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Effective Capacity Maximization With Statistical
Delay and Effective Energy Efficiency Requirements
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Abstract—This paper presents the three-fold energy, rate and
delay tradeoff in mobile multimedia fading channels. In particular,
we propose a rate-efficient power allocation strategy for delay-
outage limited applications with constraints on energy-per-bit
consumption of the system. For this purpose, at a target delay-
outage probability, the link-layer energy efficiency, referred to as
effective-EE, is measured by the ratio of effective capacity (EC)
and the total expenditure power, including the transmission power
and the circuit power. At first, the maximum effective-EE of the
channel at a target delay-outage probability is found. Then, the
optimal power allocation strategy is obtained to maximize EC
subject to an effective-EE constraint with the limit set at a certain
ratio of the maximum achievable effective-EE of the channel.
We then investigate the effect of the circuit power level on the
maximum EC. Further, to set a guideline on how to choose the
effective-EE limit, we obtain the transmit power level at which
the rate of increasing EC (as a function of transmit power)
matches a scaled rate of losing effective-EE. Analytical results
show that a considerable EC-gain can be achieved with a small sac-
rifice in effective-EE from its maximum value. This gain increases
considerably as the delay constraint becomes tight.

Index Terms—Delay-outage probability constraint, energy-
rate-delay tradeoff, effective capacity, effective energy efficiency,
Nakagami fading.

I. INTRODUCTION

ENERGY EFFICIENCY (EE), defined as the number of
communicated bits per unit transmission power in the

units of b/J/Hz, is considered as one of the design performance
metrics for future wireless communications systems, e.g., 5G
[1], [2]. In many cases, however, increasing EE comes at
the price of decreasing the throughput [3]. The rate-energy
tradeoff is studied in various research articles and projects [4]–
[8]. In particular, [4] proposed an optimum design for joint
transmission time and modulation parameters to reduce the
total energy consumption for sending a given number of bits.
Authors in [5] proposed an energy-efficient resource allocation
in orthogonal frequency division multiple access (OFDMA)
channels and showed that, similar to flat-fading channels, EE
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curve as a function of the transmission power is a bell-shape
curve. Henceforth, increasing the transmission power beyond
the corresponding point for the maximum EE, does not improve
EE. Whereas, the rate is a monotonically increasing function of
the transmission power. The results in [3], [5]–[8] are based on
Shannon capacity which is mostly considered as the suitable
capacity metric for systems with delay insensitive applications.
The rate-energy tradeoff is shown to be more pronounced in
systems with applications having delay requirements [9], [10],
e.g., mobile multimedia communications.

Delay quality-of-service (QoS) requirement is indeed an es-
sential factor for enabling mobile multimedia communications
systems [11]. However, due to the variations in the wireless
mobile fading channels, satisfying a deterministic delay con-
straint is either impossible or results in a very low transmission
rate [11], [12]. Hence, in many systems, a certain delay-outage
probability is tolerable, a characteristic that has paved the way
for a cross-layer analysis of the wireless fading channel through
a link-layer capacity model called effective capacity (EC) [11].
EC provides a measure for the maximum constant arrival rate
under buffer-violation probability constraint by capturing the
decaying rate of the buffer size probability for large queue
lengths and incorporating it into the large deviations theory. By
using the EC model, a rate-efficient power allocation technique
under delay-outage probability constraint is proposed in [13].
The paper shows that to maintain the throughput while satis-
fying tighter delay constraints, higher transmission powers are
required [11]. The maximum transmission power, however, is
limited by different factors in wireless devices, e.g., by device
size. Henceforth, energy-efficient transmission techniques are
required.

Considering a deterministic delay constrained channel, [14]
proposes an optimal power-rate allocation policy that mini-
mizes the system energy consumption when the channel is
considered to evolve as a Markov process. This work was
extended to block-fading channels in [15], wherein an opti-
mal power allocation strategy that determines the number of
scheduled bits to be transmitted in each time-slot so that the
total energy consumption is minimized while a deterministic
delay constraint is satisfied was obtained. A game-theoretic
approach is proposed in [16] wherein a de-centralized optimum
rate and power allocation scheme is found when the utility
function is defined as the difference between the throughput
and consumed power when the experienced delay by the arrived
packets is kept below a predefined threshold. The maximum
achievable effective-EE of a flat-fading channel under a delay-
outage probability constraint was obtained in [17] and [18],
wherein the effective-EE is defined as the ratio of EC to the
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transmission power without taking into account the effect of
the circuit power consumption on effective-EE. In particular,
[17] shows that the minimum received signal energy per bit for
reliable communication is achieved when the signal-to-noise-
ratio (SNR) tends to zero, i.e., either bandwidth tends to infinity
or transmission power tends to zero. At near-zero transmission
power, this minimum energy per bit is shown to be similar to
systems with no delay requirements, studied in [19], whereas,
for infinite-bandwidth systems, this minimum energy is much
higher than that of a delay-unconstrained system [17]. The
analysis in [17]–[19], however, does not account for the circuit
power consumption, and hence, the rate-energy tradeoff could
only be characterized under asymptotic conditions.

Taking into account non-zero circuit powers, the maximum
achievable effective-EE under delay-outage probability con-
straints is found in [9], [20] for single carrier and multi-
carrier channels, respectively. In particular, [9] considers a
rate-independent circuit power and shows that, unlike systems
with zero circuit power, the maximum effective-EE can be
achieved at non-zero transmit powers. Further, [20] proposes an
optimal power and subchannel allocation technique for achiev-
ing the maximum effective-EE by using a concave-convex
fractional programming approach. On the other hand, assuming
a delay-outage probability constrained channel, the maximum
effective-EE was obtained in [21], wherein the optimal power
allocation was obtained for high and low SNRs. Further, the
maximum achievable effective-EE of a cellular system subject
to minimum rate requirements is studied in [22]. Effective-EE
as a function of the transmission power curve is shown to be
a bell-shape curve in [9], [23] with sharper head when delay
requirement becomes loose. To visualize the effective-EE and
EC tradeoff more clearly, we plot the achievable effective-EE
versus EC for two different target delay-outage probabilities in
Fig. 1.1 The figure reveals that while the slope of effective-EE
curve is sharp at higher values of EC, it becomes slow around
the maximum effective-EE value, i.e., ηmax. We conclude that a
small reduction in effective-EE around its peak value results in
a significant gain in EC. This gain, however, becomes less when
the operating point departs from ηmax. Moreover, the figure
shows that the peak in the curve is sharper in systems with
looser delay requirement. Henceforth, in comparison between
two systems with loose and tight delay constraints, the gain in
the achievable EC, as a result of departing from the maximum
effective-EE point, is larger when delay is tighter. For example,
as shown in Fig. 1, at θ = 0.001, with 10% loss in effective-
EE, the gain in EC is 169%. Whereas, at θ = 0.1 with the
same loss rate in effective-EE (i.e., 10%), the EC-gain is 229%
which is larger than 169%. These observations illustrate the
important impact of delay constraint on the effective-EE and
EC tradeoff in delay-limited systems which motivates the work
to be presented in this paper.

1In this figure, θ represents the delay-outage probability constraint. Higher
θ means more stringent delay requirement. Detailed explanation of θ will be
given in Section II. This figure is generated for use in this paper. The general
simulation parameters are the same as [9]. The channel is Rayleigh fading
with unit-variance and the scaled circuit power value considered in this figure
is 0 dB.

Fig. 1. Effective-EE versus EC for various delay requirements in Rician
fading channels.

In this paper, we consider a delay-outage probability con-
strained system in Nakagami-m fading channels and investigate
the maximum EC of such systems under an effective-EE con-
straint. The effective-EE constraint limit is set as a percentage
of the maximum achievable effective-EE of the channel. For a
target delay-outage probability, we represent the effective-EE,
expressed in units of b/J/Hz, as the ratio of the achieved link EC
to the sum of the transmission power and the circuit power. We
start by proposing an optimal power allocation for achieving the
maximum EC of the system with no input power constraint.
The optimality of the power allocation is established by using
the fact that the EC-maximization objective function is a strictly
concave function in the transmission power and the effective-
EE is a strictly quasi-concave function, and as such, its upper
contour set is convex and a unique maximum exists. Using
Lagrangian methods, we derive the optimal power allocation
strategy which is shown to be similar to an EC-maximization
problem subject to an input power limit set at P ∗

t , which is
the operating transmit power for satisfying the effective-EE
constraint at equality. We further consider a system under joint
constraints on effective-EE and input power, with a power limit
Pmax, and show that when Pmax is large enough for the problem
to be feasible, the operating transmit power should be limited
to min(Pmax, P

∗
t ).

The simulation results in this work show that the value
set for the effective-EE constraint limit affects the maximum
achievable EC considerably. Furthermore, we prove that the
effect of Pc on the maximum achievable EC depends on how the
effective-EE constraint is set. These facts highlight the needs
for setting guidelines on how to choose the required effective-
EE limit. We, consequently, propose an EC-gain effective-
EE-loss rate matching technique. Specifically, we set the
effective-EE limit at a point at which the gain-rate of the EC
is equal to a scaled loss-rate in the effective-EE as functions
of the transmission power. Finally, we analytically prove that
in systems with extremely stringent delay requirements, the
achievable EC under effective-EE constraints increases mono-
tonically as Nakagami-m fading parameter increases.
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Fig. 2. System model. (a) System block diagram; (b) Equivalent queuing
model.

The main contributions of this paper can be listed as:
• This paper obtains the maximum EC of a Nakagami-m

fading channel when a certain effective-EE level is re-
quired by the system. The results are beneficial to system
designers since the simulation results show that consider-
able EC gain can be achieved with a small reduction in
achievable effective-EE.

• We analytically investigate the effect of the circuit power
level on the maximum achievable EC under an effective-
EE constraint.

• We prove that in systems with extremely stringent delay
requirement, the maximum achievable capacity increases
as the Nakagami-m fading parameter increases.

• Motivated by the fact that the achievable EC depends
strongly on the required effective-EE level, we propose a
method to set this value based on matching the gain-rate
of EC with a scaled loss-rate of effective-EE.

• Simulation results indicate that with small decrease in
effective-EE, delay-outage probability decreases consid-
erably. Further it is shown that in Rayleigh and Rician
fading channels, as delay becomes more stringent, the gain
in EC increases. This trend, however, does not apply to
Nakagami-m channels with m = 0.5.

The remainder of the paper is organized as follows. In
Section II, we provide the system model. We obtain the optimal
power allocation strategy to maximize EC subject to joint input
power and effective-EE constraints in Section III. Further, we
investigate the maximum achievable EC subject to an effective-
EE-loss EC-gain rate matching technique. Finally, the numeri-
cal results are given in Section V, followed by conclusions in
Section VI.

II. SYSTEM MODEL

We consider a point-to-point communication system oper-
ating in a flat-fading channel similar to the one studied in
[13], which is depicted in Fig. 2(a). The simplified equivalent

queuing model for the system is provided in Fig. 2(b). User data
initially enters a first-in-first-out (FIFO) buffer at a constant
arrival rate μ (expressed in b/s/Hz). The transmitter sets its
transmission rate and power based on the delay requirement
of the system and the channel state information (CSI) obtained
through a feedback channel. As a result, user data is read out
of the FIFO buffer and transmitted over the wireless fading
channel at a variable service rate. Ideal Nyquist transmission
symbol rate is assumed, henceforth, the symbol duration Ts

is equal to Ts =
1
B , where B is the system bandwidth. The

wireless channel is considered to be block-fading, i.e., the
channel response is fixed during a fading block, and indepen-
dently changes from one fading block to another. The length of
each fading block, denoted by Tf , is assumed to be an integer
multiple of symbol duration Ts.

The service rate process {r[t], t = 1, 2, . . . , Tf} over this
block-fading channel using adaptive transmission is considered
to be stationary and ergodic. Using Shannon capacity equation,
the service rate (in b/s/Hz) is given as

r[t] = log2

(
1 +

Pt[t]γ[t]

PLσ2
n

)
. (1)

Here, Pt[t] is the transmission power in fading-block t, σ2
n

indicates the noise power, PL denotes the distance-based path-
loss, and γ[t] is the normalized channel power gain2 of the
considered unit-variance Nakagami-m block-fading channel
with the probability density function (PDF) [24]

fγ(γ) =
mmγm−1

Γ(m)
e−mγ ,

where Γ(m) =
∫∞
0 wm−1e−wdw is the Gamma function [25].

A. Effective Capacity

Assuming that the delay-outage probability is limited, we use
the link-layer effective capacity concept to find the achievable
throughput of the fading channel. We note that the delay oc-
curred in the signal transmission, is related on how long the data
is kept in the FIFO buffer before it is read out to the wireless
channel. In more detail, since in a FIFO buffer, the head
of the queue will clear out first, the buffer queue length rep-
resents the delay in signal transmission. To analyze the buffer
queue length overflow probability, and indirectly, the delay-
outage probability, we incorporate the concept of EC [11],
which provides a measure for the maximum constant arrival
rate that a given service rate can support subject to a QoS
exponent requirement defined by θ. Given that the assumptions
for the Gartner-Ellis theorem [26, Pages 34–36] are satisfied,3

the EC of an independent and identically distributed (i.i.d.)

2Hereafter, we omit the time index t wherever it is clear from the context.
3The Gartner-Ellis theorem assumptions are listed as the Gartner-Ellis func-

tion (i) exists for all real θ, (ii) is strictly convex, and (iii) is essentially smooth.
A convex function l(x) is essentially smooth if (i) its domain is non-empty,
(ii) l(x) is differentiable through its domain and (iii) l(x) is a steep function
[27, Page 44]. The conditions for a convex function being steep is given in
[28, Page 30].
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block-fading channel at a delay exponent θ can be expressed
as [11]4

EC(θ) = − 1

θTf
ln
(
E

[
e−θTfr[t]

])
, (2)

where E[·] indicates the expectation operator. We note that the
EC formulation is given based on θ. The relation between θ
and the buffer-length overflow probability is given through the
large deviation principle theorem. In particular, assuming that
the steady-state queue length, q(∞), exists, the probability that
the queue length exceeds a certain threshold x is shown to decay
exponentially fast according to [11], [12],

Pr {q(∞) ≥ x} ≈ εe−xθ (3)

where θ is found when the maximum arrival rate is equal to the
EC, i.e., μ = EC(θ) (given in (2)). Here, f(x) ≈ g(x) means
that lim

x→∞
f(x)
g(x) = 1, and ε is the probability of a non-empty

buffer, which can be approximated by the ratio of the constant
arrival rate to the average service rate, i.e., ε ∼ μ

E[r[t]] , [12],
[13]. Large and small values of θ correspond to fast and slow
decaying rates indicating stringent and loose QoS requirements,
respectively. For example, when θ → 0, the system can tolerate
an arbitrarily long delay, whereas the system cannot tolerate
any delay when θ → ∞. Finally, the probability that the delay
exceeds a maximum delay bound Dmax is related to θ according
to [11]

P out
delay = Pr{Delay ≥ Dmax} ≈ εe−θμDmax , (4)

where Dmax is in units of a symbol period (Ts = 1/B). Hence,
a source that requires a delay-bound violation probability of at
most P out

delay, needs to limit its data rate to a maximum of μ,
where μ is the solution to μ = EC(θ) given in (2).

B. Effective-EE

We formulate the effective-EE of a system under delay-
outage probability constraint as the ratio of the EC to the total
power consumption at the transmitter. The total transmission
power can be modeled as Ptot[t] =

Pt[t]
ε + Pc, where 0 ≤ ε ≤

1 is the power amplifier (PA) efficiency, and Pt[t]
ε is the total

input power to the PA. Pc is the constant circuit power that
corresponds to the power dissipation of the transmitter circuitry,
which is considered to be independent of the transmission rate
in this paper. The effective-EE can therefore be expressed as

Effective-EE = η(θ) =
EC(θ)

Pc +
1
εE[Pt[t]]

, (5)

where η(θ) indicates that effective-EE as a function of the delay
exponent θ.

4It is shown that when the channel is block-fading, the Gartner-Ellis theorem
assumptions are satisfied [11].

III. OPTIMAL POWER ALLOCATION

Given that the transmit power of a system determines its rate
and energy consumption, the performance in terms of effective-
EE and EC tradeoff can be optimized by adaptively allocating
the power over time based on the channel condition and the
system delay requirement. To analyze the effective-EE and EC
tradeoff characteristics, we formulate the optimization problem
to maximize EC subject to constraints on the maximum average
transmission power and required effective-EE. In other words,
instead of maximizing effective-EE, we maximize EC con-
straining on the effective-EE, because the maximum achievable
effective-EE of a system has a finite value. As shown in Fig. 1,
a small sacrifice in the effective-EE from its maximum can
result in a significant gain in EC (spectral efficiency) of the
system. In this paper, we adapt the transmission power at the
beginning of each fading-block based on the CSI and the delay
constraint. Therefore, hereafter, we refer to the instantaneous
transmit power Pt[t] by Pt(γ) to indicate that the transmission
power is a function5 of the channel power gain γ.

The EC-maximization problem of a system with delay-
outage probability requirement under an average input power
constraint and an effective-EE constraint can be mathematically
expressed as

ECopt(θ) = max
Pt(γ)≥0

− 1

θTf
ln

(
Eγ

[(
1 +

Pt(γ)γ

K�

)−ξ(θ)
])

(6a)

subject to : Effective-EE

=

− 1
θTf

ln

(
Eγ

[(
1 + Pt(γ)γ

K�

)−ξ(θ)
])

Pc +
1
εEγ [Pt(γ)]

≥ ηmin(θ) (6b)

Eγ [Pt(γ)] ≤ Pmax, (6c)

where K� = PLσ
2
n is the noise power that includes both addi-

tive white Gaussian noise (AWGN) and path loss, ξ(θ) = θTf

ln 2 ,
and Eγ [·] indicates the expectation over the PDF of γ. Further,
ηmin(θ) denotes the required effective-EE limit and is chosen
as a ratio of the maximum achievable effective-EE at the target
delay-outage probability, ηmax(θ), which is formulated as

ηmax(θ)= max
Pt(γ)≥0

− 1
θTf

ln

(
Eγ

[(
1+ Pt(γ)γ

K�

)−ξ(θ)
])

Pc+
1
εEγ [Pt(γ)]

. (7)

Specifically, under a delay QoS exponent θ, the ratio of the re-
quired effective-EE limit (ηmin(θ)) over the maximum achiev-
able effective-EE (ηmax(θ)) is referred to as the EE-loss-rate
which is expressed as

αEE =
ηmin(θ)

ηmax(θ)
, (8)

where 0 ≤ αEE ≤ 1. We further define the EC that can be
achieved corresponding to ηmax(θ) by ECηmax

(θ). The ratio of

5Note that the transmission power is also a function of the delay QoS
exponent θ.
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ECopt(θ) over ECηmax
(θ) is further defined as the EC-gain-rate

and is formulated as

αEC =
ECopt(θ)

ECηmax
(θ)

. (9)

A. Optimal Power Allocation With No Input Power Constraint

First, the EC-maximization problem without considering the
maximum input transmit power constraint is tackled, serving
as a milestone towards finding an EC-optimal power allocation
subject to the joint effective-EE and input power constraints.
Further, to normalize the system performance with respect
to the path loss and noise effect (K�), we scale the EC-
maximization problem (6a) with K�. The EC-maximization
problem, hence, can be expressed as

ECopt(θ) = max
Pr(γ)≥0

− 1

θTf
ln
(
Eγ

[
(1 + Pr(γ)γ)

−ξ(θ)
])

(10a)

subject to : Effective-EE

=
− 1

θTf
ln
(
Eγ

[
(1 + Pr(γ)γ)

−ξ(θ)
])

K�

(
Pcr +

1
εEγ [Pr(γ)]

) ≥ ηmin(θ),

(10b)

where Pr(γ) =
Pt(γ)
K�

is defined as the ratio of the transmit

power to the path loss and noise power and Pcr =
Pc

K�
represents

the circuit to noise and path loss power ratio.6

The objective function in (10a), i.e., the EC function, is
proved to be concave in the transmission power in [21]. On the
other hand, since the denominator of the effective-EE constraint
(10b) is affine, (10b) is a quasiconcave function in Pr(γ). From
the definition of quasiconcavity, if the function F : R → R,
with R indicating the set of real numbers, is quasiconcave, then
its upper contour sets are convex. In other words, F is quasicon-
cave iff S is convex where S = {x ∈ R : F (x) ≥ a}, ∀ a ∈ R.
Since effective-EE is a strictly quasiconcave function in Pr(γ),
the feasible set defined by (10b) is a convex set. Hence (10a) is
a concave optimization problem and the Karush-Kuhn-Tucker
(KKT) conditions are both sufficient and necessary for the
optimal solution. Consider λ ∈ R is the Lagrange multiplier
associated to (10b), then the Lagrangian is

L (Pr(γ), λ) = − 1

θTf
ln
(
Eγ

[
(1 + Pr(γ)γ)

−ξ(θ)
])

+ λ

(
− 1

θTf
ln
(
Eγ

[
(1 + Pr(γ)γ)

−ξ(θ)
])

− ηmin(θ)

(
K�

(
Pcr +

1

ε
Eγ [Pr(γ)]

)))
.

(11)

6Note that (10a) is equivalent to (6a), when re-formulated in terms of Pr(γ).

At the optimal power allocation P ∗
r (γ), we have

∂L(Pr(γ), λ)

∂Pr(γ)

∣∣∣∣
Pr(γ)=P∗

r (γ)

= 0,=⇒ (12a)

ξ(θ)γ (1+P ∗
r (γ)γ)

−ξ(θ)−1

θTfEγ

[
(1+P ∗

r (γ)γ)
−ξ(θ)

]+λ
ξ(θ)γ (1+P ∗

r (γ)γ)
−ξ(θ)−1

θTfEγ

[
(1+P ∗

r (γ)γ)
−ξ(θ)

]

− λ
ηmin(θ)K�

ε
= 0 =⇒ (12b)

ξ(θ)γ (1 + P ∗
r (γ)γ)

−ξ(θ)−1 = β, (12c)

where β =
ληmin(θ)K�θTfEγ [(1+P∗

r (γ)γ)−ξ(θ)]
ε(λ+1) is referred to as the

scaled-Lagrangian-multiplier. From (12c), the optimal power
distribution scheme can be found as

P ∗
r (γ) =

[
ξ(θ)

1
1+ξ(θ)

β
1

1+ξ(θ) γ
ξ(θ)

1+ξ(θ)

− 1

γ

]+
, (13)

where [x]+ = max{0, x}. The solution to (10a) is hence given
in (13) and the value for β can be found using the following
Lemma:

Lemma 1: The scaled-Lagrangian-multiplier (β) is the solu-
tion of the effective-EE constraint to be satisfied at equality.

Proof: We prove the lemma by contradictory.
Let us define ν = 1

β . Now, we assume that at optimal ν∗

maximum EC can be achieved while the effective-EE constraint
at ν∗ is satisfied with strict inequality. We start by referring
to the fact that the effective-EE is a continuous function of
ν. Therefore, for a small value of Δν > 0 ∈ R, the effective-
EE constraint still holds at ν∗ +Δν. On the other hand, we
note that EC(θ) is a monotonically increasing function of ν
since at each γ the power Pr(γ) is a monotonically increasing
function of ν. In other words, EC(θ)|ν=ν∗+Δν > EC(θ)|ν=ν∗ .
Henceforth, ν∗ does not correspond to the maximum EC, which
contradicts the assumption. Hence, we conclude the proof for
the lemma. �

Therefore, optimal value for β (referred to as β∗) is found
such that the constraint (10b) is satisfied with equality. Now,
by replacing P ∗

r (γ) from (13) into (10b) and changing the
inequality operation with equality, we get

− 1

θTf
ln

⎛
⎜⎝Eγ

⎡
⎢⎣
⎛
⎝1 +

[
(γξ(θ))

1
1+ξ(θ)

β∗
1

1+ξ(θ)

− 1

]+⎞⎠
−ξ(θ)

⎤
⎥⎦
⎞
⎟⎠

− ηmin(θ)

⎛
⎝K�

⎛
⎝Pcr+

1

ε
Eγ

[
ξ(θ)

1
1+ξ(θ)

β∗
1

1+ξ(θ) γ
ξ(θ)

1+ξ(θ)

− 1

γ

]+⎞⎠
⎞
⎠

= 0. (14)

The closed-form expressions for the expectation operations in
(14) can be obtained by using the results of [30]. When the
expectations are replaced with the closed-form expressions, the
optimal value for β, i.e., β∗, can be solved from (14) using
root-finding functions, e.g., fzero in Matlab. Once β∗ is found,
the optimum power allocation to solve (10a) is P ∗

t (γ) = K� ×
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P ∗
r (γ)|β=β∗ , where P ∗

r (γ) is given in (13). Hence, concluding
the solution for (10a).

We now define the optimum average input power level, P ∗
t ,

which is related to P ∗
r (γ) through

P ∗
t = K� × Eγ [P

∗
r (γ)]

∣∣
β=β∗ . (15)

The EC-gain-rate(αEE) can hence be found as

αEC =
ECopt(θ)

ECηmax
(θ)

(16)

=
ηmin(θ) (Pc + P ∗

t /ε)

ηmax(θ)
(
Pc + P ∗

ηmax
/ε
) , (17)

where P ∗
ηmax

is the average input power at which the maximum
effective-EE can be achieved. Using (8), the EC-gain-rate can
further be simplified to

αEC = αEE × Pc + P ∗
t /ε

Pc + P ∗
ηmax

/ε
. (18)

B. Optimal Power Allocation With Input Power Constraint

In this subsection, we aim to solve the optimization problem
(6a)–(6c) using the results of Section III-A. We start by re-
formulating the optimization problem (6a)–(6c) in terms of
Pr(γ), yielding

ECopt(θ) = max
Pr(γ)≥0

− 1

θTf
ln
(
Eγ

[
(1 + Pr(γ)γ)

−ξ(θ)
])

(19a)

subject to :
− 1

θTf
ln
(
Eγ

[
(1 + Pr(γ)γ)

−ξ(θ)
])

K�

(
Pcr +

1
εEγ [Pr(γ)]

) ≥ ηmin(θ)

(19b)

Eγ [Pr(γ)] ≤
Pmax

K�
, (19c)

Using results in (13) to (15), the power-constrained EC-
maximization problem with joint effective-EE and input power
constraints reduces to an EC-maximization problem with two
input power constraints with the power limits set at P ∗

t and
Pmax. Let us define the optimal operating power to solve (19a)
as P ∗

con. Then, P ∗
con can be found as

P ∗
con =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P ∗
t when Pmax ≥ P ∗

t

Pmax when Pmax < P ∗
t

and η(θ)|Eγ [Pt(γ)]=Pmax
≥ ηmin

Not feasible when Pmax < P ∗
t

and η(θ)|Eγ [Pt(γ)]=Pmax
< ηmin.

(20)

In other words, when Pmax is very small such that for any input
power smaller than Pmax, ηmin cannot be achieved, the problem
is not feasible. Otherwise, the optimum average transmission
power is equal to min(P ∗

t , Pmax). Therefore, the optimal power
allocation to solve (6a)–(6c) is according to (13), wherein,
optimal β(β∗) is found such that K�Eγ [Pr(γ)]|β=β∗ = P ∗

con.

To summarize, the Pseudocode of the optimal power alloca-
tion process to solve (6a)–(6c) is illustrated as

Initializations:
Pmax: The input power limit.
αEE: The ratio between the required effective-EE level and

the maximum achievable effective-EE of the channel.
Pc: The circuit power.
ε: The power amplifier efficiency.
K� = PLσ

2
n: The pathloss and noise factor.

Tf : The fading block duration.
m: The Nakagami fading parameter.

Step 1:
Find the maximum achievable effective-EE of the chan-

nel: ηmax.
Calculate ηmin = αEEηmax.
Create (14), using closed-form expressions given in [27].
Using root-finding functions, e.g., fzero in Matlab, find β∗

that solves (14).
Calculate P ∗

t = K�Eγ [Pr(γ)]|β=β∗ , where Pr(γ) is given
in (13).

Step 2:
If Pmax ≤ P ∗

t and the achievable effective-EE at Pmax is less
than ηmin:

Problem is not feasible. Terminate calculations.
If Pmax ≤ P ∗

t , and the achievable effective-EE at Pmax is
larger than or equal to ηmin:

Create Eγ [Pr(γ)] =
Pmax

K�
, where Pr(γ) is given in (13).

Update β∗ to solve the above equation.
Step 3: Calculate outputs

Calculate EC(θ) given in (2) by using power allocation
provided in (13) and calculated β∗.

Calculate effective-EE, using (5).

C. Effect of Pc on the Effective-EE and EC Tradeoff

In this subsection, we aim to investigate the effect of the
circuit power on the tradeoff between the effective-EE and EC.
Specifically, we investigate the maximum achievable EC of two
systems with different circuit power values, when the system
requirements in terms of the target delay-outage probability and
effective-EE limit are un-changed. In doing so, we study two
different cases.

In Case 1, we assume that the required effective-EE level
is fixed and does not depend on the maximum achievable
effective-EE of the channel, i.e., ηmax. In this case, using the
fact that effective-EE is a strictly quasi-concave function of the
transmission power, and a monotonically decreasing function of
the circuit power, a certain effective-EE level can be achieved
at a higher transmission power in a system with a lower circuit
power value. Henceforth, a higher EC can be achieved.

In Case 2, the required effective-EE is assumed to be a
certain percentage of the maximum achievable effective-EE of
the channel. Assume Pc,1 and Pc,2 represent the circuit power
of two systems under consideration with Pc,1 ≤ Pc,2. We note
that ηmax,1 ≥ ηmax,2, with ηmax,1 and ηmax,2 representing the
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maximum achievable effective-EE of the systems with Pc,1 and
Pc,2, respectively. The effective-EE of the two systems at an
input power Eγ [Pt(γ)] = P1 can be now formulated as

η1 =
EC1

Pc,1 +
P1

ε

, (21)

η2 =
EC1

Pc,2 +
P1

ε

, (22)

where EC1 = EC|Eγ [Pt(γ)]=P1
, and η1 and η2 are the achievable

effective-EE of systems with Pc,1 and Pc,2 at Eγ [Pt(γ)] =
P1, respectively. We now define αEE,1 = η1

ηmax,1
and αEE,2 =

η2

ηmax,2
. We further define

R =
αEE,1

αEE,2
(23)

=
ηmax,2

(
Pc,2 +

P1

ε

)
ηmax,1

(
Pc,1 +

P1

ε

) (24)

Now, by taking the derivative of the right-hand-side (RHS)
of (24) with respect to the transmission power P1, we note
that the RHS of (24) is a monotonically decreasing function
of P1. Henceforth, R is a monotonically decreasing function
of P1. Now, we refer to the fact that the maximum effective-
EE is achieved at a lower input transmit power in a system
with a lower circuit power [27]. In other words, if P ∗

2 is the
input power at which ηmax,2 can be achieved, then ηmax,1 is
achieved at a power lower than P ∗

2 . Therefore, at Eγ [Pt(γ)] =
P ∗
2 , αEE,1 < 1 and αEE,2 = 1, hence at this point, R ≤ 1. We

can now conclude that

αEE,1 ≤ αEE,2, ∀ Eγ [Pt(γ)] ≥ P ∗
2 . (25)

Therefore, when the required effective-EE level is set as a cer-
tain ratio of the maximum achievable effective-EE of the chan-
nel, a system with lower circuit power achieves the effective-EE
limit at a lower transmission power. Henceforth, a lower EC can
be achieved at this case.

D. Effective-EE and EC Tradeoff When θ → ∞ (Representing
Extremely Stringent Delay Requirement)

Here, we consider a system with extremely stringent delay
requirement. In this case, EC equals the zero-outage capacity,
and the optimum transmission strategy is to maintain a constant
received-SNR, δ, or a constant rate [30]. Therefore, the opti-
mum power allocation is the channel inversion with fixed rate
(cifr) transmission technique [30]

Pr(γ) =
δ

γ
.

Therefore, the EC-maximization problem considered in this
paper simplifies to

ECopt(θ)|θ→∞ = max
δ≥0

ln(1 + δ) (26)

subject to : ηcifr(δ)

=
ln(1 + δ)

K�

(
Pcr +

1
ε δEγ

[
1
γ

]) ≥ ηmin(θ)

∣∣∣∣∣∣
θ→∞

. (27)

Hereafter, for the ease of notation, we use ηmin(∞) =
ηmin(θ)|θ→∞.

For Nakagami-m channels,

Eγ

[
1

γ

]
=

{
m

m−1 , m > 1,
∞, m ≤ 1,

which means that the achievable effective-EE with cifr trans-
mission policy in Nakagami fading channels with m ≤ 1 is
zero. Note that when m > 1, Eγ [

1
γ ] decreases with m.

Since at the optimal point for (26), the constraint (27) is
satisfied with equality, we simplify the constraint according to

m

m− 1
=

ln(1 + δ)−K�ηmin(∞)Pcr
K�

ε ηmin(∞)δ
= F (δ). (28)

Now, the first derivative of F (δ) with respect to δ can be
obtained as

F ′(δ) =
∂F (δ)

∂δ
=

δ
1+δ − ln(1 + δ)
K�

ε ηmin(∞)δ2
+

εPcr

δ2
. (29)

We note that nominator of F ′(δ) monotonically deccreases with
δ, whereas its denominator is a non-negative monotonically
increasing function of δ. On the other hand, we note that
F ′(δ)|δ=0 ≥ 0 and F ′(δ)|δ→∞ ≤ 0. Therefore, F ′(δ) changes
sign only once and hence, F (δ) is bell-shape in δ, meaning that
it increases monotonically until it reaches its maximum, and
then it is a monotonically decreasing function of δ.

Now, let us assume that at a certain Nakagami-m parameter,
the condition in (28) is feasible. Therefore, two possible solu-
tions exist. Since the objective function in (26) is to maximize
the achievable rate, and the cifr capacity is monotonically
increasing with δ, hence, the acceptable solution for δ is the
bigger one, which is after F (δ) peak. Therefore, F (δ) is a
decreasing function at this point to infinity. Recall that the left-
hand-side (LHS) of (28) is a decreasing function of m. There-
fore, as m increases, F (δ) decreases, and therefore, δ increases
and as such, the achievable capacity increases. Or in brief, as
Nakagami-m fading parameter increases, the achievable EC
increases.

IV. EFFECTIVE-EE-EC LOSS-GAIN MATCHING

POWER ALLOCATION

The aim of this subsection is to provide a guideline on how
to choose the parameter αEE, bearing in mind its significant
effect on the achievable effective-EE and EC. Recall that, the
effective-EE curve is a monotonically increasing function of
EC (presented in Fig. 1) until it reaches its maximum point.
After this point, the effective-EE monotonically decreases with
the increase of the power and with the increase of the EC.
The slope of effective-EE curve close to the peak effective-
EE value is small. This translates into achieving a big gain in
EC, while losing effective-EE slightly. As the operational point
departs from the maximum effective-EE point, the slope of the
effective-EE curve becomes sharp and henceforth, the gain that
can be achieved in EC, at the cost of losing effective-EE, will
reduce. These observations cannot be directly studied from the
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exact values of the EC and effective-EE themselves, hence, we
study the EC-gain slope versus the effective-EE-loss slope.

Here, we propose to choose the operational power where
the EC-gain-slope matches a scaled effective-EE-loss-slope.
In a system design level, the loss in the effective-EE can be
considered as the extra cost of energy that the system is willing
to pay for increasing its achievable EC. This scaling factor
shows the ratio of the increasing-rate of the cost that the system
has to pay versus the increasing-rate of its achievable EC.

Now, we formulate the optimization problem according
to the effective-EE-EC loss-gain matching method explained
above. Considering a target delay-outage probability, we aim to
propose a power allocation strategy under which the gain-rate in
the achievable EC and the loss-rate in the achievable effective-
EE as a function of the input transmit power matches by a
scaling factor defined by K. Mathematically, the optimization
problem can be expressed as

ECopt(θ) = max
Pr(γ)≥0

− 1

θTf
ln
(
Eγ

[
(1 + Pr(γ)γ)

−ξ(θ)
])

(30a)

subject to : K ∂η(θ)

∂Eγ [Pr(γ)]
+

∂EC(θ)
∂Eγ [Pr(γ)]

= 0. (30b)

We start by studying the constraint (30b) which can be ex-
panded as

∂EC(θ)
∂Eγ [Pr(γ)]

EC(θ)
=

1/ε

Pcr +
1
εEγ [Pr(γ)]

− 1/ε

Pcr +
1
εEγ [Pr(γ)] +

K
K�

,

(31)

where it can further be simplified to

∂ ln (EC(θ))

∂Eγ [Pr(γ)]
=

∂ ln

(
Pcr+

1
εEγ [Pr(γ)]

Pcr+
1
εEγ [Pr(γ)]+

K
K�

)
∂Eγ [Pr(γ)]

. (32)

Assuming P∗

K�
is the solution to (32), the optimization problem

in (30a) simplifies to an EC-maximization problem with an
input power constraint at level P ∗. Henceforth, the optimal
power allocation strategy follows (13). Since the Eγ [Pr(γ)] is a
monotonically increasing function of β, the constraint (32) can
be re-written as

∂ ln (EC(θ))
∂β

=

∂ ln

(
Pcr+

1
εEγ [Pr(γ)]

Pcr+
1
εEγ [Pr(γ)]+

K
K�

)
∂β

. (33)

The optimal solution for β∗ can now be found numerically
from (33).

Now, to obtain the EE-loss-rate αEE that is associated to
a particular K, we insert the equality EC(θ) = η(θ)K�(Pcr +
1
εEγ [Pr(γ)]) into (30b) yielding

∂η(θ)

∂Eγ [Pr(γ)]
K�

(
Pcr +

1

ε
Eγ [Pr(γ)]

)
+K�

η(θ)

ε

= −K ∂η(θ)

∂Eγ [Pr(γ)]
, (34)

Fig. 3. EC versus delay QoS exponent θ for various αEE in Rayleigh fading
channels.

which further simplifies to

∂ ln (η(θ))

∂Eγ [Pr(γ)]
=

−1

ε
(
Pcr +

1
εEγ [Pr(γ)] +

K
K�

) . (35)

Using (8), the EE-loss-rate αEE with respect to K can be
found as

∂ ln (αEE)

∂Eγ [Pr(γ)]
=

−1

ε
(
Pcr +

1
εEγ [Pr(γ)] +

K
K�

) . (36)

In addition, direct relation in between αEE and αEC with
consideration of effective-EE-EC loss-gain matching technique
can be found from

K
(
Pc +

K�

ε
P ∗
max

)
∂αEE

∂Eγ [Pr(γ)]
+

∂αEC

∂Eγ [Pr(γ)]
= 0. (37)

V. NUMERICAL RESULTS

In this section, we numerically evaluate the maximum
achievable EC (in b/s/Hz) of fading channels under delay-
outage probability and effective-EE constraints. We further
investigate the effects of the circuit power, the fading-block
duration, and the fading severeness on the maximum achievable
EC and the effective-EE and EC trade-off of the communica-
tions link. In the following figures, the fading-block duration
Tf = 500, the circuit-to-noise power ratio Pcr = 0 dB, and
the Nakagami fading parameter m = 1 (i.e., Rayleigh fading),
unless otherwise indicated.

We start by plotting the normalized EC in b/s/Hz versus
the delay QoS exponent θ for various values of αEE in a
Rayleigh fading channel in Fig. 3. For example, the figure
shows that by reducing the αEE from 100% to 95% (with only
5% loss in effective-EE), considerable gain in the EC can be
achieved at any value of θ. Specifically, with θ ≤ 10−4, the EC
increases from around 0.8 b/s/Hz to around 1.2 b/s/Hz, hence
50% increase in the achievable EC is observed compared to 5%
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Fig. 4. αEC in percentage versus αEE in percentage for various delay
exponent values θ in Rayleigh fading channels.

loss in effective-EE. Moreover, it is shown that when αEE is
further reduced, the curves get closer to each other and the gain
in EC in between the two consecutive cases of different αEE

reduces.
To observe in a clear picture the variations in αEC as a

function of αEE, Fig. 4 includes the plots for the αEC in
percentage versus the αEE in percentage for various delay QoS
exponent values. The figure shows that αEC monotonically
increases with the decrease of αEE. We can also see that a
tiny reduction in effective-EE around its maximum (i.e., when
αEE is very close to 100%) generates a significant gain in EC
(i.e., αEC increasing rapidly). When αEE is further reduced
(say less than 98%), the increasing speed of EC gain over
effective-EE loss (αEC vs. reduction of αEE) becomes slower.
Furthermore, higher EC gain is observed in systems with tighter
delay constraints (i.e., with larger value of θ) than those with
loose delay constraints. These observations match the findings
obtained from Fig. 3.

In Fig. 5, two systems with different circuit power values are
considered and the plots for αEC (Fig. 5(a)) and the maximum
achievable EC (Fig. 5(b)) with various delay requirements are
provided. The figures show that in comparison between two
systems with different Pcrs, a system with a higher circuit
power achieves less gain in αEC. On the other hand, higher
EC can be achieved in a system with a larger Pc. The latter
finding confirms the derivations in Section III-C, Case 2. The
gap in between the two curves for the αEC with different
circuit power is more pronounced when the delay requirement
becomes tighter, i.e., higher θ.

Fig. 6 includes the plots for the delay-outage probability
limit, P out

delay, versus the delay exponent, θ, for various αEE

with the maximum tolerable delay threshold Dmax = 500. Two
different channel fading types, i.e., Rayleigh (solid lines) and
Rician (dashed lines), are considered in this figure which shows
that the delay-outage probability is smaller in Rician fading
channels compared to Rayleigh fading channels. For a target
P out
delay, the corresponding value for θ found from Fig. 6 for

Rayleigh fading channel curves can be used in Fig. 3 to obtain

Fig. 5. αEC (in percentage) and maximum achievable EC versus αEE (in
percentage) for various circuit power levels and delay exponent values in
Rayleigh fading channels.

Fig. 6. Achievable delay-outage probability versus θ for various αEE in
Rayleigh (solid lines) and Rician (dashed lines) fading channels.

the EC of the system. For example, for the target delay-outage
probability of 0.1% and αEE = 90%, the delay exponent is
θ = 0.04 (see Fig. 6), and the corresponding achieved EC is
0.35 b/s/Hz (see Fig. 3). The figure further reveals that reducing
αEE reduces the achieved delay-outage probability signifi-
cantly. For example, in Rayleigh fading channel with θ = 0.1,
decreasing αEE from 100% to 95%, reduces P out

delay by more
than 10 times.

We further plot the achieved delay-outage probability versus
αEE for various values of θ in Rayleigh fading channels with
maximum tolerable delay threshold Dmax = 500 in Fig. 7. The
figure shows that for loose delay-constrained systems (e.g.,
θ = 10−4) reducing αEE does not affect the achieved delay-
outage probability. On the other hand, when delay constraint
becomes tighter (e.g., θ = 0.1), delay-outage probability in-
creases sharply with αEE. This indicates the pronounced trade-
off between the achieved effective-EE and delay-constrained
system performance.
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Fig. 7. Achievable delay-outage probability versus αEE for various θ values
with fading-block duration, Tf = 500, Dmax = 500.

Fig. 8. αEC in percentage versus delay QoS exponent θ for various
Nakagami-m fading parameters m.

We study the effects of different types of mobile fading
channels on the EC-gain of delay-outage constrained systems
by presenting plots for αEC versus the delay QoS exponent for
various values of Nakagami-m fading parameter in Fig. 8. The
value for αEE is set to 90% for the plots included in this figure.
The figure shows that for Rayleigh (m = 1) and Rician (m =
1.8) fading channels the EC-gain increases when θ increases,
or equivalently, when delay constraint becomes tighter. The
behavior of the curve with m = 0.5 (i.e. very severe fading
channel) is, however, the opposite. To understand the results
behind this behavior, we plot the EC of these three different
fading channels versus the input power for two different values
of θ in Fig. 9. The figure shows that in Rician or Rayleigh fading
channels, the EC increases with almost the same, or similar
slope for θ = 0.001 and θ = 0.1 cases. In the Nakagami-m
fading channel with m = 0.5, however, the EC increases with
a much slower slope when θ = 0.1 compared to the case when
θ = 0.001. In other words, in this case (m = 0.5), when delay
constraint is tight, the EC increases slowly with input power,

Fig. 9. EC versus input power limit in dB for various delay exponent θ and
Nakagami-m fading parameter m.

Fig. 10. EC versus delay QoS exponent θ for various K in Rayleigh fading
channels.

hence increasing αEE, or equivalently, increasing the operating
transmit power, results in a small gain in EC and hence samll
αEC. Hence, the choice for αEE, not only depends on the delay
requirement, but also on how quickly the EC increases with the
transmit power.

In Fig. 10–Fig. 12, we study the EC, the effective-EE, and the
EE-loss-rate of a Rayleigh fading channel when the choice of
αEE is chosen based on the slopes of the EC and effective-EE
curves versus power. In particular, the plots for the achievable
EC and effective-EE versus θ when the slopes match at different
factors, i.e., K in (30b), are considered in Fig. 10 and Fig. 11,
respectively. The figures show that increasing K reduces the
achievable EC, while increasing the achievable effective-EE.
Note that in this figure, the operational point is found such that
(according to (30b)) the gain-rate in the EC (i.e., the slope of
the EC versus power) is K times larger than the loss-rate in the
effective-EE. Further recall that the slope of the effective-EE
curve is small around its maximum value (ηmax) and it becomes
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Fig. 11. Achievable effective-EE versus delay QoS exponent θ for various K
in Rayleigh fading channels.

Fig. 12. Effective-EE-loss-rateαEE versus delay QoS exponent θ for various
K in Rayleigh fading channels.

larger as power increases. Henceforth, decreasing K will push
the operational point away from the peak effective-EE point,
and as such achieving higher EC. On the other hand, the values
for the corresponding αEE to different K values matching the
effective-EE-EC loss-gain can be read from Fig. 12. The figure
shows that with K = 10, αEE is close to 100%, meaning that
the operational effective-EE constraint limit is close to the
maximum achievable effective-EE. On the other hand, when K
reduces to 5, αEE decreases significantly.

Finally, in Fig. 13, we consider a system with extremely
stringent delay requirement (θ → ∞) and plot the maximum
achievable EC versus the Nakagami fading parameter m for
various values of circuit power and effective-EE constraint
limit, ηmin. The figure shows that EC increases with m which
confirms the derivations of Section III-D. Further, the figure
shows that when ηmin is chosen as a fixed value, EC decreases
with the circuit power, which confirms the results provided in
Section III-C, Case 1.

Fig. 13. Achievable EC versus Nakagami fading parameter m for various
circuit power values (Pc) and effective-EE constraint levels (ηmin) when θ
approaches infinity.

VI. CONCLUSION

We proposed an effective-EE-constrained rate-optimal power
allocation technique for Nakagami-m flat-fading channels
under delay-outage probability constraints when taking into
account non-zero circuit power consumption during signal
transmission. At any target delay-outage probability, we first
obtained the maximum achievable effective-EE of the channel.
The required effective-EE limit of the channel is set at a cer-
tain percentage of the maximum achievable effective-EE. We
showed that the maximum EC can be achieved at the average
input power level (P ∗

t ) at which the effective-EE constraint is
satisfied at equality. When an input power constraint is present,
the power should be distributed optimally over time based on
the minimum of P ∗

t and the maximum transmit power limit.
We then prove that when the required effective-EE level is set
as a certain ratio of ηmax, a system with lower Pc achieves less
EC. We further investigate the effect of Nakagmai-m fading
parameter on the achievable EC of a system with extremely
stringent delay requirement. To set a guideline on how to
choose the value of the required effective-EE, we proposed an
effective-EE-loss EC-gain rate matching approach. In detail,
we obtained the operating power at which the gain-rate in the
achievable EC is equal to a scaled loss-rate of the effective-EE.
The numerical results showed that in stringent delay-limited
systems, the effective-EE and EC tradeoff is more pronounced
compared to loose delay-constrained systems in the sense that
reducing the required effective-EE threshold, increases EC
significantly.
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