
Event Detection from Social Network Streams Using Frequent Pattern Mining
with Dynamic Support Values

Nora Alkhamees
School of Computer Science and Electrical Engineering

University of Essex
Colchester, UK

Email: nyaalk@essex.ac.uk

Maria Fasli
School of Computer Science and Electrical Engineering

University of Essex
Colchester, UK

Email: mfasli@essex.ac.uk

Abstract—Detecting events from streams of data is challeng-
ing due to the characteristics of such streams: data elements
arrive in real-time and at high velocity, and the size of the
streams is typically unbounded while it is not possible to
backtrack over past data elements or maintain and review
the entire history. Social networks are a good source for
event identification as they generate huge amount of timely
information representing what users are posting and discussing.
In this research, we are developing methods for event detection
from streams of data. More specifically, we are presenting a
framework for detecting the daily occurring events or topics
occurring in social network streams related to major events.
Our approach utilizes the Frequent Pattern Mining method
to detect the daily occurring frequent patterns, which are
going to be our detected events. In addition, we propose a
dynamic support definition method to replace the fixed given
one. An experiment was run on two streams relating to two
different major events to examine the detected events and to
test our support definition method. The UK General Elections
2015 stream holds more than one million tweets, and the
Greece Crisis 2015 stream contains more than 150k tweets.
The detected events were evaluated against news headlines
published the same day the event was found. The results
revealed that the higher the streaming level (bigger window
size), the more accurate the detected events. We also show that
for too small sized windows, a more strict support definition
method is needed to avoid detecting false or insignificant events.

Keywords-Stream Reasoning, Frequent Pattern Mining,
Event Identification from Social Network Stream.

I. INTRODUCTION

In the current era of social networks, almost everyone has
now become a virtual broadcaster sharing incredible number
of messages, especially these days with the widespread use
of smart phones and availability of mobile networks. The
Pew Research Centre survey on social network users [1]
showed that three out of four people online use social
networks. Even more surprising, it showed that not only
young people are increasingly using social networks but
the number of people of age 65 and older has more than
tripled since 2010. Mainly in this research we are interested
in benefiting from the availability of data in social network

Figure 1. Public Tweets

Figure 2. News Tweets

streams to develop methods for detecting and identifying
events.

Sometimes events spread faster in social media rather
than other forms of media, and they are widely discussed
there. This is clearer in unplanned events than already known
and planned ones. Consider for example the shooting event
that happened in Ferguson, Missouri, USA which turned
into national and international news with 3.6 million tweets
posted from the 9th of August (the day of shooting) until the
17th of August. The first story emerged on Twitter before
any other news channel 1. Furthermore, when tracking events
published in social networks, one can sense people’s reaction
towards the event in comparison to news wires which are
more formal and objective, refer to figures 1 and 2 for
a comparison between tweets posted from news and from
public users regarding the Ferguson shooting event.

An event is defined as a real world occurrence of some-
thing with an associated place and time period [4]. Event
identification is the process of looking for events.

Each day we are interested in finding all frequent patterns
that are eligible for being events by applying a Frequent
Pattern Mining (FPM) method. In order to run any FPM
algorithm, the support threshold which is a metric for

1http://www.pewresearch.org/fact-tank/2014/08/20/cable-twitter-
picked-up-ferguson-story-at-a-similar-clip/



item retrieval must be specified in advance. Any item with
frequency greater than or equal to the minimum support
value is retrieved. However, using a fixed support value with
frequent pattern mining to detect events may not be efficient
especially in changeable and dynamic environments such as
microblogs and social networks, where the number of daily
posts is not fixed or predetermined. Hence, a dynamically
defined support value is more appropriate as it can be
calculated based on each day window size and occurrence
of keywords.

In this work, and using a social network stream, we want
to develop methods for detecting the daily occurring events if
any. Using a FPM method with a dynamic calculated support
value, we want to identify the frequent patterns which are
going to be our detected events. Typically, from every day
window-batch consisting of current day text-posts we have
to calculate its support value, and then use that support value
to detect events. The support is a critical value, an accurate
definition of it can lead to accurate and valid identified
events. Moreover a low support value may lead to mixed
topics or events with too many selected terms, while on
the other hand, with high support values fewer terms are
selected which might lead to very generic topics or events.
The support is calculated based on keywords occurrence and
frequency. Experiments were applied to evaluate our event
identification framework on a Twitter stream for the UK
General Elections (GE) 2015 event and the Greece Crisis
2015 event. Furthermore, the detected events were evaluated
against what was published in news headlines in the World
Wide Web regarding the under study event. If a detected
topic or event was found the same day a news headline is
published, then it is said a true event, and an insignificant
or false event otherwise.

Our motivation is to provide an event detection method
that is capable of identifying events regardless of the window
size, using a dynamically calculated threshold based on
people’s engagement with a major event to replace the fixed
given one. This framework can be used by any person or
software that is interested in knowing the effect and growth
of major events to discover its source topics/events.

The rest of this paper is organized as follows. Next
we briefly describe the related work. The following
section discusses social network stream analysis and event
identification followed by the description of the support
definition method, which is the core of this paper. The
subsequent section presents the experimental evaluation,
analysing and discussing both the experiments conducted
and the findings. The paper ends with a summary and the
conclusions.

Table I
TRADITIONAL VS STREAM REASONING

Traditional Reasoning Stream Reasoning
Analysis in that case is ap-
plied to all available data.

Analysis is hard to be applied
to all data (streams are un-
bounded), so the idea of slid-
ing window was invented.

Processing here starts when a
query is fired and ends when
either result is found or all
data is scanned.

Stream reasoning requires
continuous processing it
never ends.

II. RELATED WORK

A. Stream Reasoning

A data stream is a continuous sequence or flow of data
over time in real-time and often at high velocity [2]. Data
streams produce a huge amount of data, and can come from
different sources: sensors, website click streams, financial
markets, social networks, etc. An example of such streams
is the posted tweets in Twitter.com. Twitter is an online
social networking service that enables users to send and
receive short 140-character message posts called “tweets”.
An average of 6000 tweets tweeted every second in Twitter
2. In a data stream, the data items are usually ordered by
time-stamp value and in most cases are processed on arrival.
The data items in data streams can be either structured data
(e.g., temperature data, tick prices); semi-structured data
(e.g., HTTP log streams); or unstructured data (e.g., emails,
tweets).

With the huge growth in computational devices such as
embedded processors as well as applications that consume
and produce data in real time, there is an increasing need for
processing and reasoning methods that are able to deal with
continuous streams of data and increasingly so, from mul-
tiple streams. Stream reasoning was first explored by Della
Valle et al. in 2009 in [3]. They described stream reasoning
as “an unexplored, yet high impact, research area”, where
reasoning is applied in real time to noisy data streams, so
as to support decision making. Table I shows a comparison
between traditional reasoning and stream reasoning on how
analysis is performed and when it starts and terminates.

Existing stream processing systems fall under two cat-
egories: (i) Data Stream Management Systems (DSMS),
which are part of the database community, or (ii) Complex
Event Processing (CEP) systems, which are part of the
event based community [4]. DSMSs [5] inherit the relational
data model and an expressive query language typical of
Data Base Management Systems (DBMS). Such systems use
the Continuous Query Language (CQL), where queries are
continuously running. CEPs on the other hand are commonly
used in event driven environments, where a time element
must be embedded in the stream, the main idea is continuous

2http://www.internetlivestats.com/twitter-statistics/



processing to detect occurring events [6]. Instead of queries,
rules are defined to indicate the occurrence of an event using
the Event Processing Language (EPL).

B. Topic Detection Methods

Topic detection methods are classified to be under three
major categories [7]: Document-pivot methods, Feature-
pivot methods, and Probabilistic topic methods.

1) Document-Pivot: In Document-pivot methods, topics
are represented as a set of related documents. Typically such
methods compute similarity between either pair of docu-
ments or between a document and a cluster. Document-pivot
approaches differ mainly in calculating the similarity. For
instance, in [8] similarity calculations were based on Term
Frequency-Inverse Document Frequency (TF-IDF) weight-
ing scheme. It compares the TF-IDF score of the incoming
tweet with the TF-IDF score for the first tweet in each cluster
along with the TF-IDF score for the most common words
in that cluster. The comparison results in either adding that
tweet to the best matching cluster or creating a new cluster.
Petrovic et al. in [9] proposed a modification on the Locality
Sensitive Hashing (LSH) approach to be able to find the
best matching similar document in a faster way. In another
approach [10], a graphical model named Location-Time
Constrained Topic (LTT) was proposed, which identifies the
content, time, and location of each posted social post. As a
result, a post is represented as a probability distribution and
the similarity between two posts is calculated based on the
distance of their distributions.

2) Feature-Pivot: The feature-pivot approach mainly fo-
cuses on grouping terms based on their occurrence to
represent a topic. It is a two-step approach, starting with se-
lecting targeted terms based on their frequency or burstiness,
then clustering terms based on some inter-term similarity.
Feature-pivot approaches differ in terms of selection criteria.
For instance, in [11] term selection was based on an “en-
ergy” measure of a term. The term’s “energy” is calculated
based on both term frequency and the importance of the
user who posted the post. Depending on its “energy”, a
term is clustered using a graph based algorithm to detect
events. Another approach in [12] is the Event Detection
with Clustering of Wavelet-based Signals (EDCoW), which
selects terms by applying wavelets analysis based on term
frequency, then clusters these terms based on a modularity-
based graph partitioning technique to represent an event.
The Frequent Pattern Mining (FPM) [13] has been used
in feature-pivot approaches to measure the co-occurrence
of any number of terms instead of a pairwise terms co-
occurrence. Some efforts using the FPM to detect topics
are [14]–[16].

3) Probabilistic Topic Model: The probabilistic topic
model treats the topic detection issue as a probability in-
ference problem. A topic is represented as a distribution
between both terms and documents. The most well-known

probabilistic topic model is the Latent Dirichlet Allocation
(LDA) [17], where documents are represented as mixture
of latent topics. The learning and interpretation in LDA
is naturally done using Variational Bayes [18] and other
approaches including Gibbs Sampling [19]. A supervised
version of the traditional LDA was proposed such as in [20].

C. Frequent Pattern Mining

Frequent patterns are itemsets or transactions that occur in
a dataset with frequency no less than a predefined threshold
called “support”. Frequent Pattern Mining was first proposed
for the market basket analysis science by Agrawal et al. [21].
It analyses a customer’s shopping basket to find association
between customers and their bought items. FPM intro-
duces three basic frequent itemset mining methodologies:
Apriori, FP-Growth, and Eclat [13]. FP-Growth [22] is a
frequent itemset mining method which requires less number
of database scans, no candidate generation and works in
a divide-and-conquer way. Furthermore it is suitable for
both huge number of database transactions and for longer
patterns. It is based on a compact constructed tree that is
then mined to find frequent patterns instead of depending
on the whole data set.

1) Frequent Pattern Mining from Online Data Streams:
Online data streams share a number of features which are
currently considered the stream reasoning challenges. These
data streams are of unknown size, irregular data arrival rate,
and a single scan is only possible without backtracks [23].
The traditional methods for mining frequent itemsets in a
static DB requires a number of DB scans. However this
is not applicable in online data streams due to memory
and computational constraints. Therefore traditional methods
cannot be directly applied on data streams [23], as it is
impossible to go through the whole data stream in a single
scan. According to [24] mining frequent itemsets from data
streams falls in one of the following: landmark model, fading
model, and a sliding window model.

A landmark model considers all data from a specified
point of time a “landmark” to the present time. Usually it
starts at the beginning of the stream till the current time,
and it treats all data equally. A fading model works in the
same way as the landmark model except it assigns different
weights to data. New data transactions are given higher
weights as an indicator that latest data is more important.
Finally the sliding window model uses a sliding window that
slides over the data stream to find frequent itemsets. This
window can be either a transaction based window consisting
of a fixed number of transactions or time based window of
a fixed time length.

The first attempt in using the FPM to detect events
from Twitter was in [14], where they used the Frequent
Pattern Stream Mining Algorithm (FP-Stream) proposed by
[25]. Another effort by Petkos et al. in [15] was dedicated
to topic detection from Twitter. They applied a softened



version of the FPM named Soft Frequent Pattern Mining
(SFPM) Algorithm. In [26], an improved version of the
SFPM was devised to deal with dynamic environments.
A more recent approach in [16] proposes a High Utility
Pattern Clustering (HUPC) framework for detecting topics
from microblog streams. It is a two-step framework, starting
with detecting a representative High Utility Pattern (HUP)
from the microblog stream then grouping these patterns into
topic clusters.

III. SOCIAL NETWORK STREAM ANALYSIS AND EVENT
IDENTIFICATION

Before describing our framework we first provide some
definitions and clarifications. Let a social network stream
S represent the posted text-posts at a given time stamp
T . Let all recent text-posts arriving in fixed time interval
(e.g., single day) represent the current window-batch ST , and
text-posts that arrived the previous time interval (previous
day) represent the previous window-batch ST−1. Each text-
post si belongs to a window-batch and is represented as
a bag-of-words. In addition, a window-batch size is not
fixed, it may consist of any number of text-posts. Each
window-batch will have a dynamically calculated support
value SppT depending on that window-batch received text-
posts. A window batch ST may have no events detected at
all ET = {φ} or N events ET = {E1, E2, ..., ELN}.

An abstract model of our approach for event detection
from social networks stream is shown in figure 3. We
have three main components applied on each window-batch:
Support definition, Detection of frequent patterns (FPs), and
Post-processing. Once we have received a window-batch for
the current time stamp (ST ) from our social network stream
(i.e text-posts posted during the current day), we want to
dynamically calculate the support value (SppT ). In the next
step, and by using the (SppT ) value, we want to apply the
FPM algorithm to identify and detect the frequent patterns
from each window-batch. Finally a post-processing step is
applied to the found frequent patterns in order to have more
concise and compact detected events.

As the General Elections 2015 stream was bigger and
with more windows than the Greece Crisis stream, we will
be focusing mainly on this when it comes to showing the
data stream details and some analysis snapshots.

A. Support Definition

Support definition is the core of our event identification
framework. We seek to develop a calculated support value
that has the potential to detect events. In particular, a low
support value may lead to a huge number of detected topics
or events (frequent patterns) with too many selected terms,
while on the other hand with a high support value fewer
terms are selected which can lead to very generic and vague
or false topics or events.

Figure 3. Event Detection Abstract Model

In FPM, the support is a metric for term selection and
retrieval. Terms with frequency satisfying the support value
are retrieved while others are ignored. Each day a different
support value will be calculated depending on that day’s
posted text-posts.

We have tried different and various ways and applied
various methods and techniques to calculate the support
value. We seek to obtain support values that are proportional
to and reflect the window size. This means a higher support
value for big windows and a lower one for small sized
windows. The support definition in each window is mainly
focusing on terms’ frequency. So, initially we start by
counting the frequency of each term in all text-posts that
belong to the same window-batch, in other words, we count
the frequency of every term on a daily basis. We found that
words occurring only once (with frequency 1) are almost
equivalent to one-third of the total number of distinct words
in a window-batch. As words appearing once will not help
in finding the important and frequent patterns, they were
removed as a preliminary step.

Depending only on the terms’ frequency average in a
window-batch to be a metric for term’s retrieval is not
enough for defining the support, the number of terms exceed-
ing the average is still big, and because we are looking for
frequent patterns that are truly frequent and are as concise as
possible, it is insufficient just to adopt the terms’ frequency
average for defining the support. Table II shows all the
29 window-batches calculated average values, and figure 4
shows a graph presenting the number of terms exceeding
the average value in each window-batch. As shown from
the high number of terms satisfying the average in figure
4, yet more calculations are required to avoid having low
support values. Equation 1 shows the calculation for the
terms’ frequency average for a single window batch, where
N is the total number of words in a window. As a result,
additional metrics need to be considered for defining a strict
window support value.



Figure 4. Number of words exceeding both the average and the support
for each window

t̄ =

∑
ti

N
(1)

We are seeking support values that are greater than the
terms’ frequency average in a window and at the same
time are proportional to each window size. As a result, our
approach for calculating the support was to multiply each
window terms’ frequency average by that window’s median
value. The median is a statistical value that separates higher
values from the lower ones, it is the middle value of a sorted
list [27]. Accordingly, a list of each window’s distinct words
along with its frequency was sorted in descending order
according to frequency to find the median value. Median
values for all the 29 window-batches are shown in table
II. As a result the found support values were proportional
to each window size. Again refer to table II to see the
calculated support value for each window batch, and to
figure 4 to see a graph showing the number of words
exceeding the calculated support values in comparison to
the total number of words exceeding the average values.
Equation 2 shows the method for the calculation of support.

Spp = avg(ST )×median(ST ) (2)

As a result, considering the median along with the terms’
frequency average for each window to define the support
value, yields reasonable results in comparison to other
methods that were investigated and is proportional to the
size of the window.

The Algorithm for defining the support value is illustrated
in figure 5, where the support calculation process for every
incoming window-batch from the social network stream is
shown. In lines 2 and 3, both the total and distinct number
of words are counted to be used for finding the Average and
Median values in lines 4 and 5. Line 6 shows the support
definition equation. Each window-batch calculated support
value is used for retrieving terms with frequency greater than
or equal to the support.

Input: SNstream: Social network stream
Output: Spp: The support calculated value

1: for each incoming window ST in SNstream do
2: distinctwords= count-distinct-words(ST )
3: totalwords= count-all-words(ST )
4: avg = calculateavg(ditinctwords,ST )
5: median = calculatemed(ditinctwords,ST )
6: Spp = avg ×median
7: return Spp
8: end for

Figure 5. Defining the Support Value Algorithm

Table II
WINDOWS’ DATA ANALYSIS

W# Tweets all-words distinct-words AVG Med Spp

1 23836 151971 6303 24.11 6 145

2 24294 150417 6364 23.64 5 118

3 27210 174002 6518 26.7 6 160

4 33622 215318 6719 32.05 6 192

5 27759 188474 7021 26.84 6 161

6 23427 151191 6660 22.7 6 136

7 22511 144524 6592 21.92 6 132

8 22032 141516 6441 21.97 6 132

9 29957 193169 7463 25.88 6 155

10 27023 176840 7035 25.14 6 151

11 35546 238658 8144 29.3 6 176

12 34281 217300 8240 26.37 6 158

13 34410 227812 8012 28.43 5 142

14 27052 172363 6896 24.99 5 125

15 57347 347061 10387 33.41 6 200

16 73571 466232 12152 38.37 6 230

17 171829 998267 18623 53.6 6 322

18 388966 2595697 28614 90.71 6 544

19 13648 88096 4958 17.77 5 89

20 7942 47426 3571 13.28 4 53

21 5545 35827 3007 11.91 4 48

22 4081 24199 2553 9.48 4 38

23 3744 21982 2411 9.12 4 36

24 2429 15194 1960 7.75 3 23

25 2262 12920 1755 7.36 4 29

26 1607 10126 1449 6.99 3 21

27 2046 13349 1486 8.98 3 27

28 2215 15308 1651 9.27 3 28

29 1699 11242 1248 9.01 3 27

Refer to table II to view the total number of words,
number of distinct words, terms’ average frequency, median,
and the support for all the 29 window-batches.



Table III
DATA COLLECTION SUMMARY

Event no. of tweets no. of windows
General Elections 2015 1m 29

Greece Crisis 2015 150k 17

IV. EXPERIMENTAL EVALUATION

A. Data Collection, Description and Preparation

We want to choose a major event that is happening or is
planned to happen and collect text-posts related to it from
a microblog stream. Once posts are starting to be collected
we aim to develop methods for identifying topics occurring
or taking place within that event every day.

From Twitter stream and using the Twitter streaming
API3, which enables the extraction of tweets in real-time,
based on certain query parameters like: certain keywords,
certain location, etc. We queried the Twitter API for the fol-
lowing terms (British Elections, GE2015, VoteGE15, GE15)
to collect tweets related to the UK General Elections 2015,
and the following terms for the Greece Crisis 2015 (greece
crisis, greece bailout, greece referendum, grexit, greece eu,
greece eurozone). We got more than one million tweet for
the General Elections event collected in weekdays from
9am- 5pm in the period from 15-4-2015 till 26-5-2015.
While we got more than 150k tweets collected in the period
from 29-6-2015 till 16-7-2015 from Twitter for 2 hours
daily for the Greece crisis event, refer to table III for the
data streams collection summary. The retrieved tweets were
placed in a MongoDB 4, which is a NOSQL database that
is capable of handling unstructured data.

As a preliminary step and before applying the FP-Growth
algorithm, we tokenized every tweet text to tokens not
only depending on white space but with keeping in mind
mentions @, URLs and hashtags #. After that we applied
some pre-processing steps such as removing punctuations,
mentions, hashtags, URLs, and stop words. As we are
interested in finding topics that occur every day, we chose
the window model to represent our stream. The window
size was defined to be a single day and depending on
the date a tweet was posted it will belong to a certain
window. The total number of tweets in each window is not
fixed, for example from our GE stream the total number
of tweets in the first day of our tweet collection, which
was 16th of April 2015 is equal to 23836 tweets while
on day 15 which is the 6th of May 2015 it was 57348 tweets.

B. Applying the Frequent Pattern Mining

We are using the FP-Growth algorithm which is based
on constructing the FP-tree as a first step, then mining

3https://dev.twitter.com/tags/streaming-api
4https://docs.mongodb.com/

Figure 6. Found frequent patterns from a single window-batch

and traversing through that tree to find frequent patterns.
Additionally we want to use the daily calculated support
value to detect the frequent patterns from each window.
So for every window-batch, we initially start by creating
a list of all terms sorted by frequency. We kept terms with
frequency satisfying the calculated support value and discard
the rest. Then the FP-tree is constructed for each window
based on terms’ frequency. Lastly the constructed FP-tree
is traversed to find and extract the daily occurring frequent
patterns. These found patterns are assumed to be the topics
or events discussed on that certain day. The FP-Growth
algorithm was chosen among other FPM algorithms [13]
(Apriori and Eclat) because it best suits our data stream by
requiring less stream scans, and no candidate patterns are
generated. The text-posts are assumed to be the transactions
or itemsets, and the text-post terms are assumed to be the
items. We applied the FP-Growth algorithm using the SPMF:
An Open Source Data Mining Java Library [28]. A snapshot
of the detected frequent patterns for a single window-batch
is shown in figure 6.

C. Post processing

The found frequent patterns after applying the FP-Growth
algorithm with our dynamically calculated support values
were partially duplicated (refer to figure 6), and some of
them were irrelevant patterns. We are not interested in
finding all the frequent patterns from our stream, instead
we want to have patterns that are eligible for being topics



Figure 7. Non-relevant patterns from a single window-batch

or events.
In addition, some studies showed that large number of

tweets associated with major events may be irrelevant or
misinforming. A study of the Ferguson unrest in 2014 in
[29] showed that almost 25% of posted tweets were actually
rumours. Another study in [30] considering the Hurricane
Sandy in 2012 showed that more than 10k unique tweets
out of 1.7m tweets contained fake images. They also found
that 68% of the fake tweets spreading was through retweets,
and the top 30 users out of 10,215 users resulted in 90% of
the fake tweets being retweeted.

As a result, we further need to consider a post processing
step in order to discover more useful and compact patterns.
Accordingly only patterns belonging to big branches are
preserved, a branch is said to be big if its size exceeds
the calculated support value for that window. Hence if
the branch size exceeds the support value then it is kept,
otherwise it is ignored. Applying the branch size restriction
helped in avoiding non-relevant and meaningless patterns
which in most cases belong to small size branches, figure 7
shows an example of some non-relevant patterns. Afterwards
from the retained big branches we look for the longest
pattern and omit all the subset ones to avoid repetition.
Snapshots of the found frequent patterns for some windows
after implementing both the branch size constraint and the
omitting of subset patterns are shown in figure 8.

Figure 8. Snapshots of some windows frequent patterns

As some of the found frequent patterns were related to
the same subject and discuss the same topic, we had to
add a similarity metric to choose a representative pattern
instead of having them all. The Cosine Similarity was used
with a high threshold set to 75% to ensure that only similar
patterns are compared with each other and to limit the
similarity comparison only to patterns that are truly related
to each other. So, if two patterns were at least 75% similar
to each other the longer pattern was kept while the other
one was ignored. The cosine similarity calculation is shown
in equation 3, where A and B are the compared patterns.

COS(ΘA,B) =
→
A ·
→
B

→
‖A‖
→
‖B‖

(3)

D. Discussion

With our event detection framework from data streams,
we can detect events occurring every day if any. The goal
is not to identify all the daily occurring frequent patterns
from every window-batch, but instead, to detect and find a
frequent pattern that is eligible for being an event. Looking
for events or topics that emerge every day is challenging, we
basically depend on only a single window-batch to define its
support value and to identify and detect events if any.

Evaluating the found topics was done manually, we looked
for news headlines published in the World Wide Web the
same day a topic (frequent pattern) was found and compared
them. If the detected event or topic keywords matches a news
headline keywords and is found the same day the news was
published, then it is said a true event, and a false or spurious
event otherwise.

From the GE stream all the found frequent patterns
till window 20 (12th of May 2015) were related to news
headlines and were found the same day the headline was
published on the World Wide Web. Except for window 18
which is one day after the elections date where the lingering
effect of the elections results was still showing. The detected
events still seem to be associated with the aftermath of the
elections and topics that people were discussing during the
elections like NHS, disability allowance etc. On the other
hand, frequent patterns found few days after the elections
date (more precisely from Monday 13th of May onwards)



were less related to events but instead they were arguing
and disseminating various things. The support calculated
values in this period dramatically fall as a result of the
lower number of posted tweets. Consequently keywords
co-occurrence in these windows is small as well, refer to
table II to see the number of posted tweets, keywords, and
support calculated values. Consider for example a support
value equal to 23, this means the terms of any tweet getting
at least 23 retweets is satisfying the support value. A too
low support value will lead to finding frequent patterns
that are vague and does not represent an event. Therefore
a more strict support value is needed in less active days
(window-batches with fewer text-posts) to avoid detecting
spurious events. So, depending on the number of text-posts
found in a window-batch, the support value is calculated as
follows in equations 4 and 5. Equation 5 shows the small
sized window equation, where we double the median value
in order to have an even stricter support value. However a
window is considered a small sized window if the number
of posted tweets is less than one-third of the average
number of total tweets in the stream. For the GE stream a
window with less than 10k tweets is considered small size
window. So windows 20 till 29 are considered small sized
windows and require the small window support calculation
method.

Big window-batch:

Spp = avg(ST )×median(ST ) (4)

Small window-batch:

Spp = avg(ST )× (2×median(ST )) (5)

After applying the low support value restriction, all the
calculated support values still reflect their window-batch
size, which in turn will help in retrieving only targeted and
potential terms. The calculated support value for window
18, which is the biggest window with (388966) tweets
containing (28614) distinct terms, is equal to 544, whereas
the support value for window 26, which is the smallest
window with only 1609 tweets containing (1449) distinct
terms, is 41. For window 10, which is a medium sized
window with 27023 tweets containing (7035) distinct terms,
the support is 151.

Moreover, all the detected events after applying the strict
support definition method from the GE stream matched news
headlines regardless of the window-batch size, refer to table
IV where each window is shown with its detected frequent
patterns along with the associated news headline.

When event detection is applied in realtime or near
realtime the decision of an upcoming window-batch size
is not determined as the size of the stream is unknown in
advance. We regard the window size allocation and decision
as a 2-class (big or small) classification problem. As a
result a logistic regression (LR) model [31], [32] was built

to decide whether a window-batch is big or small size
window. Logistic regression is a machine learning algorithm
for binary classification. It is a widely used statistical method
for analysing a dataset in which there are one or more
independent variables that determine a binary outcome.
The LR model is shown in equation 6, where β0 is the
intercept and β1, β2, .., βn are coefficients associated with
the independent variables x1, x2, .., xn. In this work, we
have the number of streamed tweets in a window as the
independent variable which determines a binary outcome
(1 for big size window and 0 for small size window). Our
logistic regression model was built using the GE stream as a
training set, and have learnt that the intercept β0 = −72.550
and the coefficient β1 = 0.0538.

1

1 + e−(β0+
∑n

i=1
βixi)

(6)

For the Greece Crisis stream, we explored 17 windows,
due to space restrictions it has not been possible to show the
detected events. However, all the detected events using our
event detection framework along with the LR model matched
news headlines. Furthermore, the nature of the Greece Crisis
event is different from the General Elections event. This
was clear from the high number of detected events for some
windows, where events were unsustainable, successive and
fast.

V. CONCLUSION

This paper has shown the applicability of our event identi-
fication framework on streams of data. Specifically it showed
how using the FP-Growth algorithm along with our dynamic
support definition method detects the occurring events or
topics from the Twitter stream. The identified events depend
on what was frequently mentioned and extensively discussed
in the investigated stream. Our support definition depends
on the window-batch size and the occurrence of keywords.
Experiments were conducted on Twitter stream for the UK
General Elections 2015 and the Greece Crisis 2015 to detect
the occurring events and to evaluate the support definition
method. The detected events were evaluated against what
was published on the same day in news wires. If the detected
event was found the same day a news headline is published,
then it is said to be a true event and a false event otherwise.
Results showed that bigger windows with high number of
tweets detect more accurately events than smaller ones. As
a result, a strict support version was proposed for small
windows to avoid detecting insignificant events.

In the near future, we further want to evaluate our event
detection framework against the SFPM framework in [15]
along with developing a method to rank the detected events
if more than one is found on a single day.



Table IV
WINDOW DETECTED EVENTS AND NEWS HEADLINES

Window no. Frequent pattern News headline
1-4 No found frequent patterns

5
Rattled, badly, obviously, polls, sir, snp, john,
says, tories, majors, speech

SNP says Sir John Major’s speech ’very foolish’. This attitude doesnt respect democracy and is completely wrong.
The Tories are obviously badly rattled by the polls.
http://www.theguardian.com/politics/live/2015/apr/21/election-2015-live-labour-john-major-blackmail-snp-nicola-sturgeon-
ed-miliband?page=with%3Ablock-55361517e4b046f7a16b5992

6 No found frequent patterns

7
Underestimates, aware, ifs, says, cuts, Miliband,
lab, Scottish, labours, gets, excited

Nicola Sturgeon has also been responding to the IFS report on Twitter.
Before Scottish Lab gets excited about IFS, they should be aware that Ed Miliband says it underestimates Labour’s cuts.
http://www.theguardian.com/politics/live/2015/apr/23/election-2015-live-ifs-verdict-labour-conservatives-liberal-democrats-
snp-tax-and-spending-plans?page=with%3Ablock-553900cbe4b0401b98b64bdd

8 No found frequent patterns

9
Breaking, dems, news, lib, snp, labour, poll,
Scotland, new, tns

BREAKING NEWS: New TNS Scotland poll (SNP 57, Labour 1, Lib Dem 1).
http://www.telegraph.co.uk/news/general-election-2015/11566036/Poll-Labour-reduced-to-one-seat-in-Scotland.html

10 No found frequent patterns

11

Forget, votes, win,win, Scotland, seats, working,
polls, lets, stronger, elections

Enough, labour, people, says, jim, murphy, need,
change, east, end, years, Glasgow, correct

Forms, voting, candidates, east, labours, postal,
major, hull, missing, including, cockup

Poll: SNP on course for clean sweep in Scotland.
http://www.telegraph.co.uk/news/politics/SNP/11570881/polls.html

Again we stand here tonight proud to be Labour.
With Labour change is coming to the east end of Glasgow, East end of Manchester, Liverpool,Cardiff, Edinburgh.
http://www.scottishlabour.org.uk/blog/entry/no-more-waiting.-no-more-wasted-lives.-jim-murphy#sthash.SvcIUJfo.dpuf

A major election cock-up in Hull. The council has sent out a large batch of postal ballot papers in the Hull East
constituency which have omitted the names of the Labour candidate Karl Turner and the Green candidate Sarah Walpole.
http://news.channel4.com/election2015/04/29/

12
Running, stop, vote, snp, snp, time, sun, sun,
Scottish, country

The Sun and its sister paper, the Scottish Sun, have endorsed different parties in the general election.
http://www.bbc.co.uk/news/election-2015-scotland-32523804

13

Sco, Miliband, snp, snp, tories, work, let, mps,
need, going, definitely, lots, protect

Shortest, history, suicide, note, Scottish, political,
says, let, Miliband, tories, work

Ed Miliband would rather lose than do SNP deal.
http://www.scotsman.com/news/politics/ed-miliband-would-rather-lose-than-do-snp-deal-1-3759986

Miliband said. If the price of having a Labour government was coalition or a deal with the
Scottish National Party, its not going to happen..
http://www.telegraph.co.uk/news/general-election-2015/politics-blog/11576757/Ed-Milibands-SNP-lie-could-damage-him-
more-than-Nick-Cleggs-tuition-fee-promise.html

14

Try, absolute, murphy, Glasgow, jim, eddie,
izzard, heard, protestors, chaos, streets

Condemns, violent, aggressive, event, protestors,
izzard, eddie, campaign, labour, glasgow

BBC Scotlands James Cook described the scene of the pair trying to deal with the protesters as absolute chaos.
http://www.huffingtonpost.co.uk/2015/05/04/eddie-izzard-jim-murphy-glasgow-rally n 7203100.html

Scottish Labour leader Jim Murphy and comedian Eddie Izzard were heckled by opponents during general election
campaigning in Glasgow.
http://www.bbc.co.uk/news/election-2015-scotland-32581803

15 No found frequent patterns

16
Pinned, throttled, wall, galloways, supporters,
told, George, Bradford, fucking, jew

A burly Asian man in a black suit and sunglasses rushes up and grabs me round the neck, pinning me to a low
perimeter wall. Get out, you fucking Jew, he shouts.
http://www.politico.eu/article/galloway-bradford-elections-uk-ge2015/

17 No found frequent patterns

18

Teacher, time, poor, sick, old, disabled, unemployed,
immigrant, student, unless, alive, nurse, doctor,

Disability, suffer, family, kind, congrats, lose, job,
get, tory, voters, hope, sick, better,

Vulnerable, mourning, environment, rip, today,
day, nhs, rights, human, national, welfare, state

19
Fee, licence, rid, equalities, secretary, secretary,
wants, minister, voted, bbc, against, culture,
justice, hanging

BBC licence fee in doubt as John Whittingdale is named culture secretary.
https://www.theguardian.com/media/2015/may/11/john-whittingdale-culture-secretary-bbc-charter-renewal

20
fee, equalities, secretary, secretary, voted, wants,
minister, bbc, against

The BBC will be forced to slash its drama output if the licence fee is cut, according to the man who commissioned
hits like Poldark, Sherlock, Call the Midwife and Wolf Hall.
http://www.bbc.co.uk/news/entertainment-arts-32702746

21
Enquiries, reports, make, kent, following, seat,
police, south, fraud, electoral, thanet

Kent Police investigate allegations of election fraud after Ukip,leader Nigel Farage’s general election defeat in South
Thanet.
http://www.kentonline.co.uk/thanet/news/police-probe-election-fraud-allegations-36864/

22-29 No found frequent patterns



REFERENCES

[1] A. Perrin., “Social networking usage: 2005-2015,”
Pew Research Center, Report 1296, October 2015.
[Online]. Available: http://www.pewinternet.org/2015/10/08/
2015/Social-Networking-Usage-2005-2015/

[2] S. Chakravarthy and Q. Jiang, Stream data processing: A
quality of service perspective: modeling, scheduling, load
shedding, and complex event processing. Springer Science
& Business Media, 2009, vol. 36.

[3] E. Della Valle, S. Ceri, D. F. Barbieri, D. Braga, and
A. Campi, A first step towards stream reasoning. Springer,
2009.

[4] A. Margara, J. Urbani, F. van Harmelen, and H. Bal, “Stream-
ing the web: Reasoning over dynamic data,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 25,
pp. 24–44, 2014.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and issues in data stream systems,” in Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems. ACM, 2002, pp. 1–16.

[6] D. C. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

[7] L. M. Aiello, G. Petkos, C. Martin, D. Corney, S. Papadopou-
los, R. Skraba, A. Göker, I. Kompatsiaris, and A. Jaimes,
“Sensing trending topics in twitter,” IEEE Transactions on
Multimedia, vol. 15, no. 6, pp. 1268–1282, 2013.

[8] S. Phuvipadawat and T. Murata, “Breaking news detection
and tracking in twitter,” in Web Intelligence and Intelligent
Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM Interna-
tional Conference on, vol. 3. IEEE, 2010, pp. 120–123.

[9] S. Petrović, M. Osborne, and V. Lavrenko, “Streaming first
story detection with application to twitter,” in Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics. Association for Computational Linguis-
tics, 2010, pp. 181–189.

[10] X. Zhou and L. Chen, “Event detection over twitter social
media streams,” The VLDB journal, vol. 23, no. 3, pp. 381–
400, 2014.

[11] M. Cataldi, L. Di Caro, and C. Schifanella, “Emerging topic
detection on twitter based on temporal and social terms eval-
uation,” in Proceedings of the Tenth International Workshop
on Multimedia Data Mining. ACM, 2010, p. 4.

[12] J. Weng and B.-S. Lee, “Event detection in twitter.” ICWSM,
vol. 11, pp. 401–408, 2011.

[13] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern
mining: current status and future directions,” Data Mining
and Knowledge Discovery, vol. 15, no. 1, pp. 55–86, 2007.

[14] J. Guo, P. Zhang, L. Guo et al., “Mining hot topics from
twitter streams,” Procedia Computer Science, vol. 9, pp.
2008–2011, 2012.

[15] G. Petkos, S. Papadopoulos, L. Aiello, R. Skraba, and
Y. Kompatsiaris, “A soft frequent pattern mining approach
for textual topic detection,” in Proceedings of the 4th Interna-
tional Conference on Web Intelligence, Mining and Semantics
(WIMS14). ACM, 2014, p. 25.

[16] J. Huang, M. Peng, and H. Wang, “Topic detection from large
scale of microblog stream with high utility pattern clustering,”

in Proceedings of the 8th Workshop on Ph. D. Workshop in
Information and Knowledge Management. ACM, 2015, pp.
3–10.

[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” Journal of machine Learning research, vol. 3, no.
Jan, pp. 993–1022, 2003.

[18] C. W. Fox and S. J. Roberts, “A tutorial on variational
bayesian inference,” Artificial intelligence review, vol. 38,
no. 2, pp. 85–95, 2012.

[19] X. Han and T. Stibor, “Efficient collapsed gibbs sampling for
latent dirichlet allocation [j],” Journal of Machine Learning
Research, vol. 13, pp. 63–78, 2010.

[20] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning,
“Labeled lda: A supervised topic model for credit attribu-
tion in multi-labeled corpora,” in Proceedings of the 2009
Conference on Empirical Methods in Natural Language Pro-
cessing: Volume 1-Volume 1. Association for Computational
Linguistics, 2009, pp. 248–256.

[21] R. Agrawal, T. Imieliński, and A. Swami, “Mining association
rules between sets of items in large databases,” in Acm sigmod
record, vol. 22, no. 2. ACM, 1993, pp. 207–216.

[22] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent pat-
terns without candidate generation: A frequent-pattern tree
approach,” Data mining and knowledge discovery, vol. 8,
no. 1, pp. 53–87, 2004.

[23] H. M. Nabil, A. S. Eldin, and M. A. E.-F. Belal, “Mining
frequent itemsets from online data streams: Comparative
study,” International Journal of Advanced Computer Science
and Applications (IJACSA), vol. 4, no. 7, 2013.

[24] P. S. Tsai, “Mining frequent itemsets in data streams using
the weighted sliding window model,” Expert Systems with
Applications, vol. 36, no. 9, pp. 11 617 – 11 625, 2009.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0957417409002723

[25] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, “Mining
frequent patterns in data streams at multiple time granular-
ities,” Next generation data mining, vol. 212, pp. 191–212,
2003.

[26] S. Gaglio, G. L. Re, and M. Morana, “A framework for
real-time twitter data analysis,” Computer Communications,
vol. 73, pp. 236–242, 2016.

[27] A. M. Mood, Introduction to the Theory of Statistics. NY,
USA: McGraw-hill, 1950.

[28] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W.
Wu, V. S. Tseng et al., “Spmf: a java open-source pattern min-
ing library.” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 3389–3393, 2014.

[29] A. Zubiaga, M. Liakata, R. Procter, K. Bontcheva, and
P. Tolmie, “Towards detecting rumours in social media,” arXiv
preprint arXiv:1504.04712, 2015.

[30] A. Gupta, H. Lamba, P. Kumaraguru, and A. Joshi, “Faking
sandy: characterizing and identifying fake images on twitter
during hurricane sandy,” in Proceedings of the 22nd inter-
national conference on World Wide Web. ACM, 2013, pp.
729–736.

[31] S. H. Walker and D. B. Duncan, “Estimation of the probability
of an event as a function of several independent variables,”
Biometrika, vol. 54, no. 1-2, pp. 167–179, 1967.

[32] D. W. Hosmer Jr and S. Lemeshow, Applied logistic regres-
sion. John Wiley & Sons, 2004.


