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Abstract—A joint optimization problem of link-layer energy
efficiency (EE) and effective capacity (EC) in a Nakagami-m fad-
ing channel under a delay-outage probability constraint and an
average transmit power constraint is considered and investigated
in this paper. First, a normalized multi-objective optimization
problem (MOP) is formulated and transformed into a single-
objective optimization problem (SOP), by applying the weighted
sum method. The formulated SOP is then proved to be contin-
uously differentiable and strictly quasiconvex in the optimum
average input power, which turns out to be a cup shape curve.
Furthermore, the weighted quasiconvex tradeoff problem is solved
by first using Charnes–Cooper transformation and then applying
Karush–Kuhn–Tucker (KKT) conditions. The proposed optimal
power allocation, which includes the optimal strategy for the
link-layer EE-maximization problem and the EC-maximization
problem as extreme cases, is proved to be sufficient for the Pareto
optimal set of the original EE–EC MOP. Moreover, we prove that
the optimum average power level monotonically decreases with
the importance weight, but strictly increases with the normaliza-
tion factor, the circuit power and the power amplifier efficiency.
Simulation results confirm the analytical derivations and further
show the effects of fading severeness and transmission power limit
on the tradeoff performance.

Index Terms—Quality-of-service, delay-outage probability con-
straint, effective capacity, energy efficiency, multi-objective opti-
mization problem, weighted sum method.

I. INTRODUCTION

W IRELESS communication sector is the fastest grow-
ing segment of the communications industry [1].

According to International Telecommunication Union, the
number of mobile subscriptions worldwide is approaching
the number of people on the earth [2]. In addition, many new
wireless applications, such as autonomous driving, smart cities,
smart homes and appliances have emerged from research ideas
to concrete systems [3]. The explosive growth of wireless
communication applications coupled with the proliferation of
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mobile devices has dramatically speeded up the progress of
wireless networks, which results in a higher-quality human
life and rapid economic growth. Meanwhile, many technical
challenges still remain unsolved in wireless network designs,
e.g., the need for reducing energy consumption and end-to-end
latency [3].

According to [4], for every 1 TeraWatt hour (TWh) energy
consumption, the information and communication technology
(ICT) sector is responsible for approximately 0.75 million tons
of CO2 gas emissions. If no action is taken, the overall costs
and risks of climate change, as a result of the increasing green
house gases (GHG) emissions, will be equivalent to losing
at least 5% of global gross domestic product (GDP) every
year [5]. Nevertheless, it is also well known that ICT indus-
try has the potential to reduce more than 23% of its current
GHG emissions [5]. Interestingly, if one-third of the GHG
emissions is reduced, the generated economical benefit will
be higher than the required investment [6]. As an important
part of ICT, wireless communication sector needs to take the
responsibility to save more energy. Green communication tech-
nology, which emphasizes energy efficiency (EE) in addition
to spectral efficiency (SE), has thereby been proposed as an
effective solution which not only benefits communication tech-
nology sector, but also promotes economic and ecological
sustainability. However, considering the compromise between
network performance and energy savings, designing an effi-
cient resource allocation strategy to limit the network energy
consumption is a real challenge [7]–[9].

In this trend, an energy-efficient optimization problem to
maximize the worst-case link EE was formulated and studied
in [10], under the rate, transmit power, and subcarrier assign-
ment constraints. Price-driven algorithms for joint power and
admission control are proposed to characterize the tradeoff
between the total energy consumption and the system capac-
ity in [11]. EE and SE tradeoff, based on Shannon limit, has
also been extensively studied for different kinds of wireless
communication networks, such as energy-constrained wire-
less multi-hop networks with a single source-destination pair
[12], multi-user downlink orthogonal frequency division mul-
tiple access (OFDMA) networks [13], general narrowband
interference-limited systems [14] and OFDMA-based cooper-
ative cognitive radio networks [15]. The relationship between
EE and SE for downlink multiuser distributed antenna systems
with proportional fairness was investigated in [16]. Specifically,
the EE-maximization problem was first converted into a
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multi-objective optimization problem (MOP), by maximizing
the numerator of EE while minimizing its denominator. Then,
the MOP was transformed into a single-objective optimization
problem (SOP) using weighted sum method, and the optimal
power value was provided by applying Lagrangian method and
sub-gradient iteration approach. Considering imperfect chan-
nel estimation in an orthogonal frequency division multiplexing
(OFDM) network, the inverse of EE and inverse of SE were
combined into a weighted optimization problem in [17]. The
problem was then transformed into a convex problem, namely,
to jointly minimize the total power consumption and maxi-
mize the channel capacity, which was solved using Lagrangian
method.

In the aforementioned studies [12]–[17], Shannon limit was
utilized as the system throughput, which is mostly consid-
ered as the suitable capacity metric for communication systems
with no link-layer delay quality-of-service (QoS) require-
ments. Nevertheless, for delay-sensitive mobile multimedia
applications, such as video conferencing, autonomous driv-
ing and online gaming, provisioning QoS requirements is
critical. Actually, 5G, the next generation of mobile commu-
nication technology, has been anticipated to not only offer
> 1 Gbps downlink data rate, but also sub-1ms end-to-end
latency and 90% reduction in network energy usage [3].
Henceforth, it is important and imperative to investigate EE
and SE based on a link-layer wireless channel model, which
explicitly characterizes the channel in terms of link-layer QoS
metrics [18].

Effective capacity (EC), as a generalized link-level capacity
notion which specifies the maximum arrival rate with a target
delay-outage probability requirement, has recently received a
lot of attention [18]. Specifically, EC, can be regarded as the
link-layer SE while the link-layer EE can be formulated as the
ratio of EC to the total power expenditure. However, just like
the inconsistent property of EE and SE in physical-layer chan-
nel model, the link-layer EE and EC also can be incompatible
[19]. In more details, for a point-to-point communication sys-
tem operating in a flat-fading channel, the EE versus EC curve
is bell shape when non-zero circuit power is considered [20].
Indeed, the link-layer EE and SE experience a much more pro-
nounced tradeoff, compared to the physical-layer EE and SE
[20]–[22]. Therefore, how to allocate system resources to effi-
ciently balance the two conflicting metrics deserves elaborate
study. Towards this direction, considering frequency flat-fading
channels, an optimal power allocation strategy to maximize EC
subject to an EE constraint, for delay-limited mobile multi-
media applications was introduced in [21]. [22] analyzed the
tradeoff between EE and EC by providing the mutually benefi-
cial (MB) region and the contention-based (CB) region. In more
details, the MB region refers to the case when EE and EC can
mutually optimize, whereas in the CB region, the trends of EE
and EC conflict. However, the adjustable tradeoff between EE
and EC, as well as a closed-form power allocation strategy was
not involved in [22]. On the other hand, the EE-EC relationship
was exploited and plotted, by expressing signal-to-noise ratio
(SNR) in terms of SE using a curve fitting method in [23]. We
note that, according to users’ diverse preferences, various appli-
cation types and dynamic surrounding circumstances, a more

flexible and tractable tradeoff function is preferable, which is
not provided in [20]–[23].

In this paper, we consider and investigate a joint maximiza-
tion problem of link-layer EE and EC under an average input
power constraint. Especially, the link-layer EE-EC tradeoff
problem includes the physical-layer EE-SE tradeoff problem,
zero-outage capacity situation, link-layer EE-maximization
problem and link-layer EC-maximization problem, as special
cases. We analyze and discuss all these situations and pro-
vide simulation results to compare the physical-layer and the
link-layer tradeoff performance. For the formulated power-
unconstrained EE-EC tradeoff problem, a closed-form expres-
sion for the power allocation strategy is first derived to pave
the way for the power-constrained problem. Then, we ana-
lyze the link-layer EE-EC tradeoff problem under an input
power constraint and provide the Pseudocode of the opti-
mal power allocation algorithm in Table I. In order to obtain
more insight, we analyze the influence of different system
parameters, such as the importance weight, normalization fac-
tor, circuit power, power amplifier efficiency and the fading
parameter.

In more details, this paper has the following contributions:
• A generalized link-layer EE-EC MOP in a Nakagami-m

fading channel under a delay-outage probability con-
straint and an average transmit power constraint is
transformed into an SOP using weighted sum method.
Especially, we introduce two normalization values to bal-
ance the different measurements and orders of magnitude
of EE and EC.

• We prove that the unconstrained EE-EC tradeoff formu-
lation is continuously differentiable, strictly quasiconvex
in the average power and follows a cup shape curve.
Henceforth, the global optimum is unique and can be
achieved at a finite value.

• By using the Charnes-Cooper transformation and KKT
conditions, the optimum power allocation scheme for the
power-unconstrained link-layer EE-EC tradeoff problem
is derived, and is proved to be sufficient for the Pareto
optimal set of the original EE-EC MOP. For the power-
constrained tradeoff problem, an optimal power allocation
algorithm is provided in Table I.

• We prove that the average optimal power level monoton-
ically decreases with the importance weight, but strictly
increases with the normalization factor, circuit power and
power amplifier efficiency.

• We finally provide a proper guideline on how to choose
the normalization factor and importance weight to benefit
either link-layer EE or EC.

The remainder of this paper is organized as follows. In
Section II, the system model and a general tradeoff prob-
lem formulation are provided. The theory of link-layer EC
and EE is introduced in Section III. In Section IV, the opti-
mal power allocation strategy is derived and analyzed. The
effects of importance weight, normalization factor, circuit
power, and power amplifier efficiency on the average power
level are further investigated in this section. Finally, numeri-
cal results are given in Section V, followed by conclusions in
Section VI.
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Fig. 1. System model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A point-to-point wireless communication link over a
Nakagami-m flat-fading channel is considered in this paper.
Different from the physical-layer channel model which has
limitations in QoS support, the link-layer model depicted in
Fig 1(a) captures a generalized link-level capacity notion of
the fading channel, under a delay QoS requirement [18], [24].
Firstly, the upper-layer packets are divided into frames at the
data-link layer. Then, the source traffic and the network ser-
vice are matched using a first-in-first-out (FIFO) buffer, which
prevents loss of packets that could occur when the source rate
is higher than the service rate, at the expense of increasing
the delay [18]. At the physical layer, the frames stored at the
buffer are split into bit streams. Adaptive coding and power
allocation strategy are applied at the transmitter [25], using the
channel-state information (CSI) fed back from the receiver, and
the predetermined delay QoS requirement. The bit streams are
read out of the FIFO buffer and transmitted through the wireless
fading channel. Finally, the reverse operations are performed at
the receiver and the frames are recovered for further processing.

We assume that the wireless channel is block fading, i.e.,
the channel gain is invariant during each fading-block, but
independently varies from one fading-block to another. The
length of each fading-block, denoted by Tf, is assumed to be
an integer multiple of the symbol duration Ts. Ideal Nyquist
transmission symbol rate is also assumed to be satisfied, which

means that the symbol duration Ts = 1

B
, where B is the sys-

tem bandwidth. In addition, the service rate process, {R[t], t =
1, 2, . . . }, using adaptive transmission is considered to be sta-
tionary and ergodic [24]. The instantaneous service rate, in
b/s/Hz, at the t th fading-block is given by

R [t] = log2

(
1 + Pt[t]

γ [t]

PLσ 2
n

)
, (1)

where Pt[t] denotes the transmission power, PL shows the
distance-based path-loss, σ 2

n indicates the noise power and γ [t]
represents the normalized channel power gain of the consid-
ered unit-variance Nakagami-m block fading channel with the
probability density function (PDF)1 [26]

fγ (γ ) = mmγ m−1

�(m)
e−mγ ,

where �(z) =
∫ ∞

0
wz−1e−wdw is the Gamma function [27].

To be specific, the Nakagami-m fading distribution is param-
eterized by the fading parameter m [1]. For m = 1, the distri-

bution matches Rayleigh fading, whereas, for m = (K + 1)2

(2K + 1)
,

the distribution is approximately Rician fading with parame-
ter K [1]. The case of m → ∞ describes the Additive White
Gaussian Noise (AWGN) channels [1].

B. Problem Formulation

Since EE and SE have to be simultaneously optimized over
a feasible set determined by constraint functions [28], how to
balance them falls into the scope of an MOP. To get rid of
the different measurements and orders of magnitude of EE
and SE, we normalize them with two normalization values,
�EE and �SE, respectively. The normalized MOP is, hence,
formulated as:

Q1 : max
EE

�EE
and max

SE

�SE
(2a)

subject to: P t ≤ Pmax, (2b)

where P t = E[Pt[t]] indicates the expectation of the transmis-
sion power and Pmax denotes the average input power limit.
�EE and �SE are assumed to be the EE and SE values achieved
at the same normalization factor, defined by Pnorm. In more
details, �EE = EE|Pt=Pnorm

and �SE = SE|Pt=Pnorm
.

Since EE is generally defined as the ratio of SE to the total
power expenditure, the inverse of the two functions in problem
Q1 can be minimized to make SE as the common denominator,
yielding

Q2 : min
�EE

EE
and min

�SE

SE
(3a)

subject to: P t ≤ Pmax. (3b)

Lemma 1: The MOP, Q2, is equivalent to the MOP Q1.

Proof: The proof is provided in Appendix A. �
For an MOP, instead of having a single global solution, a

set of points which all fit Pareto optimality is provided. To
be specific, Pareto optimal sets are solutions that cannot be
improved in one objective function without deteriorating the
performance in at least one of the rest of objective functions.
Lemma 1 implies that if a point is Pareto optimal for problem
Q2, it also belongs to the Pareto optimal set for problem Q1,
and vice-versa.

1The block index t is omitted for simplicity.
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In order to solve the MOP Q2 and to achieve the Pareto
optimal solutions, one general way is to convert the MOP into
an SOP, using weighted sum method [29], [30]. As such, the
optimization problem Q2 can be transformed into:

Q3 : min w1
�EE

EE
+ (1 − w1)

�SE

SE
(4a)

subject to: P t ≤ Pmax, (4b)

where w1 ∈ [0, 1] is the importance weight. Specifically,
w1 and 1 − w1 represent the relative importance of the two
objective functions, EE and SE, respectively. When w1 = 0,
the tradeoff problem reduces to an SE-maximization prob-
lem, while when w1 = 1, the MOP is simplified into an EE-
maximization problem. In other words, the importance of EE
gradually grows as w1 increases from 0 to 1.

In order to guarantee the Pareto optimal solutions for prob-
lem Q2, we demonstrate the following theorem which describes
the relationship between the weighted sum optimal point and
Pareto optimal solutions of the MOP Q2.

Theorem 1: The unique optimal solution P̂ of the weighted

optimization problem, min
q∑

i=1
wi fi (P), P ∈ [0, Pmax], for a

given w = {[wi ]1×q |wi ∈ [0, 1],
q∑

i=1
wi = 1}, is Pareto optimal

for the MOP, min fi (P), i = 1, . . . , q, P ∈ [0, Pmax].

Proof: The proof is provided in Appendix B. �
Implicitly, Lemma 1 and Theorem 1 illustrate that if P̂ is a

unique optimal solution for the weighted optimization problem
Q3, it is Pareto optimal for the original MOP Q1.

III. LINK-LAYER EE-SE TRADEOFF

In this section, the theory of EC and link-layer EE is intro-
duced to incorporate the link-level delay-QoS metrics. The
tradeoff performance is optimized by adaptively distributing
the transmit power over time based on the channel condition
and the system delay requirement. An optimal power allocation
strategy for the power-unconstrained EE-EC tradeoff problem
is first developed and investigated, to pave the way for power-
constrained tradeoff problem. Further, the influence of system
parameters on the tradeoff performance is analyzed.

A. Effective Capacity and Link-layer Energy Efficiency

In wired networks, QoS guarantees have been extensively
researched [18]. The theory of effective bandwidth was pro-
posed to asymptotically model the stochastic behavior of a
source traffic process [18]. To be specific, the effective band-
width is defined as the minimum constant service rate required
by a given arrival process for which the QoS requirement is
fulfilled [18]. Inspired by these studies, the link-layer channel
model can be thought of as the dual of the effective bandwidth
source model. Specifically, the link-layer SE, denoted as EC,
can be defined as the maximum constant arrival rate that a given
service process can support in order to guarantee a certain QoS
request [25].

Assuming that the Gartner-Ellis theorem [31, Pages 34-36]
is satisfied, EC of an independent and identically distributed
(i.i.d.) block fading channel can be expressed as [18]

EC = − 1

θTf B
ln
(
E

[
e−θ BTf R[t]

])
(b/s/Hz) , (5)

where the parameter θ (θ > 0) denotes the exponential decay
rate of the QoS violation probability. A slower decay rate can
be represented by a smaller θ , which indicates that the system
can tolerate a looser QoS guarantee, while a more stringent QoS
requirement is expressed by a larger θ .

We note that, for a dynamic queueing system with station-
ary ergodic arrival and service processes [32], the queue length
Q (t) could be non-zero. Using the large deviation theory,
the queue length process Q (t) converges in distribution to a
steady-state queue length Q (∞) such that

− lim
x→∞

ln (Pr{Q (∞) > x})
x

= θ, (6)

where Pr{a > b} shows the probability that a > b holds. This
definition implies that the probability of the queue length
exceeding a certain threshold x decays exponentially fast as x
increases [33]. Taking the delay experienced by a source packet
arriving at fading-block t , defined by D(t), into consideration,
the probability that the delay exceeds a maximum delay bound
Dmax, can be estimated as [18]

Pout
delay = Pr{D(t) > Dmax} ≈ Pr{Q(t) > 0}e−θμDmax , (7)

where Pout
delay presents the delay-outage probability, Dmax is in

the unit of a symbol period, Pr{Q(t) > 0} denotes the prob-
ability of a non-empty buffer at fading-block t , and can be
approximated by the ratio of the constant arrival rate to the

average service rate [25], [32], i.e., Pr{Q(t) > 0} ≈ μ

E[R[t]]
.

Therefore, in order to meet a target delay-bound violation prob-
ability limit, Pout

delay, a source needs to limit its data rate to the
maximum of μ, where μ is the solution to (7).

Finally, the link-layer EE for a delay-limited system can be
defined as the ratio of EC to the sum of the circuit power Pc, and
the average transmission power scaled by the power amplifier
efficiency ε, yielding

EE = EC

Pc + 1

ε
P t

, 0 ≤ ε ≤ 1. (8)

B. Optimal Power Allocation

Using (4a)–(4b) and (8), the link-layer EE-EC tradeoff prob-
lem can be expressed as

Q5 : min w1

�EE

(
Pc + 1

ε
P t

)
EC

+ (1 − w1)
�EC

EC
(9a)

subject to: P t ≤ Pmax, (9b)

where �EC is the normalization value for EC, which is defined
as the EC value achieved at the normalization factor, Pnorm, e.g.,
�EC = EC|Pt=Pnorm

.
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Replacing EC in (9a) with (1) and (5), the EE-EC tradeoff
problem can be transformed into

Q6 : min
Pr≥0

w1�EE K�

(
Pcr + 1

ε
Pr

)
+ (1 − w1)�EC

− 1

θTf B
ln
(
Eγ

[
(1 + Prγ )−α(θ)

]) (10a)

subject to: Pr ≤ Pmax

K�

, (10b)

where Eγ [·] indicates the expectation over the PDF of γ . The

scaled transmission power, Pr = Pt

K�

is the optimization vari-

able in (10a), which can be any nonnegative real value, i.e.,
Pr ≥ 0. In addition, since the fading coefficient is uncountable,
the optimization variable, which is adapted to the fading coef-

ficient, also forms an uncountable set. Pr = P t

K�

denotes the

scaled average input power, Pcr = Pc

K�

represents the circuit-

to-noise power ratio, K� = PLσ 2
n , and α(θ) = θTf B

ln 2
. After

deleting the negative constant, − 1

θTf B
, the minimization prob-

lem (10a) reduces to a maximization problem. Then, by invert-
ing the objective function, it can be converted back into a
minimization problem, yielding2

Q7 : min
Pr≥0

ln
(
Eγ

[
(1 + Prγ )−α(θ)

])
w1�EEr

(
Pcr + 1

ε
Pr

)
+ (1 − w1)�EC

(11a)

subject to: Pr ≤ Pmax

K�

, (11b)

where �EEr = �EE K�.
1) Optimum Power Allocation With No Input Power

Constraint: In this section, the unconstrained SOP is tackled
to pave the way for the optimal power allocation strategy of
the power-constrained SOP. Hence, we start by investigating the
properties of the case with a predetermined importance weight
w1, which are summarized in the following theorem.

Theorem 2: For a predetermined importance weight, the
objective function U7 in the tradeoff formulation Q7 has the
following properties:

1) U7 is continuously differentiable and strictly quasiconvex
in Pr,

2) U7 first decreases and then increases with Pr, which
turns out to be a cup shape curve,

3)

U7′

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> 0 if U7 <
ε

w1�EEr

f (Pr)
′

= 0 if U7 = ε

w1�EEr

f (Pr)
′,

< 0 if U7 >
ε

w1�EEr

f (Pr)
′

2The objective function in problem Q7 is similar to equation (4) developed
in [24]. The difference is the second addend and the introduced adjustable
parameters in the denominator of (11a).

where f (Pr) = ln
(
Eγ

[
(1 + Prγ )−α(θ)

])
, U7′ = dU7

dPr
, and

f (Pr)
′ = d f (Pr)

dPr
.

Proof: The proof is provided in Appendix C. �
In Theorem 2, Property 1) reveals the differentiability of

(11a) and guarantees the existence and uniqueness of the
global minimum, for a predetermined weight value. Property
2) indicates that the global optimum is always achieved at
a finite power value. From Property 2) and Property 3), we
notice that when Pr → 0, U7′ < 0, which means now U7 >

ε

w1�EEr

f (Pr)
′. With Pr increasing, U7 gradually declines until

it equals to
ε

w1�EEr

f (Pr)
′. After that point, U7 starts to

increase with Pr. Basically, Property 3) connects the sign of the
first derivative with the relative size of U7 and the scaled first
derivative of f (Pr).

Further, we provide Lemma 2 to solve problem Q7.

Lemma 2: A ratio problem (P) : min
x∈S

f (x)

g(x)
, where f is

convex and g is affine and positive, f, g : S → R, S ⊆ Rn , can
be transformed into a convex program

(P ′) : min
y/φ∈S

φ f (y/φ)

subject to: φg(y/φ) = 1,

by using the Charnes-Cooper transformation [34] y =
1

g(x)
x, φ = 1

g(x)
, where φ > 0.

Proof: The proof is provided in Appendix D. �
According to Lemma 2, the minimization problem (11a)–

(11b) reduces to the following equivalent problem Q8, by
applying the Charnes-Cooper transformation and one further
step of substitution3.

Q8 : min
Pr≥0

φ ln
(
Eγ

[
(1 + Prγ )−α(θ)

])
(12a)

subject to: φ

(
w1�EEr

(
Pcr + 1

ε
Pr

)

+ (1 − w1)�EC

)
= 1. (12b)

We note that problem Q8 is not jointly convex in Pr and φ.
But, by regarding φ as a parameter, problem Q8 becomes a
convex program in Pr, since the objective function is convex
[24] and the constraint is an affine function in Pr. The KKT
conditions are, hence, sufficient and necessary for the optimal
solution. Set λ ∈ R+,R+ ≡ [0,∞] as the Lagrange multiplier,
the Lagrangian function can be expressed as

L (Pr, λ) = φ ln
(
Eγ

[
(1 + Prγ )−α(θ)

])
+ λ

(
φ

(
w1�EEr

(
Pcr + 1

ε
Pr

)
+ (1 − w1)�EC

)
− 1

)
.

3The Charnes-Cooper transformation is first utilized to achieve the convex

program (P ′), then problem Q8 is derived by substituting x = y

φ
in problem

(P ′).
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The KKT condition
∂L(Pr, λ)

∂ Pr
= 0 can be expanded as

α(θ)

∫ ∞

0
(1 + Prγ )−α(θ)−1 γ f (γ )dγ

=λw1�EEr

ε
Eγ

[
(1 + Prγ )−α(θ)

] ∫ ∞

0
f (γ )dγ.

Finally, it can be expressed as

α(θ)γ
(
1 + P∗

r γ
)−α(θ)−1 = λw1�EEr

ε
Eγ

[(
1 + P∗

r γ
)−α(θ)

]
,

(13a)

and the optimum power distribution scheme can be found as

P∗
r =

[
α(θ)

1
1+α(θ)

(w1ν)
1

1+α(θ) γ
α(θ)

1+α(θ)

− 1

γ

]+
, (14)

where ν = λ�EEr

ε
Eγ

[(
1 + P∗

r γ
)−α(θ)

]
is referred to as the

scaled-Lagrangian-multiplier and [x]+ = max{0, x}.
Now the optimal value of φ can be found. Since all unknowns

have been expressed as explicit functions of ν, this reduces to
finding ν∗ from the following equation

∇φL = ln
(
Eγ

[(
1 + P∗

r γ
)−α(θ)

])
+ λ

(
w1�EEr

(
Pcr + 1

ε
P∗

r

)
+ (1 − w1)�EC

)
= 0. (15)

By substituting the power allocation (14) into (15), the optimal
value for ν (referred to as ν∗) can be easily found using the
following equation

�EErEγ

⎡
⎢⎣
⎛
⎝1 +

[
(γ α(θ))

1
1+α(θ)

(w1ν∗)
1

1+α(θ)

− 1

]+⎞⎠
−α(θ)

⎤
⎥⎦

× ln

⎛
⎜⎝Eγ

⎡
⎢⎣
⎛
⎝1 +

[
(γ α(θ))

1
1+α(θ)

(w1ν∗)
1

1+α(θ)

− 1

]+⎞⎠
−α(θ)

⎤
⎥⎦
⎞
⎟⎠+ εν∗

×
(

w1�EEr

(
Pcr + 1

ε
Eγ

[
α(θ)

1
1+α(θ)

(w1ν∗)
1

1+α(θ) γ
α(θ)

1+α(θ)

− 1

γ

]+)

+ (1 − w1) �EC

)
= 0. (16)

For the Nakagami-m fading channel, the expectations in (16)
can be calculated by (18a) and (18b), as shown at the bot-

tom of the next page, wherein �(a, x) =
∫ ∞

x
za−1e−z dz is the

upper incomplete gamma function and E1(x) =
∫ ∞

x

e−z

z
dz

indicates the exponential integral [27]4. After replacing expec-
tations with the closed-form expressions, the optimal value for
ν, i.e., ν∗, can be solved from (16) using root-finding functions,

4It is assumed that the path of integration excludes the origin and does not
cross the negative real axis [27].

e.g., fzero in Matlab. The optimal operating input power level
P∗

t can then be found by inserting ν∗ into 18a, namely

P∗
t = K� × P∗

r |ν=ν∗ . (17)

Since the channel is assumed to be stationary and ergodic,
henceforth, its average will not be affected by the shift in the
time origin. Also, the pointwise mapping between Pr and γ is
fixed for each fading realization and is determined by the power
allocation policy that depends on Pr.

The above equations conclude the power-unconstrained EE-
EC tradeoff solution. Now we provide the following analysis
to pave the way for power-constrained EE-EC tradeoff prob-
lem, that is presented in next Section. Let us assume the optimal
average power P∗

t which solves the power-unconstrained trade-
off problem is found. Then, the power-unconstrained EE-EC
tradeoff problem simplifies into an EC-maximization problem
with an input power constraint, yielding

max
Pr≥0

− 1

θTf B
ln
(
Eγ

[
(1 + Prγ )−α(θ)

])
(19a)

subject to : Pr ≤ P∗
t

K�

. (19b)

2) Optimal Power Allocation Under Average Input Power
Constraint: In this section, we aim to solve the optimization
problem (11a)–(11b) using the results of Subsection III-B1.
After the unique optimum average power value P∗

t for the
power-unconstrained problem is calculated, we need to com-
pare P∗

t and the input average power limit Pmax. If P∗
t ≤ Pmax,

it means that now the system has enough power to support the
optimal tradeoff performance in Subsection III-B1. Otherwise,
P∗

t ≥ Pmax means that Pmax is too small to support the power
allocation strategy (14)–(18b) and the system has to oper-
ate at Pmax to fulfill the tradeoff requirement. Therefore, the
operational input average power value becomes min(P∗

t , Pmax).
Hence, the power-constrained EE-EC tradeoff problem in

(11a)–(11b) simplifies to an EC-maximization problem with
two input power constraints, yielding

max
Pr≥0

− 1

θTf B
ln
(
Eγ

[
(1 + Prγ )−α(θ)

])
(20a)

subject to: Pr ≤ P∗
t

K�

, (20b)

Pr ≤ Pmax

K�

. (20c)

The optimal power allocation to solve (11a)–(11b) is accord-
ing to (14), wherein, optimal ν∗ is found such that K� Pr|ν=ν∗ =
min(P∗

t , Pmax).
To summarize, the Pseudocode of the optimal power alloca-

tion process to solve (11a)–(11b) is illustrated in Table I.
Furthermore, the optimal power allocation strategy (14)–

(18b) has the following properties:
Properties 1:
1) The proposed optimal solution (14)–(18b) for every given

weight value, is sufficient for the Pareto optimal set of the
original EE-EC MOP Q1.
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2) The proposed optimal solution (14)–(18b) includes the
optimal power allocation strategy for the link-layer EE-
maximization problem (when w1 = 1) and also the one
for EC-maximization problem (when w1 = 0), as extreme
cases.

3) When θ → 0, EC is equivalent to the ergodic capacity.
For the weighted physical-layer EE-SE tradeoff prob-
lem, the optimum power allocation strategy is the tradi-
tional water-filling approach, with the water level to be
chosen so that the maximum tradeoff performance can be
achieved [24].

4) When θ → ∞, EC is equivalent to the zero-outage capac-
ity, and the optimum power allocation strategy is to main-
tain a constant received SNR, at a level that maximizes
the tradeoff performance [35].

In more details, we note that the unique optimal solution of
Q8 with a predetermined importance weight, is sufficient for
the optimal solution of the weighted tradeoff problem Q7 [36]
[37]. Then, by applying Lemma 1, Theorem 1 and Theorem 2,
one can show that the optimal power allocation strategy (14)–
(18b) for every determined weight value, is sufficient for the
Pareto optimal set of the original EE-EC MOP Q1.

Furthermore, the optimal solution (14)–(18b) is similar to
the optimal power allocation strategy for the link-layer EE-
maximization problem in [24], with a different value of the
optimal scaled-Lagrangian-multiplier ν∗. When w1 = 1, we
note that the proposed optimal solution (14) equals to the one
developed in [24]. It means that the optimal solution in [24]

P∗
r

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
α(θ)
w1ν∗

) 1
1+α(θ) m

α(θ)
1+α(θ)

�(m)
(

m− α(θ)
1+α(θ)

)
[
−
(

w1ν
∗m

α(θ)

)(m− α(θ)
1+α(θ)

)
e− w1ν∗m

α(θ) + �
(

m + 1
1+α(θ)

,
w1ν

∗m
α(θ)

)]

− m
�(m)(m−1)

[
−
(

w1ν
∗m

α(θ)

)m−1
e− w1ν∗m

α(θ) + �
(

m,
w1ν

∗m
α(θ)

)]
, when m = 1, m = α(θ)

α(θ) + 1
,(

α(θ)
w1ν

∗
) 1

1+α(θ)
�
(

1
1+α(θ)

,
w1ν

∗
α(θ)

)
− E1

(
w1ν

∗
α(θ)

)
, when m = 1,

(
α(θ)
w1ν∗

) 1
α(θ)+1

(
α(θ)

α(θ)+1

) α(θ)
α(θ)+1

�
(

α(θ)
α(θ)+1

) E1

(
w1ν

∗
1+α(θ)

)

+ α(θ)

�
(

α(θ)
α(θ)+1

)
[
−e− w1ν∗

α(θ)+1

(
w1ν

∗
α(θ)+1

)− 1
α(θ)+1 + �

(
α(θ)

α(θ)+1 ,
w1ν

∗
α(θ)+1

)]
, when m = α(θ)

α(θ) + 1
,

(18a)

Eγ

[(
1 + P∗

r γ
)−α(θ)

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
w1ν

∗

α(θ)

) α(θ)
1+α(θ) m

α(θ)
1+α(θ)

�(m)
(

m − α(θ)
1+α(θ)

)
⎡
⎣−

(
w1ν

∗m

α(θ)

)m− α(θ)
1+α(θ)

e− w1ν∗m
α(θ)

+�

(
m + 1

1 + α(θ)
,
w1ν

∗m

α(θ)

)⎤⎦+ 1 −
�
(

m,
w1ν

∗m
α(θ)

)
�(m)

, when m = α(θ)

α(θ) + 1
,

(
w1ν

∗
α(θ)+1

) α(θ)
1+α(θ)

�
(

α(θ)
α(θ)+1

) E1

(
w1ν

∗

α(θ) + 1

)
+ 1 −

�
(

α(θ)
α(θ)+1 ,

w1ν
∗

α(θ)+1

)
�
(

α(θ)
α(θ)+1

) , when m = α(θ)

α(θ) + 1
.

(18b)

is a special case of the optimal power allocation strategy for
the weighted EE-EC tradeoff problem in this paper. Especially,
in [24], the optimal operational average power equals to
min(P∗

EE, Pmax). For a typical EE-EC tradeoff problem, the
optimal average power level will remain between [P∗

EE, Pmax].
When θ → 0, by following similar steps, the optimal power

allocation strategy for weighted tradeoff problem can be
derived as

Pr =
(

1

ρ
− 1

γ

)+
, (21)

which is the well-known water-filling approach and ρ can be
found from the KKT condition

Eγ

[(
ln

(
γ

ρ

))+]
− ρ

((
εPcr + Eγ

[(
1

ρ
− 1

γ

)+])

+ε (1 − w1) �EC

w1�EEr

)
= 0. (22)

When θ → ∞, a system with extremely stringent delay
requirement is considered, which means in this case, the effec-
tive capacity is the same as the zero-outage capacity [24].

C. The Effects of w1, Pnorm, Pcr and ε on the EE-EC tradeoff

From (14)–(18b), we notice that the tradeoff optimal power
value can be influenced by four factors, which are the impor-
tance weight w1, normalization factor Pnorm, scaled circuit
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TABLE I
POWER ALLOCATION ALGORITHM

power Pcr , and power amplifier efficiency ε. In order to thor-
oughly understand the effects of these factors on the tradeoff
performance, we provide the following lemmas.

Lemma 3: The average optimal power value P∗
t monotoni-

cally decreases with w1, but strictly increases with Pnorm.

Proof: The proof is provided in Appendix E. �
Intuitively, Lemma 3 can be clarified as follows. �EE and

�EC, can not only function as the normalization values, but also
can be regarded as two weights. Then, the complete weights
of EE and EC would be viewed as w1�EE and (1 − w1)�EC,
respectively. In order to compare the relative importance of
the two objective functions, we need to compare the relative
weight, using

WEE

WEC
= w1�EE

(1 − w1)�EC
= 1

K�

(
1

w1
− 1

)(
Pcr + 1

ε
Pnorm

) ,

(23)

where WEE = w1�EE and WEC = (1 − w1)�EC denote the
complete weights of EE and EC, respectively. We notice that
WEE/WEC increases with w1, which means that with increasing
w1, the importance of EC drops, and hence, the system prefers
to sacrifice more EC to achieve better EE. Therefore, the opti-
mum average transmit power P∗

t will be shifted from Pmax-side
to P∗

EE-side. On the other hand, when Pnorm grows, the ratio
of WEE/WEC decreases, which means that the system prefers
to improve EC, with certain deteriorations of EE. Therefore,
following the same trend with EC, P∗

t will increase.
Lemma 3 provides a proper guideline for users to design

a more flexible and favorable system, based on diverse

preferences and different system requirements. For example,
if the system prefers a better EC, a larger Pnorm as well as a
smaller w1 should be chosen to offer a larger optimal transmit
power, and in turn, a relatively larger EC. In contrast, if a user
prefers more EE, a smaller normalization factor as well as a
larger w1 will be more beneficial.

To investigate the effects of the scaled circuit power Pcr and
the power amplifier efficiency ε, we introduce the following
lemma.

Lemma 4: The average optimal power P∗
t monotonically

increases with the scaled circuit power Pcr , as well as ε.

Proof: Following the similar proof with Lemma 3,
Lemma 4 is easy to prove and it is omitted here. �

IV. NUMERICAL RESULTS

In this section, we numerically investigate the impact of
the normalization factor Pnorm, fading severness parameter m,
scaled circuit power Pcr , importance weight w1, and trans-
mission power constraint on the link-layer EE-EC tradeoff
problem for a flat block-fading channel with delay-outage
probability constraints. In the following figures, we assume
the fading-block duration Tf = 2 ms, bandwidth B = 250 kHz,
input average power limit Pmax = 10 dB, power amplifier effi-
ciency ε = 0.5, fading parameter m = 1, and the QoS exponent
θ = 10−2, unless otherwise indicated.

Fig. 2 includes the plots for EC (on the left-hand-side
(LHS) y-Axis, in solid lines with markers) and EE (on the
right-hand-side (RHS) y-Axis, markers only) versus impor-
tance weight w1, for various scaled circuit power values with
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Fig. 2. EC and link-layer EE versus importance weight w1 for various values
of Pcr in Rayleigh fading channels.

Fig. 3. EC versus scaled average input power limit
Pmax

K�
for various values of

importance weight w1 in Rayleigh fading channels.

normalization factor Pnorm = 0.5P∗
EE

5. This figure reveals that,
when w1 ∈ [0.18, 1], the link-layer EE increases whereas EC
gradually decreases with w1. This happens because the increase
of w1 raises the importance of EE and diminishes the priority
of EC, which confirms our design intention. Moreover, when
w1 ∈ [0, 0.18] and Pcr = 5 dB, there is a flat region wherein
EE and EC remain constant. It happens because, in this
region, the optimum average input power P∗

t is larger than
Pmax. Since the power-constrained tradeoff system performs
at min(P∗

t ,Pmax), the constant EE and EC versus w1 will be
observed. Furthermore, when Pcr = 5 dB, the flat region is
larger than the case when Pcr = −5 dB. In Section III-C, we
proved that when Pcr increases, the optimum average input
power P∗

t will increase, which means that P∗
t will remain larger

than Pmax and EC will stabilize at its maximum value for a
longer period of w1. In addition, Fig. 2 also demonstrates that,
with fixed w1, when Pcr rises from −5 dB to 5 dB, the value

5Here P∗
EE is the optimum average power level for EE-maximization

problem.

Fig. 4. Maximum achievable EE versus scaled average power limit
Pmax

K�
for

various values of w1 in Rayleigh fading channels.

Fig. 5. Normalized optimum average power value P∗
r versus importance

weight w1 for various values of fading parameter m.

of EE decreases. This is due to the fact that EE varies inversely
with P∗

t , while the optimum average input power P∗
t increases

monotonically with the scaled circuit power Pcr , therefore EE
decreases with the circuit-to-noise power ratio Pcr .

We plot the results of EC and EE versus Pmax, for vari-
ous values of w1 with Pcr = 0 dB and Pnorm = P∗

EE in Fig. 3
and Fig. 4, respectively. From Fig. 3, we notice that when
w1 = 0.5 and w1 = 1, EC first continuously increases, and
then it remains stable, after a break-point. This is because, for
the weighted tradeoff problem with w1 = 0.5 or w1 = 1, the
operational average power limit is settled at min(P∗

t , Pmax).
Specifically, when Pmax ≤ P∗

t , the system operates at Pmax,
whereas when Pmax ≥ P∗

t , the tradeoff system will not con-
sume all the available power, but rather operates at P∗

t , which
leads to a constant EC. These observations, however, do not
apply to the case when w1 = 0 which represents the EC-
maximization problem. In this case, EC continuously increases

with
Pmax

K�

while EE, shown in Fig. 4, decreases after reach-

ing its peak value. This is due to the fact that the allocation
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Fig. 6. Maximum achievable EE versus EC for various values of Nakagami
fading parameter m.

Fig. 7. Maximum achievable EE versus importance weight w1 for various
values of Pnorm in Rayleigh fading channels.

strategy for EC-maximization problem consumes the whole
available input power, resulting in continuously growing EC,
and simultaneously losing EE.

Similarly, from Fig. 4, we can see that when w1 = 0.5,
EE first increases until it reaches its peak value, at which
Pmax = P∗

EE, then EE gradually drops until Pt = P∗
t , after

which it stabilizes. This demonstrates that the operational opti-
mal average power, min(P∗

t , Pmax), is always achieved between
[P∗

EE, Pmax]. And, for any Pmax ≥ P∗
t , the tradeoff system per-

forms at P∗
t , which leads to a constant EE. In addition, for EE-

maximization problem with w1 = 1, Fig. 4 shows that the link-
layer EE gradually increases until its peak value, achieved at
P∗

EE, after which it remains constant. This is due to the fact that
the average optimal power limit for EE-maximization problem
is always achieved at min(P∗

EE, Pmax) [24], which means that
when Pmax ≤ P∗

EE, the system operates at the most achievable
power value Pmax, and then the tradeoff problem performs at the
global optimal power level P∗

EE for any Pmax ≥ P∗
EE. Although

Fig. 3 and Fig. 4 are plotted using link-layer capacity, the same
trend can be observed in physical-layer tradeoff problem.

Fig. 8. EC versus importance weight w1 for various values of normalization
factor Pnorm in Rayleigh fading channels.

Fig. 9. EC and link-layer EE versus importance weight w1 for various values
of θ in Rayleigh fading channels.

The plot for P∗
r versus w1 for various fading parameters with

Pnorm = 0.5P∗
EE and Pcr = −5 dB is given in Fig. 5. Noting

that increasing w1 increases the importance of EE in the trade-
off problem, P∗

r monotonically decreases from Pmax to P∗
EE.

Fig. 5 further shows that, for a fixed w1, when m increases, P∗
r

increases. This happens due to the fact that with less channel
fluctuations, the probability of the received data remaining in
the FIFO buffer will be dropped, and therefore, EC and P∗

r will
increase. We note that, when m = 1 and m = 1.8, P∗

r first sta-
bilizes at its maximum value Pmax. This is due to the fact that
in this region, the optimal average power level P∗

t is larger than
Pmax, and therefore, the tradeoff system has to operate at Pmax.

The plots for EE versus EC, for various values of m with
Pnorm = 0.5P∗

EE and Pcr = −5 dB is plotted in Fig. 6 which
shows that when m = 1.8, the MOP achieves the largest EE
and EC, while the curve with the smallest m provides the least
values of EE and EC.

Fig. 7 includes the plots for EE versus importance weight
w1, for various values of Pnorm with Pcr = −5 dB. When w1
is relatively large, e.g., w1 ∈ [0.46, 1], EE shows a consistently
upward trend with the increase of w1 for all considered values
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Fig. 10. EC versus delay QoS exponent θ under different power allocation
policies in Rayleigh fading channels.

Fig. 11. Normalized optimum average power value P∗
r versus ϑ for various

values of fading parameter m and scaled circuit power Pcr .

of Pnorm. When w1 is small, e.g., w1 ∈ [0, 0.46] and Pnorm =
Pmax, EE initially remains constant until reaching a break-point,
then gradually increases toward its maximum value. On the
other hand, Fig. 8 shows that when Pnorm = Pmax, EC lev-
els off at its maximum value for a longer period of w1, in
comparison with the other EC curves with Pnorm = 0.5P∗

EE
and Pnorm = P∗

EE. This provides a guideline for an EC-desired
system and indicates that with a larger normalization factor
Pnorm, there is a better chance to make EC remain around its
maximum value for a longer scope of varying w1. Moreover,
Fig. 7 and Fig. 8 demonstrate that the ranges of EC and EE, cov-
ered by w1 ∈ [0, 1], are always fixed, regardless of the different
definitions of Pnorm. For example, from Fig. 7, the EE curve
with Pnorm = P∗

EE, and the one with Pnorm = Pmax, achieve the
same value of the scaled EE, 0.13 b/J/Hz, at w1 = 0.12 and
w1 = 0.7745, respectively. Meanwhile, in Fig. 8, EC obtained
at w1 = 0.12, Pnorm = P∗

EE, equals to the EC value achieved at
w1 = 0.7745, Pnorm = Pmax.

We plot the results of EC (on the left-hand-side (LHS) y-
Axis, in solid lines with markers) and EE (on the right-hand-
side (RHS) y-Axis, markers only) versus w1, for various values

Fig. 12. Maximum achievable EE versus ϑ for various values of Nakagami
fading parameter m and scaled circuit power Pcr .

Fig. 13. Normalized optimum average power value P∗
r versus θ for various

values of w1 and Pnorm in Rayleigh fading channels.

of θ with Pcr = −5 dB, Pnorm = P∗
EE in Fig. 9. As we dis-

cussed in Section III-B2, θ → 0 refers to a system with no delay
requirement, and hence EC is equivalent to the ergodic capac-
ity. For the physical-layer EE-SE tradeoff problem, no delay
requirement means that the delay-outage probability can be
very high. Although, from Fig. 9, EC and EE when θ → 0 are
larger than those when θ = 10−2, we can also notice that when
θ is very small, e.g., θ < 10−5, the delay-outage probability
equals to 1, in Fig. 14. Further, we note that the physical-
layer EC and EE, when θ → 0, follow the same trend with the
link-layer EC and EE, when θ = 10−2.

The plot for EC versus delay QoS exponent θ , under dif-
ferent power allocation policies, with w1 = 0.5, Pnorm = P∗

EE
and Pcr = −5 dB is included in Fig. 10. Specifically, this
figure compares the EC values under the optimal link-layer
power allocation solution, which is derived in this paper,
and the traditional physical-layer water-filling approach. From
Section III-B2, we note that when θ becomes very small, e.g.,
θ < 10−4, EC approaches to ergodic capacity. In this case, the
proposed optimal power allocation strategy (14)–(18b) con-
verges to the traditional water-filling strategy. Therefore, in
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Fig. 14. Delay-outage probability versus θ for various values of w1 and
normalization factor Pnorm in Rayleigh fading channels.

Fig. 10, when θ < 10−4, the values of EC for the two differ-
ent power policies are equal. When θ becomes larger, e.g., θ ≥
10−3, which refers to a system with a stringent delay require-
ment, Fig. 10 indicates that the proposed link-layer optimal
power allocation strategy guarantees a better performance than
the traditional water-filling approach, with the water-filling
performance approaching to zero when θ � 0.1.

Fig. 11 and Fig. 12 illustrate the optimal average power
value and EE versus ϑ , where ϑ describes the ratio of Pnorm
to Pmax, i.e., Pnorm = ϑ Pmax, for various values of fading
parameter m and scaled circuit power Pcr . Especially, a typical
tradeoff system is considered and w1 = 0.5. When m = 1, P∗

r
increases, while EE decreases with ϑ . This happens because
when ϑ increases, Pnorm becomes larger, which indicates that
the priority of EE will be decreased and the importance of EC
will increase. When m = 1.8, P∗

r firstly plunges to its low-
est value and then gradually increases with ϑ , while EE first
increases to its maximum value and then gradually drops with
ϑ . Furthermore, Fig. 11 shows that when m is fixed, a system
with bigger Pcr always has a larger P∗

r , which confirms our
conclusion in Lemma 2.

Fig. 13 includes the plots for P∗
r versus delay QoS expo-

nent θ for various values of w1 and Pnorm, with Pcr = −10 dB.
When w1 = 0, P∗

r levels out at the maximum transmit power
limit Pmax, which confirms that the EC-maximization system
always consumes all the available power [25]. When w1 = 0.5
and Pnorm = Pmax, P∗

r increases with θ , until it remains stable
at a certain value, which is just under Pmax. In contrast, For
cases of w1 = 0.5 and Pnorm = P∗

EE, and w1 = 1 and Pnorm =
Pmax, the optimum average power levels are achieved at min-
imal values. Furthermore, with w1 = 0.5, P∗

r is higher when
Pnorm = Pmax, comparing to a case with Pnorm = P∗

EE. This is
due to the fact that, a larger Pnorm, e.g., Pnorm = Pmax, reduces
the priority of EE and raises the importance of EC, which
results in a larger P∗

r and a smaller EE.
The delay-outage probability limit Pout

delay versus delay QoS
exponent for various values of w1 and Pnorm with a max-
imum tolerable delay threshold Dmax = 500, circuit-to-noise
power ratio Pcr = −10 dB is illustrated in Fig. 14. This figure

indicates that for loose delay-constrained systems, e.g., θ =
10−5, different values of w1 will not affect the achievable
Pout

delay significantly. Also, in this case, the delay-outage prob-
ability becomes 1, which means that the probability of the
delay exceeding the maximum delay bound Dmax is equiva-
lent to 1. For larger θ , e.g., θ ≥ 10−3, delay-outage probability
increases with w1. This happens because smaller w1 represents
a system which prefers EC-maximization approach. Hence, a
higher EC will be achieved and the probability that the symbol
delay exceeds a maximum delay-bound Dmax will decline.
Furthermore, for a fixed θ , when w1 = 0.5 and Pnorm = P∗

EE,
the delay-outage probability limit is larger than that with the
same w1 and Pnorm = Pmax. This is due to the fact that a system
with larger Pnorm offers a larger EC, which means that the prob-
ability of data remaining in the FIFO buffer will be dropped,
and therefore, Pout

delay will be smaller.

V. CONCLUSIONS

The optimal power distribution scheme of the link-layer
EE-EC tradeoff problem for a Nakagami-m fading channel
with a delay violation probability constraint and an average
input power limit was developed and analyzed. We proved
that the proposed tradeoff formulation is continuously differen-
tiable and strictly quasiconvex in the optimum average power
level. After obtaining the optimal power allocation scheme,
we proved that the proposed scheme is also sufficient for the
Pareto optimal set of the original EE-EC MOP. In order to
thoroughly analyze the tradeoff performance, the effects of
the normalization factor, importance weight, circuit power and
power amplifier efficiency were analyzed and investigated. We
also provided a proper guideline on how to choose the normal-
ization factor and importance weight to build a more favorable
system toward either EE or EC.

APPENDIX A
PROOF OF LEMMA 1

Suppose the point P∗
t ∈ [0, Pmax], is a Pareto optimal

solution for problem Q2 and it is not a Pareto optimal
solution for problem Q1. Hence, there must exist P ′

t with
SE(P ′

t )

�SE
≥ SE(P∗

t )

�SE
,

EE(P ′
t )

�EE
≥ EE(P∗

t )

�EE
, and also at least

one of the two following conditions happens: 1)
SE(P ′

t )

�SE
>

SE(P∗
t )

�SE
, 2)

EE(P ′
t )

�EE
>

EE(P∗
t )

�EE

6. Note that SE(Pt), EE(Pt),

for Pt ∈ [0, Pmax], are always positive, therefore, there exists

P ′
t which guarantees that

�SE

SE(P ′
t )

≤ �SE

SE(P∗
t )

,
�EE

EE(P ′
t )

≤
�EE

EE(P∗
t )

, and at least one of the two following conditions

happens: 1)
�SE

SE(P ′
t )

<
�SE

SE(P∗
t )

, 2)
�EE

EE(P ′
t )

<
�EE

EE(P∗
t )

. This

contradicts the assumption that P∗
t is a Pareto optimal solution

for problem Q2. This concludes the proof for Lemma 1.
6Here, SE(P) and EE(P) are defined as the SE and EE values achieved at

certain average power P .
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APPENDIX B
PROOF OF THEOREM 17

Since P̂ is unique optimal solution for the weighted SOP,

then
q∑

i=1
wi fi (P̂) <

q∑
i=1

wi fi (P), wi ∈ [0, 1],
q∑

i=1
wi = 1, for

all P ∈ [0, Pmax]. Suppose P̂ is not a Pareto optimal solution
for the MOP. Hence, there must exist P ′ ∈ [0, Pmax] with
fi (P ′) ≤ fi (P̂) for all i = 1, . . . , q, and there is at least one
j , such that f j (P ′) < f j (P̂), j = 1, . . . , q. Multiplying by the
weights, we have wi fi (P ′) ≤ wi fi (P̂) for all i = 1, . . . , q, and

q∑
i=1

wi f (P ′) ≤
q∑

i=1
wi f (P̂). This contradicts the uniqueness

assumption. Therefore, the theorem is proved.

APPENDIX C
PROOF OF THEOREM 2

Denote the sublevel set of U7 by Sβ ={
Pr ∈

[
0,

Pmax

K�

]∣∣∣∣U7 ≤ β

}
. According to [39], U7 is

strictly quasiconvex in Pr if Sβ is strictly convex for any real
number β. In more details, a set is strictly convex if any line
(without the endpoints) connecting two points in the set is
inside the interior of the set. In other words, the set C is strictly
convex if every point c = λa + (1 − λ)b, λ ∈ (0, 1), λ ∈ R,
for any two points a, b ∈ C , a = b, is inside the interior of C .

Firstly, when β < 0, no points exist for U7 = β. When β ≥
0, Sβ is equivalent to

Sβ =
{

Pr ∈
[

0,
Pmax

K�

]∣∣∣∣ ln
(
Eγ

[
(1 + Prγ )−α(θ)

])

−β

(
w1�EEr

(
Pcr + 1

ε
Pr

)
+ (1 − w1)�EC

)
≤ 0

}
.

Since ln
(
Eγ

[
(1 + Prγ )−α(θ)

])
is strictly convex [24], and

β

(
w1�EEr

(
Pcr + 1

ε
Pr

)
+ (1 − w1)�EC

)
is affine in Pr,

therefore, Sβ is strictly convex for any real number β and U7 is
strictly quasiconvex in Pr. This proves Property 1).

We now take the first derivative of (9a) with respect to Pr,
yielding

U5′ =
w1�EEr

ε
EC − J (Pr)EC′

EC2
,

where J (Pr) = w1�EEr

(
Pcr + 1

ε
Pr

)
+ (1 − w1)�EC and

EC′ = dEC

dPr
. When Pr → 0, EC → 0, J (Pr) > 0 and EC′ > 0,

therefore, U5′
∣∣∣Pr→0 < 0 . On the other hand, when Pr → ∞,

we have

lim
Pr→∞

w1�EEr

ε
EC

J (Pr)EC′ = lim
Pr→∞

w1�EEr

ε
EC′

w1�EEr

ε
EC′ + J (Pr)EC′′

, (24)

7A similar theorem was mentioned in [38], but the proof was not provided..

where EC′′ = d2EC

dPr
2

. We note that EC′′ < 0, due to the fact that

EC is strictly concave in Pr [24]. Now, by using the fact that
J (Pr) > 0, one can show that the RHS of (24) is bigger than
1, which means that U5′|Pr→∞ > 0. Hence, when Pr → ∞,

U5 is an increasing function in Pr. We note that U7 is derived
by canceling the negative multiplied constant in U5 and then
inverting the objective function. Therefore, when Pr → 0, U7
monotonically decreases and when Pr → ∞, U7 monotoni-
cally increases. This proves that U7 has a cup shape curve in
Pr, which completes the proof for Property 2).

Now, we set f (Pr) = ln
(
Eγ

[
(1 + Prγ )−α(θ)

])
and take the

first derivative of U7 with respect to Pr to get

U7′ = lim
�Pr→0

f
(
Pr + �Pr

)
J
(
Pr + �Pr

) − f
(
Pr
)

J
(
Pr
)

�Pr

= lim
�Pr→0

f
(
Pr + �Pr

)− f
(
Pr
)

�Pr
− w1�EEr

ε
U7

J
(
Pr + �Pr

)

= lim
�Pr→0

f (Pr)
′ − w1�EEr

ε
U7

J
(
Pr + �Pr

) .

Therefore, sgn
(
U7′) = sgn

(
f (Pr)

′ − w1�EEr

ε
U7

)
. This

completes the proof of Property 3).

APPENDIX D
PROOF OF LEMMA 2

Here, we briefly prove that problem (P ′) is a convex program
in (y, φ), and if (y∗, φ∗) is an optimal solution of (P ′), then
x∗ = y∗/φ∗ is an optimal solution of (P).

Since f is a convex function, therefore, for the objective
function of problem (P ′), we have

(λφ1 + (1 − λ)φ2) f

(
λy1 + (1 − λ)y2

λφ1 + (1 − λ)φ2

)
= (λφ1 + (1 − λ)φ2)

× f

(
λφ1

λφ1 + (1 − λ)φ2

y1

φ1
+ (1 − λ)φ2

λφ1 + (1 − λ)φ2

y2

φ2

)

≤λφ1 f

(
y1

φ1

)
+ (1 − λ)φ2 f

(
y2

φ2

)

for any (y1, φ1), (y2, φ2) ∈ Rn × R+, and λ ∈ [0, 1]. Hence,
the objective function of problem (P ′) is convex in (y, φ).

Now, since g is affine, which is also convex, φg(y/φ) can
be proved to be convex, by following similar steps. Therefore,
the feasible constraint set is a convex set and we conclude that
problem (P ′) is a convex program if f is convex and g is an
affine function on S.

Henceforth, from the Charnes-Cooper transformation, we
note that if the optimal solution (y∗, φ∗) of problem (P ′) is
found, then x∗ = y∗/φ∗ is optimal for problem (P).
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U5′
∣∣∣∣ Pt=P∗

1
Pnorm=Pnorm,1

=
w1�EE,1

ε
EC −

(
w1�EE,1

(
Pc + 1

ε
Pt

)
+ (1 − w1)�EC,1

)
EC′

EC2
= 0, (25)

U5′
∣∣∣∣ Pt=P∗

1
Pnorm=Pnorm,1+�Pnorm

=
�EE,2

[
w1EC

ε
−
(

w1

ε
P∗

1 + Pc + (1 − w1)

ε

(
Pnorm,1 + �Pnorm

))
EC′

]
EC2

, (27)

APPENDIX E
PROOF OF LEMMA 3

For a system with optimal average transmit power P∗
1 ,

and normalization values �EE,1 = EE|Pt=Pnorm,1
and �EC,1 =

EC|Pt=Pnorm,1
, take the first derivative of the function U5, which

yields (25), as shown at the top of the page, and it simplifies to

w1EC

ε
−
(

w1

ε
P∗

1 + Pc + (1 − w1)

ε
Pnorm,1

)
EC′ = 0. (26)

Then, consider a system with a larger Pnorm, i.e., Pnorm,2 =
Pnorm,1 + �Pnorm, �Pnorm > 0. In this system, the optimal
input power value at which the tradeoff formulation can be
maximized is denoted by P∗

2 , and normalization values are
�EE,2 and �EC,2. Replacing Pnorm,1 in (25) with Pnorm,2, we
have (27), as shown at the top of the page. By using (26), it
reduces to

U5′
∣∣∣∣Pt=P∗

1
Pnorm=Pnorm,1+�Pnorm

= −
�EE,2

(1 − w1)

ε
�PnormEC′

EC2
< 0.

(28)

From Theorem 2, we know that U5 strictly decreases with
the average transmit power until reaching the minimum, then it
becomes a monotonically increasing function. Therefore, (28)
means that U5 with a larger Pnorm decreases at P∗

1 and has not
reached its minimum yet, which means P∗

2 must be bigger than
P∗

1 . It is easy to prove that the average optimal power monoton-
ically decreases with w1, which is omitted here. This completes
the proof of Lemma 3.

REFERENCES

[1] A. J. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

[2] ITU Statistics. (2014, May). The World in 2014: ICT Facts and Figures
[Online]. Available: http://www.itu.int/en/ITU-D/Statistics/Pages/facts/
default.aspx

[3] GSMA Intelligence. (2014, Dec.). Understanding 5G: Perspectives
on Future Technological Advancements in Mobile [Online]. Available:
https://gsmaintelligence.com/research/2014/12/understanding-5g/451/

[4] C. Gunaratne et al., “Reducing the energy consumption of ethernet with
adaptive link rate (ALR),” IEEE Trans. Comput., vol. 57, no. 4, pp. 448–
461, Apr. 2008.

[5] Smart2020, “Enabling the low-carbon economy in the information age,”
The Climate Group, London, U.K., Tech. Rep., 2008.

[6] W. D. Nordhaus, “To slow or not to slow: The economics of the
greenhouse effect,” Econ. J., vol. 101, no. 407, pp. 920–937, Jul. 1991.

[7] A. P. Bianzino et al., “A survey of green networking reasearch,” IEEE
Commun. Surveys Tuts., vol. 14, no. 1, pp. 3–20, Feb. 2012.

[8] C. W. Tan, D. P. Palomar, and M. Chiang, “Energy-robustness tradeoff in
cellular network power control,” IEEE/ACM Trans. Netw., vol. 17, no. 3,
pp. 912–925, Jun. 2009.

[9] L. Zhang and C. W. Tan, “Cognitive radio network duality and algorithms
for utility maximization,” IEEE J. Sel. Areas Commun., vol. 31, no. 3,
pp. 500–513, Mar. 2013.

[10] Y. Li et al., “Energy-efficient subcarrier assignment and power alloca-
tion in OFDMA systems with max-min fairness guarantees,” IEEE Trans.
Commun., vol. 63, no. 9, pp. 3183–3195, Sep. 2015.

[11] X. Zhai, L. Zheng, and C. W. Tan, “Energy-infeasibility tradeoff in cog-
nitive radio networks: Price-driven spectrum access algorithms,” IEEE J.
Sel. Areas Commun., vol. 32, no. 3, pp. 528–538, Mar. 2014.

[12] C. Bae and W. E. Stark, “End-to-end energy-bandwidth tradeoff in
multihop wireless networks,” IEEE Trans. Inf. Theory, vol. 55, no. 9,
pp. 4051–4066, Sep. 2009.

[13] C. Xiong et al., “Energy- and spectral-efficiency tradeoff in downlink
OFDMA networks,” IEEE Trans. Wireless Commun., vol. 10, no. 11,
pp. 3874–3886, Nov. 2011.

[14] Y. Li et al., “Energy efficiency and spectral efficiency tradeoff in
interference-limited wireless networks,” IEEE Commun. Lett., vol. 17,
no. 10, pp. 1924–1927, Oct. 2013.

[15] X. Chen and S. Ouyang, “Energy- and spectral-efficiency trade-off in
OFDMA-based cooperative cognitive radio networks,” Int. J. Distrib.
Sensor Netw., Feb. 2014.

[16] C. He et al., “Energy- and spectral-efficiency tradeoff for distributed
antenna systems with proportional fairness,” IEEE J. Sel. Areas
Commun., vol. 31, no. 5, pp. 894–902, May 2013.

[17] O. Amin et al., “Energy efficiency and spectral efficiency trade-off for
OFDM systems with imperfect channel estimation,” in Proc. IEEE Int.
Conf. Commun. (ICC), Sydney, NSW, Australia, Jun. 2014, pp. 3553–
3558.

[18] D. Wu and R. Negi, “Effective capacity: A wireless link model for sup-
port of quality-of-service,” IEEE Trans. Wireless Commun., vol. 2, no. 4,
pp. 630–643, Jul. 2003.

[19] M. Gursoy, D. Qiao, and S. Velipasalar, “Analysis of energy efficiency in
fading channels under QoS constraints,” IEEE Trans. Wireless Commun.,
vol. 8, no. 8, pp. 4252–4263, Aug. 2009.

[20] L. Musavian and Q. Ni, “Delay-QoS-driven spectrum and energy effi-
ciency tradeoff,” in Proc. IEEE Int. Conf. Commun. (ICC), Sydney, NSW,
Australia, Jun. 2014, pp. 4981–4986.

[21] L. Musavian and Q. Ni, “Effective capacity maximization with statistical
delay and effective energy efficiency requirements,” IEEE Trans. Wireless
Commun., vol. 14, no. 7, pp. 3824–3835, Jul. 2015.

[22] W. Cheng, X. Zhang, and H. Zhang, “Joint spectrum and power effi-
ciencies optimization for statistical QoS provisionings over SISO/MIMO
wireless networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, pp. 903–
915, May 2013.

[23] X. Chen et al., “Tradeoff between energy efficiency and spectral effi-
ciency in a delay constrained wireless system,” Wireless Commun. Mobile
Comput., vol. 15, pp. 1945–1956, Mar. 2014.

[24] L. Musavian and T. Le-Ngoc, “Energy-efficient power allocation over
Nakagmi-m fading channels under delay-outage constraints,” IEEE
Trans. Wireless Commun., vol. 13, no. 8, pp. 4081–4091, Aug. 2014.

[25] J. Tang and X. Zhang, “Quality-of-service driven power and rate adapta-
tion over wireless links,” IEEE Trans. Wireless Commun., vol. 6, no. 8,
pp. 3058–3068, Aug. 2007.

[26] M. K. Simon and M.-S. Alouini, Digital Communication Over Fading
Channels: A Unified Approach to Performance Analysis. Hoboken, NJ,
USA: Wiley, 2000.

[27] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY, USA: Dover, 1965.

[28] S. Ruzika and M. M. Wiecek, “Survey paper: Approximation methods
in multiobjective programming,” J. Optim. Theory Appl., vol. 126, no. 3,
pp. 473–501, Sep. 2005.

[29] J. S. A. R. T. Marler, “Survey of multi-objective optimization methods
for engineering,” Struct. Multidiscip. Optim., vol. 26, no. 6, pp. 369–395,
Apr. 2004.



YU et al.: TRADEOFF ANALYSIS AND JOINT OPTIMIZATION 3353

[30] L. Zhang and C. W. Tan, “Maximizing sum rates in cognitive radio net-
works: Convex relaxation and global optimization algorithms,” IEEE J.
Sel. Areas Commun., vol. 32, no. 3, pp. 667–680, Mar. 2014.

[31] J. A. Bucklew, Introduction to Rare Event Simulation. Berlin, Germany:
Springer-Verlag, 2004.

[32] C. S. Chang, “Stability, queue length, and delay of deterministic and
stochastic queueing networks,” IEEE Trans. Autom. Control, vol. 39,
no. 5, pp. 913–931, May 1994.

[33] A. Dembo and O. Zeitouni, Large Deviations Techniques and
Applications, 2nd ed. Berlin, Germany: Springer-Verlag, 1998.

[34] A. Zappone and E. Jorswieck, “Energy efficiency in wireless networks via
fractional programming theory, in Found. Trends Commun. Inf. Theory.
Hanover, MA, USA: Now Publishers Inc., Jun. 2015, vol. 11.

[35] A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with
channel side information,” IEEE Trans. Inf. Theory, vol. 43, no. 6,
pp. 1986–1992, Nov. 1997.

[36] S. Schaible, “Parameter-free convex equivalent and dual programs of
fractional programming problems,” Zeitschrift Oper. Res., vol. 18, no. 5,
pp. 187–196, Oct. 1974.

[37] S. Schaible, “Fractional programming,” Zeitschrift Oper. Res., vol. 27,
no. 1, pp. 39–54, Dec. 1983.

[38] M. Ehrgott, Multicriteria Optimization. New York, NY, USA: Springer,
2005.

[39] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

Wenjuan Yu received her B.Sc. degree in
Electronic and Information Engineering, from
Shandong University of Technology, China, in
2010 and her M.Sc. degree from the School of
Telecommunications Engineering, Xidian University,
China, in 2013. She is currently working toward
the Ph.D. degree with the School of Computing and
Communications, InfoLab21, Lancaster University,
Lancaster, UK. Her research interests include
resource allocation, cross-layer optimization toward
green communications, delay QoS provisioning.

Leila Musavian (S’05–M’07) received the Ph.D.
degree in telecommunications from Kings College
London, London, U.K., in 2006. She is currently
working as a Lecturer in communications with
the School of Computing and Communications,
InfoLab21, Lancaster University, Lancaster, U.K.
Prior to that (2010–2012), she was a Research
Associate with McGill University. She was a
Postdoctoral Fellow at INRS-EMT, University of
Quebec, Canada, from 2006 to 2008. Her research
interests include radio resource management for next

generation wireless networks, CRNs, green communication, energy-efficient
transmission techniques, cross-layer design for delay QoS provisioning and
5G systems. She is an Editor of IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS.

Qiang Ni (M’04–SM’08) received the B.Sc., M.Sc.,
and Ph.D. degrees from Huazhong University of
Science and Technology, China, all in engineering.
He is a Professor and the Head of Communication
Systems Group, School of Computing and
Communications, Lancaster University, InfoLab21,
Lancaster, U.K. Previously, he led the Intelligent
Wireless Communication Networking Group, Brunel
University London, Middlesex, U.K. His research
interests include future generation communications
and networking, including green communications

and networking, cognitive radio network systems, heterogeneous networks,
small cell and ultra dense networks, 5G, SDN, energy harvesting, wireless
information and power transfer, IoTs and vehicular networks in which areas
he had already published over 120 papers. He was an IEEE 802.11 Wireless
Standard Working Group Voting member and a Contributor to the IEEE
WIRELESS STANDARDS.


