
Noname manuscript No.
(will be inserted by the editor)

Default Policies for Global Optimisation of Noisy Functions
with Severe Noise

Spyridon Samothrakis, Maria Fasli, Diego Perez,
and Simon Lucas

Received: 1/12/2014 / Accepted: date

Abstract Global optimisation of unknown noisy functions is a daunting task that seems to
appear in domains ranging from games to control problems to meta-parameter optimisation
for machine learning. We show how to incorporate heuristics to Stochastic Simultaneous
Optimistic Optimization (STOSOO), a global optimisation algorithm that has very weak re-
quirements from the function. In our case, heuristics come in the form of Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). The new algorithm, termed Guided STOSOO
(STOSOO-G), combines the ability of CMA-ES for fast local convergence (due to the al-
gorithm following the “natural” gradient) and the global optimisation abilities of STOSOO.
We compare all three algorithms in the “harder” parts of the COCO-BBOP benchmark suite,
which provides a default set of functions for testing. We show that our approach keeps the
best of both worlds, i.e. the almost optimal exploration/exploitation of STOSOO with the
local optimisation strength of CMA-ES.

Keywords Evolutionary Computation, Tree Searches

1 Introduction

The problem of black-box noisy optimisation poses an interesting universality; it is so fun-
damental to most problem solving that, it is often not recognised as such. Most algorithms
are concerned with identifying “local” minima, following some form of gradient. Gradient
based solutions however are mostly limited by convergence to local minima. But algorithms
tailored directly towards global optimisation tend to be slow, as they need to almost exhaust
the search space before being able to give answers with any certainty. Nevertheless, it should
be possible to combine global search with some stronger heuristic, some kind of optimizer
that will approach local minima fast. In this paper, we combine an algorithm for global op-
timisation of arbitrary functions, termed Stochastic Simultaneous Optimistic Optimization
(STOSOO) [10]1 with the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [5],
and produce a third algorithm termed Guided STOSOO (STOSOO-G).

Spyridon Samothrakis, Maria Fasli, Diego Perez and Simon M. Lucas are with the School of Computer
Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom

1 The original name of the algorithm is StoSOO, we refer it here as STOSOO, since we choose to capitalise
all algorithm names for consistency.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74375496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Spyridon Samothrakis, Maria Fasli, Diego Perez, and Simon Lucas

Re-iterating the basic idea behind the paper, STOSOO does a very principled exploration
of the search space, but can be slow in multi-dimensional settings, whereas CMA-ES, which
follows closely the “natural” gradient, can be used as part of the optimisation process. The
method is largely inspired by Monte Carlo Tree Search (MCTS), a technique that has helped
improve performance immensely in domains such as Computer Go [1], which are mostly
however in discrete domains. In MCTS, external or a-priori knowledge is embedded in the
search in the form of patterns [4], which help improve the algorithm significantly. To the
best of our knowledge, this is the first time that STOSOO is combined with an evolutionary
inspired heuristic. Our hope is that the approach pioneered by MCTS, i.e., two different
search methods, will prove equally strong in continuous domains.

Another way of seeing this paper, and hence the methods introduced, is to think of
the role of the global optimiser as a very smart “restart” strategy, not that different from
partial restarts [9]. Assuming infinite computation, continuous restarts of an algorithm from
anywhere in the search space will help find a solution. In the case of a very noisy function
however, it is hard to discern when such restarts should happen and what information should
be retained. Coupling a global search method that is robust to heavy noise with a local
search alleviates the problem to a certain extend. This is our basic hypothesis, which we try
exploring here.

The rest of the paper is organised as follows. We start by providing a more formal pre-
sentation of the problem of noisy optimisation in Section 2. We present STOSOO in Sec-
tion 3, followed by CMA-ES in Section 4. We describe our algorithm in Section 5. We then
present the experimental framework on which we will benchmark all algorithms in Sec-
tion 6, followed by a discussion of the experiments in Section 7. We conclude with a brief
discussion on Section 8 on possible uses of our method within the wider Machine Learning
Community.

2 Function optimisation

Function optimisation refers to the process of trying to find a local maxima or minima of a
function, also known as “optima”. The problem can be formalised as follows. Let us define
a function f : X → Y , where X ∈ Rn and Y ∈ R, with n being the length of vector X .
X is usually called the search space of the function. The goal of function minimisation is to
find a x0 for which f(x) > f(x0) for all x. Alternatively, one can look for f(x) < f(x0)
for all x, which is known as maximisation. In our case, we also assume that the function is
perturbed in some way by a noise source and that the noise produced is independent of the
function we are interested in optimising. If we assume that each noisy sample is termed rt,
then we can say E[rt|xt] = f(xt). The difference between the best f(x) and the one our
algorithm found is termed regret, and the goal of optimisation is to minimise it. The prob-
lem of function optimisation is extremely generic and can be found under a host of settings.
It is well known that no method for optimisation has any advantage over another [11] in
the general case, however a number of functions that commonly occur in most engineering
problems have the following qualities: they have some form of local smoothness, i.e. it is
possible to find local derivatives/gradients. The function is not completely ill-posed, mean-
ing that small changes in x result in small (or at least manageable) changes in f(x). They
are often non-convex, which makes it easy to get stuck in local minima for most search algo-
rithms. The problem of noise polluting samples is also ever-prevalent, although the source of
this noise can vary wildly from application to application. Noise sources range from sensor
imperfections and artefacts to multiple agents interacting and, depending on their intensity,

Default Policies for Global Optimisation of Noisy Functions with Severe Noise 3

can impact the algorithm severely. In this paper, we are only interested in functions where
the noise level is significant proportion of the overall signal.

3 StoSOO

Stochastic Simultaneous Optimistic Optimization (STOSOO) [10] is a method of uncov-
ering the maxima of a function (provided they exist) by iteratively breaking the search
space down into different regions and sampling from them. For example, assuming func-
tion X ∈ [0, 1], STOSOO will initially sample from the whole range [0, 1], and proceed
into breaking this into K sampling points (in most cases, K = 2 or K = 3). Assum-
ing K = 2, it will now break down the search space into two leaves [0, 0.5], (0.5, 1] and
keep sampling from these leaves until some criterion is met (e.g., running out of a function
evaluation budget). This way a “coverage” tree is created, with the root node being [0, 1],
a multitude of nodes in the middle, and a multitude of leaves at the bottom of the tree.
Each node is evaluated k times. During each iteration, the algorithm decides which nodes in
the tree to sample from (by calling the function “Sample”), based on a term called b-value
bi,j,max = max

{
bnode[mini,maxj]

}
.

Algorithm 1 The STOSOO Algorithm.
function STOSOO(min, max,n)

k = n/log3(n), hmax =
√
n/k, δ = 1/

√
(n)

T ← {node[min,max]} . Root Node
t← 0 Total Number of evaluations
while t < n do

bmax ← −∞
for h = 0 to hmax do

for each leaf node[mini,max j] do
b← E(Nodei,j) +

√
log(nk/δ)/2T (Nodei,j) . T (Nodei,j) is the number of times

this node has been sampled
bnode[mini,maxj]

← b

bi,j,max = max
{
bnode[mini,maxj]

}
besti,j = argmaxi,j

{
bnode[mini,maxj]

}
if bi,j,max > bmax then

if T (besti,j) < k then
S(Nodei,j)← S(Nodei,j)+ SAMPLE() . Draw a random sample
T (Nodei,j)← T (Nodei,j) + 1
E(Nodei,j) = S(Nodei,j)/T (Nodei,j)

else
Expand Nodei,j and get its children nodes
bmax = bi,j,max

return Node with highest E(Nodei,j)

Where to search next is mediated by constantly calculating b−values, which are a sum
of exploration and exploitation terms, b ← E(Nodei,j) +

√
log(nk/δ)/2T (Nodei,j).

The first part of the sum is the mean of the node, and refers to the exploitation. The second
part is the exploration part of the equation. A totally greedy version of the algorithm would
have the exploitation term only. The algorithm is presented in Algorithm 1. Note that the
only assumption STOSOO makes is that the function to be optimised is Lipschitz continuity

4 Spyridon Samothrakis, Maria Fasli, Diego Perez, and Simon Lucas

around the optima, that is there is an upper limit to how fast the function can change. There
is no requirement to know this limit, just that there exists one.

4 CMA-ES

The Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES) is an evolutionary
algorithm designed for continuous domains, specially suited for non-linear and non-convex
optimization problems [5]. In general, this algorithm is applied to those problems that are
not constrained and are made of up to 100 dimensions.

The algorithm is based on using the multivariate normal distribution (MND). A multi-
variate vector X = (x0, x1, . . . xN), xi ∈ R is said to have an MND if it satisfies that any
linear combination from its components, w0x0 + w1x1 + · · · + wNxN , is normally dis-
tributed. CMA-ES creates a population of individuals by sampling from an MND:N (m,C),
which is uniquely defined by the distribution mean m ∈ Rn and its covariance matrix
C ∈ Rn×n. The top of the density function, which corresponds to m, also determines the
translation of the distribution. The covariance matrix C, positive definite and symmetric,
determines the shape of the distribution and its graphical interpretation: it defines an iso-
density ellipsoid {xi ∈ R|(x−m)TC−1(x−m) = 1}. The covariance matrix is isotropic
if C = σ2I , I being the identity matrix. D represents a diagonal matrix, whereas C stands
for a positive definite full covariance matrix. The contour lines define a potential objective
function. The goal of CMA-ES is to adapt the shape of the distribution to the contour lines
of the objective function to be minimized. The goal is obtained by iteratively updating the
mean vector m, the covariance matrix C and a step-size σ. The mean vector m of the dis-

tribution is updated as m =
µ∑
i=1

wixi:λ wi > 0, i = 1, 2, . . . , µ, where each xi is

sampled from the distribution: xi ∼ m+σN (0, C), µ is the number of individuals taken for
recombination, λ is the population size and wi are the weighted coefficients whose positive
recombination sums to 1.

An Evolution Path is defined as a sequence of consecutive steps over several gener-
ations, and they contain relevant information about the correlation between them. If two
consecutive steps are taken in the same direction, the evolution path becomes longer. Evo-
lution paths are used to guide the updates of both C and σ, in order to provide an evolu-
tion mechanism that does not converge prematurely but leads to an optimum. Cumulation
(or Exponential Smoothing) is used to build the evolution path at generation g for C (de-
noted p(g)c), as described by the next Equation, where cc is a defined constant ≤ 1 and
N(x) =

√
x(2− x)µef is a normalization factor for p(g)c , p(g)c = (1 − cc)p

(g−1)
c +

(m−m(g−1))
σ(g−1) N(cc). Similarly, an evolution path is updated for the step-size control. For a

more detailed description of these equations, the interested reader is referred to [5], but the

update equation is: p(g)σ = (1 − cσ)p(g−1)
σ + (m−m(g−1))

σ(g−1) N(cσ)C
(g)(−

1
2
)

. Once the cu-
mulations have been calculated, both C and σ can be updated. The value of C for the next
generation is obtained by applying the Rank-σ update. The Rank-σ update Cµ extends the
rank-one update ((p(g)c p

(g)
c)T) for large population sizes. The update isC(g+1) = (1−c1−

cµ)C
(g) + c1(p

(g)
c p

(g)
c)T + cµCµ, where Cµ =

µ∑
i=1

wiyi:λy
T
i:λ, yi ∼ N (0, C). Fi-

nally, the step-size σ is updated using the cumulative path length control method (CSA, or
cumulative step-size adaptation). The reasoning is as follows: if the evolution path p(g)σ is
long, the steps take similar directions, ergo the same distance can be covered with longer but

Default Policies for Global Optimisation of Noisy Functions with Severe Noise 5

fewer iterations. Hence, the step size must be increased. However, if p(g)σ is short, the steps
take opposite directions (they cancel each other) and their size should be decreased. Then,

given p(g)σ , σ is updated as follows: σ(g+1) = σ(g) exp
(
cσ
dσ

(
‖p(g)σ ‖

E‖N (0,I)‖ − 1
))

.
An initial mean m, step-size σ and population size λ must be provided at the beginning

of the algorithm. In our experiments, σ is set to 1/3 of the range of each variable and
λ ← 4.0 + 3.0 ∗ log(N), where N is the number of dimensions of the problem. An initial
mean value m is used that is half the range of each variable.

It was recently shown [7] that CMA-ES is a special case of natural gradient optimisation
algorithms, when using a Gaussian distribution as a model for the search parameters. It is
obvious that this implies a strong heuristic on the nature/shape of the function CMA-ES can
model (and thus optimise for) successfully, and one can easily design cases to get the algo-
rithm stuck on purpose. CMA-ES has been used as derivative-free global optimisation [8],
thought this is not its niche. Unfortunately the results of [8] focus on the noise-free case,
which differs significantly from our own.

5 STOSOO-G

Our algorithm is a combination of STOSOO and CMA-ES, inspired by the use of patterns [4]
in standard Monte Carlo Tree Search. The idea is that in the sampling function (what is
termed default policy) we embed any knowledge we might have, which however should
not impact the performance of the whole algorithm by diverging from any possible optima.
Thus, in our case, we use CMA-ES as a kind of a heuristic in the sampling process, modi-
fying STOSOO. Instead of sampling randomly between bounds, we sample based on what
CMA-ES proposes. Thus, our algorithm is exactly the same as STOSOO, but uses a modified
(bounded) version of CMA-ES as the sampling method. The modification simply involves
ensuring that bounds are respected. Now we sample from v = m + N (m,C) as normal,
but if any of the samples goes outside the limits [min,max] that we have set as bounds,
we truncate elements for vector v to uniform random values within those bounds. This new
CMA-ES now becomes our new sampling method. Whenever STOSOO requires a sample,
CMA is used for l = 4 iterations (l can be set to any “sensible” default value). If CMA-
ES fails to progress for l iterations, the best value CMA discovers is given to STOSOO.
In higher dimension functions, the interplay between STOSOO and CMA-ES provides an
effective restart mechanism, while in lower dimensions STOSOO can help attack functions
that due to their curvature CMA-ES cannot. In this sense, CMA-ES is being used as our
default policy. As long as it can improve on the underlying function, we trust it to optimise
it, otherwise we follow STOSOO.

The above ideas have been explored before in the context of global optimisation, espe-
cially by algorithms that branch and partition the search space, a popular example of which
is MCS [6]. In our case, we combine an algorithm whose only requirement is the function
being Lipschitz continuous close to the optima with an algorithm that follows the “natural”
Gradient.

6 The BBOP Benchmarking platform

Our benchmarks are conducted on the aforementioned algorithms on a standardised bench-
mark suite, called BBOP-2012 [3]. We will provide a description of the benchmarks in this

6 Spyridon Samothrakis, Maria Fasli, Diego Perez, and Simon Lucas

(a) Average error for f122 in dimension 20. (b) Average error for f122 in dimension 40.

(c) Average error for f123 in dimension 20. (d) Average error for f123 in dimension 40.

(e) Average error for f124 in dimension 20. (f) Average error for f124 in dimension 40.

Fig. 1: Figures plots for functions f122,f123,f124, level of significance α = 0.05

section, but for a complete description see: [3]. All functions have a global minimum in
[−5, 5]. We can begin by defining a set of helper functions:

1. D, the dimension of the problem. This can be one of 2, 3, 5, 10, 20, 40.
2. fopt = f(xopt), a function that performs a random transformation on the optimal values
xopt, for more detail see the BBOP’s manual [3].

3. Λa, a diagonal matrix with elements λ = α
i−1

2(D−1)

4. R,Q are rotation matrices, again see BBOP’s manual [3] for more detail.

The following noise models are used for all functions

1. Gaussian Noise: fGN (f, β) = f × exp(βN (0, 1)), where β = 1.

2. Uniform Noise: fUN (f, α, β) = f × U(0, 1)βmax
(
1,
(

109

g+ε

)αU(0,1))
, with β =

0.01, α = (0.49 + 1/D) and ε = 10−99.

Default Policies for Global Optimisation of Noisy Functions with Severe Noise 7

(a) Average error for f125 in dimension 20. (b) Average error for f125 in dimension 40.

(c) Average error for f126 in dimension 20. (d) Average error for f126 in dimension 40.

(e) Average error for f127 in dimension 20. (f) Average error for f127 in dimension 40.

Fig. 2: Figures plots for functions f125,f126,f127, level of significance α = 0.05

3. Cauchy Noise: fCN (f, α, p) = f + αmax(0, 1000 + 1{U(0,1)<p}
N (0,1)
|N (0,1)|+ε , with

α = 1, p = 0.2 and ε = 10−199.

Alongside the above functions, the following test functions are defined:

1. Shaffer’s F7:

fschaffer(x) =

(
1

D−1

D−1∑
i=1

√
si +

√
sisin

2
(
50s

1/5
i

))
, z = Λ10QT 0.5

asy

(
R
(
x− xopt

))
,

si =
√
z2i + z2i+1

2. Composite Griewank-Rosenbrock:

ff8f2(x) =
(

1
D−1

)D−1∑
i=1

(
si

4000 − cos(si)
)
+ 1,

z = max
(
1,
√
D
8

)
Rx+ 0.5, si = 100

(
z2i − zi+1)

)2
+ (zi − 1)2 ,zopt = 1

8 Spyridon Samothrakis, Maria Fasli, Diego Perez, and Simon Lucas

(a) Average error for f128 in dimension 20. (b) Average error for f128 in dimension 40.

(c) Average error for f129 in dimension 20. (d) Average error for f129 in dimension 40.

(e) Average error for f130 in dimension 20. (f) Average error for f130 in dimension 40.

Fig. 3: Figures plots for functions f128,f129,f130, level of significance α = 0.05

3. Gallagher’s Gaussian Peaks, globally rotated:
fgallagher(x) = Tosz(10−

101
max
i=1

wiexp
(
−1/2D(x− yi)

TRTCiR(x− yi))
)2

,wi ={
1.1 + 8((i− 2)/99) if i > 1
10 if i = 1

, Ci = Λa/a
1/4
i

BBOP also uses a boundary function that heavily penalises values outside the range [−5, 5],

fpen =
D∑
i

100max(0, |xi| − 5)2. fopt is a fixed optima.

The benchmarking functions are now defined as a combination of the above functions.

– f122(x) = fGN (fschaffer (x)), 1) + fpen(x) + fopt
– f123(x) = fUN (fschaffer (x), 0.01 (0.49 + 1/D) , 1) + fpen(x) + fopt
– f124(x) = fCN (fschaffer (x), 1, 0.2) + fpen(x) + fopt
– f125(x) = fGN (ff8f2 (x)), 1) + fpen(x) + fopt

Default Policies for Global Optimisation of Noisy Functions with Severe Noise 9

– f126(x) = fUN (ff8f2 (x), 0.01 (0.49 + 1/D) , 1) + fpen(x) + fopt
– f127(x) = fCN (ff8f2 (x), 1, 0.2) + fpen(x) + fopt
– f128(x) = fGN (fgallagher (x)), 1) + fpen(x) + fopt
– f129(x) = fUN (fgallagher (x), 0.01 (0.49 + 1/D) , 1) + fpen(x) + fopt
– f130(x) = fCN (fgallagher (x), 1, 0.2) + fpen(x) + fopt

7 Experiments

Fig. 4: fsp performance for all three different algorithms, with level of significance α =
0.05

Finally, all tests function are run for 2,3,5,10,20 and 40 dimensions. Results in the form
of regret (i.e., the optimal result minus what our algorithm found) for statistical significance
α = 0.05 are printed in Table 1. Bold letters indicate the best result with significance, while
italic indicates the worst significant result for the specific function/dimension combination.
We also print all the provided graphical representation for all BBOP functions in 20 and 40
dimensions. We can see the results for Gallaghers Gaussian Peaks in Figure 3, for Shaffers
F7 in Figure 1 and for Composite Griewank-Rosenbrock in Figure 2. We did 200 runs of
each algorithm, in order to get statistical significance in our results. Notice how STOSOO-
G performs better in all scenarios in high dimensions, with the exception of f130 in 40
dimensions. In all cases, results are better than just using one of the algorithms by itself,
with the notable exception of f124, which is a variant of Shaffers F7. STOSOO-G is signif-
icantly better in 13/18 functions in 40 dimensions. Notice also that in cases like functions
128/129 where STOSOO-G performs comparatively well in higher dimensions, STOSOO-
G performs much better than both algorithms. This is mostly in settings with Gaussian or
Uniform noise, while Cauchy noise seems to be more of a problem. This is to be expected,
as STOSOO-G and STOSOO calculate means. CMA-ES is a ranked based algorithm, so the
median would be a more robust estimator under Cauchy noise. In lower dimensions think
are slightly more confusing, with no clear winner, but a clear loser in CMA-ES. Obviously,
the performance of STOSOO-G is impacted, but not enough as to give significantly weaker

10 Spyridon Samothrakis, Maria Fasli, Diego Perez, and Simon Lucas

performance in the majority of functions. Across dimensions we can see various function
performances, ranging from STOSOO-G being better in every instance (as in f129), to no
clear winner.

Overall, STOSOO-G maintains the advantages of STOSOO. It is safe to claim that on
average, STOSOO-G achieves performance close to one of its best components, either its
heuristic/default policy, CMA-ES, or the main search function, STOSOO. Even in the case
where the algorithm does not perform that well, its performance is closer to its best con-
stituent. In higher dimensions, where the strength of the default policy (i.e. CMA-ES) plays
a more significant role, the strength of the combined method shines, whereas in lower di-
mension CMA-ES does not misguide the search.

In order to showcase the behaviour in lower dimensions, a final experiment worth dis-
cussing in greater was performed. We tried to maximise for function [10]

fsp(x0, x1) =

{
0.5(sin(13x1)sin(27x1)) + 0.5 + U [−0.16, 0.16] if |x0 − 1| ≤ 0.01
0 if |x0 − 1| > 0.01

, which has maximum at fsp(0.99, 0.867526) ≈ 0.975599. The function is constant for
quite a large part of x0, returning 0 in all of them and it has bounds around [0, 1]. From
Figure 4 we can see that, though CMA-ES struggles to perform adequately, it merely slows
down the quality of solutions found without impacting the quality itself, as both algorithms
overlap after a while. This slowing down is to be expected, as CMA-ES is providing a
suboptimal heuristic, confusing rather than helping the overall search process. W

8 Conclusion

We have shown that one can adapt the heuristic methods used in Monte Carlo Tree Search to
problems in continuous domains. To the best of our knowledge, this is the first time some-
thing like this has been explored. Our algorithm outperforms its constituent parts in most
cases under heavy noise. Overall we would like to emphasise the beneficial combination of
two search strategies within the same search algorithm. A top level, accurate one, trying to
weed out the “hard” part of search, while another, simpler one guiding search using some
kind of heuristic method. The intuition here is that a complex search problem can be decom-
posed into simpler, smaller, “tidier” search problems and these can be combined back to a
global search algorithm.

Next steps involve testing the algorithm in real domains, which could range from open
loop planning to Reinforcement Learning control problems. An interesting easily explorable
possible next step is to push simpler algorithms as the default policy (e.g., Linear Regression,
problem specific heuristics) and use them instead of CMA-ES as the local search model. If
possible, one might even substitute problem dimensions with ad-hoc heuristics tailored to
the specific problem. In that respect, what we are proposing is mostly a framework, rather
than an algorithm itself.

In real world problems, the sampling method does not have to be as sophisticated as
CMA-ES. It can be any method that incorporates domain knowledge. Another promising
research avenue is to combine STOSOO with off-policy algorithms (e.g., see [2]), which in
our case would signify one policy exploring and one policy building a different model of the
environment.

Default Policies for Global Optimisation of Noisy Functions with Severe Noise 11
D

im
en

si
on

2
3

5
10

20
40

Fu
nc

tio
n

A
lg

or
ith

m
ST

O
SO

O
-G

0
.1
9
6
±

0
.0
3
2

0
.5
0
4
±

0
.0
5
2

1
.4
5
5
±

0
.0
8
3

2
.6
9
1
±

0
.1
1
9

5
.7
9
8
±

0
.1
5
1

8
.4
6
6
±

0
.1
1
9

f
1
2
2

ST
O

SO
O

0
.2
0
2
±

0
.0
2
8

0
.2
7
8
±

0
.0
4
1

1
.3
2
8
±

0
.0
6
8

3
.8
2
6
±

0
.1
2
3

8
.2
6
6
±

0
.1
4
3

1
1
.3
2
5
±

0
.0
8
7

C
M

A
-E

S
1
.1
6
5
±

0
.2
9
9

1
.1
0
8
±

0
.2
3
2

2
.0
2
4
±

0
.2
1
7

2
.9
2
0
±

0
.2
2
4

6
.9
6
1
±

0
.2
8
7

9
.9
7
3
±

0
.2
0
8

ST
O

SO
O

-G
0
.6
2
0
±

0
.0
6
8

1
.3
0
6
±

0
.0
8
4

2
.4
4
0
±

0
.1
1
3

4
.8
0
9
±

0
.1
5
8

8
.1
2
1
±

0
.1
6
6

9
.9
5
3
±

0
.1
1
5

f
1
2
3

ST
O

SO
O

0
.4
5
7
±

0
.0
4
2

1
.5
1
3
±

0
.0
9
1

2
.4
2
3
±

0
.1
0
3

5
.9
5
2
±

0
.1
2
9

8
.7
8
6
±

0
.1
4
2

1
1
.7
1
5
±

0
.1
5
8

C
M

A
-E

S
4
.3
7
2
±

0
.9
2
9

3
.3
5
2
±

0
.3
2
5

3
.9
3
1
±

0
.2
2
5

7
.5
8
0
±

0
.4
6
1

1
1
.7
8
7
±

0
.3
9
2

1
2
.5
1
8
±

0
.2
1
6

ST
O

SO
O

-G
0
.0
9
8
±

0
.0
1
8

0
.1
9
9
±

0
.0
2
8

0
.3
6
7
±

0
.0
4
2

0
.4
9
1
±

0
.0
4
4

0
.7
8
6
±

0
.0
6
4

1
.3
3
8
±

0
.0
7
5

f
1
2
4

ST
O

SO
O

0
.0
9
7
±

0
.0
1
0

0
.4
4
6
±

0
.0
4
4

1
.0
4
1
±

0
.0
3
9

3
.0
9
9
±

0
.0
8
1

6
.6
4
8
±

0
.1
0
3

1
0
.9
3
9
±

0
.0
9
2

C
M

A
-E

S
0
.4
7
6
±

0
.1
8
1

0
.1
3
0
±

0
.0
4
9

0
.1
9
3
±

0
.0
5
3

0
.0
9
0
±

0
.0
1
2

0
.2
1
2
±

0
.0
2
7

0
.5
2
9
±

0
.0
4
3

ST
O

SO
O

-G
0
.0
0
4
±

0
.0
0
1

0
.0
4
6
±

0
.0
0
4

0
.1
8
4
±

0
.0
0
9

0
.4
5
5
±

0
.0
1
0

0
.7
2
1
±

0
.0
0
9

0
.9
6
4
±

0
.0
0
8

f
1
2
5

ST
O

SO
O

0
.0
0
7
±

0
.0
0
1

0
.0
8
2
±

0
.0
0
8

0
.1
5
0
±

0
.0
0
6

0
.5
6
2
±

0
.0
1
6

1
.0
4
5
±

0
.0
1
1

1
.8
9
6
±

0
.0
1
5

C
M

A
-E

S
0
.0
0
6
±

0
.0
0
2

0
.0
4
0
±

0
.0
0
5

0
.1
4
4
±

0
.0
1
1

0
.4
2
2
±

0
.0
1
3

0
.7
6
1
±

0
.0
1
3

1
.0
4
1
±

0
.0
1
2

ST
O

SO
O

-G
0
.0
0
6
±

0
.0
0
1

0
.0
6
1
±

0
.0
0
5

0
.2
3
5
±

0
.0
1
1

0
.5
5
3
±

0
.0
1
3

0
.8
0
7
±

0
.0
1
1

1
.0
4
9
±

0
.0
0
9

f
1
2
6

ST
O

SO
O

0
.0
0
9
±

0
.0
0
1

0
.0
5
2
±

0
.0
0
6

0
.3
0
3
±

0
.0
1
0

0
.8
2
5
±

0
.0
1
7

1
.3
0
4
±

0
.0
2
3

1
.9
6
1
±

0
.0
2
2

C
M

A
-E

S
0
.0
1
6
±

0
.0
0
4

0
.0
7
6
±

0
.0
1
0

0
.2
7
1
±

0
.0
1
9

0
.6
0
8
±

0
.0
2
0

0
.9
2
7
±

0
.0
1
5

1
.0
9
9
±

0
.0
1
2

ST
O

SO
O

-G
0
.0
0
4
±

0
.0
0
1

0
.0
4
2
±

0
.0
0
3

0
.1
6
1
±

0
.0
0
8

0
.3
7
8
±

0
.0
1
0

0
.5
7
7
±

0
.0
0
8

0
.7
3
2
±

0
.0
0
6

f
1
2
7

ST
O

SO
O

0
.0
0
4
±

0
.0
0
1

0
.0
3
6
±

0
.0
0
5

0
.1
4
6
±

0
.0
0
8

0
.5
1
0
±

0
.0
0
7

0
.9
9
3
±

0
.0
1
5

1
.6
6
2
±

0
.0
1
8

C
M

A
-E

S
0
.0
0
7
±

0
.0
0
4

0
.0
2
9
±

0
.0
0
3

0
.1
0
8
±

0
.0
0
7

0
.3
0
5
±

0
.0
0
9

0
.5
2
2
±

0
.0
0
8

0
.6
9
7
±

0
.0
0
6

ST
O

SO
O

-G
0
.0
3
6
±

0
.0
1
7

0
.5
2
8
±

0
.0
7
5

2
.0
7
3
±

0
.1
9
8

2
0
.5
6
6
±

1
.0
9
9

5
8
.7
7
1
±

1
.1
6
7

7
3
.5
5
0
±

0
.3
8
1

f
1
2
8

ST
O

SO
O

0
.0
3
5
±

0
.0
0
7

0
.4
3
1
±

0
.0
8
8

1
.8
5
9
±

0
.1
4
9

2
0
.4
7
7
±

0
.9
9
8

6
5
.2
9
4
±

0
.3
5
4

7
7
.9
9
2
±

0
.2
3
0

C
M

A
-E

S
0
.7
4
1
±

0
.1
0
5

1
.2
2
7
±

0
.1
2
1

2
.7
7
8
±

0
.4
5
6

3
0
.1
7
6
±

2
.2
4
9

6
7
.6
2
0
±

1
.2
3
7

7
7
.3
3
7
±

0
.3
0
2

ST
O

SO
O

-G
0
.0
6
1
±

0
.0
1
9

0
.6
3
2
±

0
.0
8
2

3
.2
7
1
±

0
.2
6
0

2
2
.4
2
6
±

0
.9
2
9

5
9
.9
5
9
±

1
.0
0
8

7
3
.6
0
4
±

0
.3
3
1

f
1
2
9

ST
O

SO
O

0
.1
6
8
±

0
.0
2
3

1
.0
0
0
±

0
.1
0
3

4
.3
4
4
±

0
.3
7
0

2
6
.9
9
5
±

0
.9
3
2

6
4
.7
0
0
±

0
.8
6
5

7
9
.1
2
0
±

0
.1
3
9

C
M

A
-E

S
0
.7
3
2
±

0
.0
9
5

1
.6
2
2
±

0
.1
4
4

7
.2
8
8
±

0
.6
6
8

3
9
.6
0
6
±

1
.8
0
7

7
0
.1
2
6
±

0
.6
7
2

7
7
.5
9
0
±

0
.2
9
5

ST
O

SO
O

-G
0
.0
8
9
±

0
.0
2
7

0
.5
0
3
±

0
.0
7
7

1
.2
9
3
±

0
.0
8
8

3
.7
0
3
±

0
.4
9
0

5
.6
5
7
±

0
.7
7
2

2
.5
2
8
±

0
.3
5
9

f
1
3
0

ST
O

SO
O

0
.0
1
4
±

0
.0
0
3

0
.4
0
5
±

0
.0
5
9

1
.3
9
8
±

0
.1
2
8

9
.9
2
5
±

0
.8
7
1

5
4
.9
0
6
±

1
.4
9
5

7
7
.6
0
1
±

0
.2
0
9

C
M

A
-E

S
0
.7
3
6
±

0
.0
9
3

1
.0
9
5
±

0
.1
2
0

1
.4
8
4
±

0
.2
1
6

5
.9
8
2
±

0
.8
9
0

7
.7
8
5
±

1
.0
2
8

1
.7
3
4
±

0
.2
9
5

Ta
bl

e
1:

A
ve

ra
ge

re
gr

et
fo

rB
B

O
P

Fu
nc

tio
ns

w
ith

se
ve

re
no

is
e,

w
ith

le
ve

lo
fs

ig
ni

fic
an

ce
α
=

0
.0
5

12 Spyridon Samothrakis, Maria Fasli, Diego Perez, and Simon Lucas

References

1. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., Colton, S.: A Survey of Monte Carlo Tree Search Methods. Computational Intelligence
and AI in Games, IEEE Transactions on 4(1), 1–43 (2012)

2. Degris, T., White, M., Sutton, R.S.: Linear off-policy actor-critic. In: In International Conference on
Machine Learning. Citeseer (2012)

3. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-Parameter Black-Box Op-
timization Benchmarking 2010: Noisy Functions Definitions (2012). URL
http://coco.lri.fr/downloads/download11.06/bbobdocnoisyfunctions.pdf

4. Gelly, S., Wang, Y., Munos, R., Teytaud, O., et al.: Modification of uct with patterns in monte-carlo go.
Tech. rep., INRIA (2006)

5. Hansen, N.: The CMA evolution strategy: a comparing review. In: J. Lozano, P. Larranaga, I. Inza,
Bengoetxea (eds.) Towards a new evolutionary computation. Advances on estimation of distribution
algorithms, pp. 75–102. Springer (2006)

6. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. Journal of Global Opti-
mization 14(4), 331–355 (1999)

7. Ollivier, Y., Arnold, L., Auger, A., Hansen, N.: Information-geometric optimization algorithms: A uni-
fying picture via invariance principles. arXiv preprint arXiv:1106.3708 (2011)

8. Rios, L., Sahinidis, N.: Derivative-free optimization: a review of algorithms and comparison of software
implementations. Journal of Global Optimization 56(3), 1247–1293 (2013). DOI 10.1007/s10898-012-
9951-y. URL http://dx.doi.org/10.1007/s10898-012-9951-y

9. la Tendresse, I., Gottlieb, J., Kao, O.: The effects of partial restarts in evolutionary search. In: Artificial
Evolution, pp. 117–127. Springer (2002)

10. Valko, M., Carpentier, A., Munos, R.: Stochastic Simultaneous Optimistic Optimization. In: 30th In-
ternational Conference on Machine Learning. Atlanta, États-Unis (2013). URL http://hal.inria.fr/hal-
00789606

11. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Evolutionary Computation,
IEEE Transactions on 1(1), 67–82 (1997)

