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Abstract

Artificial structures can create novel habitat in the marine environment that has been associated with the spread of
invasive species. They are often located in areas of high disturbance and can vary significantly in the area of free
space provided for settlement of marine organisms. Whilst correlation between the amount of free space available
and recruitment success has been shown in populations of several marine benthic organisms, there has been
relatively little focus on invasive species, a group with the potential to reproduce in vast numbers and colonise
habitats rapidly. Invasion success following different scales of disturbance was examined in the invasive acorn
barnacle, Austrominius modestus, on a unique art installation located in Liverpool Bay. Population growth and
recruitment success were examined by comparing recruitment rates within disturbance clearings of 4 different sizes
and by contrasting population development with early recruitment rates over a 10 week period. Disturbed areas were
rapidly recolonised and monocultures of A. modestus formed within 6 weeks. The size of patch created during
disturbance had no effect on the rate of recruitment, while a linear relationship between recruit density and patch size
was observed. Density-dependent processes mediated initial high recruitment resulting in population stability after
8-10 weeks, but densities continued to greatly exceed those reported in natural habitats. Given that artificial
structures are likely to continue to proliferate in light of climate change projections, free-space is likely to become
more available more frequently in the future supporting the expansion of fast-colonising species.
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Introduction

The introduction of novel species into vulnerable habitats can
impact upon the balance of species and allocation of
resources. Although chance and timing play an important role
[1], invasion success is often attributed to biological traits such
as high fecundity, short generation times and environmental
tolerance, which allow introduced species to colonise new or
disturbed habitats quickly [2,3]. In marine benthic communities,
such as intertidal rocky shores, naturally occurring or
anthropogenic disturbance can create free-space and reset
successional processes [4], opening the door to non-native
species and facilitating their establishment [5]. The creation of

free-space by the introduction of artificial structures can have a
similar effect.

The colonisation of natural habitats by an invasive species
following disturbance can be offset by the presence of an
established native biota [6], such that the invader occurs in
limited numbers and fails to become established in meaningful
abundances [7]. In contrast, newly installed artificial structures
are depauperate of species, and can become quickly
dominated by a limited number of species [8,9] due to features
such as reduced habitat heterogeneity [9,10] or increased
refugia from predators [11,12]. Artificial structures are rapidly
becoming ubiquitous features of the marine environment due to
urbanisation and proliferation of both artificial coastal defences
and renewable energy schemes [13,14], introducing large
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expanses of hard substrata in areas that are otherwise
sedimentary, often at the expense of natural habitats [14–16].

A primary factor in determining which species will colonise
an artificial structure is its placement, and specifically the
proximity (connectivity) of the structure to a source population
(i.e. a rescue effect). Many marine species exhibit a planktonic
larval stage [17], facilitating their dispersal away from their
natal patch. Dispersal distance can be described using a
combination of physical and biotic processes such as ocean
circulation [18], near shore oceanography, wind [19] and
planktonic duration [20]. However, spatial and temporal
variation in propagule pressure [21] and multiple post-
settlement processes [22] such as rate of supply [23], the
timing of recruitment [1,24] and availability of resources [25]
can confound outcomes such that even small-scale location
differences can affect recruitment success.

Artificial structures are implicated in the spread of invasive
and non-native species by acting as stepping stones to
dispersal across areas of unsuitable habitat (i.e. sedimentary
substrata) [26]. Morphological features of the structure can
affect the type of species that are able to colonise.
Construction materials can range from small cobbles to large
boulders or concrete pilings [10] resulting in patches of habitat
of different size and shape [12,16,27], which can affect the
emergent population or community structure [9,28]. Predicting
the recruitment of species to those structures and, specifically,
estimating their population size is an important step in
determining if a structure has the potential to act as a viable
source population that can facilitate spread. If the area of
habitat is too small, the population may fail to persist at that
location [29], or the adult population will generate too few
offspring such that its spread is unviable [30,31]. If the area of
habitat is too large, there may be insufficient resources to
support the population [25] or insufficient habitat heterogeneity
to provide refugia from predation and/or abiotic stress [11,32].

Austrominius modestus (Darwin, 1854) has become
widespread along UK coasts since its introduction in the late
1940s [33] and exhibits traits typical of invasive species [2].
Abundant on rocky shores throughout Europe [34], A.
modestus can compete with native species of barnacle
including Semibalanus balanoides and Balanus improvisus [34]
but can also form monocultures on artificial structures [27]. One
such artificial structure is the art installation, ‘Another Place’,
situated on the west coast of the United Kingdom. Using this
unique model system, we created disturbances of different
magnitudes to test the hypothesis that small increases in initial
free-space would influence the recruitment of Austrominius
modestus and additionally, that these changes would affect the
success and density of recruits over time. Rate of recruitment
to free space plots was monitored every 2 wk over a 10 wk
period and predictions of population development and growth
were generated.

Methods

Ethics Statement
No permits or ethics approval were required for the

described study, nor did it involve any endangered or protected

species. The sampling of organisms was arranged jointly
through the University of Liverpool and Sefton Council and
complied with all relevant regulations.

Study site
Austrominius modestus has been present in the Liverpool

Bay area since the 1950s [34] and is found in abundance on
the Antony Gormley art installation ‘Another Place’ at Crosby
Beach, Liverpoool (for images and detailed map please see
27). Crosby Beach is a sheltered, south-westerly facing beach
stretching 5 km north-west from the Port of Liverpool to the
River Alt. The beach is characterised by semi-diurnal tides with
a spring tidal range in excess of 10 m. The artificial structures
consist of 100 replicate cast-iron life-size human figures spread
over approximately 3 km on an otherwise sandy beach. The
100 structures (each 191 cm in height) are positioned over a
range of tidal heights from low to high shore and extend
approximately 1 km out to sea. A year after they were installed
in July 2005 A. modestus was the dominant species present
[27]. Today, the majority of statues are covered almost entirely
by A. modestus (Bracewell et al. pers. obs.).

Austrominius modestus recruitment rates
The study ran for 10 weeks between late May and August

2011 and coincided with peak planktonic abundances, although
recruitment can occur year-round [35]. At the start of the
experiment, a series of free-space plots were created within the
adult A. modestus population on the torso region of 10 statues.
Statues were randomly chosen from those located in the mid-
shore region where recruitment is consistently high [27]. The
torso region was chosen due to its uniform surface and the fact
that it was of sufficiently large size to allow multiple
independent plots to be established. Four square, free-space
plots of different size (area) were created on each statue by
removing all barnacles from the predefined area using a
masonry chisel. Plot sizes were 25 cm2, 19 cm2, 12 cm2 and 6
cm2 respectively. Each plot was then left undisturbed for the
duration of the study and photographed every 2 wk for a total of
10 wk (when plots were filled) using a 12-megapixel digital
camera (Ricoh G600, Japan) with a fixed lens aperture (using
the macro setting) mounted to a metal frame with an integrated
5 x 5 cm quadrat for scale. The total number of individuals in
each plot (all individuals, including those settled on top of each
other, were counted as recruits) were enumerated using the
count tool in the freeware image analysis program ImageJ [36]
(NB The average age of maturation of A. modestus can vary
from between 10–15 wk post-settlement depending on the
surrounding temperature [37]. Therefore, maturation could not
occur before the end of the experiment and thus any individual
within a plot is by definition a recruit). We refer to these plots as
the ‘cumulative’ plots herein.

Control Plots
An additional plot of 25 cm2 was created on each statue

torso that was photographed every 2 wk and then re-cleared
(i.e. disturbed every 2 wk) for the duration of the study. We
refer to this additional plot as the ‘control plot’ which acts as a
proxy for early recruitment based on the assumption that no
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density-dependent or density-independent processes occur
during this time [38].

Data Analysis.  A linear mixed-effects model (nlme
package) [39] was used to compare changes in recruit
abundance in plots over time. Model factors were: (1) Initial
Cumulative Plot Size (25, 19, 12, 6 cm2) (2), Time (2, 4, 6, 8,
10 wk) as fixed effects and (3) Statue as a random grouping
factor. A first-order autoregressive (AR(1)) correlation structure
was used to account for the repeated measures on the same
plot on a statue. The significance of the fixed effects was
analysed using the likelihood ratio test based on the maximum
likelihood (ML) estimation procedure [39]. Linear contrasts
were used for post hoc comparisons. Data were square root
transformed to fulfill the requirements of the statistical analysis
for normal distribution and homogeneity of variance.

Change in recruit abundance among plots of different size
was compared in two ways. First, using the total recruit
abundance irrespective of plot size, and second, using recruit
abundance standardised by the initial plot size (i.e. abundance
per unit area) to test if recruitment rate varied in response to
the amount of free-space created.

Results

Temporal changes in control and cumulative
recruitment in 25 cm2 plots

Austrominius modestus recruits were recorded on all statues
in all plots at all times over the 10 wk but their abundance
varied greatly over time and among plots. In control plots, there
was significant variation in recruitment over time, increasing
week-on-week (with the exception of between wk 6 and 8
where no significant difference was found) from 316 ± 40 per
25 cm2 in wk-2 and increasing five-fold to a maximum of 1613 ±
176 per 25 cm2 in wk-10 (F4,45 = 32.45, p < 0.001). The density
of A. modestus in 25 cm2 cumulative plots increased in line with
the bi-weekly recruitment in control plots for the first 6 wk, after
which there was a significant decline in recruit density in
comparison to the control plots (Figure 1a). Maximum density
in 25 cm2 cumulative plots reached 974 ± 78 recruits in wk-6
before declining to comparable average densities of 736 ± 29
and 785 ± 54 recruits per 25 cm2 in wk-8 and 10 respectively.
The decline in recruit density in cumulative plots in comparison
to recruitment to control plots was best described by a non-
linear 2nd order polynomial model (R2 = 0.89, p < 0.01) (Figure
2).

Recruitment into cumulative plots of different size
The abundance of A. modestus in cumulative plots changed

over time and in response to plots of different size (F12,180 =
3.86, p < 0.0001) (Figure 1b). At each time point, recruit
abundance was greatest in the largest (25 cm2) plots and
fewest were recorded in the smallest (6 cm2) plots. There was
no significant difference in recruit abundance in the 12 and 19
cm2 plots, although trends suggest increased abundances in
the larger of the two plot sizes.

Converting abundance data to density estimates (abundance
per unit area) revealed no significant difference in recruitment
densities between plots of different size over time (F12,180 =

1.21, p = 0.28), nor a significant effect from changing the plot
size (F3,180 = 1.82, p = 0.15). However, there was a significant
difference in recruit density over time (F4,180 = 40.0, p < 0.0001)
as free-space plots became colonised by A. modestus. Recruit
densities were lowest after 2-wk (~13 ± 1.9 recruits per cm2)
then doubled to 26 ± 3.5 per cm2 after wk-4 followed by a 60%
increase in wk-6, the point at which all free-space was filled in
all plots (Figure 1c). After wk-6, recruit densities then declined
as individuals grew and stabilised around 34.3 recruits per cm2

with no significant differences in density between wk 8 and 10
(Figure 1c).

Discussion

We tested the ability of an invasive species to colonise
artificial habitat following the removal of adults and creation of
free-space. Comparisons of control and cumulative plots of the
same size revealed differences in recruitment rate dependent
on the pre-existence of juvenile conspecifics within a plot and
remaining free-space. While recruit abundance changed over
time, firstly increasing until all free-space became occupied
after 6 wk followed by a reduction in recruit abundance after 8
to 10 wk to a stable density, there was no change in recruit
density with changes in plot size indicating that recruitment was
not limited in this area [40]. This suggests that in other non-
recruitment limited areas, a similar growth model could be used
to predict the recruitment of A. modestus on newly installed
artificial structures.

Gaines and Roughgarden [41] suggested that space is only
important when recruitment is limited and that when the supply
of larvae is saturating (non-limited), recruitment is simply a
function of the amount of available space [42]. Given that
space alone could be used to predict A. modestus density, this
suggests that larval supply is not limited (sensu [40]). The high
reproductive output of an adult A. modestus and annual
presence within the plankton [35] was reflected in the high rate
of recruitment and rapid colonisation of free-space within 6 wk
of clearance. Recruit density was initially high and all free
space was filled quickly before the number of recruits declined.
Post-settlement mortality can be controlled by density-
dependent processes [38,43,44] and thus by changes in
propagule pressure [38,45]. After 6 wk, all available space was
filled and recruit densities exceeded 40 individuals cm-2.
Recruits grew rapidly, but after 8 wk, mortality was observed in
extant individuals, which was attributed to excessive crowding
(Bracewell, pers. obs.) and is indicative of the availability of
resources (carrying capacity) within the habitat. Competition for
resources including space is a common source of mortality for
recruits [38] and some sessile species can reduce mortality
from space-limits by displaying morphological plasticity [46],
but when progeny vastly outnumber available space, some
mortality is inevitable. Maximum population size (assuming
densities can be supported and food is not limited) will most
likely be determined by the minimum size of an individual [47].

Whilst gregarious behaviour is an important aspect of
settlement and recruitment of many barnacle species, including
A. modestus [48], no obvious gregarious recruitment patterns
were observed at the relatively small spatial scales tested in
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Figure 1.  Recruit abundances of Austrominius modestus over time.  (a) Mean recruit abundance (± SE) in 25 cm2 control and
cumulative plots every 2 wk (n = 10), (b) mean recruit abundance (± SE) in plots of difference area (cm2) (n = 10), and (c) mean
recruit density per cm2 in cumulative plots in plots of different sizes (n = 40). Letters over bars (a–d) indicate post-hoc comparison
outcomes with the same letter indicating no significant difference between recruit abundance/density. All plots irrespective of initial
clearance size are pooled in (b). The period when all cumulative plots were 100% colonised is shown (dotted line).
doi: 10.1371/journal.pone.0074457.g001
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this study (Knights pers. obs). Gregarious behaviour is a result
of chemical cues that can be short lived in the field and can be
initiated in response to the presence of other barnacle species
[49]. Considering the length of the sampling period, the high
levels of recruitment to the statues, and the lack of any other
barnacle species, any initial behavioural responses may have
been obscured. Additionally, Knight-Jones [48] found that
during intense periods of settlement of A. modestus the
distribution of barnacles on to settlement plates was even, in
contrast to gregarious clumping during periods of light
settlement. Despite high post-settlement mortality and an
apparent lack of aggregated settlement behaviour, recruit
densities on the statues remained high (~40 individuals cm-2)
and more than double those reported on natural habitats [50].
Artificial structures are often characterised (especially when
first installed) by opportunistic species, low species richness,
an absence of predators and assemblages markedly different
to those on natural shores [32] where higher species diversity,
competition and predation can infer natural resistance to

invasion [6]. The absence of a diverse or established
community can lead to artificial structures being dominated by
introduced species [8,51] and here this was illustrated by
dense monocultures of A. modestus.

Artificial structures have been implicated as vectors of non-
native species spread especially following disturbance (e.g.
[26,52]). Clearly, invasive species can colonise disturbed areas
quickly as shown by the rapid expansion of A. modestus
throughout the UK and Europe [34] and the rate at which
monocultures of A. modestus were re-established following
their removal in this study. Given that artificial structures are
likely to continue to proliferate and that current climate change
projections suggest greater disturbance, free-space is likely to
become available more frequently in the future. Correlations
between disturbance and invasion success are becoming more
widely documented (e.g. [5,53]) and suggest that the
abundance of native species is likely to decline, although these
relationships are far from straightforward [5]. Under these
conditions, highly competitive and fast-colonising invasive

Figure 2.  Comparative recruit density in cumulative and control plots.  Change in recruit abundance in 25 cm2 control and
cumulative plots. Recruitment was estimated every 2 wk using non-destructive photographic sampling and image analysis. Control
plots were disturbed (cleared) every 2 wk and estimates are compared to its paired cumulative plot on the same statue. Cumulative
plots were undisturbed following the initial clearance. Significant regression is shown (solid line; R2 = 0.89) and dashed lines
indicate 95% confidence intervals. 45o line indicates the point where recruitment is the same in control and cumulative plots.
doi: 10.1371/journal.pone.0074457.g002
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species, such as A. modestus, are expected to increase in both
abundance and distribution and the proliferation of artificial
structures could act to support their expansion.
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