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Abstract

Words are made up of speech sounds. Almost all accounts of child speech development assume that children learn the
pronunciation of first language (L1) speech sounds by imitation, most claiming that the child performs some kind of
auditory matching to the elements of ambient speech. However, there is evidence to support an alternative account and we
investigate the non-imitative child behavior and well-attested caregiver behavior that this account posits using Elija, a
computational model of an infant. Through unsupervised active learning, Elija began by discovering motor patterns, which
produced sounds. In separate interaction experiments, native speakers of English, French and German then played the role
of his caregiver. In their first interactions with Elija, they were allowed to respond to his sounds if they felt this was natural.
We analyzed the interactions through phonemic transcriptions of the caregivers’ utterances and found that they interpreted
his output within the framework of their native languages. Their form of response was almost always a reformulation of
Elija’s utterance into well-formed sounds of L1. Elija retained those motor patterns to which a caregiver responded and
formed associations between his motor pattern and the response it provoked. Thus in a second phase of interaction, he was
able to parse input utterances in terms of the caregiver responses he had heard previously, and respond using his
associated motor patterns. This capacity enabled the caregivers to teach Elija to pronounce some simple words in their
native languages, by his serial imitation of the words’ component speech sounds. Overall, our results demonstrate that the
natural responses and behaviors of human subjects to infant-like vocalizations can take a computational model from a
biologically plausible initial state through to word pronunciation. This provides support for an alternative to current
auditory matching hypotheses for how children learn to pronounce.
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Introduction

Background
A number of learning mechanisms are undoubtedly involved in

the development of word and phrase pronunciation, including

some forms of imitation. For example, when young children adopt

their first ambient word forms they may well recreate them by

‘whole-word’ mimicry [1]. Similarly, ‘progressive phonological

idioms’ [2], utterances whose pronunciation is noticeably ahead of

or behind a child’s general performance, may be recreated as

unanalyzed wholes. But it is accepted that at some point the

pronunciation of words is learnt by (1) parsing them to identify

their constituent speech sounds (which are usually syllable-sized

chunks, rather than individual phonemes) and (2) reproducing

these elements in their correct order. This form of imitation, the

copying of speech sounds in serial order, requires that the infant

has already solved the ‘correspondence problem’ [3] for speech

sounds. That is, he has developed correspondences between his

vocal motor schemes (VMSs) [4], and the speech sounds he hears,

such that the result of the former are taken by his listeners to be

equivalent (but not necessarily similar) to the latter.

It is generally believed that children solve this correspondence

problem by self-supervised auditory matching. In such an account,

an infant compares his output of a given speech sound to what he

hears produced by others [5], or to what he has heard in the past

[6]. He then relies upon his own judgment of their similarity to

improve his subsequent performance. In another account, it is

supposed that after an infant has discovered sound productions for

himself, that these make similar acoustic sequences in the ambient

environment especially salient via an ‘articulatory filter’. This

makes it easier for him to match and relate some of his productions

with those in his linguistic environment [7]. However, these

accounts require that the infant is able to compare the acoustic

qualities of his own and others’ speech sounds. This assumed

ability is problematic for a number of reasons [8]. Indeed the

apparent lack of acoustic self-regulation of speech output by young

infants [9], and even by some adults [10], also speaks against such

an acoustic matching mechanism. Furthermore, within the

acoustic matching paradigm there is no explanation for the well-
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known ‘fis/fish’ phenomenon in infant speech, in which a child’s

speech production (e.g. ’’fis’’) and the correct L1 form that he

hears (‘‘fish’’) differ acoustically. The puzzle is that the child’s

incorrect productions remain stable for longer than would be

expected despite the acoustic evidence of a mismatch apparently

available to him; a mismatch which he can discriminate in the

speech of others and which is often explicitly drawn to his

attention by a caregiver [11–13].

There have been many previous computational models of

speech development; see [14] for a thorough review. These were

generally concerned with different issues than those in our work

here. In particular they assumed that auditory matching is an

unproblematic mechanism for learning to pronounce speech

sounds. Some also ignored or downplayed the normalization

problem that arises from the different sizes of adult and infant

vocal tracts and the inevitable differences in sound qualities that

result [15–22].

That said, the Asada group have recognized problems with the

conventional account and have modeled solutions for vowel

learning that use a similar caregiver reinforcement and imitation

paradigm as ours [23–26]. Overall the main difference between

their set of studies and ours is that their focus has been on the

initial learning and subsequent development of the infant’s vowel

qualities, modeling different structural aspects of infant and

caregiver interaction. Elija, on the other hand, is a longitudinal

model starting from speech sound discovery (both vowels and

consonants) and ending with word imitation. We share the same

belief that infants are not well equipped to solve the correspon-

dence problem themselves through auditory matching, and that it

is within the dynamics of caregiver-infant interaction that a

solution can be found.

In this paper we consider an alternative to the mainstream

account of auditory matching for how an infant learns to

pronounce L1. The alternative account incorporates a main

mechanism proposed by Gattegno [27] and elaborated by

Messum [8]. We test it through a computational model called

Elija [28], and in particular we focus on the role played by

caregivers in infant-caregiver interactions. (We note that would

have liked to call our infant Eliza, after the female character in

Shaw’s Pygmalion and the musical My Fair Lady, who learnt

Received Pronunciation from a professor of phonetics. However,

Eliza is the name of a famous, pioneering Artificial Intelligence

system [29]. Also, we can use pronouns more effectively when we

posit a male infant and a female caregiver.)

Elija begins by ‘discovering’ motor patterns of his vocal

apparatus that will produce sounds. This is formulated as an

unsupervised learning task.

Then Elija interacts with a caregiver, with two effects. Firstly, he

retains those motor patterns that generated sound productions that

were responded to by the caregiver, and he discards those that

were ignored. Thus caregiver response is used as a simple selection

mechanism.

Secondly, he solves the bi-directional correspondence problem

between the sounds he hears and those that he produces. He does

this by making use of the natural, well-attested interaction in

which a caregiver responds vocally to an infant’s output; an

interaction in which imitation is typically involved and understood

to be involved by both parties, but undertaken more by the

caregiver than the child. Importantly, in this interaction any

judgment of sound similarity (or equivalence) that takes place is

made by the caregiver, and not by Elija. Finally, using Elija’s

ability to parse input speech utterances in terms of his newly

acquired set of equivalents to his own tokens, each caregiver is able

to teach Elija to say some simple words by serial imitation in her

mother tongue (one of three European languages).

The primary aims of the current study were to demonstrate that

Elija could be taught to speak some first words in three languages

and to investigate the caregiver behavior that arises during vocal

infant-caregiver interaction. Although it is known that in real life

infants’ babbling (motor pattern discovery) and interaction with

caregivers overlap in time, this was not modeled in this version of

Elija, which instead ran in three separate stages, for several

reasons. These included the need for interaction time with

caregivers to be kept within practical limits and the requirement

for the same sounds to be heard by all caregivers, so that

comparisons could be made across their responses.

Unsupervised sound discovery by Elija
During speech development, infants progress through several

identifiable stages [30]. Within a few months of birth, they are

producing quasi-vowels and cooing. Over the next few months

they start marginal babbling; producing vowels, raspberries and

squeals. Canonical babbling can start from 5 months. This initial

development appears to arise from an infant’s unsupervised

experimentation with his speech apparatus.

To model this natural development, Elija starts by exploring his

vocal apparatus. He creates motor activity that repositions his

vocal articulators from their resting state and he evaluates the

sensory consequences [31]: sometimes this results in the generation

of acoustic output and sometimes somato-sensory effects such as

touch arising from vocal tract closure. Acting on this feedback, he

tries to improve his motor actions in accordance with a reward

scheme involving multiple terms chosen to be developmentally

plausible. In this way, his exploration leads to the development of

motor patterns for the production of sounds that may later turn

out to be useful as speech sounds. (NB: In real infants, motor

patterns that produce sounds and have stabilized are described as

vocal motor schemes (VMSs) [4].) The motor pattern discovery

process used in Elija is illustrated in Fig. 1.

Elija makes use of caregiver responses
Exposure to a language is necessary for a child’s development of

pronunciation, and it is clear that there is always interaction with

learned speakers during L1 word adoption. In our account,

interaction is necessary before this, in the development of a

capacity to perform word imitation. (We note that in real life the

processes that support speech development overlap. Many things

happen in parallel. For clarity of exposition, here we are describing

events as if they occur in sequence). The process starts as an

infant’s sound production begins to attract his caregiver’s

attention. His development at this point relies on a caregiver’s

willingness to vocally ‘imitate’ him, as observed naturally [32,33].

During these interactions, both parties understand that she is

imitating him [33,34], so he is aware that his caregiver must

regard his and her utterances as equivalent in some way.

Although not explicitly instructed to do so, in our earlier

experiments we found that a single (male) experimental caregiver

found it natural to respond to those of Elija’s utterances that he

judged to be similar to sounds that he could easily produce himself

[28]. In the great majority of cases he reformulated Elija’s

utterances into well-formed L1 speech sounds. Here we further

examine this observation with eight speakers of three languages.

The caregiver’s responses affect Elija in two ways. Firstly, a

response reinforces the production of the motor pattern that

provoked it, whereas its absence discourages further use of this

motor pattern. Secondly, Elija is allowed to associate his motor

patterns to his caregiver’s responses. We argue that both effects
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reflect the likely reality of speech development. The first was

reported, for example, by Pelaez et al. [35]. The second is

reasonable, given that the presentation of a response immediately

after an infant’s vocal action provides a favorable condition for

associative learning [36]. Such a response provides a real child

with an interpretation of his production; given the imitative

context in which it occurs, he is informed that, in his caregiver’s

judgment, the output from his motor pattern and her response are

equivalent in some sense. Importantly, this does not require an

infant (or Elija) to make a judgment of similarity between his and

her output. Therefore, at this stage of his development no

sophisticated perceptual expertise is required on an infant’s (or

Elija’s) part. (Such expertise, needed for solving the normalization

problem, has to be assumed by conventional imitative theories).

Fig. 2 shows how this tutored equivalence paradigm operates.

Elija first recalls a motor pattern that he previously discovered by

exploration. He then uses it to drive his vocal apparatus and

generate an utterance in the presence of his caregiver. The

caregiver hears the sounds and if she feels it is natural to respond,

she is free to do so. During this period, Elija is attending to the

caregiver, hears any response she makes and associates them. If a

motor pattern is not responded to, it will be deselected and no link

to an auditory memory is created.

Serial imitation of speech sounds
After Elija has associated some of his motor patterns to his

caregiver’s responses (which, as we will show, are generally

reformulations of his output into L1), he has the information

needed to parse strings of input sounds in terms of sounds he has

heard before and to respond using his associated motor patterns.

Thus after the first interaction stage, a caregiver is able to teach

Elija to pronounce words by his serial imitation of their

component speech sounds. Of course, Elija’s ability to perform

well at word imitation relies on the extent to which his repertoire

of motor pattern/reformulation correspondences covers the

sounds that make up the words his caregiver is trying to teach

him, and on the quality of his motor pattern outputs within these

pairings.

Fig. 3 gives an overview of how this mechanism is implemented

in the Elija model. First, the caregiver speaks a word that she has

Figure 1. Elija learns from babbling. Panel A: Elija’s (virtual) motor activity moves his vocal apparatus and he can explore the sensory
consequences of this activity (1). This will sometimes result in the generation of acoustic output (2). The presence of acoustic output can be noticed
by Elija (3a), as can other somato-sensory consequences of the vocal tract movement, such as touch arising from vocal tract closure (3b). The
exploration can lead to the discovery of a motor pattern (4). Panel B: A discovered motor pattern is stored in motor memory (5).
doi:10.1371/journal.pone.0110334.g001
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chosen to teach Elija. He hears the caregiver’s utterance and

segments it into syllable-size constituent speech sounds. He then

performs an auditory matching between these incoming sounds

and all the caregiver responses he previously associated to his

motor patterns. When matches to auditory memories are found,

the associated motor patterns in motor memory are activated.

These motor patterns are recalled in sequence and used to drive

his vocal apparatus, resulting in the generation of output speech.

This constitutes his imitation of the caregiver’s word, and can be

heard by the caregiver.

However, this isn’t necessarily the end of the process. Elija and

his caregiver are allowed to engage in repetitive loops, as shown in

Fig. 4. When the caregiver hears Elija’s response, she may not be

satisfied with his attempt. She can then say the word again,

perhaps more clearly and in a way she thinks Elija can more easily

understand. This gives Elija another opportunity to learn the

word, which he again does by trying to recognize her sounds and

generating a response. This procedure continues until the

caregiver either decides that performance is satisfactory or, if his

attempts are not successful, gives up and tries to teach Elija a

different word.

Materials and Methods

We model an infant as a computational agent, Elija, who has no

a priori articulatory or perceptual knowledge of speech [28]. More

details of his operation are provided in the extended methods

section in Appendix S1 in File S1.

The main features of Elija’s motor system are shown in Fig. 5A.

Elija has a speech production capability based on a modified

Maeda articulatory synthesizer [37,38]. This is driven by a motor

system in which representations of motor actions are akin to the

gestural score used in the Task Dynamics model [39]. A motor

pattern is a sequence of articulatory targets for the synthesizer’s

control parameters. A controller assumes that the articulator

movements follow 2nd order critically damped trajectories and

interpolates between these targets. The resulting sequences of

Figure 2. Tutored equivalence. Elija learns to pronounce using caregiver responses, which reinforce some utterances and allow him to associate
his motor patterns to adult L1 speech output. Panel A: Elija first recalls a motor pattern, e.g. motor pattern 3, (1) and uses it to make an utterance (2).
The caregiver hears the sounds (3). Panel B: The caregiver may reformulate it using her L1 interpretation of Elija’s sound production (4). Elija hears the
caregiver’s response (5). Aware that he is being imitated, Elija takes the caregiver’s utterance as equivalent to the output from his motor pattern,
which reinforces motor pattern 3 and associates it with the response (6). If a motor pattern is not responded to, it will be deselected and have no link
to an auditory memory (e.g. motor pattern 2).
doi:10.1371/journal.pone.0110334.g002
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time-varying parameter vectors drive the synthesizer. This can

lead to acoustic output played out via a loudspeaker.

A schematic of Elija’s perceptive system is shown in Fig. 5B.

Elija’s hearing system receives input from a Rode Podcaster USB

microphone. Autocorrelation analysis is applied directly to the

input waveform to estimate the fundamental frequency F0. An

auditory filter bank provides initial pre-processing of the input

[40]. Our implementation is based on the gammatone-like

spectrograms implemented by Ellis [41].

Analysis of Elija’s own acoustic output is carried out directly on

the digitized signal from the synthesizer, although in principle this

could also be achieved by passing acoustic output back from the

loudspeaker via the microphone. Further processing estimates

signal salience, which is used as a component in Elija’s reward

mechanism. Pre-processed input can be recorded in auditory

memory and also compared against past memories using a speech

sound recognizer that is based on Dynamic Time Warping (DTW)

[42]. This enables Elija to discriminate different speech sounds.

Maeda articulatory synthesizer
In our implementation of the Maeda articulatory synthesizer

[37,38], ten parameters are used to control the vocal apparatus,

the first seven being articulatory: P1 Jaw position, P2 Tongue

dorsum position, P3 Tongue dorsum shape, P4 Tongue apex

position, P5 Lip height (aperture), P6 Lip protrusion, P7 Larynx

height. In addition, an LF voice source model was added to give

control over a voiced excitation model [43]. (LF, named after the

authors Liljencrants and Fant, is a four-parameter model of glottal

flow.) This makes use of two additional parameters: P8 Glottal

area, and P9 Fundamental frequency. In the original VTCALCS

implementation a velo-pharyngeal port was added to the basic

model and its opening is controlled using parameter P10 Nasality.

Thus the Maeda synthesizer enabled Elija to produce both oral

and nasal sounds. After the vocal tract profile is specified by the

elementary articulator parameters, an equivalent digital filter is

computed and used to filter the excitation from the voice source

and other noise sources. Fricatives are simulated in the model by

injecting noise at locations in the vocal tract where turbulent

airflow is predicted.

In our experiments, the synthesizer operated with an output-

sampling rate of 24 kHz. To approximate an infant vocal tract

adequately for the purposes of these experiments, the model’s

default physical dimensions, which originally reflected the sizing of

an adult female vocal tract, were scaled down by a factor of 0.8.

Similarly, the mid-range of the fundamental frequency was

shifted from 210 Hz to 400 Hz. We added proprioceptive

feedback of lip and tongue contact, which was generated at times

Figure 3. Learning to pronounce a word using serial imitation of its component speech sounds. Panel A: The caregiver says a word, in
this case consisting of two distinct speech sounds (1). Elija hears the caregiver’s utterance (2) and starts to process it (3). This involves performing an
auditory matching to previously heard responses (4). Matching auditory memories are then activated in sequence (5,6). Panel B: The activated
auditory memories in turn activate motor pattern 3 and motor pattern 1 in motor memory (7,8). They are then recalled in sequence (9) resulting in
the generation of output speech (10), which constitutes Elija’s imitation of the caregiver’s utterance. Finally the caregiver hears and can evaluate
Elija’s response (11).
doi:10.1371/journal.pone.0110334.g003

Teaching a Computational Model of an Infant to Pronounce

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e110334



when the vocal tract tube cross-sectional area reached zero. Elija

was implemented in C++ and all other analyses were written in

Matlab (Mathworks Inc, Natick MA, USA) running on a PC.

Acoustic output was played to the caregiver from the PC’s inboard

DAC output via a pair of active loudspeakers.

Modeling motor patterns and articulator dynamics
As in a previous implementation of Elija [28], motor actions

were modeled in a way akin to the gestural score used in the Task

Dynamics model [39] and movement of Elija’s articulators

between targets was implemented by assuming 2nd order dynamics

that follow critically damped trajectories [15]. In this work we

extend our former approach and the dynamic properties of

different vocal tract articulators are now no longer all grouped

together. Rather they are given individual properties (see below).

We note that other approximations to articulator movements

could also be made, e.g. using a minimum jerk trajectory, which is

often used to describe human arm movements [44].

In Elija, a motor pattern can be a sequence of up to three

different sub-patterns. Each sub-pattern specifies parameters

needed to control the vocal apparatus and contains a 10-element

target vector, a 10-element starting time vector and a 10-element

duration time vector specifying the how long a target is

maintained. There is also a single overall transition speed scaling

parameter b. Thus each sub-pattern consists of 31 elements.

Each component target vector gives rise to movement of the

articulators from their current state towards their new target

values. As stated above, such articulator movement follows a

Figure 4. Repetitive interaction loops in word learning. The
caregiver first says a word (1). Elija recognizes its component sounds in
terms of sounds he has heard before (2). Using the associated motor
patterns, he then generates speech output (3). The caregiver evaluates
Elija’s response and, if not satisfied, may say the word again, perhaps
more clearly (4). Elija performs recognition again (5) and generates a
different response (6). This process can continue (7–9), until (as in this
case) the caregiver decides that performance is satisfactory. Alterna-
tively, if the task is not productive, the caregiver can give up and try to
teach Elija a new word.
doi:10.1371/journal.pone.0110334.g004

Figure 5. Elija’s motor and perceptual systems. Panel A: Elija’s motor control system incorporates a Maeda articulatory speech synthesizer. A
motor pattern is a sequence of articulatory targets for the synthesizer’s control parameters. These are interpolated by a controller, which assumes
that the articulator movements follow 2nd order critically damped trajectories. The resulting sequences of time-varying parameter vectors drive the
synthesizer. This potentially generates acoustic output, which is played out via a loudspeaker. In addition, the effort in the production is estimated
and any closure of the vocal tract is reported. Panel B: Elija’s perceptive system. A USB microphone first digitizes the acoustic input. Autocorrelation
analysis is applied directly to the waveform to estimate its fundamental frequency F0. An auditory filter bank provides pre-processing of the input.
Further processing estimates signal salience, which is used by the reward mechanism. Pre-processed input can be recorded in auditory memory and
also compared against past memories using a speech sound recognizer that is based on DTW.
doi:10.1371/journal.pone.0110334.g005
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critically damped trajectory, leading to articulator movement

towards its target without overshoot [15]. We compute the

trajectory of each control parameter using the equation:

x(t)~xez xs{xeð Þ 1zbtð Þe{bt

Where x(t) is the parameter value at time t, xs is the starting point,

xe is the end point (target value), the constant b is given by the

relation b2~k=m, where k is the spring constant and m is the

associated mass of the dynamical system.

The value of b associated with the different vocal tract

articulator parameters is matched to their dynamic properties.

For movements of the articulators during vocalic, sonorant and

fricative sound generation, a value of b~40 is used, since it

matches typical human articulation speeds well. However, during

plosive sound generation transitions are much faster due to the

rapid release of air pressure at the point of vocal tract closure. To

account for this phenomenon, transitions following closure have

their associated b value increased to 160. This leads to the

generation of more realistic plosive sounds.

Unsupervised sound discovery
Elija’s discovery of sound-generating motor patterns under

developmentally plausible influences is formulated as an optimi-

zation problem that operates without caregiver involvement, and

is an extension of previous work [31]. The modeling of

autonomous exploration has recently become an area of interest

for several researchers, including those working in the field of

developmental robotics [45–50]. We note that Elija uses both

intrinsic and extrinsic reinforcement, as described by Warlaumont

[51], during his sound discovery and refinement process.

As before, our objective function for the optimization of motor

patterns includes terms that encourage salience and diversity and

discourage motor effort. In addition, we now include a term that

discourages the discovery of ‘sensitive’ motor patterns, as

explained below. The continuous scalar reward value R computed

in the objective function of the algorithm is given by:

R~
X

saliencezdiversity{effort{sensitivityð Þ

The salience term encourages Elija to find motor patterns that

generate sensory consequences. Sensory salience was estimated by

combining several components: averaged weighted low and

weighted high frequency power over the duration of the motor

pattern and the average touch signal.

We assume that a human infant can and does selectively focus

his attention on these different aspects of sensory feedback. Elija

does so by changing the relative contribution of the components of

salience. Attending to acoustic power at lower frequencies will

favor the discovery of configurations that lead to vowel produc-

tion, while attending to acoustic output with a dominant high

frequency component will favor the discovery of fricatives.

Attending to touch will favor configurations used in consonants,

such as where the lips are closed or the tongue makes contact with

the teeth or the roof of the mouth.

The diversity term is included in the objective function to

encourage the discovery of a range of motor patterns that lead to

different sensory consequences. That is, it encourages the

discovery of novel patterns that are different from the previous

ones found. Diversity was computed as the weighted sum of three

components in acoustic, tactile and motor pattern space. In each

of these spaces, the minimum distance arising from the current

motor pattern to all previous motor patterns was calculated. The

weighting affected the class of motor patterns discovered. A strong

tactile weighting biased the optimization to the discovery of

distinct plosive articulations, whereas a strong acoustic weighting

biased the optimization to the discovery of acoustically distinct

vocalic and fricative sounds. We note that such explicit weighting

is not strictly necessary, since the diversity term will by its very

nature result in active exploration. However its inclusion does

speed up the computational process.

The effort required to execute the motor pattern makes a

negative contribution to the objective function. Effort was

determined by a combination of the cost of movement and the

loudness of the voiced excitation. The cost of movement was

calculated as the weighted sum of articulator speeds over the

duration of the motor pattern. Loudness of the voiced excitation

was estimated by summing the voicing contribution to Maeda

parameter P8 over the duration of the motor pattern. The effort

term is important because if no penalty is included for voicing

loudness, the optimization generally finds a solution with the

voicing parameter set to maximum, because this always maximizes

sensory salience. We note that the effort term could be enhanced,

for example by incorporating ‘toil’ (relating to the deformation of

the vocal tract) as defined by Yoshikawa et al [24].

A sensitivity term is included in the objective function to

penalize the discovery of motor patterns that create sounds that

can only be generated by very accurate articulations. More

specifically, motor pattern sensitivity relates to how much the

acoustic output of a given articulation changes when the motor

pattern is subject to local perturbations:

Sensitivity~ change in acoustic outputð Þ=

change in articulatory targetsð Þ

Sensitivity issues affect the discovery of vowels. Given that some

variability is found in speech production and is a feature of the

learning process, insensitive articulations will more reliably lead to

an acceptable intended acoustic output than sensitive ones. There

is reason to believe that very sensitive articulator configurations

are not utilized in speech production, as addressed in Steven’s

Quantal Theory [52] and Gunnilstam’s Theory of Local Linearity

[53]. Both hypothesize that preferred regions of articulation in

speech production exist and that there are, for example, regions of

articulator space that provide a natural location for vowel sounds.

The sensitivity of the acoustic realization of a given motor pattern

was computed by first individually positively perturbing the

parameters P1 to P5. A perturbation corresponding to 5% of

the full parameter range was used (i.e., a value of 0.1 was added to

each Maeda parameter). All other parameters were set to constant

values across all motor pattern vectors to avoid added variability in

acoustic output. The output time waveforms for the unperturbed

motor pattern and for each of the 5 perturbed motor patterns were

generated using the Maeda synthesizer and were then analyzed

using the auditory filter bank. The distance between the auditory

representation of each perturbed motor pattern and that of the

unperturbed pattern was computed. The overall sensitivity for the

given motor pattern was then taken as the square root of the sum

of squares of the 5 components. The perturbed patterns were only

used to assess the sensitivity of the pattern under investigation and

were not stored in memory.

Running motor pattern discovery
In the Elija model, motor pattern discovery starts by setting the

elements of the motor pattern to random values drawn from a

uniform distribution over their valid range (21 to 1). Motor
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pattern solutions are then found using 3 iterations of a Quasi-

Newton gradient descent algorithm, as implemented by the

Matlab function fmincon (which finds a constrained minimum).

Since this study investigated sound and subsequent word

learning, several steps were employed to ensure that Elija

discovered a wide range of suitable motor patterns within a

reasonable time. Using single target motor patterns, separate

optimization runs were employed with an emphasis on low

frequency power (for vowels), high frequency power (for fricatives)

and touch (for plosives). To increase the variety of sounds, voicing

was explicitly enabled or disabled in each plosive and fricative

articulation (that is, this operation was not carried out automat-

ically by the optimization procedure). Similarly, closures were

generated with or without opening of the velo-pharyngeal port,

creating nasals or plosives respectively. We note that during motor

pattern discovery active learning was always present. Therefore,

although the a priori biasing was used to reduce exploration times,

if the motor pattern discovery process had been allowed to run for

long enough it would have found a comparable final set of

consonants and vowels autonomously, without making such

interventions, as was achieved in our previous study [28].

To limit the overall number of motor patterns, clustering was

used to reduce the occurrence of articulations that were similar.

Such clustering maintained variety, but limited redundancy and

ensured that there was no subsequent combinatorial explosion of

C and V configurations when sequences were generated (see

below). The clustering of plosive configurations was performed

directly on motor patterns using a standard K-means algorithm.

Vocalic and fricative sounds were clustered acoustically using a

modified version of the same algorithm, using dynamic time

warping (DTW) as its metric of similarity [28]. The total number

of motor pattern clusters and categories were set by hand to limit

their number. Again we note that clustering would be unnecessary

if long interaction times with caregivers were acceptable. Ideally,

all the raw motor patterns discovered by the optimization search

would have been used and evaluated by the caregiver, but this

would have required much longer periods of interaction.

The number of vocalic sounds discovered was limited to 15, the

number of plosives was limited to 15 and the number of fricatives

limited to 10. As a result, the subsequent interaction experiments

could be carried out within 2–3 hours per caregiver.

Expanding motor pattern variety
By concatenating the simple motor patterns discovered by the

optimization procedure, Elija can generate more complex

utterances that are potential speech sounds. Single articulations

were combined to generate VVs (sounding similar to true

diphthongs), CVs, CVVs and VCs. More specifically, Elija

generated CV (CvV, CuV, FvV, FuV, NV), VC (VCv, VCu, VFv,

VFu, VN) and VV tokens, where N = voiced nasal consonant, Cv

= voiced consonant, Cu = unvoiced consonant, Fv = voiced

fricative, Fu = unvoiced fricative. Longer sequences were in

principle possible, but not used in the current study. Again we note

that the combination of simple motor patterns into complex motor

patterns was only performed to reduce the time needed to discover

motor patterns. If the motor pattern discovery process had been

allowed to run longer and to find multiple target motor patterns,

the complex motor pattern discovery process could operate fully

autonomously as in our previous study [28].

After the authors removed implausible sounds by hand (for

example, synthesizer artifacts such as clicks), Elija had discovered

927 motor patterns, which could be used for the first response

experiments.

Ethics statement
After providing written informed consent, a total of 8 subjects (3

male, 5 female) played the role of Elija’s caregiver in separate

experiments. All subjects were native adult speakers of the

languages in which they interacted with Elija. We note that no

children were involved in this study. The Cambridge Psychology

Research Ethics Committee at the University of Cambridge

approved the experimental protocol.

Experiments
The first experiment investigated caregiver responses in three

different languages using all 8 subjects. We examined variability of

responses within the speakers of the same language. The second

experiment investigated the variability of the responses from a

single English speaker over 4 sessions. The third experiment

investigated word learning by Elija through serial imitation and

made use of 6 of the subjects (2 in each language), each of whom

had previously responded to Elija’s output in Experiment 1.

Experiments 1 & 2: First caregiver interactions with Elija
The first experiments investigated caregiver responses to Elija’s

927 motor patterns. The caregivers were instructed to close their

eyes and to imagine that they were interacting with a human

infant. They were not given any information about the child’s age,

or shown a picture of an infant. They were asked to either respond

or not respond ‘naturally’ to what they heard.

The caregivers prompted Elija to generate an utterance by

pressing a key on the keyboard. Elija then executed a motor

pattern, which generated a sound to which his caregiver might

respond. Elija listened for 3 seconds after each of his productions

and recorded any vocal response the caregiver chose to make. Elija

detected if the caregiver responded using a simple speech detection

mechanism. This involved determining if the short-term power in

any acoustic response exceeded background noise level. When a

response was detected, the motor pattern responsible was retained

and an association between the response and the motor pattern

was created (Fig. 2). When a caregiver ignored a sound, the

underlying motor pattern disappeared from Elija’s motor pattern

repertoire. Fig. 6 shows how this process forms associations

between motor and auditory memories: immediately after

executing a motor pattern, Elija captures any response from the

caregiver in auditory memory, retains the motor pattern in motor

memory and builds an association between the two.

We note that Elija did not change his motor patterns as a result

of interaction with his caregivers (the same approach as taken by

Miura et al. [25]). They were only optimized during the initial self-

supervised learning stage. This study compared the behavior of

different caregivers and it was therefore important that all

caregivers heard the same sounds so that comparisons of their

responses could be made.

Experiment 3: Word learning mechanisms in Elija
After Elija had learned the associations between his productions

and adult forms made in response, he could attempt to imitate

novel utterances made by the caregiver (Fig. 3). He parsed them in

terms of previously heard responses and since these sounds had

associations with his motor patterns, this process provided him

with candidates for the reproduction of words by serial matching

of their component sounds.

To implement the recognition mechanism, Elija employed a

template-based dynamic time warping (DTW) recognizer [54],

running with an auditory gammatone filter bank front-end [40].

Such DTW recognizers typically operate by matching spectral
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representations of input speech with another set of such

representations that correspond to the vocabulary of the recog-

nizer. The latter are simply ‘templates’ or good examples of the

sounds in its vocabulary. The template that gives the closest match

is then taken as being the classification of the input sound. In the

Elija model, the DTW recognizer used the caregiver’s responses as

its sound templates. However, since words could contain several

basic speech sounds concatenated together, a segmentation

mechanism was used to present them individually to the

template-based recognizer. This required that the caregiver spoke

with pauses between syllables. Segmentation into separate

utterances was achieved by finding regions in which the short-

term power of the signal exceeded the background noise level.

In practice, a two pass recognition scheme was used to ensure

real-time operation [28]. In the first pass, the recognizer operated

by using 100 templates selected as the cluster centers of all

responses. In the second pass, all the members of the best 5 clusters

were used as templates. We note here that because Elija only

matched caregiver speech with caregiver speech, there was no

normalization problem for the classifier to solve.

During this experiment, Elija played out the motor patterns he

had identified by the recognition process. Elija was given the

ability to produce an intonation contour on each word resembling

that of the caregiver, which made his attempts at word imitation

sound more natural. To achieve this, the fundamental frequency

contour for each separate speech sound was computed and

approximated to a straight line using linear regression. The start

and end frequencies were extracted and then mapped onto the

range of the Maeda synthesizer voice source F0 parameter by

assuming a linear scaling between the (20.9, 0.9) parameter range

and a frequency range of either 100 Hz to 300 Hz or 150 to

400 Hz, for a male or female caregiver respectively. The duration

of the speech sounds in the caregiver’s speech was estimated and

the values were limited to fall within the range of 250 ms to

600 ms. The F0 and duration parameter values were then used to

set the fundamental frequency and duration parameters in the

appropriate motor patterns. All interactions, including Elija’s

internal recognition process, were recorded to document the

development of his pronunciation.

The word-learning task was run on a PC and a graphical user

interface provided the caregiver with a word from a list, generated

from words typically spoken by young children in the caregiver’s

language. The caregiver first pressed the ‘Go’ button and spoke

the word. Elija then repeated it using his serial imitation

mechanism. He could have up to 4 attempts at imitation, each

of which could be selected in the user interface. The caregiver

accepted or rejected Elija’s responses by clicking on appropriate

buttons. An important aspect of this infant-caregiver interaction

was that they could engage in repetitive loops (Fig. 4). The word

spoken by the caregiver could be repeated, which sometimes

provoked a better response. This could continue until Elija

performed an acceptable production, or the caregiver chose to

give up and try another word.

Phonemic transcriptions of the caregiver’s responses
To quantify the performance of Elija and his caregivers, we

analyzed their interactions during the response and word-teaching

experiments. Infant speech is problematic to interpret and analyze

but the adult utterances could be readily examined.

Experienced phoneticians created a broad (phonemic) tran-

scription of the caregiver responses, using symbols from the

SAMPA inventory [55]. This restricted them to classification in

terms of the phonemes of the language they were transcribing or

marking utterances as being outside L1. For a given initial motor

pattern, several cases were distinguished:

1. A caregiver response that could be straightforwardly coded

within a CVC or CVV framework, with at least one V or C and

empty slots coded with the symbol ‘,’ (comma).

2. A silent response, which was coded with the symbol ‘#’.

3. A response that could not be transcribed phonemically.

(Typically this was an attempt at mimicry by the caregiver.) This

was coded as ‘xxx’.

4. A response that was longer than CVC or CVV. From

examination, we found that these were cases when the caregiver

imputed some precocious linguistic ability to Elija, as if he had

produced a progressive phonological idiom. For example, one

caregiver responded to Elija’s utterances as ‘hello’, on three

occasions. This was coded using just the first 3 elements of the

response as above.

During data analysis, we analyzed the responses within (1) and

(4) in terms of their phonemic transcriptions.

Figure 6. Formation of associations between motor and auditory memories. Elija generates an acoustic output by using a previously
discovered motor pattern. After production, Elija records any potential response from the caregiver. If the caregiver responds, the auditory salience of
this response will contribute to a reward signal. This will cause Elija to remember the speech input response, reinforce the motor pattern and also
build an association between the two.
doi:10.1371/journal.pone.0110334.g006
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Archiphoneme consolidations
It is not possible to make a meaningful comparison of the

responses of the caregivers at a phonemic level across speakers of

different languages since both the nature of segments and segment

inventories in any language differ. A further analytical issue is that

it is easy to be overwhelmed by the number of phonemic

categories that cross-speaker comparisons entail, even within the

same language. We therefore grouped phonemes into archipho-

neme categories (notated with pipes, e.g. |A|), so that cross-

language comparisons could be carried out and comparisons

between caregivers presented visually. The relationship between

the archiphoneme categories and the phonemes they include are

shown in SAMPA notation in Table 1.

The archiphoneme transcriptions were derived from the

phonemic transcriptions, and then separated into their vowel

and consonant components so that these could be analyzed

separately. That is, the individual components C1 V1 V2 C2, any of

which may or may not have been present, were identified.

Data visualization
After labeling, each subject’s experimental data consisted of the

presence or absence of an archiphoneme description for each of

Elija’s 927 utterances.

There was a single labeling dataset for each subject, except for

one English speaker for whom there were four datasets. To enable

us to quantify how different subjects behaved, and also how one

subject behaved in different experimental sessions, we compared

the labeling across the relevant datasets. To compare any two

datasets, we made pairwise comparisons between the two

potentially different labels given to each of Elija’s 927 utterances.

We did this separately for the C’s and the V’s.

To make it easier to interpret the results of the comparisons

visually, we summed the occurrence of each vowel and consonant

archiphoneme across all responses for each subject in the paired

comparison, creating two archiphoneme incidence histograms.

We then investigated how the two subjects differed in their

particular responses. If both subject responses to a given token

were assigned the same archiphoneme label, a ‘same label’

Table 1. Archiphoneme consolidations for English, German and French.

Archiphoneme English phonemes German phonemes French phonemes

|pb| /p b/ /p b/ /p b/

|td| /t d/ /t d/ /t d/

|kg| /k g/ /k g C x/ /k g/

|tSdZ| /tS dZ/ /ts tS dZ/

|?| /?/

|fv| /f v/ /pf f v/ /f v/

|TD| /T D/ /T D/

|sz| /s z/ /s z/ /s z/

|SZ| /S Z/ /S Z/ /S Z/

|h| /h/ /h/ /h/

|m| /m/ /m/ /m/

|n| /n N/ /n N/ /n N/

|J| /J/

|R| /R/

|r | /r/

|l| /l/ /l/

|j| /j/ /j/

|w| /w/ /w/

|ie| /I i e E i: eI I@ e@ jI ji je jE
ji: jeI jI@ je@ rI ri re rE ri:
reI rI@| re@ lI li le lE li:
leI lI@ le@/

/I E i: e: E: jI jE ji: je:
jE: rI rE ri: re: rE: lI lE
li: le: lE:/

/i e E ji je jE ri re rE li le
lE/

|A| /{A: A aI aU j{jA: jA jaI jaU
r{rA: rA raI raU l{lA: lA
laI laU/

/a a: aI aU ja ja: jaI jaU
ra ra: raI raU la la: laI
laU/

/a a, A ja ja, jA ra ra, rA
la la, lA/

|O| /Q O O: OI jQ jO jO: jOI rQ rO rO:
rOI lQ lO lO: lOI/

/O o: OY jO jo: jOY rO ro:
rOY lO lo: lOY/

/o o, O jo jo, jO ro ro, rO
lo lo, lO/

|UV| /V U u u: U@ jV jU ju ju: jU@ rV rU
ru ru: rU@ lV lU lu lu: lU@/

/Y U u: y: jY jU ju: jy:
rY rU ru: ry: lY lU lu:
ly:/

/u y ju jy ru ry lu ly/

|&| /3: 39 @U @ @9 j3: j39 j@U j@ j@9 r3:
r39 r@U r@ r@9 l3: l39 l@U l@ l@9/

/9 2: @ 6 j9 j2: j@ j6 r9
r2: r@ r6 l9 l2: l@ l6/

/e, 2 9 9, @ je, j2 j9 j9,
j@ re, r2 r9 r9, r@ le, l2
l9 l9, l@/

doi:10.1371/journal.pone.0110334.t001
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incidence counter was incremented. Differences in labeling were

recorded by incrementing an incidence counter assigned to the

non-matching archiphoneme pair.

One goal of this study was to assess if subjects with different

language backgrounds respond to Elija in a different way. To

achieve this we needed to compare responses across different

groups of subjects, and not just between individual subjects. To do

so, we extended the summing procedure described above over all

the multiple pairs of datasets under investigation. Such individual

two-session pairwise comparison results and also the multiple

group comparison results can be plotted to visualize similarities

and differences in individual caregiver’s responses.

To generate a more abstract description of group comparisons

that could be used for statistical analyses, we summed up the total

‘same’ and ‘different’ archiphoneme responses. This gave a single

overall measure of similarity between the compared dataset groups

without reference to any specific detail regarding which archi-

phonemes were involved in the comparisons.

Statistical analysis of results - Difference of two
proportions

To determine the significance of differences between the same

response conditions, we used a Z-test to compare the two

population proportions. We briefly summarize the calculation of

this test statistic below:

Since we had a sufficiently large number of samples in

Experiments 1 & 2, that is:

np§10 and n 1{pð Þ§10

where:

n is the number of samples

p is the probability of the tested proportion

We calculated the Z-test statistic assuming a normal distribu-

tion:

Z~
p
_

1{p
_

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
_

1{p
_

� �
1=n1z1=n2ð Þ

r

where:

p
_

1~x1=n1

p
_

2~x2=n2

p
_

~ x1zx2ð Þ= n1zn2ð Þ

To test the null hypothesis that the two proportions are equal:

H0 : p1~p2

We used a 2-sided decision rule at 3 levels of significance:

For a = 0.05 decision rule, {1:96vZv1:96

For a = 0.01 decision rule, {2:58vZv2:58

For a = 0.001 decision rule, {3:32vZv3:32

Bargraph confidence intervals
We calculate the confidence intervals such that:

Lower bound: p~p
_
{Za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
_

1{p
_
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Upper bound: p~p
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_
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n
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We computed the lower and upper bounds for a confidence

value of 95% (Z~1:96)

Results

Experiment 1 - Investigating caregiver responses in 3
languages (n = 8)

As babbling commences, interaction with a caregiver can shape

an infant’s vocal development [56]. To investigate the behavior of

caregivers when an infant vocalizes, interaction experiments were

run using native speakers of English, French and German playing

the role of caregiver. Subjects consisted of 2 English females (E1,

E2), and 2 English males (E3, E4-1), a French Canadian female

(F1), French female (F2), a German female (G1) and a German

male (G2). Each caregiver interacted with a separate (but initially

identical) instance of Elija, so that during their experimental

session only their own interactions would affect Elija’s learning.

Elija’s motor patterns and acoustic output are examined in

Appendix S2 in File S1. In particular, utterances that were

responded to by caregivers are compared against those that were

ignored.

Basic response statistics
We analyzed the interactions between Elija and his caregivers in

terms of the consonant and vowel archiphoneme descriptions of

the caregiver’s responses. First, vowel and consonant occurrence

statistics were calculated. Further analysis then examined similar-

ities and differences in archiphoneme components across the

subjects as previously described.

Fig. 7 shows analysis of some basic aspects of the response data

across the multilingual dataset for 2 subjects in each language (E1,

E2, F1, F2, G1, G2).

Fig. 7A shows the percentage of Elija’s motor patterns

responded to by each individual subject. The value ranged

between 53% and 91% with an average of 78%. The spread of

responses, even for caregivers within the same language group,

indicates that the different subjects used different response criteria.

Fig. 7B shows the percentage of Elija’s motor patterns

responded to as a function of the number of speakers that

responded to them. Note that the total across all subjects sums to

100%. This plot shows that no single motor pattern was ignored

by all 6 caregivers.

Fig. 7C is a histogram of the vowel qualities in the caregivers’

responses, plotted on the 2-dimensional IPA vowel quadrilateral.

Since most responses were reformulations (see below), the spread

of the data shows that the vowel qualities in Elija’s utterances as

perceived and responded to by the caregivers covered a wide

range, indicating that the self-organizing vowel discovery process

had been effective. Fig. 7D is a complementary analysis of the

distribution of the consonantal places of articulation. Again, the

perceived places of articulation in Elija’s utterances spans the

complete range available (from the lips to the velum).
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Transcription-based response analysis
We classified responses as being reformulations, mimicked or

idiomatic. A reformulation was a response from a caregiver

corresponding to her L1 interpretation of Elija’s utterance. A

mimicked response was where a caregiver copied the sound shape

of Elija’s utterance, rather than interpreting it within L1. That is,

her response was an acoustic recreation of the utterance. An

idiomatic response was when a caregiver credited Elija with having

attempted to say something meaningful in L1, and responded with

an L1 word or string of words. For example, if she responded to a

CVCV from Elija by saying, ’’Good morning!’’

Fig. 8 shows the way in which the caregivers responded to

Elija’s motor pattern repertoire. Panel A displays individual

subject data for all the caregivers who were naı̈ve to the purpose of

the experiment. This shows the overall proportions of reformu-

lations into L1, mimicked responses and idiomatic responses.

Panel B shows the mean across the five subjects who behaved

similarly. E3 is being treated here as an outlier since he mimicked

many more responses than the other caregivers. This is considered

in the Discussion below.

On average over 94% of all responses were reformulations, with

an almost equal split between the mimicked and idiomatic

responses, which made up the remainder. An idiomatic response

is also a source of information about motor pattern/sound value

correspondences to a child or Elija in terms of the paradigm for

the development of pronunciation that we are investigating. So it

can be seen that almost all the caregiver responses were of

potential value to Elija for the word learning experiment that

followed.

Visualizing caregiver response across languages
Each response to an Elija utterance could potentially contain

consonant and vowel archiphonemes. Pairwise comparisons for

archiphoneme categories of first vowels V1 and consonants C1

were carried out between the responses in the English and

German speaker sessions. The English-German pairwise compar-

isons were then combined to give a single dataset to represent

overall English-German group behavior. English-French and

German-French comparisons were made in a similar fashion.

These comparisons are plotted in Fig. 9.

Panel A shows English/German vowel comparisons and panel

B shows English/German consonant comparisons. Panels C and

D, and E and F show the same comparisons for English/French,

and German/French respectively.

Figure 7. Statistical analysis of the 6-caregiver multilingual response dataset. A Percentage of Elija’s motor patterns responded to by each
individual caregiver. B Percentage of motor patterns responded to against the number of caregivers that responded to them. C Distribution of vowel
qualities plotted on the IPA vowel quadrilateral. The spread of the data shows that the vowel qualities in Elija’s utterances as perceived and
responded to by the caregivers covered a wide range. D Distribution of the consonantal places of articulation. A wide range of perceived places of
articulation were present in Elija’s utterances.
doi:10.1371/journal.pone.0110334.g007
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The area of the yellow nodes represents the summed

occurrences for all pairwise comparisons of the given archipho-

neme category in the responses of the speakers of a given language.

It can be seen that there were different numbers of occurrences

across the different archiphoneme categories. In all languages, the

vowels were fairly uniformly distributed in incidence except for the

lower incidence in the |O| category. Consonant incidence was

also fairly uniformly distributed except for some lower incidence

Figure 8. Caregiver response statistics. Responses of different types made by caregivers to Elija’s motor patterns are shown as a proportion of
total responses. Panel A shows the overall proportions of reformulations (yellow bars), mimicked responses (green bars) and idiomatic responses
(blue bars) for all individual subjects. Panel B shows the mean across all subjects with the exception of E3, who was treated as an outlier since he
mimicked many more responses than the other caregivers.
doi:10.1371/journal.pone.0110334.g008

Figure 9. Relationship between English, German and French responses. Summed caregiver response comparisons are shown in terms of
their archiphoneme vowel and consonant components. One set of response sessions is represented on the LHS and another set on the RHS of each
panel. The area of the yellow nodes represents occurrences of the given phonemic category. Red line width indicates incidence with the same
interpretation across sessions; blue line width indicates incidence with a different interpretation across sessions. The 4 English response data sessions
are always represented on the LHS and the 2 German and 2 French data sessions on the RHS of each respective panel. A English/German vowel
comparisons. B English/German consonant comparisons. C English/French vowel comparisons. D English/French consonant comparisons. E German/
French vowel comparisons. F German/French consonant comparisons.
doi:10.1371/journal.pone.0110334.g009
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categories e.g. |TD| and |tSdZ|. The symbol ‘#’ represents

incidence when no archiphoneme of type consonant or vowel was

found in a particular response.

The summed ‘same label’ incidence, in which motor patterns

received the same interpretation across the paired sessions, is

plotted using a red line. The summed ‘different label’ incidence, in

which motor patterns received a different interpretation across the

paired sessions, is plotted using a blue line. In both cases, line

width is proportional to incidence numbers.

From Fig. 9A it can be seen that for most of Elija’s vowel

productions there was reasonable agreement in labeling among

English and German caregivers. The main point of disagreement

was in the labeling of some responses as |&| by English speakers

but as |A| and |O| by German ones.

For the consonants in Fig. 9B, a thick blue line shows that there

was a difference in interpretation for motor patterns whose results

were heard as |w| by English speakers and |fv| by the German

ones. This would be expected, given the absence of/w/in German.

Figs. 9C & 9D show comparisons between the interpretations

made by English and French speakers. For the vowels in 9C, it can

be seen that a significant proportion of the sounds labeled as |ie|,

|A| and |UV| by the English caregivers, were interpreted as |&|

by French speakers, presumably reflecting the wider range of

vowels that form this category in French.

Figs. 9E & 9F shows the comparisons between the interpreta-

tions made by German and French speakers. In the vowels, sounds

labeled as |A| by German speakers were often labeled as |&| by

French speakers. This suggests that for low and central sounds, the

|A| and |&| categories respectively, French and German

speakers have different boundaries for categorical perception.

Experiment 2 - Investigating single caregiver response
variability (n = 1)

Experiment 1 showed that there were some differences in how

caregivers of English, French and German responded to the same

motor patterns. Experiment 2 investigated the similarity in

caregiver response within the same single English speaker. To

collect the data, E4 performed the response task 4 times following

the procedure adopted in Experiment 1. Periods of a week were

left between response sessions to reduce the subject remembering

Elija’s productions from the previous session.

Visualizing caregiver response across sessions
Pairwise comparisons for archiphoneme categories of first

vowels V1 and consonants C1 were carried out between all the

responses for 4 sessions of this single English speaker. These

pairwise comparisons were then summed to give a single dataset to

represent single speaker behavior across multiple sessions. These

comparisons are plotted in Fig. 10. The vowel and consonant

comparisons are shown in Panels A & B respectively.

We also investigated how 4 different English speakers responded

to the same motor patterns. The multiple speaker English/English

vowel and consonant comparisons are shown in Panels C & D

respectively. Similarity between the two German speakers and the

two French speakers are shown in Panels E & F and G & H

respectively.

The high proportion of red to blue shows that the single English

speaker was consistent across sessions, whereas different speakers

of the same language exhibited more variety in their interpretation

of Elija’s utterances.

Overall similarities across groups
Fig. 11 shows a plot of the comparisons between caregiver

responses for the seven different experimental groups made in

terms of the summed archiphoneme vowel and consonant

components. These values are the sum of the counts correspond-

ing to the red lines shown on Figs. 9 and 10. Note also that the

sum of the blue lines corresponds to the differences in

interpretations (which is given by [100% - % same]). We therefore

refrain from additionally plotting the percentage difference values

to avoid redundancy.

The percentage bars on Fig. 11 correspond to similarities in

labeling in the following groups:

N Same English speaker, 4 sessions (English-Same 64)

N 4 English speakers (English-English)

N 2 German speakers (German-German)

N 2 French speakers (French-French)

N 4 English and 2 German speakers (English-German)

N 4 English and 2 French speakers (English-French)

N 2 German and 2 French speakers (German-French)

We note that the 95% confidence intervals on these plots are

generally quite small due to the relatively large number of data

counts in each condition, except for the comparisons between the

2 German speakers, and between the 2 French speakers. In these

comparisons, there were only 2 speakers in each group and

consequently only a single pairwise comparison was carried out.

From the Figure it can be seen that the single English speaker was

very consistent across sessions in terms of both vowels and

consonants. The vowel comparisons for different speakers of the

same language groups were more similar than the relevant

comparisons across languages groups.

Multiple speaker comparisons across language groups
We performed Z-tests to compare the differences of the raw

vowel and consonant counts data between the selected groups

shown on Fig. 11.

To investigate differences in labeling across speakers of different

languages, we compared the similarity across speakers within

single language groups to the similarity across speakers within

different language groups.

English group comparisons
The ‘same’ proportion for vowels between the different English

speakers were significantly different than those between the

English-French and English-German comparisons, with p,0.001:

English-English versus English-German, Z = 9.11787

English-English versus English-French, Z = 17.3888

The ‘same’ proportion of consonants in the different English

speakers were significantly different than those in the English-

German speaker comparisons with p,0.001

English-English versus English-German, Z = 8.8926

However, the consonants in the different English speakers were

not significantly different from those in the French speaker

comparisons, that is, p.0.05

Consonants English-English versus English-French, Z =

-0.189129

German group comparisons
The ‘same’ proportion for vowels between the different German

speakers were significantly different than those between the

English-German and German-French speakers comparisons, with

p,0.001:
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German-German versus English-German, Z = 7.79693

German-German versus German-French, Z = 9.28878

The proportion of consonants in the different German speakers

were significantly different than those in the English-German

speaker comparisons and the German-French speaker compari-

sons, with p,0.001

German-German versus English-German, Z = 3.9623

German-German versus German-French, Z = 3.47732, p,

0.001

French group comparisons
The ‘same’ proportion for vowels between the different French

speakers were significantly different than those between the

German-French and English-French speakers comparisons, with

p,0.001

French-French versus English-French, Z = 12.4145

French-French versus German-French, Z = 9.48962

Figure 10. Relationships within English, German and French responses. Results are plotted as in Fig. 9. A & B Vowel and consonant
comparisons for a single English speaker over four separate sessions. C & D Vowel and consonant comparisons between four different English
speakers. E & F Vowel and consonant comparisons between two different German speakers. G & H Vowel and consonant comparisons between two
different French speakers.
doi:10.1371/journal.pone.0110334.g010

Figure 11. Comparison between caregiver responses. The comparisons are made in terms of their archiphoneme vowel and consonant
components. These values correspond to the red lines shown on Figs. 9 and 10. Panels A & B show vowel and consonant response comparisons
respectively: similarity within the single English speaker is shown as the blue bar, different speaker similarity for same language groups are shown as
green bars, and cross language group similarities are shown as yellow bars. The error bars show 95% confidence intervals.
doi:10.1371/journal.pone.0110334.g011
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The proportion of consonants in the different French speakers

were significantly different than those in the German-French

speaker comparisons with p,0.001

French-French versus German-French, Z = 4.16795

The proportion of consonants in the different French speakers

were not significantly different than those in the English-French

speaker comparisons

French-French versus English-French, Z = -0.377895, p.0.05

Cross language results conclusions
The vowel comparisons between the 4 different English

speakers’ responses were significantly different from those in the

comparisons between the English-German and English-French

speakers groups. This was also the case between the 2 different

German speakers and the English-German group and German-

French group. The 2 different French speakers and the French-

German comparisons and English-French comparisons also

showed the same effect

These results show that the vowel labeling was more similar

within a language group than across language groups. Results for

the consonants were not as clear-cut. The consonant labeling was

only more similar within a language group than across language

groups for the English and German comparisons, and the French

and German comparisons. The consonant labeling by English and

French speakers was not more consistent within each language

group than across them.

The spread of responses within the 4 different English speakers,

within the 2 different German speakers and within the 2 different

French speakers showed that the caregiver’s own individual

interpretation played a role in the process. It seems likely that such

differences in interpretation arose because Elija’s productions were

not centered on phonemic categories and therefore a caregiver

needed to make an interpretation to determine the appropriate

category. This process was subject to their personal biases.

Thus the caregivers showed a systematic bias in the interpre-

tation of Elija’s output vowels within the framework of their native

languages, with labeling within a language group being signifi-

cantly more similar than labeling across language groups.

Evaluating single English speaker consistency
To investigate single speaker consistency, we compared

similarity within the single English speaker group to the different

English speaker group.

Analysis showed that the ‘same’ proportion of vowels between

the 4 repetitions of the single English speaker was significantly

different than those between the different English speakers group,

with p,0.001:

English-Samex4 versus English-English, Z = 26.2974

The ‘same’ proportion of consonants between the 4 repetitions

of a single English speaker was also significantly different to the

different English speaker group, with p,0.001:

English-Samex4 versus English-English, Z = 24.8201

The statistics shows that the single English speaker was very

consistent across 4 different sessions, whereas four different English

speakers showed significantly less similarity. Since the multiple

repetitions of the single English speaker were significantly more

consistent that the labeling made by different speakers of the same

language, this indicates that caregivers appear to use personal

biases during the labeling procedure.

Experiment 3 - Learning words in 3 languages by serial
imitation (n = 6)

Experiment 3 investigated Elija’s ability to learn to pronounce

words. Using his acquired ability to parse input speech sounds in

terms of the equivalents to his own tokens, the caregivers taught

Elija to pronounce some simple words by serial imitation. Elija

matched sounds in the new words that were presented to him with

sounds he had heard in the first interaction experiment, and used

his motor pattern associations to the latter to pronounce the word.

In separate experiments, six (n = 6) subjects speaking three

languages (E1, E2, F1, F2, G1, G2) who had previously

participated in sound response Experiment 1, once again played

the role of caregiver. They were instructed to teach Elija some

simple words in their native languages: 219 English, 219 French

and 237 German words. The word lists are shown in Appendix S3

in File S1. Each caregiver decided for themselves if they

considered their attempt to teach Elija a new word was successful

or not – that is, whether his attempt was an acceptable imitation of

their word. Overall each caregiver succeeded in teaching him to

pronounce between 40 and 72 (mean 55) words.

Experienced phoneticians annotated each caregiver’s spoken

word data. To analyze Elija’s word productions, we used the

caregiver’s responses corresponding to the motor patterns used by

Elija to imitate the word. The latter had been annotated previously

for the response comparisons. As before, consonant and vowel

archiphoneme components were then extracted. From observation

of the interaction process it was apparent that by changing how

they spoke the caregivers could sometimes provoke a better

response from Elija.

Fig. 12 shows the words learned by Elija in the three languages.

The results for caregivers speaking English, French and German

are shown for subjects E1 & E2, F1 & F2 and G1 & G2

respectively. The left hand column specifies the word orthograph-

ically, the middle column is a phonemic transcription of the

caregiver’s final production and the right hand column is a

phonemic transcription of those caregiver responses (reformula-

tions) that Elija recognized in the target word and then used to

recall the motor patterns to generate the imitation. Of course,

Elija’s utterance did not sound like that of an expert speaker since

his speech sounds were not as categorically well defined as those of

a mature speaker of L1.

To compare the target words produced by the caregivers to the

words produced by Elija in response, we compare the archipho-

neme representation of the first with that of the second. We

transcribed the caregivers’ words directly. However, for the

reasons described earlier, we do not transcribe Elija vocalizations,

but instead use transcriptions of the sounds (reformulations) made

by the caregivers that they considered equivalent.

Fig. 13 shows these comparisons (between the speech sounds in

the caregivers’ word productions and the caregivers’ interpreta-

tions of the speech sounds in Elija’s imitations). The latter were

already labeled previously since they were established during the

first interaction experiment. The speech sounds were analyzed in

terms of first vowels V1 and consonants C1. The results are

presented individually for each of the 6 caregivers. This data is

analyzed further in Appendix S4 in File S1.

Sound files of the caregivers’ word productions and Ejija’s

imitated output are available online at https://github.com/

HowardLab/Elija-PlosOne-2014. Details of this Online Data

repository are described in Appendix S5 in File S1.
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Figure 12. Examples of words learned by Elija. Results for 2 subjects speaking English, French and German are shown for subjects E1 & E2, F1 &
F2 and G1 & G2 respectively. The left column specifies the target word, and the middle column is the phonemic transcription of the caregiver’s final
target production. The right column is the phonemic transcription of the caregiver’s reformulations corresponding to Elija’s imitations.
doi:10.1371/journal.pone.0110334.g012

Figure 13. Individual subject word comparisons for English, French and German. Comparisons between archiphoneme representations of
caregiver target words and Elija’s imitations. Individual speakers are shown in the six panels E1 & E2, F1 & F2 and G1 & G2 respectively. The caregiver
target word transcriptions converted to archiphoneme categories are shown on the LHS of each diagram. Elija’s imitations were labeled in terms of
archiphoneme of the component responses from which they are constructed. These are shown on the RHS of each diagram.
doi:10.1371/journal.pone.0110334.g013
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Discussion

Summary
Using a computer model that starts its development with no

speech expertise but general capabilities that are similar to those of

an infant, we have shown that for young children to learn to

pronounce words, the core element of learning speech sound

correspondences need not be an imitative process on the part of

the child. Rather than using acoustic matching, as usually

assumed, Elija associates his vocal actions with the speech sounds

he hears in response to them. This is enabled by mirroring

behavior on the part of the caregiver as observed in natural

situations and displayed (without being coached) in our experi-

ments. The interaction selectively reinforces Elija’s range of

potential speech sounds, and the associations he creates from his

caregiver’s responses allow him to develop an inventory of motor

pattern to speech sound correspondences. Thus the behavior of his

caregivers enables him to develop a first model of L1 pronunci-

ation.

It was found that when a caregiver found it natural to respond,

the unprompted form of the response to a sound that Elija had

discovered was almost always a reformulation of Elija’s utterance

into well-formed sounds of L1 (and occasionally an attempt to

mimic his output). The nature of the motor/sound associations

was determined by a judgment of sound similarity (or equivalence)

made by the caregiver rather than by Elija. This is a major point of

difference between our account and those of acoustic matching

theories of speech sound development.

In our study, separate instances of Elija learnt to pronounce

simple words in English, French and German. Our account of this

aspect of speech acquisition is demonstrated to be both effective

and language independent. Elija is the first model to achieve this

(1) using natural and well attested social interactions, (2) given

initial perceptive, productive and associative mechanisms that are

clearly no greater than those of a human infant, and (3) given no

precocious phonetic skill in judging similarity between his own and

caregiver speech.

Three stage operation
In a real infant, the three stages of learning modeled separately

in Elija would overlap. In this study, the stages - unsupervised

sound discovery, the first sound response experiments and the final

word imitation experiments - were kept separate for three reasons.

Firstly, it enabled interaction time with caregivers to be kept within

practical limits. Secondly, all caregivers heard the same sounds, so

that comparisons could be made across their responses. Thirdly, in

the two interactive stages it avoided both parties (Elija and

caregiver) needing to interpret the nature of a given interaction,

since this was unambiguously fixed within the context of each of

the experiments: either involving the caregiver in responses to an

utterance or in word-teaching.

In principle Elija could be run with the stages overlapping and

informing each other. This would model the fact that initial motor

patterns can form the starting points for later motor pattern

discovery and that motor patterns can change over time. Such

operation would require additional mechanisms within the Elija

model, to detect and act on the context of a given interaction.

That is, Elija would need to interpret the intent of the caregiver

and thereby use any given interaction in an appropriate fashion.

Response results
To quantify caregiver behavior during the interaction experi-

ments we did not attempt to transcribe Elija’s production data

directly, since this is well known to be problematic in the study of

speech development [30]. Instead we analyzed Elija’s productions

in terms of their corresponding caregiver responses.

Our results show that subjects found it natural to respond to

most of the motor patterns Elija produced, and almost always did

so with responses that were well formed in L1 and therefore of

value to Elija in the word learning experiment that followed.

One can ask why reformulation is the preferred response of

caregivers. One reason may be because caregivers credit infants

with ‘fully human powers of social responsiveness: with wishes,

intentions and feelings which can be communicated,’ [57]. So an

L1 response can feel natural even if the stimulus from the infant is

not yet actually linguistic.

Furthermore, it is effectively effortless for a highly practiced

speaker of L1 to produce speech sounds, so whenever this is felt to

be appropriate a reformulation will be an easy response to make.

Whatever the reasons, it is interesting to note that Elija’s caregivers

did behave in this way towards him despite Elija not being their

own child and not even being a real child. The motivation in

adults to reformulate an infant’s output appears to be quite

powerful.

Comparing our results with human studies
Studies of natural caregiver-infant dyads relevant to these

experiments with Elija have covered the ages 2 to 4 months (17

pairs) [58], 2 to 6 months (15 pairs) [59], 4 to 11 months (8 pairs)

[60], 9 to 19 months (6 pairs) [61], and 12 to 21 months (3 pairs)

[62]. The behaviors of both caregivers and infants that these

studies report are consistent with the Elija model of how children

learn to solve the correspondence problem by the caregiver

imitation of infant vocalizations. Such caregiver imitations are

reported to be ubiquitous, to occur with high frequency and to be

more common than infant imitations of caregiver utterances. We

note that this well-documented and widely recognized phenom-

enon is not given any role in current speech development theory,

including in acoustic matching accounts, but forms the basis of the

Elija model derived from Gattegno’s observations and theorizing

[27] as well as the work of the Asada group [24].

Pawlby’s data [60] may cast a light on the behavior of subject

E3 in our study, who was an outlier compared to our other

subjects, reformulating around 60% of the motor patterns he

responded to, and mimicking about 40%. Pawlby analyzed

imitative exchanges across five modalities, including her Group

III, speech sounds (vowel-like, early consonantal and late

consonantal sounds), and Group IV, non-speech sounds (whim-

pers, laughs, raspberries, etc.). In infant-mother sequences, Pawlby

recorded 625 instances of mothers imitating infant speech sounds

(Group III) and 261 instances of mothers imitating non-speech

sounds (Group IV). (There were many fewer mother-infant

sequences: infants imitated 60 speech sounds produced by their

mothers and 16 non-speech sounds.)

If we equate the reformulating and mimicking responses of our

subject E3 to Pawlby’s Groups III and IV respectively, his

behavior is within the range she observed in her eight dyads. It

may be, therefore, that he was conceiving Elija to be around the

age of infant that Pawlby tested, and responded appropriately,

while the other subjects conceived Elija to be older, granting him

more capacity for linguistic communication and responding

appropriately to this.

Pawlby’s extensive study enables a comparison to be made

between imitation of vocal acts and other acts. She found a

commonality across all forms of imitation, vocal and non-vocal,

and, in line with all the other studies referenced above, found that,

’’the mother’s imitation of the infant’s acts is a much more

frequent phenomenon than the infant’s imitation of his mother’s
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acts. It is the infant who is more likely to initiate the sequence and

his mother respond by imitating.‘‘ Overall Pawlby interpreted her

findings as indicating that, ’’the whole process by which the infant

comes to imitate his mother in a clearly intentional way is rooted

in the initial readiness of the mother to imitate her own infant.‘‘

The Elija model is an instance of this learning paradigm.

Differences between caregiver behaviors
During the mirroring process, some caregivers responded more

frequently than others, demonstrating that there is variability

between individuals in their threshold criterion for a response.

The (archiphoneme) vowel components in the responses of

caregivers were more often similar to those of the other speakers

within a given language group than to those of other language

groups. For example, the English caregivers’ responses to Elija’s

sounds were more consistently similar to those of other English

speakers in vowel quality than to those made by the German and

French caregivers. Thus at least for vowel qualities, caregivers

showed a significant systematic bias to interpret Elija’s output

within the framework of their L1.

The vowel and consonant qualities in the responses made by the

same English caregiver over 4 separate sessions were very similar,

motor pattern by motor pattern. However, there was significantly

more spread of interpretations of a given motor pattern across

different caregivers of English. This suggests that the differences in

responses within different speakers of the same language group

may have arisen from different systematic interpretations, rather

than from an underlying noisy process. Categorical perception of

speech may explain this, since Elija’s productions were not in any

way limited to being good L1 exemplars. Consequently, many

sounds would have been ascribed by a caregiver to what he or she

considered to be a ‘good enough’ category. Their judgments on

this would certainly have varied.

Learning words by serial imitation
In the final experiment, word learning was carried out using a

distinct imitation stage that assumed that a motor pattern/sound

response repertoire had already been established. Running this

stage separately from the response stage was efficient from an

experimental perspective, since it meant that neither Elija nor the

caregiver needed to interpret the context of the interactions. The

six caregivers succeeded in teaching Elija to pronounce an average

of 55 typical first words in their languages.

The serial imitation process relied on Elija’s recognizer

evaluating the caregiver’s utterances in terms of sounds that Elija

had heard before. This was implemented using dynamic time

warping (DTW). However, high performance speech sound

recognition on the basis of limited training data is hard to achieve

without a priori knowledge. Elija’s recognition performance was

therefore lower than we would expect a human infant to be able to

achieve. This occasionally led to some inappropriate interpreta-

tions of a caregiver’s speech. However, although Elija sometimes

made such errors, the caregiver could also correct these as she

could prompt him for another attempt at recognition or even

speak again until he generated an appropriate response (see

Fig. 4). Analogous behaviors on the part of caregivers are seen in

natural settings.

Elija did not always generate imitation forms that closely

matched his caregiver, since his motor pattern repertoire was not

sufficient to do so. However he achieved a level of performance

that appears comparable to that of young children aged between

one and two years.

The reformulation phenomenon
Reformulation was the key source of information used by Elija

to learn to pronounce and then to learn the pronunciation of

words [28]. In our account, an infant learns about the linguistic

significance of his utterances (primarily conceived by him as motor

patterns) through their reformulation by his caregiver. The

‘mirrored’ structure of such an interaction is already familiar to

him from earlier development, where a caregiver is believed to

serve as an affective mirror for a young infant [63]. This

sometimes involves the caregiver reflecting the surface character-

istics of his behavior but increasingly [64] what she reflects is an

expression of her interpretation of his inner state (so-called ‘affect

attunement’ [65]). In a vocal context, a mimicked response is

analogous to the former, and a reformulation to the latter. When

they reformulated his vocal actions, Elija’s caregivers acted as a

phonological mirror, presenting him with what they judged to be

L1 equivalents of certain motor patterns. This solution to the

correspondence problem then allowed Elija to learn words by

serial imitation of their constituent speech sounds.

Supporting evidence and wider implications
Several converging lines of research are consistent with the Elija

model. Gattegno reported naturalistic observations of infants

learning to speak in support of his proposal that infants do not

learn to pronounce by imitation, but rather by experiments that

are evaluated and rewarded by their caregivers [27]. Messum [8]

described other experimental and theoretical support for this

alternative paradigm.

More recently, speech feedback alteration studies have provided

experimental evidence of a lack of acoustic self-regulation of

speech output by young infants [9], and even by some adults [10].

These observations are clearly in conflict with the current

assumption that imitation is the mechanism by which infants

learn to pronounce the speech sounds that form the elements from

which words are made up [11]. The idea that there is an absence

of self-regulation in speech production in young infants is,

however, consistent with a well-known anomaly in child speech,

the ‘fis/fish’ phenomena [12,13]. Here, a child pronounces ’’fish’’

as ’’fis’’, and when questioned as to why he did so, insists firstly

that he can hear the distinction in the two forms made by the adult

and secondly that he did not say the incorrect form himself. This

behavior cannot be explained satisfactorily under imitative

accounts of speech acquisition that require the infant to perform

acoustic matching, but is consistent with the Elija model and the

lack of self-regulation seen in infants. Clearly if an infant does not

or cannot self-regulate on the basis of their acoustic output, they

will be unaware of its acoustic form and that their pronunciation is

incorrect. This is what is observed.

Support for Gattegno’s alternative paradigm in speech devel-

opment also comes from the demonstration of non-vocal tutoring

of young male cowbirds learning to sing by non-singing females

[66]. Similarly, in human studies, a number of experiments with

infants have shown that caregiver behavior is perceived and used

by young learners to generate more advanced forms of vocaliza-

tion [56].

One of the most basic, longstanding questions about speech is

whether it is represented in the brain primarily as a motor or as an

acoustic phenomenon: is it ‘gestures made audible’ [67] or an

acoustic code? Our proposal escapes the current terms in which

this debate is framed: rather than a simple mechanism (imitation)

leading to a complex and controversial neural organization of

whatever kind, we propose that a learning mechanism involving

mirroring by a social partner leads to a straightforward

representation that is inherently perceptuo-motor. In this process,
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neither production nor perception is more primitive than the

other. A number of longstanding problems in speech are resolved

by this understanding [8].

Conclusions

It is clearly the case that children learn the pronunciation of

words by imitation. However, the mechanism by which a child

learns to pronounce – learns, that is, to produce speech sounds

that are taken by his listeners to be equivalent to those in L1 - may

or may not be imitative. The assumption that this mechanism is an

imitative, auditory ‘match to target’ process performed by the

child underlies theory and practice in the speech sciences, but is

unexamined theoretically and unsupported experimentally.

Elija tests an alternative mechanism for how children might

learn to pronounce. Our results demonstrate two important

aspects of this. First, that the social learning paradigm involved

allows a computational model endowed with capacities that are no

greater than those of a human infant to progress from an initial

state of no knowledge about speech to the pronunciation of first

words. Elija did this without imitating the sound qualities of his

caregivers’ speech. Second, that in interacting with Elija, human

caregivers naturally do what is needed for his development, and

what would be needed for human children to develop L1

pronunciation within the paradigm we have described.
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