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It has previously been shown that by using spike-timing-dependent plasticity (STDP),
neurons can adapt to the beginning of a repeating spatio-temporal firing pattern in their
input. In the present work, we demonstrate that this mechanism can be extended to
train recognizers for longer spatio-temporal input signals. Using a number of neurons
that are mutually connected by plastic synapses and subject to a global winner-takes-all
mechanism, chains of neurons can form where each neuron is selective to a different
segment of a repeating input pattern, and the neurons are feed-forwardly connected in
such a way that both the correct input segment and the firing of the previous neurons are
required in order to activate the next neuron in the chain. This is akin to a simple class of
finite state automata. We show that nearest-neighbor STDP (where only the pre-synaptic
spike most recent to a post-synaptic one is considered) leads to “nearest-neighbor”
chains where connections only form between subsequent states in a chain (similar to
classic “synfire chains”). In contrast, “all-to-all spike-timing-dependent plasticity” (where
all pre- and post-synaptic spike pairs matter) leads to multiple connections that can span
several temporal stages in the chain; these connections respect the temporal order
of the neurons. It is also demonstrated that previously learnt individual chains can be
“stitched together” by repeatedly presenting them in a fixed order. This way longer
sequence recognizers can be formed, and potentially also nested structures. Robustness
of recognition with respect to speed variations in the input patterns is shown to depend
on rise-times of post-synaptic potentials and the membrane noise. It is argued that the
memory capacity of the model is high, but could theoretically be increased using sparse
codes.
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1. INTRODUCTION
In 1982, when trying to account for observed precise sequences of
neural firing with long inter-spike delays, Abeles coined the term
“synfire chain” (Abeles, 1982, 1991). Some delays seen between
spikes of simultaneously recorded neurons were extremely long,
but repeated with a precision in the millisecond range. This was
difficult to understand given that the firing patterns of single
neurons look very noisy and can often be well described as rate-
modulated Poisson processes. A possible mechanism to produce
these delays was the postulated synfire chain consisting of feed-
forwardly connected populations of cells. Each population would
contain neurons with excitatory “diverging-converging” connec-
tions to neurons in the next population. The populations are
defined by their connectivity and therefore symbolize the order
of activation; individual neurons may take part in more than one
(and in fact many) populations. Activity propagates from pop-
ulation to population in a synchronous manner, which can be
shown to be a stable and precise process when the compound
post-synaptic potential caused by neurons in one population on
the their targets in the next population is significantly larger
than the noise level (Abeles, 1991; Wennekers and Palm, 1996;
Wennekers, 2000). As activity can travel through a synfire chain
in the same manner many times, the delay between two neurons

along the chain is fixed as observed originally in the experi-
mental recordings. Abeles’ synfire chain model has homogeneous
axonal delays between populations, an assumption that can be
relaxed to include an axonal delay distribution. Connections may
then straddle intermediate populations. Such a set-up was called
a “synfire braid” by Bienenstock (1995). Izhikevich (2006) has
shown that similar connectivity and activation patterns (called
“polychronous waves”) can be generated in networks of spiking
neurons as a result of random excitation and a learning rule that
depends on pre- and post-synaptic spike-times [“spike-timing-
dependent plasticity,” (STDP), cf., Bi and Poo, 1998; Morrison
et al., 2008].

Experimental support for synfire chains is difficult to obtain as
one needs to simultaneously record from many neurons at once
in order to find correlated pairs. Current techniques are limited
to record from up to a few 100 sparsely located neurons and are
at best able to record a few neurons from a chain. Nevertheless,
precisely repeating firing patterns have been observed (Prut et al.,
1998; Nádasdy et al., 1999; Ikegaya et al., 2004). For example,
Ikegaya et al. (2004) describe precise repetitions of spontaneous
patterns in neocortical neurons in vivo and in vitro and Nádasdy
et al. (1999) found repeating spike sequences in awake and asleep
rat hippocampus. It has further been shown that sequences can
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be related to a monkey’s behavior (Prut et al., 1998; Shmiel et al.,
2005, 2006). Prut et al. (1998) observed both (1) precise firing
sequences in cortical activity which spanned hundreds of millisec-
onds and (2) their correlation with animal behavior in one study.
Hahnloser et al. (2002) also reported repeating spike-patterns
in the song-system of birds that are clearly related to syllable
generation. More recently, Ayzenshtat et al. (2010) described
spatio-temporal patterns within and across early visual areas that
contained enough information to reliably discriminate between
stimulus categories. Some of these findings, however, have been
challenged. For example, Mokeichev et al. (2007) re-examined the
observation of repeating spontaneous patterns and suggest that
they may not be significant but appear by chance. Furthermore,
even though the precisely repeating firing patterns could be the
result of synfire chains, these patterns do not ultimately prove the
existence of synfire chains.

A question following these ideas is “how can synfire chains
form?” Early attempts to derive them in neural networks subject
to some kind of self-organization have been moderately success-
ful. Bienenstock and Doursat (1991), for example, reported that
exciting neurons synchronously in a random network could lead
to the formation of synfire chains. Another study by Prugel-
Bennett and Hertz (1996) also attempted to learn synfire chains
in random networks but found that closed loops formed. These
loops are a problem as once activity enters a loop it never exits
again; consequently, activity may never propagate fully through
a synfire chain. In these studies, the total synaptic strength
for a neuron’s efferent synapses was limited; if this was not
the case, connections would strengthen uncontrollably. A more
recent study by Izhikevich (2006) used STDP in spiking neu-
ron networks subject to unspecific random excitation. In these
very large-scale simulations complex recurrently connected web-
like structures of specific synaptic pathways formed that carried
repeating “polychronous waves” with many properties of syn-
fire chains, but a broad distribution of possible delays between
neurons. In the more abstract set-up of Markov chains, Ay and
Wennekers (2003) also demonstrated the formation of web-like
nested transition structures in the joint state space of N units
using timing-dependent plasticity. These transition structures
could be linked to finite state automata (Wennekers and Ay,
2005) which suggests that they could be employed for neural
state-based computations. An alternative hypothesis for comput-
ing with polychronous waves has been suggested by Izhikevich
(2009).

In the present study we took a different approach to learn syn-
fire chains assuming that they may not form autonomously in
a network, but rather by spatio-temporal driving activity which
may come from other areas or the sensory surfaces. Repeated
inputs could cause their target neurons to learn a specific firing
pattern. Essentially, we attempted to recognize a repeated spatio-
temporal pattern with a sequence of neurons. When successful,
several neurons respond one after the other, each recognizing
a segment of the input pattern. The learning of short repeated
spatio-temporal patterns has been studied and analysed previ-
ously (Masquelier et al., 2008, 2009; Humble et al., 2011). It
has been shown that a neuron with STDP is able to learn and
respond to the beginning of a repeated spatio-temporal pattern

even when it is embedded in a statistically identical carrier sig-
nal. Furthermore, Masquelier et al. (2009) reported that if, instead
of one neuron, several neurons are competing for the ability
to respond and learn the pattern, they each learn a segment of
the pattern. When inspecting the whole learnt pattern, however,
a limitation becomes apparent: each neuron is responding to a
unique learnt segment of the input regardless of when it appears.
Therefore one could take an input pattern, switch the segments
around, and the same neurons in the trained network would fire,
albeit in a different order. We therefore were interested in whether
it was possible to learn the order of the responses. If so, the net-
work would learn to recognize a spatio-temporal input pattern
in such a way that a chain of activity in the trained network
would only propagate if a specific spatio-temporal input pattern
supported it from the beginning to its end.

To learn temporal order, it seems natural to introduce plas-
tic lateral connections which reinforce and prime a subsequent
neuron’s firing. A neuron will then not only rely on the input pat-
tern but also on previously responding neurons. We found that by
including lateral connections with STDP the model could learn
the order of neural firing activity and it was possible to have an
“accepting neuron” that only responded if a learnt pattern was
presented fully, thereby signaling when the whole pattern was
contained in the input stream.

Such a set-up is analogous to finite state automata where an
accepting state is reached only if previous states are transitioned
correctly. The currently firing neurons represent “the state” of a
recognizer for the input pattern and the momentary inputs act
as “symbols” that drive the recognizer through its states. If at the
end of the input the final neurons of the synfire chain fire, this
signifies that the sequence of input symbols has been recognized
correctly. This is functionally a simple finite state automaton with
no loops in the transition graph. In Wennekers and Palm (2007)
and Wennekers (2006), we have argued how more complex neural
systems of this sort can be systematically constructed.

In the present work, we take a step toward algorithms that can
learn spiking neuron automata with accepting states/neurons. We
present a learning scenario whereby a biologically based learning
rule learns temporal sequences comprised of several neurons fir-
ing one after another. Furthermore, we find that by using plastic
lateral connections our network’s neurons can learn to respond
only when temporally appropriate. This differs from previous
work such as that of Masquelier et al. (2009) because we include
plastic lateral connections.

The paper is organized as follows. The next section intro-
duces the neuron and network model used, as well as the learning
rule and training paradigm. Section 3 presents the main results
split into several subsections. At first, proof-of-concept simula-
tions for sequence learning and recognition are given followed by
some analyses of parameter dependences. It is then shown that
previously learnt chains can be sequenced into longer chains. It
is argued that learnt chains contain a high amount of informa-
tion and a certain robustness against variations in the speed of
stimuli. Factors that limit robustness and memory capacities are
discussed. The discussion section finally puts the results into a
wider context and outlines their relevance for state-based neural
computing architectures.
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2. MATERIALS AND METHODS
Our network comprised N = 20 excitatory neurons with one
inhibitory neuron providing winner-takes-all competition: see
Figure 1. The size of N can be small, if only short sequences are
to be learned. The excitatory neurons were laterally connected
to all other excitatory neurons with synapses that were plastic
throughout a simulation.

Input, I, consisted of 2000 afferents to each excitatory cell.
One half of the afferents continuously transmitted independent
Poisson spike trains, Inoise. The other half alternated between
independent Poisson spike trains and a fixed spatio-temporal
spike-pattern of 50 ms duration inserted at random times, Iin

(longer patterns are possible and do not change the results much).
These 50 ms-patterns were generated by Poisson processes as well,
but the patterns were fixed for the duration of the simulations
and identically applied to all excitatory neurons. The rate of the
Poisson spike trains and the repeated spatio-temporal pattern
were 54 Hz. Additionally, 10 Hz Poisson noise was added to all
afferents including during the presentation of the frozen patterns.
The input synapses, J in and Jnoise, and lateral synapses, J lat, are
plastic for the duration of the simulation. This set-up follows
Masquelier et al. (2008, 2009) and provides a scenario where
a pattern is embedded in a statistically identical carrier signal.

FIGURE 1 | Network structure with N excitatory neurons (+) and one

inhibitory neuron (−), and corresponding excitatory (triangle) and

inhibitory (circle) synapses. Excitatory neurons are connected to one
another with plastic mutual connections, J lat . They are in competition with
each other via one inhibitory neuron. Each excitatory neuron receives input
consisting of a total of Ninput = 2000 afferents. Half of these, Iin, alternate
between presenting a repeated spatio-temporal pattern (for 50 ms) and
Poisson input (for at least 50 ms). The other half, Inoise, continuously present
Poisson trains. This input is presented to each of the excitatory neurons,
however, across the excitatory neurons the input has only the repeated
spatio-temporal pattern in common as the alternating and continuous
Poisson trains are different. Furthermore, the repeated spatio-temporal
pattern is presented to each neuron at the same time. All input synapses,
J in and Jnoise, and lateral synapses, J lat (except J lat

ii ), are plastic and J lat
ii = 0.

It differs from Masquelier et al.’s work only by the inclusion of
trainable recurrent connections.

All neurons were leaky-integrate-and-fire cells, Equation (1),
with synapses described by alpha functions, Equation (2). τm =
10 ms is the membrane time constant, τr = 1 ms is the rise-time
constant of the alpha synapse and τf = 5 ms the decay constant. A
firing threshold of θ = 1 was used. The inhibitory neuron was an
integrate and fire neuron with the same parameters as the excita-
tory neurons. For convenience, inhibitory synapses had the same
dynamics than excitatory ones, but were non-plastic. Likewise,
excitatory synapses on the inhibitory cell did not learn. Their
values were all identical and set such that a spike in the excita-
tory network reliably triggered activity in the inhibitory neuron
as well. Inhibitory synapses also had identical weights and were
set such that a spike of the inhibitory neuron reliably suppressed
firing in the excitatory sub-network for typically a few millisec-
onds after the firing of an excitatory neuron (“winner-takes-all”
mechanism).

The membrane potentials of all neurons followed a low-pass
dynamics with time-constant τm = 10 ms and a reset when they
reached firing threshold:

τm
dV

dt
= −V + Sf if V ≥ θ then reset V = 0 (1)

Synaptic currents were described by variables, Sf and Sr , and
followed the dynamic equations:

τr
dSr

dt
= −Sr + I

τf
dSf

dt
= −Sf + Sr (2)

The simulations used forward Euler-integration with a time-step
of dt = 0.1 ms.

The STDP rule used is a typical additive exponential STDP
update rule. Pre- and post-synaptic spike-pairs evoked synaptic
changes given by a function f of their temporal distance τ, see
Equation (3). We used both, all-to-all and nearest-neighbor spike
implementations (see Morrison et al., 2008), which differ only
with respect to how many pre-synaptic spikes are considered: an
all-to-all rule considers all pre-synaptic spikes whereas a nearest-
neighbor implementation will only consider the pre-synaptic
spike that is received closest to the time of post-synaptic activity.
Equation (3) describes the STDP function used, where τp = τd =
20 ms. τp and τd were chosen similar to those observed experi-
mentally (Levy and Steward, 1983; Bi and Poo, 1998; Wittenberg
and Wang, 2006) where the strongest synaptic modifications
occur within a window of ±20 ms. Learning rates Ap and Ad for
potentiation and depression were assigned using Equation (4).
The maximum synaptic weight WP

max for Poisson afferents was
assigned by Equation (5), where θ = 1, the cell’s firing threshold,
i.e. the difference in membrane potential required to go from rest-
ing to threshold, 〈r〉 is the average firing rate of afferents (64 Hz
in most simulations), Ninput is the number of afferents that carry
the input pattern (herein 1000) and A = 20 is an additional con-
stant that modulates the maximal strength of the synapses. This
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choice of WP
max allows for a reliable activation of neurons when

the pattern is presented after training, but only few occasional
output spikes due to random inputs. Note that the expression
contains the integration step dt, because spikes are modeled as
binary ones for one simulation time-step, such that shorter time-
steps cause proportionally less post-synaptic activity; alternatively
a spike-height of 1/dt could be used to make the spike impact
independent of the integration step-size.

f (τ) = Ap × exp

(−τ

τp

)
if τ ≥ 0

f (τ) = Ad × exp

(
τ

τd

)
if τ < 0 (3)

Ap = 0.002 × WP
max

Ad = −Ap ×
(

τp

τd

)
× 1.05 (4)

WP
max =

[
θ

τm × 〈r〉 × dt

]
+ A

Ninput
(5)

Similar to previous synfire chain learning studies, we included
weight normalization, Equation (6), so that the total excitatory
lateral input to a neuron was no greater than WL

max = 50. The
value for WL

max was found experimentally, cf., Figure 5.

wi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wi∑
wi

WL
max if

n∑
i = 1

wi > WL
max

wi if
n∑

i = 1

wi ≤ WL
max

(6)

Weights were initially set independent and identically dis-
tributed from uniform distributions: 0 < w ≤ WP

max and 0 <

w ≤ WL
max/N, for input and recurrent synapses, respectively.

Unless otherwise stated, training is run for a fixed dura-
tion of 200 s, at which time weights have practically converged
(Figure 5). After training, the network performance is tested.
We distinguish between “learning of a pattern” and “learning
of a sequence.” This corresponds roughly to training of the
feed-forward (ff) and the recurrent synapses, respectively.

A spatio-temporal pattern counts as learnt if a fixed set of neu-
rons responds reliably to segments of it. Neurons are considered
part of a trained chain only if they fire with a probability of at least
50% during repeated presentations of the input pattern in the test
phase. The majority of neurons are much more reliable than 50%
after training.

A sequence counts as learnt if the pattern is learnt (as described
above), none but the first neuron fires with recurrent input
switched off in response to the learned pattern, but they do fire
in fixed order with recurrent synapses present. This implies that
both the ff and the recurrent input into a neuron are needed
to make it fire. A sequence counts as recognized during a pre-
sentation if all neurons of a learnt chain fire, especially the last

one, which signals that a complete pattern has been seen by the
network.

Due to the Poisson spikes on 1000 input lines and additional
10 Hz background spikes on all synapses, learning and retrieval
are stochastic processes. Therefore, after training, neurons do not
respond 100% reliable to the input pattern, but missing and spu-
rious firings may occur caused by the random background input.
This causes sequence recognition to fail and becomes more severe
for longer sequences.

3. RESULTS
3.1. PATTERN LEARNING FOR NEAREST-NEIGHBOR STDP
After learning a pattern with nearest-neighbor STDP, a set of
neurons typically respond at different times during a pattern
enforced by the winner-takes-all mechanism, see Figure 2 for
an example. The figure shows the cumulative spikes of 10 neu-
rons (Q–E) over time for 10 presentations of the trained pat-
tern starting at time zero. Each line contains 10 accumulated
firings (black dots; some printed on top of each other) reflect-
ing proper sequence recognition for each individual pattern
presentation.

Note that noise in the model is high—more than 75% of all
spikes are noise spikes, because half of the input lines carry pure
Poisson spike trains, the actual 50-ms training patterns are shorter
than the periods of intermittent noise between their presenta-
tions, and there is an additional 10 Hz Poisson noise on each
synapse. Therefore, even after training finished, the membrane
potential fluctuations (not shown) are large such that the spike-
times in Figure 2 display a considerable jitter. The distribution
of response times becomes greater later in the pattern. The first
neuron responds after about 15 ms reflecting the combined mem-
brane and synaptic time-constants. These spikes are driven by the
forward inputs only and quite reliable. Subsequent neurons fire in
quicker succession driven by ff and recurrent input. Later spikes

FIGURE 2 | Typical raster plot of output spikes in response to 10

presentations of a trained sequence. After learning a repeated pattern of
50 ms duration, neurons in the network responded to unique segments of
the pattern. The cumulative responses of 10 pattern presentations are
shown, with jitter in the response times visible. Here, the order of firing is
E→O→D→T→P→M→S→B→R→Q and each neuron responds in each
trial but some spikes are printed on top of each other.
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reveal a larger jitter because they rely on the ff input noise and the
already jittered recurrent spike-times. The large noise limits the
recognition rates that can be reached (see section 3.4).

We found that with nearest-neighbor learning recurrent
synapses between successive neurons were strengthened, lead-
ing to chains where each neuron in a sequence primed the
next (Figure 3). Sometimes multiple chains would be learnt
(Figure 3C), each responding to the same pattern. In such a
case, all chains respond simultaneously to a pattern. This situa-
tion becomes more prominent when the number of neurons is
increased. A 50 ms pattern requires only a relatively small num-
ber of neurons to be represented. A significantly larger number of
neurons then allows for multiple representations.

3.2. CONVERGENCE OF LEARNING
Input to the model is stochastic. Even after long simulation
times synaptic facilitation and depression events can happen
by chance at individual synapses. Therefore, strictly speaking,
weights never converge to deterministic limits but remain fluc-
tuating even though with potentially small standard deviation.
Whether, well-defined asymptotic weight distributions exist is
likely, but given the analytically tough winner-takes-all dynam-
ics those are difficult to predict. Beyond this general remark,
Figure 4 provides some insight into the learning dynamics of
the recurrent connections [aspects of training the ff synapses are
studied in Masquelier et al. (2008), Humble et al. (2011) and not
duplicated here].

Synapses start randomly initialized in a range [0, WL
max/N]

with N = 20. Because total depression exceeds total excitation
in the STDP learning curve, pure random spike trains depress
synapses when output neurons fire noise-driven. This happens
during the first few seconds of the simulation (cf. Masquelier
et al., 2008; Humble et al., 2011). The repeating pattern coun-
teracts this weakening, leading to the development of specific
ff synapses for segments of the input in some output neurons.
Subsequently recurrent synapses develop that chain output neu-
rons together according to the temporal structure in the input.

The amount of time required for a network to learn a pat-
tern according to our 50% criterion is a few seconds (simulated
time) given the parameters in section 2. Sequences were learned
in between 10 and 20 s, or at most 100 stimulus presentations. The
mean length of learnt sequences was five neurons. The learning of
weights continues after the sequence is learnt (15 s in Figure 4);

FIGURE 4 | Weight changes over time for lateral excitatory synapses

during learning. Only 10 synapses are depicted for simplicity. After 15 s
the pattern is already learnt, although the weights do not fully stabilize until
about 200 s.

weights stabilize much later (200 s in Figure 4). After learning,
lateral weights had values close to zero or the maximally possible
value.

3.3. EFFECT OF LATERAL WEIGHT BOUNDS
To analyse the effect of WL

max on learning we varied the
parameter and measured the percentage of neurons, which had
learnt a pattern that responded with severed lateral connections
(Figure 5). When WL

max was increased the percentage of neurons
that responded within the pattern without lateral connections
decreased. In other words, as WL

max increased a neuron depended
more on precedent neurons. Specifically, when WL

max was low
(WL

max = 5), 80% of neurons responded without lateral synapses,
however, this decreased to ≈25% with stronger lateral synapses
(WL

max = 55). Furthermore, very strong lateral synapses (WL
max ≥

60) interfered with the common Poisson input as they had a
relatively strong efficacy toward a neuron’s firing and therefore
impeded with the learning.

When WL
max = 50, the start neuron was routinely the

only neuron which responded without lateral connections.
Furthermore, we found that an accepting neuron only responded
when a pattern was presented in full. For example, if a pattern was
reversed a chain’s last neuron (and usually many more) would not

FIGURE 3 | Three chains learnt with nearest-neighbor STDP. (A) Is a relatively long sequence consisting of 10 neurons whereas (B) and (C) are shorter. In
(C), two chains were learnt; when the pattern was presented, two sets of neurons responded in sequence. Double-line neurons are accepting neurons.
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FIGURE 5 | Effect of W L
max on a neuron’s dependence on previous

neurons. As the maximum strength of lateral connections, W L
max, was

increased, neurons became more dependent on the input from antecedent
neurons. Due to STDP in the lateral connections the number of neurons
responding without strengthened lateral connections decreased
accordingly.

respond. This effect was independent of the number of neurons
and only depended on the absolute value of WL

max.

3.4. IMPACT OF OTHER MODEL PARAMETERS ON LEARNING AND
RETRIEVAL

Over 30 trials the success rate for learning patterns was 100%
meaning that a reliable set of neurons practically always developed
that reflects segments of the input patterns. However, this does
not imply that individual neurons respond 100% reliably to their
respective input segments. Given the large noise in the system,
even after long learning periods a residual probability for missing
or spurious firings remains. For sequence retrieval the probability
of errors accumulates, which leads to a success rate for learning
sequences of 62% given the parameters used.

The noise level can be adapted by changing the background
firing rate or the number of background inputs. This, how-
ever, is possible only in limits due to the special nature of the
model: The input noise is integrated over time by the membranes
where it forms temporally correlated Gaussian noise (asymp-
totically for many inputs). Because all neurons receive precisely
the same learning pattern reducing the standard deviation of
the noise would make the membrane potentials of all neurons
more and more similar. A certain noise level is needed to break
this symmetry and assign different neurons to different segments
of the input pattern (with the additional help of the winner-
takes-all mechanism). On the other hand, increasing the standard
deviation of the noise also increases the error probabilities for
spurious and missing spikes during retrieval. This can in turn
lower recognition rates.

Changing the pattern duration has previously been studied by
Masquelier et al. (2008). Masquelier and colleagues found that as
pattern duration increased the performance of pattern learning
dropped to 59% with 100 ms and further to 46% with 150 ms;
this effect would impede the learning of chains in this study and

we therefore kept pattern duration at 50 ms. The decrease is due
to the STDP rule which depresses synapses if they see Poissonian
input and output spikes, because overall LTD dominates LTP in
the learning rule. A pattern embedded in noise must therefore
appear sufficiently frequently in order to facilitate synapses. As
patterns get longer their presentation frequency decreases, which
impairs learning.

The number of competing neurons (N) could be changed, but
increasing the number too much interferes with learning for sim-
ilar reasons as longer patterns: During the initial learning phase
more neurons compete for a segment to learn, such that they
respond less often because competitors do. Thereby the chance
for facilitation becomes reduced and depression dominates.

Overall the parameter dependences discussed in this section
suggest that the original model from Masquelier et al. (2008,
2009) can be improved for optimal sequence learning. We come
back to this point in the discussion.

3.5. RESULTS FOR ALL-TO-ALL STDP
When all-to-all STDP is used instead of nearest-neighbor STDP
more than one outbound/inbound connection per neuron was
strengthened (Figure 6). For example, if A→B→C→D was
learnt with nearest-neighbor spike STDP, all-to-all STDP would
add A→C and B→D, and possibly A→D, if the temporal win-
dow of the learning rule and the spike-times allowed for this. As
with the last chain in Figure 3, the connections do not always
form in one single ordered sequence, but more complex situations
are possible. For example, three accepting neurons are present
Figure 6A: neuron O will respond if the entire pattern is presented
and neurons D and H will respond when the majority of the pat-
tern is presented. However, these cases were rare and the majority
of chains had one accepting neuron. The presence of more than
one accepting state was due to some neurons responding only just
above 50% accuracy. In Figure 6A for example, neurons D and O
would not respond 100% of the time and in the cases where they
did not respond neuron H was the final neuron.

3.6. TRAINING MORE THAN ONE PATTERN AT A TIME
Next we looked at presenting two patterns to see if more elab-
orate chains could form. The patterns were randomly presented
but always non-overlapping. We usually found that both pat-
terns were learnt (Figure 7), although, sometimes only one of the
patterns was learnt. In addition to a neuron learning one pat-
tern, some neurons learnt both patterns and took part in both
chains. Networks therefore were often complicated with multiple
pathways.

As several lateral connections now drove each neuron we anal-
ysed the strength of these synapses: generally the more direct the
connection the stronger the synapse. In a chain A→B→C for
example, the synapse between A and B would usually be stronger
than that between A and C. Synaptic strengths are indicated in
Figures 7, 8 to illustrate the fact.

3.7. CONCATENATING CHAINS BY TRAINING
In the previous sections we learnt only short patterns. The length
of patterns can in principle be increased, but we tested an alter-
native option: the chaining of already learnt segments. For this
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FIGURE 6 | (A,B) Two synfire chains learnt with all-to-all STDP. With all-to-all STDP, more synapses were strengthened resulting in some connections
straddling subsequent neurons. For example, in (A) neuron C not only receives input from the previous neuron, L, but also M and T. Double-line neurons are
accepting neurons.

purpose two patterns were stored as before, but in a second
phase the two patterns were repeatedly presented consecutively.
This allowed two chains to connect, see Figure 8 for an example.
If before learning two patterns were recognized by two unique
chains, then the end of one would be linked to the begin-
ning of the other. Still, recognition of the individual sub-chains
remained possible using appropriate entry and exit nodes along
the combined chain.

This mechanism in principle allows to train sequences hier-
archically and potentially also to form more complex graph-like
structures from simpler elements.

3.8. NOTES ON MEMORY CAPACITIES
It may seem that using 20 neurons to store two patterns makes
inefficient use of resources. This, however, deserves further

consideration. Observe that two types of connections in the
model store information, the ff synapses and the recurrent con-
nections in the output layer.

Each trained neuron in the output layer responds specifically
to a short segment in the input of length roughly similar to the
duration of post-synaptic potentials; this is the time over which
synaptic integration efficiently takes place in the ff synapses, and
it is of the order of 10 ms. Segments coded by subsequent output
neurons overlap to some degree (see Figure 2 where distinct out-
put neurons fire about every 5 ms). The output network therefore
basically uses a one-out-of-N code to represent short segments
of the full spatio-temporal input pattern. If two spatio-temporal
patterns each of 50 ms duration are stored in 20 neurons this
gets quite close to the maximally possible number of segments.
The pattern capacity of a one-out-of-N code is α := P/N = 1 or,
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FIGURE 7 | Synfire chains learnt for two patterns, orange and yellow, presented separately to the same network. In (A), each pattern is recognized by a
different set of neurons. In contrast, the patterns in (B) are both recognized with two overlapping pools of neurons. The strength of synapses is represented by
edge color and thickness; for example, a thick black edge represents a strong synapse. Double-line neurons are accepting neurons.

informally, as many segments P can be represented as there are
neurons, N. The recurrent connections chain these segments in
the order of their occurrence.

It is known from theories of associative memories that
sparse codes can have a much higher pattern capacity than
dense codes and one-out-of-N codes. For example, the memory
capacity of the Hopfield network with dense memory patterns
(that is, a probability of p = 1/2 ones and minus ones each) is
α = P/N ≈ 0.14, whereas for sparse codes with p percent ones
(and zeros else) the capacity is of the order of α ∼ −1/(p log p).
As p becomes small this number can become very much bigger
than 1 (as compared to a constant of 0.14 in the Hopfield net).
Both results hold asymptotically in very large networks, but
approximately also in smaller networks (Palm, 1991).

This suggests that a k-winner-takes-all mechanism which
selects k output neurons sparsely instead of only one, could be
much more efficient regarding pattern storage capacities in the
recurrent connections of the output layer. Unfortunately, it is not
obvious how to design a neurally plausible mechanism that selects
k neurons reliably and randomly during learning. Bienenstock
noticed that the number of sets of k out of N neurons grows

quickly in the sparse region, which makes a threshold mechanism
to reach a controlled level of activity k and selects the same k neu-
rons under the same input conditions unreliable (Bienenstock,
1995). Also, in a case where learning is ongoing, some neu-
rons will have already strengthened synapses relative to others
which biases them toward higher firing probabilities and there-
fore a higher rate to be selected again. This is not only unwanted
because it reduces memory capacities (high capacities assume
independent neurons in patterns) but also in practice often leads
to a core of neurons developing many mutual synapses, whereas
other neurons never learn. The problem of designing a reliable k-
winner-takes-all mechanism that avoids these problems has to be
left to future work.

How much information is contained in the forward synapses
of the network is also quite close to a theoretical limit given a one-
out-of-N code in the output layer. Note that given firing rates of
roughly 50 Hz (or 1 spike per 20 ms) in the spatio-temporal pat-
terns to learn, a neuron fires with probability 1/2 in a segment of
about 10 ms duration. Because binary patterns with independent
0/1-entries and p = 1/2 contain maximally possible information
the learnt segments per output neuron in our model have a high
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FIGURE 8 | A long chain formed from two shorter ones each

recognizing a different pattern. After learning the two patterns separately,
they were presented in succession: pattern two → pattern one. The end of
pattern two connected to the beginning of pattern one. Double-line neurons
are accepting neurons.

information content close to maximum. This, of course is only an
estimate; a more elaborate theory would have to take threshold
and noise levels into account as well as jitter in spike-times. This is
out of the scope of the current work. Note also that again, sparse
patterns in the input and output layers may potentially increase
the pattern capacity or total information stored in the forward
synapses.

3.9. INVARIANCE AGAINST STIMULUS SPEED
Earlier work implies that it is possible to reach a certain amount
of invariance in pattern recognition if the speed of the input pat-
tern is changed. This may require an adjustment of the firing
thresholds (Wennekers and Palm, 1996; Wennekers, 2000).

FIGURE 9 | Robustness against input speed variations. (A) Spikes in
three consecutively firing output neurons. These spikes are partly caused
by specific feed-forward input (B) and the recurrent feedback connections
(C). The dashed post-synaptic potential in (B) contributes to the firing of
neuron i , the solid line to i + 1. (C) Excitatory-inhibitory post-synaptic
signals on neuron i + 1 due to specific excitatory feedback (fb) from neuron
i and the global inhibition also triggered by the firing of neuron i . (D) The
feed-forward and feedback signals superimpose on the output neurons and
cause spikes where firing thresholds are crossed. These times must be the
same as in (A) for consistency. If an input gets (slightly) faster than during
training signals in (B) get compressed in time but larger in amplitude, which
(slightly) moves the threshold crossing. By continuity, threshold variations
can be used to speed up (or slow down) the recognition speed in the
output network.

Figure 9 demonstrates the main mechanisms. Sub-plot A
shows spike-times of three consecutive neurons in the output
layer, which for simplicity are assumed to fire at regular intervals.
Each firing requires ff input from the spatio-temporal driving pat-
tern. This is indicated in sub-plot B where the solid line applies
to spike i + 1 and the dashed line to spike i. These post-synaptic
potentials are caused by brief segments before the spike that uti-
lize trained, pattern-specific synapses. After a spike in neuron
i, the inhibitory loop is triggered as well as an excitatory post-
synaptic potential is elicited on neuron i + 1. The superposition
of both is exhibited in sub-plot C. Sub-plot D shows the sums
of the feedback (fb) inhibition and ff and fb excitation for neu-
rons i (dashed) and i + 1 (solid). The neurons fire where the
sum reaches the firing threshold (solid circles). The spikes-times
in A and the threshold crossing in D coincide for reasons of
self-consistence.

Now assume that the input is slightly slower (or faster). In that
case the curves in B will be slightly stretched and lower (or com-
pressed and higher), whereas those in C stay the same. This will
furthermore lead to slight changes in the summed curves in D,
however, as long as the changes are small, the curves and changes
are continuous. Therefore, the threshold can be slightly adapted
to have neuron i + 1 fire at a slower (or higher) speed as required

Frontiers in Computational Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 84 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Humble et al. Learning spatio-temporal pattern recognizers

by the input. Simulations actually show that the system toler-
ates a certain amount of noise in the input, which implies that
the system is stable; for small enough speed changes a threshold
adaptation is not required.

Even though the above analysis applies to the model in this
paper, the speed changes that can actually be tolerated are quite
small for two reasons. At first, the rise-times of the post-synaptic
membrane potentials are small only (a few milliseconds). Because
the threshold crossing causing the firing of neurons must fall
on the rising edge, the maximum amount of speed tolerance is
thereby limited. A second limiting factor is the large input noise
for the parameters used in accordance with previous works. The
input noise causes large membrane fluctuations which have an
impact on the stability of wave propagation. On one hand, in
order to allow any reliable retrieval, the threshold should be more
than one standard deviation of the noise below the maximum
in the summed potentials in Figure 9; otherwise a neuron in the
chain may miss firing by a significant probability which would
terminate the chain. On the other end, the threshold must also
be sufficiently bigger than both the ff and fb excitation, again,
by more than a standard deviation of the noise. Otherwise neu-
rons may easily get excited randomly. It turns out that given the
parameters used in the simulations the noise is so large that this
leaves only a relatively small region for proper threshold settings.
This is, for example, also indicated by Figure 2 where even with a
properly set threshold, spike jitter of output neurons in repeated
simulations are around a few milliseconds, much comparable
with the rise-times of the post-synaptic potentials.

Finally, let us briefly mention that the above picture is not
entirely complete. It leaves out a (constant) potential offset due
to the Poisson inputs, membrane potential resets of the leaky-
integrate-and-fire neurons after firing, and the fact that the recur-
rent inhibition acts globally. These effects have an impact on the
precise shape of the membrane potential and firing times but do
not change the main arguments qualitatively.

4. DISCUSSION
It has previously been found that several neurons can learn to
recognize different sections of a repeated spatio-temporal pattern
(Masquelier et al., 2009). We studied whether it was possible to
join these consecutively firing neurons into an ordered chain that
recognizes a spatio-temporal input pattern. Using both nearest-
neighbor and all-to-all STDP it was possible to form chains using
a simple network of excitatory neurons laterally connected and
one inhibitory neuron providing winner-takes-all competition.

Previous attempts to learn synfire chains (Bienenstock, 1991;
Prugel-Bennett and Hertz, 1996) have set-up random networks
and some have excited neurons synchronously to strengthen con-
nections. Our approach was different: we had a simple network
that was driven mainly by a repeated spatio-temporal pattern
where all excitatory connections were plastic for the duration of
a simulation. Furthermore, a major limitation of previous studies
was that cyclical chains would form. These closed loops interfered
with the learning of long chains as once activity enters a loop it
doesn’t exit. None of our chains had cycles because the network
was driven by a specific stimulus instead of random activity as
with previous studies. This stimulus driven set-up deterred the

formation of loops because the repeated patterns were separated
by random activity that was not learnt.

An important result of having the lateral connections plastic
throughout the learning process was that subsequent neurons in
a chain not only recognized when a pattern segment was pre-
sented, but crucially only did so if the previous neuron had fired
as well. The chains are therefore effectively simple finite automata
that recognize linear sequences. However, the lateral connections
only had this effect if they were allowed to strengthen enough
(Figure 5). When a neuron receives input through a lateral con-
nection from a precedent neuron, this increases the membrane
potential and primes the neuron to fire on appropriate input from
the Poisson inputs.

We tested the possibility to learn longer sequences hierarchi-
cally from shorter segments representing two subsequent pat-
terns. The longer chains that formed, included at least one accept-
ing neuron that only responded if a learnt pattern was presented
in full correctly. For example, if the pattern was reversed or split
in half the accepting neuron would not respond. This multiple
order dependence on previous neurons allowed for multiple paths
through a network to be learnt.

Given that due to the random inputs firing was to some degree
stochastic, the structures learned using nearest-neighbor learning
may be considered to be similar to first-order Markov chains. To
extend this interpretation of learnt sequences as Markov chains,
we found it was possible to learn higher order chains with all-
to-all STDP. These produced neurons which not only relied on
a previous neuron’s response and the appropriate pattern input,
but to a certain extent on the temporal pattern of activity across
several neurons and time-steps. This dependence on previous
neurons reinforced the concept of an accepting neuron only
responding if a pattern had been presented in full.

Results shown confirm a previous finding that the level of
background activity present during and after learning needs to
be similar for proper pattern recognition (Humble et al., 2011).
Specifically, if the level of background activity increases after
learning, a neuron may respond earlier, and if the activity is
decreased, a neuron may no longer respond at all. These effects
can impair the recognition of stimuli. However, it should also be
noted, that the level of background activity allows the control of
the speed of activation patterns in synfire chains (Wennekers and
Palm, 1996; Wennekers, 2000). Such a mechanism can be used to
gain a certain invariance against the replay speed of learned pat-
terns. However, given the high noise level used in the present work
[for better comparison with previous models of Masquelier et al.
(2008)] the controllable range is only small.

The high noise level also implies relatively low sequence recog-
nition rates. The noise level, cannot be simply reduced because
as discussed in section 3.4 at low noise levels membrane poten-
tials become more and more similar because all neurons receive
the same input. In this case the winner-takes-all mechanism has
difficulties to reliably select only one neuron. Noise is needed to
spread the membrane potential distribution and randomly select
output neurons during learning. If neurons would not all see the
same input, the noise level could likely be lowered and the recog-
nition rates increased. This may improve the performance of the
model.
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Another drawback of the model is the relatively simple stan-
dard STDP learning rule. As mentioned in section 3.4 and already
observed by Masquelier et al. (2008) the rule limits the maxi-
mum length of trainable patterns. In response to Poisson spikes
synapses depress such that a certain minimum frequency for
training patterns to repeat is required to facilitate synapses. The
inverse of this frequency limits the maximum duration of train-
able patters. We are currently testing other learning rules to
overcome this problem.

The weight normalization used in our study may be seen a
limitation. However, previous studies have used similar forms of
weight normalization; it seems to be crucial for the formation
of synfire chains (Bienenstock, 1991; Prugel-Bennett and Hertz,
1996). Our implementation of weight normalization is not local
and would therefore require some signaling in biological neurons.
Whether such signaling or weight normalization is present within
neurons is not known. Furthermore, the calculations for the max-
imal afferent weight for both input and lateral synapses (WP

max
and WL

max) would also require some, as yet, unknown signaling.
However this would ideally be an “inbuilt” property of neurons.

Another limitation of our network is its small pattern capac-
ity. Neurons can typically not be trained to participate in more
than two patterns. This limitation is mainly due to the non-sparse
input with 1000 inputs representing the signal and another 1000
carrying Poisson noise. The study of sparse input and output pat-
terns suggested in section 3.8 remains an interesting but open
problem. Sparse codes are known to drastically increase pattern
capacities in associative memories (Palm, 1991). In the present
context they may similarly help with (1) overcoming the need to
have about 20 neurons to recognize “only” 100 ms of input and
(2) increasing the number of different patterns stored within a
network.

Experimental evidence is accumulating, that cortical activ-
ity is often sparse and precisely timed in response to repeating

stimuli. (Wolfe et al., 2010) review evidence from a variety of
species and cortical areas showing that neurons can respond
highly selectively in response to brief periods of repeating inputs.
The selectivity and sparseness is controlled by inhibitory net-
works of neurons which also chop the excitatory responses into
bursts in the beta frequency range. Our model acts in a similar
way causing sequences of neurons to fire in response to spe-
cific segments in the inputs. The firing activity in the model
is rhythmic due to the winner-takes-all inhibition which causes
sparseness, i.e., the firing of only a single neuron per recog-
nized segment. A k-winner-takes-all mechanism may reflect the
biological situation even closer. Our model, however, has the
additional feature that on top of neurons that recognize single
short segments of the input, we also utilize recurrent excitatory
connections to encode longer patterns. It may be worthwhile to
explore this possibility in experiments by stimuli that either sup-
port the propagation of activity (the original pattern) or not
(the reverse pattern or scrambled segments). The possibility to
stitch patterns together can also be tested experimentally. In the
present work we have only shown this for two patterns (due to
limitations of the learning rule) but in principle chains could be
combined into more complex patterns that may underlie cortical
computations.

To summarize, it is interesting to see that a simple network
of laterally connected excitatory neurons can self-organize into
spatio-temporal pattern recognizers. Simple Markov-like synfire
chains were learnt with nearest-neighbor STDP and more com-
plicated multiple order chains with all-to-all STDP. Furthermore
chains recognizing different patterns could be joined to represent
longer, potentially nested patterns. Even though some limitations
must be overcome, the latter offers the possibility to learn graph-
like transition patterns with stronger computational capabilities
than linear sequences, for example, as suggested by Wennekers
(2006) or Izhikevich (2009).
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