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Abstract. We introduce and study a new network centrality measure based on the concept of
nonbacktracking walks; that is, walks not containing subsequences of the form uvu where u and v

are any distinct connected vertices of the underlying graph. We argue that this feature can yield
more meaningful rankings than traditional walk-based centrality measures. We show that the result-
ing Katz-style centrality measure may be computed via the so-called deformed graph Laplacian—a
quadratic matrix polynomial that can be associated with any graph. By proving a range of new
results about this matrix polynomial, we gain insights into the behavior of the algorithm with re-
spect to its Katz-like parameter. The results also inform implementation issues. In particular we
show that, in an appropriate limit, the new measure coincides with the nonbacktracking version of
eigenvector centrality introduced by Martin, Zhang and Newman in 2014. Rigorous analysis on star
and star-like networks illustrates the benefits of the new approach, and further results are given on
real networks.
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1. Introduction. Network science is producing a wide range of challenging re-
search problems that have diverse applications across science and engineering. Many
important questions in this area can be cast in terms of applied linear algebra. In
particular, operating on networks leads us naturally into the rich and elegant field
of matrix function theory. In this work, we consider network centrality measures, a
topic where many tools have been developed and tested [14, 36]. We focus on walk-
based centrality measures [10, 15, 16]. Here the aim is to identify influential nodes
by quantifying their potential to disperse information along the network edges. A
key novelty in our work is to ignore certain types of walk around the network that, in
terms of quantifying centrality, have little relevance. The combinatorics of the remain-
ing “nonbacktracking walks” can be dealt with conveniently via a matrix polynomial
representation, leading to an efficient computational algorithm. This viewpoint also
allows us to raise and solve several new theoretical problems on this matrix polyno-
mial, giving further insight into the algorithm.

In section 2, we review some relevant material on walk-based centrality measures,
focusing on Katz and eigenvector centrality. In section 3, we then motivate a new
definition of centrality based on the concept of a nonbacktracking walk. We show on
a simple star graph how restricting attention to nonbacktracking walks can avoid a
localization issue. Section 4 provides some preliminary material on matrix polynomials
and, in particular, sets up the so-called deformed graph Laplacian, which is the main
object of study in our work, and derives some new basic connections between the
eigenvalues of the deformed graph Laplacian and the features of the underlying graph.
In section 5, we consider the combinatorics of nonbacktracking walks, and show how an
analogue of Katz centrality can be expressed in terms of the deformed graph Laplacian.
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Relevant properties of the deformed graph Laplacian are then studied in sections 6,
7, 8, 9 and 10. More specifically, sections 6 and 7 contain our main theoretical
results, exploring further the spectral properties of the deformed graph Laplacian, and
connecting them to the radius of convergence of a certain power series that generates
the combinatorics of nonbacktracking walks. In section 8 we consider how to compute
or bound the radius of convergence, and discuss other practical issues. Section 9
develops the relation between the deformed graph Laplacian and M-matrix theory.
We show in section 10 that the nonbacktracking version of eigenvector centrality
introduced by Martin, Zhang and Newman [25], which was derived from a different
viewpoint, coincides with the nonbacktracking walk centrality in an appropriate limit.
A large scale synthetic example is then analysed in section 11, in order to shed further
light on the new centrality measure, and tests on real data are given in section 12.
We finish in section 13 with a short summary.

It is worth mentioning that Theorem 6.1 and slightly weaker versions of Theorem
4.7 and Lemma 6.2 are not entirely new. They can also be obtained using purely
graph theoretical techniques based on zeta funtions, namely, Theorem 2 in [33]. We
opted, however, to include our own proofs based on matrix theory, as they allow us to
prove stronger statements and present a self-contained treatment. We also emphasize
that the other theoretical results in this paper are, to our knowledge, new.

2. Walk-based Centrality. We let A ∈ Rn×n denote the adjacency matrix of
a simple, undirected graph, so aij = 1 if there is an edge from node i to node j and
aij = 0 otherwise. A walk of length k is any sequence of k + 1 nodes, i1, i2, . . . , ik+1

such that each edge ir ↔ ir+1 is present in the network [9, 11, 14]. Loosely, a walk is
a traversal around the network in which nodes and edges may be re-used.

We may, of course, place further restrictions on the traversal—a trail must use
distinct edges, a path must use distinct nodes and a shortest path must use the smallest
possible number of edges. Borgatti [9] discusses the relevance of these concepts with
respect to processes that take place over a network, such as message-passing, disease-
spreading and various types of business transaction. This variety of processes has led
to a wide range of centrality measures that aim to summarize the importance of the
network nodes through their ability to initiate traversals. We focus here on the case of
walks for two main reasons. First, walks are relevant in many realistic circumstances,
notably, where there is a stochastic element to the dynamics; for example, a fixed
object such as a soccer ball, an office laptop or the keys to a company car may be
passed arbitrarily around a well-defined interaction network. Second, and from a
more practical perspective, walks are convenient to compute with, making it feasible
to study the type of large-scale networks arising in modern applications.

A classic result from graph theory tells us that (Ak)ij counts the number of
distinct walks of length k from i to j; see, for example, [11, Theorem 2.2.1]. Now,
let ρ(A) denote the spectral radius of A and suppose 0 < α < ρ(A)−1. Then the
resolvent

(I − αA)−1 = I + αA + α2A2 + α3A3 + · · · (2.1)

has an i, j element that records a weighted sum of all walks1 from i to j, with walks
of length k downweighted by the factor αk. Katz [22] suggested that the importance,
or centrality, of node i could be quantified by summing this count over all such j,

1For convenience, we have included an identity matrix term in the expansion. This may be
regarded as representing a single closed walk of length zero.
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leading to the linear system

(I − αA)x = 1. (2.2)

Here, 1 is the vector whose components are all 1 while xi > 0 denotes the centrality
of node i, and the relative size of the components in x can be used for ranking. Katz
[22] also pointed out that the attenuation parameter α may be interpreted as the
independent probability that an edge is traversed effectively; so the probability of a
walk of length k succeeding will be αk.

Under the assumption that the network is connected, letting the attenuation pa-
rameter α approach 1/ρ(A) from below in (2.2) we arrive at the eigenvector centrality
measure, introduced by Bonacich [7, 8, 36], where x matches the Perron-Frobenius
eigenvector of A. So

Ax = λx, (2.3)

where λ = ρ(A) and xi > 0.

3. Nonbacktracking Walks. The sum (2.1) includes some traversals that, in-
tuitively, are less relevant than others. In particular, for every edge i ↔ j, (2.1)
incorporates all walks that pass from i to j and immediately pass back to i, rather
than exploring other parts of the network. We argue that, from the perspective of
walk-counting centrality, such traversals are best ignored, leading to Definitions 3.1
and 3.2 below. We note that similar arguments, albeit from a spectral graph theory
perspective rather than from the point of view of combinatoric walk-counting, were
given in [25], where a nonbactracking version of eigenvector centrality was proposed.
We explore further the connection between our work and [25] in section 10.

In a different setting, [1] considers nonbacktracking random walks around a regular
graph, whereas our work concerns the combinatorics of (deterministic) traversals as a
means to quantify centrality. As we mention in section 5, nonbactracking walks have
also been studied in the theory of zeta functions of graphs [20, 33].

Definition 3.1. A backtracking walk is a walk that contains at least one node
subsequence of the form uvu, i.e., it visits u,v and then u in immediate succession.

A nonbacktracking walk is a walk that is not backtracking, i.e., it does not contain
any subsequence of the form uvu.

For brevity we will henceforth replace the phrase nonbacktracking walk with
NBTW.

Definition 3.2. For an appropriate value of the real parameter t > 0, the NBTW
centrality of node i is defined by

1 +
n∑

j=1

∞∑

k=1

tk (pk(A))ij ,

where (pk(A))ij records the number of distinct NBTWs of length k from i to j.
In subsequent sections we will show how to compute NBTW centrality in terms

of a certain matrix polynomial depending on the original adjacency matrix, A, and
study the role of the parameter t. At this stage, we simply note that 0 < t < 1 is a
natural requirement, so that longer walks carry less weight, and we continue with an
illustrative example that differentiates the new measure from Katz centrality.

Consider a star graph with n nodes, as illustrated for the case n = 9 in Figure 3.1.
Here the central hub node has an undirected edge to each of the n−1 leaf nodes. The
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adjacency matrix has the form

A =




1 · · · 1
1
...
1


 ∈ R

n×n, (3.1)

where a blank denotes a zero entry. The eigenvalues of A are ±
√
n− 1 and 0 (repeated

n − 2 times); see section 11 for a more general case. Hence, Katz centrality (2.2) is
defined for 0 < α < 1/

√
n− 1.

By symmetry the xi values in the Katz system (2.2) are equal for all i ≥ 2, and
the equations reduce to

x1 − α(n− 1)x2 = 1 and x2 − αx1 = 1.

These solve to give

x1 =
1 + α(n− 1)

1− α2(n− 1)
and xi =

1 + α

1− α2(n− 1)
, for i ≥ 2. (3.2)

The ratio of hub centrality to leaf centrality is therefore, for i ≥ 2,

x1

xi
=

1 + α(n− 1)

1 + α
. (3.3)

1

2

34

5 67

89

Fig. 3.1. A star graph with n = 9 vertices.

Turning to NBTWs, for the star graph it follows directly from Definition 3.1 that
• node 1 has n − 1 NBTWs of length one and no NBTWs of length greater
than one,

• node i for i ≥ 2 has one NBTW of length one, n− 2 NBTWs of length two,
and no NBTWs of length greater than two.

Hence, in Definition 3.2 the NBTW centralities are

x1 = 1 + (n− 1)t and xi = 1 + t+ (n− 2)t2, for i ≥ 2. (3.4)

So the ratio of hub centrality to leaf centrality is, for i ≥ 2,

x1

xi
=

1 + (n− 1)t

1 + t+ (n− 2)t2
. (3.5)

We are interested in large systems, so consider the limit n → ∞. In the Katz
regime we require α < 1/

√
n− 1. If we take α to be a fixed proportion of this upper

limit, say 0.9/
√
n− 1, then in (3.2) and (3.3) we have

x1 = O(
√
n), xi = O(1), x1/xi = O(

√
n). (3.6)
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Similarly, for the NBTW version, using t = 0.9/
√
n− 1 in (3.4) and (3.5) we obtain

the same asymptotic behaviour. However, in this example the NBTW centrality
measure is valid for any t. So we may consider the case where t = O(1) as n → ∞,
e.g., t = 1/2, in which case

x1 = O(n), xi = O(n), x1/xi →
1

t
= O(1). (3.7)

So, compared with Katz, the NBTW measure
• has a much less severe restriction on the downweighting parameter, and
• for fixed t and large n, gives a less dramatic distinction between the hub and
the leaves.

For a vector v ∈ Rn with vi ≥ 0 and ‖v‖2 = 1, the inverse participation ratio,
defined as

S =

n∑

i=1

v4i , (3.8)

was used in [25] to quantify the phenomenon of localization, where most of the weight
is concentrated on a small number of components (in our example, a single network
node). The Katz centrality vector in (3.6), exhibits localization, in the sense of [25],
since S = O(1), whereas the NBTW centrality vector (3.7), with S = O(1/n), does
not. The authors in [25] put forward the view that in the context of centrality mea-
sures localization is “undesirable, significantly diminishing the effectiveness of the
centrality as a tool for quantifying the importance of the nodes.” In terms of using
a centrality measure to rank nodes—for example, picking out a small number of big
hitters, or comparing two nodes that are of particular interest—it may be argued that
localization of measure is not in itself a drawback if the relative values are meaningful,
allowing us to distinguish between components. Indeed, for the star graph, both mea-
sures always rate the hub node most highly. In section 11, however, we give a more
general example where Katz and NBTW centrality can produce different rankings,
showing that the two measures are distinct in a more fundamental sense.

4. Matrix Polynomials and the Deformed Graph Laplacian. We now
provide some general background material on matrix polynomials before introducing
and studying the deformed graph Laplacian. Recall that, given a field F (in this
paper, F is either R or C), the set of univariate polynomials in t with coefficients in F

is denoted by F[t]. Moreover, the set of square matrices of size n with entries in F[t]
is denoted by F[t]n×n.

For j = 0, 1, . . . , k, let Aj ∈ Cn×n be square matrices of the same size with Ak 6= 0.

The matrix-valued function P (t) =
∑k

j=0 Ajt
j ∈ C[t]n×n is called a square matrix

polynomial of degree k. If detP (t) ≡ 0 then P (t) is said to be singular, otherwise
it is called regular. We now recall some basic definitions from the spectral theory of
regular matrix polynomials [18].

The finite eigenvalues of a square regular matrix polynomial of degree k are the
zeros of the scalar polynomial detP (t). Moreover, if deg detP (t) < kn, we say that
∞ is an eigenvalue of P (t). If a finite eigenvalue has multiplicity 1 as a root of
detP (t) it is called a simple eigenvalue; similarly, an infinite eigenvalue is simple if
deg detP (t) = kn− 1. An eigenvalue which is not simple is called multiple. If λ ∈ C

is a finite eigenvalue of P (t), any nonzero vector v ∈ Cn such that P (λ)v = 0 is
called an eigenvector associated with the eigenvalue λ. Similarly, if P (t) has at least
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one infinite eigenvalue, then any nonzero vector w ∈ Cn such that Akw = 0 is an
eigenvector associated with the eigenvalue ∞.

The algebraic multiplicity of a finite (resp., infinite) eigenvalue of P (t) is the mul-
tiplicity of the eigenvalue as a root of detP (t) (resp., the number kn− deg detP (t)).
Moreover, we say that a finite eigenvalue λ ∈ C has geometric multiplicity n −
rankP (λ), and similarly the eigenvalue infinity has geometric multiplicity n−rankAk.
An eigenvalue has geometric multiplicity g if and only if one can find g linearly inde-
pendent eigenvectors associated with it. If the algebraic and geometric multiplicities
of an eigenvalue coincide, we say that the eigenvalue is semisimple; otherwise, it is
defective.

It is easy to check that, by the definitions above, a regular matrix polynomial
of size n and degree k has precisely kn eigenvalues, counted with their algebraic
multiplicities and possibly including infinite eigenvalues. In this paper, we will focus
on a real matrix polynomial, i.e., Ai ∈ Rn×n. Note that, even if P (t) ∈ R[t]n×n, the
variable t ∈ C is generally allowed to be complex, and a real matrix polynomial may
have nonreal finite eigenvalues.

More details on the spectral theory of matrix polynomials can be found in,
e.g., [18, 24, 29, 30] and the references therein. The following result, which is a
special case of the Smith Canonical Form Theorem [17], will be needed below.

Theorem 4.1. Let P (t) ∈ R[t]n×n be an arbitrary real regular matrix polynomial.
Then, there exist two unimodular, i.e., with constant nonzero determinant, real matrix
polynomials E(t) and F (t) of size n× n such that

E(t)P (t)F (t) = S(t) := diag(ℓ1(t), ℓ2(t), . . . , ℓn(t)),

where ℓi(t) ∈ R[t], called the invariant polynomials of P (t), are monic polynomials
with the property that ℓi(t) is a divisor of ℓi+1(t) for all i = 1, . . . , n − 1. Moreover,
letting g0(t) = 1 and, for i = 1, . . . , n, letting gi(t) denote the monic greatest common
divisor of all the minors of P (t) of order i, the invariant polynomials are given by the
formulae ℓi(t) = gi(t)/gi−1(t).

The next property of the last invariant polynomial will play a role in what follows.
Proposition 4.2. Let P (t) ∈ R[t]n×n be a regular matrix polynomial with in-

variant polynomials ℓ1(t), . . . , ℓn(t). Then, λ ∈ C is a finite eigenvalue of P (t) if and
only if ℓn(λ) = 0. Moreover, it is a semisimple finite eigenvalue of P (t) if and only if
it is a simple zero of ℓn(t).

Proof. Suppose ℓn(λ) = 0. It is clear by Theorem 4.1 that there exists a nonzero
constant κ ∈ R such that detP (t) = κ

∏n
i=1 ℓi(t), and hence detP (λ) = 0. Conversely,

suppose that detP (λ) = 0. By the same argument there exists j ∈ {1, 2, . . . , n} such
that ℓj(λ) = 0. But since any invariant polynomial is a divisor of its successor, in
particular ℓj(t) divides ℓn(t) for any j, and hence, ℓn(λ) = 0.

Finally, let αi be the multiplicity of λ as a zero of ℓi(t) for i = 1, 2, . . . , n. Clearly,
α1 ≤ α2 ≤ · · · ≤ αn. Moreover, the geometric multiplicity of λ as an eigenvalue
of M(t) is

∑
i:αi>0 1 while its algebraic multiplicity is

∑n
i=1 αi. It follows that λ is

semisimple if and only if αi ≤ 1 for all i, which is equivalent to αn = 1.
If a square matrix polynomial P (t) is such that P (t) = P (t)∗ for all t ∈ R then

P (t) is called Hermitian [18, 26]. The spectral theory of Hermitian matrix polynomials
is richer and subtler than the general case: see [18, 26] and the references therein.
We note here that, unlike for Hermitian matrices, the eigenvalues of Hermitian matrix
polynomials are not necessarily all real. However, they do appear in complex conjugate
pairs [18, 26].
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Given an adjacency matrix A of an undirected graph, here and below we denote
by ∆ the associated diagonal degree matrix; that is, ∆ii := (A2)ii. The matrix
L := ∆ − A is called the graph Laplacian; it is symmetric positive semidefinite,
and its properties are well understood [6, 27]. We now turn our attention to the
deformed graph Laplacian: a special matrix polynomial associated with any graph.
The deformed graph Laplacian has been studied in [28] because of its applications to
consensus algorithms in multi-agent systems and robotics. Here, we will analyze it
more thoroughly using the spectral theory of matrix polynomials, and we will then
focus on its connections to NBTW centrality.

Definition 4.3. [28] Let A ∈ Rn×n be the adjacency matrix of an undirected
graph. For any t ∈ C, the associated deformed graph Laplacian is the Hermitian
matrix polynomial

M(t) = I −At+ (∆− I)t2 ∈ R[t]n×n. (4.1)

Observe that M(1) = L is the graph Laplacian, M(0) = I is the identity matrix,
while M(−1) is the signless graph Laplacian [12].

Proposition 4.4 records some basic spectral properties of M(t) which were, in
part, discussed also in [28].

Proposition 4.4. The following hold:
1. M(t) is a regular matrix polynomial, and 0 is never an eigenvalue of M(t);
2. 1 is always an eigenvalue of M(t), with geometric multiplicity equal to the

number of connected components of A;
3. the geometric multiplicity of ∞ as an eigenvalue of M(t) is equal to the num-

ber of leaves, i.e., vertices of degree 1, in the graph of A (in particular, ∞ is
an eigenvalue of M(t) if and only if the graph of A has at least one leaf);

4. −1 is an eigenvalue of M(t) if and only if the graph of A has at least one
bipartite component. In this case, the geometric multiplicity of −1 is equal to
the number of bipartite components of the graph of A.

Proof.
1. We have detM(0) = 1, and therefore det(M(t)) cannot be the zero polyno-

mial; moreover, by the same argument, 0 is not an eigenvalue.
2. Observe that the graph Laplacian L is always a singular matrix, because

A1 = ∆1. Therefore, detM(1) = detL = 0. The nullity of L, and hence the
geometric multiplicity of 1 as an eigenvalue of M(t), is equal to the number
of connected components in the graph of A [27].

3. The geometric multiplicity of the infinite eigenvalue is the nullity of ∆ − I,
which is equal to the number of leaves in the graph of A.

4. M(t) has the eigenvalue −1 ⇔ the signless graph Laplacian is a singular ma-
trix ⇔ the graph of A has at least one bipartite component [12, Proposition
2.1]; moreover the multiplicity of the eigenvalue 0 of the signless graph Lapla-
cian, and hence the geometric multiplicity of −1 as an eigenvalue of M(t), is
equal to the number of bipartite components in the graph of A [12, Corollary
2.2].

In what follows, both in this section and in sections 6 and 7, we will explore further
the spectral properties of M(t), obtaining several results that are, to our knowledge,
new. The next proposition shows that, for disconnected graphs, it suffices to study
the individual deformed graph Laplacians associated with each connected component.

Proposition 4.5. Let A ∈ Rn×n be the adjacency matrix of a disconnected
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graph having c connected components with adjacency matrices Ai, for i = 1, . . . , c; let
M(t) be the deformed graph Laplacian associated with A and Mi(t) be the deformed
graph Laplacians associated with Ai, for i = 1, . . . , c; and let λ ∈ C ∪ {∞}. Then, λ
is an eigenvalue of M(t) if and only if it is an eigenvalue of Mi(t) for some value
of i = 1, . . . , c. Moreover, denote by γ(λ) (resp. γi(λ)) the geometric multiplicity of
λ as an eigenvalue of M(t) (resp. Mi(t)). Similarly, let α(λ) and αi(λ) denote the
corresponding algebraic multiplicities. Then, it holds

γ(λ) =

c∑

i=1

γi(λ), α(λ) =

c∑

i=1

αi(λ).

Proof. Since the underlying graph is disconnected, by relabelling the nodes we see
that A (resp., M(t)) is permutation similar to a block diagonal matrix (resp., matrix
polynomial) whose diagonal blocks have sizes equal to the sizes of each connected
component of the underlying graph. Clearly, each diagonal block Mi(t) is precisely
the deformed graph Laplacian associated with the ith connected component. If λ ∈
C, the statement is an immediate consequence of the observation above and of the
definitions of multiplicities of an eigenvalue. If λ = ∞, the statement about the
algebraic multiplicity requires a little extra care. To see it, note that denoting by ni

the size of the ith connected component of the graph

α(∞) = 2n− deg detM(t) = 2

(
c∑

i=1

ni

)
−
(

c∑

i=1

degMi(t)

)
=

c∑

i=1

αi(∞).

Proposition 4.4 does not say anything about the algebraic multiplicities of the
special eigenvalues 1,−1,∞. We complete the picture with Proposition 4.6, which
characterizes when these special eigenvalues are semisimple or defective in terms of
features of the underlying graph.

Proposition 4.6.

1. The eigenvalue 1 of M(t) is semisimple if and only if there is no connected
component of the graph of A having average degree precisely equal to 2; and
it is simple if and only if the previous condition holds and the graph of A is
connected.

2. Suppose that −1 is an eigenvalue of M(t). Then, it is semisimple if and only
if there is no bipartite connected component of the graph of A having average
degree precisely equal to 2; and it is simple if and only if the previous condition
holds and the graph of A has only one bipartite connected component.

3. Suppose that ∞ is an eigenvalue of M(t). Then, it is semisimple if and only if
every connected component of the graph of A which has a leaf is the complete
graph with 2 vertices. Moreover, ∞ can never be a simple eigenvalue.

Proof. By Proposition 4.5 we may assume without loss of generality that the
graph of A is connected.

Our proof is based on the following classical results in the theory of matrix polyno-
mials [18]: a finite eigenvalue λ of the matrix polynomial P (t) =

∑k
i=1 Att

i, associated
with the eigenvector w, is defective if and only if there exists2 a vector v such that

P (λ)v + P ′(λ)w = 0. (4.2)

2Unlike for Jordan chains of matrices, here there is no linear independence condition, and in fact,
the Jordan vector v may also be the zero vector, see [18].
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Similarly, the eigenvalue ∞, associated with the eigenvectorw, is defective if and only
if there exists a vector v such that

Akv +Ak−1w = 0. (4.3)

Hence:
1. The eigenvalue 1 of M(t) is associated with the eigenvector 1. Noting that

M(1) = L and M ′(1) = 2L + A − 2I, (4.2) becomes Lv + A1 = 2 · 1. The
latter equation has a solution if and only if (A−2I)1 lies in the column space
of L, or equivalently, 0 = 1T (A − 2I)1 = d − 2n, where d =

∑n
i=1 degi is

the sum of the degrees of all the nodes. Hence, 1 is defective if and only if
d/n = 2, i.e., the average degree is 2.

2. The proof is analogous to the previous case, noting that if −1 is an eigenvalue
of M(t) associated with a connected graph, then, since M(−1) =: Q is the
signless graph Laplacian, the graph is bipartite and the associated eigenvector
w is such that wi = −wj for every edge i ↔ j [12]. Since M ′(−1) = A−2Q+
2I, we see that −1 is defective if and only if 0 = wT (A+ 2I)w = −d+ 2n.

3. This time, we start from (4.3) and note that Ak = ∆ − I and Ak−1 = −A.
Clearly, for every node i which is a leaf ei is an eigenvector associated with
∞. Then, ∞ is defective ⇔ the equation (∆ − I)v = Aei has a solution ⇔
Aei is orthogonal to ej for every j which is in turn a leaf ⇔ the unique node
connected to i is not itself a leaf. The only way for a connected graph to
have two leaves connected to each other (and hence for ∞ to be a semisimple
eigenvalue) is if the graph is the complete graph with two vertices. In this
case, however, ∞ must have both algebraic and geometric multiplicity 2.

We now give a powerful auxiliary result.
Theorem 4.7. Let A be the adjacency matrix of a simple, undirected, connected

graph. Denote by Ã the adjacency matrix, possibly of smaller size, such that the graph
of Ã is obtained by removing from the graph of A all the leaves, if any, and the edges
connecting these leaves to the rest of the graph. Suppose that the graph of Ã is not
empty, i.e., it contains at least one node. Let M(t), M̃(t) be the deformed graph

Laplacians associated with A, Ã respectively.
Then, λ ∈ C is a finite eigenvalue of M(t) if and only if it is a finite eigenvalue

of M̃(t). Moreover, the geometric multiplicities of λ as an eigenvalue of M(t) and

M̃(t) are the same.
Proof. Suppose that there are ℓ leaves in the graph of A. If ℓ = 0, there is nothing

to prove. Furthermore, the graph of Ã is not empty unless ℓ = n (and n = 2). Hence,
we may assume 0 < ℓ < n. Moreover, without loss of generality, we label the leaves
in the graph of A as nodes 1, . . . , ℓ.

Now, λ ∈ C is a finite eigenvalue of M(t) if and only if there exists a nonzero
v ∈ Cn such that

λ2(∆− I)v − Aλv + v = 0. (4.4)

Let degi denote the degree of node i. Clearly, degi = 1 for i ≤ ℓ, while for i > ℓ we
set degi = ℓi + νi where ℓi is the number of leaves adjacent to node i. Hence, (4.4) is
equivalent to the following scalar equations: for i ≤ ℓ, vi = λvj , where j is the unique
node adjacent to node i, while for i > ℓ

0 = (ℓi + νi − 1)λ2vi + vi − λ
∑

j

vj = (ℓi + νi − 1)λ2vi − λ2ℓivi + vi − λ
∑

k

vk,
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where the first summation is over all j such that node j is adjacent to node i, while
the second summation is over all k such that node k is not a leaf and is adjacent to
node i. We rewrite the equations associated with i > ℓ as

(νi − 1)λ2vi + vi − λ
∑

k

vk,

to see that a nonzero solution to (4.4) exists if and only if there is a nonzero ṽ ∈ Cn−ℓ

such that

λ2(∆̃− In−ℓ)ṽ − λÃṽ + ṽ = 0,

where ∆̃ = diag(diag(Ã2)). To conclude the proof of the first statement, we note that

the latter holds if and only if λ is an eigenvalue of M̃(t).
By replicating the argument above γ times, we now build two sets of γ nonzero

vectors each, say, v(1),v(2), . . .v(γ) ∈ Cn, and ṽ(1), ṽ(2), . . . ṽ(γ) ∈ Cn−ℓ, such that for
j = 1, . . . , γ,

M(λ)v(j) = 0, M̃(λ)ṽ(j) = 0, v(j) =

[
⋆

ṽ(j)

]
,

where here and below ⋆ denotes a block whose exact form is not relevant. The first
set of vectors is linearly independent if and only if the second is. Indeed,

[
v(1) v(2) . . . v(γ)

]
=

[
⋆

In−ℓ

] [
ṽ(1) ṽ(2) . . . ṽ(γ)

]

⇒ rank
[
v(1) v(2) . . . v(γ)

]
= rank

[
ṽ(1) ṽ(2) . . . ṽ(γ)

]

This proves the statement on the the geometric multiplicities.
Theorem 4.7 says that to compute the finite eigenvalues of M(t) we are allowed

to remove all the leaves of the underlying graph, and iterate the process until we
are left with a graph with no leaves. (As a consequence, if the underlying graph is
a forest, then the only finite eigenvalues are ±1, which must be both semisimple.
This observation is recorded as Corollary 7.1 in section 7, with an alternative proof
based on the connection with NBTWs.) As we discuss in section 8, the fact that the
spectrum of the matrix polynomial does not “see” the leaves in a graph also has useful
practical implications.

As our first application of Theorem 4.7, we show that the deformed graph Lapla-
cian can never have finite eigenvalues of modulus larger than 1.

Theorem 4.8. Let M(t) be the deformed graph Laplacian associated with a
simple undirected graph. Suppose that λ ∈ C is a finite eigenvalue of M(t). Then,
|λ| ≤ 1.

Proof. By Proposition 4.5 and Theorem 4.7, we may assume with no loss of
generality that the graph of A is connected and that it does not have any leaves.

If λ ∈ C is a finite eigenvalue of M(t), then there exists a nonzero v ∈ Cn such
that (4.4) holds. Without loss of generality we take ‖v‖2 = 1. Premultiplying (4.4)
by v∗, we obtain

αλ2 − βλ+ 1 = 0, (4.5)

10



where α = v∗∆v − 1 and β = v∗Av. Denoting the degree of the ith node by degi,
we have degi ≥ 2 for all i, and hence α =

∑n
i=1 degi |vi|2 − 1 ≥ 2− 1 = 1.

There are two cases. If λ 6∈ R, then λ∗ is also an eigenvalue of M(t) and a root
of (4.5). It follows that 1 ≤ α = |λ|−2 ⇔ |λ| ≤ 1. Suppose now λ ∈ R. Using also
the fact that ∆ ± A are both positive semidefinite matrices [12, 27], which implies

|β| ≤ α+1, we have 0 ≤ β2−4α ≤ (α−1)2, and hence, |λ| ≤ (|β|+
√

β2 − 4α)/(2α) ≤
(α+ 1 + α− 1)/(2α) = 1.

5. Nonbacktracking Walk Centrality and the Deformed Graph Lapla-

cian. In section 3 we gave a simple example where the NBTW centrality in Defini-
tion 3.2 could be computed from first principles. To obtain a general-purpose algo-
rithm, we quote two results from the theory of zeta functions of graphs that concern
the combinatorics of NBTWs. Although originally derived from a pure mathematics
viewpoint, these results turn out to be extremely useful from the perspective of ma-
trix computations in network science, and they also highlight a connection between
NBTWs and the deformed graph Laplacian. Lemma 5.1 gives a recurrence relation
between NBTW counts of different lengths. Theorem 5.2 is an immediate corollary
that gives an expression for the associated generating function.

Lemma 5.1. [33, Lemma 1] Recall that ∆ denotes the diagonal degree matrix and
pr(A) has (i, j) element that counts the number of NBTWs of length r from i to j.
Then p1(A) = A, p2(A) = A2 −∆, and for r > 2

Apr−1(A) = pr(A) + (∆− I)pr−2(A). (5.1)

Theorem 5.2. [33, Equation(2.4)] Let Φ(A, t) :=
∑∞

r=0 pr(A)t
r, where, for

convenience, we set p0(A) = I, and recall that M(t) denotes the deformed graph
Laplacian associated with A. Suppose moreover that t is such that the power series
converges. Then,

M(t)Φ(A, t) = (1 − t2)I. (5.2)

In Definition 3.2 we see that the NBTW centrality xi of node i may be computed
via x = Φ(A, t)1. From Theorem 5.2 we see that this simplifies to the linear system

M(t)x = (1 − t2)1. (5.3)

We note from (4.1) that, for any fixed value of t, M(t) in (5.3) has the same
sparsity structure as the coefficient matrix I − αA that appears in the original Katz
system (2.2). Hence, NBTW centrality may be computed at the same cost as Katz
centrality.

6. Further Spectral Analysis of the Deformed Graph Laplacian. Theo-
rem 6.1 is an enhancement of Theorem 4.7 that relies on the results of Section 5.

Theorem 6.1. Suppose, with the notation and assumptions of Theorem 4.7, that
λ ∈ C is a finite eigenvalue of both M(t) and M̃(t). Then, the algebraic multiplicities

of λ as an eigenvalue of M(t) and M̃(t) are the same.
Proof. We show that if we remove from the graph of A just one leaf then the alge-

braic multiplicity of the finite eigenvalue λ is preserved. The statement on algebraic
multiplicities will then easily follow by induction on the number of leaves. Without
loss of generality, let the leaf to be removed be node 1 and its unique adjacent node
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be node 2, and denote by Â (resp. M̂(t)) the adjacency matrix (resp. deformed graph
Laplacian) of the graph obtained removing node 1 and edge 1 ↔ 2. Manifestly,

(
1⊕ M̂(t)

)
= M(t)−




0 −t 0 . . .
−t t2 0 . . .
0 0 0 . . .
...

...
...

. . .


 = M(t)−




0 −t
−t t2

0 0
...

...




[
1 0 0 . . .
0 1 0 . . .

]
.

By the matrix determinant lemma, and since det
(
1⊕ M̂(t)

)
= det M̂(t), we have

det M̂(t) = detM(t) det


I2 −

[
1 0 0 . . .
0 1 0 . . .

]
M(t)−1




0 −t
−t t2

0 0
...

...





 ,

and hence

det M̂(t)

detM(t)
= det

(
I2 −N(t)

[
0 −t
−t t2

])
,

having denoted by N(t) the top-left 2 × 2 block of M(t)−1. We now exploit Theo-
rem 5.2 and express [N(t)]22 = (1 + f(t))/(1− t2), with f(t) :=

∑∞

r=1 art
r, where ar

is the number of NBTWs of length r from node 2 to itself. Since node 1 is a leaf, and
again by Theorem 5.2, we observe that

[N(t)]11 =
1 + t2f(t)

1− t2
, [N(t)]12 = N(t)21 =

t+ tf(t)

1− t2
.

By direct computation, det

(
I −N(t)

[
0 −t
−t t2

])
= 1, so det M̂(t) = detM(t).

We now work towards Theorem 6.3, which characterizes the graphs whose de-
formed graph Laplacian has an eigenvalue of modulus < 1. To this end, Lemma 6.2
explicitly lists all the finite eigenvalues of the deformed graph Laplacian of a connected
graph having average degree 2.

Lemma 6.2. Let A ∈ Rn×n be the adjacency matrix of a simple, undirected,
connected graph whose average degree is precisely 2, and let M(t) be the associated
deformed graph Laplacian. Then, M(t) has precisely ν distinct finite eigenvalues,
equal to the νth complex roots of unity: λk = exp (2kπi/ν), for 0 ≤ k ≤ ν − 1, where
3 ≤ ν ≤ n is the length of the unique cycle in the graph of A. Moreover, the algebraic
multiplicity of λk is always 2, whereas its geometric multiplicity is 2 if λk 6= ±1 or it
is 1 otherwise.

Proof. Note first that, since the average degree is 2, the graph of A can be
obtained by adding one extra edge to a tree (see as an illustration Figure 6.1). This
remark guarantees that there is a unique cycle in the graph of A. Furthermore, the
resulting graph is bipartite if and only if ν is even. It follows by Proposition 4.4 that
1 is always an eigenvalue of M(t) whereas −1 is an eigenvalue if and only if ν is even.

By Theorems 4.7 and 6.1, and by iteratively removing the leaves of the graph of
A, we see that it suffices to prove the statement for the case when the graph of A is
a cycle of length ν.
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Fig. 6.1. A connected graph with average degree 2. This graph has 11 nodes, 11 edges, and one
cycle of length 4. A tree can be obtained by removing any one of the four edges of the unique cycle,
i.e., 1 ↔ 2, 2 ↔ 3, 3 ↔ 4 or 4 ↔ 1. This graph is bipartite as the cycle has even length: if we
replaced, for example, 3 ↔ 4 by 4 ↔ 11, the unique cycle would have length 5 and the graph would
no longer be bipartite.

In this case, as noted already in [28], the deformed graph Laplacian is (permuta-
tion similar to) a circulant matrix polynomial of the form

M(t) =




1 + t2 −t −t
−t 1 + t2 −t

. . .
. . .

. . .

−t 1 + t2 −t
−t −t 1 + t2



∈ R[t]ν×ν .

By standard results in the theory of circulant matrices (or by induction on ν), it is
readily seen that detM(t) = (tν − 1)2. This shows that the νth roots of unity are all
eigenvalues with algebraic multiplicity 2.

It remains to prove the statement on the geometric multiplicity. For the eigen-
values 1 and (if ν is odd) −1, the statement follows by items 1-2 in Proposition 4.6.
Otherwise, let λ 6= ±1 satisfy λν = 1. Then the columns of the matrix

N(λ) =




λν−1 1
λν−2 λ
...

...
λ λν−2

1 λν−1




are linearly independent. Indeed, the determinant of the 2 × 2 leading submatrix
of N(λ) is λ−2(λ2 − 1) 6= 0. It is immediate to check that M(λ)N(λ) = 0, which
concludes the proof.

Theorem 6.3. Let A ∈ R
n×n be the adjacency matrix of a simple undirected

graph, and let M(t) be the associated deformed graph Laplacian. Then, there exists
a finite eigenvalue λ, with |λ| < 1, of M(t) if and only if the graph of A has at least
one connected component whose average degree is > 2.

Proof. By Proposition 4.5, we can assume without loss of generality that the
graph of A is connected.

Suppose first that the average degree is< 2. Then, the graph ofA is a tree, and the
statement follows from Theorem 4.7 or, more directly, from Corollary 7.1. Similarly,
if the average degree is precisely 2, then the statement follows by Lemma 6.2.

To conclude the proof, suppose that the average degree of the graph of A is > 2.
Let f(t) denote detM(t) for 0 ≤ t ≤ 1. We will argue that f(0) = 1, f(1) = 0,
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and f ′(1) > 0, implying by elementary analysis the existence of λ ∈ (0, 1) such that
f(λ) = 0.

That f(0) = 1 and f(1) = 0 is an immediate consequence of M(0) = I and
M(1) = ∆−A =: L. We have d =

∑
i degi > 2n. Moreover,

f ′(t) =
∂ detM(t)

∂t
= trace(adjM(t) ·M ′(t)),

where adjX denotes the matrix adjugate of X . Evaluating at t = 1,

f ′(1) = trace(adjL · (2∆−A− 2I)) = −2trace(adjL) + trace(adjL ·A),

where for the last equality we exploited the relation adjL · L = 0. Let λ1 ≥ · · · ≥
λn−1 ≥ λn = 0 be the eigenvalues of L and set p =

∏n−1
i=1 λi. It is known [27] that

p > 0 if the graph of A is connected. It is straightforward to show that

adjL =
p

n
11T

implying trace(adjL) = p and trace(adjL ·A) = pd/n. Hence, f ′(1) = p( dn − 2) > 0.
We now have a detailed picture of the finite spectrum of M(t) in terms of the

features of the underlying graph. By Proposition 4.5 and Theorems 4.7 and 6.1, we
may focus on the case of a simple connected graph with no leaves. Table 6.1 then
summarizes our results on the finite spectrum and includes an additional result that
we state below as Proposition 7.5.

Table 6.1

Spectra of the deformed graph Laplacian M(t) for various simple, undirected, connected graphs.
Note that the condition of being bipartite is equivalent to not having any cycles of odd length. The
symbol ? refers to properties not studied in this paper.

Graph E’value(s) Alg. mult. Geom. mult. Comments
Tree 1 1 1 always

-1 1 1 always
Cycle of 1 2 1 always
length ν -1 2 1 iff bipartite

λ: λν = 1, λ 6= ±1 2 2 always
Graph with 1 1 1 always
more than -1 1 1 iff bipartite
one cycle µ ∈ R: ρ(A)−1 < µ <1 1 1 always

λ ∈ C: µ < |λ| ≤ 1 ? ?

7. The Radius of Convergence of the Generating Function. The power
series

∑∞

r=0 pr(A)t
r makes sense mathematically for any t ∈ C; although, as men-

tioned in section 3, for network analysis it is natural to focus on t ∈ (0, 1) ⊂ R. In
this subsection we study the radius of convergence of this power series to its gener-
ating function (1 − t2)M(t)−1. We note that it may happen that 1 or −1 are within
the radius of convergence but are also eigenvalues of M(t), so that the latter is not
invertible at t = 1 or t = −1. In this case, and with slight abuse of notation, when
talking of (1 − t2)M(t)−1 for t = 1 or t = −1 we tacitly mean the appropriate limit
of this expression for t → 1 or t → −1.

First, we note that, by construction, elementwise it holds that

pk(A) = |pk(A)| ≤ |Ak| = Ak.
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Hence, |t| < ρ(A)−1, where ρ(A) is the spectral radius of A, surely suffices for conver-
gence, since

∑∞

k=0 A
ktk has radius of convergence ρ(A)−1.

However, this condition is sufficient but not necessary, as shown by the star graph
example of section 3, where ρ(A) =

√
n− 1 yet we have convergence for all t. More

generally, if the graph A is tree (or a forest) so that there are no cycles, then pk(A) = 0
for large enough values of k. It follows that Φ(A, t) is polynomial in t, and the series
converges for all t. This implies that M(t) cannot have any finite eigenvalues other
than ±1; and both 1 and −1 must be eigenvalues by Proposition 4.4 (and noting that
any tree is bipartite). Since the average degree of any tree is < 2, by Proposition 4.6
these eigenvalues are semisimple. This observation yields the following corollary on
the spectral properties of M(t) in the case of a forest.

Corollary 7.1. Suppose that A is the adjacency matrix of a forest, and let
M(t) be the associated deformed graph Laplacian. Then, M(t) has the only finite
eigenvalues 1 and −1. Moreover, 1 and −1 are both semisimple eigenvalues. (By
Proposition 4.2, these two properties are equivalent to ℓn(t) = t2 − 1, where ℓn(t) is
the nth invariant polynomial of M(t), as defined in Theorem 4.1.)

For a general A, our analysis is based on the properties of the deformed graph
Laplacian M(t) as a matrix polynomial. The following technical lemma will be useful.
It follows from the conditional converse to Abel’s Theorem on power series [13].

Lemma 7.2. For any z ∈ C let
∑∞

k=0 akz
k be a power series with nonnegative

real coefficients, i.e., ak ≥ 0 ∀ k ∈ N. Suppose that the power series converges to the
rational function p(z)/q(z), with p(z), q(z) ∈ R[z] coprime polynomials, with radius
of convergence r > 0. Then, q(r) = 0.

We are now ready to state our main result on the convergence of the matrix
power series

∑
r pr(A)t

r . It turns out that it is determined by a particular eigenvalue
of M(t).

Theorem 7.3. Let A be the adjacency matrix of a simple, undirected, graph. Let
M(t) = I − tA+ t2(∆− I) be the associated deformed graph Laplacian, and let ℓn(t)
be the nth invariant polynomial of M(t), as defined in Theorem 4.1.

The radius of convergence of the power series in Theorem 5.2 is equal to |χ| where
χ is the smallest (in modulus) zero of

r(t) :=
ℓn(t)

1− t2
, (7.1)

while χ := ∞ if such a function does not vanish.
Moreover, let λ be the smallest (in modulus) eigenvalue of the matrix polynomial

M(t).
1. There exists µ ∈ (0, 1] ⊂ R such that (i) µ = |λ| and (ii) µ is an eigenvalue

of M(t).
2. If µ < 1, then |χ| = µ.
3. If µ = 1 is a semisimple eigenvalue of M(t), then the underlying graph is a

forest and χ = ∞.
4. If µ = 1 is a defective eigenvalue of M(t), then |χ| = µ = 1.
Before proving Theorem 7.3, we give a few remarks that should be kept in mind.
• By Proposition 4.2, being a zero of ℓn(t) is equivalent to being a finite eigen-
value of M(t), and being a semisimple eigenvalue of M(t) is equivalent to
being a simple zero of ℓn(t).

• By Proposition 4.6, if the underlying graph does not have any connected
component with average degree 2, then 1 is a semisimple eigenvalue of M(t),
otherwise it is defective.

15



• By Proposition 4.2, any zero of r(t) is a finite eigenvalue of M(t).
• Again by Proposition 4.2, if M(t) has at least one finite eigenvalue 6= ±1, or
if at least one among 1 or −1 is a defective eigenvalue of M(t), then r(t) must
have at least one zero.

• If −1 is an eigenvalue of M(t), which happens for example if the graph of A
is bipartite, then r(t) is actually a polynomial.

• The power series converges for any t ∈ C if and only if r(t) does not vanish
for any t ∈ C, if and only if ℓn(t) = 1− t2.

Proof. [of Theorem 7.3] From Theorem 5.2, for any t ∈ C within the disk of
convergence, the matrix power series converges to (1 − t)2M(t)−1. Since M(t) is
polynomial, Φ(A, t) = (1− t2)M(t)−1 is a matrix rational function in t (but generally
not another matrix polynomial). Observe that

M(t)−1 =
adjM(t)

detM(t)
,

where adjX denotes the matrix adjugate of X . The entries of adjM(t) are, up to a
sign, the (n − 1) × (n − 1) minors of M(t). Let gn−1(t) be the monic GCD of the
entries of adjM(t), and gn(t) = κ detM(t) where κ 6= 0 is such that gn(t) is monic.
Then, we see that t0 ∈ C is a pole of (1 − t2)M(t)−1 if and only if it is a zero of

gn(t)

gn−1(t)(1 − t2)
=

ℓn(t)

1− t2
,

where we used Theorem 4.1. Hence, the radius of convergence must be equal to |χ|,
where χ is the smallest (in modulus) zero of the rational function r(t) in (7.1) if any,
or χ = ∞ if r(t) does not have any zero. We may now address the remaining four
points in the theorem.

1. Note that ℓn(t) ∈ R[t] and that by construction pk(A) ≥ 0 elementwise. If the
radius of convergence is ≤ 1, then the existence of a positive real eigenvalue
µ such that µ = |λ| follows by Proposition 4.2 and by applying Lemma 7.2
elementwise. On the other hand, if the radius of convergence is > 1, then
clearly µ = 1, because 1 is an eigenvalue by Proposition 4.4 and because
by Proposition 4.2 there cannot be roots of r(t) of modulus ≤ 1. Finally,
µ = |λ| > 0 follows by Proposition 4.4.

2. If µ < 1, then r(µ) = 0 but r(t) 6= 0 for |t| < µ, so it follows by the argument
above that χ = µ.

3. Suppose |χ| < 1, then ℓn(χ) = 0, and hence detM(χ) = 0. Hence χ is an
eigenvalue of M(t) of modulus strictly less than 1, thus contradicting µ =
|λ| = 1. Moreover, by Theorem 4.8, if |χ| ≥ 1 then either |χ| = 1 or χ = ∞.
On the other hand, by Proposition 4.6, since 1 is a semisimple eigenvalue there
is no connected component of the underlying graph whose average degree is
precisely 2; and by Theorem 6.3 we can exclude the possibility of a connected
component with average degree > 2, since otherwise we would have µ = |λ| <
1. Hence, the graph is a forest and therefore χ = ∞ by Corollary 7.1.

4. If µ = 1 is a defective eigenvalue of M(t), then by Proposition 4.6 it is a
multiple root of ℓn(t), and hence r(1) = 0. On the other hand, for any |t| < 1,
detM(t) 6= 0 ⇒ ℓn(t) 6= 0 ⇒ r(t) 6= 0. Thus, the radius of convergence is 1.

We note that, as a consequence of Theorem 7.3 and the fact that |t| < ρ(A)−1

is a sufficient condition for convergence of the power series
∑

k pk(A)t
k, the following
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Corollary gives a lower bound for µ which is tighter than zero.
Corollary 7.4. Let M(t) be the deformed graph Laplacian associated with a

graph with adjacency matrix A whose spectral radius is ρ(A). Then, every eigenvalue
λ of M(t) satisfies |λ| ≥ ρ(A)−1.

Theorem 7.3 reduces to the following simpler form assuming that µ < 1, which
by Theorem 6.3 is equivalent to assuming that the underlying graph has at least one
connected component with average degree > 2. We note that this result therefore
covers a general case that is likely to be encountered frequently in practice.

Proposition 7.5. Suppose that the matrix polynomial M(t) = I− tA+ t2(∆−I)
has an eigenvalue λ with |λ| < 1. Then there exists a positive real number µ such that
µ is the smallest (in modulus) eigenvalue of M(t). Moreover, the radius of convergence
of the power series

∑∞

k=0 t
kpk(A) is equal to µ.

Furthermore, if the graph of A is connected, µ is a simple eigenvalue of M(t) and
every other finite eigenvalue λ satisfies µ < |λ| ≤ 1.

Proof. Except for the last sentence, the statement is an immediate corollary of
Theorem 7.3.

To prove the last sentence, observe that by Theorem 6.3 the graph of A must
have average degree > 2, and hence, it must have at least two cycles. Moreover, by
Theorem 6.1 we may assume that the graph of A has no leaves. Consider the directed
graph obtained by replacing each undirected edge by two directed edges, with opposite
orientations, between the same nodes; we label these directed edges 1, . . . , 2m. By
Corollary 1 and equation (2.3) in [20], λ 6= ±1 is a finite eigenvalue of M(t) if and only
if λ−1 6= 0,±1 is an eigenvalue of the 2m× 2m matrix B defined as follows: if there
exists a NBTW on the dircted graph that includes the consecutive directed edges i
and j then Bij = 1, otherwise Bij = 0. B is a nonnegative matrix. Suppose it is
reducible, then there exist two directed edges i and j such that there is no NBTW of
the form · · · i · · · j · · · . This contradicts the assumption that the original undirected
graph is connected, without leaves, and with at least two cycles.

Hence, B is nonnegative and irreducible, and the statement follows by the Perron-
Frobenius theorem.

We note that, if the graph of A is connected and has no leaves (which is no loss
of generality by Theorem 6.1), then the matrix B as in the proof of Proposition 7.5
is irreducible, and hence

8. Practical Observations. In practice, given a specific, real network, we
would like to know what range of choices are available for the parameter t in (5.3).
From Proposition 7.5, in the generic case where there is at least one connected com-
ponent with average degree > 2, the strict upper limit for t is given by λ, the
smallest (in modulus) eigenvalue of M(t). From the theory of matrix polynomi-
als [18, 24, 26, 29, 30], one can show that this λ may be equivalently defined as the
reciprocal of the largest (in modulus) eigenvalue of the matrix

C :=

[
A I −∆
I 0

]
. (8.1)

This matrix is known as the companion linearization [18] of revM(t), the reversal
matrix polynomial of M(t) [26, 30]; note that it also appears in [25, Equation (17)].
Since only the largest eigenvalue of a very sparse matrix is needed, it is feasible
to compute λ for many large networks. Should this computation turn out to be
impossible or unreliable, other approaches to give a lower bound on |λ| are available,
and we give a brief overview below.

17



For example, one could use the generalized Gershgorin theorem [4, Theorem 3.1],
obtaining that, if degj is the jth diagonal element of the matrix ∆, then no finite
eigenvalue of M(t) can possibly lie in the region

n⋂

j=1

{λ ∈ C : |1 + (degj −1)λ2| > degj |λ|},

which, denoting by degmax the maximum degree of the graph of A, for |λ| < 1 can be
shown to reduce to {|1 + (degmax −1)λ2| > degmax |λ|}.

Alternatively, bounds specific for matrix polynomials based on tropical algebra
exist [5, 31]. For example, by [31, Theorem 3.1, item(ii)] if ‖ · ‖ is any induced matrix
norm then |λ| ≥ r where r is the unique positive root of the quadratic polynomial
x2‖∆− I‖+ x‖A‖ − 1. Solving the quadratic equation gives

|λ| ≥
√
‖A‖2 + 4‖∆− I‖ − ‖A‖

2‖∆− I‖ .

Now, ‖A‖2 = ρ(A) while ‖A‖1 = ‖A‖∞ = degmax, whereas (assuming that the
graph of A has at least one edge, so that ∆ 6= 0) ‖∆−I‖ = degmax−1 for all the three
norms considered above. Since ρ(A) < degmax, the spectral norm gives the strongest
of the three bounds:

|λ| ≥
√
ρ(A)2 + 4degmax −4− ρ(A)

2 degmax −2

and we deduce that a sufficient condition for convergence is

0 < t <

√
ρ(A)2 + 4degmax−4− ρ(A)

2 degmax−2
.

Theorem 4.7 shows that the spectrum of M(t) does not change when a leaf is
removed from the graph. It follows that, as a practical approach, we can preprocess the
graph by iteratively removing all leaves. Suppose this gives a matrix Â of dimension
n̂ × n̂. Then the techniques in this section for computing or bounding the radius
of convergence may be applied to Â, rather than A, leading to possible gains in
efficiency when n̂ < n, that is, when there are many, or large, trees dangling off the
graph. Furthermore, the linear system (5.3) for NBTW centrality may be solved with

Â. The centrality xL for any node L that was removed as a leaf is then recoverable
via the iterative relation xL = 1 + t(xN − t). Here, xN denotes the centrality of the
node that was the neighbour of node L at the stage where node L was removed.

9. Connection with M-matrix Theory. Suppose that 0 ≤ t < min{1, |χ|}
where χ is defined as in Theorem 7.3. Theorem 7.3 implies that the power series∑

r pr(A)t
r converges to (1 − t2)M(t)−1, and as a consequence M(t)−1 ≥ 0 elemen-

twise. In this section, we give a more direct proof of this fact using the theory of
M-matrices. The proof relies on the observation that M(t) is a Hermitian matrix
polynomial, and employs arguments that are typical in the theory of Hermitian ma-
trix polynomials [26].

By Theorem 7.3, the two conditions t < |χ| and t < 1 imply that t is strictly
smaller than the smallest real positive eigenvalue of M(t). Let now M be the matrix
obtained evaluating M(t) at t = t0 for some 0 ≤ t0 < |χ|. Note that M(0) = I has
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n positive eigenvalues. Since the eigenvalues of a matrix depending continuously on
a parameter t are continuous as a set (see [21, Ch. II], [26, Sec. 5] for more details),
and since M(t) is symmetric and not singular for all t ∈ [0, µ) necessarily M = M(t0)
has all positive eigenvalues as well.

Now, note that M is a Z-matrix [32], i.e., its off-diagonal elements are ≤ 0. By
[32, Theorem 1], a Z-matrix such that all its eigenvalues have positive real part is an
M-matrix. Hence, M is an M-matrix. As a consequence, again by [32, Theorem 1],
M−1 is a nonnegative matrix.

10. Limiting Behavior of the NBTW centrality Measure. In [3, Theorem
5.1], Benzi and Klymko study the limiting behaviour of classical parameter-dependent
centrality measures for undirected networks, letting the parameter tend to the end-
points of the convergence interval. In this section we study the limiting behaviour of
the NBTW centrality measure.

Theorem 10.1. Let A be the adjacency matrix of a simple, connected, undi-
rected graph, let M(t) be the associated deformed graph Laplacian, and let x(t) be the
vector of the corresponding NBTW centrality measure defined as in Definition 3.2 or
equivalently in (5.3), with t ∈ (0, |χ|) and χ defined as in Theorem 7.3.

1. As t → 0+, the rankings produced by x(t) converge to those produced by the
vector of the degree centralities.

2. Suppose further that |χ| ≤ 1, so that by Theorem 7.3 we have 0 < |χ| = µ ≤ 1,
where µ is the smallest positive eigenvalue of M(t). Then as t → |χ|− the
rankings produced by x(t) converge to those produced by the eigenvector v of
the matrix polynomial M(t), associated with the eigenvalue µ.

Proof. Part 1 may be proved by essentially the same argument given in [3, Proof of
Theorem 5.1, item (i)], except that one has to replace [f(tA)1]i by [(1− t2)M(t)−11]i.
Indeed, expanding in powers of t,

[(1− t2)M(t)−11]i = [I1+At1+ p2(A)t
21+ . . . ]i,

which for t → 0+ behaves as 1 + degi t + O(t2), where degi is the degree of the ith
node of the graph of A. Hence, the statement follows.

For part 2, observe first that µ has geometric multiplicity 1 as an eigenvalue of
M(t). This follows from Proposition 7.5 if µ < 1 and from Proposition 4.4 if µ = 1.
Note that, for any fixed t < µ, M(t) is a symmetric matrix which can be orthogonally
diagonalized, say, M(t) = Q(t)Λ(t)Q(t)T , and hence

x(t) = (1− t2)Q(t)Λ(t)−1Q(t)T1. (10.1)

Moreover, Q(t) and Λ(t) can be taken to be real-analytic functions of t [21, 26].
Let now v be the eigenvector of the matrix polynomial M(t) associated with the
eigenvalue µ, and normalized to unit 2-norm. Then, the matrix M(µ) has a simple
eigenvalue 0 and M(µ)v = 0. Let now λ1(t), λ2(t), . . . , λn(t) denote the eigenvalues
of the matrix M(t) for any fixed 0 < t < µ, where the labelling is such that λ1(µ) ≥
λ2(µ) ≥ · · · ≥ λn(µ). Letting qi(t) be the corresponding normalized eigenvectors, we
can expand (10.1) as x(t) = (1 − t2)qn(t)

T1λ−1
n (t)qn(t) + O (λn(t)/λn−1(t)). Now,
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observing that3

x̂(t) =
λn(t)

(1− t2)qT
n (t)1

x(t)

gives the same rankings as x(t) for any 0 < t < µ, since the two vectors are pro-
portional. Noting that qn(t) → v and λn(t)/λn−1(t) → 0 as t → µ−, we have that
x̂(t) → v for t → µ−, yielding the statement.

Theorem 10.1 has the following, somewhat surprising, consequence: a Perron-
Frobenius-like result for the deformed graph Laplacian.

Theorem 10.2. Let A be the adjacency matrix of a simple, connected, undirected
graph and M(t) be the corresponding deformed graph Laplacian. Let µ ≤ 1 be the
smallest real positive eigenvalue µ of M(t). Then, the corresponding eigenvector v

can be chosen to be componentwise nonnegative.
Equivalently, under the same assumptions, the eigenvector associated with the

dominant eigenvalue µ−1 of the matrix C in (8.1) can be chosen to be componentwise
nonnegative.

Proof. The first part of the statement is an immediate consequence of Theo-
rem 10.1. The second part follows from the first part and the theory of companion
linearizations of monic matrix polynomials, see for example [18, 24, 29, 30].

Note that, by [25, Equation (17)], the limiting behaviour of the NBTW centrality
measure characterized in Theorems 10.1 and 10.2 corresponds precisely to the non-
backtracking eigenvector centrality introduced in [25]. It is worth emphasizing that
this is generally different to the classical eigenvector centrality, thus showing that
(unlike classical centrality measures) our newly proposed centrality measure does not
follow the “universal” limiting behaviour for large t described in [3, Theorem 5.1].

At this stage it is useful to return to the star example (3.1). We know from
the first principles derivation in section 3, or from Corollary 7.1 and Theorem 7.3,
that the radius of convergence for the generating function is infinite. In this case
the nonbacktracking eigenvector centrality in [25], which can be computed via “the
leading eigenvector” of the matrix C in (8.1), corresponds to the limit t → 1. This
measure has the attraction of being parameter free. However, in this example there
are two dominant eigenvalues at ±1. In order to obtain nonnegative entries in the
corresponding eigenvector, we must choose the eigenvalue +1. The associated eigen-
vector corresponds to the null space of the graph Laplacian, and hence it is the vector
of all ones. So, nonbacktracking eigenvector centrality assigns the same value to all
nodes in the star. We regard this as unsatisfactory behavior, caused by the aim of
completely eliminating the localization effect. The more general NBTW centrality
measure introduced in this work may then be regarded as a means to interpolate
between this extreme case and the opposite extreme of degree centrality.

11. Synthetic Example: Galaxy Network. We now present a class of large
scale networks where constraining to NBTWs can be shown to give qualitatively
different, and potentially beneficial, results. We consider the case where m copies of
the star graph with adjacency matrix (3.1) are joined together via a single central
node which is linked to the central node of each star. Figure 11.1 illustrates the case
where m = 3 and n = 9. We will refer to such a structure as a galaxy graph.

3Note that here we require qT
n (t)1 6= 0. This is true because, by our previous analysis, evaluating

M−1(t) for any fixed value of t ∈ (0, µ) we obtain a nonnegative matrix (see also section 9). Hence,
by the Perron-Frobenius Theorem, the eigenvector corresponding to the smallest eigenvalue of the
matrix M(t), i.e., qn(t), has all nonnegative components, implying qT

n (t)1 > 0.
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Fig. 11.1. A galaxy graph with m = 3 stars, each with n = 9 vertices. Having labelled the
vertices as within the figure, for this galaxy graph we say that the vertex 1 is galaxy-central, the
vertices 2, 11, 20 are star-central, and every other vertex is peripheral.

We wish to analyze the walk-based centralities in detail. In each case, by sym-
metry, there are at most three distinct values for the entries of the centrality vector
x, corresponding to the three types of node. Along with x1, we will take x2 as a
representative of the star-central nodes (with indices xkn+2 for k = 0, 1, . . . ,m − 1)
and x3 as a representative for the remaining peripheral nodes.

For degree centrality (which is also the α → 0+ and t → 0+ limit of the other
centralities considered) we clearly have x1 = m, x2 = n and x3 = 1. Hence, for
m > n, the galaxy-central node ranks highest. In the case m ≤ n, there is still a
case to be made for node 1 to be the most central—intuitively it is best positioned to
initiate traversals around the network. We show below that even with m = O(1) as
n → ∞, it is possible for the NBTW to rank the galaxy-central node highest, whereas
Katz and eigenvalue centrality always place x2 > x1.

Still labelling by A the adjacency matrix of the star graph, and letting e1 =[
1 0 . . . 0

]T ∈ Rn, the galaxy graph has adjacency matrix

B =




0 e1
T . . . e1

T

e1 A
...

. . .

e1 A


 .

For Katz centrality, it is useful to know the eigenvalues of B. Define a± = (n−
1)−1/4

[
±
√
(n− 1)/2

√
1/2 . . .

√
1/2
]T ∈ Rn. Then A = a+a+

T − a−a−
T . Let

Q be any orthogonal matrix whose first two columns are a+/|a+| and a−/|a−|, then
QTAQ = D := diag(

√
n− 1,−

√
n− 1, 0, . . . , 0). Moreover, by Q(e1 − e2) =

√
2e1

21



we deduce that QTe1 = 2−1/2(e1 − e2) =: v and hence B is similar to




0 vT . . . vT

v D
...

. . .

v D


 ,

which in turn is permutation similar to (denoting by 1 ∈ R
m the vector of all ones)

0m(n−2) ⊕




0 1T /
√
2 −1T/

√
2

1/
√
2

√
n− 1 · Im 0

−1/
√
2 0 −

√
n− 1 · Im


 .

Computing the characteristic polynomial of the (2m+1)× (2m+1) matrix above
is immediate. For example, Schur complementing we get

(
λ2 − (n− 1)

)m
(
λ− m

2

2λ

λ2 − (n− 1)

)
= λ

(
λ2 − (n− 1)

)m−1 (
λ2 − (m+ n− 1)

)
.

We conclude that the Katz measure requires 0 < α < (m+ n− 1)−1/2.
The Katz system, (I − αB)x = 1, solves directly to give

x1 =
1 + (m− 1)(n− 1)α2 +mα

1− (m+ n− 1)α2
, x2 =

1 + nα

1− (m+ n− 1)α2
, (11.1)

and

x3 =
1 + α+ α2(1−m)

1− (m+ n− 1)α2
.

For NBTW centrality, we may work from first principles.
• The galaxy-central node 1 has m NBTWs of length one, m(n − 1) NBTWs
of length two, and no NBTW of length ≥ 3.

• From each star-central node, such as node 2, there are n NBTWs of length
one, m − 1 NBTWs of length two, (m − 1)(n − 1) NBTWs of length three,
and no NBTW of length ≥ 4.

• From each peripheral node, such as node 3, begin one NBTW of length one,
n− 1 NBTWs of length two, m− 1 NBTWs of length three, (m− 1)(n− 1)
NBTWs of length four, and no NBTWs of length ≥ 5.

Hence, we have

x1 = 1 +mt+m(n− 1)t2, x2 = 1 + nt+ (m− 1)t2 + (m− 1)(n− 1)t3, (11.2)

and

x3 = 1 + t+ (n− 1)t2 + (m− 1)t3 + (m− 1)(n− 1)t4. (11.3)

Whether x1 > x2 depends, for either centrality index, not only on the parameters
(α or t respectively) but also on m and n.

For both for the Katz and NBTW centrality, imposing x1 > x2 yields that α
(resp. t) must be greater than the critical value

n−m

(m− 1)(n− 1)
.
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If m ≥ n, both centrality measures give x1 > x2 for all valid paramater values—the
degree centrality ranking prevails. However, if n > m, it could happen that 1/ρ(B) is
smaller than this critical value, and hence Katz fails to have a transition to x2 > x1

when NBTW does.
Katz fails to have such a transition when

(n−m)2(m+ n− 1) > (n− 1)2(m− 1)2 (11.4)

and one way to achieve this when n → ∞ is if m = O(nγ) with γ ≤ 1/2.
For example, let us analyze what happens if m = O(1) while letting n grow. We

see in (11.1) that Katz always gives x2 > x1 in this regime, but for the NBTW version
in (11.2), the choice of t is crucial. To be concrete, fixing m = 5 we find that the
inequality (11.4) is satisfied for n > 21. Recall that α < 1/

√
n+ 4 in this setting. We

obtain for the Katz centrality

x1

x2
=

1 + 4(n− 1)α2 + 5α

1 + nα
,

which implies that x1/x2 = O(1/
√
n) when n grows and α is a given fraction of its

upper bound. Conversely, for the NBTW centrality

x1

x2
=

1 + 5t+ 5(n− 1)t2

1 + nt+ 4t2 + 4(n− 1)t3
.

Here, x1 > x2 for t > (n − 5)(4n − 4) ≈ O(1/4), and, for example, setting t = 1/2
yields x1/x2 ≈ 5/4 for large n.

For further comparison, we note that since we know that the largest eigenvalue
of B is

√
m+ n− 1, and again using the symmetry, it is straightforward to compute

the Perron-Frobenius eigenvector of B, and hence, the eigenvector centrality for the
galaxy graph. We find that

x1

x3
= m,

x2

x3
=

√
m+ n− 1 =⇒ x1

x2
=

m√
m+ n− 1

.

Again, we note that for n > m2 this yields x2 > x1.
In summary, in this example restricting to nonbacktacking walks can produce

dramatically different results, and can highlight the galaxy-central node even when
its degree is arbitrarily smaller than that of the star-central nodes.

We also recall the behavior of nonbacktracking eigenvector centrality on a star
graph, as discussed at the end of section 10. The same effect arises here: taking
the t → 1− limit in (11.2) and (11.3), we see that all nodes are assigned the same
centrality value by this measure.

12. Tests on Real Data. We continue with a test on a small network where
the results may be visualized easily. Figure 12.1 concerns a 40 node network with 42
edges. The network is based on a sample from the Barabási and Albert preferential
attachment model [2] generated by calling pref(40,1) in the CONTEST toolbox for
MATLAB [34]. To avoid having a tree, we also added three extra edges, creating
three cycles. The model produces “scale free” networks where many nodes have low
degree and a small proportion have high degree. In this case the degrees present
in the network are 17 (one node), 7 (one node), 5 (one node), 3 (two nodes), 2
(fourteen nodes) and 1 (twentyone nodes). The adjacency matrix A and the two-
by-two block matrix C in (8.1) have spectral radius ρ(A) = 4.26 and ρ(C) = 1.39.
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Fig. 12.1. Centrality measures for a preferential attachment network. Upper pictures have
node size proportional to Katz (left) and NBTW (right) centrality. Lower picture scatter plots the
two centrality measures.

For the Katz and NBTW centrality measures, we used 90% of the upper limit; that
is, α = 0.9/ρ(A) = 0.21 for Katz and t = 0.9/ρ(C) = 0.65 for NBTW. Figure 12.1
displays the network twice, with the size of each node proportional to the centrality,
using Katz on the left and NBTW on the right. We see that the NBTW version is
less closely tied to the nodal degree, and in particular does not emphasize the high
degree node to the same extent. The lower picture in Figure 12.1 scatter plots the two
centrality measures. This further clarifies that NBTW centrality has delocalized the
high degree node, and also shows that the two measures give different rankings, even
at the high end—the top 10 nodes, in descending order, are 1, 2, 13, 4, 8, 7, 21, 3, 12, 6
for Katz and 1, 2, 7, 13, 21, 17, 36, 4, 8, 3 for NBTW.

Looking at the localization effect in larger networks, with n = 50, 000 we called
pref(n,2) and added an extra 100 undirected edges uniformly at random, deleting
repeated edges. Using 500 independent preferential attachment network samples of
this type, the average inverse participation ratio (3.8) for degree centrality was found
to be 0.06, and for Katz with α = 0.9/ρ(A) it was the same order of magnitude at
0.05. For NBTW centrality with t = 0.9/ρ(C), this value decreased by an order of
magnitude to 0.003. (In all cases the standard error was below the precision displayed.)

Finally, we illustrate the effect of iteratively pruning the leaves from a network,
as discussed in section 8. On the left in Figure 12.2 we show the largest connected
component of a protein-protein interaction network for yeast [35]. There are 564 nodes
and 687 edges. After removing leaves until none remain, we arrive at the network
on the right, with 167 nodes and 290 edges. Using larger protein-protein interaction
networks from the Integrated Interactions Database [23] (downloaded on 13th of June,
2016), we found that leaf pruning reduced the number of nodes and edges, respectively,
as follows; worm: 4853 7→ 2628, 12635 7→ 10480; fly: 9139 7→ 7303, 49959 7→ 48146;
mouse: 7569 7→ 4583, 19268 7→ 16346. Similarly, Table 12.1 summarizes results for
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Fig. 12.2. A yeast protein-protein interaction network. Left: original network. Right: remain-
ing network after leaves have been iteratively pruned until none remain.

Table 12.1

Twitter networks for ten UK cities. First and second row: original number of nodes and
percentage of nodes that remain after pruning. Third and fourth rows: same information for edges.

Edinb. Glasg. Card. Brist. Nott. Birm. Sheff. Leeds Manch. Lond.
Nodes 1645 1802 2685 2892 2066 1321 2845 5263 7646 16171
Remain 41% 36% 45% 46% 44% 41% 44% 46% 44% 42%
Edges 2146 2284 4444 4538 3155 1993 4399 9319 12163 24266
Remain 55% 49% 67% 65% 63% 61% 64% 70% 65% 61%

reciprocated mention Twitter networks in ten UK cities, taken from [19]. We see that
more than half of the nodes and typically around a third of the edges are eliminated.
We conclude that pruning to reduce problem size is a viable option for some real
problem classes.

13. Summary. Our aim in this work was to motivate, define and analyse a
new walk-based network centrality measure. Our practical take-home message is that
backtracking walks can be eliminated at no extra cost, and, moreover, in doing so we
have a greater range of freedom in our choice of Katz-style downweighting parameter.
This parameter allows us to interpolate between standard degree centrality and the
recently proposed nonbacktracking eigenvector centrality of [25], which was specially
designed to eliminate localization effects but, based on our analysis of star-like graphs,
may be regarded as draconian.

Our work exploited results from the theory of zeta functions of graphs in or-
der to open up a new and fruitful connection between network science and matrix
polynomial theory. In this way we have posed and answered a range of novel and
practically important questions concerning the deformed graph Laplacian. From the
matrix polynomial perspective, we (i) characterized the spectrum of the deformed
graph Laplacian in terms of features of the underlying graph (see Table 6.1), (ii)
showed that the convergence of the associated power series is governed by the small-
est deformed graph Laplacian eigenvalue (Theorem 7.3 and Proposition 7.5) and (iii)
established a Perron-Frobenius type result (Theorem 10.2). From a practical per-
spective, in section 8, we derived computable bounds on the choice of downweighting
parameter. Further, we showed that since the deformed graph Laplacian spectrum is
invariant under the removal of leaves (Theorem 4.7), the idea of restricting attention
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to nonbacktracking walks has the potential to give computational gains for tree-like
networks.
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