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Abstract—The final goal of this study is to adapt the concept
of fuzzy entropy of De Luca and Termini to deal with Type-2
Fuzzy Sets. We denote this concept Type-2 Fuzzy Entropy-Set.
However, the construction of the notion of entropy measure on
an infinite set, such us[0, 1], is not effortless. For this reason,
we first introduce the concept of quasi-entropy of a Fuzzy Set
on the universe [0, 1]. Furthermore, whenever the membership
function of the considered Fuzzy Set in the universe[0, 1] is
continuous, we prove that the quasi-entropy of that set is a fuzzy
entropy in the sense of De Luca y Termini. Finally, we present
an illustrative example where we use Type-2 Fuzzy Entropy-Sets
instead of fuzzy entropies in a classical fuzzy algorithm.

Index Terms—Type-2 Fuzzy Sets; Quasi-entropy measure;
Entropy measure.

I. I NTRODUCTION

The concept of fuzzy entropy measure was introduced by
De Luca and Termini in [1] in order to measure how far a
Fuzzy Set is from a crisp one. Since then, this concept has
been adapted to the different extensions of Fuzzy Sets [2]
and with different interpretations. All of them measure how
far the considered extension is from a set of reference (which
may be that of crisp sets, of Fuzzy Sets, etc).

In this sense, it is worth mentioning the following concepts:
the Atanassov intuitionistic fuzzy entropy measure, given by
Szmidt et al. [3] to measure how far an Atanassov Intuitionistic
Fuzzy Set (AIFS) is from a crisp set; the entropy for Interval-
Valued Fuzzy Sets (IVFS) defined by Burillo et al. [4], which
measures how far an IVFS or AIFS is from a Fuzzy Set; and
finally, the idea given by Pal et al. [5] which combines two
concepts similar to those given by Szmidt et al. and Burillo
et al. in one single bi-valuated measure. (We should recall
that AIFSs, IVFSs and Fuzzy Sets are particular instances of
Type-2 Fuzzy Sets (T2FS) (see Fig. 1) [2]).
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Furthermore, we know that, for a Fuzzy Set on the finite
universeU = {u1, · · · , un}, the valueA(ui) ∈ [0, 1] is a
number which represents the membership degree ofui to A.
From the beginning of fuzzy theory in 1965, many authors
were very critical with it: if Fuzzy Sets are used to represent
uncertainty associated to a fact, how can the membership
values be an exact numberA(ui) without taking into account
the uncertainty associated to the way these numbers are built?
This fact led to the introduction in 1971 [6] of T2FS in the
following sense: for a Type-2 Fuzzy SetA2 defined on the
finite universeU , the membership degree of each element to
the set, i.e.,A2(ui), is a Fuzzy Set on the infinite universe
[0, 1]. With Zadeh’s interpretation, in this paper we consider
that the Fuzzy SetA2(ui) represents the uncertainty associated
to the building ofA(ui) ∈ [0, 1].

In this setting, we understand De Luca and Termini fuzzy
entropy E of the setA2(ui), E(A2(ui)), as a measure of
the doubt (uncertainty)associated to the valueA(ui) ∈ [0, 1]
given by the expert. In this way, ifE(A2(ui)) = 0, we assume
that there is no doubt associated with the valueA(ui); that is,
there is no doubt associated with the numerical value given to
represent the membership degree ofui to the Fuzzy SetA.
However, if E(A2(ui)) = 1, then the doubt with respect to
the valueA(ui) is maximal.

Taking into account the definition of fuzzy entropy, if the
Fuzzy SetA2(ui) on [0, 1] is

A2(ui)(x) =

{

1 if x = A(ui)

0 otherwise

thenE(A2(ui)) = 0.
Similarly if A2(ui)(x) = 0.5 for all x ∈ [0, 1] then

E(A2(ui)) = 1.
From these considerations, in this work we aim at the

following objectives:

(A) To extend the concept of fuzzy entropy in the sense of
De Luca and Termini to T2FSs.

(B) To provide a construction method of such entropies.
(C) To introduce an illustrative example where the notion

of entropy that we propose for T2FSs is used in an
algorithm that was originally developed using the concept
of fuzzy entropy for Fuzzy Sets or for some extensions.

Regarding objective (A), it is important to remark the
following: In the same spirit as in the work by Pal et al. [5], we
consider that the entropy of a T2FSA2 on a finite universeU
must not be a number, but a Fuzzy Set (Type-1)ET2(A2) on
the same universeU . We call this Fuzzy Set, Type-2 Fuzzy
Entropy-Set. The valuesET2(A2)(ui) ∈ [0, 1] are given by
the fuzzy entropies of the Fuzzy Sets on the universe[0, 1]
used to represent the membership ofui to the setA2. With
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our interpretation we have that each value ofET2(A2)(ui)
represents the doubt associated to the membership degree of
the elementui to the Fuzzy SetA on the considered finite
universeU .

We also introduce a measure call pointwise measure which
assigns to each T2FS a numerical value obtained through
an appropriate aggregation of the elements in the Fuzzy Set
ET2(A2). We see that this measure has properties similar to
those of De Luca and Termini’s fuzzy entropy.

Regarding objective (B): In order to build the Type-2 Fuzzy
Entropy-Set the following problem arises: we should calculate
the fuzzy entropy of Fuzzy Sets which are defined on non-
finite universes (the interval[0, 1]). This problem leads us
to introduce the concept of quasi-entropy. The latter does
not exactly match fuzzy entropy as defined by De Luca and
Termini. However, if we consider Fuzzy Sets defined on the
universe[0, 1] with a continuous membership function, then
the concept of quasi-entropy and the concept of fuzzy entropy
defined by De Luca and Termini are the same. We build Type-
2 Fuzzy Entropy-Sets from the quasi-entropies.

T2FSs

Fig. 1. Inclusion relationships of extensions of Fuzzy Sets in [2]

Regarding objective (C): As an illustrative example of the
utility of our theoretical developments, we rewrite the algo-
rithm for image segmentation which uses fuzzy techniques,
i.e., Huang and Wang’s algorithm [7], [8]. We consider an
image as a Type-2 Fuzzy Set and we replace fuzzy entropy
by our concept of Type-2 Fuzzy Entropy-Set. It is worth to
note thatthe purpose of this example is not to provide a new
method, but just to show how our theoretical developments can
be used to understand an image as a Type-2 Fuzzy Set (over
the universe of the intensity levels) and hence how a well-
known algorithm can be extended to this setting, as it has
already been extended to some other settings such as IVFSs
or AIFSs [9], [10].

This paper is organized as follows. In the following section
we recall some definitions and properties which will be used in
the subsequent of this work. Then, in Section III we introduce
the concept of fuzzy quasi-entropy measure for an infinite
universe [0, 1] analyzing the particular case of continuous
membership degrees. Sections IV and V present the Type-
2 Fuzzy Entropy-Set together with some specific cases of
these sets and the definition of pointwise measure. Section VI
presents an illustrative example in image thresholding. Finally,
in Section VII we include some conclusions and references.

II. PRELIMINARY NOTIONS

In this paper, we denote byX a non-empty universe in
a Fuzzy Set that can be either finite or infinite. When the

universe is finite, it is denoted byU .
Definition 2.1: [11] A Fuzzy Set (FS) (or Type-1 Fuzzy

Set)A is a mappingA : X 7→ [0, 1] where the valueA(x) is
referred to as the membership degree of the elementx to the
Fuzzy SetA.

The set of all FSs onX is denoted byFS(X).
From the notions given by Zadeh in [12], a Type-2 Fuzzy

Set (T2FS) can be defined as follows.
Definition 2.2:A Type-2 Fuzzy Set (T2FS)A2 on X is a

mappingA2 : X 7→ FS([0, 1]) where the membership degree
of an element of the universeX is a Fuzzy Set on the infinite
universe[0, 1].

From Definition 2.2, it can be seen that, mathematically, a
T2FS is a mappingA2 : X 7→ [0, 1][0,1], where

[0, 1][0,1] = {f | f : [0, 1] 7→ [0, 1]}.

We denote byT2FS(X) the class of all T2FSs on the universe
X.

Fuzzy entropy measure was formalized in terms of axiom
construction by De Luca and Termini in [1] in order to assess
the amount of vagueness within a FS. However, depending on
the properties demanded, we can find in the literature different
axiomatic definitions of the concept of fuzzy entropy measure,
such as [13], [14], [15]. In particular, we base our definition
on [14].

Definition 2.3: A function E : FS(X) 7→ [0, 1] is called
an entropy measure onFS(X) if it satisfies the following
properties:

(E1) E(A) = 0 if and only if A is crisp.
(E2) E(A) = 1 if and only if A(x) = 1

2 for all x ∈ X.
(E3) If A,B ∈ FS(X), and for allx ∈ X

A(x) ≤ B(x) ≤ 1
2

or
A(x) ≥ B(x) ≥ 1

2







thenE(A) ≤ E(B)

(E4) E(A) = E(N(A)) for all A ∈ FS(X), whereN(A) =
{(x, 1−A(x))} for all x ∈ X.

It should be pointed out that(E1) − (E3) generate De
Luca and Termini axiomatic definition and(E4) is a property
frequently demanded in image processing.

Definition 2.3 is based on the standard negationN(x) =
1−x. In the case of another strong negation being considered,
property(E2) would be

E(A) = 1 if and only if A(x) = e for all x ∈ X,

where e is the equilibrium point of the strong negation
considered.

Finally, in Definition 2.3 it does not matter whether the uni-
verseX is finite or infinite, but dealing with infinite universes
requires a more complicated mathematical formalism. Thus,
most of the works in the literature take into account only the
finite case (universeU ).

A construction method of entropies was given in [14], using
aggregation functions and the concept ofEN function, which
we recall now.

Definition 2.4: A function EN : [0, 1] → [0, 1] is called a
normalEN -function associated with the strong negationN , if
it satisfies the following conditions:
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1) EN (x) = 1 if and only if x = e (where e is the
equilibrium point ofN ; that is,N(e) = e.)

2) EN (x) = 0 if and only if x = 0 or x = 1.
3) If y ≥ x ≥ e or y ≤ x ≤ e, thenEN (x) ≥ EN (y).
4) EN (x) = EN (N(x)) for all x ∈ [0, 1].

In particular, entropies of FSs on finite universes can be
built from EN -functions as follows.

Theorem 2.1:Let M : [0, 1]n → [0, 1] be such that it fulfills

(M1) M(x1, · · · , xn) = 0 if and only if x1 = · · · = xn = 0;
(M2) M(x1, · · · , xn) = 1 if and only if x1 = · · · = xn = 1;
(M3) For any pair(x1, · · · , xn) and (y1, · · · , yn) of n-tuples

such thatxi, yi ∈ [0, 1] for all i ∈ {1, · · · , n}, if
xi ≤ yi for all i ∈ {1, · · · , n}, thenM(x1, · · · , xn) ≤
M(y1, · · · , yn);

(M4) M is a symmetric function in all its arguments.

ThenE(A) = Mn
i=1EN (A(ui)) for all A ∈ FS(U) satisfies

(E1)− (E4) of Definition 2.4.
Example 2.2: If we take EN (x) = 1 − |2x − 1| and

M(x1, · · · , xn) =
1
n

n
∑

xi
i=1

, then

E(A) =
1

n

n
∑

i=1

1− |2A(ui)− 1|

is Yager’s measure of fuzziness [16].
Restricted Equivalence FunctionsR are functions which

satisfy frequently demanded properties for the comparison of
images. They were introduced by Bustince et al. in [8], [14],
[17].

Definition 2.5: A function R : [0, 1]2 → [0, 1] is called
a restricted equivalence function if it satisfies the following
conditions:

(R1) R(x, y) = R(y, x) for all x, y ∈ [0, 1];
(R2) R(x, y) = 1 if and only if x = y;
(R3) R(x, y) = 0 if and only if {x, y} = {0, 1};
(R4) R(x, y) = R(N(x), N(y)) for all x, y ∈ [0, 1], beingN

a strong negation on[0, 1];
(R5) For all x, y, z ∈ [0, 1] such thatx ≤ y ≤ z then

R(x, z) ≤ R(x, y) andR(x, z) ≤ R(y, z).

III. F UZZY QUASI-ENTROPY MEASURE FOR AN INFINITE

UNIVERSE

In order to develop our notion of entropy measure on T2FSs,
we study some results about entropy measures on FSs whose
universeX is infinite. In particular, we focus on the notion of
an entropy measure onFS([0, 1]). When the universeX is
infinite some mathematical operations, such as the integration
operation, yield the same value for different setsA1, A

′

1 such
that A1 = A

′

1 a.e. (almost everywhere).1 To handle this
situation in a suitable way, we adapt the concept of entropy
measure given by De Luca and Termini [1].

As we have seen in Theorem 2.1, in the case of finite uni-
verses, entropy can be built aggregating appropriate functions
(EN -functions); in particular, the arithmetic mean can be used

1Given two functionsf1, f2, we sayf1 = f2 a.e. if f1(x) = f2(x) for
all x in the domain except for a set of null measure. Particularly,f1 = c a.e.
wherec is a constant iff1(x) = c except for a set of null measure.

for the aggregation. If we try to extend this procedure to
the universe[0, 1], it is natural to use an integral instead of
the arithmetic mean. A problem arises, however, with axioms
(E1) and(E2). For instance, consider the functionsf1(t) = 0
for all t ∈ [0, 1], f2(t) = 0.3 if t = 0.3 or t = 0.8 and
f2(t) = 0 otherwise. These functions are different, but the
integral of both on[0, 1] equals0, since they differ in a zero-
measure set (a finite set of points).

So we should modify axioms(E1) and (E2). This can be
done in two different ways.

1) They can be kept as they stand in Definition 2.3. In this
case, the value of the function in one single point would
determine that the entropy was not zero or one, even if
the function equals0 or 0.5, respectively, in any other
point. This would be too harsh.

2) We can rewrite axioms(E1) and(E2) considering that
functions which are equal almost everywhere must have
the same entropy. This is something which is usually
done for many applications, and it is the approach that
we choose in this work.

Taking into account these considerations, we propose the
following definition (note axiomsE1∗ andE2∗). We take the
name of quasi-entropy because an exact copy of De Luca and
Termini’s definition of entropy would correspond to approach
1) above, which we have not followed.

Definition 3.1:Let A ∈ FS([0, 1]), we define the setHA =
{x | A(x) ∈]0, 1[}.

Definition 3.2: A function E∗ : FS([0, 1]) 7→ [0, 1] is
called a quasi-entropy measure onFS([0, 1]) if it satisfies the
following properties:

(E1∗) E∗(A) = 0 if and only if the Lebesgue measure ofHA

is null, i.e.,m(HA) = 0, wherem denotes the Lebesgue
measure inR.

(E2∗) E∗(A) = 1 if and only if A(x) = 1
2 a.e. in [0, 1].

(E3∗) If A,B ∈ FS([0, 1]), and for allx ∈ [0, 1]

A(x) ≤ B(x) ≤ 1
2

or
A(x) ≥ B(x) ≥ 1

2







thenE∗(A) ≤ E∗(B).

(E4∗) E∗(A) = E∗(N(A)) for all A ∈ FS([0, 1]) where
N(A) = {(x, 1−A(x))} for all x ∈ [0, 1].

Remark 1: Notice that properties(E3∗) and (E4∗) are
exactly equal to the properties(E3) and (E4) of entropy
measure in FSs given in Definition 2.3.

From here on, we only consider FSs in the universeX =
[0, 1] and such that the functionA : X 7→ [0, 1] is a Lebesgue
integrable function. Observe that since Lebesgue integrable
functions are a large class of functions, even restricting to
them is not a major concern.

In order to construct a quasi-entropy measure we start by
defining a functionΓ and we study under which conditions it
fulfills properties(E1∗)− (E4∗) individually.

Let g :]0, 1[7→ [0, 1] be a Lebesgue integrable function. We
define functionΓ : FS([0, 1]) 7→ [0, 1] as

Γ(A) =

∫

HA

g(A(y))dy. (1)
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Example 3.1:Let g(x) = 2min(x, 1− x) and consider the
following FS on[0, 1] : A(x) = 1 for all x ∈ [0, 1]. Then, by
Eq. (1) we have

Γ(A) =

∫

HA

g(A(y))dy =

∫

HA

2min(1, 0) = 0.

In Theorem 3.2, we study those sets which have minimum
entropy measure, i.e., property(E1∗).

Theorem 3.2:Let Γ : FS([0, 1]) 7→ [0, 1] be a function
given by Eq. (1). Then

Γ satisfies(E1∗) if and only if g(z) 6= 0 for all z ∈ ]0, 1[.

Proof. See Appendix.

Example 3.3:Figure 2 showsg1(z) = 1 − z, g2(z) = z2

and g3(z) = 0.3 for z ∈]0, 1[ which satisfy the property of
Theorem 3.2.

Fig. 2. Functionsg1, g2, g3 satisfyingE1∗.

Example 3.4:Let g(x) = 2min(x, 1− x) and consider the
following FS on [0, 1] : A(x) = 0.5 for all x ∈ [0, 1]. Then,
by Eq.(1) we have

Γ(A) =

∫

HA

g(A(y))dy =

∫

HA

2min(0.5, 0.5) = 1

In Theorem 3.5 we focus on the sets with maximum entropy
measure, namely, property(E2∗).

Theorem 3.5:Let Γ : FS([0, 1]) 7→ [0, 1] be a function
given by Eq. (1). Then,

Γ satisfies(E2∗) if and only if g−1(1) =

{

1

2

}

Proof. See Appendix.

Example 3.6:Figure 3 shows three functions which satisfy
the property of Theorem 3.5.

g1(z) = −

(

z −
1

2

)2

+ 1 for z ∈]0, 1[

g2(z) =







0 if 0 < z ≤ 0.1,
2.5z − 0.25 if 0.1 < z ≤ 0.5,
1.5− z if 0.5 < z < 1.

g3(z) =

{

z if 0 < z < 0.5,
−2z + 2 if 0.5 ≤ z < 1.

Fig. 3. Functionsg1, g2, g3 satisfyingE2∗.

In Theorem 3.7, the monotonicity of quasi-entropy measure,
property(E3∗), is analyzed.

Theorem 3.7:Let Γ : FS([0, 1]) 7→ [0, 1] be a function
given by Eq. (1). Then,Γ satisfies(E3∗) if and only if g is
increasing on

]

0, 1
2

]

and decreasing on
[

1
2 , 1

[

.
Proof. See Appendix.
Example 3.8:Figure 4 shows functions which satisfy the

property of Theorem 3.7.

g1(z) =

{

5z if 0 < z < 0.2,
1 if 0.2 ≤ z < 1,

g2(z) =







z if 0 < z < 0.5,

1− z if 0.5 ≤ z < 1.

g3(z) =

{

z + 0.3 if 0 < z ≤ 0.5,
1.4− 1.4z if 0.5 < z < 1.

Fig. 4. Functionsg1, g2, g3 satisfyingE3∗.

Finally, in Theorem 3.9 we study property(E4∗), analyzing
the symmetry of entropy measures.

Theorem 3.9:Let Γ : FS([0, 1]) 7→ [0, 1] be a function
given by Eq. (1). Then,
Γ satisfies(E4∗) if and only if g is a symmetric function

with respect toz = 1
2 , i.e., g(z) = g(1− z) for all z ∈ ]0, 1[.

Proof. See Appendix.
Example 3.10:Figure 5 shows functionsg1, g2, g3 which

satisfy property of Theorem 3.9.

g1(z) = 4 (z − 0.5)
2 for z ∈]0, 1[

g2(z) =















0 if 0 < z ≤ 0.2,
z − 0.2 if 0.2 < z ≤ 0.5,
−z + 0.8 if 0.5 < z ≤ 0.8,
0 if 0.8 < z < 1.
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g3(z) = min{8z3, 8(1− z)3} for z ∈]0, 1[

Fig. 5. Functionsg1, g2, g3 satisfyingE4∗.

After studying each property separately, the following corol-
lary holds true.

Corollary 3.11: Let Γ be given by Eq. (1). ThenΓ is a
quasi-entropy measure if and only ifg satisfies the conditions
demanded in Theorems 3.2, 3.5, 3.7 and 3.9.

Proposition 3.12:Let g be anEN -function associated with
the strong negationN given byN(x) = 1−x for all x ∈ [0, 1].
Then the functionΓ given by Eq. (1) in terms ofg is a quasi-
entropy.

Proof. It follows from the Corollary 3.11 and properties of
EN -functions (see [14]).

In [14], it is proved that, from a restricted equivalence
functionR, we can build anEN -function as follows:EN (x) =
R(x, 1− x). So the following corollary is straight.

Corollary 3.13: Let R be a restricted equivalence function
and letg(x) = R(x, 1−x). Then,Γ given by Eq. (1) in terms
of g is a quasi-entropy.

Example 3.14:Fig. 6 shows three functionsg1, g2, g3 which
satisfy all the conditions of Theorems 3.2, 3.5, 3.7 and 3.9, so
from Corollary 3.11 they generate quasi-entropy measures:

g1(z) = −4z2 + 4z for z ∈]0, 1[

g2(z) = min{2z, 2− 2z} for z ∈]0, 1[

g3(z) = min{8z3, 8(1− z)3} for z ∈]0, 1[

Fig. 6. Functionsg1, g2, g3 which generate a quasi-entropy measure.

In the following we compute an example of the calculation
of a quasi-entropy.

Fig. 7. Graph of functionf of Example 3.15.

Example 3.15:Let f ∈ FS([0, 1]) be given by

f(x) =







5x if 0 ≤ x ≤ 0.2,
2− 5x if 0.2 < x ≤ 0.4,
0 otherwise,

displayed in Figure 3.15. Consider the quasi-entropy measure
E∗ generated as in Eq. (1) byg(z) = min{2z, 2− 2z}. Then:

E∗(f) =

∫ 0.1

0

10ydy +

∫ 0.2

0.1

(2− 10y)dy+

∫ 0.3

0.2

(10y − 2)dy +

∫ 0.4

0.3

(4− 10y)dy = 0.2

A. Quasi-entropy measure on Continuous functions

As we have said before, when we use integrals sets of zero
measure are ignored. This has led us to modify in the previous
section the first and second axioms of the definition of entropy
2.3 by De Luca and Termini. But in the case of continuous
functions, if a function is constant almost everywhere, then it
is constant everywhere, and this kind of technical problems
may be ignored. That is, if we consider just those FSs on the
universe[0, 1] with a continuous membership function, then
our definition of entropy can be written as the one which was
introduced by De Luca and Termini; i.e., Definition 2.3. For
this reason in this section we study quasi-entropy measures
restricted to the class ofFS([0, 1]) whose membership degree
is a continuous function.

Definition 3.3:Let FSC([0, 1]) be the set of all FSs on the
universeX = [0, 1] whose membership degreeA : X 7→ [0, 1]
leads to a continuous function.

In the following theorem we introduce a method to build
entropies in the sense of De Luca and Termini as long as
the membership function of the considered FS on[0, 1] is
continuous.

Theorem 3.16:Let be g :]0, 1[7→ [0, 1] satisfying the
properties of the Theorems 3.2, 3.5, 3.7 and 3.9 and letΓ
be given as in Eq. (1). If we restrict toFSC thenΓ|FSC

is
an entropy measure in the sense of De Luca and Termini [1].
Namely, the functionΓ on FSC([0, 1]) satisfies:

(E1) Γ(A) = 0 if and only if A is crisp.
(E2) Γ(A) = 1 if and only if A(x) = 1

2 in [0, 1].
(E3) If A,B ∈ FSC([0, 1]), and for allx ∈ [0, 1]

A(x) ≤ B(x) ≤ 1
2

or
A(x) ≥ B(x) ≥ 1

2







thenΓ(A) ≤ Γ(B)

(E4) Γ(A) = Γ(N(A)) for all A ∈ FS([0, 1]), where
N(A) = {(x, 1−A(x))} for all x ∈ X.
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Note that imposing continuity is not a too hard restriction,
since, for instance, in many applications, in order to build
linguistic labels, these are defined through continuous mem-
bership functions (triangular, trapezoidal, etc. [18]).

Corollary 3.17:Let g be anEN -function associated with the
strong negationN given byN(x) = 1 − x for all x ∈ [0, 1].
Then

Γ(A) =

∫

HA

g(A(y))dy

is a fuzzy entropy in the sense of De Luca and Termini on
FSC([0, 1]). In particular, if R is a restricted equivalence
function, then

Γ(A) =

∫

HA

R(A(x), 1−A(x))dx

is also an entropy in the sense of De Luca and Termini.

IV. T YPE-2 FUZZY ENTROPY-SET

De Luca and Termini introduced the notion of entropy
measure as a function whose domain and codomain are a FS
and [0, 1], respectively, i.e. a functionE : FS(X) 7→ [0, 1].
In this way, the codomain of the entropy function and the
codomain of the FS coincide. Due to the introduction of the
concept of T2FS (by Zadeh [12]) as a function whose image
is a FS, the proposal of this work is to define the entropy
measure of a T2FS by means of a function whose domain is
a T2FS and the codomain is a FS.

Given a T2FS (with universeX), each elementx ∈ X is
associated with aFS([0, 1]) where its quasi-entropy measure
can be calculated. Observe that since the universe is infinite,
most of the entropy measure constructions on the literature
cannot be applied. By calculating the quasi-entropy measure,
for eachx ∈ X we obtain a value in[0, 1], i.e., each element of
the universeX is associated with a value in[0, 1]. A reasonable
way of expressing the entropy measure of a T2FS is by means
of a functionET2 : T2FS(X) 7→ FS(X).

Definition 4.1: Let X be the universe of a T2FSA2 and
let E∗ : FS([0, 1]) 7→ [0, 1] be a quasi-entropy measure. A
Type-2 Fuzzy Entropy-Set is a functionET2 : T2FS(X) 7→
FS(X) given by

ET2(A2) = {(x,E∗(A2(x)))|x ∈ X}. (2)

The given construction of Type-2 Fuzzy Entropy-Set on
Definition 4.1 measures the lack of knowledge or uncertainty
about the membership degrees. Thereby, any set with "crisp"
membership degrees such as FSs or IVFSs has entropy mea-
sure0.

Next, we present an example where the Type-2 Fuzzy
Entropy-Set is calculated.

Example 4.1:Let U = {u1, u2, u3, u4} be the universe
and A2 : T2FS(U) 7→ FS(U) be the T2FS given by
A2 = {(ui, A2(ui) = fi) | i ∈ {1, 2, 3, 4}} where

f1(x) =















0.5 if x = 0.3,
0.25 if x = 0.5,
1 if x = 0.8,
0 otherwise.

f2(x) =

{

1 if x ∈ [0.2; 0.4] ∪ [0.7; 1[,
0 otherwise.

f3(x) =







0 if 0 < x ≤ 0.5,
2.5x− 1.25 if 0.5 < x ≤ 0.9,
1 if 0.9 < x ≤ 1

f4(x) =

{

5x if 0 < x ≤ 0.2,
−1.25x+ 1.25 if 0.2 < x ≤ 1.

as in Figure 8. Consider the quasi-entropy measureE∗ gen-
erated as in Eq. (1) byg(z) = −4z2 + 4z. Then:

E∗(f1) = 0, E∗(f2) = 0, E∗(f3) =
4
15 and E∗(f4) =

2
3 ,

and consequently the Type-2 Fuzzy Entropy-Set is given by

ET2(A2) =

{

(u1, 0) , (u2, 0) ,

(

u3,
4

15

)

,

(

u4,
2

3

)}

Fig. 8. Graph of the Type-2 Fuzzy SetA2.

V. SPECIFIC CASES. POINTWISE MEASURE

A. Some specific cases

In this section we show how we can recover Fuzzy Sets and
extensions from T2FSs such that its Type-2 Fuzzy Entropy-Set
is null.

Let A2 ∈ T2FS(U) such that

ET2(A2) = {(ui, 0)|ui ∈ U} ;

that is,
E∗(A2(ui)) = 0 for everyui ∈ U

whereE∗ is the quasi-entropy associated toET2.

Then:

• If the Fuzzy SetsA2(ui) on the universe[0, 1], (built to
represent the doubt associated to the membership degrees
of the elementsui to the Fuzzy SetA on the universe
U ), are crisp sets as the following:

A2(ui)(x) =

{

1 if x = a0i

0 otherwise,

then, taking into account the interpretation discussed in
the introduction, we do not have any doubt about the
membership degrees of the elements to the Fuzzy Set
A ∈ FS(U) and it is the ideal case. In this setting, we
can take as Fuzzy SetA :

A = {(ui,A(ui) = a0i)|i ∈ {1, · · · , n}}
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Fig. 9. Example of a Fuzzy Set.

• If the Fuzzy SetsA2(ui) on the universe[0, 1] are crisp
sets as follows:

A2(ui)(x) =

{

1 if x = a01
i

or x = a02
i

or x = a0mi

i

0 otherwise,

then we can take as setA the following Typical Fuzzy
Multiset A (on the universeU ) [2] for which there is no
doubt on the numerical values taken for representing the
membership degrees:

A = {(ui, a01
i
, a02

i
, a0mi

i

)|i ∈ {1, · · · , n}}

where m1 denotes the cardinal of the Fuzzy Multiset
associated withui.

Fig. 10. Example of a Typical Fuzzy Multiset.

• If the Fuzzy SetsA2(ui) on the universe[0, 1] are crisp
sets as follows:

A2(ui)(x) =

{

1 if x ∈ [a0i , a0i ]

0 otherwise

then we can take asA the following Interval-Valued
Fuzzy Set:

A = {(ui, [a0i , a0i ])|i ∈ {1, · · · , n}}

Notice that with our interpretation, it comes out that we
have no doubt about the values for the intervals given in
order to represent the membership values of the elements
to the set.

Fig. 11. Example of an Interval-valued Type-2 Fuzzy Set.

In the three considered cases, we recover Fuzzy Sets (in
the first case) or well-known extensions of Fuzzy Sets (in the
other two cases) whose Type-2 Fuzzy Entropy-Set is always a

null Fuzzy Set. In any case, for each of the considered cases
(Fuzzy Sets, Fuzzy Multisets and Interval-Valued Fuzzy Sets)
there exist ad hoc definitions to calculate their entropy. For
instance, De Luca and Termini’s for Fuzzy Sets, Szmidt et
al.’s or Burillo et al.’s for Interval-Valued Fuzzy Sets, etc.

Although we are not recovering a fuzzy extension, it is
worth to mention that if

A2(ui) = {(x,A2(ui)(x) = 0.5)|x ∈ [0, 1]} for all ui ∈ U

thenET2(A2) = {(ui, 1)|ui ∈ U} .

B. Pointwise measure

In this section, we introduce the concept of pointwise
measure. With this measure we assign to eachA2 ∈ T2FS(U)
a numerical value which is obtained aggregating the values in
the corresponding Type-2 Fuzzy Entropy-SetET2(A2) built
as explained in Section IV.

Proposition 5.1:Let M : [0, 1]n → [0, 1] be a function
such that it satisfies(M1) − (M3) of Theorem 2.1. Let
A2 ∈ T2FS(U) and its correspondingET2(A2) ∈ FS(U)
constructed with the method developed in Section IV. Under
these conditions the function

Pm : T2FS(U) → [0, 1] given by

Pm(A2) =
n

M
i=1

ET2(A2)(ui)

satisfies the following properties:

(Pm1) Pm(A2) = 0 if and only if for every ui ∈ U ,
E∗(A2(ui)) = 0; namely, for everyui ∈ U , HA2(ui)

has null Lebesgue measure;
(Pm2) Pm(A2) = 1 if and only if for every ui ∈ U ,

E∗(A2(ui)) = 1; namely, for everyui ∈ U , A2(ui)(x) =
0.5 a.e. in[0, 1];

(Pm3) IfA2, B2 ∈ T2FS(U), satisfy that for everyui ∈ U : for
all x ∈ [0, 1]

A2(ui)(x) ≤ B2(ui)(x) ≤
1
2

or
A2(ui)(x) ≥ B2(ui)(x) ≥

1
2







then

Pm(A2) ≤ Pm(B2);

(Pm4) Pm(A2) = Pm(N(A2)) for all A2 ∈ T2FS, where
N(A2) = {(ui, N(A(ui)))}.

Proof. It is just a straight calculation.
Remark 2:In this way,Pm does not measure the classical

concept of entropy, in the sense that it does not measure how
far a T2FS is from a crisp one. However, it gives a global
value of the uncertainty associated with which values should
represent the membership degrees ofui for all ui ∈ U . In
particular, if there is no doubt about the membership degrees
of any elementui ∈ U independently if they are crisp, Fuzzy
Set, IVFS, etc, then the punctual measurePm returns0.

VI. A N ILLUSTRATIVE EXAMPLE IN IMAGE

THRESHOLDING

In this section we develop an example of application of
Type-2 Fuzzy Entropy-Set. We present an adaptation of Huang
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and Wang’s method [7] to segment images in grayscale. To
do so, we build a T2FS associated with the image and we
calculate its Type-2 Fuzzy Entropy-Set.

Image segmentation consists of dividing an image into
regions (objects) that compound it [19]. More specifically, it
consists of assigning a label to each pixel of the image, so
that all the pixels which share certain properties have the same
label. One of the most used techniques in image segmentation
is thresholding or segmentation by gray levels [20], [21], [22].
It is based on the assumption that the objects of the image are
only characterized by the intensity of their pixels. When the
image has only two objects (called object and background),
this thresholding technique consists of finding an intensity
value (t) to be considered the threshold. Using that value, we
label all the pixels whose intensities are lower or equal thant
as background and all the pixels whose intensities are greater
than t as object (or vice versa). When there are more than
two objects in the image, we need more thresholds, in such
a way that all the pixels whose intensities are between two
consecutive thresholds belong to the same object.

The results of thresholding are limited when comparing
with other segmentation techniques, because the single char-
acteristic they take into account is the intensity of every
pixel. However, its advantages are the simplicity and low
computational cost. This is why this procedure is commonly
used as a first step of more complex segmentation algorithms.

We consider an image as a set of elements arranged in N
rows and M columns. Each element of a grayscale image has
a value of intensityq between0 andL−1 (usuallyL = 256).
However, we work with normalized imagesq

L−1 in such a
way thatq ∈ [0, 1].

As we have said in the introduction, we rewrite Huang and
Wang’s algorithm [7] using T2FSs and Type-2 Fuzzy Entropy-
Sets (see Algorithm 1).

Algorithm 1 Thresholding algorithm
INPUT: Image to segment
OUTPUT: t the best threshold

1: {Construction of the T2FS}
2: for each intensity levelt ∈ {0, 1/255, . . . , 254/255} (For

every possible threshold)do
3: Construct a FS on the universe[0, 1] associated with

the intensity levelt
4: end for
5: Calculate the Type-2 Fuzzy Entropy-Set of the resulting

T2FS
6: Select as best thresholdt the one associated with the

lowest element in the Type-2 Fuzzy Entropy-Set

The main idea of this procedure consists in creating a
T2FS associated with the image and calculating its entropy
set. One of the most difficult tasks is the construction of the
T2FS. It should represent the information of how would be
the image if we segment it with every possible threshold.
For this purpose, we start by fixing the referential set of
the T2FS as the set of all possible thresholds in the image:
U = {0/255, 1/255, . . . , 254/255} (remember the image is
normalized). For every element inU , its membership degree

Fig. 12. Example of a Type-2 Fuzzy Set.

is given by a Fuzzy Set. This set has a continuous referential
set from 0 to 1. In Figure 12 we show a T2FS that fulfills our
conditions.

Each of these functions represents, for a fixed threshold, the
membership degree of every possible intensity either to the
object or to the background. To construct each of these sets,
following [8], we start by calculating the average intensity of
the pixels lower or equal than the studied threshold (denoted
asmB(t)) and the average intensity of the pixels greater than
the studied threshold (denoted asmO(t)).

The membership function quantifies how close is every
posible value (q) to the average of the background or to
the average of the object, by means of restricted equivalence
functions:

A(ui)(q) =

{

R(q,mB(ui)) if q ≤ ui

R(q,mO(ui)) if q > ui.
(3)

We linearly interpolate between every pair of consecutive
points (qi, (A(ui)(qi))) and (qi+1, (A(ui)(qi+1))) with i ∈
{0, · · · , 254}. That is, we take the points(0,A(ui)(0)) and
(1/255,A(ui)(1/255)) and, for eachs ∈ [0, 1/255], we define
its membership as:

A2(s) = 255(A(ui)(1/255)−A(ui)(0))s+A(ui)(0) .

Next, we repeat this procedure for each interval[j/255,(j +
1)/255], (j = 0, . . . , 254), calculating in each case the
equation of the line which passes through the points
(j/255,A(ui)(j/255)) and((j+1)/255,A(ui)((j+1)/255)).

In this way, we get a continuous membership function de-
fined over the whole universe[0, 1]. This membership function
is piecewise linear and it has only two points where its value
is 1: the average of the background (mB(t)) and the average
of the object (mO(t)).

To select the best threshold from the T2FS we use its Type-
2 Fuzzy Entropy-Set. We are looking for the threshold whose
membership function is as higher as possible for all the pixels
in the image. The entropy is minimum when the membership
is 0 or 1, and maximum in the middle point. To adapt this
concept to our problem, we scale our membership function
to [0.5, 1], in such a way that the minimum entropy is only
achieved when the membership degree is 1.

With our membership construction, the calculation of our
entropies is simple, since we can divide the area in 255
trapezoids and we just need to sum the entropy measure of
each of these parts multiplied by the proportion of pixels with
that intensity. That is, we calculate the entropy of each FS as



1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2593497, IEEE
Transactions on Fuzzy Systems

9

E(A2(ui)) =
∫

g(A2(ui)(x))dx whereA2(ui) is the FS as-
sociated withui on the universe[0, 1] andg(x) = R(x, 1−x).

In this way we obtain a set of entropies, each one associated
with an element of the universe (possible thresholds based on
our construction) and we can build the Type-2 Fuzzy Entropy-
Set. Finally, we select as the best threshold, the one associated
with the lowest entropy measure.

With an illustrative aim, we use this algorithm for thresh-
olding the image in Figure 13.

Fig. 13. Original image to segment.

After constructing the T2FS for this image, we useg(x) =
R(x, 1− x) = 1− |2x− 1| to get its associated Type-2 Fuzzy
Entropy-Set. The resulting set is as follows:

ET2 = {(u0, 0.6014), (u1, 0.6010), (u2, 0.6004), . . . , (u254, 0.5935)}

For a better visualization of this set, in Figure 14 we show it
graphically.

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 14. Fuzzy Entropy-Set for thresholding the image of Figure 13.

The minimum of this Type-2 Fuzzy Entropy-Set corre-
sponds to the element(u143, 0.1467). So the threshold used
to segment the image is 143/255 and we get the image shown
in Figure 15.

Fig. 15. Image of Figure 13 segmented with threshold 143.

To further extend this illustrative example, we consider
now a set of 8 standard images for thresholding and their
ideal segmentations; that is, the segmentation provided by an

expert. For each of them (see Figure 16) we show the orig-
inal image, the ideal segmentation and the segmented image
obtained with our method using the functionE(A2(ui)) =
∫

g(A2(ui)(x))dx with g(x) = R(x, 1− x) = 1− |2x− 1|.
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Fig. 16. Original images (first column), ideal segmentations (second column)
and segmentations obtained by our proposal using the Type-2 Fuzzy Entropy-
Set (third column)

Our proposed Algorithm 1 uses the Type-2 Fuzzy Entropy-
Set to calculate the threshold for segmenting an image. In the
fuzzy literature, there exist several fuzzy algorithms which use
extensions of FSs (for instance [8], [23], [14]) for thresholding
images. All of them, including our proposal, are based on
Huang and Wang’s algorithm [7], which is an adaptation of
the classical method by Otsu [20]. It is important to notice
that none of these algorithms is better than the others for every
image. For this reason, we propose to use a combination of
the results obtained with different algorithms, including our
Algorithm 1. To show the goodness of this proposal, we use
the following 5 thresholding algorithms.

• Otsu’s algorithm [20];
• area algorithm [8] withϕ1(x) = x2 andϕ2(x) = x;
• ignorance functions based algorithm [23] with

Gu(x, y) = 2
√

(1− x)(1− y) if (1− x)(1− y) ≤ 0.25
andGu(x, y) = 1/(2

√

(1− x)(1− y)) otherwise
• Algorithm 1 with E(A2(ui)) =

∫

g(A2(ui)(x))dx and
g(x) = R(x, 1− x) = 1− |2x− 1|

• Algorithm 1 with E(A2(ui)) =
∫

g(A2(ui)(x))dx and
g(x) = R(x, 1− x) = 1− (2x− 1)2
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In Table I we study the obtained thresholds as well as
the percentage of pixels correctly segmented with respect
to the ideal segmentation for each of the algorithms and
each of the 8 images shown in Figure 16. For the sake of
simplicity, thresholds have been multiplied by 255. Moreover,
we consider the combination of all the obtained thresholds
using the arithmetic mean and we also calculate for the latter
the percentage of well segmented pixels.

As we can see in Table I, it does not exist one single method
which is the best for every possible image. However, when
we take the mean of several methods we get good results,
which are even the best ones for 4 of the 8 images. So,
after combining the results of several algorithms (including
Algorithm 1), we see that the obtained segmentations are very
good. These segmentations can be taken as a first step in the
calculation of segmentations which take into account more
properties of the images, apart from the intensity of the pixels.

VII. C ONCLUSIONS ANDFUTURE WORK

The construction of entropy measures for Fuzzy Sets with
infinite universes results intricate. In this direction one of
the main novelties of this study is the introduction of the
concept of quasi-entropy. Defined slightly different than the
fuzzy entropy given by De Luca and Termini it is proven
that both concepts are equivalent if we restrict to continuous
membership functions. The quasi-entropy measure has been
applied to a T2FS (whose membership degree for an element
x in the universeX is a FS([0, 1])), generating the novel
concepts of Type-2 Fuzzy Entropy-Set and pointwise measure.
Finally, we have shown the usefulness of the Type-2 Fuzzy
Entropy-Set in an illustrative example in Huang and Wang’s
algorithm for image thresholding.

Due to the relevance of a theoretical method to calculate
the entropy of T2FSs we leave for a future work the deeper
study of the application, i.e. we leave for future work the deep
analysis of the conditions under which the algorithms consid-
ered in the illustrative example (Algorithm 1) can improve the
thresholds usually calculated.

APPENDIX

PROOFS OF THETHEOREMS

Theorem 3.2 LetΓ : FS([0, 1]) 7→ [0, 1] be a function given
by Eq.(1). Then

Γ satisfies(E1∗) if and only if g(z) 6= 0 for all z ∈ ]0, 1[.

Proof.
⇒) Let Γ satisfy(E1∗).
Suppose thatg(z0) = 0 for somez0 ∈ ]0, 1[. Let A ∈

FS([0, 1]) be given byA(z) = z0 for all z ∈ [0, 1]. Then,
Γ(A) =

∫

HA
g(A(y))dy =

∫ 1

0
g(z0) = 0 and Γ does not

satisfy(E1∗).

⇐) Takeg(z) 6= 0 for all z ∈ ]0, 1[.

• If HA has Lebesgue measure0 then Γ(A) =
∫

HA
g(A(y))dy = 0.

• If Γ(A) =
∫

HA
g(A(y))dy = 0, since g(z) 6= 0 for

all z ∈ ]0, 1[, then g(A(y)) 6= 0 for all y ∈ HA.

Consequently,Γ(A) =
∫

HA
g(A(y))dy = 0 can only hold

if m(HA) = 0 .
Thus,Γ satisfies(E1∗).
Theorem 3.5 LetΓ : FS([0, 1]) 7→ [0, 1] be a function given

by Eq.(1). Then,

Γ satisfies(E2∗) if and only if g−1(1) =

{

1

2

}

Proof.
⇒) Let Γ satisfy(E2∗).
• Suppose thatg( 12 ) 6= 1. Let the FSA be given byA(x) =

1
2 for all x ∈ [0, 1]. ThenΓ(A) =

∫

HA
g(A(y))dy =

∫ 1

0
g( 12 ) = g( 12 ) 6= 1, which is in contradiction with

(E2∗).
• Supposeg(z0) = 1 for somez0 6= 1

2 . GivenA(x) = z0
for all x ∈ [0, 1] we haveΓ(A) =

∫

HA
g(A(y))dy =

∫ 1

0
g(z0) = g(z0) = 1, which is again in contradiction

with (E2∗).
⇐) Let g satisfyg−1(1) = { 1

2}.

• If A(x) =
1

2
a.e. in [0, 1], thenm({x ∈ HA | A(x) 6=

1

2
}) ≤ m({x | A(x) 6=

1

2
}) = 0 and m({x |

A(x) =
1

2
)}) = 1. Thus,Γ(A) =

∫

HA
g(A(y))dy =

∫

{x∈HA|A(x) 6= 1
2}

g(A(y))dy +
∫

{x|A(x)= 1
2}

g(A(y))dy =

0 +
∫

{x|A(x)= 1
2}

g( 12 )dy = g( 12 ) = 1.

• Now takeΓ(A) =
∫

HA
g(A(y))dy = 1.

Sincem(HA) ≤ 1 andg(z) ≤ 1 thenΓ(A) = 1 can only
hold if m(HA) = 1 and g(A(y)) = 1 for all y ∈ HA.
But giveny ∈ HA, g(A(y)) = 1 only if A(y) = 1

2 . Since
the measure ofHA is 1, this means thatA = 1

2 a.e. in
[0, 1].

Consequently,Γ satisfies(E2∗).
Theorem 3.7 LetΓ : FS([0, 1]) 7→ [0, 1] be a function given

by Eq.(1). Then,Γ satisfies(E3∗) if and only ifg is increasing
on

]

0, 1
2

]

and decreasing on
[

1
2 , 1

[

.
Proof.
⇒) Let Γ satisfy(E3∗).
1) Supposeg is not increasing in]0, 1

2 ]. Then, there exist
z1, z2 such that0 < z1 < z2 ≤ 1

2 and g(z1) > g(z2).
Let A(x) = z1 for all x ∈ [0, 1] andB(x) = z2 for all
x ∈ [0, 1]. As A(x) ≤ B(x) ≤ 1

2 for all x ∈ [0, 1], by
(E3∗) it must be satisfied thatΓ(A) ≤ Γ(B).
But Γ(A) =

∫

HA
g(A(y))dy =

∫ 1

0
g(z1)dy = g(z1) and

Γ(B) =
∫

HB
g(B(y))dy =

∫ 1

0
g(z2)dy = g(z2), which

is in contradiction withg(z1) > g(z2).
2) Suppose thatg is not decreasing in[ 12 , 1[. Then, there

exist z1, z2 such that 12 ≤ z1 < z2 < 1 and g(z1) <
g(z2).
Let A(x) = z2 for all x ∈ [0, 1] andB(x) = z1 for all
x ∈ [0, 1]. Since 1

2 ≤ B(x) ≤ A(x) for all x ∈ [0, 1],
by (E3∗) Γ(A) ≤ Γ(B) must be satisfied.
But Γ(A) =

∫

HA
g(A(y))dy =

∫ 1

0
g(z2)dy = g(z2) and

Γ(B) =
∫

HB
g(B(y))dy =

∫ 1

0
g(z1)dy = g(z1), which

is in contradiction withg(z1) < g(z2).
⇐) Let g be increasing in]0, 1

2 ] and decreasing in[ 12 , 1[.
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Otsu Area Ignorance Alg1v1 Alg1v2 Average
u % u % u % u % u % u %

Im. 1 79 93.6614 50 97.3064 13 96.6738 50 97.3064 29 97.2375 44 97.4059
Im. 2 74 92.2227 56 92.7227 11 90.8861 58 92.7074 47 92.7099 49 92.7762
Im. 3 104 98.0148 87 98.2887 13 97.6454 96 98.1731 88 98.2887 77 98.3741
Im. 4 136 95.8283 135 95.7278 135 95.7278 135 95.7278 134 95.5912 135 95.7278
Im. 5 127 95.8474 140 95.9545 177 93.3757 143 95.9621 157 95.2479 148 95.7224
Im. 6 134 95.6408 138 96.4085 97 64.4245 138 96.4085 141 96.7835 129 94.9316
Im. 7 71 95.9748 50 96.6721 3 92.2469 52 96.6337 49 96.7208 45 96.8029
Im. 8 123 89.0935 121 89.5726 121 89.5726 121 89.5726 121 89.5726 121 89.5726

TABLE I
THRESHOLDS(MULTIPLIED BY 255) AND PERCENTAGE OF WELL CLASSIFIED PIXELS. (OTSU) RESULTS OBTAINED WITH OTSU’ S METHOD. (AREA)

RESULTS OBTAINED AREA ALGORITHM ANDϕ1(x) = x2 AND ϕ2(x) = x. (IGNORANCE) RESULTS OBTAINED WITH WITH THE ALGORITHM BASED ON

THE IGNORANCE ANDGu(x, y) = 2
√

(1− x)(1− y) IF (1− x)(1− y) ≤ 0.25 AND Gu(x, y) = 1/(2
√

(1− x)(1− y)) OTHERWISE. (ALG2V1)
RESULTS OBTAINED WITH OUR PROPOSAL, USING E =

∫

g(A(x))dx WITH g(x) = R(x, 1− x) = 1− |2x− 1|. (ALG2V2) RESULTS OBTAINED WITH

OUR PROPOSAL, USING E =
∫

g(A(x))dx WITH g(x) = R(x, 1− x) = 1− (2x− 1)2 .

First of all, notice thatg has a maximum on12 .
Suppose thatA,B ∈ FS([0, 1]) satisfy that for allx ∈ [0, 1]

A(x) ≤ B(x) ≤ 1
2

or
A(x) ≥ B(x) ≥ 1

2







(4)

and let us see thatE∗(A) ≤ E∗(B).
First, we proveHA ⊆ HB . Takex ∈ HA, by the Definition

of HA thenA(x) 6= 0 andA(x) 6= 1. There are three different
cases:

• If A(x) < 1
2 then 0 < A(x) ≤ B(x) ≤ 1

2 , so 0 <
B(x) < 1 and x ∈ HB .

• If A(x) > 1
2 then 1 > A(x) ≥ B(x) ≥ 1

2 , so 0 <
B(x) < 1 and x ∈ HB .

• If A(x) = 1
2 then 1

2 ≤ B(x) ≤ 1
2 , so 0 < B(x) = 1

2 < 1
and x ∈ HB .

Thus,HA ⊆ HB . Thereby,

Γ(A) =

∫

HA

g(A(y))dy ≤

∫

HB

g(A(y))dy

=

∫

{x|0<B(x)< 1
2}

g(A(y))dy +

∫

{x|B(x)= 1
2}

g(A(y))dy

+

∫

{x| 12<B(x)<1}

g(A(y))dy ≤

∫

{x|0<B(x)< 1
2}

g(B(y))dy

+

∫

{x|B(x)= 1
2}

g(B(y))dy +

∫

{x| 12<B(x)<1}

g(B(y))dy

=

∫

HB

g(B(y))dy = Γ(B)

where the first inequality holds due toHA ⊆ HB and the
second one becauseg is an increasing function on]0, 1

2 ],
becauseg has a maximum on12 and becauseg is decreasing
on [ 12 , 1[, respectively.

Theorem 3.9 LetΓ : FS([0, 1]) 7→ [0, 1] be a function given
by Eq.(1). Then,

Γ satisfies(E4∗) if and only if g is a symmetric function
with respect toz = 1

2 , i.e., g(z) = g(1− z) for all z ∈ ]0, 1[.

Proof. First of all, notice thatHN(A) = {x | N(A(x)) ∈
]0, 1[} = {x | 1−A(x) ∈ ]0, 1[} = {x | A(x) ∈ ]0, 1[} = HA.

⇒) Let Γ satisfy(E4∗).
Suppose thatg is not symmetric, then there existsz0 ∈ ]0, 1[

such thatg(z0) 6= g(1− z0). LetA(x) = z0 for all x ∈ [0, 1],
thenN(A(x)) = 1 − z0 for all x ∈ [0, 1]. However, function
Γ yields

Γ(A) =
∫

HA
g(A(y))dy =

∫ 1

0
g(z0)dy = g(z0) and

Γ(N(A)) =

∫

HN(A)

g(N(A(y)))dy

=

∫

HN(A)

g(1− z0)dy = g(1− z0),

which is in contradiction with(E4∗).
⇐) Let g be a symmetric function with respect toz = 1

2 .
Then

Γ(A) =

∫

HA

g(A(y))dy

=

∫

HN(A)

g(A(y))dy =

∫

HN(A)

g(1−A(y))dy

=

∫

HN(A)

g(N(A(y)))dy = Γ(N(A))

where the second equality holds becauseHA = HN(A), the
third one holds becauseg is symmetric and the fourth one by
the expression of negation.
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