
martin swientek

H I G H - P E R F O R M A N C E N E A R - T I M E P R O C E S S I N G
O F B U L K D ATA

Doctor of Philosophy, July 2015





H I G H - P E R F O R M A N C E N E A R - T I M E P R O C E S S I N G O F B U L K
D ATA

martin swientek

A thesis submitted to the Plymouth University
in partial fulfilment for the degree of

D O C T O R O F P H I L O S O P H Y

July 2015 – version 1.1



This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the thesis and no information
derived from it may be published without the author’s prior consent.

Martin Swientek: High-Performance Near-Time Processing of Bulk Data,
© July 2015



A B S T R A C T

H I G H - P E R F O R M A N C E N E A R - T I M E P R O C E S S I N G
O F B U L K D ATA

martin swientek

Enterprise Systems like customer-billing systems or financial transac-
tion systems are required to process large volumes of data in a fixed
period of time. Those systems are increasingly required to also pro-
vide near-time processing of data to support new service offerings.
Common systems for data processing are either optimized for high
maximum throughput or low latency.

This thesis proposes the concept for an adaptive middleware, which
is a new approach for designing systems for bulk data processing.
The adaptive middleware is able to adapt its processing type fluently
between batch processing and single-event processing. By using mes-
sage aggregation, message routing and a closed feedback-loop to ad-
just the data granularity at runtime, the system is able to minimize
the end-to-end latency for different load scenarios.

The relationship of end-to-end latency and throughput of batch
and message-based systems is formally analyzed and a performance
evaluation of both processing types has been conducted. Addition-
ally, the impact of message aggregation on throughput and latency is
investigated.

The proposed middleware concept has been implemented with a
research prototype and has been evaluated. The results of the eval-
uation show that the concept is viable and is able to optimize the
end-to-end latency of a system.

The design, implementation and operation of an adaptive system
for bulk data processing differs from common approaches to imple-
ment enterprise systems. A conceptual framework has been develop-
ment to guide the development process of how to build an adaptive
software for bulk data processing. It defines the needed roles and
their skills, the necessary tasks and their relationship, artifacts that
are created and required by different tasks, the tools that are needed
to process the tasks and the processes, which describe the order of
tasks.

v





C O N T E N T S

I field of research 1

1 introduction 3

1.1 Systems for Bulk Data Processing 3

1.1.1 An Example: Billing Systems for Telecommuni-
cations Carriers 3

1.1.2 Near-Time Processing of Bulk Data 4

1.2 About the Author 5

1.3 Aims and Objectives of the Research 6

1.4 Research Approach 7

1.5 Contributions 7

1.6 Outline of the Thesis 8

2 background 11

2.1 Research Methodology 11

2.1.1 Classification of Scientific Methods 11

2.1.2 Scientific Methods in Computer Science 13

2.2 Classification of research domain 14

2.2.1 Demarcation to other system types and domains 16

2.2.2 Summary 18

2.3 Batch Processing 18

2.3.1 Integration Styles 19

2.3.2 Batch Performance Optimizations 20

2.4 Message-based Processing 21

2.4.1 Messaging Concepts 22

2.5 Latency vs. Throughput 23

2.6 Service-Oriented Architecture 26

2.7 Enterprise Service Bus 26

2.8 Enterprise Integration Patterns 28

2.8.1 Performance relevant Enterprise Integration Pat-
terns (EIPs) 28

2.9 Performance Issues of Service-Oriented Middleware 31

2.9.1 Distributed Architecture 31

2.9.2 Integration of Heterogeneous Technologies 31

2.9.3 Loose Coupling 32

2.10 Current Approaches for Improving the Performance of
an SOA Middleware 34

2.10.1 Hardware 34

2.10.2 Compression 34

2.10.3 Service Granularity 34

2.10.4 Degree of Loose Coupling 35

2.10.5 Scaling 35

2.10.6 Dynamic Scaling 36

vii



viii contents

2.11 Summary 36

3 related work 39

3.1 Performance of Service-Oriented Systems 39

3.2 Performance Optimization 40

3.2.1 Transport Optimization 41

3.2.2 Middleware Optimizations 42

3.2.3 Message Batching 43

3.3 Self-Adaptive Software Systems 44

3.3.1 Reference Architectures for Self-Adaptive Soft-
ware Systems 45

3.4 Self-Adaptive Middleware 47

3.4.1 Adaption in Service-Oriented Architectures 49

3.4.2 Adaptive ESB 49

3.5 Feedback Control of Computing Systems 50

3.6 SLA-Monitoring of Business Processes 53

3.7 Summary 55

II contributions 57

4 performance evaluation of batch and message-
based systems 59

4.1 Introduction 59

4.2 A real world example application 60

4.2.1 Technology Stack 61

4.2.2 Common Architecture 62

4.2.3 Batch prototype 65

4.2.4 Messaging prototype 69

4.3 Performance evaluation 70

4.3.1 Measuring points 71

4.3.2 Instrumentation 71

4.3.3 Test environment 73

4.3.4 Clock Synchronization 74

4.3.5 Preparation and execution of the performance
tests 74

4.3.6 Results 76

4.4 Impact of data granularity on throughput and latency 79

4.5 Discussion with respect to related work 83

4.5.1 Performance Modeling 84

4.5.2 Performance Measuring and Evaluation 85

4.6 Summary 87

5 an adaptive middleware for near-time process-
ing of bulk data 91

5.1 Introduction 91

5.2 Requirements 92

5.3 Middleware Concepts 92

5.3.1 Message Aggregation 93

5.3.2 Message Routing 93



contents ix

5.3.3 Monitoring and Control 95

5.4 Middleware Components 96

5.5 Design Aspects 96

5.5.1 Service Design 96

5.5.2 Integration and Transports 99

5.5.3 Error Handling 99

5.5.4 Controller Design 100

5.6 Prototype Implementation 103

5.6.1 Aggregator 103

5.6.2 Feedback-Control Loop 106

5.6.3 Load Generator 111

5.7 Evaluation 113

5.7.1 Test Environment 113

5.7.2 Test Design 113

5.7.3 Static Tests 114

5.7.4 Step Test 116

5.7.5 Controller Tests 116

5.7.6 Results 118

5.8 Summary 118

III conclusion 121

6 conclusion 123

6.1 Achievements of the Research 123

6.2 Limitations 125

6.3 Future Work 126

a conceptual framework 129

a.1 Introduction 129

a.2 Metamodel 131

a.3 Phase 133

a.3.1 Plan 134

a.3.2 Build 135

a.3.3 Run 135

a.4 Roles 136

a.4.1 Business Architect 137

a.4.2 System Architect 138

a.4.3 Software Engineer 139

a.4.4 Test Engineer 140

a.4.5 Operations Engineer 141

a.4.6 Project Manager 143

a.5 Tasks 143

a.5.1 Business Architecture 147

a.5.2 System Architecture 151

a.5.3 Implementation 155

a.5.4 Test 160

a.5.5 Operations 161

a.5.6 Project Management 163



x contents

a.6 Processes 165

a.6.1 Implement Integration 165

a.6.2 Implement Aggregation 165

a.6.3 Implement Feedback-Control 168

a.7 Artifacts 168

a.7.1 Performance Requirements 171

a.7.2 Service Interface Definition 172

a.7.3 Aggregation Rules 172

a.7.4 Integration Architecture 173

a.7.5 Routing Rules 173

a.7.6 System Model 173

a.7.7 Controller Configuration 174

a.7.8 Training Concept 174

a.7.9 Staffing Plan 175

a.8 Tools 175

a.8.1 Tools for System Modeling, System Identifica-
tion and Simulation 177

a.8.2 Tools for Data Visualization 177

a.8.3 Tools for data processing 177

a.9 Relationship to other Software Development Approaches 177

a.9.1 Rational Unified Process 178

a.9.2 Scrum 181

a.10 Related Work 184

a.10.1 Software Process 184

a.10.2 Software Process Modeling 185

a.10.3 Software Process Modeling using Unified Mod-
eling Language (UML) 186

a.10.4 Software Processes for Adaptive Software Sys-
tems 188

a.11 Summary 190

b source code 191

b.1 Project Structure 191

bibliography 193

publications 207



L I S T O F F I G U R E S

Figure 1 A system consisting of several subsystems form-
ing a processing chain 4

Figure 2 Billing process 4

Figure 3 Batch processing 18

Figure 4 Message-based processing 21

Figure 5 Batch processing system comprised of three sub-
systems 23

Figure 6 Message-based system comprised of three sub-
systems 25

Figure 7 Latency and throughput are opposed to each
other 25

Figure 8 Aggregator (Hohpe and Woolf, 2003) 28

Figure 9 Message Router (Hohpe and Woolf, 2003) 30

Figure 10 Content Filter (Hohpe and Woolf, 2003) 30

Figure 11 Claim Check (Hohpe and Woolf, 2003) 31

Figure 12 Three Layer Architecture Model for Self-Management
(Kramer and Magee, 2007) 46

Figure 13 Reflection Reference Model (Andersson et al.,
2009) 46

Figure 14 Mape-K Reference Model (IBM Group, 2005) 48

Figure 15 Block diagram of feedback control system (Heller-
stein et al., 2004) 51

Figure 16 Billing process 60

Figure 17 Components of the billing application proto-
type 61

Figure 18 The prototypes share the same business com-
ponents, database and data-access layer. 63

Figure 19 Business services 64

Figure 20 UML component diagram: The prototypes use
different integration layers. 64

Figure 21 Logical data model of the prototype 66

Figure 22 Batch prototype 66

Figure 23 A Step consists of an item reader, item proces-
sor and item writer 67

Figure 24 Message-based prototype 69

Figure 25 Measuring points of the batch prototype 71

Figure 26 Measuring points of the messaging prototype 71

Figure 27 Batch prototype deployment on EC2 instances 73

Figure 28 Messaging prototype deployment on EC2 in-
stances 74

Figure 29 Throughput 76

xi



xii List of Figures

Figure 30 Latency 77

Figure 31 Overhead batch prototype 77

Figure 32 Overhead messaging prototype 78

Figure 33 System utilization batch prototype 78

Figure 34 System utilization messaging prototype 79

Figure 35 The data granularity is controlled by an aggre-
gator 80

Figure 36 Impact of different aggregation sizes on through-
put 81

Figure 37 Impact of different aggregation sizes on pro-
cessing overhead 82

Figure 38 Impact of different aggregation sizes on latency 82

Figure 39 Impact of different aggregation sizes on sys-
tem utilization 83

Figure 40 Monitoring and Control 95

Figure 41 Feedback loop to control the aggregation size 96

Figure 42 Middleware components 96

Figure 43 Components of the prototype system 104

Figure 44 Components of the feedback-control loop 106

Figure 45 UML class diagram showing the sensor classes 106

Figure 46 UML class diagram showing the controller classes 107

Figure 47 UML class diagram showing the controller strat-
egy classes 108

Figure 48 UML class diagram showing the actuator classes 110

Figure 49 UML class diagram showing the Performance-
Monitor 112

Figure 50 UML class diagram of the Load Generator 112

Figure 51 Static test: queue sizes 115

Figure 52 Static test: queue size changes 115

Figure 53 Step test 116

Figure 54 Proportional control 117

Figure 55 Simple control strategy 118

Figure 56 Overview of Conceptual Framework 130

Figure 57 Package structure 131

Figure 58 Metamodel 132

Figure 59 Attributes of a phase 133

Figure 60 Attributes of a role 137

Figure 61 Role: Business Architect 137

Figure 62 Role: System Architect 138

Figure 63 Role: Software Engineer 139

Figure 64 Role: Test Engineer 142

Figure 65 Role: Operations Engineer 142

Figure 66 Role: Project Manager 143

Figure 67 Overview of tasks 144

Figure 68 Sub packages of the Tasks package 145

Figure 69 Attributes of a task 146



Figure 70 Tasks extending the definition of the business
architecture 148

Figure 71 Tasks extending the definition of the system
architecture 151

Figure 72 Tasks of the process Implement Integration 166

Figure 73 UML Activity Diagram: Implement Integration 166

Figure 74 Tasks of the process Implement Aggregation 167

Figure 75 UML Activity Diagram: Implement Aggrega-
tion 167

Figure 76 Tasks for implementing the feedback-control
loop 168

Figure 77 UML Activity Diagram: Implement Feedback-
Control Loop using a model 169

Figure 78 UML Activity Diagram: Implement Feedback-
Control Loop without using a model 170

Figure 79 Artifacts 171

Figure 80 Attributes of an artifact 176

Figure 81 Attributes of a tool 176

Figure 82 Core process workflows (Kruchten and Royce,
1996) 179

L I S T O F TA B L E S

Table 1 Main characteristics of an ESB (Chappell, 2004) 27

Table 2 Levels of coupling 33

Table 3 Technologies and frameworks used for the im-
plementation of the prototypes 62

Table 4 Measuring points of the batch prototype 72

Table 5 Measuring points of the messaging prototype 72

Table 6 Amazon EC2 instance configuration 75

Table 7 Properties of different aggregation strategies 94

Table 8 Strategies for message routing 94

Table 9 Components of the Adaptive Middleware. We
are using the notation defined by Hohpe and
Woolf (2003) 97

Table 10 Transport options for high and low aggrega-
tion sizes 99

Table 11 Test environment 113

Table 12 Phase: Plan 134

Table 13 Phase: Build 135

Table 14 Phase: Run 135

Table 15 Business Architect 138

Table 16 System Architect 139

xiii



Table 17 Software Engineer 140

Table 18 Test Engineer 140

Table 19 Operations Engineer 141

Table 20 table 143

Table 21 Define Performance Requirements 148

Table 22 Define Service Interfaces 149

Table 23 Define Aggregation Rules 150

Table 24 Define Integration Architecture 151

Table 25 Define Routing Rules 152

Table 26 Define Controller Architecture 153

Table 27 Define Control Problem 154

Table 28 Define Input/Output Variables 154

Table 29 Implement Feedback-Control Loop 155

Table 30 Perform Static Tests 156

Table 31 Perform Step Tests 157

Table 32 Create System Model / Perform System Iden-
tification 157

Table 33 Perform Controller Tuning 158

Table 34 Implement Service Interfaces 158

Table 35 Implement Aggregation Rules 159

Table 36 Implement Routing Rules 159

Table 37 Define Performance Tests 160

Table 38 Evaluate Performance Test Results 161

Table 39 Setup Monitoring infrastructure 162

Table 40 Setup Test Environment 162

Table 41 Perform Performance Tests 163

Table 42 Define Training Concept 163

Table 43 Staffing 164

Table 44 Performance Requirements 171

Table 45 Service Interface Definition 172

Table 46 Aggregation Rules 172

Table 47 Integration Architecture 173

Table 48 Routing Rules 173

Table 49 System Model 173

Table 50 Controller Configuration 174

Table 51 Training Concept 174

Table 52 Training Concept 175

Table 53 Mapping of tasks to RUP core workflows 180

xiv



Table 54 Example Product Backlog 183

L I S T I N G S

4.1 Mediation batch job definition . . . . . . . . . . . . . . 67

4.2 Mediation batch route definition . . . . . . . . . . . . . 68

4.3 Rating batch job definition . . . . . . . . . . . . . . . . . 68

4.4 Billing route definition . . . . . . . . . . . . . . . . . . . 70

4.5 Billing route definition with an additional aggregator . 80

5.1 Java interface of a web service offering different opera-
tions for single and batch processing. . . . . . . . . . . 98

5.2 UsageEventsAggrationStrategy . . . . . . . . . . . . . . 105

5.3 Aggregator configuration in definition of BillingRoute 106

5.4 ControllerStrategy Interface . . . . . . . . . . . . . . . . 107

5.5 Implementation of the simple control strategy . . . . . 108

5.6 Implementation of PID Controller . . . . . . . . . . . . 109

5.7 Actuator Interface . . . . . . . . . . . . . . . . . . . . . . 109

5.8 AggregateSizeActuator . . . . . . . . . . . . . . . . . . . 110

A C R O N Y M S

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

CDR Call Detail Records

CPU Central Processing Unit

CSV Comma Separated Values

DB Database

EIP Enterprise Integration Pattern

ESB Enterprise Service Bus

IaaS Infrastructure as a Service

NCDR Normalized Call Detail Records

xv



xvi acronyms

FIFO First In, First Out

FTP File Transfer Protocol

JAXB Java Architecture for XML Binding

JMS Java Messaging Service

JMX Java Monitoring Extensions

JPA Java Persistence API

JSON JavaScript Object Notation

NFS Network File System

NTP Network Time Protocol

ORM Object-relational mapping

PaaS Platform as a Service

PID Proportional Integral Derivative

PTP Precision Time Protocol

PML Process Modelling Language

QoS Quality of Service

REST Representional State Transfer

RUP Rational Unified Process

SASO Stable, Accurate, Settling Times, Overshoot

SCP Secure Copy

SEDA Staged Event-Driven Architecture

SLA Service Level Agreements

SOA Service Oriented Architecture

SPEM Software & System Process Modelling Metamodel

SQL Structured Query Language

TP Transaction Processing

UML Unified Modeling Language

UML4SPM UML for Software Process Modelling

XML Extended Markup Language



A C K N O W L E D G M E N T S

This work presented in this thesis is the result of the last seven years.
I wish to thank all the people who have supported and helped me
during this long period of time. Without them this work would not
have been finished sucessfully.

I would like to thank Prof. Dr. Bernhard Humm for his support, his
brilliant ideas that pushed the thesis forward, his patience, when the
progress has been slow and his advices.

I would also like to thank Prof. Dr. Udo Bleimann, for his advices
regarding the research process in general and his support.

Additionally, I would like to thank Prof. Paul S. Dowland for his help
to improve my academic writing skills and for his advice regarding
the graduate school formalities.

I would sincerly like to thank my girlfriend Nadine for her end-
less support, love and for keeping things running. She has always
believed in me und supported me when times were tough. Without
her, this work would not have been possible.

Special thanks to Pumi and Mausi, my two cats, for always remind-
ing me of the really important things in live: eating, napping, playing
and having a clean litter box.

Last but not least, I would like to thank my family for their love
and their support.

xvii





A U T H O R ’ S D E C L A R AT I O N

At no time during the registration for the degree of Doctor of Philos-
ophy has the author been registered for any other University award
without prior agreement of the Graduate Committee.

Relevant scientific seminars and conferences were regularly attended
at which work was often presented. Several papers were published in
the course of this research project, details of which are listed in the
appendices.

Word count of main body of thesis: 39648 words

Frankfurt, Germany, July 2015

Martin Swientek



Part I

F I E L D O F R E S E A R C H





1
I N T R O D U C T I O N

Enterprise Systems like customer-billing systems or financial transac-
tion systems are required to process large volumes of data in a fixed
period of time. For example, a billing system for a large telecommu-
nication provider has to process more than 1 million bills per day.
Those systems are increasingly required to also provide near-time
processing of data to support new service offerings.

Traditionally, enterprise systems for bulk data processing are imple-
mented as batch processing systems (Fleck, 1999). Batch processing
delivers high throughput but cannot provide near-time processing of
data, that is the end-to-end latency of such a system is high. End-to-
end latency refers to the period of time that it takes for a business
process, implemented by multiple subsystems, to process a single
business event. For example, consider the following billing system
of a telecommunications provider:

• Customers are billed once per month

• Customers are partitioned in 30 billing groups

• The billing system processes 1 billing group per day, running
24h under full load.

In this case, the mean time for a call event to be billed by the billing
system is 1/2 month. That is, the mean end-to-end latency of this
system is 1/2 month.

1.1 systems for bulk data processing

A distributed system for bulk data processing considered in this re-
search consists of several subsystems running on different nodes that
together form a processing chain, that is, the output of subsystem S1

is the input of the next subsystem S2 and so on (see Figure 1a).
To facilitate parallel processing, the system can consist of several

lines of subsystems with data being distributed among each line.

1.1.1 An Example: Billing Systems for Telecommunications Carriers

An example of a system for bulk data processing is a billing system
of a telecommunications carrier. A billing system is a distributed sys-
tem consisting of several sub components that process the different
billing sub processes like mediation, rating, billing and presentment
(see Figure 2).

3



4 introduction

S1 S3S2

(a) Single processing line

S1 S3S2

S1 S3S2

... ... ...

(b) Parallel processing lines

Figure 1: A system consisting of several subsystems forming a processing
chain

The performance requirements of such a billing system are high. It
has to process more than 1 million records per hour and the whole
batch run needs to be finished in a limited timeframe to comply with
service level agreements with the print service provider. Since de-
layed invoicing causes direct loss of cash, it has to be ensured that
the bill arrives at the customer on time.

Mediation Rating Billing Presentment

Figure 2: Billing process

1.1.2 Near-Time Processing of Bulk Data

A new requirement for systems for bulk data processing is near-time
processing. Near-time processing aims to reduce the end-to-end la-
tency of a business process, that is, the time that is spent between
the occurrence of an event and the end of its processing. In case of a
billing system, it is the time between the user making a call and the
complete processing of this call including mediation, rating, billing
and presentment.

The need for near-time charging and billing for telecommunica-
tions carriers is induced by market forces, such as the increased ad-
vent of mobile data usage and real-time data services (Cryderman,
2011). Carriers want to offer new products and services that require
real-time or near-time charging and billing. Customers want more
transparency, for example, to set their own limits and alerts for their



1.2 about the author 5

data usage, which is currently only possible for pre-paid accounts.
Currently, a common approach for carriers is to operate different plat-
forms for real-time billing of pre-paid accounts and traditional batch-
oriented billing for post-paid accounts. To reduce costs, carriers aim
to converge these different platforms.

A lower end-to-end latency can be achieved by using single-event
processing, for example by utilizing a message-oriented middleware
for the integration of the services that form the enterprise system.
While this approach is able to deliver near-time processing, it is hardly
capable for bulk data processing due to the additional communica-
tion overhead for each processed message. Therefore, message-based
processing is usually not considered for building a system for bulk
data processing requiring high throughput.

The processing type is usually a fixed property of an enterprise sys-
tem that is decided when the architecture of the system is designed,
prior to implementing the system. This choice depends on the non-
functional requirements of the system. A system is therefore either
optimized for low latency or high maximum throughput. These re-
quirements are not fixed and can change during the lifespan of a
system, either anticipated or not anticipated.

Additionally, enterprise systems often need to handle load peaks
that occur infrequently. For example, think of a billing system with
moderate load over most of the time, but there are certain events
with very high load such as New Year’s Eve. Most of the time, a low
end-to-end latency of the system is preferable when the system faces
moderate load. During the peak load, it is more important that the
system can handle the load at all. A low end-to-end latency is not as
important as an optimized maximum throughput in this situation.

1.2 about the author

The author of this thesis has a professional background as a software
engineer with more than 10 years experience in the area of system
integration and custom software development, amongst others at the
system integration division of a large german telecommunications
provider. The motivation of this research was to challenge common bi-
ases and beliefs about how to design systems for bulk data processing.
In particular, with the advent of Service Oriented Architecture (SOA)
and web services, the common opinion was that service-orientation
and especially web services are not suited for bulk data processing
systems and that systems are either designed for high throughput or
low latency. The objective of this research is to question these pre-
sumptions and to find a solution for designing systems that pose a
compromise between the two opposed properties high throughput
and low latency.



6 introduction

1.3 aims and objectives of the research

This research project aims to find a solution for the following prob-
lem:

How to achieve high-performance near-time processing
of bulk data?

As described in Section 1.1, the processing style is a fixed property
of a system for bulk data processing. It is either designed as a batch
processing system, for high maximum throughput, or as a single-
event processing system, for low end-to-end latency. This design de-
cision is not optimal when the system faces continuously changing
requirements, for example different load scenarios. The goal of this
thesis is to design an approach, that shifts the decision of the pro-
cessing style of a system from the design-time to the run-time and
enables it to dynamically optimize its processing style to meet the
current requirements.

Based on this problem, the thesis aims to answer the following
research questions:

• RQ1: What are the critical properties of transactional systems
for bulk data processing that impact their performance in re-
gard of maximum throughput and end-to-end latency?

• RQ2: What is the impact of data granularity on end-to-end la-
tency and maximum throughput?

• RQ3: How to design a system, that is able to dynamically op-
timize its processing style depending on the current load and
minimizes its end-to-end latency?

To approach these research questions, the research project has the
following key objectives:

A. Performance evaluation of batch and messaging systems regard-
ing maximum throughput and end-to-end latency.

B. Measuring the impact of data granularity on throughput and
latency.

C. Development of a concept for an adaptive middleware that is
able to fluently adapt its processing style from batch to message-
based processing depending on different load scenarios.

D. Implementation of a research prototype used for demonstrating
the practicability of the concept.

E. Specification and conduction of appropriate performance tests
to evaluate the developed approach.



1.4 research approach 7

1.4 research approach

An evaluation of current approaches to optimize the performance of
service-oriented systems has been conducted to get an understanding
of the field and the involved problems.

To investigate the performance characteristics of batch and message-
based single-event processing, two prototypes of each processing style
have been implemented. Using these prototypes, a performance eval-
uation has been done to better understand the differences between
the two processing styles, with a special focus on the end-to-end la-
tency and maximum throughput. The message-based prototype has
been extended to study the impact of data granularity on end-to-end
latency and maximum throughput.

Based on the results of the performance evaluation of the batch and
message-based prototype, the concept of an adaptive middleware has
been developed. The message-based prototype has been extended to
implement the concepts of the adaptive middleware. Using this pro-
totype, a performance evaluation has been conducted to evaluate the
proposed concepts for an adaptive middleware for bulk data process-
ing.

1.5 contributions

This thesis makes the following contributions to the field:

• A Performance evaluation of batch and messaging systems re-
garding maximum throughput and end-to-end latency

The performance evaluation compares the performance of batch
and message-based systems. It analyses the impact of different
processing styles, that is batch and message-based processing,
on throughput and latency. It shows that throughput and la-
tency of a messaging system depend on the level of data gran-
ularity and that the throughput can be increased by increasing
the granularity of the processed messages.

• A concept and prototype implementation of a feedback-con-
trolled adaptive middleware for near-time processing of bulk
data

The adaptive middleware is able to adapt its processing type
fluently between batch processing and single-event processing.
By using message aggregation, message routing and a closed
feedback-loop to adjust the data granularity at runtime, the sys-
tem is able to minimize the end-to-end latency for different load
scenarios.



8 introduction

1.6 outline of the thesis

The thesis is organized as follows:

1. Introduction

This chapter sets the context for the conducted research. It spec-
ifies the aims and objectives and methodology of this research,
followed by a brief description of the contributions.

2. Background

This chapter further defines the context of this research and
introduces core concepts and terms that are used throughout
the thesis. It starts with an introduction to batch and message-
based processing paradigms and analyzes the relationship be-
tween maximum throughput and end-to-end latency. Addition-
ally, it describes performance issues of an SOA middleware and
discusses current approaches for performance optimizations of
such a middleware.

3. Related Work

This chapter describes related work and demarcates it to the
work of the research presented in this thesis. It starts with a sum-
mary of work related to the performance of service-oriented
systems and approaches for performance optimizations. The
chapter introduces the concept of self-adaptive software and
presents related work in the context of self-adaptive middle-
ware.

4. Performance Evaluation of Batch and Message-based Systems

This chapter compares the performance of a batch and message-
based system. It introduces the batch and message-based pro-
totype systems that have been implemented and describes the
performance evaluation to compare the performance character-
istics of the two different processing types. The impact of data
granularity on throughput and latency of the messaging proto-
type is evaluated and discussed. In addition, the chapter gives
an overview of other work related to the content of this chapter.

5. An Adaptive Middleware for Near-Time Processing of Bulk
Data

This chapter presents the design, implementation and evalua-
tion of the adaptive middleware which is able to adapt its pro-
cessing type fluently between batch processing and single-event



1.6 outline of the thesis 9

processing. It starts with a description of the core concepts, such
as message aggregation, message routing, and monitoring and
control, followed by a discussion of important design aspects
such as service design, transports, error handling and controller
design. The design and implementation of a prototype of the
adaptive middleware is outlined. A performance evaluation of
the prototype is described. It is shown that the concept of an
adaptive middleware for bulk data processing is able to mini-
mize the end-to-end latency of a system. Additionally, the chap-
ter gives an overview of other work related to feedback-control
of computing systems.

6. Conclusion

This chapter concludes the thesis with a summary of the key
objectives and contributions. It discusses the limitations of this
research and identifies future work.





2
B A C K G R O U N D

This chapter further defines the context of the conducted research and
introduces core concepts and terms that are used throughout the the-
sis. It starts with a description of the research methodology employed
in this thesis and a classification of the research domain, followed by
an introduction of batch and message-based processing. The terms la-
tency and throughput are defined and their relationship is analyzed.
The term SOA is a briefly introduced, followed by a short description
of Enterprise Service Bus (ESB) middleware technology. Additionally,
it describes EIPs, that can be used to improve the performance of mes-
saging systems. The chapter describes performance issues of an SOA

middleware and discusses common approaches for performance op-
timizations of such a middleware.

2.1 research methodology

This section describes the research methodology and philosophy that
has been employed to conduct the research presented in this thesis.
It starts with a brief classification of scientific methods in general,
followed by a description of research methods specific to computer
science.

2.1.1 Classification of Scientific Methods

Research methodology can be defined as “the collection of methods
or rules by which a particular piece of research is undertaken” and
the “principles, theories and values that underpin a particular ap-
proach to research” (Somekh and Lewin, 2004).

Wilson (2014) describes three key concepts of research methodol-
ogy as: (1) research philosophy (2) research approach and (3) research
strategy.

Research philosophy is concerned with the beliefs and views a re-
searcher has towards the world and his research. It can be classified
using the following three sets of beliefs (Chua, 1986):

• Beliefs about physical and social reality
Ontological beliefs are concerned wether the empirical world is
assumed to be objective and independent of humans, or subjec-
tive and its existence depends on human actions.

• Beliefs about knowledge
Epistemology is concerned with the following questions: “What

11



12 background

are the necessary and sufficient conditions of knowledge? What
are its sources? What is its structure, and what are its limits?”
(Steup, 2014).

• Beliefs about the relationship between knowledge and the
empirical world
These beliefs are concerned with the values and intentions a
researcher brings to his work.

One of the most common research philosophies are positivism and
interpretivism (Wilson, 2014).

A positivist researcher beliefs that he is independent of his re-
search and his research is truly objective. He beliefs that scientific
concepts are precise, having fixed and invariant meanings and there
are real, uni-directional cause-effect relationships that are capable of
being identified and tested via hypothetic-deductive logic and analy-
sis (Steup, 2014).

In contrast, a interpretivist researcher assumes that people create
and associate their own subjective and intersubjective meanings as
they interact with the world around them (Steup, 2014). Interpretivist
research is subjective and the researcher is often interdependent with
his research, which is usually carried out based on an inductive ap-
proach (Wilson, 2014). This research philosophy is more related to
social sciences, such as economics, political science, sociology.

Research approaches can be classified into deductive and inductive
approaches. A deductive approach is concerned with developing a
hypothesis based on existing theory, and then designing a research
strategy to test the hypothesis. An inductive approach starts with
collecting data and developing a theory as a result of the data analysis.
(Wilson, 2014)

A simple deductive scientific method consists of the following steps
(Dodig-Crnkovic, 2002):

1. Pose the question in the context of existing knowledge.

2. Formulate a hypothesis to answer the question tentatively.

3. Deduce consequences and make predictions.

4. Test the hypothesis in a specific experiment/theory field. The
steps 2-4 are repeated with modifications of the hypothesis, un-
til the agreement is obtained. If major discrepancies are found,
the process must start from step 1 to revise the research ques-
tion.

5. When consistency is obtained, the hypothesis becomes a theory
and provides a coherent set of propositions that define a new
class of phenomena or a new theoretical concept.



2.1 research methodology 13

Research strategies can be classified into quantitative and qualita-
tive approaches. Quantitative research aims to “describe and and pre-
dict behavior in form of models, relationships and numerical data us-
ing statistical methods” (Aliaga and Gunderson, 2005). It is suited for
objective measurements and testing of hypotheses and when the rele-
vant assessment criteria are known (Winter, 2000). In contrast, qualita-
tive research focusses on describing, interpreting and understanding
of relationships, creating classifications or topologies and the genera-
tion of hypotheses and assessment criteria (Winter, 2000).

Research approaches and strategies can also be combined, for ex-
ample a deductive approach can also use inductive methods to find
additional or new theories than initially stated.

The research in this thesis adopts a deductive approach, based on
a positivist research philosophy:

1. The research question has been stated: How to achieve high-
performance near-time processing of bulk data?

2. The hypothesis has been formulated, that the end-to-end la-
tency of a system for bulk data depends on the aggregation size
of the processed data and therefore, that the end-to-end latency
and throughput can be optimized for different load scenarios
by dynamically adapting the processing type at run-time, thus
achieving near-time processing of bulk data.

3. Two prototypes of a system for bulk data processing for each
processing type, batch and message-based processing, have been
built to test the relationship between end-to-end latency, through-
put and aggregation size.

4. A middleware concept has been developed, that is able to seam-
lessly adapt its processing type at run-time.

5. The message-based prototype has been extended to implement
the middleware concepts.

6. A performance evaluation has been conducted to evaluate the
proposed concepts for an adaptive middleware for bulk data
processing and to confirm the hypothesis.

2.1.2 Scientific Methods in Computer Science

Computer science “is the systematic study of algorithmic processes
that describe and transform information: their theory, analysis, de-
sign, efficiency, implementation, and application”.1 (Denning et al.,
1989)

1 It should be noted that the given definition is only one of many definitions, there is
no unique and simple definition of computer science (cf. Dodig-Crnkovic (2002)).



14 background

As an interdisciplinary science, computer science has its roots in
logic and mathematics and also uses physics, chemistry and biology
(Dodig-Crnkovic, 2002).

According to Dodig-Crnkovic (2002), computer science can be clas-
sified into three distinct areas: theoretical computer science, exper-
imental computer science and computer simulation, which are de-
scribed as follows:

• Theoretical computer science
Theoretical computer science is based on Logics and Mathemat-
ics and follows the classical methodology of building theories
as logical systems with stringent definitions of objects (axioms)
and operations (rules) for deriving and proving theorems. It
aims for developing general approaches to problem solving and
to understand the limits on computation and the power of com-
putational paradigms. Knowledge is acquired using through
conceptualization, modeling and analysis.

• Experimental computer science
Experimental computer science seeks to identify concepts that
facilitate solutions to a problem and then evaluate the solutions
through construction of prototype systems. It is most effective
on problems that require complex software solutions.

• Computer Simulation
Computer simulation makes it possible to investigate systems
that are beyond current experimental capabilities and to study
phenomena that cannot be replicated in laboratories. They are
are guided by theory as well as experimental results and the
results often suggest new experiments and theoretical models.

In the sense of this classification, the research in thesis can be clas-
sified as experimental computer science.

2.2 classification of research domain

This section defines the domain of the research presented in this the-
ses and demarcates it to other related areas.

The research presented in this thesis is concerned with transac-
tional software systems, that implement core business processes of
an enterprise (cf. Section 1.1).

A business process is “a collection of activities that takes one or
more kinds of input and creates an output that is of value to the
customer” (Hammer and Champy, 1993). It has a goal and is affected
by events occurring in the real world.

Another definition, given by Davenport (1993), defines a business
process as “a structured, measured set of activities designed to pro-
duce a specific output for a particular customer or market. A process



2.2 classification of research domain 15

is thus a specific ordering of work activities across time and space,
with a beginning and an end, and clearly defined inputs and out-
puts.”

The steps of a business process represent a transaction, a unit of
work, that needs to be processed successfully as a whole. If a single
step fails, the whole unit has be rolled back. A transaction can be de-
scribed with the Atomicity, Consistency, Isolation, Durability (ACID)
properties, coined by Härder and Reuter (1983):

• Atomicity: A successful transaction is committed as a whole, or
rolled back if it failed.

• Consistency: A successful transaction preserves the consistent
state of the system.

• Isolation: Events within a transaction must be hidden from other
transactions running concurrently.

• Durability: A successful and committed transaction is guaran-
teed to survive any subsequent malfunctions of the system.

A system that implements a business transaction is called Transac-
tion Processing (TP) system. A TP system performs the following main
functions (cf. Bernstein and Newcomer (2009)).

1. It collects input data from a device, for example a front-end
such a web browser.

2. It routes the request to a program that can execute the request.

3. It executes the program, which processes the request and pro-
duces the result.

4. Optionally, it sends the result back to the device that provided
the input.

The research presented in this thesis is concerned with TP systems
for bulk data processing with the following properties:

• Core operational business process
The system implements a core operational business process, such
as billing or financial transactions.

• Distributed system
The system consists of different subsystems running on differ-
ent nodes, with each subsystem implementing a different activ-
ity or step of the business process. Each activity or step of a
business process implemented by a TP system involves specific
processing costs, which includes calls to external systems or ser-
vices, as well as database transactions.



16 background

• Bulk processing of data
The system is required to process large amounts of input data,
that is, multiple mullions of records, and generates large vol-
umes of output data.

• Asynchronous processing without user interaction
The input data is provided by upstream business processes or
other devices that generate events, such as telecommunication
switches and is processed asynchronously without user inter-
action. In contrast, the input data is not provided online using
front-ends, such as web browsers or terminals.

• Batch processing or single-event processing styles
The system uses either batch processing or single-event message-
based as a processing style, depending on the performance re-
quirements of the system (cf. Section 1.1.2). These processing
styles are described in detail in the next sections 2.3 and 2.4.

• Near-time requirements
The system is required to provide results in near-time. Near-
time processing or near real-time processing implies that there
are no significant delays between the occurrence of an event
and the use of the processed data (Telecom Glossary, 2001). This
is hard to achieve while also providing high throughput needed
for bulk data processing at the same time. Systems are therefore
either optimized for high throughput using batch processing, or
low end-to-end latency using single-event processing. The con-
tradiction between low end-to-end and high maximum through-
put is analyzed in Section 2.5.

2.2.1 Demarcation to other system types and domains

This section demarcates the research domain to other domains, such
as real-time systems, Big Data and Complex Event Processing.

2.2.1.1 Real-time systems

A system is considered a real-time system, if the correctness of a com-
putation depends not only on the logical correctness but also on the
time at which the results are produced (Shin and Ramanathan, 1994).
A real-time system needs to process time-critical events before a cer-
tain deadline occurs. Deadlines of real-time systems, and in this sense
real-time systems itself, can be categorized as hard, firm or soft (Shin
and Ramanathan, 1994):

• Hard: A deadline is hard if the consequences of not meeting it
can be catastrophic.



2.2 classification of research domain 17

• Firm: A deadline is firm if the results produced by the corre-
sponding task cease to be useful as soon as the deadline expires,
but consequences of not meeting the deadline are not very se-
vere.

• Soft: The utility of results produced by a task with a soft dead-
line decreases over time after the deadline expires.

In contrast to real-time processing, near-time processing does not
make any strict assurances regarding the timeliness of the results and
can be considered as soft-realtime.

2.2.1.2 Analytics

In contrast to operational systems, that implement core business pro-
cesses, analytical systems are concerned with analyzing the data pro-
vided by operational systems to get insight into the business pro-
cesses, which is used for planning and decision support. Analytical
data is stored in Data Warehouse systems that aggregate historical
data from different operational systems and store it in a unified for-
mat. The data is analyzed using data mining techniques, which is “is
an interdisciplinary field at the intersection of artificial intelligence,
machine learning, statistics, and database systems” (ACM SIGKDD,
2006), to find useful patterns and extract knowledge.

big data

Big Data is a term that generally describes large amounts of data,
that is too big to process with traditional data processing applica-
tions, such as Structured Query Language (SQL)-based databases. In
the context of Big Data, a data processing application is defined as
a system, that “answers questions based on information that was ac-
quired in the past” (cf. Merz and Warren (2014)). These systems are
commonly used in the realm of analytics to get better insights on the
business.

Common technologies for implementing such a system are based
on MapReduce, a programming model for processing large data sets
using a parallel, distributed algorithm on a cluster of commodity ma-
chines (Dean and Ghemawat, 2008), such as Apache Hadoop (Apache
Hadoop, 2014). These approaches are not considered for near-time pro-
cessing of data, due to their high latency (cf. Merz and Warren (2014)).

complex event processing

Event processing consists of methods and tools to filter, transform,
and detect patterns in event streams to react to changing conditions.
Applications of event processing include algorithmic trading, manu-
facturing execution systems, location-based services and defense in-
telligence. (Chandy et al., 2010)



18 background

Systems for event processing perform the following functions (Chandy
et al., 2010):

• Obtain data from multiple sources in real or near real-time

• Aggregate and analyze this data to detect patterns that indicate
the presence of critical situations requiring a response

• Determine the best response for such situations

• Monitor the execution of that response

In contrast to approaches based on MapReduce, such as Apache
Hadoop, event processing allows for real-time or near-time analysis
of event streams.

2.2.2 Summary

In summary, the research presented in this thesis is concerned with
systems exhibiting the following properties:

• Transactional business process

• No user interaction

• Processing of bulk data

• Near-time requirements

2.3 batch processing

The traditional operation paradigm of a system for bulk data process-
ing is batch processing (see Figure 3). A batch processing system is
an application that processes bulk data without user interaction. In-
put and output data is usually organized in records using a file- or
database-based interface. In the case of a file-based interface, the ap-
plication reads a record from the input file, processes it and writes
the record to the output file.

Figure 3: Batch processing
organized

A batch processing system exhibits the following key characteris-
tics:



2.3 batch processing 19

• Bulk processing of data
A Batch processing system processes several gigabytes of data
in a single run thus providing a high throughput. Multiple sys-
tems are running in parallel, controlled by a job scheduler to
speed up processing. The data is usually partitioned and sorted
by certain criteria for optimized processing. For example, if a
batch only contains data for a specific product, the system can
pre-load all necessary reference data from the database to speed
up the processing.

• No user interaction
There is no user interaction needed for the processing of data. It
is impossible due to the amount of data being processed. Batch
processes, that can consist of multiple batch jobs, are usually
managed by job schedulers.

• File- or database-based interfaces
Input data is read from the file system or a database. Output
data is also written to files on the file system or a database.
Files are transferred to the consuming systems through FTP by
specific jobs.

• Operation within a limited timeframe
A batch processing system often has to deliver its results in a
limited timeframe due to Service Level Agreements (SLA) with
consuming systems. This timeframe is commonly called the
batch window.

• Offline handling of errors
Erroneous records are stored to a specific persistent memory
(file or database) during operation and are processed afterwards.

Applications that are usually implemented as batch processing sys-
tems are billing systems for telecommunication companies used for
mediating, rating and billing of call events.

Batch processing is commonly implemented on mainframe operat-
ing systems, such as IBM z/OS (cf. IBM (2010)).

2.3.1 Integration Styles

Batch processing systems use different styles to integrate with their
outside environment or the integration of their subcomponents, with
file-based and database-based integration being the most common. A
combination of both styles is also possible.

• File transfer
With a file-based integration, the batch system or its subcompo-
nents read the data from the input file, processes it and writes
the output to the output file. The file is transported to the next



20 background

(sub-) system using File Transfer Protocol (FTP), Secure Copy
(SCP) or other protocols for file transfer. The transfer is usu-
ally started by a specific job. Alternatively, a shared filesystem,
such as Network File System (NFS) can be used. The system
also needs to be notified when new input data is ready for pro-
cessing, for example by actively monitoring a certain folder or
by getting notified from the previous system in the processing
chain.

• Shared database
The batch system or its subcomponents read and write the input
and output data to a database, which is shared among all (sub-)
systems.

2.3.2 Batch Performance Optimizations

A batch-oriented system can be highly optimized for high through-
put:

• Data formats
Using optimized data formats such as binary formats or Comma
Separated Values (CSV) data formats, that are optimized for
reading and writing. Additionally, input and output data can
be compressed to reduce data transfer times.

• Database transactions
Database transactions introduce a major performance cost when
processing large volumes of data. Batch processing system there-
fore minimize the amount of transactions by encapsulating a
whole batch in one transaction, not every single record.

• Database design and technologies
The database access can optimized by using pre-computed views
especially designed for batch processing, such flattened rela-
tions. Additionally, other database concepts than relational databases
like No-SQL or in-memory databases can be used to further op-
timize the persistence layer.

• Optimization depending on data semantics or technical prop-
erties
When data is processed in batches and is sorted accordingly to
some business or technical rules, the processing algorithm can
easily make assumptions about the data and optimize its pro-
cessing. For example, when a batch only contains flat rate Call
Detail Records (CDR) or CDR of a specific product or customer
segment, the corresponding reference data can be pre-loaded.

• Caching
Often used data such as reference data, for example products



2.4 message-based processing 21

and tariffs in case of a billing system, can also be cached in
memory, prior to processing.

2.4 message-based processing

Messaging facilitates the integration of heterogeneous applications
using asynchronous communication. Applications are communicat-
ing with each other by sending messages (see Figure 4). A messaging
server or message-oriented middleware handles the asynchronous
exchange of messages including an appropriate transaction control
(Conrad et al., 2006).

In the context of this thesis, messaging is a mean to implement
single-event processing.

Figure 4: Message-based processing

Hohpe and Woolf (2003) describe the following basic messaging
concepts:

• Channels
Messages are transmitted through a channel. A channel con-
nects a message sender to a message receiver.

• Messages
A message is packet of data that is transmitted through a chan-
nel. The message sender breaks the data into messages and
sends them on a channel. The message receiver in turn reads
the messages from the channel and extracts the data from them.

• Pipes and Filters
A message may pass through several processing steps before
it reaches its final destination. Multiple processing steps are
chained together using a pipes and filters architecture.

• Routing
A message may have to go through multiple channels before it
reaches its destination. A message router acts as a filter and is
capable of routing a message to the next channel or to another
message router.

• Transformation
A message can be transformed by a message translator if the
message sender and receiver do not agree on the format for the
same conceptual data.



22 background

• Endpoints
A message endpoint is a software layer that connects arbitrary
applications to the messaging system.

2.4.1 Messaging Concepts

There are two types of message channels (cf. Hohpe and Woolf (2003)):

• Point To Point
A Point To Point channel is used to send messages to only one
receiver. The messaging system ensures that a message is con-
sumed only once. A Point To Point can also have multiple com-
peting consumers, in this way, messages can be load-balanced
among multiple consumers to scale the processing system.

• Publish-Subscribe
A Publish-Subscribe channel is used to broadcast a message to
multiple receivers. When a message is sent to input channel
of the Publish-Subscriber channel, the messaging system copies
the message to multiple output channels, one channel for each
receiver. Each subscriber gets the message only once.

The adaptive middleware presented in this thesis only uses Point
To Point message channels with competing consumers.

Additionally, there are two important concepts for the transmission
of messages (cf. Hohpe and Woolf (2003)):

• Send and forget
The sending system sends the message to the message chan-
nel. The messaging system transmits the message in the back-
ground, the sender does not have to wait until the receiving
system reads the message.

• Store and forward
When the sending system sends the message to the message
channel, the messaging system stores the message on the sys-
tem of the sender and forwards it to the receiver by storing it
to the receiving system. This can be repeated until the receiver
receives the message.

In the context of this thesis, only Send and forget is considered.

Message-based systems are able to provide near-time processing of
data due to their lower latency compared with batch processing sys-
tems. The advantage of a lower latency comes with a performance
cost in regard to a lower throughput because of the additional over-
head for each processed message. Every message needs amongst oth-
ers to be serialized and deserialized, mapped between different proto-



2.5 latency vs . throughput 23

cols and routed to the appropriate receiving system. Section 2.9 con-
tains a detailed discussion of performance issues of message-based
service-oriented middleware.

2.5 latency vs . throughput

Throughput and latency are performance metrics of a system. The fol-
lowing definitions of throughput and latency are used in this thesis:

• Maximum Throughput
The number of events the system is able to process in a fixed
timeframe.

• Ent-to-end Latency
The period of time between the occurrence of an event and
its processing. End-to-end latency refers to the total latency of
a complete business process implemented by multiple subsys-
tems. The remainder of this paper focusses on end-to-end la-
tency using the general term latency as an abbreviation.

2.5.0.1 Batch processing

A business process, such as billing, implemented by a system using
batch processing exhibits a high end-to-end latency. For example, con-
sider the following billing system:

• Customers are billed once per month

• Customers are partitioned in 30 billing groups

• The billing system processes 1 billing group per day, running
24h under full load.

In this case, the mean time for a call event to be billed by the billing
system is 1/2 month. That is, the mean end-to-end latency of this
system is 1/2 month.

Figure 5: Batch processing system comprised of three subsystems

Assuming the system SBatch which is comprised of N subsystems
S1, S2, . . . , SN (see Figure 5 for an example with N = 3):

SBatch = {S1,S2, . . . ,SN}

The subsystem Si reads its input data from the database DBi in one
chunk, processes it and writes the output to the database DBi+1.



24 background

When Si has finished the processing, the next subsystem Si+1 reads
the input data from DBi+1, processes it and writes the output to
DBi+2, which in turn is read and processed from subsystem Si+3

and so on.
The latency LESBatch

of a single event processed by the system
SBatch is determined by the total processing time PTSBatch

, which
is the sum of the processing time PTi of each subsystem Si:

LESBatch
= PTSBatch

=

N∑
i=1

PTi

where N is the number of subsystems.
The processing time PTi of the subsystem Si is the sum of the pro-

cessing time of each event PTEj
and the additional processing over-

head OHi, which includes the time spent for reading and writing the
data, opening and closing transactions, etc:

PTi =

 M∑
j=1

PTEj

+OHi

where M is the number of events.
To allow for near-time processing, it is necessary to decrease the la-

tency LES
of a single event. This is can be achieved by using message-

based processing instead of batch processing.

2.5.0.2 Message-based processing

The subsystem Si of a message-based system SMessage reads a single
event from its input message queue MQi, processes it and writes it to
the output message queue MQi+1. As soon as the event is written to
the message queue MQi+1, it is read by the subsystem Si+1, which
processes the event and writes to the message queue MQi+ 2 and so
on (see Figure 6).

The latency LESMessage
of a single event processed by the system

SMessage is determined by the total processing time PTESMessage
of

this event, which is the sum of the processing time PTEi
and the pro-

cessing overhead OHEi
for the event of each subsystem:

LESMessage
= PTESMessage

=

N∑
i+1

(PTEi
+OHEi

)

where N is the number of subsystems. Please note that the wait time
of the event is assumed to be 0 for simplification.

The processing overhead OHEi
includes amongst others the time

spent for unmarshalling and marshalling, protocol mapping and open-
ing and closing transactions, which is done for every processed event.



2.5 latency vs . throughput 25

Figure 6: Message-based system comprised of three subsystems

Since the processing time PTESMessage
of a single event is much

shorter than the total processing time PTSBatch
of all events, the la-

tency LESMessage
of a single event using a message-based system is

much smaller than the latency LESBatch
of a single event processed by

a batch-processing system.

PTESMessage
< PTSBatch

⇒ LESMessage
< LESBatch

Message-based processing adds an overhead to each processed event
in contrast to batch processing, which adds a single overhead to each
processing cycle. Hence, the accumulated total processing overhead
OHSMessage

of a message-based system SMessage for processing m

events is larger than the total processing overhead of a batch process-
ing system:

OHSMessage
=

n∑
i=1

OHEi
∗m > OHSBatch

=

n∑
i=1

OHi

A message-based system, while having a lower end-to-end latency,
is not able to process the same amount of events in the same time
as a batch processing system and therefore cannot provide the same
maximum throughput.

Figure 7: Latency and throughput are opposed to each other

From this follows that latency and throughput are opposed to each
other (see Figure 7). High throughput, as provided by batch process-
ing, leads to high latency, which impedes near-time processing. On
the other hand, low latency, as provided by a message-based system,
cannot provide the throughput needed for bulk data processing be-
cause of the additional overhead for each processed event.



26 background

2.6 service-oriented architecture

SOA is an architectural pattern to build application landscapes from
single business components. These business components are loosely
coupled by providing their functionality in form of services. A service
represents an abstract business view of the functionality and hides all
implementation details of the component providing the service. The
definition of a service acts as a contract between the service provider
and the service consumer. Services are called using a unified mecha-
nism, which provides a platform independent connection of the busi-
ness components while hiding all the technical details of the commu-
nication. The calling mechanism also includes the discovery of the
appropriate service (Richter et al., 2005).

By separating the technical from the business aspects, SOA aims
for a higher level of flexibility of enterprise applications.

2.7 enterprise service bus

An ESB is an integration platform that combines messaging, web ser-
vices, data transformation and intelligent routing (Schulte, 2002). Ta-
ble 1 shows the main characteristics of an ESB (Chappell, 2004). All
application components and integration services that are connected
to the ESB are viewed as abstract service endpoints. Abstract end-
points are logical abstractions of services that are plugged into the
ESB and are all equal participants (Chappell, 2004). An abstract end-
point can represent a whole application package such as a CRM or
ERP system, a small web service or an integration service of the ESB
such as a monitoring, logging or transformation service. As integra-
tion platform the ESB supports various types of connections for the
service endpoints. These can be SOAP, HTTP, FTP, JMS or other pro-
gramming APIs for C, C++, C#, etc. It is often stated that “if you
can’t bring the application to the bus, bring the bus to the applica-
tion” (Chappell, 2004).

The backbone of the ESB is a message-oriented middleware (MOM),
which provides an asynchronous, reliable and efficient transport of
data between the service endpoints. The concrete protocol of the
MOM, such as JMS, WS-Rel* or a proprietary protocol is thereby ab-
stracted by the service endpoint. The ESB is thus a logical layer over
the messaging middleware. The utilized protocol can also be varied
by the ESB depending on the Quality of Service (QoS) requirements
or deployment situations. Service endpoints can be orchestrated to
process flows, which are mapped to concrete service invocations by
the ESB.

The physical representation of a service endpoint is the service con-
tainer. The service container is a remote process, which hosts the busi-



2.7 enterprise service bus 27

Pervasiveness An ESB supports multiple protocols and
client technologies. It can span an entire
organization including its business part-
ners.

Highly distributed An ESB integrates loosely coupled appli-
cation components that form a highly dis-
tributed network.

Selective deploy-
ment of integration
components

The services of an ESB are independent
of each other and can be separately de-
ployed.

Security and reliabil-
ity

An ESB provides reliable messaging,
transactional integrity and secure authen-
tication.

Orchestration and
process flow

An ESB supports the orchestration of ap-
plication components controlled by mes-
sage metadata or an orchestration lan-
guage like WS-BPEL.

Autonomous yet fed-
erated managed en-
vironment

Different departments can still separately
manage an ESB that spans the whole or-
ganization.

Incremental adop-
tion

The adoption of an ESB can be incremen-
tal one project after another.

XML support XML is the native data format of an ESB.

Real-time insight An ESB provides real-time throughput of
data by the use of its underlying message-
oriented middleware and thus decreases
latency.

Table 1: Main characteristics of an ESB (Chappell, 2004)



28 background

ness or technical components that are connected through the bus. The
set of all service containers therefore constitutes the logical ESB.

A service container provides the following interfaces (Chappell,
2004):

• Service interface
The service interface provides an entry endpoint and exit end-
point to dispatch messages to and from the service.

• Management interface
The management interface provides an entry endpoint for re-
trieving configuration data and an exit endpoint for sending,
logging, event tracking and performance data.

2.8 enterprise integration patterns

Enterprise Integration Patterns (EIPs) describe a set of proven design
patterns in the context of enterprise integration and messaging sys-
tems (cf. Hohpe and Woolf (2003)). The adaptive middleware pre-
sented in this thesis is based on common EIP, such as Aggregator and
Message Router.

2.8.1 Performance relevant EIPs

The following EIPs are relevant for improving the performance of a
message-based system and are used in the further course of the re-
search presented in this thesis.

2.8.1.1 Aggregator

The Aggregator is a stateful filter that correlates multiple received mes-
sages, aggregates them, and writes them as single message to its out-
put channel (see Figure 8).

Messages Message
Aggregate

Aggregator

Figure 8: Aggregator (Hohpe and Woolf, 2003)

It is defined by the following properties:

• Correlation
Defines which messages should be correlated with each other.



2.8 enterprise integration patterns 29

• Completeness Condition
Defines when a set of messages is ready to be written to the
output channel.

• Aggregation Algorithm
Defines how the received messages should be aggregated to a
single message.

Hohpe and Woolf (2003) describe the following most common strate-
gies for completeness conditions:

• Wait for All
The aggregation is completed, when all messages are received.

• Timeout
The aggregation is completed when a defined timeout occurs.

• First Best
The Aggregator waits until the first message is received.

• Timeout with Override
The Aggregator waits until a defined timeout occurs or until a
message with a special content is received.

• External Event
The aggregation is completed by an external event, for example
the end of a business day.

Additionally, the authors describe the following strategies to aggre-
gate messages into a single message (Hohpe and Woolf, 2003):

• Select the best answer
Only the “best” messages is passed to the output channel, all
other messages are dismissed, for example the lowest bid for an
item.

• Condense data
The message data is aggregated into a single value, for example
computing an average or a sum of a numerical value.

• Collect data for later evaluation
Messages are simply combined into a single message. The deci-
sion how to aggregate can be done later by another component.

2.8.1.2 Message Router

The Message Router reads messages from an input message channel
and sends it to different output channels, depending on a set of con-
ditions defined in the Message Router (see Figure 9).

A Message Router can implement different types of message routing:



30 background

Service A

Output 
Queue 1

Service B

Output
Queue 2

Input Queue
Message Router

Figure 9: Message Router (Hohpe and Woolf, 2003)

• Content-based routing
The routing is based on the properties of a message, for example
the message type or some business specific rules.

• Context-based routing
The routing is based on conditions of the environment. This is
used for example for load-balancing or failover strategies.

• Dynamic routing
The routing is based on a dynamic rule base, which can be
adapted at run-time.

2.8.1.3 Content Filter

A Content Filter removes or simplifies unneeded data items from a
message, only needed data items are left (see Figure 10).

Content Filter

Figure 10: Content Filter (Hohpe and Woolf, 2003)

2.8.1.4 Claim Check

Since messaging adds an additional overhead to the processing of
each message, for example by serializing and deserializing of data,
it may be inefficient to send large volumes of data over a messaging
system (cf. Hohpe and Woolf (2003)). The Claim Check pattern can
used to mitigate this problem. It stores the payload of a message in a
persistent data store and passes a unique identifier, the claim check, to
the next components. Using this identifier, a component can retrieve
the message payload from the data store and process the message
(see Figure 11).



2.9 performance issues of service-oriented middleware 31

Check Luggage Data Enricher

Message 
with Data

Message 
with Data

Datastore

Message 
with Claim Check

ID

ID

ID

Figure 11: Claim Check (Hohpe and Woolf, 2003)

2.9 performance issues of service-oriented middleware

This section describes the performance issues of an SOA middleware
that inhibit their appropriateness for systems with high performance
requirements.

2.9.1 Distributed Architecture

A system implemented according to the principles of SOA is a dis-
tributed system. Services are hosted on different locations belong-
ing to different departments and even organizations. Hence, the per-
formance drawbacks of a distributed system generally also apply to
SOA. This includes the marshalling of the data that needs to be sent
to the service provider by the service consumer, sending the data over
the network and the unmarshalling of data by the service provider.

2.9.2 Integration of Heterogeneous Technologies

A main goal of introducing an SOA is to integrate applications imple-
mented with heterogeneous technologies. This is achieved by using
specific middleware and intermediate protocols for the communica-
tion. These protocols are typically based on XML, like SOAP (SOAP
Specification, 2007). XML, as a very verbose language, adds a lot of
meta-data to the actual payload of a message. The resulting request
is about 10 to 20 times larger than the equivalent binary representa-
tion (O’Brien et al., 2007), which leads to a significant higher trans-
mission time of the message. Processing these messages is also time-
consuming, as they need to get parsed by a XML parser before the
actual processing can occur.

The usage of a middleware like an Enterprise Service Bus (ESB)
adds further performance costs. An ESB usually processes the mes-
sages during transferring. Among other things, this includes the map-



32 background

ping between different protocols used by service providers and ser-
vice consumers, checking the correctness of the request format, adding
message-level security and routing the request to the appropriate ser-
vice provider (See, for example, Josuttis (2007) or Krafzig et al. (2005)).

2.9.3 Loose Coupling

Another aspect of SOA that has an impact on performance is the uti-
lization of loose coupling. The aim of loose coupling is to increase the
flexibility and maintainability of the application landscape by reduc-
ing the dependency of its components on each other. This denotes
that service consumers shouldn’t make any assumptions about the
implementation of the services they use and vice versa. Services be-
come interchangeable as long they implement the interface the client
expects.

Engels et al. (2008) consider two components A and B loosely cou-
pled when the following constraints are satisfied:

• Knowledge
Component A knows only as much as it is needed to use the op-
erations offered by component B in a proper way. This includes
the syntax and semantic of the interfaces and the structure of
the transferred data.

• Dependence on availability
Component A provides the implemented service even when
component B is not available or the connection to component
B is not available.

• Trust
Component B does not rely on component A to comply with
pre-conditions. Component A does not rely on component B to
comply with post-conditions.

Coupling between services occurs on different levels. Krafzig et al.
(2005) describe the different levels of coupling that are leveraged in
an SOA (see Table 2).

The gains in flexibility and maintainability of loose coupling are
amongst others opposed by performance costs.

Service consumers and service providers are not bound to each
other statically. Thus, the service consumer needs to determine the
correct end point of the service provider during runtime. This can be
done by looking up the correct service provider in a service repository
either by the service consumer itself before making the call or by
routing the message inside the ESB.

Apart from very few basic data types, Service consumers and ser-
vice providers do not share the same data model. It is therefore nec-
essary to map data between the data model used by the service con-
sumer and the data model used by the service provider.



2.9 performance issues of service-oriented middleware 33

Table 2: Levels of coupling

Level Tight Coupling Loose Coupling

Physical coupling Direct physical link
required

Physical intermedi-
ary

Communication
style

Synchronous Asynchronous

Type system Strong type system Weak type system

Interaction pattern OO-style navigation
of complex object
trees

Data-centric, self-
contained messages

Control of process
logic

Central control of
processing logic

Distributed logical
components

Service discovery
and binding

Statically bound ser-
vices

Dynamically bound
services

Platform dependen-
cies

Strong OS and pro-
gramming language
dependencies

OS and program-
ming languages
independent



34 background

2.10 current approaches for improving the performance

of an soa middleware

This section describes current approaches to the performance issues
introduced in the previous section.

2.10.1 Hardware

The obvious solution to improve the processing time of a service is
the utilization of faster hardware and more bandwidth. SOA perfor-
mance issues are often neglected by suggesting that faster hardware
or more bandwidth will solve this problem. However, it is often not
feasible to add faster or more hardware due to high cost pressure.

2.10.2 Compression

The usage of XML as an intermediate protocol for service calls has
a negative impact on their transmission times over the network. The
transmission time of service calls and responses can be decreased by
compression. Simply compressing service calls and responses with
gzip can do this. The World Wide Web Consortium (W3C) proposes a
binary presentation of XML documents called binary XML (EXI Work-
ing Group, 2007) to achieve a more efficient transportation of XML
over networks.

It must be pointed out that the utilization of compression adds
the additional costs of compressing and decompressing to the overall
processing time of the service call.

2.10.3 Service Granularity

To reduce the communication overhead or the processing time of a
service, the service granularity should be reconsidered.

Haesen et al. (2008) distinguishes between two types of data gran-
ularity:

• Input data granularity
Data that is sent to a component

• Output data granularity
Data that is returned by a component

The authors state that a coarse-grained data granularity reduces the
communication overhead, since the number of network transfers is
decreased. “Especially in the case of Web services, this overhead is
high since asynchronous messaging requires multiple queuing oper-
ations and numerous XML transformations”.



2.10 current approaches for improving the performance of an soa middleware 35

Coarse-grained services reduce the communication overhead by
achieving more with a single service call and should be the favored
service design principle (Hess et al., 2006). However, the processing
time of a coarse-grained service can pose a problem to a service con-
sumer that only needs a fracture of the data provided by the service.
To reduce the processing time it could be considered in this case to
add a finer grained service that provides only the needed data (Josut-
tis, 2007).

It should be noted that merging multiple services to form a more
coarse-grained service or splitting a coarse-grained service into multi-
ple services to solve performance problems specific to a single service
consumer reduces the reusability of the services for other service con-
sumers (Josuttis, 2007).

2.10.4 Degree of Loose Coupling

The improvements in flexibility and maintainability gained by loose
coupling are opposed by drawbacks on performance. Thus, it is cru-
cial to find the appropriate degree of loose coupling.

Hess et al. (2006) introduce the concept of distance to determine an
appropriate degree of coupling between components. The distance
of components is comprised of the functional and technical distance.
Components are functional distant if they share few functional sim-
ilarities. Components are technical distant if they are of a different
category. Categories classify different types of components like in-
ventory components, process components, function components and
interaction components.

Distant components trust each other in regard to the compliance
of services levels to a lesser extent than near components do. The
same applies to their common knowledge. Distant components share
a lesser extent of knowledge of each other. Therefore, Hess et al. (2006)
argue that distant components should be coupled more loosely than
close components.

The degree of loose coupling between components that have been
identified to be performance bottlenecks should be reconsidered to
find the appropriate trade-off between flexibility and performance. It
can be acceptable in that case to decrease the flexibility in favor of a
better performance.

2.10.5 Scaling

Scalability describes the “ability of a system to accommodate an in-
creasing number of elements or objects, to process growing volumes
of work gracefully, and/or to be susceptible to enlargement” (Bondi,
2000).

Weinstock and Goodenough (2006) define scalability as:



36 background

1. The ability to handle increased workload (without adding re-
sources to a system).

2. The ability to handle increased workload by repeatedly apply-
ing a cost-effective strategy for extending a system’s capacity.

• Horizontal scaling
Horizontal scaling involves adding more nodes to system, for
example adding more servers to a distributed system and using
a load-balancer to distribute the work between them.

• Vertical scaling
Vertical scaling involves adding more resources to single node,
such as additional Central Processing Units (CPUs) or memory.

When a system is faced with infrequent load spikes, static scal-
ing can lead to an over-provisioning of resources. The system is op-
timized to handle the load spikes, but is idle during the rest of the
time.

2.10.6 Dynamic Scaling

A solution to prevent over-provisioning and to handle infrequent load
spikes is to automatically instantiate additional server instances, as
provided by current Platform as a Service (PaaS) offerings such as
Amazon EC2 (Amazon EC2 Auto Scaling, 2014) or Google App Engine
(Auto Scaling on the Google Cloud Platform, 2014). This is also called
elasticity in the context of cloud computing (cf. Herbst et al. (2013)).

While scaling is a common approach to improve the performance of
a system, it also leads to additional operational and possible license
costs. The solution presented in this thesis can be combined with
these auto-scaling approaches to further increase the performance of
the system.

2.11 summary

Systems for bulk data processing are traditionally implemented using
batch processing, for example billing systems for telecommunication
providers. The performance requirements for such systems are high.
They have to process millions of records in a fixed timeframe to com-
ply with service level agreements.

Message-oriented middleware facilitates the integration of applica-
tions using asynchronous messages. Message-based systems are able
to provide near-time processing of data due to their lower latency
compared with batch processing systems. The advantage of a lower
latency comes with a performance cost in regard to a lower through-
put because of the additional overhead for each processed message.



2.11 summary 37

Every message needs amongst others to be serialized and deserial-
ized, mapped between different protocols and routed to the appropri-
ate receiving system. In the context of an SOA, an Enterprise Service
Bus is a common messaging middleware combining messaging, web
services, data transformation and intelligent routing.

Common approaches to improve the performance of message-based
systems try to reduce the transmission time by compressing mes-
sages, to adjust the service granularity to form more coarse-grained
services or to adjust the degree of loose coupling to reduce the com-
munication overhead. Scaling is a common approach to optimize the
performance of of data processing system. Dynamic scaling is another
solution to handle infrequent load spikes.

While these approaches generally improve the performance of mes-
sage-based systems, they are still not able provide the same through-
put as that can be achieved with a batch processing system. Addition-
ally, the current approaches are static and thus need to be considered
at the design-time of the system.

Systems are currently either optimized for bulk data processing or
low latency. Alternatively, they use different components for batch
and real-time processing. The proposed approached in this thesis, a
middleware that is able to adapt its processing style fluently based
on the current load of the system is a new approach which has not
be considered so far by the state of art to the best of the author’s
knowledge.





3
R E L AT E D W O R K

This chapter gives an overview of work related to the research pre-
sented in this thesis. It starts with work that addresses the perfor-
mance of Service-Oriented systems in general. Performance optimiza-
tions are discussed in the context of transport optimization, middle-
ware optimizations and message batching.

The proposed middleware for high-performance near-time process-
ing of bulk data adjusts the data granularity itself at runtime. Work on
middleware discusses different approaches for self-adjustment and
self-awareness of middleware, which can be classified as adaptive or
reflective middleware, discussed in the next section.

The proposed middleware uses a feedback-control loop to control
the message aggregation of the system. The chapter gives a brief
overview of feedback-control of computing systems.

In order to dynamically adjust the data granularity at runtime, the
proposed middleware needs to constantly measure the throughput
and latency of the system. Work on SLA-monitoring proposes differ-
ent approaches to monitor the compliance of business processes to
Service Level Agreements.

Finally, the chapter concludes with a summary which relates the
discussed approaches to the approach proposed in this PhD project.

This chapter discusses work generally related to the conducted re-
search and the adaptive middleware presented in Chapter 5.1. Re-
lated work specific to performance monitoring and modeling, which
is relevant for the performance evaluation of batch and messaging
systems (Section 4) is discussed in Section 4.5. Related work specific
to Software Process Modeling, which is relevant for the conceptual
Framework (Section A) is discussed in Section A.10.

3.1 performance of service-oriented systems

O’Brien et al. (2007) argue that the introduction of an SOA gener-
ally has a negative impact on the performance of the system. They
identify the following key aspects responsible for the performance
degradation:

• Network communication
Service provider and service consumer need to communicate
over a network, which usually does not offer a deterministic
latency.

39



40 related work

• Lookup of services in a directory
The lookup of a service provider in a directory increases the
total transaction time of a service request.

• Interoperability of services on different platforms
The interoperability of services on different platforms is real-
ized by a middleware which handles the whole communication.
The needed marshalling and unmarshalling of data adds a per-
formance overhead to the communication.

• Usage of standard messaging formats
The usage of a standard message format, for example XML, in-
creases the processing time of a service due to parsing, valida-
tion and transformation of messages. An XML message can be
10 to 20 times larger than the binary representation which in-
creases the transport time of the message over the network.

In another paper, O’Brien et al. (2008) state that the performance is-
sues of an SOA are caused by:

• Overhead of XML

• Implementation of composite services

• Service orchestration

• Service invocation

• Resources, e.g. threads, CPUs

• Resource models, e.g. virtualization

The authors suggest that it is vital to consider performance aspects
early in the development lifecycle, which can be supported by using
an SOA performance model.

Woodall et al. (2007) describe in their paper the challenges they
encountered when analyzing a performance problem of a concrete
Service-Oriented System:

• Physical distribution of services

• Continual use of services by local users or developers during
the performance investigation

• Heterogeneity of the underlying service software platform

3.2 performance optimization

Most of the work that aims to optimize the performance of service-
oriented systems is done in the area of Web Services since it is a
common technology to implement a SOA.



3.2 performance optimization 41

3.2.1 Transport Optimization

In particular, various approaches have been proposed to optimize the
performance of SOAP, the standard protocol for Web Service com-
munication. This includes approaches for optimizing the processing
of SOAP messages (see for example Abu-Ghazaleh and Lewis (2005),
Suzumura et al. (2005) and Ng (2006)), compression of SOAP mes-
sages (see for example Estrella et al. (2008) and Ng et al. (2005)) and
caching (see for example Andresen et al. (2004) and Devaram and
Andresen (2003)). A survey of the current approaches to improve the
performance of SOAP can be found in Tekli et al. (2012).

Wichaiwong and Jaruskulchai (2007) propose an approach to trans-
fer bulk data between web services per FTP. The SOAP messages
transferred between the web services would only contain the neces-
sary details how to download the corresponding data from an FTP
server since this protocol is optimized for transferring huge files. This
approach solves the technical aspect of efficiently transferring the in-
put and output data but does not pose any solutions how to imple-
ment loose coupling and how to integrate heterogeneous technolo-
gies, the fundamental means of an SOA to improve the flexibility of
an application landscape.

Data-Grey-Box Web Services are an approach to transfer bulk data
between Web Services (Habich, Richly and Grasselt, 2007). Instead
of transferring the data wrapped in SOAP messages, it is transferred
using an external data layer. For example when using database sys-
tems as a data layer, this facilitates the use of special data transfer
methods such ETL (Extract, Transform, Load) to transport the data
between the database of the service requestor and the database of the
Web service. The data transfer is transparent for both service partic-
ipants in this case. The approach includes an extension of the Web
service interface with properties describing the data aspects. Com-
pared to the SOAP approach, the authors measured a speedup of up
to 16 using their proposed approach. To allow the composition and
execution of Data-Grey-Box Web services, Habich, Richly, Preissler,
Grasselt, Lehner and Maier (2007) developed BPEL data transitions
to explicitly specify data flows in BPEL processes.

Zhuang and Chen (2012) propose three tuning strategies to im-
prove the performance of Java Messaging Service (JMS) for cloud-
based applications.

1. When using persistent mode for reliable messaging the storage
block size should be matched with the message size to maxi-
mize message throughput.

2. Applying distributed persistent stores by configuring multiple
JMS destinations to achieve parallel processing

3. Choosing appropriate storage profiles such as RAID-1



42 related work

In contrast, the optimization approach presented in this thesis is
aimed at the integration layer of messaging system, which allows fur-
ther optimizations, such as dynamic message batching and message
routing.

3.2.2 Middleware Optimizations

Some research has been done to add real-time capabilities to ESB or
messaging middleware. Garces-Erice (2009) proposes an architecture
for a real-time messaging middleware based on an ESB. It consists of
an event scheduler, a JMS-like API and a communication subsystem.
While fulfilling real-time requirements, the middleware also supports
already deployed infrastructure.

In their paper, Xia and Song (2011) suggest a real-time ESB model by
extending the JBI specification with semantics for priority and time
restrictions and modules for flow control and bandwidth allocation.
The proposed system is able to dynamically allocate bandwidth ac-
cording to business requirements.

MPAB (Massively Parallel Application Bus) is an ESB-oriented mes-
saging bus used for the integration of business applications (Benos-
man et al., 2012). The main principle of MPAB is to fragment an ap-
plication into parallel software processing units, called SPU. Every
SPU is connected to an Application Bus Multiplexor (ABM) through
an interface called Application Bus Terminal (ABT). The Application
Bus Multiplexor manages the resources shared across the host system
and communicates with other ABM using TCP/IP. The Application
Bus Terminal contains all the resources needed by SPU to communi-
cate with its ABM. A performance evaluation of MPAB shows that
it achieves a lower response time compared to the open source ESBs
Fuse, Mule and Petals.

Tempo is a real-time messaging system written in Java that can be
used on either a real-time or non-real-time architecture (Bauer et al.,
2008). The authors, Bauer et al., state that existing messaging systems
are designed for transactional processing and therefore not appropri-
ate for applications with with stringent requirements of low latency
with high throughput. The main principle of Tempo is to use an inde-
pendent queuing system for each topic. Resources are partitioned be-
tween these queueing systems by a messaging scheduler using a time-
base credit scheduling mechanism. In a test environment, Tempo is
able to process more than 100.000 messages per second with a maxi-
mum latency of less than 120 milliseconds.

Staged Event-Driven Architecture (SEDA) is a middleware archi-
tecture for highly concurrent internet services, such as web servers
(Welsh et al., 2001). A SEDA application consists of a network of stages
connected by event queues. Each stage can be managed indepen-
dently and can be run in sequence, parallel or in a combination of



3.2 performance optimization 43

both. To keep each stage within its operation regime, each stage uses
a set of resource controllers, which observes run-time characteristics
of the stage and automatically adjusts allocation and scheduling pa-
rameters to meet performance targets, including a thread pool con-
troller to adjust the number of threads within the stage and a batch
controller to adjust the number of events processed by each invoca-
tion of the event handler.

In contrast to this approaches, the approach presented in this thesis
is based on a standard middleware and can be used with several
integration technologies, such as JMS or SOAP.

3.2.3 Message Batching

Aggregating or batching of messages is a common approach for op-
timizing performance and has been applied to several domains. TCP
Nagle’s algorithm is a well-known example of this approach (Nagle,
1984).

Message batching for optimizing the throughput of Total Ordering
Protocols (TOP) have first been investigated by Friedman and Renesse
(1997). In their work, the authors have compared the throughput and
latency of four different Total Ordering Protocols. They conclude that
“batching messages is the most important optimization a protocol can
offer”.

Bartoli et al. (2003) extend the work of Friedman and Renesse (1997)
with a policy for varying the batch level automatically, based on dy-
namic estimates of the optimal batch level.

Romano and Leonetti (2012) present a mechanism for self-tuning
the batching level of Sequencer-based Total Order Broadcast Protocols
(STOB), that combines analytical modeling an Reinforcement Learn-
ing (RL) techniques.

Didona et al. (2012) propose a self-tuning algorithm based on ex-
tremum seeking optimization principles for controlling the batching
level of a Total Order Broadcast algorithm. It uses multiple instances
of extremum seeking optimizers, each instance is associated with a
distinct value of batching b and learns the optimal waiting time for a
batch of size b.

Friedman and Hadad (2006) describe two generic adaptive batch-
ing schemes for replicated servers, which adapt their batching level
automatically and immediately according to the current communica-
tion load, without any explicit monitoring of the system.

SEDA uses a batching controller to adjust the the number of events
processed by each invocation of the event handler of a stage (Welsh
et al., 2001). It observes the output rate of events from a stage and ad-
justs the batching factor accordingly. When the output rate increases,
it decreases the batching factor. When the output rate decreases, the



44 related work

controller increases the batching factor. The batching factor is reset to
its maximum after a sudden drop in the output rate is encountered.

The approach presented in this research applies the concept of dy-
namic message batching to minimize the end-to-end latency of a
message-based system for bulk data processing. In contrast to cur-
rent approaches of message batching, it uses message batching at the
application level and not on the protocol or technical infrastructure
level, which allows for batching of messages depending on business
rules.

3.3 self-adaptive software systems

Self-Adaptive Software is a “a closed-loop system with a feedback
loop aiming to adjust itself to changes during its operation” (Sale-
hie and Tahvildari, 2009). These changes can originate from internal
causes of the system (the system’s self) or from the context of the
system.

Laddaga and Robertson (2008) provide a definition for self-adaptive
software: “Self-adaptive software evaluates its own behavior and chan-
ges behavior when the evaluation indicates that it is not accomplish-
ing what the software is intended to do, or when better functionality
or performance is possible.”

Another definition is given by Oreizy et al. (1999): “Self-adaptive
software modifies its own behavior in response to changes in its op-
erating environment. By operating environment, we mean anything
observable by the software system, such as end-user input, external
hardware devices and sensors, or program instrumentation.”

Salehie and Tahvildari (2009) describe the following properties (also
called self-* properties) of a self-adaptive system:

• Self-configuring
The system is able to reconfigure itself in response to changes.

• Self-healing
The system is able to discover, diagnose and react on failures.

• Self-optimizing
The system is able to manage performance and resource alloca-
tion to meet different performance requirements.

• Self-protecting
The system is able to detect security breaches and to recover
from them.

More general self-* properties are described as:

• Self-Awareness
The system is aware of its self states and behaviors.



3.3 self-adaptive software systems 45

• Context-Awareness
The system is aware of its context.

3.3.1 Reference Architectures for Self-Adaptive Software Systems

Several reference architectures for self-adaptive software systems have
been proposed. We discuss the three most common: Kramer’s Three
Layer Architecture Model for Self-Management (Kramer and Magee, 2007),
Anderson’s Reflection Reference Model (Andersson et al., 2009) and IBM’s
MAPE-K (IBM Group, 2005).

3.3.1.1 Three Layer Architecture Model for Self-Management

Kramer and Magee (2007) describe a Three Layer Architecture Model for
Self-Management which is based on Gat’s three-layered architecture (cf.
Gat (1998)) (see Figure 12). It consists of the following three layers:

• Component Control
The bottom layer consists of a set of interconnected components
that implement the application function of the system. It also
contains facilities to report the current status of components to
higher layers and capabilities to support component creation,
deletion and interconnection.

• Change Management
The middle layer is responsible for effecting changes to the un-
derlying layer in response to new states reported by the under-
lying layer or in response to new objectives required by the layer
above.

• Goal Management
This layer produces change management plans in response to
request from the layer below and in response to the introduction
of new goals.

3.3.1.2 Reflection Reference Model

Andersson et al. (2009) propose a reference model for reflection (see
Figure 13). The model consists of two parts, the meta-level and the base-
level. The base-level provides the functionality of the system and con-
tains a computation part and a domain model. The meta-level provides
the reflective capability and consists of two parts, meta-computation
and meta-model. The meta model is the self-representation of the sys-
tem. Meta-computation is the logic dealing with the changes in the
meta model.



46 related work

Figure 12: Three Layer Architecture Model for Self-Management (Kramer
and Magee, 2007)

System

Meta-
Computation Meta-Model

Computation Domain Model Domain

Figure 13: Reflection Reference Model (Andersson et al., 2009)



3.4 self-adaptive middleware 47

3.3.1.3 Mape-K

IBM’s Mape-K (Monitor - Analyze - Plan - Execute - Knowledge) describes
a reference architecture for adaptation control loops (IBM Group,
2005). It consists of the following elements:

• Monitor
The monitor function collects the details from the managed re-
sources, via touchpoints, and correlates them into symptoms
that can be analyzed.

• Analyze
The analyze function provides the mechanisms to observe and
analyze situations to determine if some change needs to be
made.

• Plan
The plan function creates or selects a procedure to enact a de-
sired alteration in the managed resource.

• Execute
The execute function provides the mechanism to schedule and
perform the necessary changes to the system.

• Knowledge
The four functions (monitor, analyze, plan, execute) share data
in the Knowledge Source, which includes topology information,
historical logs, metrics, symptoms and policies.

3.4 self-adaptive middleware

Duran-Limon et al. (2004) argue that “the most adequate level and
natural locus for applying adaption is at the middleware level”. Adap-
tion at the operating system level is platform-dependent and changes
at this level affect every application running on the same node. On the
other hand, adaption at application level assigns the responsibility to
the developer and is also not reusable.

Lee et al. (2009) propose an adaptive, general-purpose runtime in-
frastructure for effective resource management of the infrastructure.
Their approach is comprised of three components:

1. dynamic performance prediction

2. adaptive intra-site performance management

3. adaptive inter-site resource management

The runtime infrastructure is able to choose from a set of perfor-
mance predictions for a given service and to dynamically choose the



48 related work

Autonomic Manager

Managed Element

Sensors Effectors

Monitor Execute

Analyse Plan

Knowledge

Figure 14: Mape-K Reference Model (IBM Group, 2005)

most appropriate prediction over time by using the prediction history
of the service.

AutoGlobe (Gmach et al., 2008) provides a platform for adaptive
resource management comprised of

1. Static resource management

2. Dynamic resource management

3. Adaptive control of Service Level Agreements (SLA)

Static resource management optimizes the allocation of services to
computing resources and is based on on automatically detected ser-
vice utilization patterns. Dynamic resource management uses a fuzzy
controller to handle exceptional situations at runtime. The Adaptive
control of SLAs schedules service requests depending on their SLA

agreement.
The coBRA framework proposed by Irmert et al. (2008) is an ap-

proach to replace service implementations at runtime as a founda-
tion for self-adaptive applications. The framework facilitates the re-
placement of software components to switch the implementation of a
service with the interface of the service staying the same.

DREAM (Dynamic Reflective Asynchronous Middleware) (Leclercq
et al., 2004) is a component-based framework for the construction
of reflective Message-Oriented Middleware. Reflective middleware
“refers to the use of a causally connected self-presentation to support
the inspection and adaption of the middleware system” (Kon et al.,



3.4 self-adaptive middleware 49

2002). DREAM is based on FRACTAL, a generic component frame-
work and supports various asynchronous communication paradigms
such as message passing, event-reaction and publish/subscribe. It fa-
cilitates the construction and configuration of Message-Oriented Mid-
dleware from a library of components such as message queues, filters,
routers and aggregators, which can be assembled either at deploy-
time or runtime.

3.4.1 Adaption in Service-Oriented Architectures

Several adaption methods have been proposed in the context of service-
based applications. In their survey, Kazhamiakin et al. (2010) describe
the following adaption methods:

• Adaption by Dynamic Service Binding
This adaption method relies on the ability to select and dynami-
cally substitute services at run-time or at deployment-time. Ser-
vices are selected in such a way that the adaption requirements
are satisfied in the best possible way.

• Quality of Service (QoS)-Driven Adaption of Service Compo-
sitions
The goal of this adaption approach is to select the best set of
services available at run-time, under consideration of process
constraints, end-user preferences and the execution context.

• Adaption of Service Interfaces and Protocols
The goal of this adaption approach is to mediate between two
services with different signatures, interfaces and protocols. This
includes signature-based adaption, ontology-based adaption or
behavior-based adaption.

3.4.2 Adaptive ESB

Research on messaging middleware currently focusses on ESB infras-
tructure. An ESB is an integration platform that combines messaging,
web services, data transformation and intelligent routing to connect
multiple heterogeneous services (Chappell, 2004). It is a common mid-
dleware to implement the integration layer of an Service Oriented Ar-
chitecture (SOA) and is available in numerous commercial and open-
source packages.

Several research has been done to extend the static service com-
position and routing features of standard ESB implementations with
dynamic capabilities decided at run-time, such as dynamic service
composition (Chang et al., 2007), routing (Bai et al., 2007) (Wu et al.,
2008) (Ziyaeva et al., 2008) and load balancing (Jongtaveesataporn
and Takada, 2010).



50 related work

The DRESR (Dynamic Reconfigurable ESB Service Routing), pro-
posed by Bai et al. (2007), allows the routing table to be changed
dynamically at run-time based on service selection preferences, such
as response time. It defines mechanisms to test and evaluate the avail-
ability and performance of a service and to select services based on
its testing results and historical data.

Ziyaeva et al. (2008) propose a framework for content-based intelli-
gent routing. It evaluates the service availability and selects services
based on its content and properties.

Jongtaveesataporn and Takada (2010) propose a load balancing me-
chanism that distributes requests to services of the same service type,
having the same function and signature, and enables the dynamic
selection of the target service.

Work to manage and improve the QoS of ESB and service-based
systems in general is mainly focussed on dynamic service composi-
tion and service selection based on monitored QoS metrics such as
throughput, availability and response time (Calinescu et al., 2011).

González and Ruggia (2011) propose an adaptive ESB infrastructure
to address QoS issues in service-based systems which provides adap-
tion strategies for response time degradation and service saturation,
such as invoking an equivalent service, using previously stored infor-
mation, distributing requests to equivalent services, load balancing
and deferring service requests.

In contrast to this solutions, the approach presented in this thesis
uses dynamic message aggregation and message routing as adaption
mechanism to optimize the end-to-end latency of messaging system
for different load scenarios.

3.5 feedback control of computing systems

Control Engineering Methodologies have been identified as a promis-
ing solution to implement self-adaptive software systems (Patikiriko-
rala et al., 2012), especially for performance control (Abdelzaher et al.,
2003). In particular, feedback loops provide generic mechanisms for
self-adaption (Brun et al., 2009). Control engineering is based on con-
trol theory, which provides a systematic approach to designing closed
loop systems that are stable, accurate, have short settling times, and
do not overshoot (Abdelzaher et al., 2008).

The purpose of a controller is called control objective, the most
common control objectives are (Abdelzaher et al., 2008):

• Regulatory control
Ensure that the measured output is equal to (or near) the refer-
ence input.



3.5 feedback control of computing systems 51

• Disturbance rejection
Ensure that disturbances acting on the system do not signifi-
cantly affect the measured output.

• Optimization
Obtain the best value of the measured output.

Controller Target 
System

Transducer

Measured 
Output

Transduced 
Output

Control
Error

Control
Input

Reference
Input

Noise 
Input

Disturbance
Input

-+

Figure 15: Block diagram of feedback control system (Hellerstein et al., 2004)

Figure 15 shows the essential elements of a single-input, single-
output (SISO) control system (Hellerstein et al., 2004):

• Control error
The difference between the reference input and the measured
output.

• Control input
The parameter that affects the behavior of the controlled system.

• Controller
The controller determines the setting of the control input needed
to achieve the reference input.

• Disturbance input
Any change that affects the way in which the control input in-
fluences the measured output.

• Measured output
The measurable parameter of the controlled system.

• Noise input
Any effect that changes the measured output produced by the
controlled system.

• Reference Input
The desired value of the measured output.



52 related work

• Target system
The computing system to be controlled.

Feedback-control has been applied to several different domains of
computing systems since the early 1990s, including data networks,
operating systems, middleware, multimedia and power management
(cf. Hellerstein et al. (2004)). Feedback-control of middleware systems
include application servers, such as the Apache http-Server, database
management systems, such as IBM Universal Database Server, and e-
mail servers, such as the IBM Lotus Domino Server. Hellerstein et al.
(2004) describe 3 basic control problems in this context:

• Enforcing service level agreements

• Regulate resource utilization

• Optimize the system configuration

Additionally, feedback-control has been applied recently to web en-
vironments, such as web servers and web services, application servers,
including data flow control in J2EE servers, Repair Management in
J2EE servers and improving the performance of J2EE servers and
cloud environments (cf. Gullapalli et al. (2011)).

According to Patikirikorala et al. (2012), approaches for feedback-
control of computing systems use the following control mechanisms:

• Fixed-gain control
Fixed-gain control uses static model parameters and gains, for
example Proportional Integral Derivative (PID)-controllers.

• Adaptive control
Adaptive control dynamically estimates the model parameters
and gains of the controller at runtime.

• Linear Quadratic Regulator (LQR)
LQR is an optimal control strategy particular useful in the MIMO
control systems design. It uses a cost function representing a
quadratic formula involving the control error and control effort.
The goal is to minimize the cost function so that the error is
minimized with a small control effort.

• Model predictive control (MPC)
MPC control algorithms aim to optimize the future behavior by
computing the trajectory of the control inputs.

• Gain scheduling
Gain scheduling uses a predefined logic/rule based evaluation
to change the controller online. These rules are implemented in
the gain scheduling component and depend on the prior knowl-
edge about the performance variables, disturbances and condi-
tions.



3.6 sla-monitoring of business processes 53

• Cascaded (nested) control
The objective of cascaded control is to change the set point of
the inner loop by an outer loop.

A fixed-gain controller that is widely used in existing approaches
is a PID-Controller because of its robustness against modeling er-
rors, disturbance rejection capabilities and simplicity (cf. Patikiriko-
rala et al. (2012)). It calculates the output value uk at time step k of
the controller depending on the current (proportional part), previous
(integral part) and expected future error (differential part):

uk = Kp ∗ ek +Ki ∗ Ta
k∑

i=0

ei +
Kd

Ta
(ek − ek−1)

with Kp being the controller gain of the proportional part, ek being
the error (r− y) at step k, Ki being the controller gain of the integral
part, Ta being the sampling interval and Kd being the controller gain
of the differential part.

The Adaptive Middleware presented in this thesis utilizes a closed-
feedback loop to control the aggregation size of the processed mes-
sages, depending on the current load of the system to minimize the
end-to-end latency of the system. This is a novel approach that has
not previously been investigated.

3.6 sla-monitoring of business processes

The SECMOL framework (Service Centric Monitoring Language), de-
veloped by Guinea et al. (2009), allows to monitor the quality of ser-
vice constraints of BPEL processes. It is comprised of three compo-
nents. Data Collectors for capturing data, Data Analyzers for analyz-
ing the captured data and the Monitoring Manager for coordinating
the monitoring process. SECMOL also defines a XML-based monitor-
ing specification, which consists of monitoring policies that specify
how the monitoring should be done and monitoring rules that ex-
press the quality of service properties the system needs to satisfy.

Duc et al. (2009) argue that a monitoring middleware component
should fulfill the following requirements:

• Coherency of data
All data used in one decision must reflect the same state of the
system.

• Flexibility in data access
Every monitored service provider should be able to respond
using its own measurement units. This should be transparent
for the client using the monitoring data.

• Performance in data access
The monitoring should have the slightest possible impact on the
performance of the business process.



54 related work

• Network usage optimization
The transmission of monitoring data should have the slightest
possible impact on the network performance.

The authors propose M4ABP (Monitoring for Adaptive Business Pro-
cess), a distributed monitoring and data delivery middleware subsys-
tem which implements these requirements.

SALMon (Ameller and Franch, 2008) is a system for monitoring the
services of an SOA for Service Level Agreements (SLA) violations. It
is itself implemented as a service-oriented system and consists of the
following services:

• Monitor
The Monitor service collects the monitoring data from compo-
nents called Measure Instruments that are instantiated in each
monitored service.

• Analyzer
The Analyzer service manages the Monitor service and checks
for Service Level Agreement violations of the monitored ser-
vices.

• Decision Maker
The Decision Maker service is able to select an action to solve
the SLA violation. The appropriate action for a specific SLA
violation is stored in a repository.

The attributes measured by SALMon are taken from an ISO/IEC 9126-
1-based quality model.

Textor et al. (2009) propose an approach to map implementation
level monitoring data to business level activities. Non-functional con-
straints are specified on a workflow model in the modeling phase.
Additionally, an instrumentation model is used to specify the instru-
mentation points of the application. At runtime, the monitoring data
of the system is mapped to the workflow model. The monitoring data
is received by a component called ConstraintMonitor, which evalu-
ates and validates the constraints specified in the workflow model.

Wetzstein et al. (2009) present a framework to monitor and ana-
lyze the factors that influence the performance of WS-BPEL processes.
The authors distinguish between PPM (Process Performance Metrics)
and QoS (Quality of Service) metrics, which influence the Key Per-
formance Indicators (KPI) of business processes. PPMs are based on
process runtime events, that are published by the WS-BPEL runtime
engine, for example the “number of orders which can be served as
inhouse stock”. QoS metrics are technical parameters of the underly-
ing services that implement the business process, for example the re-
sponse time and availability of a service. KPIs are based on business
goals, for example “order fulfillment lead time < 3”. The proposed
framework monitors KPIs, PPMs and QoS metrics at runtime, which



3.7 summary 55

are modeled in a Process Metrics Definition Model (PMDM). These
collected metrics can then be used to perform a dependency analysis
of the influential factors of a KPI using machine learning techniques
to construct dependency trees.

iBOM (Castellanos et al., 2005) is a platform to analyze, manage
and optimize business operations based on business goals. Optimiza-
tions are performed by using simulation techniques. iBom simulates
different configurations of a business process to identify the config-
uration that best meets the business goals. First, the user needs to
define the optimization metric and constraints on this metric and on
the resources. The configuration candidates are then either computed
by iBOM using different resource allocations of the given configura-
tion within the defined constraints or are provided by the user in the
form of a process model.

3.7 summary

Most of the work done in the field of performance of service-oriented
systems involves performance aspects of Web Services including the
SOAP standard. This includes performance modeling, performance
measuring and performance optimization.

Approaches to optimize the transfer of bulk data of Web services,
as proposed by Wichaiwong and Jaruskulchai (2007) and Habich,
Richly and Grasselt (2007) deliver an overall better performance than
using SOAP. However, like a traditional batch-processing system us-
ing file- or database-based integration, they are not able to reduce the
latency and thus cannot deliver near-time processing of bulk data.

Current self-adapting middleware platforms, like the AutoGlobe
platform (Gmach et al., 2008), are focused on adaptive resource man-
agement to dynamically allocate services to computing nodes or to
replace service implementations at runtime, as proposed by the co-
BRA framework (Irmert et al., 2008).

Several research has been done to extend the static service com-
position and routing features of standard ESB implementations with
dynamic capabilities decided at run-time, such as dynamic service
composition (Chang et al., 2007), routing (Bai et al., 2007) (Wu et al.,
2008) (Ziyaeva et al., 2008) and load balancing (Jongtaveesataporn
and Takada, 2010).

Feedback-control is a common technique to implement the adap-
tive behavior of software systems. In this thesis, a closed feedback-
loop is used to control aggregation size of messaging system to mini-
mize the end-to-end latency of the system.

Work on SLA-monitoring of business processes proposes different
approaches to monitor the compliance of a business process to Ser-
vice Level Agreements, which include the end-to-end latency and
throughput of the business process.



56 related work

This thesis proposes an adaptive middleware to optimize the end-
to-end latency of a system for bulk data processing by dynamically
adapting its processing style between batch and single-event process-
ing, based on the current load of the system. This is a novel approach
which has not yet been discussed in current literature.

While the research presented in this thesis is based on previous
work in the fields of self-adaptive middleware and feedback-control
of computing systems, the work discussed in this chapter does not
offer a solution for the research question stated in Section 1.3: How
to achieve high-performance near-time processing of bulk data?



Part II

C O N T R I B U T I O N S





4
P E R F O R M A N C E E VA L U AT I O N O F B AT C H A N D
M E S S A G E - B A S E D S Y S T E M S

4.1 introduction

Traditionally, business information systems for bulk data processing
are implemented as batch processing systems. Batch processing deliv-
ers high throughput but cannot provide near-time processing of data,
that is, the end-to-end latency of such a system is high.

A lower end-to-end latency can be achieved by using message-
based processing, for example by utilizing a message-oriented mid-
dleware for the integration of the services that form the business in-
formation system. While this approach is able to deliver near-time
processing, it is hardly capable for bulk data processing due to the
additional communication over- head for each processed message.
Therefore, message-based processing is usually not considered for
building a system for bulk data processing requiring high through-
put.

This chapter compares the performance of a batch and message-
based system. The main objectives of this comparison are:

• What is the impact of different processing styles, that is, batch
and message-based processing, on throughput and latency?

• What is the impact of data granularity on latency and through-
put when using a message-based processing style?

To find solutions for these questions, the following approach has
been taken:

• Two prototypes of a billing system for each processing type (see
Section 4.2) have been built.

• A performance evaluation has been conducted to compare the
prototypes with each other with the focus on throughput and
latency (see Section 4.3).

• To evaluate the impact of different aggregation sizes on through-
put and latency, the messaging prototype has been extended
with an aggregator. A performance test has been conducted
with different static aggregation sizes (see Section 4.4).

This chapter is organized as follows. Section 4.2 introduces the
batch and message-based prototype systems that have been imple-
mented. To compare the performance characteristics of the two pro-

59



60 performance evaluation of batch and message-based systems

cessing types, batch processing and message-based processing, a per-
formance evaluation has been conducted, which is presented in Sec-
tion 4.3. Section 4.4 shows the impact of data granularity on through-
put and latency of the messaging prototype. Section 4.5 gives an
overview of other work related to the contents of this chapter. Finally,
this chapter concludes with a summary in Section 4.6

4.2 a real world example application

This section introduces the two prototypes of a billing system for a
telecommunications carrier that have been built to evaluate the per-
formance of batch and message-based processing.

A billing system for telecommunications carrier is a distributed sys-
tem consisting of several sub components that process the different
billing sub processes like mediation, rating, billing and presentment
(see Figure 16).

Mediation Rating Billing Presentment

Figure 16: Billing process

The mediation components receive usage events from delivery sys-
tems, like telecommunication switches and transform them into a for-
mat the billing system is able to process. For example, transform-
ing the event records to the internal record format of the rating and
billing engine or adding internal keys that are later needed in the
process. The rating engine assigns the events to the specific customer
account, called guiding, and determines the price of the event, de-
pending on the applicable tariff. It also splits events if more than
one tariff is applicable or the customer qualifies for a discount. The
billing engine calculates the total amount of the bill by adding the
rated events, recurring and one-time charges and discounts. The out-
put is processed by the presentment components, which format the
bill, print it, or present it to the customer in self-service systems, for
example on a website.

In order to compare batch and message-based types of processing,
two different prototypes of a billing application have been developed.
Each prototype implements the mediation and rating steps of the
billing process. Figure 17 shows the components of the billing proto-
type:

• Event Generator
The Event Generator generates the calling events, i.e. the CDR that
are processed by the billing application.

• Mediation
The Mediation component checks wether the calltime of the call



4.2 a real world example application 61

detail record exceeds the minimal billable length or if it belongs
to a flat rate account and sets the corresponding flags of the
record. The output of the Mediation component are Normalized
Call Detail Records (NCDR) that are further processed by the
Rating component.

• Rating
The Rating component processes the output from the Mediation
component. It assigns the call detail record to a customer ac-
count and determines the price of the call event by looking up
the correspondent product and tariff in the Master Data DB. The
output of the Rating component (costed events) is afterwards
written to the Costed Events DB.

• Master Data DB
The Master Data DB contains products, tariffs and accounts used
by the Event Generator and the Rating component.

• Costed Events DB
The Costed Events DB contains the result of the Rating compo-
nent, i.e. the costed events.

Event Generator Mediation Rating Costed Events

CDR NCDR Costed
Event

Master Data

Figure 17: Components of the billing application prototype

4.2.1 Technology Stack

The prototypes are implemented with Java 1.6 and the Spring frame-
work. The data access layer is implemented using Java Persistence
API (JPA) and a MySQL database as backend. On top of this basic
stack, frameworks specific to the processing type are used. The batch
prototype is implemented using Spring Batch, which provides com-
mon functionalities for a batch processing system. The messaging pro-
totype is implemented using Apache Camel, an integration middle-
ware providing functionality for message routing and mediation.

These technologies and frameworks have been considered for the
implementation of the prototype systems as they represent a state of



62 performance evaluation of batch and message-based systems

Table 3: Technologies and frameworks used for the implementation of the
prototypes

Language Java 1.6

Dependency Injection Spring 3.0.7

Persistence API OpenJPA (JPA 2.0) 2.1.1

Database MySQL 5.5.24

Logging Logback 1.0.1

Test JUnit 4.7

Batch Framework Spring Batch 2.1.8

Messaging Middleware Apache Camel 2.10.0

Other Frameworks Joda-Time 2.0, Apache Commons

the art stack to implement transactional business systems based on
the Java platform. The frameworks Spring Batch and Apache Camel
are both well documented, open source and have an active developer
community. The Java programming language is the de facto standard
for the implementation of business informations systems and is one
of the most used programming languages in the world, according
to programming language rankings issued by Gartner (2014) or Red-
monk (2015). In addition, the author of this thesis has an extensive
knowledge of Java and its ecosystem.

See Table 3 for complete list of technologies and frameworks used
for the implementation of the prototypes.

4.2.2 Common Architecture

The objective of this performance evaluation is to compare the dif-
ferent processing styles, batch and single-event processing, with each
other. It needs to be ensured that the comparison only includes the
different processing styles. Therefore, the prototypes should only dif-
fer in their processing style, all other aspects should be the same, for
example the business functionality, data access and datamodel.

To ensure the comparability between the prototypes, a common
architecture used by both prototypes has been designed and imple-
mented.

It consists of the following components (see UML component dia-
gram as shown in Figure 18):



4.2 a real world example application 63

• Integration Layer
Implements the integration style, i.e. file-based integration and
message-based integration.

• Business Service
Implements the business functionality, i.e. mediation and rating.

• Data Access Layer
Implements the data access.

Figure 18: The prototypes share the same business components, database
and data-access layer.

4.2.2.1 Business Services

The business functionality, mediation and rating, is implemented by
business services, which are used by both prototypes (see UML class
diagram as shown in Figure 19):

• MediationProcessor
Implements the mediation functionality.

• RatingProcessor
Implements the rating functionality.

4.2.2.2 Integration Layer

The integration layer implements the different integration styles of
the two prototypes. The batch prototype uses a batch layer which
provides components for file-based data integration, transaction and
control of batch processes (see Figure 20a).



64 performance evaluation of batch and message-based systems

Figure 19: Business services

The messaging prototype uses a messaging middleware for ex-
changing messages (see Figure 20b). The messaging middleware pro-
vides components for the transport, transformation and routing of
messages.

(a) Batch integration (b) Message-based integration

Figure 20: UML component diagram: The prototypes use different integra-
tion layers.

4.2.2.3 Data model

The prototypes use a common data model as shown in Figure 21. It
consists of the following entities:



4.2 a real world example application 65

• Customer
Represents a customer. A customer has an account and one or
many products.

• Account
Contains payment informations of a customer.

• Product
A product such as a voice or data plan.

• Tariff
The tariff of a product. Defines the price of a product.

• EventSource
Mobile number or IP associated with a product instance of a
customer.

• CostedEvent
An event that has been rated by the rating component.

• SkippedEvent
An event that has been skipped by the mediation component.
For example a flat rate event.

• CustomerProduct
Contains the booked products of a customer. A customer can
have zero or many products.

• CustomerProductTariff
Contains the tariffs of a product. A product can have one or
many tariffs.

4.2.2.4 Data Access Layer

The data access layer provides common access to the database by
using the Object-relational mapping (ORM) framework OpenJPA. All
business domain entities have been generated from the data model
using the toolchain provided by OpenJPA. The data access for retriev-
ing, creating and update of the domain entities is implemented using
the DAO pattern (Alur et al., 2003).

4.2.3 Batch prototype

The batch prototype implements the billing application utilizing the
batch processing type. It uses the Spring Batch framework (Spring
Batch, 2013), a Java framework that facilitates the implementation of
batch applications by providing basic building blocks for reading,
writing and processing data.



66 performance evaluation of batch and message-based systems

Figure 21: Logical data model of the prototype

Figure 22 shows the architecture of the batch prototype. It consists
of two nodes, mediation batch and rating batch, each implemented as
a separate spring batch application. The nodes are integrated using
Apache Camel (Apache Camel, 2014), an Java integration framework
based on enterprise integration patterns, as described by Hohpe and
Woolf (2003). Apache Camel is responsible for listening on the file
system, calling the Spring batch application when a file arrives and
transferring the output from the mediation batch node to the rating
batch node using FTP.

Event 
Generator

Master Data

Apache Camel

Spring Batch

Rating

Apache Camel

Spring Batch

MediationFile

MySQL

Costed Events

MySQL

FTP JPA

CDR
CDR

CDR
CDR

CDR
NCDR

CDR
CDRCosted

Events

Figure 22: Batch prototype

The batch prototype performs the following steps:



4.2 a real world example application 67

1. The Event generator generates call detail records and writes them
to a single file.

2. The Mediation component opens the file, processes it and writes
the output to a single output file. The output file is getting trans-
ferred using FTP to the Rating component.

3. The Rating component opens the file, processes it and writes the
costed events to the costed event database.

4.2.3.1 Implementation details

The main entities in Spring Batch are Jobs and Steps. A Job defines the
processing flow of the batch application and consists of one or more
steps. A basic step is comprised of an item reader, item processor and
item writer (see Figure 23).

Step

Item Reader Item Processor Item Writer

Figure 23: A Step consists of an item reader, item processor and item writer

The item reader reads records of data in chunks, for example from
a file, and converts them to objects. These objects are then processed
by the item processor, which contains the business logic of the batch
application. Finally, the processed objects are getting written to the
output destination, for example a database, by the item writer.

Listing 4.1: Mediation batch job definition

1 <batch:job id="mediationMultiThreadedJob" incrementer="

jobRunIdIncrementer">

2 <batch:step id="mediationMultiThreadedStep" next="

renameFileMultiThreadedStep">

3 <batch:tasklet transaction-manager="batchTransactionManager"

4 start-limit="100"

5 task-executor="taskExecutor" throttle-limit="${batch.step.

throttle-limit}">

6 <batch:chunk reader="rawUsageMultiThreadedEventReader"

processor="rawUsageEventProcessor" writer="

loggingSimpleCdrWriter" commit-interval="1000" />

7 </batch:tasklet>

8 </batch:step>

9 <batch:step id="renameFileMultiThreadedStep">

10 <batch:tasklet ref="renameFileTasklet" />

11 </batch:step>



68 performance evaluation of batch and message-based systems

12 </batch:job> �
Listing 4.1 shows the definition of the mediation batch job media-

tionMultiThreadedJob. It consists of two steps, the mediationMultiThread-
edStep (line 2) and the renameFileMultiThreadedStep (line 10). The step
mediationMultiThreadedStep is multithreaded and uses 10 threads for
processing. It consists of a rawUsageMultiThreadedEventReader (line 6),
a thread safe reader implementation that reads call detail records
from the input file and converts them to objects, a rawUsageEvent-
Processor, that processes the call detail objects by calling the media-
tion business logic and a loggingSimpleCdrWriter (line 7), which writes
the processed call detail objects to the output file. The step uses an
commit interval of 1000, meaning that the input data is processed in
chunks of 1000 records. After the input file has been processed by the
mediationMultiThreadedStep it is getting renamed to its final name by
the renameFileMultiThreadedStep (line 10).

The mediation batch job is integrated using Apache Camel. Listing
4.2 shows the definition of the mediation batch route.

Listing 4.2: Mediation batch route definition

1 public void configure() {

2 from("file:data/input")

3 .to("spring-batch:mediationMultiThreadedJob?jobLauncherRef=

jobLauncher");

4

5 from("file:data/output)

6 .to("ftp://billing@localhost/src/data?password=billing");

7 } �
It consists of two routes, the first route listens on the file system

for incoming files (line 2) and calls the mediation batch job, when a
file arrives (line 3). The second route transfers the output file of the
mediation batch job to the rating batch node using FTP (line 5-6).

Listing 4.3 shows the definition of the rating batch job ratingMul-
tiThreadedJob. It consists of a single step ratingMultiThreadedStep (line
2), which is comprised of a simpleCdrMultiThreadedItemReader, which
reads the normalized call detail records written by the mediation
batch node, a simpleCdrProcessor, that processes the normalized call
detail records by calling the rating business logic and a costedEven-
tWriter, which writes the processed costed events to the Costed Events
database (line 4).

Listing 4.3: Rating batch job definition

1 <batch:job id="ratingMultiThreadedJob" incrementer="

jobRunIdIncrementer">

2 <batch:step id="ratingMultiThreadedStep">



4.2 a real world example application 69

3 <batch:tasklet transaction-manager="batchTransactionManager"

start-limit="100" task-executor="taskExecutor" throttle-

limit="${batch.step.throttle-limit}">

4 <batch:chunk reader="simpleCdrMultiThreadedItemReader"

processor="simpleCdrProcessor" writer="

costedEventWriter" commit-interval="1000" />

5 </batch:tasklet>

6 </batch:step>

7 </batch:job> �
4.2.4 Messaging prototype

The messaging prototype implements the billing prototype utilizing
the message-oriented processing type. It uses Apache Camel (Apache
Camel, 2014) as the messaging middleware.

Figure 24 shows the architecture of the messaging prototype. It con-
sists of three nodes, the billing route, mediation service and rating ser-
vice. The billing route implements the main flow of the application. It
is responsible for reading messages from the billing queue, extracting
the payload, calling the mediation and rating service and writing the
processed messages to the database. The mediation service is a web
service representing the mediation component. It is a SOAP service
implemented using Apache CXF and runs inside an Apache Tomcat
container. The same applies to the rating service, representing the
rating component.

Camel

Billing Route
ActiveMQ

Event 
Generator

Tomcat

Costed Events

Master Data

Rating

Tomcat

Mediation

SO
AP

SO
AP

JPA

JMS

JM
S

CDR NCDR Costed 
Event

MySQL

MySQL

Qeue

Figure 24: Message-based prototype

Listing 4.4 shows the definition of the billing route using the Apache
Camel fluent Application Programming Interface (API). The billing
route performs the following steps:



70 performance evaluation of batch and message-based systems

1. The message is read from the billing queue using JMS (line 5).
The queue is hosted by an Apache ActiveMQ instance.

2. The message is unmarshalled using Java Architecture for XML
Binding (JAXB) (line 6).

3. The Mediation service is called by the CXF Endpoint of the billing
route (line 7)

4. The response of the Mediation web service, the normalized call
detail record, is unmarshalled (line 8).

5. The Rating service is called by the CXF Endpoint of the billing
route (line 9).

6. The response of the Rating web service, that is, the costed event,
is unmarshalled (line 10).

7. The costed event is written to the Costed Events DB (line 11).

If an error occurs during the processing of an event, it is written to
an error JMS queue (line 3).

Listing 4.4: Billing route definition

1 public void configure() {

2

3 errorHandler(deadLetterChannel("activemq:queue:BILLING.ERRORS")

);

4

5 from("activemq:queue:BILLING.USAGE_EVENTS")

6 .unmarshal("jaxbContext")

7 .to("cxf:bean:mediationEndpoint?dataFormat=POJO&

defaultOperationName=processEvent")

8 .process(new ProcessEventPostProcessor())

9 .to("cxf:bean:ratingEndpoint?dataFormat=POJO&

defaultOperationName=processCallDetail")

10 .process(new ProcessCallDetailPostProcessor())

11 .process(costedEventProcessor);

12 } �
4.3 performance evaluation

To compare the performance characteristics of the two processing
types, batch processing and message-based processing, a performance
evaluation has been conducted with the main focus on latency and
throughput.

This section describes the approach and the results of the perfor-
mance evaluation.



4.3 performance evaluation 71

4.3.1 Measuring points

A number of measuring points have been defined for each prototype
by breaking down the processing in single steps and assigning a mea-
suring point to each step. Figure 25 and 26 show the measuring points
of the batch prototype and the messaging prototype.

Figure 25: Measuring points of the batch prototype

Figure 26: Measuring points of the messaging prototype

A detailed description of each point is shown in Table 4 and 5.

4.3.2 Instrumentation

A logging statement for each measuring point has been added at
the appropriate code location of the prototypes using different tech-
niques.

1. Directly in the code
Whenever possible, the logging statements have been inserted
directly in the code. This has been the case, when the code that
should be measured, has been written exclusively for the proto-
type, for example the mediation and rating components.

2. Delegation
When the code to instrument has been part of a framework
that is, configurable using Spring, an instrumented delegate has
been used.

3. AOP
Finally, when the code that should get instrumented was part



72 performance evaluation of batch and message-based systems

Table 4: Measuring points of the batch prototype

Measuring point Description

PROC_START Timestamp denoting the start of processing an
event

PROC_END Timestamp denoting the end of processing an
event

FILE_READ Elapsed time for reading events from file

MEDIATION Elapsed time used by the mediation component

FILE_WRITE Elapsed time for writing events to file

FTP Elapsed time for file transfer using FTP

RATING Elapsed time used by the rating component

DB Elapsed time for writing event to the database

Table 5: Measuring points of the messaging prototype

Measuring point Description

PROC_START Timestamp denoting the start of processing an
event

PROC_END Timestamp denoting the end of processing an
event

JMS_CONSUMER Elapsed time processing a single event

UNMARSHALL Elapsed time for unmarshalling an event

MEDIATION_PROC Elapsed time needed for calling the mediation
service

MEDIATION Elapsed time used by the mediation compo-
nent

RATING_PROC Elapsed time needed for calling the rating ser-
vice

RATING Elapsed time used by the rating component

DB Elapsed time for writing event to the database



4.3 performance evaluation 73

of a framework that was not configurable using Spring, the log-
ging statements have been added using aspects, which are wo-
ven into the resulting class files using AspectJ.

4.3.3 Test environment

The two prototypes have been deployed to an Amazon EC2 envi-
ronment (Amazon EC2, 2015) to conduct the performance evaluation,
with the characteristics described in Table 6.

Amazon EC2 is an Infrastructure as a Service (IaaS) cloud platform,
which allows for a fast and cost-efficient provisioning of the server
infrastructure required for the deployment of the research prototype
in a production-like environment. The test environment consists of
multiple nodes, with every component running on its own node, to
ensure the comparability of the results of the performance evaluation
to real production scenarios.

4.3.3.1 Batch prototype

The batch prototype comprises two EC2 nodes, the Mediation Node
and the Rating Node, containing the Mediation Batch and the Rating
Batch, respectively. The Costed Event Database is hosted on the Rating
Node as well. Figure 27 shows the UML deployment diagram of the
Batch prototype.

Figure 27: Batch prototype deployment on EC2 instances

4.3.3.2 Messaging Prototype

The messaging prototype consists of three EC2 nodes, as shown in the
UML deployment diagram in Figure 28. The Master Node hosts the Ac-
tiveMQ Server which runs the JMS queue containing the billing events,
the Billing Route, which implements the processing flow of the proto-
type and the MySQL Database containing the Costed Event Database.



74 performance evaluation of batch and message-based systems

The Mediation Node and Rating Node are containing the Mediation Ser-
vice and Rating Service, respectively, with each service running inside
an Apache Tomcat container.

4.3.4 Clock Synchronization

The clocks of the Mediation Node and Rating Node are synchronized
with the clock of the Master Node using PTPd (PTP daemon (PTPd),
2013), an implementation of the Precision Time Protocol (PTP) (IEEE,
2008). The clock of the Master Node itself is synchronized with a pub-
lic timeserver using the Network Time Protocol (NTP). Using this ap-
proach, a sub-millisecond precision is achieved.

Figure 28: Messaging prototype deployment on EC2 instances

4.3.5 Preparation and execution of the performance tests

For running the performance tests, the Master Data DB has been set
up with a list of customers, accounts, products and tariffs with each
prototype using the same database and data. While part of the test-
data like the products and tariffs have been created manually, the
relationship between the customers and the products have been gen-
erated by a test data generator.



4.3 performance evaluation 75

Table 6: Amazon EC2 instance configuration

Instance type M1 Extra Large (EBS optimized)

Memory 15 GiB

Virtual Cores 8 (4 cores x 2 units)

Architecture 64-bit

EBS Volume 10 GiB (100 IOPS)

Instance Store Volumes 1690 GB (4x420 GB Raid 0)

Operating System Ubuntu 12.04 LTS

(GNU/Linux 3.2.0-25-virtual x86_64)

Database MySQL 5.5.24

Messaging Middleware Apache ActiveMQ 5.6.0

After setting up the master data, a number of test runs have been
executed using different sizes of test data (1.000, 5.000, 10.000, 50.000,
100.000, 500.000, 1.000.000 records). To get reliable results, each test
configuration has been run three times. Out of the three runs for each
configuration, the run having the median processing time has been
used for the evaluation.

For each test run, the following steps have been executed:

1. Generating test data
In case of the batch prototype, the event generator writes the
test data to file. In case of the messaging prototype, the event
generator writes the test data to a JMS queue.

2. Running the test
Each prototype listens on the file system and the JMS queue,
respectively. Using the batch prototype, the processing starts
when the input file is copied to the input folder of the mediation
batch application by the event generator. Using the messaging
prototype, the processing starts when the first event is written
to the JMS queue by the test generator.

3. Validating the results
Processing the log files written during the test run

4. Cleaning up
Deleting the created costed events from the DB.

Before running the tests, each prototype has been warmed up by
processing 10.000 records.



76 performance evaluation of batch and message-based systems

4.3.6 Results

The performance evaluation yields the following results.

4.3.6.1 Throughput

The throughput per second for a test run with N records is defined
as

TP/sN = N/PTN

with PTN being the total processing time for N records. Figure 29

shows the measured throughput of the batch and messaging proto-
types. The messaging prototype is able to process about 70 events per
second. The maximum throughput of the batch prototype is about
380 records per second which is reached with an input of 1.000.000

records.

Figure 29: Throughput

4.3.6.2 Latency

Figure 30 shows the measured latencies of the batch and messaging
prototypes. To rule out peaks, the 95th percentile has been used, that
is, 95% of the measured latencies are below this value. In case of
the batch prototype, the 95th percentile latency is a linear function
of the amount of data. The latency increases proportionally to the
number of processed records. In case of the messaging prototype, the
95th percentile latency is approximately a constant value which is
independent of the number of processed records.

4.3.6.3 Processing overhead

The overhead of the batch prototype is about 7% of the total process-
ing time, independent of the number of processed records, as shown



4.3 performance evaluation 77

Figure 30: Latency

in Figure 31. This overhead contains file operations, such as opening,
reading, writing and closing of input files, the file transfer between
the Mediation and Rating Nodes and the database transactions to
write the the processed event to the Costed Events DB.

Figure 31: Overhead batch prototype

On the contrary, the overhead of the messaging prototype is about
84% of the total processing time (see Figure 32). In case of the mes-
saging prototype, the overhead contains the JMS overhead, that is,
the overhead for reading events from the message queue, the web ser-
vice overhead needed for calling the Mediation and Rating services
including marshalling and unmarshalling of input data and the over-
head caused the database transactions to write the processed events
to the Costed Events DB. Most of the overhead is induced by the web
service overhead and the database overhead. Since every event is writ-
ten to the database in its own transaction, the database overhead of



78 performance evaluation of batch and message-based systems

the messaging prototype is much larger than the database overhead
of the batch prototype.

Figure 32: Overhead messaging prototype

4.3.6.4 System utilization

Figure 33: System utilization batch prototype

The system utilization has been measured using the sar (System
Activity Report) command while running the performance tests. Fig-
ure 33 shows the mean percentage of CPU consumption at the user
level (%user) and the mean percentage of used memory (%memused)
for the Mediation node and Rating node of the Batch prototype. The
CPU utilization of Mediation Node and Rating Node is about 2% and
19%, respectively. The memory utilization increases slowly with the
number of processed records.



4.4 impact of data granularity on throughput and latency 79

Figure 34 shows the mean CPU consumption and mean memory
usage for the nodes of the Messaging prototype. The CPU utiliza-
tion of the Master Node, Mediation Node and Rating Node is about
9%, 1% and 6%, respectively. As the same with the batch prototype,
the memory utilization of the messaging prototype increases with
the number of processed records. The memory utilization of the mas-
ter node peaks at about 38% with 500000 processed records. With
1000000 processed records, the memory utilization is only about 25%,
which presumably can be accounted to the garbage collector.

Figure 34: System utilization messaging prototype

4.4 impact of data granularity on throughput and la-
tency

The results presented in Section 4.3.6 suggest that the throughput of
the messaging prototype can be increased by increasing the granular-
ity of the data that is, being processed. Data granularity relates to the
amount of data that is, processed in a unit of work, for example in a
single batch run or an event. In order to examine this approach, we
have repeated the performance tests using different package sizes for
processing the data.

For this purpose, the messaging prototype has been extended to
use an aggregator in the messaging route. The aggregator is a state-
ful filter which stores correlated messages until a set of messages is
complete and sends this set to the next processing stage in the mes-
saging route. In case of the messaging prototype, messages are not
correlated to each other and also the messages can be processed in
an arbitrary order. A set of messages is complete when it reaches the
configured package size. In other scenarios, it is possible to correlate
messages by specific data, for example an account number or by a
business rule.



80 performance evaluation of batch and message-based systems

Camel

Billing Route
ActiveMQ

Event 
Generator

Tomcat

Costed Events

Master Data

Rating

Tomcat

Mediation

SO
AP

SO
AP

JPA

JMS

JM
S

CDR NCDR Costed 
Event

MySQL

MySQL

Qeue
Aggregator

Figure 35: The data granularity is controlled by an aggregator

Listing 4.5 shows the definition of the billing route using the ag-
gregator processor, which is provided by Apache Camel (line 7). The
aggregator is configured using the correlation expression constant(

true), which simply aggregates messages in order of their arrival and
the aggregation strategy UsageEventsAggrationStrategy, which imple-
ments the merging of incoming messages with already merged mes-
sages. The aggregation size is set by completionSize. The specific value
is set in a configuration file. As a fallback, completionTimeout defines a
timeout in milliseconds to send the set of aggregated messages to the
next processing stage before it has reached the defined aggregation
size. parallelProcessing indicates that the aggregator should use mul-
tiple threads (default is 10) to process the finished sets of aggregated
messages.

Listing 4.5: Billing route definition with an additional aggregator

1 public void configure() {

2

3 errorHandler(deadLetterChannel("activemq:queue:BILLING.ERRORS")

);

4

5 from("activemq:queue:BILLING.USAGE_EVENTS")

6 .unmarshal("jaxbContext")

7 .aggregate(constant(true), new UsageEventsAggrationStrategy()

).completionSize(completionSize).completionTimeout(

completionTimeout).parallelProcessing()

8 .to("cxf:bean:mediationEndpoint?dataFormat=POJO&

headerFilterStrategy=#dropAllMessageHeadersStrategy&

defaultOperationName=processEvents")

9 .process(new ProcessEventsPostProcessor())



4.4 impact of data granularity on throughput and latency 81

10 .to("cxf:bean:ratingEndpoint?dataFormat=POJO&

headerFilterStrategy=#dropAllMessageHeadersStrategy&

defaultOperationName=processCallDetails")

11 .process(new ProcessCallDetailsPostProcessor())

12 .process(costedEventsProcessor);

13 } �
Figure 36 shows the impact of different aggregation sizes on the

throughput of the messaging prototype. For each test 100.000 events
have been processed. The throughput increases constantly for 1 <

Figure 36: Impact of different aggregation sizes on throughput

aggregation_size 6 50 with a maximum of 673 events per second
with aggregation_size = 50. Higher aggregation sizes than 50 do
not further increase the throughput, it stays around 390 events per
second. Surprisingly, the maximum throughput of 673 events per sec-
ond even outperforms the throughput of the batch prototype which
is about 383 records per second. This is presumably a result of the
better multithreading capabilities of the Camel framework.

Increasing the aggregation size also decreases the processing over-
head, as shown in Figure 37. An aggregate size of 10 decreases the
overhead by more than 50% compared to an aggregate size of 1. Of
course, the integration of the aggregator adds an additional overhead
which is insignificant for aggregation_size > 50.

The increased throughput achieved by increasing the aggregation
size comes with the cost of a higher latency. Figure 38 shows the
impact of different aggregation sizes on the 95th percentile latency of
the messaging prototype.

An aggregation size of 50, resulting in the maximum throughput
of 673 events per seconds, shows a 95th percentile latency of about
68 seconds. This latency is significantly higher than the latency of the
messaging system without message aggregation, which is about 0,15

seconds (see Section 4.3.6.2).



82 performance evaluation of batch and message-based systems

Figure 37: Impact of different aggregation sizes on processing overhead

Figure 38: Impact of different aggregation sizes on latency



4.5 discussion with respect to related work 83

The results indicate that there is an optimal range for the aggrega-
tion size to control the throughput and latency of the system. Set-
ting the aggregation size higher than a certain threshold leads to
a throughput drop and latency gain. In case of our prototype, this
threshold is between an aggregation size of 85 and 90. The observed
throughput drop and latency gain is caused by a congestion in the
aggregator. Messages are read faster from the queue than they are
getting processed by the aggregator.

Figure 39 shows the impact of different aggregation sizes on the
system utilization. The CPU utilization of the Master node shows a
maximum of 30% with an aggregation size of 25. An aggregation_size >
90 results in a CPU utilization of about 15%. The maximum memory
utilization of the Master node is 41% with an aggregation size of 100.

The maximum system utilization of the Rating node is 25% with
an aggregation size of 80. The memory utilization is between 7-8%
irrespective of aggregation size. Maximum system and memory uti-
lization of the Mediation node are also irrespective of aggregation
size, being less than 2% and 8%, respectively.

Figure 39: Impact of different aggregation sizes on system utilization

When using high levels of data granularity, the messaging system
is essentially a batch processing system, providing high throughput
with high latency. To provide near-time processing an optimum level
of data granularity would allow having the lowest possible latency
with the lowest acceptable throughput.

4.5 discussion with respect to related work

This section gives an overview of work related to the performance
evaluation of batch and message-based systems presented in this
chapter and discusses the approach that has been taken.



84 performance evaluation of batch and message-based systems

Related work can be categorized in two different topics, perfor-
mance measuring and performance prediction. Performance measur-
ing is applied to evaluate if an implemented system meets its perfor-
mance requirements and to spot possible performance problems.

While performance measuring can only be done when the relevant
parts of a system are already implemented, performance prediction
allows to predict the performance of a system in an early stage of de-
velopment, before the system is available. It uses performance mod-
eling to build a model of the system, which is then used for the per-
formance evaluation. Common approaches for performance model-
ing use queueing networks, petri nets or simulations (Balsamo et al.,
2004).

4.5.1 Performance Modeling

Performance modeling allows to predict the performance of a system
in an early stage of development. It facilitates for example capacity
and resource planning before the system is already available or helps
to evaluate design alternatives in regard of their performance impact.

Brebner (2008) developed a tool for performance modeling of Service-
Oriented Architectures. It is comprised of SOA models, a simulation
engine and a graphical user interface. The SOA models are generated
from architectural artifacts such as UML sequence or deployment di-
agrams and automatically transformed into runtime models for exe-
cution.

An approach to predict the performance of J2EE applications using
messaging services using queueing network models has been pre-
sented by Liu and Gorton (2005). As opposed to prior approaches,
their solution models the underlying component infrastructure that
implements the messaging service which allows an accurate predic-
tion with an error within 15% when compared to the real perfor-
mance of the implemented system.

In another work, Liu et al. (2007) developed a performance model
of an service-oriented application based on an Enterprise Service Bus
using a queuing network. Their modeling approach includes the fol-
lowing steps:

• Mapping of application components of the design level to ana-
lytical model elements

• Characterization of workload patterns for the application com-
ponents used as input for performance model

• Calibrating the performance model

• Validating the performance model



4.5 discussion with respect to related work 85

D’Ambrogio and Bocciarelli (2007) describe “a model-driven ap-
proach for integrating performance prediction into service composi-
tion processes carried out by use of BPEL (Business Process Execution
Language for Web Services).” Using their approach, a BPEL process
is described using an UML model. The model is automatically anno-
tated with performance data and transformed into a Layered Queue-
ing Network which is used to predict the performance of the BPEL
process. For the automatic annotation of the model, a performance-
oriented extension to WSDL is utilized called P-WSDL (D’Ambrogio,
2005).

Instead of using models to compare batch and message-based pro-
cessing systems, a prototype for each processing type has been built.
Using prototypes in this case has the following advantages over a
modeling approach:

• It is difficult to build a model since every relevant aspect needs
to be modeled, such as data transfer, data marshalling, database
transactions.

• The relevant aspects for modeling the processing types were
initially not known.

• By using state-of the art technologies and frameworks for the
prototype implementation, the relevant aspects for comparing
the different processing types come for “free”.

• The effort to build a prototype is a compromise between creat-
ing model and a real application.

4.5.2 Performance Measuring and Evaluation

Performance measuring is applied to evaluate if an implemented sys-
tem meets its performance requirements and to spot possible perfor-
mance problems.

Her et al. (Her et al., 2007) propose the following set of metrics for
measuring the performance of a service-oriented system:

• Service response time
Elapsed time between the end of request to service and the be-
ginning of the response of the service. This metric is further
split in 20 sub-metrics such as message processing time, service
composition time and service discovery time.

• Think time
Elapsed time between the end of a response generated by a
service and the beginning of a response of an end user.

• Service turnaround time
Time needed to get the result from a group of related activities
within a transaction.



86 performance evaluation of batch and message-based systems

• Throughput
Number of requests served at a given period of time. The au-
thors distinguish between the throughput of a service and the
throughput of a business process.

In their work, Henjes et al. (2006); Menth et al. (2006) investigated
the throughput performance of the JMS server FioranaMQ, SunMQ
and WebsphereMQ. The authors came to the following conclusion:

• Message persistence reduces the throughput significantly.

• Message replication increases the overall throughput of the server.

• Throughput is limited either by the processing logic for small
messages or by the transmission capacity for large messages.

• Filtering reduces the throughput significantly.

Chen and Greenfield (2004) propose that the following performance
metrics should be used to evaluate a JMS server:

• Maximum sustainable throughput

• Latency

• Elapsed time taken to send batches messages

• Persistent message loss after recovery

The authors state that “although messaging latency is easy to under-
stand, it is difficult to measure precisely in a distributed environment
without synchronized high- precision clocks.” They discovered that
latencies increase with increasing message sizes.

SPECjms2007 is a standard benchmark for the evaluation of Message-
Oriented Middleware platforms using JMS (Sachs et al., 2009). It pro-
vides a flexible performance analysis framework for tailoring the work-
load to specific user requirements. According to Sachs et al. (2007),
the workload of the SPECjms2007 benchmark has to meet the follow-
ing requirements:

• Representativeness
The workload should reflect how the messaging platform is
used in typical user scenarios.

• Comprehensiveness
The workload should incorporate all platform features typically
used in JMS application including publish/subscript and point-
to-point messaging.

• Focus
The workload should focus on measuring the performance of
the messaging middleware and should minimize the impact of
other components and services.



4.6 summary 87

• Configurability
It should be possible to configure the workload to meet the re-
quirements of the user.

• Scalability
It should be possible to scale the workload by the number of
destinations with a fixed traffic per destination or by increasing
the traffic with a fixed set of destinations.

Ueno and Tatsubori (2006) propose a methodology to evaluate the
performance of an ESB in an early stage of development that can be
used for capacity planning. Instead of using a performance model
for performance prediction, they run the ESB on a real machine with
a pseudo-environment using lightweight web service providers and
clients. The authors state that model-based approaches “often require
elemental performance measurements and sophisticated modeling of
the entire system, which is usually not feasible for complex systems”.

Related research is concerned with the performance of messaging
middleware such as JMS servers or ESB middleware. In the research
presented in this chapter, an end-to-end performance evaluation of a
batch and messaging prototype implementation has been conducted
instead.

4.6 summary

Near-time processing of bulk data is hard to achieve. As shown in Sec-
tion 2.5, latency and throughput are opposed performance metrics of
a system for bulk data processing. Batch processing, while providing
high throughput, leads to high latency, which impedes near-time pro-
cessing. Message-based processing delivers low latency but cannot
provide the throughput for bulk data processing due to the additional
overhead for each processed message.

While it is technically possible to minimize the overhead of a mes-
saging system by implementing a lightweight marshalling system
and not use JMS or other state-of-the-art technologies such as XML,
SOAP or REST, it would hurt the ability of the messaging middle-
ware to integrate heterogenous systems or services and thus limiting
its flexibility, which is one the main selling propositions of such a
middleware. Furthermore, batch processing enables optimizations by
partitioning and sorting the data appropriately which is not possible
when each record is processed independently as a single message.

In order to compare throughput and latency of batch and message-
oriented systems, a prototype for each processing type has been built.
A performance evaluation has been conducted with the following re-
sults:

• The throughput of the batch prototype is 4 times the throughput
of the messaging prototype.



88 performance evaluation of batch and message-based systems

• The latency of the messaging prototype is only a fraction of the
latency of the batch prototype.

• The overhead of the messaging prototype is about 84% of the to-
tal processing time, which is mostly induced by the web service
overhead and the database transactions.

• The overhead of the batch prototype is only about 7% of the
total processing time.

The results presented in Section 4.4 show that throughput and la-
tency depend on the granularity of data that is, being processed.

• The throughput increases constantly for an aggregation size > 1

and <= 50 with a maximum of 673 events per second with an
aggregation size = 50.

• The increased throughput achieved by increasing the aggrega-
tion size comes with the cost of a higher latency. An aggregation
size of 50, resulting in the maximum throughput of 673 events
per seconds, shows a 95th percentile latency of about 68 sec-
onds. This latency is significantly higher than the latency of the
messaging system without message aggregation, which is about
0,15 seconds.

• Increasing the aggregation size also decreases the processing
overhead of the messaging prototype. An aggregate size of 10

decreases the overhead by more than 50% compared to an ag-
gregation size of 1.

• There is an optimal range for the aggregation size to control the
throughput and latency of the system. Setting the aggregation
size higher than a certain threshold leads to a throughput drop
and latency gain cause by a congestion in the aggregator.

It should be noted that the technology choices for the implemen-
tation of the prototypes does not have an impact on the general re-
sults of the performance evaluation, since the aspects that degrade
the performance of the messaging prototype, such as the overhead
induced by calls to external systems and database transactions ap-
ply to distributed systems in general and are to a large extent inde-
pendent from the used technology stack. Comparable results could
be achieved using different technologies, for example, based on Mi-
crosoft .Net.

The performance tests that have been run for the evaluation de-
scribed in section 4.3 are static tests, in the sense that they do not take
different load scenarios of the system into account. In a real situation,
the current throughput and latency also depend on the current load
of the system. If the system is not able to handle the current load,



4.6 summary 89

messages are congested in the input queue which increases the la-
tency of the system. A higher maximum throughput would decrease
the latency in this case.

Therefore, the aggregation size used by the messaging system should
depend on the current load of the system. It is not feasible to find a
static aggregation size that works under all load conditions resulting
in an optimum latency.

The next chapter presents a solution for this problem. It describes
an adaptive middleware that is, able to adjust the data aggregation
size at runtime, depending on the current load of the system.





5
A N A D A P T I V E M I D D L E WA R E F O R N E A R - T I M E
P R O C E S S I N G O F B U L K D ATA

5.1 introduction

The processing type is usually a fixed property of an enterprise sys-
tem that is decided when the architecture of the system is designed,
prior to implementing the system. This choice depends on the non-
functional requirements of the system. These requirements are not
fixed and can change during the lifespan of a system, either antici-
pated or not anticipated.

Additionally, enterprise systems often need to handle load peaks
that occur infrequently. For example, think of a billing system with
moderate load over most of the time, but there are certain events
with very high load such as New Year’s Eve. Most of the time, a low
end-to-end latency of the system is preferable when the system faces
moderate load. During the peak load, it is more important that the
system can handle the load at all. A low end-to-end latency is not as
important as an optimized maximum throughput in this situation.

The results presented in the previous Chapter 4 show that through-
put and latency depend on the granularity of data that is being pro-
cessed. Additionally, the current throughput and latency also depend
on the current load of the system. If the system is not able to handle
the current load, messages are congested in the input queue which
increases the latency of the system. A higher maximum throughput
would decrease the latency in this case. The aggregation size used
by the messaging system should depend on the current load of the
system.

This chapter introduces the concept of an adaptive middleware
which is able to adapt its processing type fluently between batch
processing and single-event processing. It continuously monitors the
load of the system and controls the message aggregation size. De-
pending on the current aggregation size, the middleware automati-
cally chooses the appropriate service implementation and transport
mechanism to further optimize the processing.

In this chapter, a solution to this problem is proposed:

• The concept of a middleware is presented that is able to adapt
its processing type fluently between batch processing and single-
event processing. By adjusting the data granularity at runtime,
the system is able to minimize the end-to-end latency for differ-
ent load scenarios.

91



92 an adaptive middleware for near-time processing of bulk data

• A prototype has been built to evaluate the concepts of the adap-
tive middleware.

• A performance evaluation has been conducted using this proto-
type to evaluate the proposed concept of the adaptive middle-
ware.

The remainder of this chapter is organized as follows.
Section 5.2 describes the requirements of an adaptive middleware

derived from the results of Chapter 4. Section 5.3 introduces the core
concepts of the Adaptive Middleware for Bulk Data Processing. These
concepts are implemented by components of the adaptive middle-
ware that are described in Section 5.4. There are several architectural
design aspects that need to be considered to implement a system
based on the adaptive middleware, which are discussed in Section
5.5. To evaluate the concepts of the adaptive middleware, a prototype
has been built. The design and implementation of this prototype is
outlined in Section 5.6. The prototype has been evaluated in Section
5.7. Finally, Section 5.8 concludes this chapter.

5.2 requirements

The Adaptive Middleware should implement the following requirements,
which have been derived from the results of the performance analysis,
as described in Chapter 4:

• REQ1: Message aggregation
Aggregation of single messages or events

• REQ2: Aggregation strategies
Support for different aggregation strategies, statically or dynam-
ically at run-time

• REQ3: Message routing
Messages should be routed to the appropriate service to allow
for optimized processing depending on their aggregation size.

• REQ4: Monitoring
Monitoring of current throughput, end-to-end latency and load
of the system

• REQ5: Dynamic control of aggregation size
Dynamic control of the aggregation size of the processed events
at run-time depending on the current load of the system

5.3 middleware concepts

Based on the requirements, as discussed in the previous section, this
section describes the core concepts of the adaptive middleware: (1) mes-



5.3 middleware concepts 93

sage aggregation, (2) message routing, and (3) monitoring and con-
trol.

5.3.1 Message Aggregation

Message aggregation or batching of messages is the main feature of
the adaptive middleware to provide a high maximum throughput.
The aggregation of messages has the following goals:

• To decrease the overhead for each processed message

• To facilitate optimized processing

There are different options to aggregate messages, which can be
implemented by the Aggregator:

• No correlation: Messages are aggregated in the order in which
they are read from the input message queue. In this case, an
optimized processing is not simply possible.

• Technical correlation: Messages are aggregated by their techni-
cal properties, for example by message size or message format.

• Business correlation: Messages are aggregated by business rules,
for example by customer segments or product segments.

Table 7 describes the advantages and disadvantages of each aggre-
gation strategy.

In Section 4.4, a static aggregation size has been used to optimize
the latency and the throughput of a system. This is not feasible for
real systems, since the the latency and throughput also depends on
the load of the system. Therefore, a dynamic aggregation size depend-
ing on the current load of the system is needed.

5.3.2 Message Routing

The goal of the message routing is to route the message aggregate
to the appropriate service, which is either optimized for batch or sin-
gle event processing, to allow for an optimized processing. Message
routing depends on how messages are aggregated. Table 8 shows the
different strategies of message routing.

With high levels of message aggregation, it is not preferred to send
the aggregated message payload itself over the message bus using
Java Messaging Service (JMS) or SOAP. Instead, the message only con-
tains a pointer to the data payload, which is transferred using File
Transfer Protocol (FTP) or a shared database.

Message routing can be static or dynamic:



94 an adaptive middleware for near-time processing of bulk data

Table 7: Properties of different aggregation strategies

Aggregation
Strategy

Pro Con

No correla-
tion

– Simple solution
– Even distribution of

events

– optimization is not or
hardly possible

Business
correlation

– Optimization is possi-
ble

– Analyzation of pro-
cessed data needed

– No even distribution of
data (depending on cor-
relation rule)

Technical
correlation

– Optimization is possi-
ble

– Analyzation of pro-
cessed data needed

– Rules can be defined af-
ter integration architec-
ture

– No even distribution of
data (depending on cor-
relation rule), leads to
uneven distribution of
latency

Table 8: Strategies for message routing

Routing Strategy Examples Description

Technical routing – Aggregation size Routing is based on the
technical properties of
a message aggregate.

Content-based
routing

– Customer segments
(e.g. business cus-
tomers or private
customers)

Routing is based on the
content of the message
aggregate, that is, what
type of messages are
aggregated.



5.3 middleware concepts 95

• Static routing:
Static routing uses static routing rules, that are not changed
automatically.

• Dynamic routing:
Dynamic routing adjusts the routing rules automatically at run-
time, for example depending on QoS properties of services. See
for example Bai et al. (2007), Wu et al. (2008) or Ziyaeva et al.
(2008).

5.3.3 Monitoring and Control

In order to optimize the end-to-end latency of the system, the middle-
ware needs to constantly monitor the load of the system and control
the aggregation size accordingly (see Figure 40).

System

Feedback Control

Measure 
System Load

Control 
Aggregation

Figure 40: Monitoring and Control

If the current load of the system is low, the aggregation size should
be small to provide a low end-to-end latency of the system. If the
current load of the system is high, the aggregation size should be
high to provide a high maximum throughput of the system.

To control the level of message aggregation at runtime, the adaptive
middleware uses a closed feedback loop as shown in Figure 41, with
the following properties:

• Input (u): Current aggregation size

• Output (y): Change of queue size measured between sampling
intervals

• Set point (r): The change of queue size should be zero.

Ultimately, we want to control the average end-to-end latency de-
pending on the current load of the system. The change of queue size



96 an adaptive middleware for near-time processing of bulk data

seems to be an appropriate quantity because it can be directly mea-
sured without a lag at each sampling interval, unlike for example the
average end-to-end latency.

Controller System
y = Net change of queue sizer = 0 e = r-y u = Aggregation size

Figure 41: Feedback loop to control the aggregation size

5.4 middleware components

Figure 42 shows the components of the middleware, that are based
on the Enterprise Integration Patterns described by Hohpe and Woolf
(2003). A description of these components can be found in Table 9.

S1
Endpoint A

S1
Endpoint BAggregator Router

QueueMessages Message
Aggregate

Figure 42: Middleware components

5.5 design aspects

This section describes aspects that should be taken into account when
designing an adaptive system for bulk data processing.

5.5.1 Service Design

The services that implement the business functionality of the system
need to be explicitly designed to support the run-time adaption be-
tween single-event and batch processing.

There are different options for the design of these services:

• Single Service interface with distinct operations for single and
batch processing

– The service provides different distinct operations for high
and low aggregation sizes with optimized implementations
for batch and single-event processing. The decision which
operation should be called is done by the message router.
It is generally not possible to use different transports for
different aggregation sizes.



5.5 design aspects 97

Table 9: Components of the Adaptive Middleware. We are using the nota-
tion defined by Hohpe and Woolf (2003)

Symbol Component Description

Message
A single message represent-
ing a business event.

Message
Aggregate

A set of messages aggregated
by the Aggregator compo-
nent.

Queue

Storage component which
stores messages using the
First In, First Out (FIFO) prin-
ciple.

Aggregator

Stateful filter which stores
correlated messages until a
set of messages is complete
and sends this set to the next
processing stage in the mes-
saging route.

Router

Routes messages to the ap-
propriate service endpoint,
for example depending on
the aggregation size of the
message.

Service
Endpoint Service

Endpoint
Represents a business ser-
vice.



98 an adaptive middleware for near-time processing of bulk data

• Single Service interface with a single operation for both single
and batch processing

– The service provides a single operation that is called for all
aggregation sizes. The decision which optimization should
be used is done by the service implementation. It is not
possible to use different transports for different aggrega-
tion sizes.

• Multiple service interfaces for single and batch processing (or
different aggregation sizes)

– The logical business service is described by distinct ser-
vice interfaces which contain operations for either batch
processing or single-event processing. The decision which
operation should be called is done by the message router.
It is possible to use different transports for different aggre-
gation sizes.

The choice of service design relates to where you want to have
the logic for the message routing for optimized processing. With a
single service offering distinct operations for single-event and batch
processing, as well as with distinct service for each processing style,
the message router decides which service endpoint should be called.
In contrast, using a single service with a single operation for both
processing styles, the service itself is responsible for choosing the
appropriate processing strategy. Using a different integration type for
each processing style is not possible in this case.

Listing 5.1 shows the interface of a service offering different oper-
ations for batch processing (line 6) and single-event processing (line
10).

Listing 5.1: Java interface of a web service offering different operations for
single and batch processing.

1 @WebService

2 @SOAPBinding(style=Style.DOCUMENT, use=Use.LITERAL,

parameterStyle=ParameterStyle.WRAPPED)

3 public interface RatingPortType {

4 @WebMethod(operationName="processCallDetails")

5 @WebResult(name="costedEvents")

6 public Costedevents processCallDetails(@WebParam(name="

callDetailRecords") SimpleCDRs callDetailRecords) throws

ProcessingException, Exception;

7

8 @WebMethod(operationName="processCallDetail")

9 @WebResult(name="costedEvent")

10 public Costedevent processCallDetail(@WebParam(name="

simpleCDR") SimpleCDR callDetailRecord) throws

ProcessingException, Exception;

11 } �



5.5 design aspects 99

5.5.2 Integration and Transports

The integration architecture defines the technologies that are used to
integrate the business services. In general, different integration styles
with different transports are used for batch processing and single-
event processing, which needs to be taken into account when design-
ing an adaptive system for bulk data processing (Please refer to Sec-
tion 2.3 and 2.4 for a detailed description of each processing style).

When using high aggegration sizes, it is not feasible to use the same
transports as with low aggregation sizes. Large messages should not
be transferred over the messaging system. Instead, a file based trans-
port using FTP or database-based integration should be used. When
using a messaging system, the payload of large messages should not
be transported over the messaging system. For example by imple-
menting the Claim Check EIP (refer to Section 2.8 for a detailed de-
scription of this pattern). Table 10 summarizes the transport options
for low and high aggregation sizes.

Table 10: Transport options for high and low aggregation sizes

Aggregation Size Transport Options

High – Database
– File-based (e.g. FTP)
– Claim Check EIP

Low – JMS

– SOAP

Additionally, the technical data format should be considered.
The concrete threshold between low and high aggregation sizes de-

pends on the integration architecture and implementation of the sys-
tem, such as the integration architecture and the deployed messaging
system.

The choice of the appropriate integration transport for a service is
implicitly implemented by the message router (see Section 5.3.2).

5.5.3 Error Handling

Message aggregation has also an impact on the handling of errors
that occur during the processing. Depending on the cause of the error,
there are two common types of errors:



100 an adaptive middleware for near-time processing of bulk data

• Technical errors
Technical errors are errors caused by technical reasons, for ex-
ample an external system is not available or does not respond
within a certain timeout or the processed message has an in-
valid format.

• Business errors
Business errors are caused by violation of business rules, for
example a call detail record contains a tariff that is no longer
valid.

The following points should be taken into account, when designing
the error handling for an adaptive system for bulk data processing:

• Write erroneous messages to an error queue for later processing.

• Use multiple queues for different types of errors, for example
distinct queues for technical and business errors to allow dif-
ferent strategies for handling them. Some type of errors can
be fixed automatically, for example an error that is caused by
an outage of an external system, while other errors need to be
fixed manually.

• If the erroneous messages is part of an aggregated message, it
should be extracted from the aggregate to prevent the whole ag-
gregate from being written to the error queue, especially when
using high aggregation sizes.

5.5.4 Controller Design

There are several approaches for the implementation of feedback-
control system. Hellerstein et al. (2004) describe two major steps:

1. modeling the dynamics of the system

2. developing a control system

There are different approaches that are used in practice to model
the dynamics of a system (Hellerstein, 2004):

• Empirical approach using curve fitting to create a model of the
system

• Black-box modeling

• Modeling using stochastic approaches, especially queuing the-
ory

• Modeling using special purpose representations, for example
the first principles analysis



5.5 design aspects 101

For practical reasons, the following approach has been taken in this
research:

1. Define the control problem

2. Define the input and output variables of the system

3. Measure the dynamics of the system

4. Develop the control system

5.5.4.1 Control Problem

The control problem is defined as follows:

• Minimize the end-to-end latency of the system by controlling
the message aggregation size.

• The aggregation size used by the messaging system should de-
pend on the current load of the system.

• When the system faces high load, the aggregation size should be
increased to maximize the maximum throughput of the system.

• When the system faces low load, the aggregation size should be
decreased to minimize the end-to-end latency of the system.

5.5.4.2 Input/Output Signals

Janert (2013) describes the following criteria for selecting input con-
trol signals:

• Availability
It should be possible to influence the control input directly and
immediately.

• Responsiveness
The system should respond quickly to a change of the input
signal. Inputs whose effect is subject to latency or delays should
be avoided when possible.

• Granularity
It should be possible to adjust the control input in small incre-
ments. If the control input can only be adjusted in fixed incre-
ments, then it could be necessary to consider this in the con-
troller or actuator implementation.

• Directionality
How does the control input impact the control output? Does an
increased control input result in increased or decreased output?

Additionally, the following criteria should be considered for select-
ing output control signals:



102 an adaptive middleware for near-time processing of bulk data

• Availability
The quantity must be observable without gaps and delays.

• Relevance
The output signal should be relevant for the behavior of the
system that should be controlled.

• Responsiveness
The output signal should reflect changes of the state of the sys-
tem quickly without lags and delays.

• Smoothness
The output signal should be smooth and does not need to be
filtered.

With regard to these criteria, the following input and output control
signals have been chosen

• Input (u): Current aggregation size

• Output (y): Change of queue size measured between sampling
intervals

• Set point (r): The change of queue size should be zero.

5.5.4.3 Control Strategy

simple controller

A simple non-linear control strategy could be implemented as follows
(cf. Janert (2013)):

• When the tracking error is positive, increase the aggregation
size by 1

• Do nothing when the tracking error is zero.

• Periodically decrease the aggregation size to test if a smaller
queue size is able to handle the load.

pid controller

Another option would be to use a standard PID-Controller instead,
which calculates the output value uk at time step k of the controller
depending on the current (proportional part), previous (integral part)
and expected future error (differential part):

uk = Kp ∗ ek +Ki ∗ Ta
k∑

i=0

ei +
Kd

Ta
(ek − ek−1)

with Kp being the controller gain of the proportional part, ek being
the error (r− y) at step k, Ki being the controller gain of the integral



5.6 prototype implementation 103

part, Ta being the sampling interval and Kd being the controller gain
of the differential part.

A PID-controller seems not a good fit for the problem at hand since
the aggregation size can not be controlled continuously. It is always a
whole positive integer.

5.6 prototype implementation

This section describes the implementation of the prototype which im-
plements the core concepts of the adaptive middleware. The proto-
type is based on the messaging prototype described in Section 4.2.4.

The prototype extends the messaging prototype with the following
components (see Figure 43):

• Performance Monitor
The Performance Monitor manages the feedback-control loop by
periodically calling the Sensor and updating the Controller. Ad-
ditionally, it calculates the current throughput and end-to-end
latency of the system.

• Sensor
The Sensor is responsible for getting the current size of the mes-
sage queue using Java Monitoring Extensions (JMX).

• Controller
The Controller calculates the new value for the aggregation size
base on the setpoint and the current error.

• Actuator
The Actuator is responsible for setting the new aggregation size
of the Aggregator calculated by the Controller.

5.6.1 Aggregator

The message aggregator uses the same AggregationStrategy as the mes-
saging prototype as described in Section 4.4, as shown in Listing 5.2:

• The aggregate method, which is called by the aggregator for
each message, takes two arguments: oldExchange contains the
already aggregated messages, newExchange contains the new ar-
rived message (line 4).

• If there are not yet any aggregated messages stored in the ag-
gregator (line 5):

– The message body (rawUsageEvent) is read from the new
arrived message (line 6).

– A new usageEventsList is generated (line 8).



104 an adaptive middleware for near-time processing of bulk data

Camel

Billing Route
ActiveMQ

Event 
Generator

Tomcat

Costed Events

Master Data

Rating 
Service

Tomcat

Mediation 
Service

SO
AP

SO
AP

JPA

JMS

JM
S

CDR NCDR Costed 
Event

MySQL

MySQL

Qeue
Aggregator Router

Performance Monitor

Queue Sensor Controller Actuator

Figure 43: Components of the prototype system



5.6 prototype implementation 105

– The message body is added to the list and the list is added
to the incoming message, which now becomes the new
message aggregate.

• Otherwise, the message body of the new message is added to
list of the aggregated messages (line 22).

Listing 5.2: UsageEventsAggrationStrategy

1 public class UsageEventsAggrationStrategy implements

AggregationStrategy {

2

3 @Override

4 public Exchange aggregate(Exchange oldExchange, Exchange

newExchange) {

5 if (oldExchange == null) {

6 RawUsageEvent rawUsageEvent = newExchange.getIn().getBody(

RawUsageEvent.class);

7 RawUsageEvents rawUsageEvents = new RawUsageEvents();

8 List<RawUsageEvent> usageEventList = new ArrayList<

RawUsageEvent>();

9 rawUsageEvents.setUsageEvents(usageEventList);

10 usageEventList.add(rawUsageEvent);

11 newExchange.getIn().setBody(rawUsageEvents);

12 increaseAggregateSize(newExchange);

13

14 Long startTime = getStartTime(newExchange);

15 addStartTime(newExchange, startTime);

16

17 return newExchange;

18 }

19 else {

20 RawUsageEvents rawUsageEvents = oldExchange.getIn().getBody

(RawUsageEvents.class);

21 RawUsageEvent rawUsageEvent = newExchange.getIn().getBody(

RawUsageEvent.class);

22 rawUsageEvents.getUsageEvents().add(rawUsageEvent);

23 increaseAggregateSize(oldExchange);

24

25 Long startTime = getStartTime(newExchange);

26 addStartTime(oldExchange, startTime);

27

28 return oldExchange;

29 }

30 }

31

32 //Additional methods removed for simplification...

33

34 } �
The aggregator is configured to dynamically use the aggregation

size (completionSize) set by a message header, as shown in Listing 5.3



106 an adaptive middleware for near-time processing of bulk data

(line 2). This message header is set by the Actuator (see Section 5.6.2.3),
which is controlled by the Controller (see Section 5.6.2.2).

Listing 5.3: Aggregator configuration in definition of BillingRoute

1 .aggregate(constant(true), new UsageEventsAggrationStrategy())

2 .completionSize(header(completionSizeHeader))

3 .completionTimeout(completionTimeout)

4 .parallelProcessing() �
5.6.2 Feedback-Control Loop

Figure 44 shows the components of the feedback-control loop.

Controller Message 
QueueAggregatorActuator

Sensor

System
e = r-y

y = Net change of queue size

u = Aggregation sizer = 0

Figure 44: Components of the feedback-control loop

5.6.2.1 Sensor

The JmxSensor implements the Sensor interface (see Figure 45). It reads
the current length of the input queue of the ActiveMQ server instance
using JMX.

Figure 45: UML class diagram showing the sensor classes



5.6 prototype implementation 107

5.6.2.2 Controller

A Controller has to implement the Controller interface. The following
implementations of the Controller interface have been implemented
(see Figure 46):

• BasicController
Implements a generic controller. The control strategy is pro-
vided by an implementation of the ControllerStrategy.

• TestController
A controller used for testing the static behavior of the system.

Figure 46: UML class diagram showing the controller classes

The strategy of the controller is implemented by a controller strat-
egy which implements the ControllerStrategy interface (see Listing
5.4).

Listing 5.4: ControllerStrategy Interface

1 package com.jswiente.phd.performance.controller;

2

3 public interface ControllerStrategy {

4 public Double getOutput(Double error);

5 } �
Figure 47 shows the available implementations of the Controller-

Strategy.



108 an adaptive middleware for near-time processing of bulk data

Figure 47: UML class diagram showing the controller strategy classes

simple controller

Listing 5.5 shows the implementation of the simple control strategy,
as described in Section 5.5.4.3:

• If the queue size increases, increase the aggregation size (line
10-13).

• Otherwise, do not change the aggregation size (line 22).

• Periodically decrease the aggregation size by one (line 17-20).

The controller uses two different timers depending on the previous
action.

Listing 5.5: Implementation of the simple control strategy

1 public class SimpleControlStrategy implements ControllerStrategy

{

2

3 @Value("${simpleController.period1}")

4 private int period1;

5 @Value("${simpleController.period2}")

6 private int period2;

7 private int timer = 0;

8

9 public Double getOutput(Double error) {

10 if (error > 0) {

11 timer = period1;

12 return +1.0;

13 }

14

15 timer--;

16

17 if (timer == 0) {

18 timer = period2;

19 return -1.0;

20 }

21

22 return 0.0;



5.6 prototype implementation 109

23 }

24

25 } �
pid controller

The implementation of the PID Controller, as described in Section
5.5.4.3 is straight forward, as shown in Listing 5.6.

Listing 5.6: Implementation of PID Controller

1 public class PIDController implements ControllerStrategy {

2

3 @Value("${controller.kp}")

4 private Double kp;

5

6 @Value("${controller.ki}")

7 private Double ki;

8

9 @Value("${controller.kd}")

10 private Double kd;

11

12 @Value("${controller.ta}")

13 private Double ta;

14

15 private Double errorSum = 0.0;

16 private Double previousError = 0.0;

17

18 public Double getOutput(Double error) {

19 errorSum = errorSum + error;

20 Double output = kp * error + ki * ta * errorSum + (kd * (

error - previousError)/ta);

21 previousError = error;

22 return output;

23 }

24

25 //Setter methods removed for simplification...

26

27 } �
5.6.2.3 Actuator

The AggregateSizeActuator is responsible for setting the aggregation
size of the Aggregator and is controlled by the Controller (see Figure
48).

It AggregateSizeActuator implements the Actuator interface (see List-
ing 5.7).

Listing 5.7: Actuator Interface



110 an adaptive middleware for near-time processing of bulk data

Figure 48: UML class diagram showing the actuator classes

1 package com.jswiente.phd.performance.actuator;

2

3 public interface Actuator<T> {

4

5 public void setValue(T value);

6 } �
The AggregateSizeActuator sets the aggregation size (completionSize)

by setting a specific header in the currently processed message, as
shown in Listing 5.8 (line 15).

Listing 5.8: AggregateSizeActuator

1 @Component

2 public class AggregateSizeActuator implements Processor, Actuator

<Double> {

3

4 @Value("${camel.aggregator.completionSize}")

5 private long aggregateSize;

6

7 @Value("${camel.aggregator.completionSizeHeader}")

8 private String completionSizeHeader;

9

10 private static final Logger logger = LoggerFactory

11 .getLogger(AggregateSizeActuator.class);

12

13 @Override

14 public void process(Exchange exchange) throws Exception {

15 exchange.getIn().setHeader(completionSizeHeader,

aggregateSize);

16 }



5.6 prototype implementation 111

17

18 @ManagedAttribute

19 public long getAggregateSize() {

20 return aggregateSize;

21 }

22

23 @ManagedAttribute

24 public void setAggregateSize(long aggregateSize) {

25 logger.debug("Setting aggregateSize to: " + aggregateSize);

26 this.aggregateSize = aggregateSize;

27 }

28

29 @Override

30 public void setValue(Double value) {

31 logger.debug("Actuator: Setting aggregateSize to: " + value);

32 long aggregateSize = Math.round(value);

33 this.setAggregateSize(aggregateSize);

34 }

35

36 } �
5.6.2.4 Performance Monitor

The Performance Monitor manages the feedback-control loop by peri-
odically calling the Sensor and updating the Controller. Additionally,
it calculates the current throughput and end-to-end latency of the
system using the StatisticsService (see Figure 49).

5.6.3 Load Generator

The Load Generator is used to generate the system load by generat-
ing events (CDRs) and writing them to the input message queue of
the system. It is implemented as a stand-alone Java program using a
command-line interface.

Figure 50 shows the UML class diagram of the load generator.

• DataGenerator
This is the main class of the DataGenerator.

• Writer
The Writer interface defines methods for writing the generated
events. There are two implementations available, the FileWriter,
which is used to write the generated to a file and the JmsWriter,
which is used to write the events to a JMS queue.

• Generator
The Generator interface defines methods for generating events.

• Distribution
The Distribution interface represents an event distribution used



112 an adaptive middleware for near-time processing of bulk data

Figure 49: UML class diagram showing the PerformanceMonitor

Figure 50: UML class diagram of the Load Generator



5.7 evaluation 113

by the DataGenerator. The PoissonDistribution is the single imple-
mentation of this interface.

• Configuration
This class holds a specific set of configuration parameters used
at run-time.

The DataGenerator uses a Poisson Process to simulate the load of the
system, which is commonly used to model events that occur continu-
ously and independently of each other with exponentially distributed
inter-arrival times, e.g. to model requests on a web server (Arlitt and
Williamson, 1997) or telephone calls (Willkomm et al., 2009).

5.7 evaluation

The prototype described in the previous section has been used to
evaluate the general feasibility of the adaptive middleware.

5.7.1 Test Environment

The tests have been run on a development machine to decrease the
development-build-deploy cycle, as described in Table 11.

Table 11: Test environment

Memory 3 GiB

CPU Intel Core i5 M520 @ 2,40 GHz

Architecture 32-bit

Disk Drive 150 GB SSD

Operating System Windows 7

Database MySQL 5.5.24

Messaging Middleware Apache ActiveMQ 5.6.0

5.7.2 Test Design

Abdelzaher et al. (2008) define a set of properties, that should be
considered when designing feedback-control systems for computing
systems, called the SASO properties (Stable, Accurate, Settling times,
Overshoot):



114 an adaptive middleware for near-time processing of bulk data

• Stability
The system should provide a bounded output for any bounded
input.

• Accuracy
The measured output of the control system should converge to
the reference input.

• Settling time
The system should converge quickly to its steady state.

• Overshoot
The system should achieve its objectives in a manner that does
not overshoot.

5.7.3 Static Tests

To test the relationship between the input and output variables of the
control-loop, aggregation size and change of queue size, the following
static tests have been performed:

• The TestController has been configured to periodically increase
the aggregation size after 100 time steps (1 time step equals 1

second).

• The test has been repeated with different load of the system,
that is, using different arrival rates for the DataGenerator.

Figure 51 shows the queues size of the system in relationship to the
aggregation size, for different arrival rates.

• The system is not able to handle the load with an aggregationsize <

5 and an arrivalrate = 50. With an aggregationsize > 5, the
system is able to process the events faster than they occur.

• With an arrivalrate = 100, the system is not able to handle the
load with an aggregationsize < 15. With an aggregationsize >
15, the system is able to process the events faster than they oc-
cur.

• With an arrivalrate = 150, the system is not able to handle the
load with an aggregationsize < 25. With an aggregationsize >
25, the system is able process the events faster than they occur.

The change of queue size between each time step is shown in Figure
52.



5.7 evaluation 115

0 100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100
Aggregate Size

Time steps

A
g

g
re

g
a

te
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000
Arrival Rate = 50.0

Time steps

Q
u

e
u

e
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

1

2
x 10

4 Arrival Rate = 100.0

Time steps

Q
u

e
u

e
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

2

4
x 10

4 Arrival Rate = 150.0

Time steps

Q
u

e
u

e
 s

iz
e

Figure 51: Static test: queue sizes

0 100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100
Aggregate Size

Time steps

A
g

g
re

g
a

te
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
−200

−100

0

100
Arrival Rate = 50.0

Time stepsQ
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

0 100 200 300 400 500 600 700 800 900 1000
−1000

−500

0

500
Arrival Rate = 100.0

Time steps

Q
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

0 100 200 300 400 500 600 700 800 900 1000
−1000

−500

0

500
Arrival Rate = 150.0

Time steps

Q
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

Figure 52: Static test: queue size changes



116 an adaptive middleware for near-time processing of bulk data

5.7.4 Step Test

To measure the dynamic response of the system, the following step
test have been performed:

• The TestController has been configured to increase the aggrega-
tion size from 1 to 50.

• Messages occur with an arrival rate of 150.

Figure 53 shows the result of the step test:

• With an aggregation size of 1, the system is not able to handle
the load. The queue length is constantly increasing.

• When the aggregation size is set to 50 at timestep 100, the queue
size is directly decreased, without a noticeable delay.

0 50 100 150 200 250 300
0

25

50
Aggregate Size

Time steps

A
g

g
re

g
a

te
 s

iz
e

0 50 100 150 200 250 300
−500

0

500
Queue size change

Time steps

Q
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

0 50 100 150 200 250 300
0

5000

10000
Queue size

Time steps

Q
u

e
u

e
 s

iz
e

Figure 53: Step test

5.7.5 Controller Tests

The following test has been performed to evaluate the performance
of the Simple Controller and the PID-Controller:

• Events are generated with an arrival rate = 50.0 for 100 time
steps.

• At timestep = 100, the arrival rate is set to 150.0 for another
100 time steps.



5.7 evaluation 117

• At timestep = 200, the arrival rate is set back to 50.0.

Figure 54 shows the results of this test using a proportional con-
troller. The PID-Controller has been configured with the following
gains:

• Kp = 1.0, Ki = 0.0, Kd = 0.0

0 50 100 150 200 250 300 350 400 450 500
50

100

150
Load

Time steps

A
rr

iv
a
l 
ra

te

0 50 100 150 200 250 300 350 400 450 500
−200

0

200
Aggregate size

Time steps

A
g
g
re

g
a
te

 s
iz

e

0 50 100 150 200 250 300 350 400 450 500
−200

0

200
Queue size change

Time steps

Q
u
e
u
e
 s

iz
e
 c

h
a
n
g
e

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300
Queue size

Time steps

Q
u
e
u
e
 s

iz
e

Figure 54: Proportional control

The controller is able to control the queue size but it leads to an
significant oscillation of the aggregation size.

A better solution can achieved when using the Simple Control strat-
egy. Figure 55 shows the results of the test using the Simple Control
strategy:

• The controller is reasonably able to control the size of the queue.
At timestep = 100, it increases the aggregate size to a maxi-
mum value of 36.

• At timestep = 200, the controller starts to decrease the aggre-
gation size. At timestep = 375, the aggregation size is back at
3.



118 an adaptive middleware for near-time processing of bulk data

0 50 100 150 200 250 300 350 400 450 500
50

100

150
Load

Time steps

A
rr

iv
a
l 
ra

te

0 50 100 150 200 250 300 350 400 450 500
−20

0

20

40
Aggregate size

Time steps

A
g
g
re

g
a
te

 s
iz

e

0 50 100 150 200 250 300 350 400 450 500
−200

−100

0

100
Queue size change

Time steps

Q
u
e
u
e
 s

iz
e
 c

h
a
n
g
e

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150
Queue size

Time steps

Q
u
e
u
e
 s

iz
e

Figure 55: Simple control strategy

5.7.6 Results

Summarizing the results of the evaluation, the proposed concept for
the adaptive middleware is a viable solution to optimize the end-to-
end latency of data processing system. The results show that using
a closed-feedback loop is a feasible technique for implementing the
dynamic control of the aggregation size. Using the queue size change
to measure the system load is also shown to be appropriate.

5.8 summary

In this chapter, a novel concept of middleware for near-time pro-
cessing of bulk data has been presented that is able to adapt itself
to changing load scenarios by fluently shifting the processing type
between single event and batch processing. The middleware uses a
closed feedback loop to control the end-to-end latency of the sys-
tem by adjusting the level of message aggregation depending on the
current load of the system. Determined by the aggregation size of
a message, the middleware routes a message to appropriate service
endpoints, which are optimized for either single-event or batch pro-
cessing.

Additionally, several design aspects have been described that should
be taken into account when designing and implementing an adap-



5.8 summary 119

tive system for bulk data processing, such as how to design the ser-
vice interfaces, the integration and transport mechanisms, the error-
handling and controller design.

The solution is based on standard middleware, messaging technolo-
gies and standards and fully preserves the benefits of an SOA and
messaging middleware, such as:

• Loose coupling

• Remote communication

• Platform language Integration

• Asynchronous communication

• Reliable Communication

To evaluate the proposed middleware concepts, a prototype system
has been developed based on the message-based prototype described
in Section 4. The tests show that the proposed middleware solution
is viable and is able to optimize the end-to-end latency of a data
processing system for different load scenarios.

During the implementation of the prototype of the adaptive mid-
dleware, it became apparent that the design and implementation of
such a system differs from common approaches to implement en-
terprise software systems. To guide the design, implementation and
operation of a system for bulk data processing based on the adaptive
middleware described in this chapter, a conceptual framework has
been developed, which is described in Appendix A.





Part III

C O N C L U S I O N





6
C O N C L U S I O N

This chapter concludes the thesis by summarizing the achievements
of the research and discussing its limitations. Additionally, it presents
possible directions for further research.

6.1 achievements of the research

This research project is aimed to optimize the end-to-end latency of a
system for bulk data processing.

The first objective of the research was to analyze the relationship
of end-to-end latency and throughput of batch and message-based
systems. A formal definition of the relationship of end-to-end latency
and maximum throughput has been given in Section 2.5. To analyze
the impact of different processing styles, that is batch and message-
based processing, on throughput and latency, two prototypes of a
billing system for each processing type have been built. A perfor-
mance evaluation has been conducted to compare the prototypes
with each other with the focus on throughput and latency. The evalu-
ation showed the following results:

• The throughput of the batch prototype is 4 times the throughput
of the messaging prototype.

• The latency of the messaging prototype is only a fraction of the
latency of the batch prototype.

• The overhead of the messaging prototype is about 84% of the to-
tal processing time, which is mostly induced by the web service
overhead and the database transactions.

• The overhead of the batch prototype is only about 7% of the
total processing time.

To evaluate the impact of different aggregation sizes on throughput
and latency, the messaging prototype has been extended with an ag-
gregator. A performance test has been conducted with different static
aggregation sizes (see Section 4.4).

The results presented in Section 4.4 show that throughput and la-
tency depend on the granularity of data that is being processed. An-
other finding is, that there is an optimal range for the aggregation size
to control the throughput and latency of the system. Setting the ag-
gregation size higher than a certain threshold leads to a throughput
drop and latency gain cause by a congestion in the aggregator.

123



124 conclusion

Based on the results of the performance evaluation of the batch and
message-based prototype, the concept of an adaptive middleware for
near-time processing of bulk data has been developed (see Section
5). The adaptive middleware is able to adapt its processing type flu-
ently between batch processing and single-event processing. By using
message aggregation, message routing and a closed feedback-loop to
adjust the data granularity at runtime, the system is able to minimize
the end-to-end latency for different load scenarios. The concept also
describes several design aspects that should be taken into account
when designing and implementing an adaptive system for bulk data
processing, such as how to design the service interfaces, the integra-
tion and transport mechanisms, the error-handling and controller de-
sign.

The message-based prototype has been extended to implement the
concepts of the adaptive middleware, which is described in Section
5.6. Using this prototype, a performance evaluation has been con-
ducted to evaluate the proposed concepts of the adaptive middleware
for bulk data processing (see Section 5.7). The results show that the
concept is generally viable and is able to minimize the end-to-end
latency of a system for bulk data processing.

During the implementation of the prototype of the adaptive mid-
dleware, it became apparent that the design and implementation of
such a system differs from common approaches to implement enter-
prise software systems. In order to guide the implementation of an
adaptive system for bulk data processing, a conceptual framework
has been developed (see Appendix A). It defines artifacts, roles, tasks
and their dependencies, and processes to describe the necessary steps
for design, implementation and operation of such a system, includ-
ing:

• The needed roles and their skills for the design, implementation
and operation.

• The necessary tasks and their relationships for the design, im-
plementation and operation.

• The artifacts that are created and required by the different tasks.

• The tools that are needed to process the different tasks.

• The processes that describe the order of tasks to implement a
certain feature of the software system.

Additionally, it has been described in Section A.9 how the con-
ceptual framework can be used with common software development
methodologies.

To review the achievements on a more conceptual level, the main
contribution of this thesis is the reconcilability of previously opposed
properties of a system, that is, optimization for high throughput on



6.2 limitations 125

one side, and optimization for low end-to-end latency on the other
side. The approach shifts the decision for an optimization from the
design-time to the run-time of the system. The work in this thesis
has shown, that a system is able to satisfy both extremes by seam-
lessly shifting the optimization between these two extremes using an
adaptive approach.

Several aspects of the results achieved in this research project have
been presented at refereed conferences and have received positive
comments from reviewers and delegates.

6.2 limitations

Despite having met the objectives of this research project, this re-
search has some limitations, that are summarized below:

• The services that implement the business functionality of the
system need to be explicitly designed to support the run-time
adaption between single-event and batch processing, as described
in Section 5.5.1. Therefore, existing services need to be changed
in order to be integrated into the system. This can pose a prob-
lem when using off-the-shelf services or SaaS! (SaaS!). The in-
tegration of such services has not been considered in this re-
search.

• The services integrated by the prototype do not implement any
further optimizations for batch processing. They use the same
implementation for batch and single-event processing. Thus, the
impact of batch optimizations has not been investigated. This
was not necessary to show the performance improvements of
message aggregation on the maximum throughput of the mes-
saging prototype.

• The adaption mechanisms of the Adaptive Middleware only uses
message aggregation and message routing, depending on the
aggregation size. Other mechanisms such as dynamic service
composition and selection and load balancing have not been
investigated.

• The prototype of the Adaptive Middleware only uses a single mes-
sage queue, the integrated services are called synchronous, us-
ing a request/response pattern. This design was chosen, to sim-
plify the dynamics of the system. Thus, the impact of using
multiple message queues has been investigated in the evalua-
tion.

• The impact of different controller architectures has not been ex-
haustively analyzed and researched. Only two controller archi-
tectures have been implemented and evaluated. Other controller



126 conclusion

designs, such as fuzzy control, have not been investigated. Ad-
ditionally, a formal analyzation of the feedback-control system
has not been conducted, for example by creating a model of
the system. Instead, an empirical approach has been taken to
evaluate the viability of the proposed solution.

• The Conceptual Framework has not been validated, for example
by qualitative research methods, such as expert interviews, or
applied with real-life projects.

Despite these limitations, the research project has made valid con-
tributions to knowledge and provided sufficient proof of concept for
the proposed approaches.

6.3 future work

The research project has advanced the field of systems for bulk data
processing. However, a number of areas for future work can be iden-
tified that build on the achieved results.

• The adaptive middleware uses a single aggregator, that aggre-
gates messages after they have been read from the input mes-
sage queue of the system. The aggregator is controlled by a
closed feedback-loop that controls the aggregation size based
on the current load of the system. It could be interesting to in-
vestigate how this approach scales for a system consisting of
multiple sub-systems, each sub-system consisting of an input
message queue and an aggregator. These aggregators need to
be a combination of an aggegrator and splitter to decrease the
aggregation size of messages that are aggregated by preceding
sub-systems. A question of interest is the type of control strat-
egy that is needed for this kind of systems. Does a decentralized
control strategy work, with every subsystem having its own in-
dependent control-loop or is central approach necessary?

• The aggregator used by the adaptive middleware uses static cor-
relation rules to aggregate messages. Depending on the type of
input data, it could be necessary to adapt these rules at run-
time. For example to change the correlation rule from a sim-
ple correlation, where messages are aggregated in the order in
which they occur to a more complex correlation rule based on
business rules. It is thinkable that this adaption can be automat-
ically performed by the system without manual changes.

• The proposed adaptive middleware uses dynamic message ag-
gregation to optimize the end-to-end latency of a data process-
ing system. The concept could be extended to use other adap-
tion mechanisms, such as dynamic service composition and se-
lection and load balancing. Additionally, further performance



6.3 future work 127

optimization techniques such as caching or dynamic scaling
could be investigated by further research.

• The concept for the adaptive middleware has only been eval-
uated using a prototype using simulated data. No experience
has been made so far using this approach in real-life projects. It
could be of interest how this approach is transferrable to real
enterprise systems.

• The Conceptual Framework described in Appendix A has not
been validated. The concept could be evaluated by conducting
expert interviews using qualitative research methods or by de-
veloping a case study.

In addition to these areas, that are directly based on the results of
this thesis, a vision for an adaptive system for bulk data processing
could include self-optimization capabilities to autonomously choose
the best optimization strategy for the given situation. Furthermore,
the system could not only react on changes of its environment, but
also proactively change its behavior by applying machine-learning
techniques to detect patterns, for example in utilization or input data,
and adapt itself accordingly. These self-optimization changes could
include pre-defined strategies or new or adapted strategies proposed
by the system itself. Pre-defined strategies could include, among other
things, the adaption of data granularity, as examined in this thesis, or
dynamic scaling of server instances. In addition, the system could
autonomously propose new optimization strategies or change exist-
ing strategies, test and refine them using techniques from generative
programming.





A
A C O N C E P T U A L F R A M E W O R K T O G U I D E T H E
D E V E L O P M E N T O F F E E D B A C K - C O N T R O L L E D
B U L K D ATA P R O C E S S I N G S Y S T E M S

a.1 introduction

The concept for an adaptive Middleware for bulk data processing
presented in chapter 5 describes the “What” (what needs to be done)
but not the “How” (how should it be done).

The design, implementation and operation of such a system differs
from common approaches to implement enterprise systems:

• There are specific activities or tasks needed to implement the
feedback-control subsystem.

• There are roles needed with different skills.

• There are different tools needed to aid the design, development
and operation of such a system.

Developing software is a complex process, the quality of a soft-
ware product depends on the people, the organization and proce-
dures used to create and deliver it (Fuggetta, 2000). In order to guide
the implementation of an adaptive system for bulk data processing, a
conceptual framework is needed. It defines artifacts, roles, tasks and
their dependencies, and processes to describe the necessary steps for
design, implementation and operation of a system described in Chap-
ter 5.

Figure 56 shows an overview of the conceptual framework. It is
organized among the phases plan, build and run. Each phase contains
tasks, which are relevant for each phase:

• Plan
Contains tasks for designing the business and technical archi-
tecture of the system, tasks for defining and evaluating perfor-
mance tests, and tasks for managing the development process.

• Build
Contains tasks for implementing the system, such as implement-
ing the integration architecture, implementing the feedback-control
subsystem, and tuning the the controller.

• Run
Contains tasks for operating the system, such as monitoring,
setup and tuning.

129



130 conceptual framework

TestPlan

Project Management

Business Architecture

Service 
Definitions

Aggregation 
Rules

System Architecture

Integration 
Architecture Routing Rules Controller 

Design

Training

Build

Integration

Tuning
Run

Monitoring Setup Performance 
Management

Performance 
Tests

Evaluation

Staffing

Tuning

Project 
Environments

Services

Routing

Aggregation

Feedback 
Control

Figure 56: Overview of Conceptual Framework

The conceptual framework uses UML 2.0 notation elements and di-
agrams, such as class diagrams, activity diagrams and use-case dia-
grams to describe the development process. It consists of the follow-
ing packages, as shown in Figure 57:

• Metamodel
Contains elements and class-diagrams for describing the meta-
model of the conceptual framework.

• Tasks
Contains elements describing the tasks of the conceptual frame-
work.

• Roles
Contains elements and use-case diagrams for describing the
roles of the conceptual framework.

• Processes
Contains activity diagrams for describing the processes of the
conceptual framework.

• Artifacts
Contains elements to describe the artifacts of the conceptual
framework.

• Phases
Contains elements to describe the phases of the conceptual frame-
work.



A.2 metamodel 131

• Tools
Contains elements to describe the tools needed for processing
the tasks of the conceptual framework.

Figure 57: Package structure

The conceptual framework only describes concepts that are spe-
cific to the design and implementation of an Adaptive Middleware
as described in Chapter 5. It does not describe common concepts for
software development.

This chapter is organized as follows:

• Section A.2 describes the metamodel of the conceptual frame-
work.

• The entities of the process model, roles, tasks, artifacts and tools,
are described in the Sections A.4, A.5, A.7 and A.8.

• Section A.9 describes how the conceptual framework can be
used with other architectural frameworks and software devel-
opment methodologies such as TOGAF, Rational Unified Pro-
cess (RUP) and Scrum.

• Section A.10 discusses other related approaches and work.

• Finally, this chapter concludes with a summary and a discus-
sion of the presented conceptual framework (see Section A.11).

a.2 metamodel

The conceptual framework consists of the following entities, as shown
in Figure 58:



132 conceptual framework

• Phase
Phases correspond to the different phases of a software develop-
ment lifecycle, such as design, implementation and operations
and contain the relevant tasks.

• Task
Tasks represent the activities of the development process. A task

– is contained in a phase

– is processed by a role

– produces and requires artifacts

– uses tools

• Role
Roles represent types of actors with the needed skills to process
specific tasks.

• Artifact
An artifact represents the result of a tasks. Additionally, an arti-
fact is a requirement of a tasks.

• Tool
A tool is used by a tasks to produce its artifact.

• Process
A process contains an ordered list of tasks that need to be pro-
cessed in a certain order.

Task

Role

ArtifactPhase

Tool

processes

uses

contains
1..*

1..*

1..*

1..*

1..*

1..*

1

1 1..* 1..*

produces

requires

Process

1..*

1..*

contains

Figure 58: Metamodel



A.3 phase 133

a.3 phase

Phases are the top-level entities of the conceptual framework. They
correspond to the different phases of the software development life-
cycle and are a mean to group the different tasks of the framework.

A phase is described by the following attribute, as shown in Figure
59:

• Name
Name of the phase.

• Description
Description of the phase.

• Tasks
The tasks that the phase contains.

• Roles
The needed roles by the phase.

Figure 59: Attributes of a phase

The conceptual framework defines the following phases:

• Plan
The plan phase contains tasks relevant for the analysis and de-
sign of the system, such as the definition of the service inter-
faces, definition of the integration architecture and definition of
performance tests.

• Build
The build phase contains tasks relevant for the implementation



134 conceptual framework

of the system, such as the implementation of services, imple-
mentation of the integration layer and the implementation of
the feedback-control subsystems.

• Run
The run phase contains tasks relevant to the operation of the
developed system, such as monitoring, setup and tuning.

It should be noted that the framework defines no requirements re-
garding the general order or mode in which theses phases and their
tasks should be processed. It is therefore possible to use this frame-
work with different software development methodologies such as the
Waterfall model, Scrum or the V-Model.

a.3.1 Plan

Table 12: Phase: Plan

Phase Plan

Description This phase contains tasks concerning the technical and
business design of the system.

Tasks

• Define Service Interfaces

• Define Aggregation Rules

• Define Integration Architecture

• Define Routing Rules

• Define Controller Architecture

• Define Performance Tests

• Evaluate Test Results

• Perform Staffing

• Define Training Concept

• Source Project Environments



A.3 phase 135

Roles

• Project Manager

• Business Analyst

• System Architect

• Test Engineer

a.3.2 Build

Table 13: Phase: Build

Phase Build

Description This phase contains tasks concerning the implementa-
tion of the system.

Tasks

• Implement Integration Architecture

• Implement Service Interfaces

• Implement Aggregation Rules

• Implement Routing Rules

• Implement Feedback-Control

• Perform Controller Tuning

Roles Software Engineer

a.3.3 Run

Table 14: Phase: Run

Phase Run

Description This phase contains tasks concerning the operation of
the implemented system in the production environ-
ment.



136 conceptual framework

Tasks

• Setup Monitoring Infrastructure

• Setup Test Environment

• Perform Performance Tests

Roles

• Operations Engineer

• Test Engineer

a.4 roles

Roles represent the actors, which process tasks, that is, they describe
who does something. The description of a role contains its responsi-
bilities and needed skills. A role is not the same as a person, a single
person can have multiple roles and change the role according to the
context of the current task.

A role is described by the following attributes, as shown in Figure
60:

• Name
The name of the role.

• Description
Description of the responsibilities of the role.

• Tasks
The tasks the role is responsible to process.

• Needed skills
The skills the role has to have in order to successfully process
its tasks.

The Conceptual Framework defines the following roles:

• Business Architect
The business architect is responsible for defining the business
architecture of the software system.

• System Architect
The system architect is responsible for defining the technical
architecture of the software system.

• Software Engineer
The software engineer is responsible for implementing the soft-
ware system.



A.4 roles 137

Figure 60: Attributes of a role

• Test Engineer
The test engineer is responsible for defining and performing the
system test.

• Operations Engineer
The operations engineer is responsible for all aspects concerned
with running the developed software system.

• Project Manager
The project manager is responsible for managing the software
development process.

a.4.1 Business Architect

Define
Aggregation 

Rules

Business 
Architect

Define
Service 

Interfaces

Figure 61: Role: Business Architect



138 conceptual framework

Table 15: Business Architect

Role Business Architect

Description The Business Architect is responsible for designing
the business architecture of the system, including the
definition of services and aggregation rules.

Tasks

• Define Service Interfaces

• Define Aggregation Rules

Needed skills

• Integration styles and patterns, e.g. SOA

• Concepts of the Adaptive Middleware for Bulk
Data Processing

• Business domain knowledge

a.4.2 System Architect

Define
Controller 

Architecture

System 
Architect

Define
Integration 

Architecture

Define
Router Rules

Figure 62: Role: System Architect



A.4 roles 139

Table 16: System Architect

Role System Architect

Description The System Architect is responsible for designing
the technical architecture of the system, including
the integration and controller architecture.

Tasks

• Define Integration Architecture

• Define Controller Architecture

Needed skills

• System modeling languages, e.g. UML and
tools

• Integration styles and patterns, e.g. SOA

• Processing styles, e.g. batch and single-event
processing

• Integration middleware technologies and prod-
ucts, e.g. Apache Camel, ESB

• Concepts of the Adaptive Middleware for Bulk
Data Processing

• Control theory

a.4.3 Software Engineer

Software 
Engineer

Implement 
Integration 

Architecture

Implement 
Service 

Interfaces

Implement 
Routing Rules

Implement 
Aggregation 

Rules

Implement 
Feedback-

Control

Perform 
Controller 

Tuning

Figure 63: Role: Software Engineer



140 conceptual framework

Table 17: Software Engineer

Role Software Engineer

Description The Software Engineer is responsible for the imple-
mentation of the system, including the implementa-
tion and tuning of the feedback-control loop.

Tasks

• Implement Integration Architecture

• Implement Service Interfaces

• Implement Aggregation Rules

• Implement Routing Rules

• Implement Feedback-Control

• Perform Controller Tuning

Needed skills

• Integration styles and patterns, e.g. SOA

• Processing styles, e.g. batch and single-event
processing

• Batch optimizations

• Integration middleware technologies and prod-
ucts, e.g. Apache Camel, ESB

• Concepts of the Adaptive Middleware for Bulk
Data Processing

• Control theory

a.4.4 Test Engineer

Table 18: Test Engineer

Role Test Engineer

Description The Tester is responsible for defining and perform-
ing the performance tests of the system.



A.4 roles 141

Tasks

• Define Performance Tests

• Perform Performance Tests

• Evaluate Performance Tests

Needed skills

• Design and evaluation of performance tests

• Concepts of the Adaptive Middleware for Bulk
Data Processing

• Control theory (basics)

a.4.5 Operations Engineer

Table 19: Operations Engineer

Role Operations Engineer

Description The Operations Engineer is responsible for operating
the system, including setup, deployment and moni-
toring.

Tasks

• Setup Monitoring Infrastructure

• Setup System Environments

• Perform System Tuning

Needed skills

• Monitoring technologies and products, e.g. JMX

• Concepts of the Adaptive Middleware for Bulk
Data Processing



142 conceptual framework

Define 
Performance 

Tests

Perform 
Performance 

Tests

Evaluate Test 
Results

Test 
Engineer

Figure 64: Role: Test Engineer

Operations 
Engineer

Setup 
Monitoring 

Infrastructure

Setup System 
Environments

Perform 
System Tuning

Figure 65: Role: Operations Engineer



A.5 tasks 143

a.4.6 Project Manager

Project 
Manager

Perform 
Staffing

Define 
Training 
Concept

Source Project 
Environments

Figure 66: Role: Project Manager

Table 20: table
Project Manager

Role Project Manager

Description The Project Manager is responsible for the project
coordination, including the staffing and planing
of the required environments.

Tasks

• Perform Staffing

• Define Training Concept

• Source Project Environments

Needed skills

• Framework for Feedback-Controlled Bulk
Data Processing Systems

• Concepts of the Adaptive Middleware for
Bulk Data Processing

a.5 tasks

Tasks are the main entities of the conceptual framework. A Tasks de-
scribes what should be done, why should it be done, and who should
do it. Additionally, it describes the required and produced artifacts,



144 conceptual framework

the tools that should be used to process the task and the expected
challenges.

Tasks depend on each other, some tasks must be processed in a
certain order. A task can have multiple subtasks.

The Conceptual Framework only describes tasks that are specific
to the design and implementation of an Adaptive Middleware for
Bulk Data Processing as described in chapter 5. It does not describe
common tasks or activities that are needed for every software system.

Figure 67 shows an overview of the tasks grouped by the different
phases of the Conceptual Framework.

Plan

Project Management

Business Architecture

Define
Service 

Interfaces

Define
Aggregation 

Rules

System Architecture

Define
Integration 

Architecture
Define

Routing Rules
Define

Controller 
Architecture

Define
Training 
Concept

Build

Implement 
Integration 

Architecture

Implement 
Service 

Interfaces

Implement 
Routing Rules

Implement 
Aggregation 

Rules

Implement 
Controller

Perform 
Controller 

Tuning

Run
Setup 

Monitoring 
Infrastructure

Setup Test 
Environment

Perform 
Performance 

Tests

Test

Define
Performance 

Tests

Evaluate Test 
Results

Perform 
Staffing

Source 
Project 

Environments

Figure 67: Overview of tasks

Tasks are organized in different packages, as shown in Figure 68:

• Business Architecture
Contains tasks concerned with the business architecture of the
system.

• System Architecture
Contains tasks concerned with the system architecture of the
system.

• Implementation
Contains tasks concerned with the implementation of the sys-
tem.

• Test
Contains tasks concerned with the test of the system.

• Operation
Contains tasks concerned with the operation of the system.



A.5 tasks 145

• Project Management
Contains tasks concerned with management of the development
process.

Figure 68: Sub packages of the Tasks package

A Task is described by the following attributes, as shown in Figure
69:

• Name
The name of the task.

• What
Describes the content of the task.

• Why
Describes the purpose of the task.

• Who
Describes the roles, that are responsible for processing the task.

• Input
The required artifacts of the task.

• Output
The artifacts produced by the task.

• Tools
The tools that are needed to process the task.

• Challenges
Describes the expectable challenges when processing the task.

The following tasks are defined:

• Business Architecture

– Define Performance Requirements



146 conceptual framework

Figure 69: Attributes of a task



A.5 tasks 147

– Define Service Interfaces

– Define Aggregation Rules

• System Architecture

– Define Integration Architecture

– Define Routing Rules

– Define Controller Architecture

* Define Control Problem

* Define Input/Output Variables

– Define Routing Rules

• Implementation

– Implement Feedback-Control Loop

– Create System Model / Perform System Identification

– Perform Static Tests

– Perform Step Tests

– Perform Controller Tuning

– Implement Integration Architecture

– Implement Service Interfaces

– Implement Aggregation Rules

– Implement Routing Rules

• Test

– Define Performance Tests

– Evaluate Performance Test Results

• Operation

– Setup Monitoring infrastructure

– Setup Test and Integration Environment

– Perform Performance Tests

• Project Management

– Define Training Concept

– Perform Staffing

a.5.1 Business Architecture

This packages contains tasks concerned with defining the business
architecture of the system. The business architecture defines the busi-
ness components of the system and their relationships independently
of the technical implementation. It contains only tasks that are spe-
cific to the development of the adaptive middleware.



148 conceptual framework

Define
Aggregation 

Rules

Business 
Architect Define

Service 
Interfaces

Define
Business 

Architecture

<extends>

<extends>

Figure 70: Tasks extending the definition of the business architecture

a.5.1.1 Define Performance Requirements

Table 21: Define Performance Requirements

Task Define Performance Requirements

What This task is concerned with the definition of the perfor-
mance requirements of the system, including

• Definition of workload scenarios

• Definition of the adaptive features of the system

• Definition of requirements regarding throughput
and latency of the system

– What is the required range (minimum/max-
imum) of latency of the system?

– What is the required range (minimum/max-
imum) of throughput of the system?

Why The performance requirements are needed for the de-
sign of the system architecture.

Who

• Business Analyst

• System Architect



A.5 tasks 149

Output Performance Requirements

Challenges The performance requirements must be explicitly de-
fined in a way that they can be evaluated.

a.5.1.2 Define Service Interfaces

Table 22: Define Service Interfaces

Task Define Service Interfaces

What This task is concerned with the definition of the service
interfaces, that together implement the business func-
tionality of the system, including:

• Structuring the functionality of the system into
business services

• Defining the needed services and their operations.
Every service needs operations for single event
and batch processing, with the following options
(see Section 5.5.1 for details).

– Distinct operations for batch and single
event processing

– Common operation for both processing
styles

• Evaluating which services already exist or need
to be implemented or adapted.

• Defining the structure of input and output data.
This does not include informations about the tech-
nical format, such as XML or JSON, and the integra-
tion style, such SOAP or REST.

Why

• Defines the business components (services) of the
system

• Basis for the definition of the integration architec-
ture and the implementation of the services

Who Business Architect

Output Service Interface Definitions



150 conceptual framework

Challenges Finding the appropriate services and service granular-
ity.

a.5.1.3 Define Aggregation Rules

Table 23: Define Aggregation Rules

Task Define Aggregation Rules

What This task is concerned with the definition of rules used
in the aggregator for correlating events. There are dif-
ferent options for the aggregation (see Section 5.3.1 for
details):

• No correlation: Messages are aggregated in the
order in which they are read from the input mes-
sage queue. In this case, an optimized processing
is not simply possible.

• Technical correlation: Messages are aggregated
by their technical properties, for example by mes-
sage size or message format.

• Business correlation: Messages are aggregated by
business rules, for example by customer segments
or product segments.

Why The aggregation Rules are needed by the Aggregator to
correlate events.

Who

• Business Architect

• System Architect

Output Aggregation Rules

Challenges

• Finding aggregation rules that allows for an even
distribution of events.

• Rules using the technical correlation of events can
be defined only after the definition of the integra-
tion architecture.



A.5 tasks 151

a.5.2 System Architecture

This package contains tasks concerned with the system architecture
of the system. The system architecture defines the technical archi-
tecture of the system. It contains only tasks that are specific to the
development of the adaptive middleware.

Define
Controller 

Architecture

System 
Architect

Define
Integration 

Architecture

Define
Router Rules

Define
System 

Architecture

<extends>

<extends>

<extends>

Figure 71: Tasks extending the definition of the system architecture

a.5.2.1 Define Integration Architecture

Table 24: Define Integration Architecture

Task Define Integration Architecture



152 conceptual framework

What This task is concerned with the definition of the inte-
gration architecture of the system, including

• Definition of communication styles, such as

– Synchronous communication

– Asynchronous communication

• Choosing a middleware technology or product

• Definition of transports, for example

– JMS

– SOAP

– REST

– FTP

– DB

• Different transports and integration patterns need
to considered for different aggregation sizes (see
Section 5.5.2 for details).

Why The integration architecture defines the technologies to
integrate the services into the system.

Who System Architect

Input Service Interface Definitions

Output Integration Architecture

Challenges Choosing the appropriate middleware technology and
or product.

a.5.2.2 Define Routing Rules

Table 25: Define Routing Rules

Task Define Routing Rules

What This task is concerned with the definition of the routing
rules used by the message router. The message router
routes the messages to the appropriate service end-
point, depending on the aggregation size of the mes-
sage (see Section 5.3.2 for details). This tasks includes

• Defining which service endpoint should be called
for a given aggregation size.



A.5 tasks 153

Why The routing rules define, which service endpoint
should be called for a given aggregation size to facil-
itate optimized processing for single-event and batch
processing.

Who System Architect

Input Integration Architecture

Output Routing Rules Definition

Challenges Finding the data aggregation threshold to route mes-
sages to the appropriate service endpoint.

a.5.2.3 Define Controller Architecture

Table 26: Define Controller Architecture

Task Define Controller Architecture

What This task is concerned with the definition of the con-
troller architecture, including

• Defining the controller type, for example

– PID Controller

– Fuzzy Controller

• Defining sensors and actuators and their distribu-
tion architecture

• Defining filters and additional components of the
control-loop.

• Depends on the Control Problem and the system
dynamics (linear, non-linear).

Why The Controller Architecture is the basis for the implemen-
tation of the feedback-control loop to control the mes-
sage aggregation size at run-time

Who System Architect

Input

• Integration Architecture

• Control Problem



154 conceptual framework

Output Controller Architecture

Challenges Finding the right Controller Architecture is an iterative
process. A simple solution should be used initially,
which should be refined when the system is imple-
mented. Alternatively, a simulation can be used to eval-
uate the Controller Architecture beforehand.

a.5.2.4 Define Control Problem

Table 27: Define Control Problem

Task Define Control Problem

What This task is concerned with the definition of the Control
Problem, including

• Defining what properties of the system should be
controlled.

• In case of the Adaptive Middleware (see Chapter
5) the control problem is already defined.

Why The Control Problem defines the goal of the feedback-
control.

Who System Architect

Output Control Problem

Challenges The Control Problem is not in all cases obvious and needs
to be derived from the Performance Requirements of the
system.

a.5.2.5 Define Input/Output Variables

Table 28: Define Input/Output Variables

Task Define Input/Output Variables



A.5 tasks 155

What This task is concerned with the definition of the input
and output variables used by the controller, for exam-
ple

• Number of messages in the system

• Input queue length

• Current end-to-end latency

• Current throughput

Why The Input/Output Variables are needed for the imple-
mentation of the controller.

Who System Architect

Input Control Problem

Output Input/Output Variables

Challenges The selected input variables should be measured easily
and directly, without delay such as when calculating
averages.

a.5.3 Implementation

This package contains specific tasks that are concerned with the im-
plementation of an adaptive system for bulk data processing.

a.5.3.1 Feedback-Control Loop

Table 29: Implement Feedback-Control Loop

Task Implement Feedback-Control Loop



156 conceptual framework

What This task is concerned with the implementation of the
Controller Architecture, including

• Implementation of sensors

• Implementation of the controller

• Implementation of actuators

• Implementation of additional components, such
as filters

• Implementation of monitoring components, such
as JMX beans

• Implementation of mechanisms for performing
static and step tests

Why The Feedback-Control Loop implements the automatic
adjustment of data granularity at runtime.

Who Software Engineer

Input Controller Architecture

Challenges The implementation of the feedback-control loop
should provide the appropriate performance for collect-
ing and aggregating sensor data.

a.5.3.2 Perform Static Tests

Table 30: Perform Static Tests

Task Perform Static Tests

What Perform static tests in order to determine the static be-
havior of the system. See Section 5.7.3 for details.

Why The static behavior of the system is needed to deter-
mine the characteristics of the system.

Who System Architect

Output Static Test Results

Tools

• Tools for data processing

• Tools for data visualization



A.5 tasks 157

Challenges The system needs to be already implemented. Alterna-
tively, an appropriate model of the system can be used.

a.5.3.3 Perform Step Tests

Table 31: Perform Step Tests

Task Perform Step Tests

What Perform step tests to determine the dynamic behavior
of the system.

Why The dynamic behavior of the system is needed for
building a model of the system and to tune the con-
troller.

Who System Architect

Output Step Test Results

Tools

• Tools for data processing

• Tools for data visualization

Challenges The system needs to be already implemented. Alterna-
tively, an appropriate model of the system can be used.

a.5.3.4 Create System Model / Perform System Identification

Table 32: Create System Model / Perform System Identification

Task Create System Model / Perform System Identification

What Build a model of the system.

Why The system model is used to build a simulation of the
system, which can be used for implementing the con-
troller.

Who System Architect

Input Static and dynamic behavior of the system

Output System Model

Tools Tools for system modeling and system identification



158 conceptual framework

Challenges The Software Engineer needs to have a profound knowl-
edge of controller theory and system identification in
order to build a relevant model of the system.

a.5.3.5 Perform Controller Tuning

Table 33: Perform Controller Tuning

Task Perform Controller Tuning

What This task is concerned with the tuning of the imple-
mented controller.

• The Controller Tuning can either be done using
the implementation of the system or with using a
model of the system, alternatively.

• The specific tuning depends on the chosen Con-
troller Architecture.

Why The Controller needs to be adjusted to the system char-
acteristics.

Who Software Engineer

Input Controller Architecture

Output Controller Configuration

Tools Tools for Simulation

Challenges The software engineer needs to have a profound knowl-
edge of controller theory and the controller architecture
in order to properly tune the implemented controller.

a.5.3.6 Implement Service Interfaces

Table 34: Implement Service Interfaces

Task Implement Service Interfaces

What This task is concerned with the implementation of the
business services, including

• Implementation of batch operations

• Implementation of single-event operations



A.5 tasks 159

Why The services implement the business functionality of
the system.

Who Software Engineer

Input Service Interface Definitions

Challenges Implementing appropriate optimizations for batch and
single-event processing.

a.5.3.7 Implement Aggregation Rules

Table 35: Implement Aggregation Rules

Task Implement Aggregation Rules

What This task is concerned with the implementation of the
message aggregation, including

• Implementation and configuration of the Aggre-
gator component.

• Implementation of the aggregation rules.

The Aggregation Rules should be configurable during
run-time or configuration-time and should not be hard-
coded.

Why The aggregator component is responsible for aggregat-
ing events according to the aggregation rules and is one
of the main building blocks of the Adaptive Middle-
ware (see Chapter 5).

Who Software Engineer

Input Aggregation Rules

Challenges Implementation of mechanisms to dynamically load ag-
gregation rules at run-time or configuration-time.

a.5.3.8 Implement Routing-Rules

Table 36: Implement Routing Rules

Task Implement Routing Rules



160 conceptual framework

What This task is concerned with the implementation of the
message routing, including

• Implementation and configuration of the Router
component.

• Implementation of the routing rules.

The Routing Rules should be configurable during run-
time or configuration-time and should not be hard-
coded.

Why The message router routes messages to the appropriate
service endpoint depending on the current aggregation
size. It is one of the main building blocks of the Adaptive
Middleware (see Section 5.3.2 for details).

Who Software Engineer

Input Routing Rules

Challenges Implementation of mechanisms to dynamically load
routing rules at run-time or configuration-time.

a.5.4 Test

This package contains the specific tasks that are concerned with the
test of an adaptive system for bulk data processing.

a.5.4.1 Define Performance Tests

Table 37: Define Performance Tests

Task Define Performance Tests

What This task is concerned with the definition of the perfor-
mance tests, including

• Definition of load scenarios

• Definition of test data

• Definition of the test environment

• Implementation of the workload generator

• Implementation of tools and scripts for the evalu-
ation and data visualization



A.5 tasks 161

Why The Performance Test Concept defines what should be
done to test whether the system meets its performance
requirements.

Who Test Engineer

Output Performance Test Concept

Tools

• Tools for data processing

• Tools for data visualization

Challenges The performance test should include tests concerning
the adaptive behavior of the system.

a.5.4.2 Evaluate Performance Test Results

Table 38: Evaluate Performance Test Results

Task Evaluate Performance Test Results

What Visualize the test results using the tools/scripts imple-
mented in the task Define Performance Tests.

Why The performance test evaluation is conducted to under-
stand the performance characteristics of the system.

Who

• Test Engineer

• System Engineer

Input Performance Test Result

Output Performance Test Evaluation

Tools

• Tools for data processing

• Tools for data visualization

a.5.5 Operations

This package contains the specific tasks that are concerned with the
operation of an adaptive system for bulk data processing.



162 conceptual framework

a.5.5.1 Setup Monitoring infrastructure

Table 39: Setup Monitoring infrastructure

Task Setup Monitoring infrastructure

What Setting up the monitoring infrastructure, including

• Integrating the monitoring facilities (for example
JMX Beans) of the system into the existing moni-
toring infrastructure.

Why The monitoring infrastructure is needed to monitor the
system at run-time. Based on the monitoring the opera-
tion engineer is able to further tune the system.

Who Operations Engineer

Input System Architecture

Challenges The infrastructure needs to be adjusted to the adaptive
capabilities of the system.

a.5.5.2 Setup Test Environment

Table 40: Setup Test Environment

Task Setup Test Environment

What Setup up the test environment used for the perfor-
mance tests, including

• Setup / Mock external Services

• Setup test data

• Deployment of the system to the test environment

Why The test environment is needed to perform the perfor-
mance tests.

Who Operations Engineer

Input Performance Test Concept



A.5 tasks 163

Challenges

• The test environment should be comparable to
the production environment to get valid test re-
sults.

• Additionally, the test data should also be compa-
rable to production data.

a.5.5.3 Perform Performance Tests

Table 41: Perform Performance Tests

Task Perform Performance Tests

What Perform the tests as defined by the task Define Perfor-
mance Tests.

Why The performance tests are necessary to assure that the
system meets the performance requirements.

Who Test Engineer

Input Performance Test Concept

Output Performance Test Results

Challenges To ensure the reliability of the performance test results,
the tests should be run multiple times. This is often dif-
ficult with regard of the needed resources for the per-
formance test, such as availability of external systems.

a.5.6 Project Management

This package contains specific tasks that concerned with the manage-
ment of the development process an adaptive system for bulk data
processing.

a.5.6.1 Define Training Concept

Table 42: Define Training Concept

Task Define Training Concept



164 conceptual framework

What Definition of the training concept, including

• Definition of target audience, for example Opera-
tion Engineers, System Engineers

• Definition of training content, for example

– Discussion of the different operation modes
(batch, single event processing)

– Performance characteristics (regarding la-
tency and throughput) depend on current
operation mode

– Tuning options (Controller, Aggregation
Rules, Routing Rules)

Why

• The operation engineers need to have the knowl-
edge to operate and tune the system in produc-
tion.

• Additionally, the team members also need to have
the knowledge to design and implement the sys-
tem.

Who System Architect

Input

• Business Architecture

• System Architecture

• Controller Architecture

Output Training Concept

Challenges The Training Concept should consider the respective au-
dience and its existing knowledge.

a.5.6.2 Perform Staffing

Table 43: Staffing

Task Perform Staffing



A.6 processes 165

What This task is concerned with the staffing of the project.
There are special skills needed for staffing the project,
for example

• Know how about the adaptive middleware con-
cepts as introduced in Chapter 5.

• Controller design, implementation, and tuning

Why The Staffing Plan is needed to get the appropriate team
members with the needed skills.

Who Project Manager

Output Staffing Plan

Challenges It may be hard to find the right project members with
the needed skill-set, since control theory is not a com-
mon skill of enterprise software developers. In this case,
an appropriate training should be considered upfront.

a.6 processes

A process contains an ordered list of tasks that are concerned with the
implementation of a certain feature of the software system. Processes
are modeled using UML activity diagrams. The conceptual framework
describes the following processes:

• Implement Integration

• Implement Aggregation

• Implement Feedback-Control

a.6.1 Implement Integration

This process describes the necessary tasks to implement the integra-
tion layer and the integrated service interfaces. It contains the follow-
ing tasks, as shown in Figure 72

Figure 73 shows the UML activity diagram of the process.

a.6.2 Implement Aggregation

This process is concerned with the implementation of the message
aggregation. It contains the following tasks, as shown in Figure 74

Figure 75 shows the UML activity diagram of the process.



166 conceptual framework

Figure 72: Tasks of the process Implement Integration

Figure 73: UML Activity Diagram: Implement Integration



A.6 processes 167

Figure 74: Tasks of the process Implement Aggregation

Figure 75: UML Activity Diagram: Implement Aggregation



168 conceptual framework

a.6.3 Implement Feedback-Control

This process contains tasks that are concerned with the design, im-
plementation and tuning of the feedback-control loop. It contains the
following tasks, as shown in Figure 76.

Figure 76: Tasks for implementing the feedback-control loop

There are two options for implementing the feedback-control loop:

• Using a system model for performing the controller tuning, as
shown in the UML activity diagram in Figure 77.

• Without using a model, the control architecture needs to be im-
plemented prior to the controller tuning, as shown in the UML

activity diagram in Figure 78.

a.7 artifacts

An artifact is a result of a task. It is an intermediate result, that is
needed for development of the software, but not the software product
itself. Additionally, it can also be prerequisite of another task.

The conceptual framework only describes artifacts that are specific
for the implementation of the adaptive middleware as described in
Chapter 5. Artifacts that are common to every software development
process are out of scope.

An artifact is described by the following attributes, as shown in
Figure 69:

• Name
The name of the artifact.

• Description
A description of the artifact.

• Task
The task that produces the artifact.



A.7 artifacts 169

Figure 77: UML Activity Diagram: Implement Feedback-Control Loop using
a model



170 conceptual framework

Figure 78: UML Activity Diagram: Implement Feedback-Control Loop with-
out using a model



A.7 artifacts 171

TestPlan

Project Management

Business Architecture

System Architecture

Build

Run

Staffing Plan Training 
Concept

Integration 
Architecture

Controller 
ArchitectureRouting Rules

Aggregation 
Rules

Service 
Definitions

Controller 
Configuration

Performance 
Test Concept

Test Results

Figure 79: Artifacts

• Role
The role that is responsible for producing the artifact.

The conceptual framework describes the following artifacts:

• Performance Requirements

• Service Interface Definition

• Aggregation Rules

• Integration Architecture

• Routing Rules

• Controller Architecture

• System Model

• Controller Configuration

• Performance Test Concept

• Training Concept

• Staffing Plan

a.7.1 Performance Requirements

Table 44: Performance Requirements



172 conceptual framework

Artifact Performance Requirements

Description

• Defines the structure of input and output data

• Does not include informations about the techni-
cal format, such as XML or JSON, and the integra-
tion style, such SOAP or REST

Task Define Performance Requirements

Role

• Business Architect

• System Architect

a.7.2 Service Interface Definition

Table 45: Service Interface Definition

Artifact Service Interface Definition

Description

• Defines the structure of input and output data

• Does not include informations about the techni-
cal format, such as XML or JSON, and the integra-
tion style, such SOAP or REST

Task Define Service Interfaces

Role Business Architect

a.7.3 Aggregation Rules

Table 46: Aggregation Rules

Artifact Aggregation Rules

Description Defines how events should be correlated with each
other by the Aggregator.

Task Define Aggregation Rules



A.7 artifacts 173

Role

• Business Architect

• System Architect

a.7.4 Integration Architecture

Table 47: Integration Architecture

Artifact Integration Architecture

Description Defines the technical integration of the business ser-
vices, including

• Middleware technology or product

• Transports, such as JMS, SOAP or FTP

• Technical format of the input and output data,
such as XML or JSON, CSV or binary formats.

Task Define Integration Architecture

Role System Architect

a.7.5 Routing Rules

Table 48: Routing Rules

Artifact Routing Rules

Description Defines which service endpoint should be called by the
Router for a given aggregation size.

Task Define Routing Rules

Role System Architect

a.7.6 System Model

Table 49: System Model

Artifact System Model



174 conceptual framework

Description The system model is used to build a simulation of the
system which can be used for implementing the con-
troller.

Task System Identification / Modeling

Role System Architect

a.7.7 Controller Configuration

Table 50: Controller Configuration

Artifact Controller Configuration

Description The controller configuration specifies the parameter of
the Controller.

Task Perform Controller Tuning

Role Software Engineer

a.7.8 Training Concept

Table 51: Training Concept

Artifact Training Concept

Description

• Defines the audience of the training, for exam-
ple Operations Engineers, Software Engineers or
Test Engineers.

• Defines the content of the training, for example
basics of control theory, details about the Adap-
tive Middleware for Bulk Data Processing.

• Defines the type of training, such as virtual train-
ing, on-site training, face-to-face training.

• Defines a timeplan, learning modules and
needed facilities to conduct the training.

Task Define Training Concept



A.8 tools 175

Role

• Project Manager

• System Architect

a.7.9 Staffing Plan

Table 52: Training Concept

Artifact Staffing Plan

Description The staffing plan contains

• The required team members and their utilization
over the project time (staffing curve).

• The required roles and their assignment to team
members.

• A skill matrix that shows the required skills and
the knowledge of each team member.

Task Perform Staffing

Role Project Manager

a.8 tools

The design and implementation of the adaptive middleware requires
the use of some specific tools. A tool is described by the following
attributes, as shown in Figure 81:

• Name
The name of the tool.

• Description
The description of the tool.

• Category
The category the tool belongs to.

Tools are grouped in the following categories:

• Tools for system modeling, system identification and simulation

• Tools for data visualization

• Tools for data processing



176 conceptual framework

Figure 80: Attributes of an artifact

Figure 81: Attributes of a tool



A.9 relationship to other software development approaches 177

a.8.1 Tools for System Modeling, System Identification and Simulation

The implementation of the feedback-control loop can be aided with
special tools for system modeling, system identification or simulation.
Examples of such tools include:

• Discrete Event Simulation Frameworks, such as SimPy (SimPy,
2014), SystemC (SystemC, 2014)

• MATLAB/Simulink (MathWorks, 2014)

• Scilab/Xcos (Scilab, 2014)

a.8.2 Tools for Data Visualization

In order to gain insights from the performance test and controller
tuning results, the test results should be visualized with a suitable
data visualization tool. Examples of data visualization tools include:

• Microsoft Excel (Microsoft Excel, 2012)

• MATLAB (MathWorks, 2014)

• Gnuplot (Gnuplot, 2014)

• matplotlib (matplotlib, 2012)

a.8.3 Tools for data processing

For the evaluation of the performance test results, it is often neces-
sary to process log files, which have been generated during the the
test runs. For example for the calculation of statistical values. While
this can be done with an arbitrary programming language, the follow-
ing programming or scripting languages are in particular suitable for
data processing:

• Perl (The Perl Programming Language, 2014)

• Python (Python, 2013)

a.9 relationship to other software development approaches

The conceptual framework is only concerned with the special aspects
of the design, implementation and operation of the adaptive middle-
ware presented in Chapter 5. It does not describe a complete software
development approach. The conceptual framework therefore needs
to be integrated in common software development frameworks or
methodologies.



178 conceptual framework

In principle, the conceptual framework can be integrated in any
iterative software lifecycle approach, such as the Rational Unified
Process, the spiral model (Boehm, 1988) or agile development frame-
works such as Scrum (Schwaber and Sutherland, 2013). Linear lifecy-
cle models such as the waterfall model (Royce, 1987) are not suited
because tasks like controller design, controller implementation and
controller tuning need to be iterative.

This section describes briefly how the conceptual framework can
be used with two common software development methodologies, the
RUP and Scrum.

a.9.1 Rational Unified Process

The Rational Unified Process (RUP) is an approach to assigning activ-
ities and responsibilities within a development organization to pro-
duce high-quality software that meets the requirements of its users
within a predictable schedule and budget (Rational Software, 2001).

RUP divides the software lifecycle into cycles, where each cycle is
concerned with a new iteration of the software system. A cycle con-
sists of the following phases (Kruchten and Royce, 1996):

• Inception
Establish the business case for the system and define the project
scope.

• Elaboration
Analyze the the problem domain, establish an architectural foun-
dation and develop the project plan.

• Construction
Develop and test the components and application features.

• Transition
Transition of the software to its end users.

Additionally, RUP describes nine core workflows, 6 engineering work-
flows and 3 supporting workflows:

• Engineering workflows

– Business modeling workflow
Documentation of business processes using business use
cases.

– Requirements workflow
Description of what the system should do.

– Analysis & Design workflow
Definition how the system will be realized in the implemen-
tation phase.



A.9 relationship to other software development approaches 179

– Implementation workflow
Implementation, unit testing and integration of the system.

– Test workflow
Verification that all requirements have been correctly im-
plemented.

– Deployment workflow
Production of the product release and delivering the soft-
ware to its end users.

• Supporting workflows

– Project Management
Management of the software development process includ-
ing its risks.

– Configuration and Change Management
Management of the artifacts produced by the software de-
velopment process.

– Environment
Provisioning the software development organization with
the software development environment.

Figure 82 shows the core workflows of the RUP and when they are
conduction during the different phases.

Phases
Inception Elaboration Construction Transition

Business Modelling

Requirements

Analysis & Design

Imlementation

Test

Deployment

Configuration &
Change Management

Project Management

Environment

Core Process
Workflows

Core Supporting
Workflows

Figure 82: Core process workflows (Kruchten and Royce, 1996)

The following Table 53 shows the assignment of the tasks of the
conceptual framework presented in this chapter to the core workflows
of the RUP.



180 conceptual framework

Table 53: Mapping of tasks to RUP core workflows

RUP core workflow Activity

Business modeling

• Define Service Inter-
faces

• Define Aggregation
Rules

Requirements

• Define Performance
Requirements

Analysis & Design

• Define Integration Ar-
chitecture

• Define Routing Rules

• Define Controller Ar-
chitecture

Implementation

• Implement Integra-
tion Architecture

• Implement Service In-
terfaces

• Implement Aggrega-
tion Rules

• Implement Routing
Rules

• Implement Controller

• Perform Controller
Tuning



A.9 relationship to other software development approaches 181

Test

• Define Performance
Tests

• Evaluate Test Results

• Perform Performance
Tests

Deployment

• Setup Monitoring In-
frastructure

• Setup Test environ-
ment

Project Management

• Perform Staffing

• Define Training Con-
cept

Configuration & Change Management

• Perform Controller
Tuning

Environment

• Source Project Envi-
ronments

a.9.2 Scrum

Scrum is a process framework that has been used to manage complex
product development (Schwaber and Sutherland, 2013). It consists
of Scrum Teams and their roles, artifacts, events, and rules. It is an
iterative, incremental approach to optimize predictability and control
risks by constantly inspecting and adapting the process.

Scrum partitions the development of software products in Sprints,
a timeframe of maximum one month during which a usable and po-
tentially releasable software product is created.



182 conceptual framework

• All requirements for the software product are kept in the Prod-
uct Backlog

• The Product Backlog is an ordered list, contains any changes
that should be made to the software product

• Higher ordered items are more refined than lower items

• Evolves during the course of the project, items are added, re-
fined, sorted, estimated

• Requirements are sorted according to their business values

• Managed by the Product Owner

• At the start of each sprint, the Scrum team decides which back-
log items should be implemented during this sprint

A Backlog item has following properties:

• It has a description, order, estimate and value.

• It should be possible to be implemented during a single sprint.

• Contains all tasks, that are necessary to implement the described
feature, such as design, coding, configuration and testing.

• Items can be grouped into epics, which represent an important
theme of the software product.

Table 54 shows an example Backlog containing items for imple-
menting a system based on the adaptive middleware. Every item con-
tains all the necessary tasks to design, implement and test a feature.
For example, the item REQ-13 contains the tasks define controller
architecture, implement control architecture and perform controller
tuning.



A
.
9

r
e

l
a

t
i
o

n
s

h
i
p

t
o

o
t

h
e

r
s

o
f

t
w

a
r

e
d

e
v

e
l

o
p

m
e

n
t

a
p

p
r

o
a

c
h

e
s

1
8

3

Table 54: Example Product Backlog

ID Priority Description Epic Estimation Status

REQ-5 1 Rating of basic events Rating Service 15 Ready

REQ-6 2 Mediation of basic
events

Mediation Service 10 Ready

REQ-11 3 Monitoring Feedback-Control 10 Ready

REQ-10 4 Message-Aggregation Integration Layer 8 Ready

REQ-12 5 Message-Routing Integration Layer 8 Ready

REQ-13 6 Basic Controller Feedback-Control 10 Ready

. . . . . . . . . . . . . . . . . .



184 conceptual framework

The Scrum team is self-organized and cross-functional. The team
members have all the needed competencies and skill to do their work.
Scrum defines the following roles:

• Product Owner

– Responsible for maximizing the value of the product and
the work of the development team.

• Scrum Master

– Ensures that everybody understands the Scrum concepts
and that the process is properly enacted.

– Coaches the Development team, removes impediments of
the Development Team

• Development Team

– There are no special roles such as system architect or test
engineer.

Although Scrum does not define specific roles for the development
team, the skills needed for the design and implementation of an enter-
prise system based on the adaptive middleware defined by the con-
ceptual framework need to be considered when staffing the scrum
team.

a.10 related work

This section discusses work related to the conceptual framework pre-
sented in this chapter. It introduces the terms Software Process and Soft-
ware Process Modeling and discusses approaches to model the general
software process using UML and process models for adaptive software
systems.

a.10.1 Software Process

“The software process is a partially ordered set of activities under-
taken to manage, develop and maintain software systems.” (Acuña
and Ferré, 2001a)

McChesney (1995) describes the software process as “collection of
policies, procedures, and steps undertaken in the transformation of
an expressed need for a software product into a software product to
meet that need.”.

Another similar definition comes from Fuggetta (2000). He defines
the software process as the “coherent set of policies, organizational
structures, technologies, procedures, and artifacts that are needed to
conceive, develop, deploy, and maintain a software product.”

It is necessary to differentiate between the terms software process
and software lifecycle. A software lifecycle describes the states through



A.10 related work 185

which the software passes from the start of the development until the
operation and finally the retirement (Acuña and Ferre, 2001b). Exam-
ples of software lifecycle models are the waterfall model (Royce, 1987)
oder the spiral model (Boehm, 1988).

a.10.2 Software Process Modeling

Software process modeling describes the creation of software develop-
ment models (Acuña and Ferré, 2001a). Feiler and Humphrey (1993)
describes the software process model as “an abstract representation
of a process architecture, process design or process definition, where
each of these describe, at various levels of detail, an organization of
process elements of either a completed, current or proposed software
process.”

Process models are described using Process Modelling Languages
(PMLs). A PML is defined in terms of a notation, a syntax and se-
mantics, often suitable for computational processing (Bendraou et al.,
2005).

Fuggetta (2000) describes different purposes of process models:

• Process understanding

• Process design

• Training and education

• Process simulation optimization

• Process support

Typical elements of PMLs are (see for example Benali and Derni-
ame (1992), Acuña and Ferré (2001a), Fuggetta (2000) and Curtis et al.
(1992)):

• Agent or Actor

• Role

• Activity

• Artifact or Product

• Tools

Process models typically answer the following questions (Curtis
et al., 1992):

• What is going to be done?

• Who is going to do it?

• When and where will it be done?



186 conceptual framework

• How and why will it be done?

• Who is dependent on its being done?

Additionally, process models commonly use the following perspec-
tives related to these questions:

• Functional: what activities are being performed

• Behavioral: In which order (when) are activities performed

• Organizational: where and by whom is an activity performed

• Informational: the entities produced by the process

McChesney (1995) provides two main categories of software pro-
cess models (see also Acuña and Ferré (2001a))

• Prescriptive
A prescriptive software process model defines the required or
recommended means of executing the software development
process. It answers the question “how should the software be
developed”.

• Descriptive
A descriptive software process model describes an existing pro-
cess model. It answers the question “how has the software been
developed”.

Examples of software process models include the IEEE and ISO
standards IEEE 1974-1991, ISO/IEC 12207 and the Rational Unified
Process (RUP).

a.10.3 Software Process Modeling using UML

UML is commonly used for modeling software processes.
UML for Software Process Modelling (UML4SPM) is an UML-based

metamodel for software process modeling (Bendraou et al., 2005, 2006).
It takes advantages of the expressiveness of UML 2.0 by extending a
subset of its elements suitable for process modeling. UML4SPM con-
tains two packages. The process structure package, which contains
the set of primary process elements and the foundation package,
which contains the subset of UML 2.0 concepts extended by this pro-
cess elements to provide concepts and mechanisms for the coordina-
tion and execution of activities.

Software & System Process Modelling Metamodel (SPEM) 2.0 is a
metamodel for modeling software development processes and a con-
ceptual framework, which provides concepts for for modeling, doc-
umenting, presenting, managing, interchanging, and enacting devel-
opment methods and processes (OMG, 2008). It provides a clear sep-
aration between method content, for example deliverables and key



A.10 related work 187

roles, and workflows supporting different software lifecycle models.
The SPEM 2.0 metamodel consists of seven main metamodel packages,
with each package extending the package it depends on:

• Core
Contains common classes and abstractions as the base for classes
in all other packages.

• Process Structure
Defines the base for all process models.

• Process Behavior
Extends the concepts of the process structure package with be-
havioral models.

• Managed Content
Contains concepts for managing the textual content of natural
language documentation.

• Method Content
Provides concepts to build up development knowledge base in-
dependent of any specific processes and development projects.

• Process With Methods
Defines structures for integrating processes defined with con-
cepts of process structure package with instances of concepts of
the method content package.

• Method Plugin
Contains concepts for designing and managing maintainable,
large scale, reusable, and configurable libraries or repositories
of method content and processes.

Both approaches, UML4SPM and SPEM 2.0 extend the UML 2.0 no-
tation with additional elements, which does not allow the usage of
standard UML tools.

Dietrich et al. (2013) use UML 2.0 for modeling software processes
at Siemens AG. According to the authors, the usage of standard UML
2.0 notation, which is supported by standard modeling tools, increases
readability of processes for software developers since UML is also
used for modeling the software itself. They describe four distinct pro-
cess views:

• Process-oriented view

• Activity-oriented view

• Product-oriented view

• Role-oriented view

The following UML diagram types are used by their approach:



188 conceptual framework

• Activity diagrams (process-oriented view)

• Class diagrams (activity-oriented view, product-oriented view,
role-oriented view)

• Use-case diagrams (activity-oriented view, product-oriented view,
role-oriented view)

The conceptual framework for feedback-controlled systems for bulk
data processing presented in this chapter is based on the properties
of the described approaches in this section for modeling the software
development process. It uses standard UML use-case and activity dia-
grams for describing tasks and processes for the following reasons:

• Understandability
Using standard UML 2.0 notation elements and diagrams facili-
tate the understanding of the conceptual framework since they
are commonly used by software engineers for the design of the
software system itself.

• Tool support
Standard UML 2.0 notation elements and diagrams are supported
by a wide range of modeling tools.

Standard metamodels for software process modeling such as SPEM

2.0 have not been used because they seemed to heavyweight for this
purpose.

a.10.4 Software Processes for Adaptive Software Systems

It has been understood that software processes need to be reconcep-
tualised to engineer self-adaptive software systems (see for exam-
ple Blair et al. (2009), Inverardi and Tivoli (2008), De Lemos et al.
(2013) or Andersson et al. (2013)). Self-adaptive systems adjust their
behavior automatically to respond to changes in their context and
requirements. Activities that are traditionally done at development-
time need to be shifted to run-time. Additionally, some activities that
are previously performed by software engineers are now performed
by the system itself. In a way, the role of the human software en-
gineer is to some extend shifted from operational to strategic. The
engineer implements the adaption mechanisms, the adaption itself is
performed by system.

Andersson et al. (2013) extend the SPEM metamodel to specify which
activities should be performed off-line and on-line and the depen-
dencies between them. They distinguish between off-line activities,
manual activities that are performed externally at development-time
and on-line activities, that are performed internally at run-time, by
the system itself, for example evolution and adaption activities per-
formed by the adaption logic of the system. The authors argue, that



A.10 related work 189

on-line activities must be explicitly reflected in software process mod-
els, since they are not independent from off-line activities. In addition
to on-line activities, on-line roles and work products also need to be
addressed by process models. To meet this requirements, they extend
the SPEM metamodel with

• On-line and off-line stereotypes to define whether an activity
should be performed on-line or off-line

• Dependencies to relate two or more arbitrary process elements

• Elements to describe the costs and benefits of performing an
activity on-line in contrast to perform it off-line.

Inverardi and Mori (2010) describe a process methodology to sup-
port the development of context-aware adaptive applications. It con-
sists of four different activities: Explore, Integrate, Validate and Evolve:

• Exploration Phase
Exploits a feature library containing the implementation and
corresponding requirements description.

• Integration phase
Uses these features to produce a feature-diagram to describe the
space of system changes, called variants.

• Validation phase
Validates the variants by using context analysis and model check-
ing.

• Evolution phase
Reconfigures the system by switching to the new configuration.

Gacek et al. (2008) propose a conceptual model for self-adaptation
which uses the ITIL Change Management process as a starting point.
It consists of a reference process, activities, roles and responsibilities
and artifacts. The reference process consists of two processes that in-
teract iteratively, the adaption process and the evolution process:

• The inner Adaption Process relates to the feedback-loop of a sin-
gle adaptable element of the system and is comprised of the ac-
tivities Sense, Trigger, Select Adaption Rules and Change. All these
activities are fully automated.

• The Evolution Process is executed for a single or multiple occur-
rences of the inner adaptive process. It consists of the activities
Aggregate Metrics, Analyze, Evolve Adaption Rules, Adjust and Syn-
chronize, and Reflect. Theses tasks might require human involve-
ment.



190 conceptual framework

The related work on process models for adaptive systems is fo-
cused on generic adaptation mechanisms to evolve and adapt a sys-
tem, which are carried out at run-time. In contrast, the conceptual
framework presented in this chapter is aimed to guide the design,
development and operation of a specific system, that is, an adaptive
system for bulk data processing, which provides a specific adaptation
mechanism, that is, the adaption of the aggregation size at run-time
depending on the current load of the system.

a.11 summary

In this chapter a conceptual framework has been presented to guide
the design, implementation and operation of an enterprise system for
bulk data processing that is based on the adaptive middleware as
described in Chapter 5.

The conceptual consists of the entities phases, roles, tasks, artifacts,
processes and tools. It describes:

• The needed roles and their skills for the design, implementation
and operation.

• The necessary tasks and their relationships for the design, im-
plementation and operation.

• The artifacts that are created and required by the different tasks.

• The tools that are needed to process the different tasks.

• The processes that describe the order of tasks to implement a
certain feature of the software system.

It uses standard UML notation elements, which facilitates under-
standability by software architects and developers. Additionally, this
approach offers an extensive tool support.

The conceptual framework is only concerned with the special as-
pects of the design, implementation and operation of an adaptive sys-
tem for bulk data processing. It does not describe a complete software
development approach. The conceptual framework therefore needs
to be integrated in common software development frameworks or
methodologies. It has been shown how the conceptual framework
can be used with two common software development methodologies,
the RUP and Scrum.

It should be noted that software processes are not fixed during their
lifetime, they need to be continuously improved. (Fuggetta, 2000) The
conceptual model can therefore be tailored to specific projects require-
ments, it does not have to be followed strictly.



B
S O U R C E C O D E

This section describes the source code of the research prototypes,
which have been implemented during the course of this research.

The complete source code is available on Github:
https://github.com/mswiente/phd_prototype

b.1 project structure

The source code is organized in the following modules:

• BatchProcessor
Contains the implementation of the batch prototype based on
Spring Batch.

• BillingRouter
Contains the implementation of the messaging prototype based
on Apache Camel.

• CamelUtils
Contains common Apache Camel specific logging utilities

• DataGenerator
Contains the load generator.

• FunctionalCore
Contains the common business functionality of the system used
by batch and messaging prototypes.

• MediationBatchRoute
Contains the wrapper to integrate the mediation processor of
the batch prototype with Apache Camel.

• MediationService
Contains the webservice wrapper of mediation processor used
by the messaging prototpye.

• PerformanceMonitor
Contains the Feedback-Control framework to monitor, measure
and control the messaging system.

• RatingBatchRoute
Contains the wrapper to integrate the rating processor of the
batch prototype with Apache Camel.

191



192 source code

• RatingService
Contains the webservice wrapper of the rating processor used
by the messaging system.



B I B L I O G R A P H Y

Abdelzaher, T., Diao, Y., Hellerstein, J., Lu, C. and Zhu, X. (2008). In-
troduction to Control Theory And Its Application to Computing
Systems, in Z. Liu and C. Xia (eds), Performance Modeling and Engi-
neering, Springer US, pp. 185–215–215. (Cited on pages 50 and 113.)

Abdelzaher, T. F., Stankovic, J. A., Lu, C., Zhang, R. and Lu, Y. (2003).
Feedback performance control in software services, Control Systems,
IEEE 23(3): 74–90. (Cited on page 50.)

Abu-Ghazaleh, N. and Lewis, M. J. (2005). Differential Deserializa-
tion for Optimized SOAP Performance, SC ’05: Proceedings of the
2005 ACM/IEEE conference on Supercomputing, IEEE Computer Soci-
ety, Washington, DC, USA, p. 21. (Cited on page 41.)

ACM SIGKDD (2006). Data Mining Curriculum: A Proposal.
[retrieved: July 2015]. Available from: http://www.kdd.org/

curriculum/index.html. (Cited on page 17.)

Acuña, S. T. and Ferré, X. (2001a). Software process modelling., ISAS-
SCI (1), pp. 237–242. (Cited on pages 184, 185, and 186.)

Acuña, S. T. and Ferre, X. (2001b). The software process: Modelling,
evaluation and improvement, Handbook of Software Engineering and
Knowledge Engineering 1: 193–237. (Cited on page 185.)

Aliaga, M. and Gunderson, B. (2005). Interactive Statistics, 3/E, Pearson.
(Cited on page 13.)

Alur, D., Malks, D., Crupi, J., Booch, G. and Fowler, M. (2003). Core
J2EE Patterns (Core Design Series): Best Practices and Design Strategies,
2 edn, Sun Microsystems, Inc., Mountain View, CA, USA. (Cited
on page 65.)

Amazon EC2 (2015). http://aws.amazon.com/ec2. [retrieved: June
2015]. (Cited on page 73.)

Amazon EC2 Auto Scaling (2014). http://aws.amazon.com/autoscaling.
[retrieved: March 2014]. (Cited on page 36.)

Ameller, D. and Franch, X. (2008). Service Level Agreement Monitor
(SALMon), ICCBSS ’08: Proceedings of the Seventh International Con-
ference on Composition-Based Software Systems (ICCBSS 2008), IEEE
Computer Society, Washington, DC, USA, pp. 224–227. (Cited on
page 54.)

193

http://www.kdd.org/curriculum/index.html
http://www.kdd.org/curriculum/index.html


194 bibliography

Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., In-
verardi, P. and Vogel, T. (2013). Software engineering processes
for self-adaptive systems, in R. de Lemos, H. Giese, H. Müller
and M. Shaw (eds), Software Engineering for Self-Adaptive Systems II,
Vol. 7475 of Lecture Notes in Computer Science, Springer Berlin Hei-
delberg, pp. 51–75. Available from: http://dx.doi.org/10.1007/
978-3-642-35813-5_3. (Cited on page 188.)

Andersson, J., de Lemos, R., Malek, S. and Weyns, D. (2009). Reflect-
ing on self-adaptive software systems., SEAMS pp. 38–47. (Cited
on pages xi, 45, and 46.)

Andresen, D., Sexton, D., Devaram, K. and Ranganath, V. (2004). LYE:
a high-performance caching SOAP implementation, Proceedings of
the 2004 International Conference on Parallel Processing (ICPP-2004),
pp. 143–150. (Cited on page 41.)

Apache Camel (2014). http://camel.apache.org. [retrieved: July 2014].
(Cited on pages 66 and 69.)

Apache Hadoop (2014). http://hadoop.apache.org. [retrieved: Decem-
ber 2014]. (Cited on page 17.)

Arlitt, M. F. and Williamson, C. L. (1997). Internet Web servers: work-
load characterization and performance implications, IEEE/ACM
Transactions on Networking (TON) 5(5): 631–645. (Cited on page 113.)

Auto Scaling on the Google Cloud Platform (2014).
https://cloud.google.com/developers/articles/auto-scaling-
on-the-google-cloud-platform. [retrieved: March 2014]. (Cited on
page 36.)

Bai, X., Xie, J., Chen, B. and Xiao, S. (2007). Dresr: Dynamic routing
in enterprise service bus, e-Business Engineering, 2007. ICEBE 2007.
IEEE International Conference on, pp. 528–531. (Cited on pages 49,
50, 55, and 95.)

Balsamo, S., Di Marco, A., Inverardi, P. and Simeoni, M. (2004). Model-
Based Performance Prediction in Software Development: A Survey.,
IEEE Trans. Software Eng. () 30(5): 295–310. (Cited on page 84.)

Bartoli, A., Calabrese, C., Prica, M., Di Muro, E. A. and Montresor,
A. (2003). Adaptive Message Packing for Group Communication
Systems, pp. 912–925. (Cited on page 43.)

Bauer, D., Garces-Erice, L., Rooney, S. and Scotton, P. (2008). Toward
scalable real-time messaging, IBM Systems Journal 47(2): 237–250.
(Cited on page 42.)

Benali, K. and Derniame, J. C. (1992). Software processes modeling:
What, who, and when, Software Process Technology, Springer Berlin
Heidelberg, Berlin/Heidelberg, pp. 21–25. (Cited on page 185.)

http://dx.doi.org/10.1007/978-3-642-35813-5_3
http://dx.doi.org/10.1007/978-3-642-35813-5_3


bibliography 195

Bendraou, R., Gervais, M.-P. and Blanc, X. (2005). UML4SPM: A
UML2.0-Based Metamodel for Software Process Modelling, Model
Driven Engineering Languages and Systems, Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 17–38. (Cited on pages 185 and 186.)

Bendraou, R., Gervais, M.-P. and Blanc, X. (2006). Uml4spm: An
executable software process modeling language providing high-
level abstractions, Enterprise Distributed Object Computing Conference,
2006. EDOC ’06. 10th IEEE International, pp. 297–306. (Cited on
page 186.)

Benosman, R., Albrieux, Y. and Barkaoui, K. (2012). Performance
evaluation of a massively parallel esb-oriented architecture, Service-
Oriented Computing and Applications (SOCA), 2012 5th IEEE Interna-
tional Conference on, pp. 1–4. (Cited on page 42.)

Bernstein, P. A. and Newcomer, E. (2009). Principles of transaction pro-
cessing, Morgan Kaufmann. (Cited on page 15.)

Blair, G., Bencomo, N. and France, R. (2009). Models@ run.time, Com-
puter 42(10): 22–27. (Cited on page 188.)

Boehm, B. W. (1988). A Spiral Model of Software Development and
Enhancement., IEEE Computer () 21(5): 61–72. (Cited on pages 178

and 185.)

Bondi, A. B. (2000). Characteristics of scalability and their impact
on performance., Workshop on Software and Performance pp. 195–203.
(Cited on page 35.)

Brebner, P. C. (2008). Performance Modeling for Service Oriented
Architectures, ICSE Companion ’08: Companion of the 30th interna-
tional conference on Software engineering, ACM, New York, NY, USA,
pp. 953–954. (Cited on page 84.)

Brun, Y., Serugendo, G., Gacek, C. and Giese, H. (2009). Engineer-
ing self-adaptive systems through feedback loops, . . . Self-Adaptive
Systems . (Cited on page 50.)

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R. and Tam-
burrelli, G. (2011). Dynamic qos management and optimization
in service-based systems, Software Engineering, IEEE Transactions on
37(3): 387–409. (Cited on page 50.)

Castellanos, M., Casati, F., Shan, M.-C. and Dayal, U. (2005). iBOM:
A Platform for Intelligent Business Operation Management, ICDE
’05: Proceedings of the 21st International Conference on Data Engineer-
ing, IEEE Computer Society, Washington, DC, USA, pp. 1084–1095.
(Cited on page 55.)



196 bibliography

Chandy, K. M., Etzion, O. and von Ammon, R. (2010). The event
processing manifesto, 2010 Dagstuhl Seminar on Event Processing.
(Cited on pages 17 and 18.)

Chang, S.-H., La, H. J., Bae, J. S., Jeon, W. Y. and Kim, S. D. (2007).
Design of a dynamic composition handler for esb-based services, e-
Business Engineering, 2007. ICEBE 2007. IEEE International Conference
on, pp. 287–294. (Cited on pages 49 and 55.)

Chappell, D. (2004). Enterprise Service Bus, O’Reilly Media, Inc., Se-
bastopol, CA, USA. (Cited on pages xiii, 26, 27, 28, and 49.)

Chen, S. and Greenfield, P. (2004). QoS Evaluation of JMS: An Empir-
ical Approach, HICSS ’04: Proceedings of the Proceedings of the 37th
Annual Hawaii International Conference on System Sciences (HICSS’04)
- Track 9, IEEE Computer Society, Washington, DC, USA, p. 90276.2.
(Cited on page 86.)

Chua, W. F. (1986). Radical developments in accounting thought, The
Accounting Review 61(4): pp. 601–632. Available from: http://www.
jstor.org/stable/247360. (Cited on page 11.)

Conrad, S., Hasselbring, W., Koschel, A. and Tritsch, R. (2006). En-
terprise Application Integration: Grundlagen, Konzepte, Entwurfsmuster,
Praxisbeispiele, Elsevier, Spektrum, Akad. Verl. (Cited on page 21.)

Cryderman, J. (2011). Is Real-Time Billing and Charging a Necessity?,
7(11). (Cited on page 4.)

Curtis, B., Kellner, M. I. and Over, J. (1992). Process modeling, Com-
munications of the ACM 35(9): 75–90. (Cited on page 185.)

D’Ambrogio, A. (2005). A WSDL Extension for Performance-Enabled
Description of Web Services, Lecture notes in computer science
3733: 371. (Cited on page 85.)

D’Ambrogio, A. and Bocciarelli, P. (2007). A Model-driven Approach
to Describe and Predict the Performance of Composite Services,
WOSP ’07: Proceedings of the 6th international workshop on Software
and performance, ACM, New York, NY, USA, pp. 78–89. (Cited on
page 84.)

Davenport, T. (1993). Process Innovation: Reengineering work through in-
formation technology, Harvard Business School Press, Boston. (Cited
on page 14.)

De Lemos, R., Giese, H., Müller, H. A. and Shaw, M. (2013). Software
engineering for self-adaptive systems: A second research roadmap,
Software Engineering for . . . . (Cited on page 188.)

http://www.jstor.org/stable/247360
http://www.jstor.org/stable/247360


bibliography 197

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data pro-
cessing on large clusters, Communications of the ACM 51(1). (Cited
on page 17.)

Denning, P. J., Comer, D., Gries, D., Mulder, M. C., Tucker, A. B.,
Turner, A. J. and Young, P. R. (1989). Computing as a Discipline.,
Communications of the ACM 32(1): 9–23. (Cited on page 13.)

Devaram, K. and Andresen, D. (2003). SOAP optimization via param-
eterized client-side caching, Proceedings of the IASTED International
Conference on Parallel and Distributed Computing and Systems (PDCS
2003), pp. 785–790. (Cited on page 41.)

Didona, D., Carnevale, D., Galeani, S. and Romano, P. (2012). An ex-
tremum seeking algorithm for message batching in total order pro-
tocols, Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE
Sixth International Conference on, pp. 89–98. (Cited on page 43.)

Dietrich, S., Killisperger, P., Stückl, T., Weber, N., Hartmann, T. and
Kern, E.-M. (2013). Using uml 2.0 for modelling software pro-
cesses at siemens ag, in R. Pooley, J. Coady, C. Schneider, H. Linger,
C. Barry and M. Lang (eds), Information Systems Development,
Springer New York, pp. 561–572. Available from: http://dx.doi.
org/10.1007/978-1-4614-4951-5_45. (Cited on page 187.)

Dodig-Crnkovic, G. (2002). Scientific methods in computer science,
Proceedings of the Conference for the . . . . (Cited on pages 12, 13,
and 14.)

Duc, B. L., Châtel, P., Rivierre, N., Malenfant, J., Collet, P. and Truck,
I. (2009). Non-functional Data Collection for Adaptive Business
Processes and Decision Making, MWSOC ’09: Proceedings of the 4th
International Workshop on Middleware for Service Oriented Computing,
ACM, New York, NY, USA, pp. 7–12. (Cited on page 53.)

Duran-Limon, H. A., Blair, G. S. and Coulson, G. (2004).
Adaptive Resource Management in Middleware: A Survey,
IEEE Distributed Systems Online 5(7): 1. Available from:
http://portal.acm.org/ft_gateway.cfm?id=1018100&type=

external&coll=ACM&dl=GUIDE&CFID=59338606&CFTOKEN=18253396.
(Cited on page 47.)

Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter,
J.-P., Voß, M. and Willkomm, J. (2008). Quasar Enterprise - Anwen-
dungslandschaften serviceorientiert gestalten, dpunkt Verlag. (Cited on
page 32.)

Estrella, J. C., Santana, M. J., Santana, R. H. C. and Monaco, F. J. (2008).
Real-Time Compression of SOAP Messages in a SOA Environment,

http://dx.doi.org/10.1007/978-1-4614-4951-5_45
http://dx.doi.org/10.1007/978-1-4614-4951-5_45
http://portal.acm.org/ft_gateway.cfm?id=1018100&type=external&coll=ACM&dl=GUIDE&CFID=59338606&CFTOKEN=18253396
http://portal.acm.org/ft_gateway.cfm?id=1018100&type=external&coll=ACM&dl=GUIDE&CFID=59338606&CFTOKEN=18253396


198 bibliography

SIGDOC ’08: Proceedings of the 26th annual ACM international confer-
ence on Design of communication, ACM, New York, NY, USA, pp. 163–
168. (Cited on page 41.)

EXI Working Group [online]. 2007. Available from: http://www.w3.
org/XML/EXI [cited January 2008]. (Cited on page 34.)

Feiler, P. and Humphrey, W. (1993). Software process development
and enactment: concepts and definitions, Software Process, 1993. Con-
tinuous Software Process Improvement, Second International Conference
on the, pp. 28–40. (Cited on page 185.)

Fleck, J. (1999). A distributed near real-time billing environment,
Telecommunications Information Networking Architecture Conference
Proceedings, 1999. TINA ’99, pp. 142–148. (Cited on page 3.)

Friedman, R. and Hadad, E. (2006). Adaptive batching for replicated
servers, Reliable Distributed Systems, 2006. SRDS ’06. 25th IEEE Sym-
posium on, pp. 311–320. (Cited on page 43.)

Friedman, R. and Renesse, R. V. (1997). Packing messages as a tool for
boosting the performance of total ordering protocls, Proceedings of
the 6th IEEE International Symposium on High Performance Distributed
Computing, HPDC ’97, IEEE Computer Society, Washington, DC,
USA, pp. 233–. (Cited on page 43.)

Fuggetta, A. (2000). Software process: a roadmap., ICSE - Future of SE
Track pp. 25–34. (Cited on pages 129, 184, 185, and 190.)

Gacek, C., Giese, H. and Hadar, E. (2008). Friends or foes?: a con-
ceptual analysis of self-adaptation and it change management.,
SEAMS pp. 121–128. (Cited on page 189.)

Garces-Erice, L. (2009). Building an enterprise service bus for real-
time soa: A messaging middleware stack, Computer Software and
Applications Conference, 2009. COMPSAC ’09. 33rd Annual IEEE In-
ternational, Vol. 2, pp. 79–84. (Cited on page 42.)

Gartner (2014). Market Clock Report for Programming Languages.
(Cited on page 62.)

Gat, E. (1998). Three-layer architectures, in D. Kortenkamp, R. P.
Bonasso and R. Murphy (eds), Artificial Intelligence and Mobile
Robots, MIT Press, Cambridge, MA, USA, pp. 195–210. Avail-
able from: http://dl.acm.org/citation.cfm?id=292092.292130.
(Cited on page 45.)

Gmach, D., Krompass, S., Scholz, A., Wimmer, M. and Kemper, A.
(2008). Adaptive Quality of Service Management for Enterprise
Services, ACM Trans. Web 2(1): 1–46. (Cited on pages 48 and 55.)

http://www.w3.org/XML/EXI
http://www.w3.org/XML/EXI
http://dl.acm.org/citation.cfm?id=292092.292130


bibliography 199

Gnuplot (2014). http://gnuplot.info. [retrieved: November 2014].
(Cited on page 177.)

González, L. and Ruggia, R. (2011). Addressing qos issues in ser-
vice based systems through an adaptive esb infrastructure, Proceed-
ings of the 6th Workshop on Middleware for Service Oriented Computing,
MW4SOC ’11, ACM, New York, NY, USA, pp. 4:1–4:7. Available
from: http://doi.acm.org/10.1145/2093185.2093189. (Cited on
page 50.)

Guinea, S., Baresi, L., Spanoudakis, G. and Nano, O. (2009). Compre-
hensive Monitoring of BPEL Processes, IEEE Internet Computing 99.
(Cited on page 53.)

Gullapalli, R. K., Muthusamy, C. and Babu, V. (2011). Control systems
application in java based enterprise and cloud environments–a sur-
vey, Journal of ACSA . (Cited on page 52.)

Habich, D., Richly, S. and Grasselt, M. (2007). Data-Grey-Box Web Ser-
vices in Data-Centric Environments, IEEE International Conference
on Web Services, 2007. ICWS 2007, pp. 976–983. (Cited on pages 41

and 55.)

Habich, D., Richly, S., Preissler, S., Grasselt, M., Lehner, W. and Maier,
A. (2007). BPEL-DT – Data-Aware Extension of BPEL to Support
Data-Intensive Service Applications, Emerging Web Services Technol-
ogy 2: 111–128. (Cited on page 41.)

Haesen, R., Snoeck, M., Lemahieu, W. and Poelmans, S. (2008). On
the definition of service granularity and its architectural impact, in
Z. Bellahsène and M. Léonard (eds), Advanced Information Systems
Engineering, Vol. 5074 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 375–389. Available from: http://dx.doi.

org/10.1007/978-3-540-69534-9_29. (Cited on page 34.)

Hammer, M. and Champy, J. (1993). Re-engineering the corporation: A
manifesto for business revolution, Harper Business, New York. (Cited
on page 14.)

Härder, T. and Reuter, A. (1983). Principles of Transaction-Oriented
Database Recovery., ACM Comput. Surv. () 15(4): 287–317. (Cited on
page 15.)

Hellerstein, J. L. (2004). Challenges in control engineering of com-
puting systems, American Control Conference, 2004. Proceedings of the
2004, pp. 1970–1979. (Cited on page 100.)

Hellerstein, J. L., Diao, Y., Parekh, S. and Tilbury, D. M. (2004). Feed-
back Control of Computing Systems, John Wiley & Sons. (Cited on
pages xi, 51, 52, and 100.)

http://doi.acm.org/10.1145/2093185.2093189
http://dx.doi.org/10.1007/978-3-540-69534-9_29
http://dx.doi.org/10.1007/978-3-540-69534-9_29


200 bibliography

Henjes, R., Menth, M. and Zepfel, C. (2006). Throughput Perfor-
mance of Java Messaging Services Using WebsphereMQ, ICDCSW
’06: Proceedings of the 26th IEEE International ConferenceWorkshops on
Distributed Computing Systems, IEEE Computer Society, Washington,
DC, USA, p. 26. (Cited on page 86.)

Her, J. S., Choi, S. W., Oh, S. H. and Kim, S. D. (2007). A Frame-
work for Measuring Performance in Service-Oriented Architecture,
NWESP ’07: Proceedings of the Third International Conference on Next
Generation Web Services Practices, IEEE Computer Society, Washing-
ton, DC, USA, pp. 55–60. (Cited on page 85.)

Herbst, N. R., Kounev, S. and Reussner, R. (2013). Elasticity in Cloud
Computing: What It Is, and What It Is Not., ICAC pp. 23–27. (Cited
on page 36.)

Hess, A., Humm, B. and Voß, M. (2006). Regeln für serviceorien-
tierte Architekturen hoher Qualität, Informatik Spektrum 29(6): 395–
411. (Cited on page 35.)

Hohpe, G. and Woolf, B. (2003). Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA. (Cited on
pages xi, xiii, 21, 22, 28, 29, 30, 31, 66, 96, and 97.)

IBM (2010). Mainframes working after hours: Batch pro-
cessing. [retrieved: June 2015 ]. Available from: http:

//www-01.ibm.com/support/knowledgecenter/#!/zosbasics/

com.ibm.zos.zmainframe/zconc_batchproc.htm. (Cited on
page 19.)

IBM Group (2005). An architectural blueprint for autonomic computing,
IBM White paper. (Cited on pages xi, 45, 47, and 48.)

IEEE (2008). IEEE standard for a precision clock synchronization pro-
tocol for networked measurement and control systems, IEEE Std
1588-2008 (Revision of IEEE Std 1588-2002) pp. c1–269. (Cited on
page 74.)

Inverardi, P. and Mori, M. (2010). A Software Lifecycle Process to Sup-
port Consistent Evolutions., Software Engineering for Self-Adaptive
Systems 7475(Chapter 10): 239–264. (Cited on page 189.)

Inverardi, P. and Tivoli, M. (2008). The Future of Software: Adapta-
tion and Dependability., ISSSE 5413(Chapter 1): 1–31. (Cited on
page 188.)

Irmert, F., Fischer, T. and Meyer-Wegener, K. (2008). Runtime Adapta-
tion in a Service-Oriented Component Model, SEAMS ’08: Proceed-
ings of the 2008 international workshop on Software engineering for adap-

http://www-01.ibm.com/support/knowledgecenter/##!/zosbasics/com.ibm.zos.zmainframe/zconc_batchproc.htm
http://www-01.ibm.com/support/knowledgecenter/##!/zosbasics/com.ibm.zos.zmainframe/zconc_batchproc.htm
http://www-01.ibm.com/support/knowledgecenter/##!/zosbasics/com.ibm.zos.zmainframe/zconc_batchproc.htm


bibliography 201

tive and self-managing systems, ACM, New York, NY, USA, pp. 97–
104. (Cited on pages 48 and 55.)

Janert, P. K. (2013). Feedback Control for Computer Systems, O’Reilly
Media, Inc. (Cited on pages 101 and 102.)

Jongtaveesataporn, A. and Takada, S. (2010). Enhancing enter-
prise service bus capability for load balancing, W. Trans. on Comp.
9(3): 299–308. Available from: http://dl.acm.org/citation.cfm?
id=1852392.1852401. (Cited on pages 49, 50, and 55.)

Josuttis, N. (2007). SOA in practice, O’Reilly, Sebastopol, CA, USA.
(Cited on pages 32 and 35.)

Kazhamiakin, R., Benbernou, S., Baresi, L., Plebani, P., Uhlig, M. and
Barais, O. (2010). Adaptation of service-based systems, in M. Papa-
zoglou, K. Pohl, M. Parkin and A. Metzger (eds), Service Research
Challenges and Solutions for the Future Internet, Vol. 6500 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp. 117–156.
Available from: http://dx.doi.org/10.1007/978-3-642-17599-2_
5. (Cited on page 49.)

Kon, F., Costa, F., Blair, G. and Campbell, R. H. (2002). The Case
for Reflective Middleware, Commun. ACM 45(6): 33–38. (Cited on
page 48.)

Krafzig, D., Banke, K. and Slama, D. (2005). Enterprise SOA, Prentice
Hall. (Cited on page 32.)

Kramer, J. and Magee, J. (2007). Self-Managed Systems: an Architec-
tural Challenge., FOSE pp. 259–268. (Cited on pages xi, 45, and 46.)

Kruchten, P. and Royce, W. (1996). A rational development process,
CrossTalk 9(7): 11–16. (Cited on pages xiii, 178, and 179.)

Laddaga, R. and Robertson, P. (2008). Abstract Self Adaptive Soft-
ware: A Position Paper. (Cited on page 44.)

Leclercq, M., Quéma, V. and Stefani, J.-B. (2004). DREAM: a Compo-
nent Framework for the Construction of Resource-Aware, Reconfig-
urable MOMs, ARM ’04: Proceedings of the 3rd workshop on Adaptive
and reflective middleware, ACM, New York, NY, USA, pp. 250–255.
(Cited on page 48.)

Lee, B.-D., Weissman, J. B. and Nam, Y.-K. (2009). Adaptive middle-
ware supporting scalable performance for high-end network ser-
vices, J. Netw. Comput. Appl. 32(3): 510–524. (Cited on page 47.)

Liu, Y. and Gorton, I. (2005). Performance prediction of j2ee appli-
cations using messaging protocols, in G. Heineman, I. Crnkovic,
H. Schmidt, J. Stafford, C. Szyperski and K. Wallnau (eds),

http://dl.acm.org/citation.cfm?id=1852392.1852401
http://dl.acm.org/citation.cfm?id=1852392.1852401
http://dx.doi.org/10.1007/978-3-642-17599-2_5
http://dx.doi.org/10.1007/978-3-642-17599-2_5


202 bibliography

Component-Based Software Engineering, Vol. 3489 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, pp. 1–16. Avail-
able from: http://dx.doi.org/10.1007/11424529_1. (Cited on
page 84.)

Liu, Y., Gorton, I. and Zhu, L. (2007). Performance Prediction of
Service-Oriented Applications based on an Enterprise Service Bus,
COMPSAC ’07: Proceedings of the 31st Annual International Computer
Software and Applications Conference - Vol. 1- (COMPSAC 2007), IEEE
Computer Society, Washington, DC, USA, pp. 327–334. (Cited on
page 84.)

MathWorks (2014). MATLAB, http://www.mathworks.com. [re-
trieved: November 2014]. (Cited on page 177.)

matplotlib (2012). http://matplotlib.org. [retrieved: November 2014].
(Cited on page 177.)

McChesney, I. (1995). Toward a classification scheme for software
process modelling approaches, Information and Software Technol-
ogy 37(7): 363 – 374. Available from: http://www.sciencedirect.
com/science/article/pii/095058499591492I. (Cited on pages 184

and 186.)

Menth, M., Henjes, R., Zepfel, C. and Gehrsitz, S. (2006). Throughput
Performance of Popular JMS Servers, SIGMETRICS ’06/Performance
’06: Proceedings of the joint international conference on Measurement and
modeling of computer systems, ACM, New York, NY, USA, pp. 367–
368. (Cited on page 86.)

Merz, N. and Warren, J. (2014). Big Data - Principles and best practices
of scalable realtime data systems, Manning Publications. (Cited on
page 17.)

Microsoft Excel (2012). http://products.office.com/en-us/excel. [re-
trieved: November 2014]. (Cited on page 177.)

Nagle, J. (1984). Congestion control in ip/tcp internetworks, SIG-
COMM Comput. Commun. Rev. 14(4): 11–17. Available from: http:
//doi.acm.org/10.1145/1024908.1024910. (Cited on page 43.)

Ng, A. (2006). Optimising Web Services Performance with Table
Driven XML, ASWEC ’06: Proceedings of the Australian Software Engi-
neering Conference, IEEE Computer Society, Washington, DC, USA,
pp. 100–112. (Cited on page 41.)

Ng, A., Greenfield, P. and Chen, S. (2005). A Study of the Impact
of Compression and Binary Encoding on SOAP Performance, Pro-
ceedings of the Sixth Australasian Workshop on Software and System
Architectures (AWSA2005). (Cited on page 41.)

http://dx.doi.org/10.1007/11424529_1
http://www.sciencedirect.com/science/article/pii/095058499591492I
http://www.sciencedirect.com/science/article/pii/095058499591492I
http://doi.acm.org/10.1145/1024908.1024910
http://doi.acm.org/10.1145/1024908.1024910


bibliography 203

O’Brien, L., Brebner, P. and Gray, J. (2008). Business Transformation
to SOA: Aspects of the Migration and Performance and QoS is-
sues, SDSOA ’08: Proceedings of the 2nd international workshop on Sys-
tems development in SOA environments, ACM, New York, NY, USA,
pp. 35–40. (Cited on page 40.)

O’Brien, L., Merson, P. and Bass, L. (2007). Quality Attributes for
Service-Oriented Architectures, SDSOA ’07: Proceedings of the In-
ternational Workshop on Systems Development in SOA Environments,
IEEE Computer Society, Washington, DC, USA, p. 3. (Cited on
pages 31 and 39.)

OMG (2008). Software Process Engineering Metamodel SPEM 2.0,
Technical Report ptc/08-04-01, Object Management Group. (Cited on
page 186.)

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G.,
Medvidovic, N., Quilici, A., Rosenblum, D. S. and Wolf, A. L. (1999).
An Architecture-Based Approach to Self-Adaptive Software, IEEE
Intelligent Systems 14(3): 54–62. (Cited on page 44.)

Patikirikorala, T., Colman, A., Han, J. and Wang, L. (2012). A system-
atic survey on the design of self-adaptive software systems using
control engineering approaches, Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on pp. 33–
42. (Cited on pages 50, 52, and 53.)

PTP daemon (PTPd) (2013). http://ptpd.sourceforge.net. [retrieved:
July 2014]. (Cited on page 74.)

Python (2013). https://www.python.org/. [retrieved: November
2014]]. (Cited on page 177.)

Rational Software (2001). Rational Unified Process. [retrieved:
November 2014]. Available from: https://www.ibm.com/

developerworks/rational/library/content/03July/1000/1251/

1251_bestpractices_TP026B.pdf. (Cited on page 178.)

Redmonk (2015). The RedMonk Programming Language Rank-
ings: January 2015. [retrieved: July 2015]. Available from: http:
//redmonk.com/sogrady/2015/01/14/language-rankings-1-15/.
(Cited on page 62.)

Richter, J.-P., Haller, H. and Schrey, P. (2005). Serviceorientierte Ar-
chitektur, Informatik Spektrum 28(5): 413–416. (Cited on page 26.)

Romano, P. and Leonetti, M. (2012). Self-tuning batching in total or-
der broadcast protocols via analytical modelling and reinforcement
learning, Computing, Networking and Communications (ICNC), 2012
International Conference on, pp. 786–792. (Cited on page 43.)

https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/


204 bibliography

Royce, W. W. (1987). Managing the Development of Large Software
Systems: Concepts and Techniques., ICSE pp. 328–339. (Cited on
pages 178 and 185.)

Sachs, K., Kounev, S., Bacon, J. and Buchmann, A. (2009). Per-
formance evaluation of message-oriented middleware using the
SPECjms2007 benchmark, Perform. Eval. 66(8): 410–434. (Cited on
page 86.)

Sachs, K., Kounev, S., Carter, M. and Buchmann, A. (2007). Design-
ing a Workload Scenario for Benchmarking Message-Oriented Mid-
dleware, Proceedings of the 2007 SPEC Benchmark Workshop, SPEC.
(Cited on page 86.)

Salehie, M. and Tahvildari, L. (2009). Self-Adaptive Software: Land-
scape and Research Challenges, ACM Trans. Auton. Adapt. Syst.
4(2): 1–42. (Cited on page 44.)

Schulte, R. (2002). Predicts 2003: Enterprise Service Buses Emerge,
Gartner. (Cited on page 26.)

Schwaber, K. and Sutherland, J. (2013). The Scrum Guide,
http://www.scrumguides.org/scrum-guide.html. [retrieved:
November 2014]. (Cited on pages 178 and 181.)

Scilab (2014). http://www.scilab.org. [retrieved: November 2014].
(Cited on page 177.)

Shin, K. G. and Ramanathan, P. (1994). Real-time computing: a new
discipline of computer science and engineering, Proceedings of the
IEEE 82(1): 6–24. (Cited on page 16.)

SimPy (2014). https://pypi.python.org/pypi/simpy. [retrieved:
November 2014]. (Cited on page 177.)

SOAP Specification [online]. 2007. Available from: http://www.w3.
org/TR/soap [cited January 2008]. (Cited on page 31.)

Somekh, B. and Lewin, C. (2004). Research Methods in the Social Sci-
ences, SAGE. (Cited on page 11.)

Spring Batch (2013). http://static.springsource.org/spring-batch/. [re-
trieved: July 2014]. (Cited on page 65.)

Steup, M. (2014). Epistemology, in E. N. Zalta (ed.), The Stanford En-
cyclopedia of Philosophy, spring 2014 edn. (Cited on page 12.)

Suzumura, T., Takase, T. and Tatsubori, M. (2005). Optimizing Web
Services Performance by Differential Deserialization, ICWS ’05: Pro-
ceedings of the IEEE International Conference on Web Services, IEEE
Computer Society, Washington, DC, USA, pp. 185–192. (Cited on
page 41.)

http://www.w3.org/TR/soap
http://www.w3.org/TR/soap


bibliography 205

SystemC (2014). http://www.accellera.org/downloads/standards/systemc.
[retrieved: November 2014]. (Cited on page 177.)

Tekli, J., Damiani, E., Chbeir, R. and Gianini, G. (2012). Soap pro-
cessing performance and enhancement, Services Computing, IEEE
Transactions on 5(3): 387–403. (Cited on page 41.)

Telecom Glossary (2001). [retrieved: July 2015]. Available from: http:
//www.atis.org/glossary/. (Cited on page 16.)

Textor, A., Schmid, M., Schaefer, J. and Kroeger, R. (2009). SOA Moni-
toring Based on a Formal Workflow Model with Constraints, QUA-
SOSS ’09: Proceedings of the 1st international workshop on Quality of
service-oriented software systems, ACM, New York, NY, USA, pp. 47–
54. (Cited on page 54.)

The Perl Programming Language (2014). http://www.perl.org. [re-
trieved: November 2014] ]. (Cited on page 177.)

Ueno, K. and Tatsubori, M. (2006). Early capacity testing of an enter-
prise service bus, Web Services, 2006. ICWS ’06. International Confer-
ence on, pp. 709–716. (Cited on page 87.)

Weinstock, C. B. and Goodenough, J. B. (2006). On system scalability,
Technical report, DTIC Document. (Cited on page 35.)

Welsh, M., Culler, D. and Brewer, E. (2001). SEDA: an architecture for
well-conditioned, scalable internet services, SOSP ’01: Proceedings of
the eighteenth ACM symposium on Operating systems principles, ACM
Request Permissions. (Cited on pages 42 and 43.)

Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S. and
Leymann, F. (2009). Monitoring and Analyzing Influential Factors
of Business Process Performance, EDOC ’09: Proceedings of the 2009
IEEE International Enterprise Distributed Object Computing Conference
(edoc 2009), IEEE Computer Society, Washington, DC, USA, pp. 141–
150. (Cited on page 54.)

Wichaiwong, T. and Jaruskulchai, C. (2007). A Simple Approach
to Optimize Web Services’ Performance, NWESP ’07: Proceedings
of the Third International Conference on Next Generation Web Services
Practices, IEEE Computer Society, Washington, DC, USA, pp. 43–48.
(Cited on pages 41 and 55.)

Willkomm, D., Machiraju, S., Bolot, J. and Wolisz, A. (2009). Pri-
mary user behavior in cellular networks and implications for dy-
namic spectrum access, Communications Magazine, IEEE 47(3): 88–
95. (Cited on page 113.)

Wilson, J. (2014). Essentials of business research: A guide to doing your
research project, SAGE. (Cited on pages 11 and 12.)

http://www.atis.org/glossary/
http://www.atis.org/glossary/


206 bibliography

Winter, S. (2000). Quantitative vs. qualitative methoden. [re-
trieved: June 2015]. Available from: http://nosnos.synology.

me/MethodenlisteUniKarlsruhe/imihome.imi.uni-karlsruhe.

de/nquantitative_vs_qualitative_methoden_b.html. (Cited on
page 13.)

Woodall, P., Brereton, P. and Budgen, D. (2007). Investigating service-
oriented system performance: a systematic study, Softw. Pract. Exper.
37(2): 177–191. (Cited on page 40.)

Wu, B., Liu, S. and Wu, L. (2008). Dynamic reliable service routing
in enterprise service bus, Asia-Pacific Services Computing Conference,
2008. APSCC ’08. IEEE, pp. 349–354. (Cited on pages 49, 55, and 95.)

Xia, C. and Song, S. (2011). Research on real-time esb and its applica-
tion in regional medical information exchange platform, Biomedical
Engineering and Informatics (BMEI), 2011 4th International Conference
on, Vol. 4, pp. 1933–1937. (Cited on page 42.)

Zhuang, Z. and Chen, Y.-M. (2012). Optimizing jms performance for
cloud-based application servers, Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on, pp. 828–835. (Cited on page 41.)

Ziyaeva, G., Choi, E. and Min, D. (2008). Content-based intelligent
routing and message processing in enterprise service bus, Conver-
gence and Hybrid Information Technology, 2008. ICHIT ’08. Interna-
tional Conference on, pp. 245–249. (Cited on pages 49, 50, 55, and 95.)

http://nosnos.synology.me/MethodenlisteUniKarlsruhe/imihome.imi.uni-karlsruhe.de/nquantitative_vs_qualitative_methoden_b.html
http://nosnos.synology.me/MethodenlisteUniKarlsruhe/imihome.imi.uni-karlsruhe.de/nquantitative_vs_qualitative_methoden_b.html
http://nosnos.synology.me/MethodenlisteUniKarlsruhe/imihome.imi.uni-karlsruhe.de/nquantitative_vs_qualitative_methoden_b.html


P U B L I C AT I O N S

Swientek, M., Bleimann, U. and Dowland, P. (2008). Service-Oriented
Architecture: Performance Issues and Approaches, in P. Dowland
and S. Furnell (eds), Proceedings of the Seventh International Network
Conference (INC2008), Plymouth University, Plymouth, UK, pp. 261–
269. Available from: http://www.cscan.org/default.asp?page=

openaccess&eid=3&id=175.

Swientek, M., Humm, B., Bleimann, U. and Dowland, P. (2009).
An SOA Middleware for High-Performance Communication, in
U. Bleimann, P. Dowland, S. Furnell and V. Grout (eds), Proceed-
ings of the Fifth Collaborative Research Symposium on Security, E-
learning, Internet and Networking (SEIN 2009), Plymouth University,
Plymouth, UK.

Swientek, M., Humm, B., Bleimann, U. and Dowland, P. (2014).
An Adaptive Middleware for Near-Time Processing of Bulk Data,
ADAPTIVE 2014, The Sixth International Conference on Adaptive and
Self-Adaptive Systems and Applications, Venice, Italy, pp. 37–41. Avail-
able from: http://www.thinkmind.org/index.php?view=article&
articleid=adaptive_2014_2_10_50023.

Swientek, M., Humm, B., Bleimann, U. and Dowland, P. (2015a). A
Conceptual Framework for Guiding the Development of Feedback-
Controlled Bulk Data Processing Systems, ADAPTIVE 2015, The
Seventh International Conference on Adaptive and Self-Adaptive Sys-
tems and Applications. Available from: http://www.thinkmind.org/
index.php?view=article&articleid=adaptive_2015_2_30_50062.

Swientek, M., Humm, B., Bleimann, U. and Dowland, P. (2015b).
A Feedback-Controlled Adaptive Middleware for Near-Time Bulk
Data Processing, International Journal On Advances in Software
8(1&2): 11–26. Available from: http://www.iariajournals.org/

software/.

207

http://www.cscan.org/default.asp?page=openaccess&eid=3&id=175
http://www.cscan.org/default.asp?page=openaccess&eid=3&id=175
http://www.thinkmind.org/index.php?view=article&articleid=adaptive_2014_2_10_50023
http://www.thinkmind.org/index.php?view=article&articleid=adaptive_2014_2_10_50023
http://www.thinkmind.org/index.php?view=article&articleid=adaptive_2015_2_30_50062
http://www.thinkmind.org/index.php?view=article&articleid=adaptive_2015_2_30_50062
http://www.iariajournals.org/software/
http://www.iariajournals.org/software/




Service-Oriented Architecture: Performance Issues and 
Approaches 

Martin Swientek1, 2, 3, Udo Bleimann1, Paul Dowland2 
 

1University of Applied Sciences Darmstadt, Germany 
2Information Security and Network Research Group, University of Plymouth,  

United Kingdom 
sd&m, software design & management AG, Berliner Str. 76, 63065 Offenbach, 

Germany 
E-mail: martin@swientek.org 

 

Abstract 

The introduction of a Service-Oriented Architecture (SOA) can affect performance in a 
negative way. This exacerbates the application of SOA to systems for bulk data processing. 
This paper describes specific aspects of Service-Oriented Architectures that impact 
performance particularly. It discusses several approaches to these issues that are currently 
established and motivates the need for a framework to implement an SOA for bulk data 
processing systems. 

Keywords 

SOA, Service-Oriented Architecture, batch processing, performance 

1. Introduction 

Service-Oriented Architecture (SOA) is becoming a popular approach to integrate 
heterogeneous applications into an application landscape. Apart from functional 
requirements, an IT system has to meet the non-functional requirements of the 
functional and technical operations. Implementing an SOA has certain impacts on 
these non-functional requirements that ought to be considered beforehand. 

Performance is an important non-functional requirement of an IT system and is vital 
to the acceptance and the operability of the system. Since performance tests are 
usually not performed until the system is already in place, performance issues are 
often revealed at a late stage in the development process. In order to improve the 
performance of the system extensive changes to the architecture are needed which 
ultimately leads to significant project risks. As the introduction of SOA can 
deteriorate the performance it is crucial to be aware of the performance drawbacks 
and how to address them properly at the stage of the system design. 

Bulk data processing in particular demands a high-performance implementation. 
Current approaches to implement an SOA using web service technologies and 
infrastructures do not match very well with a batch-processing model since they are 
focused on a request-response communication scheme. 



This paper describes the performance issues specific to SOA and discusses current 
approaches to address them. It motivates the need of a framework to integrate a batch 
processing system in a service-oriented application landscape. The paper is 
organized as follows: The next section introduces the concept of Service-Oriented 
Architecture, describes common properties of batch processing systems and the 
understanding of performance used in this paper. Section 3 describes the aspects of 
an SOA that have an impact on performance. The next Section discusses current 
approaches to the performance issues identified in the preceding section. Section 4 
motivates the need of a framework for bulk data processing. This paper concludes 
with a summarization of the presented performance issues and approaches. 

1.1. Service-Oriented Architecture 

Service-Oriented Architecture (SOA) is an architectural pattern to build application 
landscapes from single business components. These business components are loosely 
coupled by providing their functionality in form of services.  A service represents an 
abstract business view of the functionality and hides all implementation details of the 
component providing the service. The definition of a service acts as a contract 
between the service provider and the service consumer. Services are called using a 
unified mechanism, which provides a plattform independent connection of the 
business components while hiding all the technical details of the communication. 
The calling mechanism also includes the discovery of the appropriate service 
(Richter et al., 2005). 

By separating the technical from the business aspects, SOA aims for a higher level of 
flexibility of enterprise applications. 

Building an SOA involves concrete technical decisions how to implement its 
concepts. This includes how to implement services, how to discover the appropriate 
service and how to interconnect them. This paper focusses on these technical 
decisions that need to be made in order to implement an SOA in a performant way. 

1.2. Batch Processing Systems 

A batch processing system is an application that processes bulk data without user 
interaction. Input and output data is usually organised in records using a file- or 
database-based interface. In case of a file-based interface, the application reads a 
record from the input file, processes it and writes the record to the output file. 

A batch processing system exhibits the following key characteristics: 

• Bulk processing of data 
A Batch processing system processes several gigabytes of data in a single 
run. Multiple systems are running in parallel controlled by a job scheduler 
to speed up processing. 

• No user interaction 
There is no user interaction needed for the processing of data. It is 
impossible due to the amount of data being processed. 



• File- or database-based interfaces 
Input data is read from the file system or a database. Output data is also 
written to files on the file system or a database. Files are transferred to the 
consuming systems through FTP by specific jobs. 

• Operation within a limited timeframe 
A batch processing system often has to deliver its results in a limited 
timeframe due to service level agreements (SLA) with consuming systems. 

• Offline handling of errors 
Erroneous records are stored to a specific persistent memory (file or 
database) during operation and are processed afterwards. 

Typical applications that are implemented as batch processing systems are billing 
systems for telecommunication companies used for mediating, rating and billing of 
call events. 

1.3. Performance 

Performance is a quality attribute of a software system and is crucial to the 
acceptance of a developed system both by users and IT operations. 

The performance of a system can be described by multiple metrics. The following 
metrics are relevant to the understanding of this paper: 

• Response Time 
Time it takes for the service consumer to receive a response from the 
service provider 

• Throughput 
Number of requests a service provider is able to process in fixed timeframe 

• Latency 
Time it takes a service request is received by the servicer provider and vice 
versa 

2. SOA Performance Hotspots 

This section describes the different aspects of a Service-Oriented Architecture where 
performance issues typically occur.  

A system implemented according to the principles of SOA is a distributed system. 
Services are hosted on different locations belonging to different departments and 
even organizations. Hence, the performance drawbacks of a distributed system 
generally also apply to SOA. This includes the marshalling of the data that needs to 
be sent to the service provider by the service consumer, sending the data over the 
network and the unmarshalling of data by the service provider. 



Apart from these general issues of a distributed system certain properties of an SOA 
deteriorate the performance even more. 

2.1. Integration of Heterogeneous Technologies 

A main goal of introducing an SOA is to integrate applications implemented with 
heterogeneous technologies. This is achieved by using specific middleware and 
intermediate protocols for the communication. These protocols are typically based on 
XML, like SOAP (SOAP Specification, 2007). XML, as a very verbose language, 
adds a lot of meta-data to the actual payload of a message. The resulting request is 
about 10 to 20 times larger than the equivalent binary representation (O’Brian et al., 
2007), which leads to a significant higher transmission time of the message. 
Processing these messages is also time-consuming, as they need to get parsed by a 
XML parser before the actual processing can occur. 

The usage of a middleware like an Enterprise Service Bus (ESB) adds further 
performance costs. An ESB usually processes the messages during transferring. 
Among other things, this includes the mapping between different protocols used by 
service providers and service consumers, checking the correctness of the request 
format, adding message-level security and routing the request to the appropriate 
service provider (See, for example, Josuttis, 2007 or Krafzig et al., 2005). 

2.2. Loose Coupling 

Another aspect of SOA that has an impact on performance is the utilisation of loose 
coupling. The aim of loose coupling is to increase the flexibility and maintainability 
of the application landscape by reducing the dependency of its components on each 
other. This denotes that service consumers shouldn't make any assumptions about the 
implementation of the services they use and vice versa. Services become 
interchangeable as long they implement the interface the client expects. 

Engels et al. consider two components A and B loosely coupled when the following 
constraints are satisfied (Engels et al., 2008): 

• Knowledge 
Component A knows only as much as it is needed to use the operations 
offered by component B in a proper way. This includes the syntax and 
semantic of the interfaces and the structure of the transferred data. 

• Dependence on availability 
Component A provides the implemented service even when component B is 
not available or the connection to component B is not available. 

• Trust 
Component B does not rely on component A to comply with pre-conditions. 
Component A does not rely on component B to comply with post-
conditions. 



Coupling between services occurs on different levels. Krafzig et al. describe the 
following levels of coupling that are leveraged in an SOA (Krafzig et al., 2005). 

Level Tight Coupling Loose Coupling 

Physical coupling Direct physical link 
required 

Physical intermediary 

Communication style Synchronous Asynchronous 

Type system Strong type system Weak type system 

Interaction pattern OO-style navigation of 
complex object trees 

Data-centric, self-
contained messages 

Control of process logic Central control of 
processing logic 

Distributed logical 
components 

Service discovery and 
binding 

Statically bound services Dynamically bound 
services 

Platform dependencies Strong OS and 
programming language 
dependencies 

OS and programming 
languages independent 

Table 1: Levels of coupling (Krafzig et al., 2005) 

The gains in flexibility and maintainability of loose coupling are amongst others 
opposed by performance costs. 

Service consumers and service provider are not bound to each other statically. Thus, 
the service consumer needs to determine the correct end point of the service provider 
during runtime. This can be done by looking up the correct service provider in a 
service repository either by the service consumer itself before making the call or by 
routing the message inside the ESB.   

Apart from very few basic data types, Service consumers and service providers do 
not share the same data model. It is therefore necessary to map data between the data 
model used by the service consumer and the data model used by the service provider. 

3. Current Approaches 

This section describes current approaches to the performance issues introduced in the 
previous section. 

 

 



3.1. Hardware 

The obvious solution to improve the processing time of a service is the utilization of 
faster hardware and more bandwidth. SOA performance issues are often neglected by 
suggesting that faster hardware or more bandwidth will solve this problem. However, 
it is often not feasible to add faster hardware in a late stage of the project because it 
involves more costs than initially planned. 

3.2. Compression 

The usage of XML as an intermediate protocol for service calls has a negative impact 
on their transmission times over the network. The transmission time of service calls 
and responses can be decreased by compression. Simply compressing service calls 
and responses with gzip can do this. The World Wide Web Consortium (W3C) 
proposes a binary presentation of XML documents called binary XML (EXI 
Working Group, 2007) to achieve a more efficient transportation of XML over 
networks. 

It must be pointed out that the utilisation of compression adds the additional costs of 
compressing and decompressing to the overall processing time of the service call. 

3.3. Service Granularity 

To reduce the communication overhead or the processing time of a service, the 
service granularity should be reconsidered. 

Coarse-grained services reduce the communication overhead by achieving more with 
a single service call and should be the favoured service design principle (Hess, 
2006). However, the processing time of a coarse grained service can pose a problem 
to a service consumer that only needs a fracture of the data provided by the service. 
To reduce the processing time it could be considered in this case to add a finer 
grained service that provides only the needed data (Josuttis, 2007).  

It should be noted that merging multiple services to form a more coarse grained 
service or splitting a coarse grained service into multiple services to solve 
performance problems specific to a single service consumer reduces the reusability 
of the services for other service consumers (Josuttis, 2007). 

3.4. Degree of Loose Coupling 

The improvements in flexibility and maintainability gained by loose coupling are 
opposed by drawbacks on performance. Thus, it is crucial to find the appropriate 
degree of loose coupling.  

Hess et al. introduce the concept of distance to determine an appropriate degree of 
coupling between components. The distance of components is comprised of the 
functional and technical distance. Components are functional distant if they share 
few functional similarities. Components are technical distant if they are of a different 



category. Categories classify different types of components like inventory 
components, process components, function components and interaction components. 

Distant components trust each other in regard to the compliance of services levels to 
a lesser extent than near components do. The same applies to their common 
knowledge. Distant components share a lesser extent of knowledge of each other. 
Therefore, Hess et al. argue that distant components should be coupled more loosely 
than close components (Hess et al., 2006). 

The degree of loose coupling between components that have been identified to be 
performance bottlenecks should be reconsidered to find the appropriate trade-off 
between flexibility and performance. It can be acceptable in that case to decrease the 
flexibility in favour of a better performance.  

 

4. Applying SOA to Batch Processing Systems 

How to apply the concepts of Service-Oriented Architecture to batch processing 
systems considering the arguments presented in section 2? A naive approach would 
be the utilisation of web service technologies for these kinds of systems as well. 
However, because of the performance issues mentioned in this paper, this option 
would not scale for bulk processing of data with a batch-processing model. 

Wichaiwong et al. for example propose an approach to transfer bulk data between 
web services per FTP. The SOAP messages transferred between the web services 
would only contain the necessary details how to download the corresponding data 
from an FTP server since this protocol is optimized for transferring huge files 
(Wichaiwong et al., 2007). This approach solves the technical aspect of efficiently 
transferring the input and output data but does not pose any solutions how to 
implement lose coupling and how to integrate heterogeneous technologies, the 
fundamental means of an SOA to improve the flexibility of an application landscape. 

In order to integrate a batch processing system into a service-oriented application 
landscape several design decisions need to get addressed:  

• How to implement lose coupling?  

• What is the appropriate degree of loose coupling? 

• What is the right service granularity? 

• Which middleware technologies can be utilised for the integration of 
heterogeneous technologies?  

• Who is responsible for data transformation?  

• What data formats should be used?  



Given that there are no obvious answers to these questions, there is a certain need of 
a framework that supports the service-oriented integration of batch processing 
systems by offering proven solutions for these issues. The design of such a 
framework for the integration of batch processing systems in a service-oriented 
application landscape will be carried out in a PhD Thesis. 

5. Conclusion 

The introduction of an SOA generally has a negative impact on performance. Among 
general performance drawbacks an SOA shares with other distributed technologies, 
two main concepts of an SOA that deteriorate performance even more are described 
in this paper. The communication overhead introduced by using intermediate 
protocols and specific middleware like an ESB to integrate heterogeneous 
technologies and the utilisation of loose coupling in order to increase the flexibility 
and maintainability of the application landscape. 

This paper discusses several approaches to improve performance in an SOA that are 
currently established.  

The obvious approach is to utilize faster hardware and more network bandwidth. The 
compression of messages poses an option for reducing transmission times. Other 
approaches suggest reconsidering the service or architecture design. To decrease the 
communication overhead immanent in an SOA services should be coarse grained. Is 
the processing time of a coarse grained service causing problems for a specific 
service consumer, a finer grained service should be added.  

To apply the proper approach to performance issues it is vital to know the bottleneck 
of the system. Unfortunately, the measuring of system performance and the 
investigation of bottlenecks can be done only at a late stage in the development 
phase. SOA Performance models are trying to anticipate the performance behaviour 
during the design phase but they are currently still under research.  

Improving the performance of a system always impacts other quality attributes. 
Adjusting the degree of loose coupling affects the flexibility of the system. Merging 
services to more coarse grained services or splitting coarse grained services into finer 
grained services to solve performance issues of specific service consumers impacts 
the reusability of the services. Thus, it is vital to find the appropriate trade-off 
between performance and other quality attributes of the system like flexibility, 
maintainability and reusability. 

Batch processing systems in particular demand a high-performance implementation. 
In order to integrate these kinds of systems in a service-oriented application 
landscape several design decisions need to get addressed. For example, what is the 
appropriate degree of loose coupling and the right service granularity to achieve the 
required performance? Given that there are no obvious answers to these questions, 
there is a certain need for a framework for service-oriented processing of bulk data.  



The design of such a framework will be the subject of a PhD Thesis, which will be 
carried out at the University of Plymouth in conjunction with the University of 
Applied Sciences, Darmstadt. 

6. References 

Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.-P., Voß, M., 
Willkomm, J. (2008), Quasar Enterprise, dpunkt.verlag, ISBN: 978-3-89864-506-5. 

EXI Working Group (2007), http://www.w3.org/XML/EXI. (Accessed January 
2008) 

Hess, A., Humm B., Voß, M. (2006), “Regeln für serviceorientierte Architekturen 
von hoher Qualität“, Informatik Spektrum, Vol. 29, No. 6, Springer Verlag, pp. 395-
411. 

Josuttis, N. (2007), SOA in Practice, O’Reilly, ISBN: 0596529554. 

Krafzig, D., Banke, K., Slama, D. (2005), Enterprise SOA, Prentice Hall, ISBN: 
0131465759. 

O’Brian, L., Merson, P., Bass L. (2007), “Quality Attributes for Service-Oriented 
Architectures”, Proceedings of the international Workshop on Systems Development 
in SOA Environments, International Conference on Software Engineering, IEEE 
Computer Society, Washington, DC.   

Richter, J.-P., Haller H., Schrey, P. (2005), “Aktuelles Schlagwort Serviceorientierte 
Architektur“, Informatik Spektrum, Vol. 28, No. 5, Springer Verlag, pp. 413-416. 

SOAP Specification (2007), http://www.w3.org/TR/soap (Accessed January 2008). 

Wichaiwong, T., Jaruskulchai, C. (2007), “A Simple Approach to Optimize Web 
Services’ Performance”, Proceedings of the Third international Conference on Next 
Generation Web Services Practices, IEEE Computer Society, Washington, DC 





A SOA Middleware for High-Performance 
Communication 

M. Swientek123, B. Humm1, U. Bleimann1, P. Dowland2 

 
1University of Applied Sciences Darmstadt, Germany 

2University of Plymouth, United Kingdom 
3Capgemini sd&m AG, Offenbach, Germany 

E-mail: martin@swientek.org 

Abstract 

Systems for bulk data processing are often implemented as batch processing systems. While 
this type of processing in general delivers high throughput, it cannot provide near-time 
processing of data. Message-based solutions such an ESB are able to provide near-time 
processing but cannot provide high throughput. This paper presents a new approach to the 
problem of delivering near-time processing while providing very high throughput by adjusting 
the data granularity at runtime. It describes how existing SOA middleware can be extended to 
implement this approach. 

Keywords 

Middleware, Bulk data processing, Near-time processing, Performance, SOA 

1. Introduction 

Business software systems like customer-billing systems or financial transaction 
systems are required to process large volumes of data in a fixed period of time. For 
example, a billing system for a large telecommunication provider has to process 
more than 1 million bills per day. It consists of several sub components that process 
the different billing sub processes like mediation, rating, billing and presentment (see 
Figure 1). 

 

Figure 1: Billing sub processes 

The mediation components receive usage events from delivery systems, like switches 
and transform them into a format the billing system is able to process. For example, 
transforming the event records to the internal record format of the rating and billing 
engine or adding internal keys that are later needed in the process. The rating engine 
assigns the events to the specific customer account, called guiding, and determines 
the price of the event, depending on the applicable tariff. It also splits events if more 
than one tariff is applicable or the customer qualifies for a discount. The billing 
engine calculates the total amount of the bill by adding the rated events, recurring 
and one-time charges and discounts. The output is processed by the presentment 



components, which format the bill, print it, or present it to the customer in self-
service systems, for example on a website. 

The performance requirements for such a billing system are high. It has to process 
more than 1 million records per hour and the whole batch run needs to be finished in 
a limited timeframe to comply with service level agreements with the print service 
provider. Since delayed invoicing causes direct loss of cash, it has to be ensured that 
the bill arrives at the customer on time. 

The traditional operation paradigm of such a system for bulk data processing is batch 
processing (see Figure 2). 

 

Figure 2: Batch processing 

Batch processing exhibits the following properties (Swientek et al., 2008): 

• Bulk processing of data 
A Batch processing system processes several gigabytes of data in a single 
run. Multiple systems are running in parallel controlled by a job scheduler 
to speed up processing. 

• No user interaction 
There is no user interaction needed for the processing of data. It is 
impossible due to the amount of data being processed. 

• File- or database-based interfaces 
Input data is read from the file system or a database. Output data is also 
written to files on the file system or a database. Files are transferred to the 
consuming systems through FTP by specific jobs. 

• Operation within a limited timeframe 
A batch processing system often has to deliver its results in a limited 
timeframe due to service level agreements (SLA) with consuming systems. 

• Offline handling of errors 
Erroneous records are stored to a specific persistent memory (file or 
database) during operation and are processed afterwards. 

While such a batch processing system is able to process bulk data and thus delivering 
a high throughput, it is not able to deliver near-time processing. That is, the latency 
of a batch processing system is high.  



Near-time processing reduces the latency of the system, that is, the time that is spent 
between the occurrence and the processing of an event. In case of a billing system, it 
is the time between the user making a call and the complete processing of this call 
including mediation, rating, billing and presentment. From the customer point of 
view, an event should be viewable in the customer self-care website shortly after the 
call has been made. This requirement cannot be implemented using batch processing. 

To decrease the latency of the system a message-based approach is needed (see 
Figure 3), for example by utilising an Enterprise Service Bus (ESB). While this 
approach provides near-time processing of data, it is not able to deliver the same 
throughput as batch processing. 

 

Figure 3: Message based processing 

This paper describes a new approach to the problem of delivering near-time 
processing while providing very high throughput. It is organised as follows: The next 
section defines the performance attributes throughput and latency in more detail and 
explains why they are contrary to each other in this case. Section 3 defines the term 
data granularity and explains how throughput and latency depend on it. Section 4 
describes how this approach can be implemented using Sopera ASF which provides 
an open-source SOA platform. The paper concludes with a summary of the described 
approach and an outlook to further research.  

2. Throughput vs. latency 

Throughput and latency are performance metrics of a system. We use the following 
definitions of throughput and latency in this paper: 

• Throughput 
The number of events the systems is able to process in fixed timeframe. 

• Latency 
The period of time between the occurrence of an event and its processing. 

In the case of bulk data processing, throughput and latency are contrary to each other 
(as illustrated in Figure 4). A high throughput, as provided by batch processing, leads 
to a high latency, which impedes near-time processing. On the other hand, low 
latency, as provided by a message-based system, cannot provide the throughput 
needed for bulk data processing. 



 

Figure 4: Throughput vs. latency 

In order to achieve near-time processing with very high throughput, we propose a 
combination of both processing types (see Figure 5). 

 

Figure 5: Combining batch processing with message-based processing 

This solution should provide the best possible latency with the lowest throughput 
that is still acceptable to meet the performance requirements. 

3. Data granularity 

Throughput and latency of the system depend on the granularity of data that is being 
processed. Data granularity relates to the amount of data that is processed in a unit of 
work, for example in a single batch run or an event. Haesen et al. distinguishes 
between two types of data granularity (Haesen et al., 2008): 

• Input data granularity 
Data that is sent to a component 

• Output data granularity 
Data that is returned by a component 

Additionally, data granularity can relate to different orientations: 

• Horizontal data granularity 
Refers to the amount of data or fields that is contained in a single record 

• Vertical data granularity 
Refers to the total number of records 

The remainder of this paper focuses on vertical data granularity. No distinction is 
being made regarding input and output data granularity. 



Batch processing uses a high granularity of data, which leads to high throughput and 
high latency. Message-based processing uses low granularity of data, which leads to 
low latency but also low throughput. The optimum data granularity would allow 
having the lowest possible latency with the lowest acceptable throughput and thus 
providing near-time processing of bulk data (see Figure 6). 

 

Figure 6: Throughput and latency depend on data granularity 

3.1. Variable adjustment of granularity 

The granularity of the data processed in one message will be adjusted at runtime. A 
middleware is needed that provides services to constantly measure the throughput 
and latency of the system and to control the granularity of the data (see Figure 7). If 
the throughput drops below the acceptable minimum, the granularity of the data 
needs to be higher. On the other hand, the granularity can be lowered, if the 
throughput of the system is above the minimum. 

 

Figure 7: Variable adjustment of granularity 

4. Implementation 

This section describes how to implement the variable adjustment of data granularity 
by extending the Sopera ASF platform. 

 



4.1. Sopera Advanced Service Factory 

The Sopera Advanced Service Factory (Sopera ASF) provides an open source SOA 
(Service Oriented Architecture) platform, which has been developed and successfully 
deployed at Deutsche Post AG. The core of the platform is the Sopera ESB. The 
Sopera ESB is implemented as a distributed service bus. An Enterprise Service Bus 
(ESB) is an integration platform that combines messaging, web services, data 
transformation and intelligent routing (Schulte, 2002). 

The main components of the Sopera ESB are the Sopera Library (SSB Library) and 
the Sopera Service Management (SSM). The Sopera Library represents the service 
container of the Sopera ESB and provides access for all participants, mediation of the 
SOA functionality and message exchange. Sopera Management provides 
functionality for monitoring the operations of the SOA platform including 
performance, error handling and reporting and provides methods to control the 
behaviour of the service participants. 
 
Additional infrastructure services are provided as plug-ins. Sopera ASF includes the 
following plug-ins: 
 

• Service registries/repositories 
• Security services 
• Messaging/Transport services 
• Orchestration/Workflow server 

 
Sopera ASF supports different Message Queuing Server such as Apache ActiveMQ, 
JORAM and IBM WebSphere MQ. In addition to the ESB, Sopera ASF also 
provides an extensive tool suite based on the Eclipse IDE including editors to define 
services, policies and process flows. 

We will use the Sopera ASF platform to implement the adjustment of data 
granularity to reduce the latency of bulk data processing as introduced in section 3. 
The platform has been chosen because of its best of breed approach using open 
source components. All source code is freely available. Additionally, the reliability 
of the platform has been proven in a huge deployment at Deutsche Post.  

The next section describes the design of the components that comprise the proposed 
solution.  

4.2. Component architecture 

Figure 8 shows the components, which are involved in the adjustment of data 
granularity at runtime.  



 

Figure 8: Components 

The main component is the Performance Manager. It constantly measures the 
throughput and latency of managed components and controls their data granularity. 
Every managed component constantly sends a notification to the Performance 
Manager containing its current throughput and latency. The Performance Manager 
buffers the incoming notification messages and computes the current throughput and 
latency of the complete business process. If the computed latency exceeds the pre-
defined limit, the Performance Manager adjusts the data granularity of the managed 
components.  

The communication between the Performance Manager and the managed 
components will be implemented using Java Management Extensions (JMX).  

4.2.1. Performance Manager 

The Performance Manager is an infrastructure service and will be implemented as a 
Web application, which runs inside a standard Servlet container (see Figure 9). 

The Performance Manager provides the following interfaces. 

• Sensor interface 
The Sensor interface receives JMX (Java Management Extension) 
notification messages from managed components containing their current 
throughput and latency. 

• Performance Manger Client interface 
The Performance Manager client interface exposes the Performance 
Manager Client application and is used to set the pre-defined limits for the 
latency and throughput of the business process. 



 

Figure 9: Component Performance Manager 

The Performance Manager is comprised of the following sub components. 

• Granularity Engine 
The Granularity Engine is the core of the Performance Manager service.  It 
consists of the components Sensor, Controller and Configuration. The 
Sensor component receives JMX notification messages from managed 
components. The Granularity Engine computes the throughput and latency 
of the complete business process using the notifications and compares the 
computed values with the pre-defined limits stored in the Configuration 
component. If the computed values exceed the pre-defined limits, the 
Controller sends a message to the corresponding managed components to 
adjust the data granularity. 

• SSB Library 
The SSB Library provides the integration of the Performance Manager in 
the Sopera ASF platform. It is used to receive the notification messages of 
the managed components. 

• Logging 
The Logging component logs all measured and computed values of the 
managed components and all adjustments of the data granularity performed 
by the Granularity Engine. The logs can be viewed using the Performance 
Manager Client application. 

• Performance Manager Client 
The Performance Manager Client application provides a user interface to set 



the pre-defined limits for throughput and latency. It also offers functionality 
to manually control the data granularity and to view the logs written by the 
Logging component. 

• Authentication and Authorisation 
The Performance Manager uses the Authentication and Authorisation 
services provided by the Sopera ASF platform. 

4.2.2. Managed Component 

The SSB Library already contains an SSM module which provides the management 
functionality for a service participant. The SSM module contains several MBeans 
(Management Beans), which monitor the message traffic that passes through an 
instance of the SSB Library, including the average number of requests per minute, 
the total number of request for a fixed time and the percentage of failed requests. The 
data is available at different levels of aggregation. The ParticipantMonitor provides 
data about the service participant. The ServiceMonitor and OperationMonitor 
provide data about a service and an operation respectively (Sopera Operations and 
Administration Guide).  

 

Figure 10: Managed Component 

We will extend the existing SSM components to measure the throughput and latency 
of the service participant and add operations to control its data granularity. 

The Performance Manager Adapter provides the Controller interface used by the 
Performance Manager to control the MBeans of the SSM components.  Additionally, 
the adapter publishes notification messages containing the current throughput and 
latency of the managed component. 



 

4.3. Implementation considerations 

The following considerations need to be taken into account when implementing the 
proposed solution. 

4.3.1. Measuring Throughput and latency of orchestrated services 

In order to compute the throughput and latency of a complete business process, the 
Performance Manager needs to know which services are orchestrated to compose 
this business process. The Performance Manager will be able to retrieve business 
process definitions from the workflow engine attributed with limits for the maximum 
latency and minimum acceptable throughput. It might be necessary to extend the 
utilised business process language to support these attributes including the 
corresponding tools. 

4.3.2. Transport of large messages 

The message size cannot be arbitrarily increased because very large messages cannot 
be transported efficiently by the messaging system. If the data granularity exceeds a 
certain level, it might be required that the payload of the message is transported 
outside of the messaging system by using FTP (File Transfer Protocol) or similar 
transports. 

5. Conclusion 

Business software systems for bulk data processing commonly utilise batch 
processing. These systems are more and more faced to also provide near-time 
processing due to changed business requirements such as customer demand. While a 
batch processing system is able to provide the required high throughput, it cannot 
meet the requirements regarding low latency necessary for near-time processing. On 
the other hand, message-based processing is able to deliver low latency but cannot 
provide the required high throughput. 

Latency and throughput depend on the granularity of data that is being processed. 
Batch processing uses coarse-grained data and therefore exhibits a high latency. 
Message-based processing uses fine-grained data, i.e. messages, and therefore 
exhibits a low latency. The optimum data granularity would allow having the lowest 
possible latency with the lowest acceptable throughput and thus providing near-time 
processing of bulk data. We suggest that the granularity of data will be adjusted at 
runtime by a middleware, which continuously measures the throughput and latency 
of the system. 

Sopera ASF is an adequate integration platform to implement the described 
approach. The necessary infrastructure services for monitoring the throughput and 
latency of the system and for adjusting the granularity of data will be implemented as 
plug-ins of the Sopera ESB.  



The next step is the implementation of the proposed solution along with 
comprehensive performance tests. 

6. References 

Chappel, D. (2004), Enterprise Service Bus, O’Reilly, ISBN 0-596-00675-6.  

Haesen, R., Snoeck, M., Lemahieu, W. and Poelmans, S. (2008), “On the definition 
of service granularity and its architectural impact”, CAiSE '08: Proceedings of the 
20th international conference on Advanced Information Systems Engineering, 
Springer Verlag, Berlin, Heidelberg, Germany, pp. 375–389. 

JMX, Java Management Extensions, 
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/index.html, (Accessed 29. September 
2009). 

Schulte, R. W. (2002), “Predicts 2003: Enterprise Service Buses Emerge”, Gartner. 

Sopera ASF, http://www.sopera.de/en/home, (Accessed 10. August 2009). 

Sopera Operations and Administration Guide, 
http://www.sopera.de/nc/en/support/bibliothek/sopera-32/opadmin32/,  
(Accessed 30. September 2009). 

Swientek, M., Bleimann U. and Dowland P. (2008), “Service-Oriented Architecture: 
Performance Issues and Approaches”, Proceedings of the Seventh International 
Network Conference (INC 2008), Plymouth, UK, pp. 261-269. 





An Adaptive Middleware for Near-Time Processing of Bulk Data

Martin Swientek
Paul Dowland

School of Computing and Mathematics
Plymouth University

Plymouth, UK
e-mail: {martin.swientek, p.dowland}@plymouth.ac.uk

Bernhard Humm
Udo Bleimann

Department of Computer Science
University of Applied Sciences Darmstadt

Darmstadt, Germany
e-mail: {bernhard.humm, udo.bleimann}@h-da.de

Abstract—The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of the
system is designed, prior to implementing the system. This choice
depends on the non-functional requirements of the system. These
requirements are not fixed and can change over time. In this
paper, we introduce the concept of a middleware that is able
to adapt its processing type fluently between batch processing
and single-event processing. By adjusting the data granularity at
runtime, the system is able to minimise the end-to-end latency
for different load scenarios.

Keywords–adaptive middleware; message aggregation; latency;
throughput

I. INTRODUCTION

Enterprise Systems like customer-billing systems or finan-
cial transaction systems are required to process large volumes
of data in a fixed period of time. For example, a billing system
for a large telecommunication provider has to process more
than 1 million bills per day. Those systems are increasingly
required to also provide near-time processing of data to support
new service offerings.

Traditionally, enterprise systems for bulk data processing
are implemented as batch processing systems [1]. Batch pro-
cessing delivers high throughput but cannot provide near-time
processing of data, that is the end-to-end latency of such a
system is high. End-to-end latency refers to the period of time
that it takes for a business process, implemented by multiple
subsystems, to process a single business event. For example,
consider the following billing system of telecommunications
provider:

• Customers are billed once per month

• Customers are partitioned in 30 billing groups

• The billing system processes 1 billing group per day,
running 24h under full load.

In this case, the mean time for a call event to be billed by
the billing system is 1/2 month. That is, the mean end-to-end
latency of this system is 1/2 month.

A lower end-to-end latency can be achieved by using
single-event processing, for example by utilizing a message-
oriented middleware for the integration of the services that
form the enterprise system. While this approach is able to
deliver near-time processing, it is hardly capable for bulk data

processing due to the additional communication overhead for
each processed message. Therefore, message-based processing
is usually not considered for building a system for bulk data
processing requiring high throughput.

The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system.
This choice depends on the non-functional requirements of
the system. These requirements are not fixed and can change
during the lifespan of a system, either anticipated or not
anticipated.

Additionally, enterprise systems often need to handle load
peaks that occur infrequently. For example, think of a billing
system with moderate load over most of the time, but there are
certain events with very high load such as New Year’s Eve.
Most of the time, a low end-to-end latency of the system is
preferable when the system faces moderate load. During the
peak load, it is more important that the system can handle the
load at all. A low end-to-end latency is not as important as an
optimized maximum throughput in this situation.

In this paper, we propose a solution to this problem:

• We introduce the concept of a middleware that is able
to adapt its processing type fluently between batch
processing and single-event processing. By adjusting
the data granularity at runtime, the system is able
to minimize the end-to-end latency for different load
scenarios. (Section III)

The remainder of this paper is organized as follows. Section
II defines the considered type of system and the terms through-
put and latency. The proposed middleware and the results of
preliminary performance tests are presented in Section III.
Section IV gives an overview of other work related to this
reasearch. Finally, Section V concludes the paper and gives
and outlook to the next steps of this research.

II. BACKGROUND

We consider a distributed system for bulk data processing
consisting of several subsystems running on different nodes
that together form a processing chain, that is, the output of
subsystem S1 is the input of the next subsystem S2 and so on
(see Figure 1a).

37Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications



S1 S3S2

(a) Single processing line

S1 S3S2

S1 S3S2

(b) Parallel processing lines

Figure 1. A system consisting of several subsystems forming a processing
chain

To facilitate parallel processing, the system can consist of
several lines of subsystems with data beeing distributed among
each line. For simplification, we consider a system with a
single processing line in the remainder of this paper.

We discuss two processing types for this kind of system,
batch processing and message-based processing.

A. Batch processing

The traditional operation paradigm of a system for bulk
data processing is batch processing (see Figure 2). A batch
processing system is an application that processes bulk data
without user interaction. Input and output data is usually
organized in records using a file- or database-based interface.
In the case of a file-based interface, the application reads a
record from the input file, processes it and writes the record
to the output file.

S1 S2 S3

Figure 2. Batch processing

B. Message-base processing

Messaging facilitates the integration of heterogeneous ap-
plications using asynchronous communication. Applications
are communicating with each other by sending messages (see
Figure 3). A messaging server or message-oriented middleware
handles the asynchronous exchange of messages including an
appropriate transaction control [2].

S1 S2 S3

Figure 3. Message-based processing

Message-based systems are able to provide near-time pro-
cessing of data due to their lower latency compared with
batch processing systems. The advantage of a lower latency

comes with a performance cost in regard to a lower maxi-
mum throughput because of the additional overhead for each
processed message. Every message needs, amongst others,
to be serialized and deserialized, mapped between different
protocols and routed to the appropriate receiving system.

C. End-to-end Latency vs. Maximum Throughput

Throughput and latency are performance metrics of a
system. We are using the following definitions of maximum
throughput and latency in this paper:

• Maximum Throughput
The number of events the system is able to process in
a fixed timeframe.

• End-To-End Latency
The period of time between the occurrence of an
event and its processing. End-to-end latency refers
to the total latency of a complete business process
implemented by multiple subsystems. The remainder
of this paper focusses on end-to-end latency using the
general term latency as an abbreviation.

Latency and maximum throughput are opposed to each
other given a fixed amount of processing resources. High
maximum throughput, as provided by batch processing, leads
to high latency, which impedes near-time processing. On the
other hand, low latency, as provided by a message-based
system, cannot provide the maximum throughput needed for
bulk data processing because of the additional overhead for
each processed event.

III. AN ADAPTIVE MIDDLEWARE FOR NEAR-TIME
PROCESSING OF BULK DATA

This section introduces the concept of an adaptive middle-
ware which is able to adapt its processing type fluently between
batch processing and single-event processing. It continuously
monitors the load of the system and controls the message
aggregation size. Depending on the current aggregation size,
the middleware automatically chooses the appropriate service
implementation and transport mechanism to further optimize
the processing.

A. Middleware Components

Figure 4 shows the components of the middleware, that
are based on the Enterprise Integration Patterns described by
Hohpe et al. [3].

1) Aggregator: The Aggregator is a stateful filter which
stores correlated messages until a set of messages is complete
and sends this set to the next processing stage in the messaging
route.

There are different options to aggregate messages, which
can be implemented by the Aggregator:

• No correlation: Messages are aggregated in the order
in which they are read from the input message queue.
In this case, an optimized processing is not simply
possible.

38Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications



S1
Endpoint A

S1
Endpoint BAggregator Router

Queue

Queue

Queue

Messages Message
Aggregate

Figure 4. Components of the Adaptive Middleware. We are using the notation defined by [3]

• Technical correlation: Messages are aggregated by
their technical properties, for example by message size
or message format.

• Business correlation: Messages are aggregated by
business rules, for example by customer segments or
product segments.

2) Feedback Loop: To control the level of message aggre-
gation at runtime, the middleware uses a closed feedback loop
with the following properties (see Figure 5):

• Input (u): Current aggregation size

• Output (y): Change of queue size measured between
sampling intervals

• Set point (r): The change of queue size should be
zero.

Ultimately, we want to control the average end-to-end
latency depending on the current load of the system. The
change of queue size seems to be an appropriate quantity
because it can be directly measured without a lag at each
sampling interval, unlike the average end-to-end latency.

Controller System
y = Net change of queue sizer = 0 e = r-y u = Aggregation size

Figure 5. Feedback loop to control the aggregation size

The concrete architecture and tuning of the feedback loop
and the controller is subject to our ongoing research.

3) Router: Depending on the size of the aggregated mes-
sage, the Router routes the message to the appropriate service
endpoint, which is either optimized for batch or single event
processing.

When processing data in batches, especially when a batch
contains correlated data, there are multiple ways to speed up
the processing:

• To reduce I/O, data can be pre-loaded at the beginning
of the batch job and held in memory.

• Storing calculated results for re-use in memory

• Use bulk database operations for reading and writing
data

With high levels of message aggregation, it is not preferred
to send the aggregated message payload itself over the message

bus using Java Message Service (JMS) or SOAP. Instead, the
message only contains a pointer to the data payload, which
is transferred using File Transfer Protocol (FTP) or a shared
database.

B. Prototype Implementation

To evaluate the proposed concepts of the adaptive middle-
ware, we have implemented a prototype of a billing system
using Apache Camel [4] as the messaging middleware.

Figure 6 shows the architecture of the prototype system.

Camel

Billing Route
ActiveMQ

Event 
Generator

Tomcat

Costed Events

Master Data

Rating 
Service

Tomcat

Mediation 
Service

SO
AP

SO
AP

JPA

JMS

JM
S

CDR NCDR Costed 
Event

MySQL

MySQL

Qeue
Aggregator Router

Figure 6. Architecture of the prototype system

Using this prototype, we have done some preliminary
performance tests to examine the impact of message aggre-
gation on latency and throughput. For each test, the input
message queue has been pre-filled with 100.000 events. We
have measured the total processing time and the processing
time of each message with different static message aggregation
sizes.

Figure 7 shows the impact of different aggregation sizes
on the throughput of the messaging prototype. The throughput
increases constantly for 1 < aggregation_size <= 50 with a
maximum of 673 events per second with aggregation_size =
50. Higher aggregation sizes than 50 do not further increase
the throughput, it stays around 390 events per second.

The increased throughput achieved by increasing the ag-
gregation size comes with the cost of a higher latency. Figure
8 shows the impact of different aggregation sizes on the 95th
percentile latency of the messaging prototype.

39Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications



Figure 7. Impact of different aggregation sizes on throughput

Figure 8. Impact of different aggregation sizes on latency

An aggregation size of 50, resulting in the maximum
throughput of 673 events per seconds, shows a 95th percentile
latency of about 68 seconds.

The results indicate that there is an optimal range for
the aggregation size to control the throughput and latency of
the system. Setting the aggregation size higher than a certain
threshold leads to a throughput drop and latency gain. In case
of our prototype, this threshold is between an aggregation size
of 85 and 90. This threshold needs to be considered by the
control strategy. We are currently investigating the detailed
causes of this finding.

IV. RELATED WORK

Research on messaging middleware currently focusses on
Enterprise Services Bus (ESB) infrastructure. An ESB is an
integration plattform that combines messaging, web services,
data transformation and intelligent routing to connect multiple
heterogeneous services [5]. It is a common middleware to
implement the integration layer of an Service Oriented Archi-
tecture (SOA) and is available in numerous commercial and
open-source packages.

Several research has been done to extend the static service
composition and routing features of standard ESB implemen-
tations with dynamic capabilities decided at run-time, such as
dynamic service composition [6], routing [7] [8] [9] and load
balancing [10].

Work to manage and improve the Quality of Service
(QoS) of ESB and service-based systems in general is mainly
focussed on dynamic service composition and service selection
based on monitored QoS metrics such as throughput, availabil-
ity and response time [11]. Gonzaléz et al. [12] propose an
adaptive ESB infrastructure to adress QoS issues in service-
based systems which provides adaption strategies for response
time degradation and service saturation, such as invoking
an equivalent service, using previously stored information,
distributing requests to equivalent services, load balancing and
deferring service requests.

The adaption strategy of our middleware is to change the
message aggregation size based on the current load of the
system. Aggregating or batching of messages is a common
approach to increase the throughput of a messaging system, for
example to increase the throughput of total ordering protocols
[13] [14] [15] [16].

A different solution to handle infrequent load spikes is
to automatically instantiate additional server instances, as
provided by current Platform as a Service (PaaS) offerings
such as Amazon EC2 [17] or Google App Engine [18]. While
scaling is a common approach to improve the performance of
a system, it also leads to additional operational and possible
license costs. Of course, our solution can be combined with
these auto-scaling approaches.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a middleware that is
able to adapt itself to changing load scenarios by fluently
shifting the processing type between single event and batch
processing. The middleware uses a closed feedback loop to
control the end-to-end latency of the system by adjusting
the level of message aggregation depending on the current
load of the system. Determined by the aggregation size of
a messsage, the middleware routes a message to appropriate
service endpoints, which are optimized for either single-event
or batch processing.

To evaluate the proposed middleware concepts, we have
implemented a prototype system and performed preliminary
performance tests. The tests show that throughput and latency
of a messaging system depend on the level of data granularity
and that the throughput can be increased by increasing the
granularity of the processed messages.

Next steps of our research are the implementation of the
proposed middleware including the evaluation and tuning of
different controller architectures, performance evaluation of the
proposed middleware using the prototype and developing a
conceptional framework containing guidelines and rules for
the practitioner how to implement an enterprise system based
on the adaptive middleware for near-time processing

REFERENCES

[1] J. Fleck, “A distributed near real-time billing environment,” in Telecom-
munications Information Networking Architecture Conference Proceed-
ings, 1999. TINA ’99, 1999, pp. 142–148.

[2] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch, Enterprise
Application Integration: Grundlagen, Konzepte, Entwurfsmuster, Prax-
isbeispiele. Elsevier, Spektrum, Akad. Verl., 2006.

40Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications



[3] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[4] Apache Camel. http://camel.apache.org. [retrieved: March 2014].
[5] D. Chappell, Enterprise Service Bus. Sebastopol, CA, USA: O’Reilly

Media, Inc., 2004.
[6] S.-H. Chang, H. J. La, J. S. Bae, W. Y. Jeon, and S. D. Kim, “Design of

a dynamic composition handler for esb-based services,” in e-Business
Engineering, 2007. ICEBE 2007. IEEE International Conference on,
Oct 2007, pp. 287–294.

[7] X. Bai, J. Xie, B. Chen, and S. Xiao, “Dresr: Dynamic routing in
enterprise service bus,” in e-Business Engineering, 2007. ICEBE 2007.
IEEE International Conference on, Oct 2007, pp. 528–531.

[8] B. Wu, S. Liu, and L. Wu, “Dynamic reliable service routing in
enterprise service bus,” in Asia-Pacific Services Computing Conference,
2008. APSCC ’08. IEEE, Dec 2008, pp. 349–354.

[9] G. Ziyaeva, E. Choi, and D. Min, “Content-based intelligent routing
and message processing in enterprise service bus,” in Convergence
and Hybrid Information Technology, 2008. ICHIT ’08. International
Conference on, Aug 2008, pp. 245–249.

[10] A. Jongtaveesataporn and S. Takada, “Enhancing enterprise service
bus capability for load balancing,” W. Trans. on Comp., vol. 9, no. 3,
Mar. 2010, pp. 299–308. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1852392.1852401

[11] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic qos management and optimization in service-based
systems,” Software Engineering, IEEE Transactions on, vol. 37, no. 3,
May 2011, pp. 387–409.

[12] L. González and R. Ruggia, “Addressing qos issues in service based
systems through an adaptive esb infrastructure,” in Proceedings of
the 6th Workshop on Middleware for Service Oriented Computing,
ser. MW4SOC ’11. New York, NY, USA: ACM, 2011, pp. 4:1–4:7.
[Online]. Available: http://doi.acm.org/10.1145/2093185.2093189

[13] R. Friedman and R. V. Renesse, “Packing messages as a tool for boost-
ing the performance of total ordering protocls,” in Proceedings of the
6th IEEE International Symposium on High Performance Distributed
Computing, ser. HPDC ’97. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 233–.

[14] R. Friedman and E. Hadad, “Adaptive batching for replicated servers,”
in Reliable Distributed Systems, 2006. SRDS ’06. 25th IEEE Sympo-
sium on, 2006, pp. 311–320.

[15] P. Romano and M. Leonetti, “Self-tuning batching in total order
broadcast protocols via analytical modelling and reinforcement learn-
ing,” in Computing, Networking and Communications (ICNC), 2012
International Conference on, Jan 2012, pp. 786–792.

[16] D. Didona, D. Carnevale, S. Galeani, and P. Romano, “An extremum
seeking algorithm for message batching in total order protocols,” in
Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE Sixth
International Conference on, Sept 2012, pp. 89–98.

[17] “Amazon ec2 auto scaling,” http://aws.amazon.com/autoscaling, [re-
trieved: March 2014].

[18] Auto scaling on the google cloud platform.
https://cloud.google.com/developers/articles/auto-scaling-on-the-
google-cloud-platform. [retrieved: March 2014].

41Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications





A Conceptual Framework for Guiding the Development of Feedback-Controlled Bulk

Data Processing Systems

Martin Swientek
Paul Dowland

School of Computing and Mathematics
Plymouth University

Plymouth, UK
e-mail: {martin.swientek, p.dowland}@plymouth.ac.uk

Bernhard Humm
Udo Bleimann

Department of Computer Science
University of Applied Sciences Darmstadt

Darmstadt, Germany
e-mail: {bernhard.humm, udo.bleimann}@h-da.de

Abstract—The design, implementation and operation of an adap-
tive enterprise software system for bulk data processing differs
from common approaches to implement enterprise systems.
Different tasks and activities, different roles with different skills
and different tools are needed to build and operate such a system.
This paper introduces a conceptual framework that describes the
development process of how to build an adaptive software for bulk
data processing. It defines the needed roles and their skills, the
necessary tasks and their relationship, artifacts that are created
and required by different tasks, the tools that are needed to
process the tasks and the processes, which describe the order of
tasks.

Keywords–adaptive middleware; software development process

I. INTRODUCTION

Enterprise Systems for bulk data processing are increas-
ingly required to provide near-time processing of data to
support new service offerings.

Traditionally, enterprise systems for bulk data processing
are implemented as batch processing systems [1]. Batch pro-
cessing delivers high throughput but cannot provide near-time
processing of data, that is the end-to-end latency of such a
system is high.

A lower end-to-end latency can be achieved by using
single-event processing, for example by utilizing a message-
oriented middleware for the integration of the services that
form the enterprise system. While this approach is able to
deliver near-time processing, it is hardly capable for bulk data
processing due to the additional communication overhead for
each processed message. Therefore, message-based processing
is usually not considered for building a system for bulk data
processing requiring high throughput [2].

The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system.
This choice depends on the non-functional requirements of
the system. These requirements are not fixed and can change
over time.

Additionally, enterprise systems often need to handle load
peaks that occur infrequently. When the system faces moderate
load, a low end-to-end latency of the system is preferable.

During the peak load, it is more important that the system
can handle the load at all. A low end-to-end latency is not
as important as an optimized maximum throughput in this
situation.

For example, a billing system for a telecommunication
carrier with moderate load over most of the time, but there
are certain events with very high load such as New Year’s
Eve. Most of the time, a low end-to-end latency of the system
is preferable when the system faces moderate load. During the
peak load, it is more important that the system can handle the
load at all. A low end-to-end latency is not as important as an
optimized maximum throughput in this situation.

In [2], we have introduced the concept of a middleware
that is able to adapt its processing type fluently between batch
processing and single-event processing. By adjusting the data
granularity at runtime, the system is able to minimize the end-
to-end latency for different load scenarios.

The design, implementation and operation of such a system
differs from common approaches to implement enterprise
systems:

• There are specific activities or tasks needed to imple-
ment the feedback-control subsystem.

• There are roles needed with different skills.

• There are different tools needed to aid the design and
development of such a system.

Developing software is a complex process, the quality of a
software product depends on the people, the organization and
procedures used to create and deliver it [3].

This paper introduces a conceptual framework to guide the
design, implementation and operation of an adaptive system
for bulk data processing. It defines views, roles, tasks and their
dependencies, and processes to describe the necessary steps for
design, implementation and operation of an adaptive system for
bulk data processing.

Figure 1 shows an overview of the conceptual framework.
It is organized among the phases plan, build and run. Each
phase contains tasks, which are relevant for each phase:

37Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications



• Plan
The plan phase contains tasks relevant for the analysis
and design of the system, such as the definition of
the service interfaces, definition of the integration
architecture and definition of performance tests.

• Build
The build phase contains tasks relevant for the imple-
mentation of the system, such as the implementation
of services, implementation of the integration layer
and the implementation of the feedback-control sub-
systems.

• Run
The run phase contains tasks relevant to the operation
of the developed system, such as monitoring, setup
and tuning.

Plan Test

Project Management

Business Architecture

Service 
Definitions

Aggregation 
Rules

System Architecture

Integration 
Architecture Routing Rules Controller 

Design

Training

Build

Integration

Tuning
Run

Monitoring Setup Performance 
Management

Performance 
Tests

Evaluation

Staffing

Tuning

Project 
Environments

Services

Routing

Aggregation

Feedback 
Control

Figure 1. Overview of Conceptual Framework

The conceptual framework only describes concepts that
are specific to the design and implementation of an Adaptive
Middleware as described in the previous chapter. It does not
describe common concepts for software development.

The remainder of this paper is organized as follows. Section
II briefly introduces the concept of an adaptive middleware for
bulk data processing. The conceptual framework is presented
in Section III. Section IV gives an overview of other work
related to this research. Finally, Section V concludes the paper
and gives an outlook to the next steps of this research.

II. BACKGROUND

This section briefly introduces the concept of an adaptive
middleware, which is able to adapt its processing type fluently
between batch processing and single-event processing.

The middleware continuously monitors the load of the
system and controls the message aggregation size. Depending
on the current aggregation size, the middleware automatically
chooses the appropriate service implementation and transport
mechanism to further optimize the processing [2].

Figure 2 shows an overview of the adaptive middleware
and its components.

The components of the middleware are based on the
Enterprise Integration Patterns described by [4], as shown in
Table I.

TABLE I
COMPONENTS OF THE ADAPTIVE MIDDLEWARE. WE ARE USING THE

NOTATION DEFINED BY [4]

Symbol Component Description

Message A single message representing a
business event.

Message Aggregate A set of messages aggregated by the
Aggregator component.

Queue Storage component which stores
messages using the FIFO principle.

Aggregator

Stateful filter which stores correlated
messages until a set of messages is
complete and sends this set to the
next processing stage in the messag-
ing route.

Router Routes messages to the appropriate
service endpoint.

Service
Endpoint Service Endpoint Represents a business service.

To control the level of message aggregation at runtime, the
middleware uses a closed feedback loop with the following
properties (see Figure 3):

• Input (u): Current aggregation size

• Output (y): Change of queue size measured between
sampling intervals

• Set point (r): The change of queue size should be
zero.

Preliminary tests show that the proposed middleware solu-
tion is viable and is able to optimize the end-to-end latency of
a data processing system for different load scenarios [2].

III. CONCEPTUAL FRAMEWORK

The design, implementation and operation of a system
based on the adaptive middleware introduced in Section II
differs from common approaches to implement enterprise
systems. We have therefore developed a conceptual framework
to describe a development process how to build such a system.

A. Metamodel

The conceptual framework consists of the following enti-
ties, as shown in Figure 4:

• Phase
Phases correspond to the different phases of a software
development lifecycle, such as design, implementation
and operations and contain the relevant tasks.

• Task
Tasks represent the activities of the development pro-
cess. A task

38Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications



S1
Endpoint A

S1
Endpoint BAggregator Router

Queue

Queue

Queue

Messages Message
Aggregate

Figure 2. Overview of the adaptive middleware for bulk data processing [2]

◦ is contained in a phase
◦ is processed by a role
◦ produces and requires artifacts
◦ uses tools

• Role
Roles represent types of actors with the needed skills
to process specific tasks.

• Artifact
An artifact represents the result of a tasks. Addition-
ally, an artifact is a requirement of a tasks.

• Tool
A tool is used by a tasks to produce its artifact.

• Process
A process contains an ordered list of tasks that need
to be processed in a certain order.

B. Roles

Roles represent the actors, which process tasks, that is,
they describe who does something. The description of a role
contains its responsibilities and needed skills. A role is not the
same as a person, a single person can have multiple roles and
change the role according to the context of the current task.

The conceptual framework defines the following roles:

• Business Architect
The Business Architect is responsible for designing
the business architecture of the system, including the
definition of services and aggregation rules.

• System Architect
The System Architect is responsible for designing
the technical architecture of the system, including the
integration and controller architecture.

• Software Engineer
The Software Engineer is responsible for the imple-
mentation of the system, including the implementation
and tuning of the feedback-control loop.

Controller System
y = Net change of queue sizer = 0 e = r-y u = Aggregation size

Figure 3. Feedback loop to control the aggregation size

• Test Engineer
The Test Engineer is responsible for defining and
performing the performance tests of the system.

• Operations Engineer
The Operations Engineer is responsible for operating
the system, including setup, deployment and monitor-
ing.

• Project Manager
The Project Manager is responsible for the project
coordination, including the staffing and planing of the
required environments.

A role is described by the following attributes:

• Name
The name of the role.

• Description
Description of the responsibilities of the role.

• Tasks
The tasks the role is responsible to process.

• Needed skills
The skills the role has to have in order to successfully
process its tasks.

Task

Role

ArtifactPhase

Tool

processes

uses

contains
1..*

1..*

1..*

1..*

1..*

1..*
1

1 1..* 1..*

produces

requires

Process

1..*

1..*

contains

Figure 4. Metamodel

C. Tasks

Tasks are the main entities of the conceptual framework. A
Tasks describes what should be done, why should it be done,

39Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications



and who should do it. Additionally, it describes the required
and produced artifacts, the tools that should be used to process
the task and the expected challenges.

Tasks depend on each other, some tasks must be processed
in a certain order. A task can have multiple subtasks.

The Conceptual Framework only describes tasks that are
specific to the design and implementation of an Adaptive
Middleware for Bulk Data Processing as described in [2]. It
does not describe common tasks or activities that are needed
for every software system.

Figure 5 shows an overview of the tasks grouped by the
different phases of the Conceptual Framework.

Plan

Project Management

Business Architecture

Define
Service 

Interfaces

Define
Aggregation 

Rules

System Architecture

Define
Integration 

Architecture

Define
Routing 
Rules

Define
Controller 

Architecture

Define
Training 
Concept

Build

Implement 
Integration 

Architecture

Implement 
Service 

Interfaces

Implement 
Routing 
Rules

Implement 
Aggregation 

Rules

Implement 
Feedback-

Control

Perform 
Controller 

Tuning

Run
Setup 

Monitoring 
Infrastructure

Setup Test 
Environment

Perform 
Performance 

Tests

Test

Define
Performance 

Tests

Evaluate Test 
Results

Perform 
Staffing

Source 
Project 

Environments

Figure 5. Overview of tasks

A Task is described by the following attributes:

• Name
The name of the task.

• What
Describes the content of the task.

• Why
Describes the purpose of the task.

• Who
Describes the roles, that are responsible for processing
the task.

• Input
The required artifacts of the task.

• Output
The artifacts produced by the task.

• Tools
The tools that are needed to process the task.

• Challenges
Describes the expectable challenges when processing
the task.

D. Processes

A process contains an ordered list of tasks that are
concerned with the implementation of a certain feature of

the software system. Processes are modeled using Unified
Modelling Language (UML) activity diagrams. The conceptual
framework describes the following processes:

• Implement Integration

• Implement Aggregation

• Implement Feedback-Control

1) Implement Integration: This process describes the nec-
essary tasks to implement the integration layer and the in-
tegrated service interfaces, as shown in the UML activity
diagram in Figure 6.

Figure 6. UML Activity Diagram: Implement Integration

2) Implement Aggregation: This process is concerned with
the implementation of the message aggregation, as shown in
the UML activity diagram in Figure 7.

Figure 7. UML Activity Diagram: Implement Aggregation

3) Implement Feedback-Control: This process contains
tasks that are concerned with the design, implementation and
tuning of the feedback-control loop, as shown in Figure 8.

40Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications



BuildPlan

Implement 
Feedback-

Control

Measure 
System 

Characteristics

Perform 
Static Tests

Perform Step 
Tests

Perform 
Controller 

Tuning

<includes>

<includes> <includes>

<includes>

Define Input/
Output 

Variables

Define 
Control 
Problem

Define 
Control 

Architecture

<includes>

<includes>

<includes>

Implement 
Control 

Architecture

<includes>

Implement 
Controller

Implement 
Sensors

Implement 
Actuator

<includes> <includes> <includes>

Perform 
System 

Identification 
and Modelling

<includes>

Figure 8. Tasks for implementing the feedback-control loop

There are two options for implementing the feedback-
control loop:

• Using a system model for performing the controller
tuning, as shown in the UML activity diagram in
Figure 9.

• Without using a model, the control architecture needs
to be implemented prior to the controller tuning, as
shown in the UML activity diagram in Figure 10.

E. Artifacts

An artifact is a result of a task. It is an intermediate result,
that is needed for development of the software, but not the
software product itself. Additionally, it can also be prerequisite
of another task.

The conceptual framework defines the following artifacts:

• Performance Requirements
Defines the requirements regarding the performance of
the system, such as required maximum throughput, re-
quired maximum latency or desired minimum latency.
Defines the workload scenarios of the system.

• Service Interface Definition
Defines the structure of input and output data. Does
not include informations about the technical format,
such as Extended Markup Language (XML) or
JavaScript Object Notation (JSON), and the integra-
tion style, such SOAP or Representional State Transfer
(REST).

• Aggregation Rules
Defines how events should be correlated with each
other by the Aggregator.

• Integration Architecture
Defines the technical integration of the business ser-
vices, including Middleware technology or product,
transports, such as Java Messaging Service (JMS),
SOAP or File Transfer Protocol (FTP), Technical
format of the input and output data, such as XML
or JSON, Comma Separated Values (CSV) or binary
formats.

Figure 9. UML Activity Diagram: Implement Feedback-Control Loop using
a model

• Routing Rules
Defines which service endpoint should be called by
the Router for a given aggregation size.

• System Model
The system model is used to build a simulation of
the system which can be used for implementing the
controller.

• Controller Configuration
The controller configuration specifies the parameter of
the Controller.

• Training Concept
Defines the training concept, including the audience,
the content and the type of training. Additionally it
contains a time-plan, learning modules and needed
facilities to conduct the training.

• Staffing Plan
Defines the required team members and their utiliza-
tion over the project time (staffing curve), the required

41Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications



Figure 10. UML Activity Diagram: Implement Feedback-Control Loop without using a model

roles and their assignment to team members and a
skill matrix that shows the required skills and the
knowledge of each team member.

An artifact is described by the following attributes:

• Name
The name of the artifact.

• Description
A description of the artifact.

• Task
The task that produces the artifact.

• Role
The role that is responsible for producing the artifact.

IV. RELATED WORK

This section discusses work related to the conceptual
framework presented in this paper. It introduces the terms Soft-
ware Process and Software Process Modelling and discusses
approaches to model the software process using UML.

A. Software Process

“The software process is a partially ordered set of activ-
ities undertaken to manage, develop and maintain software
systems.” [5]

McChesney [6] describes the software process as “col-
lection of policies, procedures, and steps undertaken in the
transformation of an expressed need for a software product
into a software product to meet that need.”.

Another similar definition comes from Fugetta [3]. He
defines the software process as the “coherent set of policies, or-
ganizational structures, technologies, procedures, and artifacts
that are needed to conceive, develop, deploy, and maintain a
software product.”

It is necessary to differentiate between the terms software
process and software lifecycle. A software lifecycle describes
the states through which the software passes from the start of
the development until the operation and finally the retirement.
[7] Examples of software lifecycle models are the waterfall
model [8] or the spiral model [9].

42Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications



B. Software Process Modelling

Software process modelling describes the creation of soft-
ware development models [5]. A software process model is
“an abstract representation of a process architecture, process
design or process definition, where each of these describe, at
various levels of detail, an organization of process elements
of either a completed, current or proposed software process”
[10].

Process models are described using Process Modelling
Languages (PMLs). A PML is defined in terms of a nota-
tion, a syntax and semantics, often suitable for computational
processing [11].

Typical elements of PMLs are (see for example [12] [5]
[3] [13]):

• Agent or Actor

• Role

• Activity

• Artifact or Product

• Tools

Process Models commonly use different perspectives to
describe the software process [13]:

• Functional: what activities are being performed

• Behavioral: In which order (when) are activities per-
formed

• Organizational: where and by whom is an activity
performed

• Informational: the entities produced by the process

Examples of software process models include the IEEE
and ISO standards IEEE 1974-1991, ISO/IEC 12207 and the
Rational Unified Process (RUP).

C. Software Process Modelling using UML

UML is commonly used for modelling software processes.

UML for Software Process Modelling (UML4SPM) is an
UML-based metamodel for software process modelling [11]
[14]. It takes advantages of the expressiveness of UML 2.0
by extending a subset of its elements suitable for process
modelling. UML4SPM contains two packages. The process
structure package, which contains the set of primary process
elements and the foundation package, which contains the
subset of UML 2.0 concepts extended by this process elements
to provide concepts and mechanisms for the coordination and
execution of activities.

Software & System Process Modelling Metamodel (SPEM)
2.0 is a metamodel for modeling software development pro-
cesses and a conceptual framework, which provides concepts
for for modeling, documenting, presenting, managing, inter-
changing, and enacting development methods and processes
[15]. It provides a clear separation between method content, for
example deliverables and key roles, and workflows supporting
different software lifecycle models. The SPEM 2.0 metamodel

consists of seven main metamodel packages, with each pack-
age extending the package it depends on.

Both approaches, UML4SPM and SPEM 2.0 extend the
UML 2.0 notation with additional elements, which does not
allow the usage of standard UML tools.

[16] use UML 2.0 for modelling software processes at
Siemens AG. According to the authors, the usage of standard
UML 2.0 notation, which is supported by standard modelling
tools, increases readability of processes for software developers
since UML is also used for modelling the software itself. They
describe four distinct process views, that are described by
UML activity diagrams, class diagrams and use-case diagrams:
process-oriented, activity-oriented, product-oriented, and role-
oriented. The following UML diagram types are used by their
approach:

The conceptual framework for feedback-controlled systems
for bulk data processing presented in this chapter is based on
the properties of the described approaches in this section for
modelling the software development process. It uses standard
UML use-case and activity diagrams for describing tasks and
processes for the following reasons:

• Understandability
Using standard UML 2.0 notation elements and dia-
grams facilitate the understanding of the conceptual
framework since they are commonly used by software
engineers for the design of the software system itself.

• Tool support
Standard UML 2.0 notation elements and diagrams are
supported by a wide range of modelling tools.

Standard metamodels for software process modelling such
as SPEM 2.0 have not been used because they seemed to
heavyweight for the intended purpose.

D. Software Processes for Adaptive Software Systems

It has been understood that software processes need to be
reconceptualised to engineer self-adaptive software systems
(see for example [17] [18] [19] [20]). Self-adaptive systems
adjust their behavior automatically to respond to changes in
their context and requirements. Activities that are traditionally
done at development-time need to be shifted to run-time.
Additionally, some activities that are previously performed by
software engineers are now performed by the system itself. In a
way, the role of the human software engineer is to some extend
shifted from operational to strategic. The engineer implements
the adaption mechanisms, the adaption itself is performed by
system.

[20] extend the SPEM metamodel to specify which
activities should be performed off-line and on-line and the
dependencies between them. They distinguish between off-
line activities, manual activities that are performed externally
at development-time and on-line activities, that are performed
internally at run-time, by the system itself, for example evo-
lution and adaption activities performed by the adaption logic
of the system. The authors argue, that on-line activities must
be explicitly reflected in software process models, since they
are not independent from off-line activities. In addition to on-
line activities, on-line roles and work products also need to be

43Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications



addressed by process models. To meet this requirements, they
extend the SPEM metamodel with

• On-line and off-line stereotypes to define whether an
activity should be performed on-line or off-line

• Dependencies to relate two or more arbitrary process
elements

• Elements to describe the costs and benefits of per-
forming an activity on-line in contrast to perform it
off-line.

[21] describe a process methodology to support the de-
velopment of context-aware adaptive applications. It consists
of four different activities: Explore, Integrate, Validate and
Evolve:

• Exploration Phase
Exploits a feature library containing the implementa-
tion and corresponding requirements description.

• Integration phase
Uses these features to produce a feature-diagram to
describe the space of system changes, called variants.

• Validation phase
Validates the variants by using context analysis and
model checking.

• Evolution phase
Reconfigures the system by switching to the new
configuration.

[22] propose a conceptual model for self-adaptation which
uses the ITIL Change Management process as a starting
point. It consists of a reference process, activities, roles and
responsibilities and artifacts. The reference process consists of
two processes that interact iteratively, the adaption process and
the evolution process:

• The inner Adaption Process relates to the feedback-
loop of a single adaptable element of the system and
is comprised of the activities Sense, Trigger, Select
Adaption Rules and Change. All these activities are
fully automated.

• The Evolution Process is executed for a single or
multiple occurrences of the inner adaptive process. It
consists of the activities Aggregate Metrics, Analyze,
Evolve Adaption Rules, Adjust and Synchronize, and
Reflect. Theses tasks might require human involve-
ment.

The related work on process models for adaptive systems
is focused on generic adaptation mechanisms to evolve and
adapt a system, which are carried out at run-time. In contrast,
the conceptual framework presented in this chapter is aimed
to guide the design, development and operation of a specific
system, that is, an adaptive system for bulk data processing,
which provides a specific adaptation mechanism, that is, the
adaption of the aggregation size at run-time depending on the
current load of the system.

V. CONCLUSION

In this paper, we have presented a conceptual framework
to guide the design, implementation and operation of an
enterprise system that implements the adaptive middleware for
bulk data processing as described in [2].

The conceptual framework consists of the entities phases,
roles, tasks, artifacts and tools. It describes:

• The needed roles and their skills for the design,
implementation and operation.

• The necessary tasks and their relationships for the
design, implementation and operation.

• The artifacts that are created and required by the
different tasks.

• The tools that are needed to process the different tasks.

• The processes that describe the order of tasks to
implement a certain feature of the software system.

It should be noted that software processes are not fixed
during their lifetime, they need to be continuously improved.
[3] The conceptual model can therefore be tailored to specific
projects requirements, it does not have to be followed strictly.

The next step of this research is the evaluation of the
conceptual framework by using quantitative research meth-
ods, such as expert interviews and its application in real-life
projects.

REFERENCES

[1] J. Fleck, “A distributed near real-time billing environment,” in Telecom-
munications Information Networking Architecture Conference Proceed-
ings, 1999. TINA ’99, 1999, pp. 142–148.

[2] M. Swientek, B. Humm, U. Bleimann, and P. Dowland, “An Adaptive
Middleware for Near-Time Processing of Bulk Data,” in ADAPTIVE
2014, The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications, Venice, Italy, May 2014, pp. 37–41.

[3] A. Fuggetta, “Software process: a roadmap.” ICSE - Future of SE Track,
2000, pp. 25–34.

[4] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[5] S. T. Acuña and X. Ferré, “Software process modelling.” in ISAS-SCI
(1), 2001, pp. 237–242.

[6] I. McChesney, “Toward a classification scheme for software process
modelling approaches,” Information and Software Technology, vol. 37,
no. 7, 1995, pp. 363–374.

[7] S. T. Acuña and X. Ferre, “The software process: Modelling, evaluation
and improvement,” Handbook of Software Engineering and Knowledge
Engineering, vol. 1, 2001, pp. 193–237.

[8] W. W. Royce, “Managing the Development of Large Software Systems:
Concepts and Techniques.” ICSE, 1987, pp. 328–339.

[9] B. W. Boehm, “A Spiral Model of Software Development and Enhance-
ment.” IEEE Computer (), vol. 21, no. 5, 1988, pp. 61–72.

[10] P. Feiler and W. Humphrey, “Software process development and enact-
ment: concepts and definitions,” in Software Process, 1993. Continuous
Software Process Improvement, Second International Conference on
the, Feb 1993, pp. 28–40.

[11] R. Bendraou, M.-P. Gervais, and X. Blanc, “UML4SPM: A UML2.0-
Based Metamodel for Software Process Modelling,” in Model Driven
Engineering Languages and Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 17–38.

44Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications



[12] K. Benali and J. C. Derniame, “Software processes modeling: What,
who, and when,” in Software Process Technology. Berlin/Heidelberg:
Springer Berlin Heidelberg, Jan. 1992, pp. 21–25.

[13] B. Curtis, M. I. Kellner, and J. Over, “Process modeling,” Communi-
cations of the ACM, vol. 35, no. 9, Sep. 1992, pp. 75–90.

[14] R. Bendraou, M.-P. Gervais, and X. Blanc, “UML4SPM: An Executable
Software Process Modeling Language Providing High-Level Abstrac-
tions,” in Enterprise Distributed Object Computing Conference, 2006.
EDOC ’06. 10th IEEE International, Oct 2006, pp. 297–306.

[15] OMG, “Software Process Engineering Metamodel SPEM 2.0,” Object
Management Group, Technical Report ptc/08-04-01, 2008.

[16] S. Dietrich, P. Killisperger, T. Stückl, N. Weber, T. Hartmann, and
E.-M. Kern, “Using uml 2.0 for modelling software processes at
siemens ag,” in Information Systems Development, R. Pooley, J. Coady,
C. Schneider, H. Linger, C. Barry, and M. Lang, Eds. Springer New
York, 2013, pp. 561–572.

[17] G. Blair, N. Bencomo, and R. France, “Models@ run.time,” Computer,
vol. 42, no. 10, Oct 2009, pp. 22–27.

[18] P. Inverardi and M. Tivoli, “The Future of Software: Adaptation and
Dependability.” ISSSE, vol. 5413, no. Chapter 1, 2008, pp. 1–31.

[19] R. De Lemos, H. Giese, H. A. Müller, and M. Shaw, “Software
engineering for self-adaptive systems: A second research roadmap,”
Software Engineering for . . . , 2013.

[20] J. Andersson, L. Baresi, N. Bencomo, R. de Lemos, A. Gorla,
P. Inverardi, and T. Vogel, “Software engineering processes for
self-adaptive systems,” in Software Engineering for Self-Adaptive
Systems II, ser. Lecture Notes in Computer Science, R. de Lemos,
H. Giese, H. Müller, and M. Shaw, Eds. Springer Berlin
Heidelberg, 2013, vol. 7475, pp. 51–75. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-35813-5_3

[21] P. Inverardi and M. Mori, “A Software Lifecycle Process to Support
Consistent Evolutions.” Software Engineering for Self-Adaptive Sys-
tems, vol. 7475, no. Chapter 10, 2010, pp. 239–264.

[22] C. Gacek, H. Giese, and E. Hadar, “Friends or foes?: a conceptual
analysis of self-adaptation and it change management.” SEAMS, 2008,
pp. 121–128.

45Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications





A Feedback-Controlled Adaptive Middleware for Near-Time Bulk Data Processing

Martin Swientek
Paul Dowland

School of Computing and Mathematics
Plymouth University

Plymouth, UK
e-mail: {martin.swientek, p.dowland}@plymouth.ac.uk

Bernhard Humm
Udo Bleimann

Department of Computer Science
University of Applied Sciences Darmstadt

Darmstadt, Germany
e-mail: {bernhard.humm, udo.bleimann}@h-da.de

Abstract—The processing type is usually a fixed property of
an enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system. This
choice depends on the non-functional requirements of the system.
These requirements are not fixed and can change over time.
In this article, the concept of a middleware is introduced that
adapts its processing type fluently between batch processing
and single-event processing using a feedback-control loop. By
adjusting the data granularity at runtime, the system is able
to minimize the end-to-end latency for different load scenarios.
The proposed middleware concept has been implemented with
a research prototype and has been evaluated. The results of the
evaluation show that the concept is viable and is able to optimize
the end-to-end latency of a system for bulk data processing.

Keywords–adaptive middleware; message aggregation; latency;
throughput.

I. INTRODUCTION

This article extends previous work in [1]. Enterprise Sys-
tems like customer-billing systems or financial transaction
systems are required to process large volumes of data in a
fixed period of time. For example, a billing system for a large
telecommunication provider has to process more than 1 million
bills per day. Those systems are increasingly required to also
provide near-time processing of data to support new service
offerings.

Traditionally, enterprise systems for bulk data processing
are implemented as batch processing systems [2]. Batch pro-
cessing delivers high throughput but cannot provide near-time
processing of data, that is, the end-to-end latency of such a
system is high. End-to-end latency refers to the period of time
that it takes for a business process, implemented by multiple
subsystems, to process a single business event. For example,
consider the following billing system of a telecommunications
provider:

• Customers are billed once per month
• Customers are partitioned in 30 billing groups
• The billing system processes 1 billing group per day,

running 24h under full load.

In this case, the mean time for a call event to be billed by
the billing system is 1/2 month. That is, the mean end-to-end
latency of this system is 1/2 month.

A. An Example: Billing Systems for Telecommunications Car-
riers

An example of a system for bulk data processing is a billing
system of a telecommunications carrier. A billing system is
a distributed system consisting of several sub components
that process the different billing sub processes like mediation,
rating, billing and presentment (see Figure 1).

The performance requirements of such a billing system are
high. It has to process more than 1 million records per hour and
the whole batch run needs to be finished in a limited timeframe
to comply with service level agreements with the print service
provider. Since delayed invoicing causes direct loss of cash, it
has to be ensured that the bill arrives at the customer on time.

Mediation Rating Billing Presentment

Figure 1. Billing process

B. Near-Time Processing of Bulk Data

A new requirement for systems for bulk data processing is
near-time processing. Near-time processing aims to reduce the
end-to-end latency of a business process, that is, the time that
is spent between the occurrence of an event and the end of its
processing. In case of a billing system, it is the time between
the user making a call and the complete processing of this call
including mediation, rating, billing and presentment.

The need for near-time charging and billing for telecom-
munications carriers is induced by market forces, such as
the increased advent of mobile data usage and real-time data
services [3]. Carriers want to offer new products and services
that require real-time or near-time charging and billing. Cus-
tomers want more transparency, for example, to set their own
limits and alerts for their data usage, which is currently only
possible for pre-paid accounts. Currently, a common approach
for carriers is to operate different platforms for real-time billing
of pre-paid accounts and traditional batch-oriented billing for
post-paid accounts. To reduce costs, carriers aim to converge
these different platforms.

A lower end-to-end latency can be achieved by using
single-event processing, for example, by utilizing a message-
oriented middleware for the integration of the services that

11

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



form the enterprise system. While this approach is able to
deliver near-time processing, it is hardly capable for bulk data
processing due to the additional communication overhead for
each processed message. Therefore, message-based processing
is usually not considered for building a system for bulk data
processing requiring high throughput.

The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system.
This choice depends on the non-functional requirements of
the system. A system is therefore either optimized for low
latency or high maximum throughput. These requirements are
not fixed and can change during the lifespan of a system, either
anticipated or not anticipated.

Additionally, enterprise systems often need to handle load
peaks that occur infrequently. For example, think of a billing
system with moderate load over most of the time, but there are
certain events with very high load such as New Year’s Eve.
Most of the time, a low end-to-end latency of the system is
preferable when the system faces moderate load. During the
peak load, it is more important that the system can handle the
load at all. A low end-to-end latency is not as important as an
optimized maximum throughput in this situation.

In this article, a solution to this problem is proposed:

• The concept of a middleware is presented that is able
to adapt its processing type fluently between batch pro-
cessing and single-event processing. By adjusting the data
granularity at runtime, the system is able to minimize the
end-to-end latency for different load scenarios.

• A prototype has been built to evaluate the concepts of the
adaptive middleware.

• A performance evaluation has been conducted using this
prototype to evaluate the proposed concept of the adaptive
middleware.

This article extends the adaptive middleware concept,
which has been presented in [1]. It adds a discussion of
its underlying concepts and design aspects, that should be
considered when implementing such an adaptive middleware
for near-time processing of bulk data. In addition, it describes
the prototype implementation of the middleware concept and
presents the results of the evalution of the propposed approach,
as well as its limitations.

The remainder of this article is organized as follows.
Section II defines the considered type of system and the terms
throughput and latency. Section III gives an overview of other
work related to this research. The concept, components and
design aspects of the adaptive middleware are presented in
Section IV through VI. Section VII describes the prototype
system that has been build to evaluate the proposed concepts.
The evaluation of the prototype system is presented in Section
VIII. Section IX describes the limitations of this research.
Finally, Section X concludes the paper and gives and outlook
to further research.

II. BACKGROUND

We consider a distributed system for bulk data processing
consisting of several subsystems running on different nodes
that together form a processing chain, that is, the output of

subsystem S1 is the input of the next subsystem S2 and so on
(see Figure 2a).

S1 S3S2

(a) Single processing line

S1 S3S2

S1 S3S2

(b) Parallel processing lines

Figure 2. A system consisting of several subsystems forming a processing
chain

To facilitate parallel processing, the system can consist of
several lines of subsystems with data being distributed among
each line. For simplification, a system with a single processing
line is considered in the remainder of this article.

We discuss two processing types for this kind of system,
batch processing and message-based processing.

A. Batch processing

The traditional operation paradigm of a system for bulk
data processing is batch processing (see Figure 3). A batch
processing system is an application that processes bulk data
without user interaction. Input and output data is usually
organized in records using a file- or database-based interface.
In the case of a file-based interface, the application reads a
record from the input file, processes it and writes the record
to the output file.

S1 S2 S3

Figure 3. Batch processing

B. Message-base processing

Messaging facilitates the integration of heterogeneous ap-
plications using asynchronous communication. Applications
are communicating with each other by sending messages (see
Figure 4). A messaging server or message-oriented middleware
handles the asynchronous exchange of messages including an
appropriate transaction control [4].

S1 S2 S3

Figure 4. Message-based processing

12

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Message-based systems are able to provide near-time pro-
cessing of data due to their lower latency compared with
batch processing systems. The advantage of a lower latency
comes with a performance cost in regard to a lower maxi-
mum throughput because of the additional overhead for each
processed message. Every message needs, amongst others,
to be serialized and deserialized, mapped between different
protocols and routed to the appropriate receiving system.

C. End-to-end Latency vs. Maximum Throughput

Throughput and latency are performance metrics of a
system. We are using the following definitions of maximum
throughput and latency in this article:

• Maximum Throughput
The number of events the system is able to process in a
fixed timeframe.

• End-To-End Latency
The period of time between the occurrence of an event
and its processing. End-to-end latency refers to the to-
tal latency of a complete business process implemented
by multiple subsystems. The remainder of this article
focusses on end-to-end latency using the general term
latency as an abbreviation.

Latency and maximum throughput are opposed to each
other given a fixed amount of processing resources. High
maximum throughput, as provided by batch processing, leads
to high latency, which impedes near-time processing. On the
other hand, low latency, as provided by a message-based
system, cannot provide the maximum throughput needed for
bulk data processing because of the additional overhead for
each processed event.

III. RELATED WORK

This section gives an overview of work related to the
research presented in this article. It discusses performance opti-
mizations in the context of transport optimization, middleware
optimizations and message batching.

The proposed middleware for high-performance near-time
processing of bulk data adjusts the data granularity itself at
runtime. Work on middleware discusses different approaches
for self-adjustment and self-awareness of middleware, which
can be classified as adaptive or reflective middleware.

Automatic scaling of server instances is another approach
to handle infrequent load spikes. Additionally, the section gives
a brief overview of feedback-control of computing systems.

Research on messaging middleware currently focusses on
Enterprise Service Bus (ESB) infrastructure. An ESB is an
integration platform that combines messaging, web services,
data transformation and intelligent routing to connect multiple
heterogeneous services [5]. It is a common middleware to
implement the integration layer of an Service Oriented Archi-
tecture (SOA) and is available in numerous commercial and
open-source packages.

A. Transport Optimization

Most of the work that aims to optimize the performance of
service-oriented systems is done in the area of Web Services
since it is a common technology to implement a SOA.

In particular, various approaches have been proposed to
optimize the performance of SOAP, the standard protocol for
Web Service communication. This includes approaches for
optimizing the processing of SOAP messages (cf. [6] [7] [8]),
compression of SOAP messages (cf. [9] [10]) and caching (cf.
[11] [12]). A survey of the current approaches to improve the
performance of SOAP can be found in [13].

[14] proposes an approach to transfer bulk data between
web services per File Transfer Protocol (FTP). The SOAP
messages transferred between the web services would only
contain the necessary details how to download the correspond-
ing data from an FTP server since this protocol is optimized
for transferring huge files. This approach solves the technical
aspect of efficiently transferring the input and output data
but does not pose any solutions how to implement loose
coupling and how to integrate heterogeneous technologies, the
fundamental means of an SOA to improve the flexibility of an
application landscape.

Data-Grey-Box Web Services are an approach to transfer
bulk data between Web Services [15]. Instead of transferring
the data wrapped in SOAP messages, it is transferred using an
external data layer. For example, when using database systems
as a data layer, this facilitates the use of special data transfer
methods such ETL (Extract, Transform, Load) to transport the
data between the database of the service requestor and the
database of the Web service. The data transfer is transparent
for both service participants in this case. The approach includes
an extension of the Web service interface with properties
describing the data aspects. Compared to the SOAP approach,
the authors measured a speedup of up to 16 using their
proposed approach. To allow the composition and execution
of Data-Grey-Box Web services, [16] developed BPEL data
transitions to explicitly specify data flows in BPEL processes.

[17] proposes three tuning strategies to improve the
performance of Java Messaging Service (JMS) for cloud-based
applications.

1) When using persistent mode for reliable messaging the
storage block size should be matched with the message
size to maximize message throughput.

2) Applying distributed persistent stores by configuring mul-
tiple JMS destinations to achieve parallel processing

3) Choosing appropriate storage profiles such as RAID-1

In contrast, the optimization approach presented in this
thesis is aimed at the integration layer of messaging system,
which allows further optimizations, such as dynamic message
batching and message routing.

B. Middleware Optimizations

Some research has been done to add real-time capabil-
ities to ESB or messaging middleware. [18] proposes an
architecture for a real-time messaging middleware based on
an ESB. It consists of an event scheduler, a JMS-like API
and a communication subsystem. While fulfilling real-time

13

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



requirements, the middleware also supports already deployed
infrastructure.

In their survey [19], the authors describe a real-time
ESB model by extending the Java Business Integration (JBI)
specification with semantics for priority and time restrictions
and modules for flow control and bandwidth allocation. The
proposed system is able to dynamically allocate bandwidth
according to business requirements.

MPAB (Massively Parallel Application Bus) is an ESB-
oriented messaging bus used for the integration of business
applications [20]. The main principle of MPAB is to fragment
an application into parallel software processing units, called
SPU. Every SPU is connected to an Application Bus Mul-
tiplexor (ABM) through an interface called Application Bus
Terminal (ABT). The Application Bus Multiplexor manages
the resources shared across the host system and communicates
with other ABM using TCP/IP. The Application Bus Terminal
contains all the resources needed by SPU to communicate with
its ABM. A performance evaluation of MPAB shows that it
achieves a lower response time compared to the open source
ESBs Fuse, Mule and Petals.

Tempo is a real-time messaging system written in Java that
can be used on either a real-time or non-real-time architecture
[21]. The authors, Bauer et al., state that existing messag-
ing systems are designed for transactional processing and
therefore not appropriate for applications with with stringent
requirements of low latency with high throughput. The main
principle of Tempo is to use an independent queuing system for
each topic. Resources are partitioned between these queueing
systems by a messaging scheduler using a time-base credit
scheduling mechanism. In a test environment, Tempo is able
to process more than 100,000 messages per second with a
maximum latency of less than 120 milliseconds.

In contrast to these approaches, the approach presented in
this thesis is based on a standard middleware and can be used
with several integration technologies, such as JMS or SOAP.

C. Message Batching

Aggregating or batching of messages is a common ap-
proach for optimizing performance and has been applied to
several domains. TCP Nagle’s algorithm is a well-known
example of this approach [22].

Message batching for optimizing the throughput of Total
Ordering Protocols (TOP) have first been investigated by [23].
In their work, the authors have compared the throughput
and latency of four different Total Ordering Protocols. They
conclude that “batching messages is the most important opti-
mization a protocol can offer”.

[24] extends the work of [23] with a policy for varying
the batch level automatically, based on dynamic estimates of
the optimal batch level.

[25] presents a mechanism for self-tuning the batching
level of Sequencer-based Total Order Broadcast Protocols
(STOB), that combines analytical modeling an Reinforcement
Learning (RL) techniques.

[26] proposes a self-tuning algorithm based on extremum
seeking optimization principles for controlling the batching

level of a Total Order Broadcast algorithm. It uses multiple
instances of extremum seeking optimizers, each instance is
associated with a distinct value of batching b and learns the
optimal waiting time for a batch of size b.

[27] describes two generic adaptive batching schemes for
replicated servers, which adapt their batching level automati-
cally and immediately according to the current communication
load, without any explicit monitoring of the system.

The approach presented in this research applies the concept
of dynamic message batching to minimize the end-to-end
latency of a message-based system for bulk data processing.

D. Self-Adaptive Middleware

[28] argues that “the most adequate level and natural locus
for applying adaption is at the middleware level”. Adaption at
the operating system level is platform-dependent and changes
at this level affect every application running on the same node.
On the other hand, adaption at application level assigns the
responsibility to the developer and is also not reusable.

[29] proposes an adaptive, general-purpose runtime infras-
tructure for effective resource management of the infrastruc-
ture. Their approach is comprised of three components:

1) dynamic performance prediction
2) adaptive intra-site performance management
3) adaptive inter-site resource management

The runtime infrastructure is able to choose from a set of
performance predictions for a given service and to dynamically
choose the most appropriate prediction over time by using the
prediction history of the service.

AutoGlobe [30] provides a platform for adaptive resource
management comprised of

1) Static resource management
2) Dynamic resource management
3) Adaptive control of Service Level Agreements (SLA)

Static resource management optimizes the allocation of ser-
vices to computing resources and is based on on automati-
cally detected service utilisation patterns. Dynamic resource
management uses a fuzzy controller to handle exceptional
situations at runtime. The Adaptive control of Service Level
Agreements (SLAs) schedules service requests depending on
their SLA agreement.

The coBRA framework proposed by [31] is an approach
to replace service implementations at runtime as a foundation
for self-adaptive applications. The framework facilitates the
replacement of software components to switch the implemen-
tation of a service with the interface of the service staying the
same.

DREAM (Dynamic Reflective Asynchronous Middleware)
[32] is a component-based framework for the construction
of reflective Message-Oriented Middleware. Reflective mid-
dleware “refers to the use of a causally connected self-
presentation to support the inspection and adaption of the
middleware system” [33]. DREAM is based on FRACTAL,
a generic component framework and supports various asyn-
chronous communication paradigms such as message passing,

14

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



event-reaction and publish/subscribe. It facilitates the construc-
tion and configuration of Message-Oriented Middleware from
a library of components such as message queues, filters, routers
and aggregators, which can be assembled either at deploy-time
or runtime.

E. Adaption in Service-Oriented Architectures

Several adaption methods have been proposed in the con-
text of service-based applications. In their survey [34], the
authors describe the following adaption methods:

• Adaption by Dynamic Service Binding
This adaption method relies on the ability to select
and dynamically substitute services at run-time or at
deployment-time. Services are selected in such a way that
the adaption requirements are satisfied in the best possible
way.

• Quality of Service (QoS)-Driven Adaption of Service
Compositions
The goal of this adaption approach is to select the best
set of services available at run-time, under consideration
of process constraints, end-user preferences and the exe-
cution context.

• Adaption of Service Interfaces and Protocols
The goal of this adaption approach is to mediate between
two services with different signatures, interfaces and pro-
tocols. This includes signature-based adaption, ontology-
based adaption or behavior-based adaption.

F. Adaptive ESB

Research on messaging middleware currently focusses on
ESB infrastructure. An ESB is an integration platform that
combines messaging, web services, data transformation and
intelligent routing to connect multiple heterogeneous services
[5]. It is a common middleware to implement the integration
layer of an Service Oriented Architecture (SOA) and is avail-
able in numerous commercial and open-source packages.

Several work has been done to extend the static service
composition and routing features of standard ESB implemen-
tations with dynamic capabilities decided at run-time, such as
dynamic service composition [35], routing [36] [37] [38] and
load balancing [39].

The DRESR (Dynamic Reconfigurable ESB Service Rout-
ing), proposed by [36], allows the routing table to be changed
dynamically at run-time based on service selection preferences,
such as response time. It defines mechanisms to test and
evaluate the availability and performance of a service and to
select services based on its testing results and historical data.

[38] proposes a framework for content-based intelligent
routing. It evaluates the service availability and selects services
based on its content and properties.

[39] proposes a load balancing mechanism that distributes
requests to services of the same service type, having the same
function and signature, and enables the dynamic selection of
the target service.

Work to manage and improve the QoS of ESB and service-
based systems in general is mainly focussed on dynamic
service composition and service selection based on monitored

QoS metrics such as throughput, availability and response time
[40].

[41] proposes an adaptive ESB infrastructure to address
QoS issues in service-based systems, which provides adaption
strategies for response time degradation and service saturation,
such as invoking an equivalent service, using previously stored
information, distributing requests to equivalent services, load
balancing and deferring service requests.

In contrast to these solutions, the approach presented in this
article uses dynamic message aggregation and message routing
as adaption mechanism to optimize the end-to-end latency of
messaging system for different load scenarios.

G. Automatic Scaling

A different solution to handle infrequent load spikes is
to automatically instantiate additional server instances, as
provided by current Platform as a Service (PaaS) offerings
such as Amazon EC2 [42] or Google App Engine [43]. While
scaling is a common approach to improve the performance of
a system, it also leads to additional operational and possible
license costs. Additionally, it is often difficult to scale certain
components or external dependencies of the system, such
as databases or external services. Of course, the approach
presented in this article can be combined with these auto-
scaling approaches.

H. Feedback-control of Computing Systems

Feedback-control has been applied to several different
domains of computing systems since the early 1990s, including
data networks, operating systems, middleware, multimedia and
power management (cf. [44]). Feedback-control of middleware
systems include application servers, such as the Apache http-
Server, database management systems, such as IBM Universal
Database Server, and e-mail servers, such as the IBM Lotus
Domino Server. [44] describes 3 basic control problems in this
context:

• Enforcing service level agreements
• Regulate resource utilization
• Optimize the system configuration

Additionally, feedback-control has been applied recently
to web environments, such as web servers and web ser-
vices, application servers, including data flow control in J2EE
servers, Repair Management in J2EE servers and improving
the performance of J2EE servers and cloud environments (cf.
[45]).

The Adaptive Middleware presented in this article utilizes
a closed-feedback loop to control the aggregation size of the
processed messages, depending on the current load of the
system to minimize the end-to-end latency of the system. This
is a novel approach that has not previously been investigated.

IV. MIDDLEWARE CONCEPTS

The adaptive middleware is based on the following core
concepts: (1) message aggregation, (2) message routing, and
(3) monitoring and control.

15

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A. Message Aggregation

Message aggregation or batching of messages is the main
feature of the adaptive middleware to provide a high maximum
throughput. The aggregation of messages has the following
goals:

• To decrease the overhead for each processed message
• To facilitate optimized processing

There are different options to aggregate messages, which
can be implemented by the Aggregator:

• No correlation: Messages are aggregated in the order in
which they are read from the input message queue. In this
case, an optimized processing is not simply possible.

• Technical correlation: Messages are aggregated by their
technical properties, for example, by message size or
message format.

• Business correlation: Messages are aggregated by busi-
ness rules, for example, by customer segments or product
segments.

In [1], a static aggregation size has been used to optimize
the latency and the throughput of a system. This is not feasible
for real systems, since the the latency and throughput also
depends on the load of the system. Therefore, a dynamic
aggregation size depending on the current load of the system
is needed.

B. Message Routing

The goal of the message routing is to route the message
aggregate to the appropriate service, which is either optimized
for batch or single event processing, to allow for an optimized
processing. Message routing depends on how messages are
aggregated. Table I shows the different strategies of message
routing.

TABLE I
STRATEGIES FOR MESSAGE ROUTING

Routing Strategy Examples Description

Technical routing Aggregation size Routing is based on the tech-
nical properties of a message
aggregate.

Content-based rout-
ing

Customer segments (e.g. busi-
ness customers or private cus-
tomers)

Routing is based on the con-
tent of the message aggregate,
that is, what type of messages
are aggregated.

With high levels of message aggregation, it is not preferred
to send the aggregated message payload itself over the message
bus using Java Messaging Service (JMS) or SOAP. Instead, the
message only contains a pointer to the data payload, which
is transferred using File Transfer Protocol (FTP) or a shared
database.

Message routing can be static or dynamic:

• Static routing:
Static routing uses static routing rules, that are not
changed automatically.

• Dynamic routing:
Dynamic routing adjusts the routing rules automatically
at run-time, for example, depending on QoS properties of
services. For example, see [36], [37] or [38].

C. Monitoring and Control

In order to optimize the end-to-end latency of the system,
the middleware needs to constantly monitor the load of the
system and control the aggregation size accordingly (see
Figure 5).

System

Feedback Control

Measure 
System Load

Control 
Aggregation

Figure 5. Monitoring and Control

If the current load of the system is low, the aggregation
size should be small to provide a low end-to-end latency of
the system. If the current load of the system is high, the
aggregation size should be high to provide a high maximum
throughput of the system.

To control the level of message aggregation at runtime, the
adaptive middleware uses a closed feedback loop as shown in
Figure 6, with the following properties:

• Input (u): Current aggregation size
• Output (y): Change of queue size measured between

sampling intervals
• Set point (r): The change of queue size should be zero.

Ultimately, we want to control the average end-to-end
latency depending on the current load of the system. The
change of queue size seems to be an appropriate quantity
because it can be directly measured without a lag at each
sampling interval, unlike for example, the average end-to-end
latency.

Controller System
y = Net change of queue sizer = 0 e = r-y

u = Aggregation size

Figure 6. Feedback loop to control the aggregation size

V. MIDDLEWARE COMPONENTS

Figure 7 shows the components of the middleware, that are
based on the Enterprise Integration Patterns described by [46].
A description of these components can be found in Table II.

VI. DESIGN ASPECTS

This section describes aspects that should be taken into
account when designing an adaptive system for bulk data
processing.

16

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



S1
Endpoint A

S1
Endpoint BAggregator Router

QueueMessages Message
Aggregate

Figure 7. Middleware components

TABLE II
COMPONENTS OF THE ADAPTIVE MIDDLEWARE. WE ARE USING THE

NOTATION DEFINED BY [46]

Symbol Component Description

Message A single message representing a
business event.

Message Aggregate A set of messages aggregated by the
Aggregator component.

Queue Storage component which stores
messages using the FIFO principle.

Aggregator

Stateful filter which stores correlated
messages until a set of messages is
complete and sends this set to the
next processing stage in the messag-
ing route.

Router Routes messages to the appropriate
service endpoint.

Service
Endpoint Service Endpoint Represents a business service.

A. Service Design

The services that implement the business functionality of
the system need to be explicitly designed to support the run-
time adaption between single-event and batch processing.

There are different options for the design of these services:

• Single service interface with distinct operations for single
and batch processing
◦ The service provides different distinct operations for

high and low aggregation sizes with optimized imple-
mentations for batch and single-event processing. The
decision which operation should be called is done by
the message router. It is generally not possible to use
different transports for different aggregation sizes.

• Single service interface with a single operation for both
single and batch processing
◦ The service provides a single operation that is called for

all aggregation sizes. The decision which optimization
should be used is done by the service implementation.
It is not possible to use different transports for different
aggregation sizes.

• Multiple service interfaces for single and batch processing
(or different aggregation sizes)
◦ The logical business service is described by distinct

service interfaces which contain operations for either
batch processing or single-event processing. The deci-
sion which operation should be called is done by the
message router. It is possible to use different transports
for different aggregation sizes.

The choice of service design relates to where you want
to have the logic for the message routing for optimized
processing. With a single service offering distinct operations
for single-event and batch processing, as well as with distinct
service for each processing style, the message router decides
which service endpoint should be called. In contrast, using
a single service with a single operation for both processing
styles, the service itself is responsible for choosing the appro-
priate processing strategy. Using a different integration type
for each processing style is not possible in this case.

Listing 1 shows the interface of a service offering differ-
ent operations for batch processing (line 6) and single-event
processing (line 10).

B. Integration and Transports

The integration architecture defines the technologies that
are used to integrate the business services. In general, different
integration styles with different transports are used for batch
processing and single-event processing, which needs to be
taken into account when designing an adaptive system for bulk
data processing.

When using high aggegration sizes, it is not feasible to
use the same transports as with low aggregation sizes. Large
messages should not be transferred over the messaging system.
Instead, a file based transport using FTP or database-based
integration should be used. When using a messaging system,
the payload of large messages should not be transported over
the messaging system. For example, by implementing the
Claim Check Enterprise Integration Pattern (EIP) (cf. [46]).

Additionally, the technical data format should be consid-
ered.

The concrete threshold between low and high aggregation
sizes depends on the integration architecture and implementa-
tion of the system, such as the integration architecture and the
deployed messaging system.

17

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Listing 1. Java interface of a web service offering different operations for single and batch processing.
1 @WebService
2 @SOAPBinding(style=Style.DOCUMENT, use=Use.LITERAL, parameterStyle=ParameterStyle.WRAPPED)
3 public interface RatingPortType {
4 @WebMethod(operationName="processCallDetails")
5 @WebResult(name="costedEvents")
6 public Costedevents processCallDetails(@WebParam(name="callDetailRecords") SimpleCDRs

callDetailRecords) throws ProcessingException, Exception;
7
8 @WebMethod(operationName="processCallDetail")
9 @WebResult(name="costedEvent")

10 public Costedevent processCallDetail(@WebParam(name="simpleCDR") SimpleCDR callDetailRecord)
throws ProcessingException, Exception;

11 } �
TABLE III

TRANSPORT OPTIONS FOR HIGH AND LOW AGGREGATION SIZES

Aggregation Size Transport Options

High
• Database
• File-based (e.g. FTP)
• Claim Check EIP

Low
• JMS
• SOAP

The choice of the appropriate integration transport for a
service is implicitly implemented by the message router (see
Section IV-B).

C. Error Handling

Message aggregation has also an impact on the handling
of errors that occur during the processing. Depending on the
cause of the error, there are two common types of errors:

• Technical errors
Technical errors are errors caused by technical reasons,
for example, an external system is not available or does
not respond within a certain timeout or the processed
message has an invalid format.

• Business errors
Business errors are caused by violation of business rules,
for example, a call detail record contains a tariff that is
no longer valid.

The following points should be taken into account, when
designing the error handling for an adaptive system for bulk
data processing:

• Write erroneous messages to an error queue for later
processing.

• Use multiple queues for different types of errors, for
example, distinct queues for technical and business errors
to allow different strategies for handling them. Some type
of errors can be fixed automatically, for example, an error
that is caused by an outage of an external system, while
other errors need to be fixed manually.

• If the erroneous messages is part of an aggregated mes-
sage, it should be extracted from the aggregate to prevent

the whole aggregate from beeing written to the error
queue, especially when using high aggregation sizes.

D. Controller Design

There are several approaches for the implementation of
feedback-control systems. [44] describes two major steps:

1) modeling the dynamics of the system
2) developing a control system

There are different approaches that are used in practice to
model the dynamics of a system [47]:

• Empirical approach using curve fitting to create a model
of the system

• Black-box modeling
• Modeling using stochastic approaches, especially queuing

theory
• Modeling using special purpose representations, for ex-

ample, the first principles analysis

For practical reasons, the following approach has been
taken in this research:

1) Define the control problem
2) Define the input and output variables of the system
3) Measure the dynamics of the system
4) Develop the control system

1) Control Problem: The control problem is defined as
follows:

• Minimize the end-to-end latency of the system by con-
trolling the message aggregation size.

• The aggregation size used by the messaging system
should depend on the current load of the system.

• When the system faces high load, the aggregation size
should be increased to maximize the maximum through-
put of the system.

• When the system faces low load, the aggregation size
should be decreased to minimize the end-to-end latency
of the system.

2) Input/Output Signals: [48] describes the following
criteria for selecting input control signals:

• Availability
It should be possible to influence the control input directly
and immediately.

18

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• Responsiveness
The system should respond quickly to a change of the
input signal. Inputs whose effect is subject to latency or
delays should be avoided when possible.

• Granularity
It should be possible to adjust the control input in small
increments. If the control input can only be adjusted in
fixed increments, then it could be necessary to consider
this in the controller or actuator implementation.

• Directionality
How does the control input impact the control output?
Does an increased control input result in increased or
decreased output?

Additionally, the following criteria should be considered
for selecting output control signals:

• Availability
The quantity must be observable without gaps and delays.

• Relevance
The output signal should be relevant for the behavior of
the system that should be controlled.

• Responsiveness
The output signal should reflect changes of the state of
the system quickly without lags and delays.

• Smoothness
The output signal should be smooth and does not need to
be filtered.

With regard to these criteria, the following input and output
control signals have been chosen

• Input (u): Current aggregation size
• Output (y): Change of queue size measured between

sampling intervals
• Set point (r): The change of queue size should be zero.

3) Control Strategy: We use a simple non-linear control
strategy that could be implemented as follows (cf. [48]):

• When the tracking error is positive, increase the aggrega-
tion size by 1

• Do nothing when the tracking error is zero.
• Periodically decrease the aggregation size to test if a

smaller queue size is able to handle the load.

VII. PROTOTYPE IMPLEMENTATION

To evaluate the proposed concepts of the adaptive middle-
ware, a prototype of a billing system has been implemented
using Apache Camel [49] as the messaging middleware.

Figure 8 shows the architecture of the prototype. It consists
of three nodes, the billing route, mediation service and rating
service. The billing route implements the main flow of the
application. It is responsible for reading messages from the
billing queue, extracting the payload, calling the mediation
and rating service and writing the processed messages to the
database. The mediation service is a webservice representing
the mediation component. It is a SOAP service implemented
using Apache CXF and runs inside an Apache Tomcat con-
tainer. The same applies to the rating service, representing the
rating component.

TABLE IV
TECHNOLOGIES AND FRAMEWORKS USED FOR THE IMPLEMENTATION OF

THE PROTOTYPES

Language Java 1.6

Dependency Injection Spring 3.0.7

Persistence API OpenJPA (JPA 2.0) 2.1.1

Database MySQL 5.5.24

Logging Logback 1.0.1

Test JUnit 4.7

Batch Framework Spring Batch 2.1.8

Messaging Middleware Apache Camel 2.10.0

Other Frameworks Joda-Time, Apache Commons

The prototypes are implemented with Java 1.6 using Java
Persistence API (JPA) for the data-access layer and a MySQL
database. See Table IV for complete list of technologies and
frameworks used for the implementation of the prototypes.

The prototype performs the following steps:

1) The message is read from the billing queue using JMS.
The queue is hosted by an Apache ActiveMQ instance.

2) The message is unmarshalled using JAXB.
3) The Mediation service is called by the CXF endpoint of

the billing route.
4) The response of the Mediation webservice, the normalized

call detail record, is unmarshalled.
5) The Rating service is called by the CXF endpoint of the

billing route.
6) The response of the Rating webservice, that is the costed

event, is unmarshalled.
7) The costed event is written to the Costed Events

Database.

The feedback-control loop of the prototype is implemented
by the following components:

• Performance Monitor
The Performance Monitor manages the feedback-control
loop by periodically calling the Sensor and updating the
Controller. Additionally, it calculates the current through-
put and end-to-end latency of the system.

• Sensor
The Sensor is responsible for getting the current size of
the message queue using Java Management Extensions
(JMX).

• Controller
The Controller calculates the new value for the aggrega-
tion size based on the setpoint and the current error.

• Actuator
The Actuator is responsible for setting the new aggrega-
tion size of the Aggregator calculated by the Controller.

A. Aggregator

The Aggregator is configured to dynamically use the ag-
gregation size (completionSize) set by a message header, as
shown in Listing 2 (line 2). This message header is set by
the Actuator (see Section VII-B3), which is controlled by the
Controller (see Section VII-B2).

19

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Camel

Billing Route
ActiveMQ

Event 
Generator

Tomcat

Costed Events

Master Data

Rating 
Service

Tomcat

Mediation 
Service

SO
AP

SO
AP

JPA

JMS

JM
S

CDR NCDR Costed 
Event

MySQL

MySQL

Qeue
Aggregator Router

Performance Monitor

Queue Sensor Controller Actuator

Figure 8. Components of the prototype system

Listing 2. Aggregator configuration in definition of BillingRoute
1 .aggregate(constant(true), new

UsageEventsAggrationStrategy())
2 .completionSize(header(completionSizeHeader)

)
3 .completionTimeout(completionTimeout)
4 .parallelProcessing() �

B. Feedback-Control Loop

Figure 9 shows the components of the feedback-control
loop.

System

Controller Message 
QueueAggregatorActuator

Sensor

e = r-y

y = Net change of queue size

u = Aggregation size

r = 0

Figure 9. Components of the feedback-control loop

1) Sensor: The JmxSensor implements the Sensor interface
(see Figure 10). It reads the current length of the input queue
of the ActiveMQ server instance using JMX.

2) Controller: A Controller has to implement the Con-
troller interface. The following implementations of the Con-
troller interface have been implemented (see Figure 11):

• BasicController
Implements a generic controller. The control strategy is
provided by an implementation of the ControllerStrategy.

• TestController
A controller used for testing the static behavior of the
system.

Figure 10. UML classdiagram showing the sensor classes

The strategy of the controller is implemented by a con-
troller strategy which implements the ControllerStrategy inter-
face.

Figure 12 shows the available implementations of the
ControllerStrategy.

Listing 3 shows the implementation of the simple control
strategy, as described in Section VI-D3:

• If the queue size increases, increase the aggregation size
(line 10-13).

• Otherwise, do not change the aggregation size (line 22).
• Periodically decrease the aggregation size by one (line

17-20).

The controller uses two different timers depending on the
previous action.

3) Actuator: The AggregateSizeActuator is responsible for
setting the aggregation size of the Aggregator and is controlled
by the Controller (see Figure 13).

The AggregateSizeActuator implements the Actuator inter-
face. It sets the aggregation size (completionSize) by setting a
specific header in the currently processed message.

4) Performance Monitor: The Performance Monitor man-
ages the feedback-control loop by periodically calling the
Sensor and updating the Controller. Additionally, it calculates
the current throughput and end-to-end latency of the system
using the StatisticsService (see Figure 14).

C. Load Generator

The Load Generator is used to generate the system load
by generating events (Call Detail Records (CDRs)) and writing
them to the input message queue of the system. It is imple-
mented as a stand-alone Java program using a command-line
interface.

The DataGenerator uses a Poisson Process to simulate
the load of the system, which is commonly used to model

20

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 11. UML classdiagram showing the controller classes

events that occur continuously and independently of each other
with exponentially distributed inter-arrival times, e.g. to model
requests on a web server [50] or telephone calls [51].

VIII. EVALUATION

The prototype described in the previous section has been
used to evaluate the general feasibility of the adaptive middle-
ware.

A. Test Environment

The tests have been run on a development machine to
decrease the development-build-deploy cycle, as described in
Table V.

TABLE V
TEST ENVIRONMENT

Memory 3 GiB

CPU Intel Core i5 M520 @ 2,40 GHz

Architecture 32-bit

Disk Drive 150 GB SSD

Operating System Windows 7

Database MySQL 5.5.24

Messaging Middleware Apache ActiveMQ 5.6.0

B. Test Design

[52] defines a set of properties, that should be considered
when designing feedback-control systems for computing sys-
tems, called the SASO properties (Stable, Accurate, Settling
times, Overshoot):

• Stability
The system should provide a bounded output for any
bounded input.

• Accuracy
The measured output of the control system should con-
verge to the reference input.

• Settling time
The system should converge quickly to its steady state.

• Overshoot
The system should achieve its objectives in a manner that
does not overshoot.

C. Static Tests

To test the relationship between the input and output
variables of the control-loop, aggregation size and change of
queue size, the following static tests have been performed:

• The TestController has been configured to periodically
increase the aggregation size after 100 time steps (1 time
step equals 1 second).

21

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 12. UML classdiagram showing the controller strategy classes

Listing 3. Implementation of the simple control strategy
1 public class SimpleControlStrategy
2 implements ControllerStrategy {
3
4 @Value("${simpleController.period1}")
5 private int period1;
6 @Value("${simpleController.period2}")
7 private int period2;
8 private int timer = 0;
9

10 public Double getOutput(Double error) {
11 if (error > 0) {
12 timer = period1;
13 return +1.0;
14 }
15
16 timer--;
17
18 if (timer == 0) {
19 timer = period2;
20 return -1.0;
21 }
22 return 0.0;
23 }
24 } �

• The test has been repeated with different load of the
system, that is, using different arrival rates for the Data-
Generator.

Figure 15 shows the queue size of the system in relation-
ship to the aggregation size, for different arrival rates.

• The system is not able to handle the load with an
aggregationsize < 5 and an arrivalrate = 50. With
an aggregationsize ≥ 5, the system is able to process
the events faster than they occur.

• With an arrivalrate = 100, the system is not able to
handle the load with an aggregationsize < 15. With an
aggregationsize ≥ 15, the system is able to process the
events faster than they occur.

• With an arrivalrate = 150, the system is not able to
handle the load with an aggregationsize < 25. With an
aggregationsize ≥ 25, the system is able process the

Figure 13. UML classdiagram showing the actuator classes

events faster than they occur.

The change of queue size between each time step is shown
in Figure 16.

D. Step Test

To measure the dynamic response of the system, the
following step test has been performed:

• The TestController has been configured to increase the
aggregation size from 1 to 50.

• Messages occur with an arrival rate of 150.

Figure 17 shows the result of the step test:

• With an aggregation size of 1, the system is not able to
handle the load. The queue length is constantly increasing.

• When the aggregation size is set to 50 at timestep 100,
the queue size is directly decreased, without a noticeable
delay.

22

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 14. UML classdiagram showing the PerformanceMonitor

0 100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100
Aggregate Size

Time steps

A
g

g
re

g
a

te
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000
Arrival Rate = 50.0

Time steps

Q
u

e
u

e
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

1

2
x 10

4 Arrival Rate = 100.0

Time steps

Q
u

e
u

e
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

2

4
x 10

4 Arrival Rate = 150.0

Time steps

Q
u

e
u

e
 s

iz
e

Figure 15. Static test: queue sizes

E. Controller Tests

The following test has been performed to evaluate the
performance of the Simple Controller:

0 100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100
Aggregate Size

Time steps

A
g
g
re

g
a
te

 s
iz

e

0 100 200 300 400 500 600 700 800 900 1000
−200

−100

0

100
Arrival Rate = 50.0

Time stepsQ
u
e
u
e
 s

iz
e
 c

h
a
n
g
e

0 100 200 300 400 500 600 700 800 900 1000
−1000

−500

0

500
Arrival Rate = 100.0

Time steps

Q
u
e
u
e
 s

iz
e
 c

h
a
n
g
e

0 100 200 300 400 500 600 700 800 900 1000
−1000

−500

0

500
Arrival Rate = 150.0

Time steps

Q
u
e
u
e
 s

iz
e
 c

h
a
n
g
e

Figure 16. Static test: queue size changes

• Events are generated with an arrival rate = 50.0 for
100 time steps.

• At timestep = 100, the arrival rate is set to 150.0 for
another 100 time steps.

23

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0 50 100 150 200 250 300
0

25

50
Aggregate Size

Time steps

A
g
g
re

g
a
te

 s
iz

e

0 50 100 150 200 250 300
−500

0

500
Queue size change

Time steps

Q
u
e
u
e
 s

iz
e
 c

h
a
n
g
e

0 50 100 150 200 250 300
0

5000

10000
Queue size

Time steps

Q
u
e
u
e
 s

iz
e

Figure 17. Step test

• At timestep = 200, the arrival rate is set back to 50.0.

Figure 18 shows the results of the test using the Simple
Control strategy:

• The controller is reasonably able to control the size of
the queue. At timestep = 100, it increases the aggregate
size to a maximum value of 36.

• At timestep = 200, the controller starts to decrease the
aggregation size. At timestep = 375, the aggregation
size is back at 3.

0 50 100 150 200 250 300 350 400 450 500
50

100

150
Load

Time steps

A
rr

iv
a
l 
ra

te

0 50 100 150 200 250 300 350 400 450 500
−20

0

20

40
Aggregate size

Time steps

A
g
g
re

g
a
te

 s
iz

e

0 50 100 150 200 250 300 350 400 450 500
−200

−100

0

100
Queue size change

Time steps

Q
u
e
u
e
 s

iz
e
 c

h
a
n
g
e

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150
Queue size

Time steps

Q
u
e
u
e
 s

iz
e

Figure 18. Simple control strategy

F. Results

Summarizing the results of the evaluation, the proposed
concept for the adaptive middleware is a viable solution to
optimize the end-to-end latency of data processing system.
The results show that using a closed-feedback loop is a
feasible technique for implementing the dynamic control of

the aggregation size. Using the queue size change to measure
the system load is also shown to be appropriate.

IX. LIMITATIONS

The research presented in this article has some limitations,
that are summarized below:

• The services that implement the business functionality of
the system need to be explicitly designed to support the
run-time adaption between single-event and batch pro-
cessing, as described in Section VI-A. Therefore, existing
services need to be changed in order to be integrated into
the system. This can pose a problem when using off-
the-shelf services or Software as a Service (SaaS). The
integration of such services has not been considered in
this research.

• The services integrated by the prototype do not implement
any further optimizations for batch processing. They
use the same implementation for batch and single-event
processing. Thus, the impact of batch optimizations has
not been investigated. This was not necessary to show
the performance improvements of message aggregation
on the maximum throughput of the messaging prototype.

• The adaption mechanisms of the Adaptive Middleware
only uses message aggregation and message routing,
depending on the aggregation size. Other mechanisms
such as dynamic service composition and selection and
load balancing have not been investigated.

• The prototype of the Adaptive Middleware only uses a
single message queue, the integrated services are called
synchronous, using a request/response pattern. This de-
sign was chosen, to simplify the dynamics of the system.
Thus, the impact of using multiple message queues has
been investigated in the evaluation.

• The impact of different controller architectures has not
been exhaustively analyzed and researched. Only two
controller architectures have been implemented and evalu-
ated. Other controller designs, such as fuzzy control, have
not been investigated. Additionally, a formal analyzation
of the feedback-control system has not been conducted,
for example, by creating a model of the system. Instead,
an empirical approach has been taken to evaluate the
viability of the proposed solution.

X. CONCLUSION AND FURTHER RESEARCH

In this section, a novel concept of middleware for near-
time processing of bulk data has been presented, which is
able to adapt itself to changing load scenarios by fluently
shifting the processing type between single event and batch
processing. The middleware uses a closed feedback loop to
control the end-to-end latency of the system by adjusting
the level of message aggregation depending on the current
load of the system. Determined by the aggregation size of
a message, the middleware routes a message to appropriate
service endpoints, which are optimized for either single-event
or batch processing.

Additionally, several design aspects have been described
that should be taken into account when designing and im-
plementing an adaptive system for bulk data processing, such

24

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



as how to design the service interfaces, the integration and
transport mechanisms, the error-handling and controller design.

The solution is based on standard middleware, messaging
technologies and standards and fully preserves the benefits of
an SOA and messaging middleware, such as:

• Loose coupling
• Remote communication
• Platform language Integration
• Asynchronous communication
• Reliable Communication

To evaluate the proposed middleware concepts, a prototype
system has been developed. The tests show that the proposed
middleware solution is viable and is able to optimize the end-
to-end latency of a bulk data processing system for different
load scenarios.

The next steps of this research are to further analyze the
dynamics of the system and to optimize the controller.

During the implementation of the prototype of the adaptive
middleware, it became apparent that the design and imple-
mentation of such a system differs from common approaches
to implement enterprise software systems. Further research
addresses a conceptual framework that guides the design,
implementation and operation of a system for bulk data pro-
cessing based on the adaptive middleware.

REFERENCES

[1] M. Swientek, B. Humm, U. Bleimann, and P. Dowland, “An Adaptive
Middleware for Near-Time Processing of Bulk Data,” in ADAPTIVE
2014, The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications, Venice, Italy, May 2014, pp. 37–41.

[2] J. Fleck, “A distributed near real-time billing environment,” in Telecom-
munications Information Networking Architecture Conference Proceed-
ings, 1999. TINA ’99, 1999, pp. 142–148.

[3] J. Cryderman, “Is Real-Time Billing and Charging a Necessity?”
Pipeline, vol. 7, no. 11, 2011.

[4] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch, Enterprise
Application Integration: Grundlagen, Konzepte, Entwurfsmuster, Prax-
isbeispiele. Elsevier, Spektrum, Akad. Verl., 2006.

[5] D. Chappell, Enterprise Service Bus. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2004.

[6] N. Abu-Ghazaleh and M. J. Lewis, “Differential Deserialization for
Optimized SOAP Performance,” in SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2005, p. 21.

[7] T. Suzumura, T. Takase, and M. Tatsubori, “Optimizing Web Services
Performance by Differential Deserialization,” in ICWS ’05: Proceedings
of the IEEE International Conference on Web Services. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 185–192.

[8] A. Ng, “Optimising Web Services Performance with Table Driven
XML,” in ASWEC ’06: Proceedings of the Australian Software Engi-
neering Conference. Washington, DC, USA: IEEE Computer Society,
2006, pp. 100–112.

[9] J. C. Estrella, M. J. Santana, R. H. C. Santana, and F. J. Monaco,
“Real-Time Compression of SOAP Messages in a SOA Environment,”
in SIGDOC ’08: Proceedings of the 26th annual ACM international
conference on Design of communication. New York, NY, USA: ACM,
2008, pp. 163–168.

[10] A. Ng, P. Greenfield, and S. Chen, “A Study of the Impact of Compres-
sion and Binary Encoding on SOAP Performance,” in Proceedings of
the Sixth Australasian Workshop on Software and System Architectures
(AWSA2005), 2005.

[11] D. Andresen, D. Sexton, K. Devaram, and V. Ranganath, “LYE: a
high-performance caching SOAP implementation,” in Proceedings of
the 2004 International Conference on Parallel Processing (ICPP-2004),
2004, pp. 143–150.

[12] K. Devaram and D. Andresen, “SOAP optimization via parameterized
client-side caching,” in Proceedings of the IASTED International Con-
ference on Parallel and Distributed Computing and Systems (PDCS
2003), 2003, pp. 785–790.

[13] J. Tekli, E. Damiani, R. Chbeir, and G. Gianini, “Soap processing per-
formance and enhancement,” Services Computing, IEEE Transactions
on, vol. 5, no. 3, 2012, pp. 387–403.

[14] T. Wichaiwong and C. Jaruskulchai, “A Simple Approach to Optimize
Web Services’ Performance,” in NWESP ’07: Proceedings of the Third
International Conference on Next Generation Web Services Practices.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 43–48.

[15] D. Habich, S. Richly, and M. Grasselt, “Data-Grey-Box Web Services
in Data-Centric Environments,” in IEEE International Conference on
Web Services, 2007. ICWS 2007, 2007, pp. 976–983.

[16] D. Habich, S. Richly, S. Preissler, M. Grasselt, W. Lehner, and A. Maier,
“BPEL-DT – Data-Aware Extension of BPEL to Support Data-Intensive
Service Applications,” Emerging Web Services Technology, vol. 2,
2007, pp. 111–128.

[17] Z. Zhuang and Y.-M. Chen, “Optimizing jms performance for cloud-
based application servers,” in Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, 2012, pp. 828–835.

[18] L. Garces-Erice, “Building an enterprise service bus for real-time soa: A
messaging middleware stack,” in Computer Software and Applications
Conference, 2009. COMPSAC ’09. 33rd Annual IEEE International,
vol. 2, 2009, pp. 79–84.

[19] C. Xia and S. Song, “Research on real-time esb and its application
in regional medical information exchange platform,” in Biomedical
Engineering and Informatics (BMEI), 2011 4th International Conference
on, vol. 4, 2011, pp. 1933–1937.

[20] R. Benosman, Y. Albrieux, and K. Barkaoui, “Performance evaluation
of a massively parallel esb-oriented architecture,” in Service-Oriented
Computing and Applications (SOCA), 2012 5th IEEE International
Conference on, 2012, pp. 1–4.

[21] D. Bauer, L. Garces-Erice, S. Rooney, and P. Scotton, “Toward scalable
real-time messaging,” IBM Systems Journal, vol. 47, no. 2, 2008, pp.
237–250.

[22] J. Nagle, “Congestion control in ip/tcp internetworks,” SIGCOMM
Comput. Commun. Rev., vol. 14, no. 4, Oct. 1984, pp. 11–17. [Online].
Available: http://doi.acm.org/10.1145/1024908.1024910

[23] R. Friedman and R. V. Renesse, “Packing messages as a tool for boost-
ing the performance of total ordering protocls,” in Proceedings of the
6th IEEE International Symposium on High Performance Distributed
Computing, ser. HPDC ’97. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 233–.

[24] A. Bartoli, C. Calabrese, M. Prica, E. A. Di Muro, and A. Montresor,
“Adaptive Message Packing for Group Communication Systems,” 2003,
pp. 912–925.

[25] P. Romano and M. Leonetti, “Self-tuning batching in total order
broadcast protocols via analytical modelling and reinforcement learn-
ing,” in Computing, Networking and Communications (ICNC), 2012
International Conference on, Jan 2012, pp. 786–792.

[26] D. Didona, D. Carnevale, S. Galeani, and P. Romano, “An extremum
seeking algorithm for message batching in total order protocols,” in
Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE Sixth
International Conference on, Sept 2012, pp. 89–98.

[27] R. Friedman and E. Hadad, “Adaptive batching for replicated servers,”
in Reliable Distributed Systems, 2006. SRDS ’06. 25th IEEE Sympo-
sium on, 2006, pp. 311–320.

[28] H. A. Duran-Limon, G. S. Blair, and G. Coulson, “Adaptive
Resource Management in Middleware: A Survey,” IEEE Distributed
Systems Online, vol. 5, no. 7, 2004, p. 1. [Online]. Available:
http://portal.acm.org/ft_gateway.cfm?id=1018100&type=external&
coll=ACM&dl=GUIDE&CFID=59338606&CFTOKEN=18253396

[29] B.-D. Lee, J. B. Weissman, and Y.-K. Nam, “Adaptive middleware
supporting scalable performance for high-end network services,” J.
Netw. Comput. Appl., vol. 32, no. 3, 2009, pp. 510–524.

25

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[30] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper,
“Adaptive Quality of Service Management for Enterprise Services,”
ACM Trans. Web, vol. 2, no. 1, 2008, pp. 1–46.

[31] F. Irmert, T. Fischer, and K. Meyer-Wegener, “Runtime Adaptation in
a Service-Oriented Component Model,” in SEAMS ’08: Proceedings of
the 2008 international workshop on Software engineering for adaptive
and self-managing systems. New York, NY, USA: ACM, 2008, pp.
97–104.

[32] M. Leclercq, V. Quéma, and J.-B. Stefani, “DREAM: a Component
Framework for the Construction of Resource-Aware, Reconfigurable
MOMs,” in ARM ’04: Proceedings of the 3rd workshop on Adaptive
and reflective middleware. New York, NY, USA: ACM, 2004, pp.
250–255.

[33] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for Reflective
Middleware,” Commun. ACM, vol. 45, no. 6, 2002, pp. 33–38.

[34] R. Kazhamiakin, S. Benbernou, L. Baresi, P. Plebani, M. Uhlig, and
O. Barais, “Adaptation of service-based systems,” in Service Research
Challenges and Solutions for the Future Internet, ser. Lecture Notes in
Computer Science, M. Papazoglou, K. Pohl, M. Parkin, and A. Metzger,
Eds. Springer Berlin Heidelberg, 2010, vol. 6500, pp. 117–156.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-17599-2_5

[35] S.-H. Chang, H. J. La, J. S. Bae, W. Y. Jeon, and S. D. Kim, “Design of
a dynamic composition handler for esb-based services,” in e-Business
Engineering, 2007. ICEBE 2007. IEEE International Conference on,
Oct 2007, pp. 287–294.

[36] X. Bai, J. Xie, B. Chen, and S. Xiao, “Dresr: Dynamic routing in
enterprise service bus,” in e-Business Engineering, 2007. ICEBE 2007.
IEEE International Conference on, Oct 2007, pp. 528–531.

[37] B. Wu, S. Liu, and L. Wu, “Dynamic reliable service routing in
enterprise service bus,” in Asia-Pacific Services Computing Conference,
2008. APSCC ’08. IEEE, Dec 2008, pp. 349–354.

[38] G. Ziyaeva, E. Choi, and D. Min, “Content-based intelligent routing
and message processing in enterprise service bus,” in Convergence
and Hybrid Information Technology, 2008. ICHIT ’08. International
Conference on, Aug 2008, pp. 245–249.

[39] A. Jongtaveesataporn and S. Takada, “Enhancing enterprise service
bus capability for load balancing,” W. Trans. on Comp., vol. 9, no. 3,
Mar. 2010, pp. 299–308. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1852392.1852401

[40] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic qos management and optimization in service-based
systems,” Software Engineering, IEEE Transactions on, vol. 37, no. 3,
May 2011, pp. 387–409.

[41] L. González and R. Ruggia, “Addressing qos issues in service based
systems through an adaptive esb infrastructure,” in Proceedings of
the 6th Workshop on Middleware for Service Oriented Computing,
ser. MW4SOC ’11. New York, NY, USA: ACM, 2011, pp. 4:1–4:7.
[Online]. Available: http://doi.acm.org/10.1145/2093185.2093189

[42] “Amazon ec2 auto scaling,” http://aws.amazon.com/autoscaling, [re-
trieved: March 2014].

[43] “Auto scaling on the google cloud platform,”
https://cloud.google.com/developers/articles/auto-scaling-on-the-
google-cloud-platform, [retrieved: March 2014].

[44] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[45] R. K. Gullapalli, C. Muthusamy, and V. Babu, “Control systems
application in java based enterprise and cloud environments–a survey,”
Journal of ACSA, 2011.

[46] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[47] J. L. Hellerstein, “Challenges in control engineering of computing
systems,” in American Control Conference, 2004. Proceedings of the
2004, 2004, pp. 1970–1979.

[48] P. K. Janert, Feedback Control for Computer Systems. O’Reilly Media,
Inc., 2013.

[49] “Apache Camel,” http://camel.apache.org, 2014, [retrieved: July 2014].
[50] M. F. Arlitt and C. L. Williamson, “Internet Web servers: workload

characterization and performance implications,” IEEE/ACM Transac-
tions on Networking (TON), vol. 5, no. 5, Oct. 1997, pp. 631–645.

[51] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz, “Primary user
behavior in cellular networks and implications for dynamic spectrum
access,” Communications Magazine, IEEE, vol. 47, no. 3, March 2009,
pp. 88–95.

[52] T. Abdelzaher, Y. Diao, J. Hellerstein, C. Lu, and X. Zhu, “Introduction
to Control Theory And Its Application to Computing Systems,” in
Performance Modeling and Engineering, Z. Liu and C. Xia, Eds.
Springer US, 2008, pp. 185–215–215.

26

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Acknowledgments
	Declaration
	Field of Research
	1 Introduction
	1.1 Systems for Bulk Data Processing
	1.1.1 An Example: Billing Systems for Telecommunications Carriers
	1.1.2 Near-Time Processing of Bulk Data

	1.2 About the Author
	1.3 Aims and Objectives of the Research
	1.4 Research Approach
	1.5 Contributions
	1.6 Outline of the Thesis

	2 Background
	2.1 Research Methodology
	2.1.1 Classification of Scientific Methods
	2.1.2 Scientific Methods in Computer Science

	2.2 Classification of research domain
	2.2.1 Demarcation to other system types and domains
	2.2.2 Summary

	2.3 Batch Processing
	2.3.1 Integration Styles
	2.3.2 Batch Performance Optimizations

	2.4 Message-based Processing
	2.4.1 Messaging Concepts

	2.5 Latency vs. Throughput
	2.6 Service-Oriented Architecture
	2.7 Enterprise Service Bus
	2.8 Enterprise Integration Patterns
	2.8.1 Performance relevant EIPs

	2.9 Performance Issues of Service-Oriented Middleware
	2.9.1 Distributed Architecture
	2.9.2 Integration of Heterogeneous Technologies
	2.9.3 Loose Coupling

	2.10 Current Approaches for Improving the Performance of an SOA Middleware
	2.10.1 Hardware
	2.10.2 Compression
	2.10.3 Service Granularity
	2.10.4 Degree of Loose Coupling
	2.10.5 Scaling
	2.10.6 Dynamic Scaling

	2.11 Summary

	3 Related Work
	3.1 Performance of Service-Oriented Systems
	3.2 Performance Optimization
	3.2.1 Transport Optimization
	3.2.2 Middleware Optimizations
	3.2.3 Message Batching

	3.3 Self-Adaptive Software Systems
	3.3.1 Reference Architectures for Self-Adaptive Software Systems

	3.4 Self-Adaptive Middleware
	3.4.1 Adaption in Service-Oriented Architectures
	3.4.2 Adaptive ESB

	3.5 Feedback Control of Computing Systems
	3.6 SLA-Monitoring of Business Processes
	3.7 Summary


	Contributions
	4 Performance Evaluation of Batch and Message-based Systems
	4.1 Introduction
	4.2 A real world example application
	4.2.1 Technology Stack
	4.2.2 Common Architecture
	4.2.3 Batch prototype
	4.2.4 Messaging prototype

	4.3 Performance evaluation
	4.3.1 Measuring points
	4.3.2 Instrumentation
	4.3.3 Test environment
	4.3.4 Clock Synchronization
	4.3.5 Preparation and execution of the performance tests
	4.3.6 Results

	4.4 Impact of data granularity on throughput and latency
	4.5 Discussion with respect to related work
	4.5.1 Performance Modeling
	4.5.2 Performance Measuring and Evaluation

	4.6 Summary

	5 An Adaptive Middleware for Near-Time Processing of Bulk Data
	5.1 Introduction
	5.2 Requirements
	5.3 Middleware Concepts
	5.3.1 Message Aggregation
	5.3.2 Message Routing
	5.3.3 Monitoring and Control

	5.4 Middleware Components
	5.5 Design Aspects
	5.5.1 Service Design
	5.5.2 Integration and Transports
	5.5.3 Error Handling
	5.5.4 Controller Design

	5.6 Prototype Implementation
	5.6.1 Aggregator
	5.6.2 Feedback-Control Loop
	5.6.3 Load Generator

	5.7 Evaluation
	5.7.1 Test Environment
	5.7.2 Test Design
	5.7.3 Static Tests
	5.7.4 Step Test
	5.7.5 Controller Tests
	5.7.6 Results

	5.8 Summary


	Conclusion
	6 Conclusion
	6.1 Achievements of the Research
	6.2 Limitations
	6.3 Future Work

	A Conceptual Framework
	A.1 Introduction
	A.2 Metamodel
	A.3 Phase
	A.3.1 Plan
	A.3.2 Build
	A.3.3 Run

	A.4 Roles
	A.4.1 Business Architect
	A.4.2 System Architect
	A.4.3 Software Engineer
	A.4.4 Test Engineer
	A.4.5 Operations Engineer
	A.4.6 Project Manager

	A.5 Tasks
	A.5.1 Business Architecture
	A.5.2 System Architecture
	A.5.3 Implementation
	A.5.4 Test
	A.5.5 Operations
	A.5.6 Project Management

	A.6 Processes
	A.6.1 Implement Integration
	A.6.2 Implement Aggregation
	A.6.3 Implement Feedback-Control

	A.7 Artifacts
	A.7.1 Performance Requirements
	A.7.2 Service Interface Definition
	A.7.3 Aggregation Rules
	A.7.4 Integration Architecture
	A.7.5 Routing Rules
	A.7.6 System Model
	A.7.7 Controller Configuration
	A.7.8 Training Concept
	A.7.9 Staffing Plan

	A.8 Tools
	A.8.1 Tools for System Modeling, System Identification and Simulation
	A.8.2 Tools for Data Visualization
	A.8.3 Tools for data processing

	A.9 Relationship to other Software Development Approaches
	A.9.1 Rational Unified Process
	A.9.2 Scrum

	A.10 Related Work
	A.10.1 Software Process
	A.10.2 Software Process Modeling
	A.10.3 Software Process Modeling using UML
	A.10.4 Software Processes for Adaptive Software Systems

	A.11 Summary

	B Source Code
	B.1 Project Structure

	Bibliography
	Publications


