (assuming εSGS ≈ εTKE), the difference between these two

quantities will have significant implications for the numerical modelling of these

types of flows in LES.

Figure 6.2 presents the results of conditional sampling using the same proto-

cols as presented in §4.2.2. Here, both the positive and negative SGS dissipation

rate (normalised by εTKE) increases as λci increases. At low λci, backscatter

exceeds forwardscatter such that εSGS < εTKE, while at high λci forwardscatter

exceeds backscatter such that εSGS > εTKE. The interpretation of this is that

moderately quiescent conditions are associated with a large number of negative

points, while coherent structures are associated with a large number of positive

points and therefore are necessary for εSGS ≈ εTKE. This is consistent with the

assumptions of homogeneity and isotropy, as well as data presented by Nimmo-
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Figure (6.2). Positive and negative SGS energy fluxes at ∆/δ = 5 classified

by λci. Open symbols: positive SGS energy flux; Closed symbols: negative SGS

energy flux.

Figure (6.3). Positive and negative SGS energy fluxes, classified by filter scale.

Open symbols: positive SGS energy flux; Closed symbols: negative SGS energy

flux.
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Smith et al. (2007), where only flows containing a substantial number of vortices

will appear to have a mean SGS dissipation rate comparable to the mean TKE

dissipation rate. Clearly, this is not the case for the present data as, here, vortices

were only detected in 3.5% of the velocity flow fields.

Figure 6.3 presents the effect of filter size on the positive and negative SGS

dissipation rate. In all cases both forwardscatter and backscatter increases with

the filter size. The magnitude of this increase is higher between 4/d = 3 to

5 than between 4/d = 5 to 7. However, for the three filter sizes, backscatter

constitutes a substantial part of the forwardscatter – a finding consistent with

data collected under laboratory / idealised flows (Liu et al., 1994, 1999, Tao et al.,

2002) and past in situ 2D-PIV measurements (Nimmo-Smith et al., 2007).

6.2.2 A priori tests

The performance of SGS models can be assessed using a series of comparisons

of the measured τSGSij and the modelled τMij (termed a priori analysis), allowing

more insight into their fundamental physics, and the reasons they do or do not

work, than comparisons that use the results of Direct Numerical Simulations

(termed a posteriori analysis) (Piomelli et al., 1988, Meneveau and Katz, 2000).

6.2.2.1 Correlation coefficients

Following the implementation by Nimmo-Smith et al. (2007), the correlation co-

efficient between the measured τSGSij and the modelled τMij is defined as:

ρ(τMij , τ
SGS
ij ) =

〈τMij τSGSij 〉 − 〈τMij 〉〈τSGSij 〉
[(〈(τMij )2〉 − 〈τMij 〉)2〈(τSGSij )2〉 − 〈τSGSij 〉2)]0.5

(6.13)
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where τMij is τSij , τ
D
ij , τSFij or τNLij and i = 1, 2, 3.

The correlation coefficient for each of the four SGS stress models tested are

presented for the three tangential SGS stress terms (τ12, τ13 and τ23) in Table 6.1.

ρ(τMij , τ
SGS
ij ) ρ(τMik , τ

SGS
ik ) ρ(τMjk , τ

SGS
jk )

M = τS(∆/δ = 3) -0.06 -0.48 -0.14

M = τS(∆/δ = 5) -0.03 -0.51 -0.09

M = τS(∆/δ = 7) 0.12 -0.32 0.05

M = τD(∆/δ = 5) -0.00 0.01 0.00

Threshold x105 1.39

% data above threshold 24.10

M = τD(∆/δ = 5) above threshold 0.08 0.44 0.15

% data above 2×threshold 20.9298

M = τD(∆/δ = 5) above 2×threshold 0.08 0.44 0.15

M = τSF (∆/δ = 5) -0.02 -0.52 -0.10

M = τNL(∆/δ = 5) 0.94 0.96 0.92

Table (6.1). Correlation coefficients between measured (τMjk ) and modelled

(τSGSjk ) tangential SGS stress models.

The data indicate that τNLij exhibits the best correlation with τSGSij , while τSFij

exhibits the poorest correlation with τSGSij .

While the Smagorisky model exhibits a low correlation with the τSGSij , this

is a popular selection as it is not susceptible to numerical instabilities, while

providing appropriate levels of SGS dissipation. However, this model is enhanced

by replacing the static model coefficient (represented by τSij) with the dynamic
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model coefficient (represented by τDij ) interpreted using an appropriate threshold

to account for the highly variable viscosity field associated with small MijMij

quantities. These small MijMij quantities are an artefact of the experimental

error of individual velocity measurements and bias the correlation (Liu et al.,

1994). To overcome these limitations, this threshold is typically set at 20%-24%

of the data.

The difference between the Smagorinsky model and the Structure function

model is considered in Figure 6.4, where the joint probability density function of

the SGS dissipation rate and the strain rate magnitude are presented. Here, the

probability lines spread in a positive and a negative direction with increasing |S|

that can be represented by cubic polynomial. This is consistent with the implied

proportionality between εSGS and |S|3 for the Smagorinsky model, but not the

implied proportionality between εSGS and |S|3 for the Structure Function model.

Consistent with past in situ 2D-PIV data (Nimmo-Smith et al., 2007), these

results suggest that the Nonlinear model represents the best SGS stress model to

use for the present data. This is unsurprising in light of the complexities of turbu-

lence near the seabed as these changing dynamics are not easily incorporated into

more simplistic models. However, it is important that the performance of SGS

models have been verified using three-dimensional in situ data. The consequence

of the alignment between two-dimensional and three-dimensional data analysis

allows more simplistic data sets to be collected and used with greater confidence.
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Figure (6.4). Joint Probability Density Function of the SGS dissipation rate

and the strain-rate magnitude (normalised by its standard deviation) at ∆/δ = 5.

The contours are at 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, with the level at

10−4 emphasised.

6.2.3 Model coefficients

The model coefficient for each of the four SGS stress models tested are presented

in Table 6.2.

While all model coefficients for the static Smagorisky model presented in Table

6.2 are less than the standard parameter of Cs = 0.16 established by Lilly (1967),

assuming isotropy, it is seen the magnitude of the coefficient increases as the filter

scale increases. At the largest filter scale, the magnitude of this coefficient (Cs =

0.0599) is approximately equal to that used in Direct Numerical Simulations of

boundary layer flows (Cs = 0.0650) by Moin and Kim (1982). Similarly, this

is consistent with data presented by Porte-Agel et al. (2000) which indicates Cs

decreases as mean shear increases.

The model coefficients for the dynamic Smagorinsky model, the Structure
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CM

Cs(∆/δ = 3) 0.0246

Cs(∆/δ = 5) 0.0360

Cs(∆/δ = 7) 0.0599

Cd(∆/δ = 5) 0.9998

Csf (∆/δ = 5) -0.3004

Km x106 9.7808

Cnl(∆/δ = 5) 0.3817

Table (6.2). Model coefficients.

Function model and the Nonlinear model are determined using global ensem-

ble averaging of the form: Cm = 〈εSGS〉/〈εm〉, where εm = −τmij Sij is the SGS

dissipation from the SGS stress.

Consistent with past in situ 2D-PTV measurements (Nimmo-Smith et al.,

2007), the dynamic Smagorinsky model coefficient (Cd) determined at ∆/d = 5

exceeds the static Smagorinsky model coefficient (Cs) determined at ∆/d = 7,

with a likely convergence at α∆ (the scale of the larger filter scale used to obtain

them). The negative Structure Function model coefficient (Csf ) determined at

∆/d = 5 is associated with the low Km and is unreliable. The high Nonlinear

model coefficient (CNL) is associated with the high mean shear that exists within

the bottom boundary layer of the coastal ocean.

Statistical evidence for the impact of coherent structures on the model coef-

ficients is yielded from conditional sampling using the same protocols presented

in §4.2.2. Figure 6.5 presents the model coefficients classified by λci. Here, the
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Figure (6.5). Model coefficients classified by λci.

static Smagorinsky model coefficient increases as λci increases, while the dynamic

Smagorinsky model coefficient is unaffected. The Structure Function model coeffi-

cient increases as λci increases, however these are negative and so are meaningless.

The most substantial difference is seen for the Nonlinear model coefficient that

decreases with transition from low to intermediate λci, then increases with transi-

tion from intermediate to high λci. The exact causes of this pattern are unknown,

however it is likely that this is associated with the shape of the corresponding

probability density function (Figure 6.5) as the sample volume mean λci of most

of the velocity flow fields are close to the threshold boundaries.

The results offer the first three-dimensional view of the impact of coherent

structures on the SGS model coefficients, complementary to data presented by

Nimmo-Smith et al. (2007).
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6.3 Conclusions

3D-PTV measurements have been performed in the bottom boundary layer of the

coastal ocean at moderate Reynolds number. These data are processed to test

four popular stress models and SGS dissipation estimates for LES using experi-

mental data. Consistent with past in situ 2D-PIV measurements (Nimmo-Smith

et al., 2007), the time average of the SGS dissipation rate (εSGS = 6.1130e−8)

is an order of magnitude less than the TKE dissipation rate (εSGS = 1.4855e−7)

over the same 20 min period. Since SGS models aim to achieve the correct level

of SGS dissipation (assuming εSGS ≈ εTKE), the difference between these two

quantities will have significant implications for the numerical modelling of these

types of flows in LES, arising from the assumptions of homogeneity and isotropy.

Consequently, coherent structures, such as hairpin vortices, are predominantly

associated with the forwardscatter of energy from filtered (resolved) scale to the

modelled scale, while quiescent conditions are associated with backscatter of en-

ergy from the modelled scale to the filtered (resolved) scale. Therefore, only

flows containing a substantial number of vortices have a mean SGS dissipation

rate comparable to the TKE dissipation rate.

A priori analysis of the correlation coefficients and SGS model coefficients for

the Smagorinsky model (with both static and dynamic coefficients), the Structure

Function model and the Nonlinear model has been conducted. These follow the

general patterns inferred from lower-dimensional data. Here, the Nonlinear model

represents the best SGS stress model to use for the present data.

The Smagorinsky model with dynamic coefficients is an improvement over

the Smagorinsky with static coefficients and the Structure Function model. The
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latter are therefore not recommended for modelling the present data.

Model coefficients are consistent with that used in existing Direct Numerical

Simulations of boundary layer flows. The static Smagorinsky model coefficients

are less than that from laboratory / idealised flows, and increases as λci increases,

while the dynamic Smagorinsky model coefficients are unaffected. The dynamic

Smagorinsky model coefficients exceed the static Smagorinsky model coefficients

and appear to be more comparable to the results from a larger filter scale. The

Nonlinear model coefficients are higher than in laboratory / idealised flows, con-

sistent with the high mean shear that exists within the bottom boundary layer

of the coastal ocean.
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Chapter 7

Summary and conclusions

This thesis offers a qualitative and quantitative insight into small-scale turbulence

in the ocean. Measurements have been made in the bottom boundary layer of a

tidally-dominated shelf-sea using recently-developed Particle Tracking Velocime-

try methods. The data and analysis documented in this work are in line with

that reported within the scientific literature, but examines, for the first time, the

three-dimensional form of the coherent structures within the bottom boundary

layer of the coastal ocean, relating these to existing experiments conducted under

laboratory / idealised flows. The eventual goal would be to aid the interpreta-

tion of experimental in situ measurements and the accuracy and reliability of

numerical models of all kinds.

Ocean flows have traditionally been sampled using a multiplicity of methods,

spanning a one, two and three-dimensional domain in space / time (Burchard

et al., 2008). However, these each miss at least one spatial dimension, requiring

assumptions to be made to quantify the turbulence statistics. In contrast, time-

resolved submersible 3D-PTV is capable of providing an instantaneous snapshot
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of the velocity flow field in a 20 × 20 × 20 cm3 sample volume and therefore

represents an important tool for the in situ study of mixing processes, although

such methods demand a significantly higher computational cost (both in data

collection and processing) than ADV, MSS or ADCP-based methods.

The 3D-PTV system was found to operate well in conditions typical of coastal

waters. The use of optical flow visualisation methods are limited to conditions

containing sufficient particles to reveal the turbulence characteristics but not so

many as to overload the Particle Tracking Velocimetry software. Tracking of par-

ticles is possible in flows of up to 20 cm s−1, becoming more difficult as the mean

displacement between images exceeds the mean separation of the particles. As

with other methods that use the scattering of light and sound to compute velocity,

3D-PTV assumes that particles act as neutrally-buoyant tracers of the velocity

flow field. Individual tracer characteristics (e.g. bubbles, large or heavy particles)

will, therefore, bias the results. However, in these cases, these characteristics can

be verified by checking the original camera images of each of the particles when

unexpected results are encountered.

A complexity associated with submersible 3D-PTV in the coastal ocean is that

gaps and noise affect the accuracy of the data collected. To accommodate this, a

new Physics-Enabled Flow Restoration Algorithm has been tested for the restora-

tion of gappy and noisy velocity measurements where a standard PTV or PIV

laboratory set-up (e.g. concentration / size of the particles tracked) is not possible

and the boundary and initial conditions are not known a priori. Implemented as

a black-box approach, where no user-background in fluid dynamics is necessary,

this is able to restore the physical structure of the flow from gappy and noisy
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data, in accordance with its hydrodynamical basis. In addition to the restoration

of the velocity flow field, PEFRA also estimates the maximum possible deviation

of the output from the true flow. When applied to submersible 3D-PTV measure-

ments from the bottom boundary layer of the coastal ocean, it is apparent that

using PEFRA is beneficial in processing data collected under difficult conditions,

for example, where the number (and reliability) of tracer-particles is very sparse.

Laboratory measurements (Adrian et al., 2000b, Ganapathisubramani et al.,

2006, Dennis and Nickels, 2011a) and numerical modelling (Zhou et al., 1999,

Adrian and Liu, 2002, Wu and Moin, 2009) at low Reynolds number (Reθ <

4, 700) indicate the energy containing turbulence of boundary layer flows com-

prises coherent packets of hairpin vortices. This thesis confirms tidal flows also

contain gusts of large vortices separated by periods of more quiescent conditions

at higher Reynolds numbers (Reθ = 267, 970). The 1,452 vortices recorded over

the 20 min period are typically aligned along-stream (modal angle: 8◦) and in-

clined to the seabed (modal angle: 27◦), with a mean frequency of occurrence

of 4.3 sec. Therefore, the results lend three-dimensional, in situ, evidence for the

existence of coherent packets of hairpin vortices in the bottom boundary layer of

the coastal ocean. This demonstrates a direct linkage from low Reynolds number

experiments to these higher Reynolds number flows that, importantly, will enable

the fine-scale details of particle transport and pollution dispersion to be studied

in future.

Conditional sampling of the Reynolds shear stress suggests that coherent

structures are responsible for the vertical exchange of momentum via bursts and

sweeps (τ13 and τ23) and, as such, are the key areas where energy is extracted from
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the mean flow and into turbulence. However, these vortices seem to have a lesser

impact on τ12, although it is likely that this is biased by the alignment of the 3D-

PTV system to the mean flow (as a consequence of the spatial inhomogeneity).

At the same time, conditional sampling of the spatial energy spectra suggests that

coherent structures appear to have a regularising effect on the flow, although it is

clear that (substantial) anisotropy remains at all wavenumber scales as the local

turbulence dynamics are modified by the proximity to the seabed. Note that

although the mean turbulence statistics computed from all mean velocity flow

fields over the 20 min period are reliable (i.e. over twice the necessary duration

to achieve statistical convergence to within 10% of the long term mean), the pro-

cess of classifying these data into groups of low, intermediate and high swirling

strength magnitude reduces the confidence in the results of the conditional sam-

pling. However, this trend is consistent with past in situ 2D-PIV measurements

(Nimmo-Smith et al., 2005). To definitively unravel the impact of large coherent

structures on the Reynolds shear stress and the spatial energy spectra it would be

insightful to use each of the instantaneous velocity flow fields where a vortex was

detected as the criterial for the conditional sampling but, as this flow is mostly

(96.5%) quiescent, it is suggested that this analysis is conducted using a larger

database of 3D-PTV measurements.

Consistent with previously published spatial energy spectra (Luznik et al.,

2006), and without exception here, all along-stream velocity components are

higher than the cross-stream and wall-normal components. The impact of this

anisotropy is to bias estimates of the TKE dissipation rate inferred from one- and

two- dimensional data. As isotropy is a fundamental assumption in most turbu-
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lence measurements (e.g. airfoil-type shear sensors), conditions of anisotropy will

have significant implications for the sampling of these types of flows in situ. Here,

direct measurements of the Turbulence Kinetic energy dissipation rate within the

bottom boundary layer of the coastal ocean are used to compare estimates based

on horizontal and vertical velocity derivatives. These represent the data that are

typically obtained from airfoil-type shear sensors profiled in the along-stream,

cross-stream and vertical direction. As the grid size exceeds the Kolmogorov

microscale, the exact magnitude of the dissipation rate will be underestimated.

However, as this is constant between quantities compared, this does not impact

on the overall trends reported. Note that this is not unique to the present the-

sis, as this is also seen in direct estimates of the TKE dissipation rate obtained

in past in situ 2D-PIV measurements (Nimmo-Smith et al., 2005, Luznik et al.,

2006, Hackett et al., 2011). The results indicate a high degree of spatial vari-

ability associated with the flow conditions, meaning it is recommended that pairs

of airfoil-type shear sensors are installed orthogonally and the measurements av-

eraged. The averaged data supports the validity of measurements obtained by

horizontal and vertical profilers, however along-stream velocity derivatives under-

estimate the TKE dissipation rate by more than 40 % – a factor of two higher

than for the equivalent cross-stream and vertical estimates. As a consequence, it

is recommended that horizontal (AUV) transects are made across the direction of

the mean flow but, as the trend identified from the present study are in agreement

with that identified from numerical modelling of a stratified shear layer (Itsweire

et al., 1993, Smyth and Moum, 2000), a constant sampling pattern can be fol-

lowed throughout the water column. The anisotropy of ocean flows has important
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implications for the subsequent interpretation of higher-order statistics. For ex-

ample, the present study reveals that an (erroneous) assumption of isotropy in

the TKE dissipation rate term used in the computation of the Kolmogorov mi-

croscale causes a difference in results of 40.5 % from the mean within individual

vortices or 800µm. As this parameter is used to relate the flow dynamics to par-

ticle characteristics in models of flocculation processes (Soulsby et al., 2013), care

is necessary in interpreting lower-dimensional data collected under conditions of

anisotropy.

The data have been processed to test four popular SGS stress models and

SGS dissipation rate estimates for LES using experimental data. Consistent with

past in situ 2D-PIV measurements (Nimmo-Smith et al., 2007), the time average

of the SGS dissipation rate (εSGS = 6.1130e−8) is an order of magnitude less

than the TKE dissipation rate (εSGS = 1.4855e−7) over the same 20 min period.

Since SGS models aim to achieve the correct level of SGS dissipation (assuming

εSGS ≈ εTKE), the difference between these two quantities will have significant

implications for the numerical modelling of these types of flows in LES, aris-

ing from the assumptions of homogeneity and isotropy. Consequently, coherent

structures, such as hairpin vortices, are predominantly associated with the for-

wardscatter of energy from filtered (resolved) scale to the modelled scale, while

quiescent conditions are associated with backscatter of energy from the modelled

scale to the filtered (resolved) scale. Therefore, only flows containing a substan-

tial number of vortices have a mean SGS dissipation rate comparable to the TKE

dissipation rate. Furthermore, when the correlation and SGS model coefficients

are compared, the Nonlinear model represents the best SGS stress to use for the
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present data.

While the data presented in this thesis relate to calm weather conditions

on the accelerating phase of the ebb-tide, the agreement with two-dimensional

measurements by Nimmo-Smith et al. (2005) suggests that these are typical of

coastal waters with weak to moderate currents. Further observations are therefore

necessary to extend our understanding of three-dimensional turbulence structure

to different conditions, such as under stratified flows and waves, as well as other

sites with stronger currents and different topography. To achieve this will require

further development of the 3D-PTV system since, in its present configuration,

the 3D-PTV is limited by the resolution of the cameras, sampling rate and the

seeding density of the particles. Upgrading the system to use high-speed cameras

would allow faster flow rates to be sampled at higher resolution, although these

would also require changes to the data storage.

The significance of the measurement and analysis of turbulence in the coastal

ocean is important in its wider context. It has been stated at the outset that the

rotational, eddying and dynamic motions implied by the term turbulence are the

dominant state of fluid movement on Earth. As such, turbulence is effective in the

transferral of heat and momentum in the sea, as well as dispersing, stressing and

straining both particles and living matter in the water column, while diluting

and stirring its chemical constituents (Thorpe, 2004). Detailed measurement

and analysis of coherent structures in the coastal ocean is therefore critical for

the development of numerical models and for the further study of all marine

processes, offering new ways of looking at in situ phenomena.
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Appendix A

Swirling Strength

Following Ganapathisubramani (2004), the velocity gradient tensor is defined as:

D = ∇u =


∂U1

∂X1

∂U1

∂X2

∂U1

∂X3

∂U2

∂X1

∂U2

∂X2

∂U2

∂X3

∂U3

∂X1

∂U3

∂X2

∂U3

∂X3

 (A.1)

The characteristic eigen-value equation of this tensor is:

λ3 + Pλ2 +Qλ+R = 0 (A.2)

where P, Q and R are the invarients of D, i.e.:

P = trace(D) (A.3)

Q =
1

2
[P 2 − trace(DD)] (A.4)

R =
1

3
[−P 3 + 3PQ− trace(DDD)] (A.5)

This characteristic equation is a cubic polynomial, whose discriminant is de-

fined as:

∆ = R̃2 + Q̃3 (A.6)
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where,

R̃ =
1

6
(PQ− 3R)− 1

27
P 3 (A.7)

Q̃ =
1

3
(Q)− 1

9
P 2 (A.8)

This polynomial will have three real roots or one real root and a pair of complex-

conjugate roots, as identified by the discriminant. If ∆ < 0, all roots are real and

if ∆ > 0 one root is real and a pair of complex-conjugate roots exist. The roots

of the characteristic equation where ∆ > 0 are determined as follows: Let,

s1 =

[
r̃ +
√

∆

]1/3

(A.9)

s2 =

[
r̃ −
√

∆

]1/3

(A.10)

Then, the roots z1, z2 and z3 are defined as:

z1 = (s1 + s2)− P

3
(A.11)

z2 = −1

2
(s1 + s2)− P3 +

i
√

3

2
(s1− s2) (A.12)

z2 = −1

2
(s1 + s2)− P3− i

√
3

2
(s1− s2) (A.13)

Therefore, the complex roots are of the form:

z = λcr + iλci (A.14)

λcr = −1

2
(s1 + s2)− P

3
(A.15)

λci = −
√

3

2
(s1− s2) (A.16)

The swirling strength is defined as the imaginary part of the complex root, λci.
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Abstract1

The gaps and noise present in Particle Image Velocimetry (PIV) and Particle2

Tracking Velocimetry (PTV) measurements affect the accuracy of the data col-3

lected. Existing algorithms developed for the restoration of such data are only4

applicable to experimental measurements collected under well-prepared labora-5

tory conditions (i.e. where the pattern of the velocity flow field is known), and6

the distribution, size and type of gaps and noise may be controlled by the lab-7

oratory set-up. However, in many cases, such as PIV and PTV measurements8

of arbitrarily turbid coastal waters, the arrangement of such conditions is not9

possible. When the size of gaps or the level of noise in these experimental mea-10

surements become too large, their successful restoration with existing algorithms11

becomes questionable. Here, we outline a new Physics-Enabled Flow Restora-12

tion Algorithm (PEFRA), specially designed for the restoration of such velocity13

data. Implemented as a “black box” algorithm, where no user-background in14

fluid dynamics is necessary, the physical structure of the flow in gappy or noisy15

data is able to be restored in accordance with its hydrodynamical basis. The16

use of this is not dependent on types of flow, types of gaps or noise in measure-17

ments. The algorithm will operate on any data time-series containing a sequence18

of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields19

established that this method is able to successfully restore corrupted PIV and20

PTV measurements with different levels of sparsity and noise. This assessment21

of the algorithm performance is extended with an example application to in situ22

submersible 3D-PTV measurements collected in the bottom boundary layer of the23

coastal ocean, where the naturally-occurring plankton and suspended sediments24
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used as tracers causes an increase in the noise level that, without such denoising,25

will contaminate the measurements.26

A Introduction27

Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) are28

two established methods for the measurement of instantaneous distributions of29

velocity components within an illuminated 2D sample area or 3D sample volume.30

In both cases, digital cameras are commonly used to record traces of particles31

suspended in the flow field. A pair of traces are yielded by two successive laser-32

sheet pulses or two successive camera frames in PIV and PTV, respectively. The33

displacements in all the particles (on an ensemble-averaged or an individual basis)34

are then divided by the fixed time delay between the two exposures, thus obtaining35

the corresponding velocity distributions.36

While the idea of the PIV and PTV methods is simple, the noise and gaps37

present in experimental measurements typically affects the accuracy of the data38

collected (Westerweel, 1994, Raffel et al., 2007). The noise arises from errors39

connected with the characteristics of the particles and their representation in40

the images (Hart, 2000). A low seeding density complicates these issues, as well41

as any subsequent analysis (Cenedese and Querzoli, 1997, 2000, Stanislas et al.,42

2004).43

In recent years, several methods have been developed for the denoising and44

restoration of such data; exploiting the statistical or the physical characteristics45

of the velocity flow field.46

In statistical methods, individual vectors that depart from the ensemble of47
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the recorded velocity flow field are identified and subsequently eliminated. Such48

data post-processing commonly consists of using global-mean, local-mean or local-49

median tests or using global histogram operators (Westerweel and Scarano, 2005,50

Raffel et al., 2007, Duncan et al., 2010). Here, it is assumed that locally-occurring51

errors are randomly scattered within the sample volume, and that a sufficient52

quantity of tracers are present for the outliers to be detected. These methods53

are used for their convenience, computational cost and ease of implementation.54

However, only individual vectors are eliminated and not the noise that exists55

homogeneously within the sample volume.56

Concomitant issues relate to infilling gaps in experimental measurements, and57

are tackled after statistical denoising. The restoration of ‘gappy’ data commonly58

consists of using different types of interpolation, e.g. kriging, nearest neighbour59

or polynomial interpolation from linear to nth order (cf. Stuer and Blaser 2000).60

Similarly, methods that employ Proper Orthogonal Decomposition have gained61

popularity, remaining cost efficient while still being applicable to any type of62

flow (Venturi and Karniadakis, 2004, Gunes and Rist, 2008). These exhibit good63

restoration capabilities where the sparsity of these data are 50 %, but the perfor-64

mance decreases as the sparsity of the data approaches 20 %.65

In physical methods, hydrodynamical equations, e.g. Navier-Stokes (NSE) or66

Vorticity Transport Equations (VTE), are used for the restoration of noisy and67

gappy data. Typically, this is achieved by fitting numerical pre-estimates of68

the (same) velocity flow field to data collected from experimental measurements69

using Kalman filtering (Suzuki, 2012) or variational methods (Okuno et al., 2000,70

Suzuki et al., 2009a,b), such that they are similar. Since the velocity data from71
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these schemes are determined from the results of the numerical hydrodynamical72

model, the results of the restoration are physically-plausible yet are not limited73

by the occurrence of noise or the sparsity of the data. However, this is only74

feasible where numerical pre-estimates of the velocity flow field are possible (i.e.75

where boundary and initial conditions are known a priori).76

Contrary to methods using numerical pre-estimates, Sciacchitano et al. (2012)77

suggested deriving boundary conditions directly from experimental measurements,78

that then are used to infill gappy data in a physically-plausible way. However,79

this is very sensitive to noise (Sciacchitano et al., 2012).80

All these methods are able to be used for the denoising and restoration of ex-81

perimental measurements within the context of a well-prepared laboratory set-up,82

where no unsuitable particles are present and tracers with known light scattering83

characteristics are selected and seeded in the velocity flow field. Tuning labora-84

tory settings (e.g. by optimising the concentration / size of the particles tracked)85

results in the permissible level of gaps and noise that allows successful restoration86

using existing methods. Even if gaps and noise cannot be sufficiently reduced, the87

laboratory set-up offers enough details that numerical pre-estimates are possible,88

as the boundary conditions or the pattern of the velocity flow field are known a89

priori. However, in several cases, it is not possible for these gaps and noise to be90

sufficiently reduced nor any pre-estimates to be made. An example of this is seen91

in PIV and PTV measurements in ocean flows (Nimmo-Smith et al., 2002, 2005,92

Nimmo-Smith, 2008) where the arrangement of usual experimental conditions us-93

ing ideal tracers is not possible and naturally-occurring suspended particles are94

used instead. The uneven shape of these particles, scattered inhomogeneously95
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within the velocity flow field, causes an increase in the occurrence of gaps and96

noise that, in turn, complicates any later analysis. In addition, as only the part97

of the ocean advected through the sample volume are recorded, the boundary98

conditions are unknown and numerical pre-estimates are not feasible. Therefore,99

restoration of such data with existing methods is debatable; requiring the de-100

velopment of a new Physics-Enabled Flow Restoration Algorithm (PEFRA) for101

these velocity measurements. This is founded on a hydrodynamical basis, as rep-102

resented by the Vorticity Transport Equation (VTE), however it is independent103

of specified boundary conditions and the algorithm exhibits a weak sensitivity104

to noise, as confirmed by tests using both artificial/numerical and in-situ experi-105

mental data.106

PEFRA is from the same pedigree as the Physically-Consistent and Efficient107

Variational Denoising (PCEVD) algorithm developed by Vlasenko and Schnorr108

(2010), but with a significant improvement that allows restoration of gappy and109

noisy data. Both methods conform to a black box philosophy, requiring no specific110

user-background in fluid dynamics (except in special cases) and may be applied to111

any velocity time-series, formed from any type of flow and corrupted by any type112

of noise. However, PCEVD is limited in the sparsity permitted, especially under113

turbulence. This failing is corrected in PEFRA, and confirmed by the restoration114

of a velocity flow field with only 10% of data available.115

Here, PCEVD is outlined in §B, with the development of PCEVD into PEFRA116

outlined in §C. In §D, the algorithm sensitivity to noise and sparsity is discussed,117

with an assessment of the algorithm performance using artificial/numerical data118

modelling different flow conditions presented in §E. This assessment is extended119
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to submersible 3D-PTV measurements in ocean flows, in §F, where naturally-120

occurring suspended particles are used as tracers. The pseudo-code outline of121

PEFRA is presented in Appendix B.122

B PCEVD algorithm123

A detailed discussion of the mathematical background to PCEVD containing the124

complete proofs may be found in Vlasenko (2010) (or in compact form in Vlasenko125

and Schnorr 2010), and only a summary (without theoretical substantiation) is126

provided here as the context for the solution of the problem. To do so, ~a(~x)127

and ~b(~x) are defined as two vector functions in a volume, V , where ~x ∈ V is128

a three-dimensional coordinate vector. Then, assuming that ~a(~x) and ~b(~x) are129

differentiable, the L2 norm is defined as: ‖~a‖2 =
√∫

V
~a(~x)2d~x, the inner product130

is defined as 〈(~a,~b)〉 =
∫
V

(~a · ~b)d~x and the convolution of these is defined as:131

~a(~x) ?~b(~x) =
∫ +∞
−∞ ~a(~x)~b(~t− ~x)d~t.132

The curl, finally, is defined as: ∇ × ~a = [∂az
∂y
− ∂ay

∂z
; ∂ax
∂z
− ∂az

∂x
; ∂ax
∂y
− ∂ay

∂x
].133

Importantly, the VTE is yielded when this operator is applied to both the LHS134

and the RHS of the NSE:135

∂~ω

∂t
+ (~ω · ∇)~v + (~v∇)ω = ν4~ω (B.1)

where, ω = ∇× ~v, 4 = ∇2 is the Laplace operator and ν is the viscosity.136

The benefit in using the VTE over the NSE is that it does not contain pressure137

as an additional variable. For the sake of simplicity, the LHS of the VTE is138

denoted by an ~e, i.e. ~e(~v) = ∂~ω
∂t

+ (~ω · ∇)~v + (~v∇)~ω. This shorthand is especially139

useful when the VTE is presented in weak form, i.e. J(~ω) = ν‖∇ × ~ω‖2
2 +140

167



2〈~e(~vs), ~ω〉. The weak form of the VTE reverts to the normal form of the VTE141

by differentiation by ~ω.142

PCEVD is an iterative algorithm that was developed for the denoising and143

restoration of three-dimensional velocity time-series data recorded in PIV, PTV144

or other velocity measurements. This is implemented in four stages: Gaussian145

filtering, solenoidal projection (i.e. divergence removal, demanded by the conti-146

nuity equation), vorticity restoration and velocity restoration. On each loop, the147

quality of this output is checked by a termination criteria. If this is not achieved,148

the process repeats using the results generated in the last output. The idea of this149

sequence is that high-frequency noise, as well as any divergence, is eliminated by150

Gaussian filtering and solenoidal projection, respectively. Any remaining noise is151

then eliminated by vorticity restoration, where the pattern of the vorticity flow152

field is also recovered (– if it is corrupted). Finally, the last part of the algorithm,153

velocity restoration, links the pattern of the vorticity flow field and the filtered154

pattern of the velocity flow field, providing an additional connection to the PIV155

or PTV data. These stages are detailed below, via the restoration of a gappy and156

noisy velocity flow field, vm, recorded in an incompressible fluid.157

B.1 Stage 1: Gaussian filtering158

The restoration of the velocity flow field, ~vm, is initiated by Gaussian filtering:159

~vd = g ? ~vm, g =
1

(2πσ2)3/2
exp

(
−σ

2

2
|~x|2
)

(B.2)

where, ~vm is the recorded velocity flow field, ? is the convolution and σ is the160

variance governing the strength of the Gaussian filtering (discussed in Section161
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D) that removes high frequency noise. The filtered velocity flow field ~vd is then162

passed to Stage 2 where the divergence is eliminated.163

B.2 Stage 2: solenoidal projection164

As it is assumed that this fluid is incompressible, divergence within the velocity165

flow field constitutes noise and must be eliminated. Therefore, ~vd is the sum of the166

divergence (∇p) and the solenoidal (~vs) velocity components, i.e. ~vd = ∇p + vs,167

to which the divergence operator may be applied giving:168

∇~vd = 4p (B.3)

Solving Equation B.3 with zero boundary conditions results in the divergence169

part, 4p. This is subtracted from ~vd, giving the divergence-free velocity flow field170

vs (consistent with the continuity equation) passed to Stage 3.171

B.3 Stage 3: vorticity restoration172

The physical plausibility of the flow that was filtered in Stage 1 and Stage 2 is173

enforced by the VTE. This is done by minimising the functional:174

J(ω) = ‖~ω − ~ωs‖2
2 + α

(
ν‖∇ × ~ω‖2

2 + 2
〈
~e(~vs), ~ω

〉
~ω

)
(B.4)

where, ~ωs = ∇×~vs is the vorticity computed from the velocity flow field in Stage175

2, and ~ω is the vorticity to be found.176

Minimization of Equation B.4 with respect to ~ωs means that both terms must177

remain as small as possible with respect to the L2 norm. The minimized sum178

(in brackets) represents the weak form of the VTE and enforces the physical flow179
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structures in ~ωs, while the term outside the brackets (i.e. ‖~ω − ~ωs‖2
2) links ~ω and180

~ωs such that the difference in the L2 norm between these two vector fields is181

minimal. The balance between the two components dictates the strength of the182

restoration and this, in turn, is controlled by a control parameter, α that has the183

dimensions of time (discussed in Section D). The weak form of the VTE reverts184

to the normal form of the VTE, after the first variation in ~ω is computed.185

The first variation of this functional is:186

~ω − αν4~ω = ~ωs − α~e(~vs) (B.5)

Note that if ~ωs satisfies the VTE, ~ω = ~ωs.187

In cases where the exact boundary conditions are known, solving Equation188

B.5 is easily done analytically or numerically. In all other cases, it is assumed that189

volume V freely allows in-/out-flow (i.e. it is open), requiring that constant-flux190

boundary conditions must be used:191

∂~ω

∂n−

∣∣∣∣
∂Vl

=
∂~ω

∂n+

∣∣∣∣
∂Vl

(B.6)

where, n− is the inner normal to V and n+ is the outer normal to V .192

Such boundary conditions are sufficient in solving Equation B.5 and do not193

rely on fixed vorticity or velocity fluxes. The filtered vorticity flow field ~ω is then194

passed to Stage 4.195

B.4 Stage 4: velocity restoration196

The velocity restoration is done by minimising the functional:197
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min
~u

{
‖~u− ~vs‖2

Ω + ‖∇ × ~u− ~ω‖2
Ω

}
. (B.7)

This is implemented similarly to Equation B.4, and the output is an optimum198

velocity flow field, u, determined from Stage 2 and Stage 3. Here, term ‖~u −199

~vs‖2
Ω links the output u and velocity field vs from Stage 2 such that the L2200

norm difference between them is minimal (and therefore also the experimental201

measurements), while the term ‖∇ × ~u − ~ω‖2
Ω links the output pattern of the202

velocity flow field in u and the restored pattern of the vorticity flow field in ~ω203

from Stage 3. Dimensional consistency is achieved using a constant that equals204

one, but has the dimensions of length squared. For the sake of simplicity, this205

constant is omitted in later derivations.206

The first variation of this functional is:207

~u−4~u = ~vs −∇× ~ω (B.8)

The boundary conditions to Equation B.8 are the same as in Stage 3, and208

solving results in the rectified velocity flow field, ~u.209

Note that Equation B.2, Equation B.5 and Equation B.8 each represent a low-210

pass filter that causes a suppression of energy that must be recovered. Although211

this suppression is negligible for a single iteration, it becomes considerable if the212

algorithm executes more than 10 iterations. Here, it is assumed that the main213

fraction of the noise energy present in the data collected is concentrated in the214

middle and high frequency part of the spectrum (e.g. white noise). Therefore,215

low-pass filtering causes the large decay of that fraction after the first iteration,216

while the decay of the true signal is insignificant. The implication of this is217
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that, after the first iteration, the energy of the remaining low frequency part218

is negligible compared to the true energy of the flow, such that the energy of219

the noisy flow approximately equals the true energy of the flow. The energy of220

this flow is recovered starting from the second iteration when the output ~u is221

multiplied by the ratio between the energy of the first iteration and that of the222

rectified data.223

B.5 Algorithm termination224

Algorithm termination occurs after a user-predefined maximum number of iter-225

ations or when the mean angle deviation between u and vm is less than user226

specified tolerance. If this is not met, the velocity flow field, u, is defined as if it227

were vm and the process repeats using the results generated in the last output.228

C Algorithm development229

Vlasenko and Schnorr (2010) established that PCEVD offers good restoration230

capabilities for any type of flow, corrupted by any type of noise. It is also able231

to accommodate gappy data, however the quality of this output is detrimentally232

affected by the sparsity. The large gaps within the velocity flow field are not233

considered as noise, as they meet the divergence-free criteria (Stage 2) and the234

trivial solution of the VTE (Stage 3 and Stage 4). Therefore, PCEVD merges235

the large gaps with the PIV or PTV data, changing the complete pattern of the236

velocity flow field. It is this failing especially, rather than the hydrodynamical237

theory applied, that prompted the development of a new algorithm, PEFRA.238

This new algorithm is applicable to any type of (incompressible) flow, and offers239
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similar restoration capabilities to its PCEVD predecessor, but with less sensitivity240

to the sparsity of the data.241

PEFRA consists of three blocks: interpolation, linear approximation and242

restoration. Here, weighted-average interpolation methods are used to infill gappy243

data in the first block. This is then smoothed by linearization, using a modified244

PCEVD algorithm (with Stage 2 omitted and ~e(~v) in Stage 3 set to zero), such245

that it fits the pattern of the laminar vorticity flow field. Finally, restoration is246

done using a differently modified PCVED algorithm (with Stage 2 omitted) and247

the output velocity flow field established iteratively, as in §B. The omission of248

Stage 2 from PEFRA may be justified by its small effect on the reconstruction249

of gappy elements within the velocity flow field. The reason for this is that both250

Block 2 and Block 3 decrease the vorticity (proof in Appendix) on each loop, such251

that the output vectors are almost divergence-free. The scheme and pseudo-code252

of PEFRA for its numerical implementation are given in Appendix B.253

C.1 PEFRA volume and boundary conditions254

In cases where the boundary conditions are not known, continuity flux boundary255

conditions are used in both PEFRA and PCEVD. In PCEVD, these are applied256

to the same volume as that where the data were collected but, in PEFRA, a larger257

volume is needed. This is apparent when Equation B.5 is considered, with respect258

of the normal vorticity component, at the boundary of V. These continuity flux259

boundary conditions convert Equation B.5 to:260

~ωn = ~ωns − α~en(~vs). (B.9)
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where, n is the normal component of the vector.261

Therefore, the unknown vorticity component, ~ω, is unambiguously defined262

by the difference between ~ωs and α~e(~vs), where the noisy ~ωs is corrected by263

α~e(~vs). However, when experimental measurements are highly sparse, Equation264

B.9 is not appropriate as the lack of velocity data at the boundary means the265

fluxes in Equation B.9 are computed incorrectly. Note that after interpolation266

and linearization, ~vs is a linear function, as is ~ω and α~e(~vs). Consequently, ω is267

also linear – irrespective of the dynamics within the sample volume – requiring268

enlargement of this volume in PEFRA.269

To understand these, a volume, V , containing the fluid motion, surrounded270

by a larger volume Vl of the same shape, is considered. The walls of V and271

Vl are invisible to fluid movement and freely allow in-/out-flow. Critically, the272

center of these volumes are co-positioned, meaning the distance, d, that offset273

the walls of V from the walls of Vl are the same to each face. Therefore, if Vl is274

sufficiently large, any turbulence present in V diminishes at the boundary of Vl275

due to viscosity effects. Here, flows near the boundary are linear, so constant-flux276

boundary conditions (Equation B.6) are appropriate.277

To explain the computation of d, the analogy of fractal turbulence may be278

considered. Here, it is suggested that a velocity flow field may be represented as an279

overlapping set of vortices with different characteristic length scales (Giacomazzi280

et al., 1999). Let L be the characteristic length of the largest vortices in the set.281

Following Kolmogorov theory (Landau and Lifshitz, 2000), an individual eddy is282

divided into several vortices twice as small as the original after a distance of twice283

its characteristic length. Therefore, the largest vortices in the set are divided into284
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several smaller vortices with a characteristic length of L/2 after a distance of 2L.285

These smaller vortices are then sub-divided after a distance of L and the process286

repeats until the minimum eddy length scales are met. In discrete cases, this is set287

by the number of grid-points that are needed for the resolution of the smallest288

vortices (i.e. three grid-points). The equation for the minimum length of d is,289

therefore:290

d =
N∑
i=0

L

2i−1
, N = log2

(
L

3

)
(B.10)

The enlargement of V to Vl by d means that flow near the boundary are291

constant and linear, so constant-flux boundary conditions (Equation B.6) are292

appropriate. To emphasize that constant flux boundary conditions are applied to293

a larger volume where the pattern of the vorticity flow field is linear, these are294

termed open boundary conditions. If L is unknown, and estimation of d using295

Equation B.10 is impossible, then this is able to be obtained iteratively. The296

algorithm to do so is as follows: initially, all control parameters are set as default297

(§D.3.1) and d = 1. PEFRA runs with this set of control parameters until the298

termination criterion is satisfied, and the root-mean-difference between the input299

and output velocity flow field is saved for further reference. Then d is incremented300

by one and the procedure repeated, whereupon the root-mean-square differences301

between the experimental measurements and the restored data from the present302

and the preceding iterations are compared. If the relative difference between these303

two values is sufficiently small (e.g. smaller than 1%) the algorithm terminates304

and Vl is estimated. Otherwise, d is incremented by one and the sequence repeated305

again. Note that if this tolerance is set close to zero, the estimated d will be the306
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same as in Equation B.10.307

C.2 Interpolation308

After the enlargement of V to Vl, all empty grid-points in V are filled by interpo-309

lation of the experimental measurements, prior to the velocity flow field from V310

being extrapolated into Vl. Tests using different types of interpolation (i.e. nearest311

neighbour, splines and weighted-average) reveal that weighted-average schemes312

are most appropriate, since they achieve the best convergence rate of PEFRA.313

Consequently, these schemes are used in this algorithm. Here, it is assumed that314

all the available PIV or PTV data are presented on a regular grid (or projected315

from an irregular grid onto a regular grid), with a grid-step h. Each empty node is316

surrounded by a sphere of 2h. If there are two or more measured velocity vectors317

in that sphere, a weighted average interpolation can be applied and the node is318

filled with the interpolated data. If not, the radius of the sphere is increased by319

h and the availability of measured velocity vectors is re-checked. If, again, there320

are less than two recorded velocity vectors the radius of the sphere increased until321

the amount of measured vectors within the sphere becomes greater than or equal322

to two. The weights for interpolation are set as the inverse distance from the323

node to the center of the sphere.324

C.3 Linearization325

In several cases, ramps are present at junctions between the infilled data and the326

recorded velocity flow field, however the smoothing of these ramps by Gaussian327

Filtering (Stage 1) may be insufficient at avoiding large non-linear ~e(~v) terms328
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at these junctions. Increasing the filter variance will strengthen the severity of329

the smoothing of these ramps but this, in turn, risks over-smoothing the pattern330

of the velocity flow field such that two adjacent vortices may be amalgamated331

into one and so must be avoided. This over- or under-smoothing is prevented332

by fitting the interpolated velocity flow field to the linear VTE, since the linear333

VTE does not have problematic non-linear terms and can filter-out the junctions334

as discussed below. Helpfully, this solution of the linear VTE is also the first-335

order (linear) approximation of the non-linear VTE. This solution is obtained336

by performing a single Gaussian filtering operation, prior to executing step 3337

and step 4, sequentially, with the linear VTE, until the termination criterion is338

satisfied. Therefore, the algorithm establishes linear flow such that, among all339

the possible linear solutions, the difference in the L2 norm of the velocity and340

vorticity, with the corresponding ~ωs and ~vs, is minimal. The energy of the flow is341

subsequently recovered, as in PCEVD. After each iteration, the obtained linear342

velocity field fills the gaps in the measurements. The resultant field is used then343

as an input field for the next iteration.344

Note that PEFRA is an iterative method, and therefore its computational345

speed performance may be significantly improved if the correct initial estimate346

(known also as initial guess) is found. Since the linear flow is traditionally used347

as the first approximation of any type of flow (Pedlosky, 1990), the construction348

of linear flow is the preparation of this estimate. It decreases the time needed for349

the restoration in the final block – irrespective of the dynamics within the sample350

volume.351
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C.4 Restoration352

The final block, restoration, consists of two stages. Initially, it is the same as lin-353

earization but with the full form of ~e(~v) used for the vorticity restoration. Here,354

on each iteration, the grid-points containing the restored data are substituted355

with the non-zero data from the sparse experimental measurements. After the356

algorithm termination criteria is met, this last stage is again repeated only with-357

out the input of the PIV or PTV data into the output velocity flow field such that358

noise injected with the experimental measurements is filtered out. The energy of359

the flow is subsequently recovered, as in PCEVD.360

D Algorithm sensitivity361

The sensitivity of PEFRA to noise, sparsity and control parameters is discussed362

analytically here, with an experimental verification provided in §E.363

For the purposes of analysis, the restoration is considered to be successful if364

the L2 difference between the true flow and the restored flow decreases on each365

iteration, ultimately becoming less than a user-defined criterion. Although the366

true flow in experimental measurements is unknown, it is possible to anticipate the367

cases where restoration will be successful from only the characteristics of the PIV368

or PTV data. This is examined using an extreme example. Here, a velocity flow369

field only consisting of two vectors is considered. If the two vectors are far apart,370

then they may be connected to one large vortex or two smaller separate vortices371

(or, indeed, any other type of flow) and any later restoration will be ambiguous.372

Consequently, a necessary criterion for the successful restoration specifies that a373

velocity flow field fitting the PIV or PTV data must be unique. If this correct374
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restoration is not still possible when any part of the velocity flow field is omitted375

then this flow is labelled as critically sparse. Therefore, this necessary criterion376

for the successful restoration is met if the sparsity of these data are above critical.377

The necessary sparsity criterion for the successful restoration may be checked378

using homogeneously sparse velocity measurements, presented on a regular grid.379

Here, S is the sparsity of the data, i.e. the number of grid-points containing data,380

divided by the total number of grid-points (expressed in percent), while Ls is the381

characteristic length scale (expressed in grid-points) of the smallest resolved1
382

entities within the measured, discrete, velocity flow field. According to §C, an383

approximation of the velocity flow field within the sample volume is yielded by384

an initial interpolation and subsequently improved and specified iteratively. The385

interpolation of the smallest entities of this flow is possible where at least two386

vectors are present at a distance of Ls, i.e. if the sparsity of the data satisfies a387

critical sparsity condition:388

S ≥ 8

L3
s

× 100% (B.11)

In cases of turbulence, the number of grid-points that are needed for the res-389

olution of the smallest vortices is four grid-points, meaning that for the correct390

restoration S ≥ 12.5%. It is suggested that 12.5% is considered to be the default391

value for critical sparsity, since all types of flows with S ≥ 12.5% may be success-392

fully reconstructed, providing the noise level in the experimental measurements393

is below its critical value (discussed below).394

1The flow feature is resolved on the grid if all its velocity maxima and minima can be

projected on the corresponding grid nodes
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D.1 Algorithm sensitivity to noise (critically-sparse ve-395

locity flow field)396

The sensitivity of PEFRA to a critically sparse velocity flow field containing noise,397

~δo, is considered in reference to Equation B.4. If the restoration of the pattern of398

the vorticity flow field is unaffected by noise, the only solution to this expression399

is the true vorticity, ~ωT . The substitution of ~ωT into Equation B.4 reduces term 1400

to ‖~δo‖ and term 2 disappears. If this is affected by noise, the restoration results401

in a new vorticity flow field, ~ωT + ~θ, where ~θ is the difference between ~ωT and402

the new output. Since the output satisfies the VTE, the substitution of ~ωT + ~θ403

into Equation B.4 reduces term 1 to ‖~δo − ~θ‖ and term 2 disappears. If this is404

minimized by ~ωT + ~θ it must be true that:405

J( ~ωT )

J( ~ωT + ~θ)
=
‖~δo‖2

Ω

‖~δo − ~θ‖2
Ω

> 1 (B.12)

The inequality on the RHS of Equation B.12 is true if |~θ| < 2|~δo|, meaning406

that if the extremely sparse velocity measurements contain 5% noise, the dif-407

ference between the true vorticity and the post-restoration vorticity is less than408

10%. Therefore, the critically sparse velocity flow field will be successfully recon-409

structed, with data containing much less than 50 % of the noise, i.e.:410

‖~δo‖2
Ω

‖ ~ωT‖2
Ω

� 0.5 (B.13)

Note that Equation B.13 considerably underestimates the upper limit of the411

noise level in the input data permissible for successful restoration to still be412

achieved. In reality, successful restoration is possible even when ‖~δo‖2
Ω/‖ ~ωT‖2

Ω '413

0.5., however as Equation B.13 unambiguously ensures successful restoration, it414
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is this that is used for the noise level condition.415

D.2 Algorithm sensitivity to noise (non critically-sparse416

velocity flow field)417

The sensitivity of PEFRA to a non-critically sparse velocity flow field is identical418

to that completed for the PCEVD algorithm (cf. Vlasenko 2010, where a detailed419

study of the effect of noise in the data at each restoration stage of the algorithm420

is presented). Since PCEVD and PEFRA are from the same pedigree, these421

conclusions will remain the same for the present algorithm, so only a summary422

is provided here.423

According to Vlasenko (2010), the noise in the experimental measurements424

contains a fraction that satisfies the VTE and, consequently, will be referred to425

here as the hydrodynamical component of the noise. Therefore, the velocity esti-426

mates generated from noisy PIV or PTV data, f , may be considered as consisting427

of the sum of three components: f = ~vT + (~h+
~~δ), where ~vT is the true velocity,428

and the expression in brackets is noise consisting of a hydrodynamical component429

(~h) and a non-hydrodynamical component (~δ), that does not satisfy VTE. The430

algorithm sensitivity to each of these is considered separately below.431

D.2.1 The hydrodynamical component of the noise432

The hydrodynamical component of the noise is a systematic error of both PCEVD433

and PEFRA that cannot be eliminated. The results will therefore be identical to434

that established for the earlier algorithm. Vlasenko (2010) applied PCEVD to two435

sets of data, each of 1000 vector fields, consisting of pure identically-distributed436
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white noise with zero-mean and pure Gaussian-distributed white noise with zero-437

mean, respectively. These data suggest that if the noise contain such a compo-438

nent, it will pass the PCEVD filtering. Therefore, the application of PCEVD to439

these data revealed that each of the 1000 vector fields in the two sets contain a pat-440

tern suggestive of a turbulent motion, whose substitution into the discrete VTE441

results in equality. Figure G.1 is an example of one of these vector fields, obtained442

from one of the 1000 samples of white noise. It was established that in the two443

sets, the fraction of the hydrodynamical component of the noise obeys the same444

bell-shaped distribution. Its mean, variance and maximum (normalized by the445

noise level) equals 0.115, 0.510 and 13, respectively. These experiments with both446

types of noise revealed that the hydrodynamical component of the noise always447

results in an arbitrary isotropic turbulent-like pattern (e.g. Figure G.1) if the noise448

level in each component is identical. However, if the noise level in one component449

is significantly greater than for the others, it results in a flow field, satisfying450

the VTE, with anisotropy in that component. In cases of zero-mean distributed451

noise, the anisotropy causes a pattern similar to Kelvin-Helmholz instabilities.452

In cases of nonzero-mean distributed noise, the noise-pattern appears embedded453

within the constant background flow, whose components are proportional to the454

mean of the noise in the corresponding velocity components. Due to nonlinear455

terms, the VTE does not possess the property of linear additivity, meaning that456

if noise is present in measurements it will affect the form of the hydrodynamical457

component. These statistical experiments with artificial measurements revealed458

a weak anti-correlation, which is not smaller than -0.1. The subtraction of the459

corresponding artificial true velocity field from the restored output shows that,460
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with the exception of differences in small details, the hydrodynamical compo-461

nent remains the same as the hydrodynamical component filtered from the pure462

noise. On the results of these experiments Vlasenko (2010) concluded that noise463

contains a hydrodynamical component that cannot be removed by PCEVD (nor464

by PEFRA) as it is merged with the output data. Defining n as the inverse of465

the signal-to-noise ratio (i.e. the ratio between the L2 norms of the noisy and466

true velocity flow field), the fraction of this component in the output is greater467

than 0.9n but less than 13n for zero mean noise. If the noise has nonzero mean,468

the hydrodynamical fraction is estimated as the sum of the mean noise level and469

0.13n.470

D.2.2 The non-hydrodynamical component of the noise471

If it is assumed that noise exists homogeneously within the sample volume and472

that this is able to be expanded spectrally, where ai is the amplitude of these473

harmonics at a spatial frequency of φ = L/i (i = 1, 2, ..., N) and U is defined as474

twice the characteristic velocity. According to Vlasenko (2010) an approximation475

of the non-hydrodynamical component of the noise is yielded by:476

εi ≤ exp−(σi)2/2︸ ︷︷ ︸
1

ai
1 + i2︸ ︷︷ ︸

2


√√√√√√√1 +

 U

(φ2α)−1 + ν︸ ︷︷ ︸
3


 (B.14)

where, εi is the harmonics remaining after one iteration of the restoration in the477

final block. Term 1, term 2 and term 3 (in under-brackets) represent the eigen-478

reduction factors of the noise of the Gaussian filtering, vorticity and velocity479

restoration steps, as if these are applied independently. The upper bounds for480

the non-hydrodynamical component of the noise remaining in the data at each481
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step (separately) are provided in Vlasenko (2010). Equation B.14 is an approxi-482

mation of the upper bound of the joint impact of these errors (from all stages) in483

the restoration block. This expression is, however, difficult to apply practically.484

A more convenient expression is achieved through correct selection of control pa-485

rameters ν and α (§D.3). If this is done, the product of term 2 and the expression486

under the square-root in Equation B.14 is less than or equal to one, and εi may487

be expressed as: εi ≤ exp−(σ)2/2 ai. When the L2 norm is subtracted from the488

LHS and RHS and both, in turn, are divided by the L2 norm of the true veloc-489

ity flow field, a new inequality (in terms of the signal-to-noise ratio) is yielded:490

nr ≤ exp−(σ)2/2 nn, where nn and nr are the inverse of the signal-to-noise ratio of491

the non-hydrodynamical component of the noise before and after the restoration492

in turn. Since the non-hydrodynamical component of the noise is a fraction of493

the noise quantified by the inverse of the signal-to-noise ratio, n, i.e. nn ≤ n, then494

it must be true that: nr ≤ exp−(σ)2/2 n. Using this inequality and the estimates495

for the hydrodynamical component of the noise, the total error remaining after496

the restoration may be expressed as:497

ntotal ≤ n(0.13 + exp−(σ)2/2) (B.15)

As an example, if σ = 1.34, then according to the inequality, ntotal ≤ 1, when498

n = 2.2. Similarly as in Equation B.12, the inequality underestimates the upper499

limit of the noise level in the input data permissible for successful restoration to500

still be achieved.501
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D.3 Sensitivity to control parameters502

The sensitivity of PEFRA to control parameters, σ, α and ν, is considered in503

reference to Equation B.14. Term 1 is the error reduction from Gaussian filter-504

ing and is always less than one and, therefore, never causes an increase in the505

noise-level. In fact, the opposite is true as an increase (linearly) in parameter506

σ (§B) decreases the noise-level exponentially, as well as smoothing the pattern507

of the velocity flow field. However, to prevent over-smoothing, Vlasenko (2010)508

established that σ must be less than 1.34. Similarly, term 2 is the error reduction509

from velocity restoration and this is always less than one. This is affected by term510

3, that characterizes the upper limit of the impact of the vorticity restoration on511

the velocity restoration. Since the term under the square root is always more512

than one, it is possible that εi > ai and this, in turn, causes an increase in the513

noise-level. To ensure that this upper limit is not achieved εi/ai < 1 and the514

control parameters selected accordingly. When the left hand side and the right515

hand side of Equation B.14 are divided by ai, the right hand side is less than516

one. Simple mathematical operations show that this right hand side is always517

less than one if:518

0 <
U

α−1 − 3ν
< 1 (B.16)

Therefore, the permissible values of α and ν are unambiguously defined by519

Equation B.16 (referred to as nu-alpha condition). Note that the spatial frequency520

in front of α−1 is set to one and omitted here. However, it is important to521

remember its dimensions (m s−1) remain and these balance the denominator.522
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D.3.1 Optimum selection of control parameters523

If the nu-alpha condition is satisfied, the sparsity and quantity of noise in the data524

allow successful restoration, and the noise in the experimental measurements has525

a zero-mean, then the noisy velocity flow field and the reconstructed velocity fields526

may be expressed as: ~vnoisy = ~vtrue+ ~N and ~vPEFRA = ~vtrue+ ~A+ ~Nh. Here, ~vtrue is527

the true velocity flow field, ~N is noise in the experimental measurements, ~Nh is the528

hydrodynamical component of ~N and ~A represents the artefacts caused by poor529

selection of control parameters. The residual between the noisy velocity vectors530

and the reconstructed velocity vectors at the grid node k is ~vknoisy − ~vkPEFRA =531

~Nk − ~Nk
h − ~Ak. According to §D.2.1, if ~N has a zero-mean, ~Nh has an arbitrary532

isotropic noise-pattern (and therefore the difference ~N ′ = ~N − ~Nh also has zero-533

mean), and ~vknoisy−~vkPEFRA = ~N ′k− ~Ak, the root-mean-square difference between534

the true velocity flow field and the reconstructed flow field may be estimated as:535

∆ =

√√√√ 1

K

K∑
k

(~vknoisy − ~vkPEFRA)2 =

√
A2 − 2A ·N ′ + ~N ′2 (B.17)

where the overline denotes averaging. Note that ~N ′ has no hydrodynamical536

component, which means that that ~A and ~N ′ are independent. Moreover, ~N ′ has537

zero mean, hence ~A ·N ′ = ~A · ~N = 0. Equation B.17 therefore may be simplified538

to:539

∆ =

√√√√ 1

K

K∑
k

(~vknoisy − ~vkPEFRA)2 =

√
A2 + (1− C)2N2 (B.18)

where C ∈ [0.09, 0.13] is the fraction of hydrodynamical component in ~N . If540

the noise in the experimental measurements has a nonzero mean, the reasoning541

and intermediate conclusions remain the same – only the data ~A, ~N and ~Nh,542
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are expressed as the sum of the corresponding zero mean variables ~A0, ~N0, ~N0h543

and their corresponding means. The root of the mean-square-difference may then544

be computed by repeating the reasoning above. Since the arithmetic for this is545

cumbersome, it is omitted here and the final expression is provided instead:546

∆ =

√√√√ 1

K

K∑
k

(~vknoisy − ~vkPEFRA)2 =

√
A2

0 + (1− C)2N2
0 + µ2 (B.19)

where µ is the sum of means of ~A and ~N . Note that ∆ in Equation B.18 and547

Equation B.19 is minimal when A2 and A2
0 are minimal. The artefacts are, in548

turn, minimal only when the optimum set of parameters are selected. Therefore,549

the problem of finding of optimum set of parameters is equivalent to the problem550

of finding the set of parameters that minimize ∆.551

The search of parameters that minimize ∆ may be achieved, for example,552

using the gradient descent method (cf. Talagrand and Courtier 1987), with the553

following control parameters used by default for the computation of the first554

gradient step: σ = 1.34 (see Vlasenko and Schnorr (2010)), ν can be set to555

its physical value and α = (U−1 + 3ν)−1, starting at the boundary of nu-alpha556

condition (Equation B.16), where twice the maximum velocity of the noisy flow557

can be used as U . Note that if the noise in the experimental measurements is558

homogeneously distributed in both time and space, the control parameters may559

be considered the same for all frames. The simplest version of this algorithm is560

presented in the pseudo-code outline of PEFRA (Table G.4 in Appendix B.561
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D.3.2 Estimation of maximum discrepancy between true and restored562

flows563

An important corollary of §D.3.1 will occur under ideal conditions, where ~vkPEFRA =564

~vtrue, or where the experimental measurements are noise free, and ~vknoisy = ~vtrue.565

In these cases, Equation B.19 is never equal to zero. Note that in noise free566

measurements ∆ =

√
~A2

0 + µ2 measures only the fraction of artefacts in the re-567

stored data, while the occurrence of noise in data only causes an increase in ∆.568

Therefore, the root-mean-square difference between the true velocity flow field569

and restored velocity flow field never exceeds ∆. If the mean and the variance570

of ~N are known (e.g. from a reference experiment with constant flow), Equation571

B.19 is an exact estimate of the root-mean-square difference between the true572

and restored velocity flow field.573

D.4 Algorithm sensitivity to flow parameters: time, length,574

velocity.575

D.4.1 Velocity576

Due to the assumption of incompressibility PEFFRA may only be applied to a577

flow where the Mach number is much smaller than one.578

D.4.2 Length579

The quality of restoration for any individual flow entities depends on its grid-580

representative characteristic scale (expressed in grid-points) but not on its actual581

size. According to Vlasenko (2010), the energy spectrum of the rectified velocity582

flow field is proportional to 1/(1 +νφ2), where φ is a discrete frequency, inversely583
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proportional to the characteristic length (expressed in grid-points). Following584

Kolmogorov theory, the high band part of the energy spectrum will obey the585

−5/3 law. Therefore, in cases of turbulent flow, the high-band part of the energy586

spectrum of the rectified velocity flow field is steeper than expected. As a con-587

sequence, the small-scaled (in terms of grid-scales) flow entities associated with588

high frequencies present in the rectified velocity flow field are always smoother589

than the same entities in the true velocity flow field. However, tests using the ar-590

tificial data containing zero-sparsity, obtained from direct numerical simulations,591

revealed that this smoothing error – defined as mean-square-difference between592

the input and output velocity flow field – is of the order of 0.1%.593

D.4.3 Time594

PEFRA uses the full VTE and therefore its accuracy in time depends only on595

how accurately the selected numerical scheme approximates the time derivative596

in the VTE. If τ is a time interval between two measurements, and O is big O597

notation, then for the first-order directed difference this error equals O(τ).598

D.4.4 Summary of algorithm sensitivity to noise, sparsity and control599

parameters600

In summary, successful restoration is possible for a critically sparse velocity flow601

field when Equation B.13 is satisfied and for a non-critically sparse velocity flow602

field when Equation B.15 is satisfied, and both the critical sparsity condition603

(Equation B.11) and the nu-alpha condition (Equation B.16) are met. If the604

critical sparsity of the experimental measurements is not known, then 12.5% may605

be used by default. Equation B.18 and Equation B.19 estimate the maximum606
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discrepancy between the true flow and the restored flow for the zero-mean and607

the non-zero mean noise respectively, while the minimization of ∆ with respect608

to α, ν and σ yields the optimum set of parameters.609

E Algorithm performance610

The performance of PEFRA is assessed using a series of twin-experiments, where611

the true velocity flow field is provided by Direct Numerical Simulation. From612

this artificial/numerical data, vectors are removed and noise added, such that a613

gappy and noisy sample is generated. After restoration, the results are compared614

to the true flow to establish if the two are similar (i.e. like“twins”).615

For these tests, direct numerical simulation data modelling turbulence in the616

wake of a cylinder (computed on a three-dimensional grid that consists of 128×617

256× 128 grid-points) and that of the development of a convection cell within a618

tank (that consists of 32 × 32 × 132 grid-points) were used. The quality of the619

subsequent restoration is assessed normalized using the root-mean-square error,620

∆n, and the mean angle deviation, θ.621

The ∆ is defined as:622

∆n =
‖~vtrue − ~vPEFRA‖2

‖~vtrue‖2

(B.20)

and measures the total difference between the true flow, ~vtrue, and the PE-623

FRA output, ~vPEFRA. Note that ∆n is the same as ∆ discussed in §D.3.2, and624

~vnoisy = ~vtrue, but normalized using the root-mean-square of the true flow. For625

the twin experiments ∆n is more convenient than ∆, since it measures the relative626

deviation of the restored flow from the true flow.627
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The θ is defined as:628

θ =

∫
V
| arccos(~vtrue − ~vPEFRA)|dx∫

V
dx

(B.21)

and measures the mean angle difference between the true flow, ~vtrue, and the629

PEFRA output, ~vPEFRA. Therefore, if all the vectors in ~vPEFRA have the same630

direction (i.e. the same pattern of the velocity flow field) as ~vtrue, then θ =631

0. Similar measures with curl(~vtrue) and curl(~vPEFRA) are used to qualify the632

vorticity reconstruction. They are denoted as ∆curl and θcurl633

E.1 Sensitivity to sparsity, control parameters and type634

of flow635

E.1.1 Experiment 1: Sensitivity to sparsity.636

The sensitivity of PEFRA to sparse, noise-free velocity measurements is assessed637

using artificial/numerical data modelling turbulence in the wake of a cylinder.638

Here, two conditions are considered, where the sparsity of the data, S (Equation639

B.11), is 30% (i.e. > 2.5× critical sparsity) and 12.5% (i.e. = critical sparsity),640

respectively. A horizontal cross-section (HXS) of this flow is presented in Figure641

G.2A, while the sparse (input) conditions are presented in Figure G.2B and Figure642

G.2C. The black dots represent empty grid-points. To facilitate a visual post-643

restoration assessment, the HXS of the true flow is repeated in Figure G.3A,644

and the PEFRA output is presented in Figure G.3B (S = 30%) and Figure645

G.3C (S = 12.5%). Despite the sparsity of the PEFRA input, the restoration646

of the pattern of the velocity flow field is almost completely achieved in both647

cases, as confirmed by the quality statistics, where ∆n = 0.1180, and θ = 7.8860,648
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when S = 30% and ∆n = 0.2260, and θ = 11.2600 when S = 12.5%. A small649

difference between these two may be seen in fine details of the vorticity flow field,650

however the three-dimensional iso-surfaces of these both resemble the true flow.651

The iso-surfaces of vorticity absolute (further referred to as vorticity iso-surfaces)652

are used here for the visualisation of the reconstruction capabilites of PEFRA653

vorticism. The iso-surfaces in all experiments correspond to the mean of the654

true vorticity absolute. The vorticity iso-surface of the true flow is presented in655

Figure G.4A, and the PEFRA output is presented in Figure G.4B (S = 30%)656

and Figure G.4C (S = 12.5%). The vorticity iso-surface of S = 30% is similar657

to the true flow, except in fine details such as the artificial tongue seen in the658

lower-left corner of Figure G.4B. The artificial tongue also occurs in the vorticity659

iso-surface of S = 12.5%, with it apparent the quality of the restoration decreases660

with the sparsity of the data (such that only large-scale components in Figure661

G.4C resemble the true iso-surface in Figure G.4A). The quality statistics show662

that when S = 30%, ∆curl = 0.2120 and θcurl = 12.43 but when S = 12.5%,663

∆curl = 0.4112, and θcurl = 20.680.664

E.1.2 Experiment 2: Sensitivity to sparsity and type of flow.665

To extend the analysis, the algorithm performance is assessed under different flow666

conditions (such as adjacent to a rigid boundary) using artificial/numerical data667

modelling the development of a convection cell in a tank. The sinking of the cold,668

dense fluid generates two vortices, each with a characteristic length equalling half669

the length of the tank (i.e. 16 grid-points). Therefore, the critical sparsity (Equa-670

tion B.11) of this flow is 98%. A vertical cross-section of this flow is presented in671

Figure G.5A, while the sparse (input) conditions are presented in Figure G.5B.672
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The black dots again represent empty grid-points. To facilitate a visual post-673

restoration assessment, the vertical cross-section of the true flow is repeated in674

Figure G.6A and the PEFRA output is presented in Figure G.6B. Note that the675

tank has rigid walls, meaning that exact boundary conditions may be defined.676

However, these exact boundary conditions were not used in place of the constant677

flux conditions specified in §C, enabling their application to a velocity flow field678

bounded by rigid walls to be assessed. Again, the restoration of the velocity flow679

field is almost completely achieved, even at its edges, as confirmed by θ (11.9000◦)680

being similar to that for the wake of the cylinder. Under these conditions, ∆n681

(0.4200) for the convection cell is larger. Such a large difference in ∆n and small682

difference in θ indicates that, in cases of critical sparsity, the restoration of the683

direction (pattern) of the vectors is independent of the type of flow, while their684

magnitude (length) is flow dependent. The reason for this dependency is that685

the mean lengths of these vectors are proportional to the square-root of the mean686

energy of the flow. Due to the filtering attributes of PEFRA (§B), the average687

energy of the PEFRA output decreases after every iteration. This is compensated688

by setting it to the average energy of the sparse velocity flow field as it is assumed689

these (sparse) non-zero vectors are a representative sample of the true flow, and690

therefore their average energy is also representative (§B). However, in cases of691

a small volume containing highly sparse velocity measurements, this sampling is692

not representative and PEFRA cannot correctly recover the energy. Increasing693

the sparsity of the data beyond the critical level causes the algorithm to fail com-694

pletely. An example of this failure is seen in Figure G.6C, where the sparsity is695

99%. Therefore, Equation B.11 permits a correct estimate of the sparsity bounds696
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where successful restoration is possible.697

E.1.3 Experiment 3: Sensitivity to control parameters.698

In Figure G.2 and Figure G.5, the optimum set of parameters were used to facil-699

itate the restoration. For the example of the wake of the cylinder (Figure G.2),700

ν = 0.0025, σ = 0.1000 and α = 0.0025. If σ and ν are too large, over-filtering701

results (§D.3). The effects of this over-filtering is presented in Figure G.7, where702

the same flow as in Figure G.2A (S = 30%) is used where ν = 2 (Figure G.7A)703

and σ = 2 (Figure G.7B). These parameters cause the small-scale velocity com-704

ponents to be amalgamated or over-smoothed. If, however, α is too large, the705

nu-alpha condition is violated and this, in turn, causes the redundant small-scale706

velocity components that are seen in Figure G.7C (where α = 2, i.e. 6.5× higher707

than that permitted in Equation B.16).708

E.2 Sensitivity to sparsity and noise and comparison with709

other methods710

E.2.1 Experiment 4: Sensitivity to noise (critically-sparse velocity711

flow field).712

The restoration capabilities of PEFRA under extreme conditions (i.e. both critical713

sparsity and high noise level) are assessed using numerical data of the wake of714

a cylinder, but from a different time-step to that considered earlier, where the715

sparsity of the data, S, is 12.5%. In addition, white Gaussian noise (signal-to-716

noise ratio = 2) is added such that the quality statistics for the resultant gappy717

and noisy velocity flow field are ∆n = 1.0260 and θ = 52.4800◦. The sparse718
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conditions are illustrated by the vectors within a HXS (Figure G.8A). The HXS719

of the true flow is presented in Figure G.8B and its three-dimensional vorticity iso-720

surface presented in Figure G.8C, such that they may be compared to the PEFRA721

outputs in Figure G.9A and Figure G.10A, respectively. Again, the difference in722

the quality statistics (∆n = 0.3230 and θ = 20.9390◦, and ∆curl = 0.5429 and723

θcurl = 26.9390◦) is seen in fine details, while the large-scale features still resemble724

the true flow. Note that from Equation B.12, it is possible that ∆n ∼ 2 however,725

after restoration, the remaining error in this flow is almost a factor of 2 less726

than in the gappy and noisy velocity flow field. This fact warrants a comment on727

Equation B.12 that this noise reduction is possible even when the critically sparse728

velocity flow field is highly contaminated by noise. At the same time, θ decreases729

by almost a factor of 2.5. In the equivalent tests without noise (S = 12.5%), ∆n730

decreases by a factor of 2, while θ decreases by a factor of 1.5. Therefore, the731

error of the restoration of gappy and noisy data (with signal-to-noise ratio = 2)732

causes an increase in the error of the restoration by a factor of 2. Consequently, it733

is concluded this restoration is successful even if the velocity flow field is critically734

sparse and contaminated by noise.735

E.2.2 Experiment 5: Comparison with other methods.736

To complement the assessment of the algorithm performance, PEFRA is com-737

pared to PCEVD and Weighed Average Interpolation (WAI). The connection to738

PCEVD is made to show the benefit of the new algorithm over its predecessor.739

The connection to WAI is made to facilitate benchmarking against other methods740

as using specialist restoration method (e.g. PCEVD) is only meaningful to those741

familiar with that method. WAI, however, is both commonly used and easy to im-742
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plement, and therefore can be a reference restoration method with which PEFRA743

or any other restoration method are compared. Here, the same gappy and noisy744

velocity flow field presented in Figure G.8A is processed using PCEVD (Figure745

G.9B and Figure G.10B) and WAI (Figure G.9C and Figure G.10C), respectively.746

It was established above that the same data was mostly recovered by PEFRA,747

as confirmed by the quality statistics, where ∆n = 0.3230 and θ = 20.9390◦. In748

contrast, the PCEVD output has little in common with the true flow and, con-749

sequently, ∆n = 99.0000 and θ = 87.0000◦, ∆curl = 346.12 and θcurl = 102.03◦.750

The implication of this is that vectors are orientated randomly with respect to751

the true solution and the restoration failed completely. The WAI output is an752

improvement over PCEVD (∆n = 0.9130 and θ = 43.969◦,∆curl = 1.132 and753

θ = 56.7◦), however these input vectors are too gappy and too noisy for the754

pattern of the resultant velocity flow field to be easily identified.755

E.2.3 Dependency of restoration performance on inhomogeneity756

The restoration performance is inversely proportional to the quantity of the hy-757

drodynamical component of the noise and PEFRA artefacts remaining in the758

data. The difference between the true flow and restored flow yields a vector field759

which is a merger of the hydrodynamical error and PEFRA artefacts remaining760

in the restored data. Such a difference, presented as a vector field in Figure G.11,761

is obtained for the flow represented in Figure G.8A (experiment 4). The length of762

the vectors at each grid-point represents the magnitude of the error at that point,763

while its direction does not have any particular sense. Note that although the true764

flow and restored flow (see Figures G.8B and G.9A ) exhibit an isotropic pattern765

in their center and an anisotropic pattern at their edges, the error still remains766
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isotropic. The relative root-mean-square of this vector field equals ∆n = 0.3230.767

For the similar field, with S = 12.5% but in the absence of noise, Experiment 1768

revealed that the quantity of PEFRA artefacts, A, in the restored velocity flow769

field equals 0.22. According to §D.2.1, the mean quantity of hydrodynamical770

components may be estimated as 0.11n = 0.22, where n = 2 is the noise level in771

the experiment. If the PEFRA artefacts and the hydrodynamical component of772

the noise are independent, the root of the sum of the squares of these two will773

be approximately equal to ∆n in this experiment, which is confirmed. Therefore,774

the affects of sparsity and noise on PEFRA restoration are independent.775

F Implementation with 3D-PTV776

PEFRA was developed for the restoration of gappy and noisy velocity measure-777

ments where the arrangement of a standard laboratory PIV or PTV set-up is not778

possible. Here, the assessment of the algorithm performance is extended to sub-779

mersible 3D-PTV measurements in ocean flows, i.e. using data collected in-situ780

under extreme conditions.781

Presently, our employment of 3D-PTV is for the study of the three-dimensional782

turbulence characteristics of the bottom boundary layer of the coastal ocean783

(Nimmo-Smith, 2008). Unlike laboratory measurements, where small neutrally-784

buoyant particles are seeded within the flow, plankton and suspended sediments785

are used as tracers. The use of these arises from the impracticality of seeding the786

ocean with tracers, meaning that a reliance on naturally available seed material is787

essential (Bertuccioli et al., 1999). The uneven shape of these particles especially,788

scattered inhomogeneously within the sample volume, causes an increase in the789
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noise level since it cannot always be assumed that they act as passive tracers of790

the velocity flow field. In these cases, using PEFRA is highly beneficial, and this791

application is discussed below.792

As in §E, the quality of the subsequent restoration is assessed using the nor-793

malized root-mean square error, ∆n, and the mean angle deviation, θ. The only794

difference is in normalization – selected to be the root-mean-square of the noisy795

velocity flow field. Since the in-situ velocity flow field has an arbitrary turbulent796

pattern and the PIV or PTV instrumentation is directionally independent, it is797

assumed that the noise has zero-mean and its level in these experimental mea-798

surements is at least twice as small as the level of the signal. In these cases, the799

variation between the root-mean-square difference of the noisy and the true flow is800

not greater than 12% and may be considered as approximately equal. Therefore,801

as before, ∆n estimates the approximate relative maximum deviation from the802

true flow, permitting estimation of the optimum set of parameters, as discussed803

in §D.3.1 and §D.3.2.804

If it is assumed that the plankton and sediments used as tracers are equally dis-805

tributed within the small, arbitrarily turbulent sample volume, the experimental806

measurements have approximately constant level of noise and sparsity throughout807

the time series with small biases around this constant. Similarly, as sampling was808

conducted over periods of less than half an hour, and the site itself was sheltered809

from surface effects, the background flow conditions were also approximately con-810

stant throughout data collection. This means that restored velocity flow fields811

will have the same quality with the same level of artefacts. According to §D.3.1812

and §D.3.2 ∆n equals the sum of the root-mean-square of the noise in the data813
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and artefacts produced by PEFRA during restoration. Any bias in noise or arte-814

facts causes the corresponding bias in ∆n, that over a sufficiently long time series815

will exhibit a random bell shaped distribution with a narrow variance. Following816

the random value distribution theory, it is expected that most of ∆n biases will817

not exceed the variance, while the probability that ∆n biases considerably exceed818

this value is close to zero. Therefore, an anomalous increase of ∆n may be inter-819

preted as an inconsistency in PEFRA or an incorrect assumption of homogeneous820

noise distribution for the instantaneous flow field. To arbitrate in such cases, the821

additional data available from 3D-PTV becomes important, as these contain an822

image of each of the particles and may be checked when unexpected results are823

encountered (Nimmo-Smith, 2008). Following Adrian and Westerweel (2010), it824

is expected that a small, regular particle will behave more like an ideal tracer825

– and, therefore, contaminate the velocity flow field less – than a large, more826

irregular particle. In addition, in the ocean, a minority of these large tracers827

may also be mobile plankton capable of independent movement. Consequently,828

the vectors established from tracking a small particle will need less adjustment829

by PEFRA, while the vectors established from tracking a large particle will need830

more adjustment by PEFRA. Therefore, if an instantaneous flow field is asso-831

ciated with an anomalous velocity arising from the presence of extremely large832

particles (or a high total number of large particles), it will be concluded that it833

is as a result of these tracers that the velocity flow field will contain more noise834

that results in an increase in ∆n and θ. Moreover, it will be concluded that this835

is the only reason for the increase, and there is no inconsistency in PEFRA if the836

corrections of velocity vectors corresponding to small particles are much smaller837
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than the corrections of velocity vectors corresponding to large particles.838

F.1 Instrumentation839

The submersible 3D-PTV system is detailed fully by Nimmo-Smith (2008). It840

consists of four 1002×1004 pixel 8-bit digital cameras that view a 20×20×20 cm3
841

sample volume illuminated by four 500 W underwater lights. Electrical power is842

supplied from a surface support vessel using an umbilical cable. The cable also843

enables communication with the 3D-PTV master computer, that synchronises the844

triggering of the cameras at the rate of 25 Hz. Data from each of these cameras845

is recorded by its own computer, each with 2 × 400 GB of hard disk storage846

(3.2 TB total). All underwater components are mounted on a rigid frame. A847

vane attached to the frame aligns it at an angle to the mean flow to prevent the848

contamination of the sample volume by the wake of the system. This alignment is849

monitored by an Acoustic Döppler Velocimeter (ADV) that also offers auxiliary850

turbulence statistics at the same height as the sample volume.851

F.2 Data processing and use of PEFRA852

After the calibration of the system (Svoboda et al., 2005), data processing is com-853

pleted in three stages using the specialist ‘Particle Tracking Velocimetry’ software854

developed by Maas et al. (1993) and Willneff (2003). Here, particles are identified855

within the exposures from the four cameras by high-pass filtering, segmentation856

and weighted-centroid methods. In addition, maximum and minimum size cri-857

teria are used to limit contamination by noise or large objects. The calibration858

parameters are then used to relate the exposures from the four independent cam-859
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eras, such that the three-dimensional position of the particles is yielded. Finally,860

tracking is done in image- and object-space, running the sequence in both direc-861

tions so that linkages between adjacent frames are maximised, and the velocity862

of each of the particles at each time-step established by low-pass filtering their863

trajectories using a moving cubic spline (Luthi et al., 2005).864

The experimental measurements are projected from an irregular grid onto a865

regular grid, where only the nearest neighbour of each of the detected particles866

are filled by interpolation (and all others set to zero) to minimise noise that arises867

from gridding. Similarly, if the distance, D, between each of the particles and the868

nearest grid node exceeds 0.5
√
h2
x + h2

y + h2
z (where, hx, hy and hz are the spatial869

discretization in X, Y and Z, respectively), these grid-points are set to zero also.870

Note that this algorithm is therefore adaptable to processor speed and memory871

such that, in theory, at an infinite resolution, all the particles will fall on the grid872

exactly.873

F.3 In situ 3D-PTV experiments874

The submersible 3D-PTV system was deployed on the east side of Plymouth875

Sound, Plymouth, UK, on 9 June 2005 in 12 m deep water on an ebb tide over a876

period of about 4 hours. The centre of the sample volume was set at the height877

of 0.64 m above the seabed. Data was recorded in 20 minute runs directly to hard878

disk storage.879

For the following discussion, a right-handed Cartesian co-ordinate system is880

used, where X is aligned with the along-stream velocity component (U), Y is881

aligned with the cross-stream velocity component (V ), and Z is aligned (upwards)882
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with the wall-normal velocity component (W ). Within this frame of reference,883

the zero-mean velocity is established using Reynold’s Decomposition, i.e.:884

u ≡ U − 〈U〉, v ≡ V − 〈V 〉, and w ≡ W − 〈W 〉, (B.22)

where, 〈〉 is the mean of that velocity component.885

Consistent with past in situ 2D-PIV measurements (Nimmo-Smith et al., 2002,886

2005), a variety of different conditions were recorded, as characterised by different887

turbulence strengths (I =
√
u2 + v2 + w2). Here, the restoration of two different888

conditions – corresponding to the 5th (I = 0.6065) and the 85th (I = 1.0929)889

percentile of the turbulence strengths during an example 10 minute time-series890

– are discussed. The sparsity of these flows are 2.14 % and 1.95 % while their891

characteristic lengths are 9 and 8 grid-points, in turn. Therefore, following Equa-892

tion B.11, the critical sparsity equals 1.09 % where I = 0.6065 and 1.56 % where893

I = 1.0929. Since the sparsity of these data exceeds the critical sparsity condition,894

it is expected that a successful restoration is possible.895

Three orthogonal cross-sections of these flows are presented in Figure G.12A896

to Figure G.12C and Figure G.12D to Figure G.12F. The vectors corresponding897

to the PEFRA input (red) and the PEFRA output (black) are overlapped to898

illustrate the adjustment made. The projection of the convex hull of the tracked899

particles, representing the area where data were recorded, is shaded white. The900

subsequent restoration of these data culminates in the vorticity iso-surfaces pre-901

sented in Figure G.13A and Figure G.13B. Qualitatively, Figure G.13A exhibits902

small velocity gradients typical of a low turbulence level and Figure G.13B is903

consistent with that expected of a higher turbulence level. While these cannot904
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themselves confirm a correct restoration, the excellent agreement between the905

PEFRA input and the PEFRA output for the two different conditions, as well as906

that of the coherent structures and the turbulence level (Adrian, 2007), implies907

the physics of these flows have been successfully restored. Specific details of the908

restoration of Figure G.13A and Figure G.13B are quantified below.909

Figure G.14 presents an instantaneous velocity flow field where I = 0.6065.910

Here, 79 particles output by the tracking software survived filtering by moving cu-911

bic spline (Figure G.14A). For the grid used (hx = hy = hz = 1 cm), D > 0.87 cm912

at one of these grid-points (red ‘+’ markers). The interpolation of the velocity913

components onto the remaining grid-points results in a usable number of seed-914

points for the new algorithm of 78 (green ‘+’ markers). After the application of915

PEFRA ∆n and θ are quantified on a particle-by-particle basis (Figure G.14B).916

The corresponding velocity flow field that has been modified by PEFRA is pre-917

sented in Figure G.14C, where the instantaneous sample volume mean velocity918

components have been subtracted from each of the vectors to reveal the three-919

dimensional turbulence structures. This is similar to the pattern of the velocity920

flow field presented in Figure G.14D, where PEFRA was not applied. The cause921

of this similarity is that the sparsity of the data exceeds the critical sparsity condi-922

tion by a factor of two and therefore will not affect the quality of the restoration.923

This, in turn, is aided by the small velocity gradients within the sample volume924

meaning that both large particles and small particles will follow the streamlines925

alike. Consequently, neither particles increase the noise level substantially.926

Figure G.15 presents an instantaneous velocity flow field where I = 1.0929.927

The format of these panels are the same as for the last figure, with 75 unique seed928
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points used (Figure G.15A). An increase in ∆n and θ on a particle-by-particle929

basis (Figure G.15B) is visible and more adjustment seen in the velocity flow930

field that was modified by PEFRA (Figure G.15C) over that where PEFRA was931

not applied (Figure G.15D). The cause of this adjustment is that the sparsity932

of the data is nearer the critical sparsity condition and therefore a very small933

part of this modification is likely to be an error (that increases as the sparsity of934

the data approaches the critical sparsity). This, in turn, is compounded by the935

large velocity gradients within the sample volume, as large particles cannot react936

to these as quickly as small particles and are affected by differential shear along937

their length.938

As a verification of the adjustment made by PEFRA, the image containing a939

record of each of the particles must be examined to establish whether individual940

tracer characteristics (e.g. bubbles, large or heavy particles) are responsible for941

these differences. Figure G.16 presents three sections of the image, viewed from942

each of the four different camera angles. The particles corresponding to the943

frame minimum ∆n (0.6798) and frame minimum θ (0.0461) are highlighted in944

Figure G.16A and Figure G.16B. Although exhibiting the differences in shape945

expected of natural particles, these appear to be small in size and therefore the946

lack of adjustment is in agreement with the reasoning that they will not affect the947

noise level as much as a larger, more irregular particle. Accordingly, the particle948

corresponding to the frame maximum ∆n (29.2589) and θ (15.9934) is revealed in949

Figure G.16C to be a larger, irregular aggregate typical of a sediment floc. Such950

particles increase the noise level, and therefore need adjustment by PEFRA. Note951

that this connection to individual tracer characteristics is appropriate as there952
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are a sufficient number of particles within the sample volume for the algorithm953

not to fail, while the small distance that separates these from their nearest grid-954

points (i.e. D < 0.87 cm) ensures that errors linked with interpolation will also955

be small.956

This approach also provides a secondary method of validation. In 3D-PTV, in-957

dividual particles are tracked as they are advected through the three-dimensional958

sample volume. If a time-series of the instantaneous velocity flow field is exam-959

ined (Figure G.17A, Figure G.17B and Figure G.17C), it may be seen from the960

stream ribbons that depict the gridded PEFRA output that the same coherent961

vortical structure is spatially and temporally coherent, and from the cones that962

depict the gridded particle positions that these progress through the sample vol-963

ume. If the PEFRA output were incorrect, then there would be no coherence in964

the structure over the sequence of snapshots. Additionally, for any single particle965

moving through the sample volume, a similar correction (related to the individual966

tracer characteristics, as discussed with Figure G.16) may be expected. Figure967

G.17D and Figure G.17E present a time-series the correction of a total of 12 differ-968

ent particles associated with the maximum and minimum adjustments that were969

made in Figure G.17B to the total difference and angle deviation, respectively,970

over a sequence of 7 frames. These are seen to be both spatially and temporally971

invariant, giving confidence that it is the physical characteristics of the particles972

that causes the errors that are successfully corrected by PEFRA.973

To complement the assessment of the instantaneous velocity flow fields pre-974

sented above, Figure G.18 shows a time-series of the particle and turbulence975

strength and total particle count (Figure G.18A and Figure G.18B), as well as976
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the corresponding ∆n and θ quantities (Figure G.18C and Figure G.18D). An in-977

crease in the sample volume mean turbulence intensities are generally connected978

to the passage of large coherent motions. This, in turn, is associated with the979

corresponding increase in ∆n and θ that arises from tracking difficulties when the980

flow structures are more complex. In extreme instances of swimming particles not981

advected through the flow field, however, a single tracer can bias both restoration982

and turbulence statistics. An example of this is presented in Figure G.19, where983

one particle is seen to move very differently to that of the pattern of the velocity984

flow field and necessitates a large adjustment by PEFRA (Figure G.19A). The985

examination of the original image (Figure G.19B) reveals that this ‘particle’ has986

a distinct body and tail, is 4.0 mm in length, and swims at a speed of 5.68 cm s−1,987

or 14.2 body lengths per second. These quantities are consistent with laboratory988

measurements of the swimming speed of fish larvae (Bellwood and Fisher, 2001).989

This contamination is easily eliminated by removing single outliers using local990

∆n and θ anomalies and reprocessing the affected frame, but the example also991

confirms that PEFRA correctly identifies erroneous biological particles in situ.992

G Conclusions993

A new Physics-Enabled Flow Restoration Algorithm (PEFRA) has been de-994

veloped for the restoration of gappy and noisy velocity measurements where a995

standard PTV or PIV laboratory set-up (e.g. concentration/size of the particles996

tracked) is not possible, and the boundary and initial conditions are not known997

a priori. Implemented as a black box approach, where no user-background in998

fluid dynamics is necessary, this is able to restore the physical structure of the999
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flow from gappy and noisy data, in accordance with its hydrodynamical basis.1000

In addition to the restoration of the velocity flow field, PEFRA also estimates1001

the maximum possible deviation of the output from the true flow. A theoretical1002

and numerical assessment of the algorithm sensitivity demonstrates its success-1003

ful employment under different flow conditions. When applied to submersible1004

3D-PTV measurements from the bottom boundary layer of the coastal ocean, it1005

is apparent that using PEFRA is beneficial in processing data collected under1006

difficult conditions, such as where the number (and reliability) of tracer-particles1007

is very sparse.1008
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Appendix A1017

Let p be a divergence-free vector function. Following Vlasenko (2010),1018

q− a∆q = p (B.23)

(with constant flux boundary conditions applied) will only have a divergence-free1019

solution. Therefore, the vorticity restoration in PCEVD and PEFRA will only1020

have a divergence-free output. The equation for the velocity restoration is similar,1021

however, in PEFRA, p is divergent, since this is not eliminated in ~vs by solenoidal1022

projection. To estimate the divergence remaining in the reconstructed velocity1023

flow field after one iteration, the div operator is applied to both the LHS and the1024

RHS of Equation B.8. In doing so, the divergence-free term ∇× ~ω on the RHS1025

of Equation B.8 disappears and the equation transforms to:1026

u−4u = f (B.24)

where, u = div(~u) and f = div(~vs).1027

Expanding u and f in a trigonometrical Fourier series, and substituting them1028

into Equation B.24, achieves:1029

un + 4(πn/L)2un = fn, n = 1, 2, ..., N (B.25)

where, un and fn is the amplitude of harmonic n and L is the horizontal scale1030

of the sample volume, V , where the data were recorded. Simple arithmetical1031

manipulation achieves:1032
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un =
fn

1 + 4(πn/L)2
(B.26)

After each iteration, the divergence in ~u reduces by at least a factor of 1/(1 +1033

4(πn/L)2), such that, after iteration i, this is by a factor of 1/(1 + 4(πn/L)2)i.1034

Therefore, with an increase in i, the divergence in ~u decreases, becoming negligible1035

after several iterations.1036
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Appendix B1037

The three tables comprising Appendix G are a pseudo-code representation of1038

PEFRA, that follows the form of the MATLAB code written by the authors.1039

Table 1 is a wrapper to PEFRA, and referred to as the PEFRA software. It1040

sets the boundary conditions, finds the optimum set of parameters and launches1041

the PEFRA function. The only user input needed in this software is to set the1042

desirable tolerance and the viscosity of the fluid. The software then loads the1043

time series of N velocity measurements (line 4), calibrates the size of Vl (lines1044

5-12) and determines the optimum set of control parameters (line 14), initialising1045

the restoration of the measurements in the time series (lines 15-17). Table 21046

outlines the PEFRA function, responsible for the interpolation of the data to the1047

empty grid-points in V and extrapolation of the data into Vl (line 5), obtaining1048

the linear flow field (lines 6-13) and performing the final restoration (lines 14-1049

21). Table 3 outlines the PCEVD function, used by the software as external1050

function. The stages of this algorithm are the same as discussed in §B with the1051

only difference being that Step 2 (Solenoidal projection) is not applied. The1052

‘cgs’ function and ‘speye’ operator used are the Conjugate Gradients Squared1053

Method and Sparse identity matrix operator, respectively, as included with a1054

core MATLAB distribution. The algorithm for obtaining the optimum set of1055

control parameters is presented in Table G.4.1056
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1 % - - - !!!! PROGRAM PEFRA !!!! - - -

2

3 % values ν, tol(desirable tolerance) and τ must be specified by user

4 [~U t=1:N ] = get time series % read velocity measurements

5 (~U) = (~U t=1,2) % first pair of vector fields

6 [ν, α, σ, d] = Set default values(~U)

% Initialization with σ = 1.34, d = 1, α = (U−1 + 3ν)−1

7 do

8 [ ~V1] = function PEFRA(~U, ν, α, σ, τ, d)

9 d = d+1

10 [ ~V2] = function PEFRA(~U, ν, α, σ, τ, d)

11 [term] = termination criterion( ~V1, ~V2) % term = true, when ‖ ~V1 − ~V2‖2 < tol

12 While (term criterion = false)

13 % search of optimal (ν, α, σ)

14 [ν, α, σ] = gradient descent(ν, α, σ, ~U, d)

15 for t = 1: N % go through the whole time series

16 [~V ] = function PEFRA( ~U t, ν, α, σ, τ, d)

17 end - - - !!!! END OF PROGRAM PEFRA !!!! - - -

Table (G.1). A wrapper to PEFRA, which computes boundary conditions,

optimal set of parameters and starts PEFRA for the given time series.
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1 function [~V ] = function PEFRA(~U, ν, α, σ, τ, d)

2

3 Vl = Set Vl(d,size(~U)) % Enlarge ~U by given d, Set volume Vl

4 Interpolate values into empty nodes

5 [~Vl] = Interpolation and Extrapolation(~Vl)

6 do % Get linear flow

7 [ ~V k
l ] = function Linear PCEVD(~Vl, ν, α, σ, τ)

8 % In function Linear PCEVD, function Vector E is substituted with ∂~ωs/∂t,

9 [term] =termination criterion( ~V k
l ,

~V k−1
l ) % term = true, when ‖ ~V k

l −
~V k−1
l ‖2 < tol

10 k = k + 1

11 ~Vl = ~V k
l

12 [~Vl] = inserter(~Vl, ~U) % Inserts nonempty values ~U into ~Vl

13 While (term criterion = false)

14 do

15 [ ~V k] = function PCEVD(~Vl, ν, α, σ, τ)

16 [term] =termination criterion( ~V k
l ,

~V k−1
l )

17 k = k + 1

18 ~Vl = ~V k
l

19 [~Vl] = inserter(~Vl, ~U) % Inserts nonempty values ~U into ~Vl

20 While (term criterion = false)

21 [~Vl] = function PCEVD(~Vl, ν, α, σ, τ) % Final filtering

Table (G.2). Function PEFRA.
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1 function [~V ] = function PCEVD(~U, ν, α, σ, τ) % Without Step 2

2

3 ~Us = Gaussian filter(~U, σ) % - - - - - - Step 1

4 ~ωs = curl( ~Us)

5 ~e = Vector E( ~Us, ~ωs, τ) % vector E computes LHS of VTE

6

7 ~F = ~ωs − α~e

8 A = speye(Vlg, Vlg)-α ∗ ν*Lap

9 % Lap = Laplace operator in matrix form, Vlg = number of grid nodes in Vl

10 ~ω = cgs(A,~F ) % - - - - - - Step 3

11 % it cgs = Conjugate Gradients Squared Method

12 B = speye(Vlg, Vlg)-Lap

13 ~F2 = curl(~ω)+ ~Us

14 ~V= cgs(B, ~F2) % - - - - - - Step 4

15 ~V= Energy(~U, ~V )% Energy recovery

Table (G.3). Function PCEVD.
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1 function [~V ] = gradient decent(~U, ~V , ν, α, σ, τ, d)

2 step = 0.05*σ; k = 1; ∆1 =∞

3 do

4 ∆old = ∆k

5 [~V ] = function PEFRA(~U, ν, α, σ, τ, d)

6 ∆k = delta est(~U, ~V ) compute ∆ using Equation (B.19)

7 k = k+1

9 while(∆old > ∆k + tolgr or k ≤ 5 ) % by default tolgr = 0.001∆old

10 repeat lines 2-9 for ν and α

11 if (, ν, α, σ, τ) is optimal, do all again until ∆old −∆k < tol

Table (G.4). The search of optimal set of parameters for PEFRA based on

gradient descent method.
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Figure (G.1). (A) The hydrodynamical component of noise, extracted from

(B) the distribution of white Gaussian noise.
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Figure (G.2). The horizontal cross-section of a velocity flow field modelling

turbulence in the wake of a cylinder. (A) True flow, (B) with S = 30%, and (C)

with S = 12.5%. Black dots represent empty-grid points.
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Figure (G.3). The horizontal cross-section of a velocity flow field modelling

turbulence in the wake of a cylinder. (A) True flow, (B) PEFRA output from

the restoration of Figure G.2B, and (C) PEFRA output from the restoration of

Figure G.2C.
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Figure (G.4). The three-dimensional vorticity iso-surface, corresponding to

Figure G.3. (A) True flow, (B) PEFRA output from the restoration of Figure

G.2B, and (C) PEFRA output from the restoration of Figure G.2C.
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Figure (G.5). A vertical cross-section of the velocity flow field modelling a

convection cell. (A) True flow, and (B) sparse velocity flow field where S = 98%.

The black dots represent empty grid-points.
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Figure (G.6). A vertical cross-section of the velocity flow field modelling a

convection cell. (A) True flow, (B) PEFRA output from the restoration of Figure

G.5B. S = 98%, (C) PEFRA output from the restoration of the same flow which

sparsity S = 99% is below critical value (Scritical = 98%).
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Figure (G.7). The horizontal cross-section of a velocity flow field modelling

turbulence in the wake of a cylinder (Figure G.2), reconstructed by PEFRA

with (A) ν = 2, (B) σ = 2 and (C)α = 3.
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Figure (G.8). (A) The horizontal cross-section of a gappy and noisy velocity

flow field modelling turbulence in the wake of a cylinder, and the corresponding

(B) true flow and (C) vorticity iso-surface.
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Figure (G.9). The horizontal cross-section of a velocity flow field modelling

turbulence in the wake of a cylinder (Figure G.8), reconstructed by (A) PEFRA,

(B) PCEVD and (C) AWI.
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Figure (G.10). The three dimensional vorticity iso-surface corresponding to

Figure G.9, reconstructed by (A) PEFRA, (B) PCEVD and (C) AWI.
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Figure (G.11). The difference between the true and restored field yields the

vector field shown, obtained from data presented in Figure G.8B and Figure

G.9A.
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Figure (G.12). Row 1: cross-section of the velocity flow field corresponding

to the minimum turbulence intensities recorded. Row 2: cross-section of the

velocity flow field corresponding to the maximum turbulence intensities recorded.

In each case, the orientation of the slices are indicated by the axes. The 3D-

PTV measurements (red) and post-restoration velocity distribution (black) are

overlapped. The projection of the convex hull of the tracked particles is shaded

white.
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Figure (G.13). Vorticity iso-surfaces of the PEFRA output for the two condi-

tions presented in Figure G.12.
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Figure (G.14). An instantaneous velocity flow field with a low turbulence

strength: (A) output from the tracking software and gridding process; (B) The

∆n (vector scale) and θ (vector colour) between the input and output velocity flow

field at each of the seed-points; (C) Velocity distribution (coloured and scaled by

the velocity magnitude) corrected by PEFRA; (D) Velocity distribution (coloured

and scaled by the velocity magnitude) not corrected by PEFRA

.
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Figure (G.15). An instantaneous velocity flow field with a higher turbulence

strength. The visualisation process is as per Figure G.14.
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Figure (G.16). Three sections from the 3D-PTV image (A to C), viewed from

each of the four different camera angles. The particles nearest the grid-points

corresponding to: (A) the frame-minimum ∆n; (B) the frame-minimum θ; (C)

the frame-maximum ∆n and frame-maximum θ are highlighted.
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Figure (G.17). (A to C) Time-series of the instantaneous velocity flow field

of a three-dimensional coherent structure at intervals of 1/25 s. Visualisation

procedures are as in Figure and Figure. (D) Time-series of the adjustment made

by PEFRA to 6 particles that represent the 3 maximum and 3 minimum ∆

corrections made in (B) over a sequence of 7 frames. (E) Time-series of the

adjustment made by PEFRA to 6 particles that represent the 3 maximum and

3 minimum θ corrections made in (B) over a sequence of 7 frames.

.
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Figure (G.18). Time-series of the sample volume (A) mean turbulence

strength, (B) total particle count, (C) frame-averaged ∆n and (D) frame-averaged

θ. The black lines represent where the velocity distributions shown in (a) Figure

G.14, (b) Figure G.15 and (c) Figure G.19 occurs in the sequence.
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Figure (G.19). (A) The ∆n and θ between the input and output velocity flow

field at each of the seed-points. (B) Section from the 3D-PTV image, viewed

from each of the four different camera angles, with the particle responsible for

the single large vector in (A) highlighted.
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