
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1543–1553,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Conversation Trees: A Grammar Model for Topic Structure in Forums

Annie Louis and Shay B. Cohen

School of Informatics

University of Edinburgh

Edinburgh, EH8 9AB, UK

{alouis,scohen}@inf.ed.ac.uk

Abstract

Online forum discussions proceed differ-

ently from face-to-face conversations and

any single thread on an online forum con-

tains posts on different subtopics. This

work aims to characterize the content of

a forum thread as a conversation tree of

topics. We present models that jointly per-

form two tasks: segment a thread into sub-

parts, and assign a topic to each part. Our

core idea is a definition of topic struc-

ture using probabilistic grammars. By

leveraging the flexibility of two grammar

formalisms, Context-Free Grammars and

Linear Context-Free Rewriting Systems,

our models create desirable structures for

forum threads: our topic segmentation is

hierarchical, links non-adjacent segments

on the same topic, and jointly labels the

topic during segmentation. We show that

our models outperform a number of tree

generation baselines.

1 Introduction

Online forums are commonplace today and used

for various purposes: product support and trou-

bleshooting, opining about events and people, and

student interaction on online course platforms.

Threads in these forums become long, involve

posts from multiple users, and the chronological

order of the posts in a thread does not represent

a continuous flow of dialog. Adding structure to

these threads is important for tasks such as infor-

mation extraction, search, and summarization.

One such aspect of structure is topic. Figure 1

shows a computer-troubleshooting related thread

with six posts. The first post is the troubleshoot-

ing question and the remaining posts can be seen

as focusing on either of two topics, the driver soft-

ware (posts p1, p2, p5) or the speaker hardware

p0 Bob: When I play a recorded video on my camera, it
looks and sounds fine. On my computer, it plays
at a really fast rate and sounds like Alvin and the
Chipmunks!

p1 Kate: I’d find and install the latest audio driver.
p2 Mary: The motherboard supplies the clocks for audio

feedback. So update the audio and motherboard
drivers.

p3 Chris: Another fine mess in audio is volume and speaker
settings. You checked these?

p4 Jane: Yes, under speaker settings, look for hardware ac-
celeration. Turning it off worked for me.

p5 Matt: Audio drivers are at this link. Rather than just
audio drivers, I would also just do all drivers.

Table 1: Example forum thread conversation

(p3, p4). By categorizing posts into such topics,

we can provide a useful division of content in a

thread and even across multiple threads. Note that

the driver topic is not a contiguous sequence but

present in non-adjacent parts, (p1, p2) and (p5).
We tackle the problem of joint topic segmenta-

tion and topic labeling of forum threads. Given

a thread’s posts in chronological order (the order

in which they were posted), we create a phrase

structure tree indicating how the posts are grouped

hierarchically into subtopics and super-topics. In

these conversation trees, leaves span entire posts.

Each non-terminal identifies the topic character-

izing the posts in its span. Topics are concepts or

themes which summarize the content of a group of

posts. Specifically, a topic is a set of words which

frequently co-occur in posts which are similar in

content and other conversation regularities.

Our key insight in this work is to formalize

topic structure using probabilistic grammars. We

define a base grammar for topic structure of fo-

rum threads and refine it to represent finer topics

and subtrees. We learn to predict trees under our

grammar based on two formalisms: Probabilis-

tic Context-Free Grammars (PCFG) and Proba-

bilistic Linear Context-Free Rewriting Systems

(PLCFRS). In the PCFG model, a non-terminal

spans a contiguous sequence of posts. In the

1543

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74375316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PLCFRS model, non-terminals are allowed to

span discontinuous segments of posts. We lever-

age algorithms from probabilistic parsing of nat-

ural language sentences and modify them for our

domain. We show that our model performs well

and sidesteps a number of limitations of prior

topic segmentation approaches. In particular:

• Our models perform joint topic segmentation

and topic labeling while most existing models

identify unlabeled segments. Labeling topics on

segments creates richer annotation, and links non-

adjacent segments on the same topic.

• Our grammar-based probabilistic models have

two key benefits. They naturally create tree struc-

tures which are considered linguistically suitable

for topic segmentation but were difficult to create

under previous approaches. Second, the flexibility

of grammars such as PLCFRS allow our models

to seamlessly learn to produce trees where non-

adjacent segments on the same topic are explicitly

linked, an issue that was not addressed before.

We present large-scale experiments on a col-

lection of forum threads from the computer-

troubleshooting domain.1 We show that our gram-

mar models achieve a good balance between iden-

tifying when posts should be in the same topic ver-

sus a different topic. These grammar models out-

perform other tree generation baselines by a sig-

nificant margin especially on short threads.

2 Related work

The ideas in this paper are related to three areas of

prior research.

Forum thread analysis. Finding structure in fo-

rum threads has been previously addressed in two

ways. The first is reply structure prediction where

a parent post is linked to its children (replies)

which were posted later in time (Wang et al.,

2008; Cong et al., 2008). Reply links are some-

times augmented with a dialog act label indicat-

ing whether the child post is a question, answer, or

confirmation to the parent post (Kim et al., 2010;

Wang et al., 2011). The second set of methods

partition sentences in emails or blog comments

into topical clusters and then show salient words

per cluster as topic tags (Joty et al., 2013).

We focus on producing rich hierarchical seg-

mentation going beyond clusters which do not

contain any cluster-internal structure. We also be-

1Our corpus is available from http://

kinloch.inf.ed.ac.uk/public/CTREES/

ConversationTrees.html

lieve that topic structure is complementary to di-

alog act and reply link annotations. Tasks on fo-

rum data such as user expertise (Lui and Baldwin,

2009) and post quality prediction (Agichtein et al.,

2008), and automatic summarization (Nenkova

and Bagga, 2003) can be carried out on a fine-

grained level using topic information.

Conversation disentanglement. A related prob-

lem of clustering utterances is defined specifically

for Internet Relay Chat (IRC) and speech conver-

sations. In this case, multiple conversations, on

different topics, are mixed in and systems extract

threads which separate out individual conversa-

tions (Shen et al., 2006; Adams and Martell, 2008;

Elsner and Charniak, 2010).

Disentanglement is typically applied for the

coarse-level problem of identifying a coherent

conversation. In addition, these methods do not

create any structure upon the clustered utterances

in contrast to the focus of this work.

Topic Segmentation. is a task which directly fo-

cuses on the topic aspect of text and speech. This

task is of greater importance for speech which

lacks explicit structure such as paragraphs and

sections. Many approaches perform linear seg-

mentation where boundaries are inserted in the

text or speech to divide it into a flat set of topic

segments (Hearst, 1994; Utiyama and Isahara,

2001; Galley et al., 2003; Malioutov and Barzilay,

2006; Eisenstein and Barzilay, 2008). Very few

methods recursively combine smaller segments

into larger ones. Such hierarchical models (Eisen-

stein, 2009) have been applied at a coarse level

for segmenting very long texts such as books into

sections. Other work has focused on linear seg-

mentation for documents within the same domain

and having a regular structure (Chen et al., 2009;

Jeong and Titov, 2010; Du et al., 2015). These

latter approaches rely on three assumptions: that

the documents contain a regular set of topics, that

these topics are discussed in a fairly regular con-

sensus order, and that the same topic does not re-

cur in the same document.

Our models address two deficiencies in these

approaches. First, text is commonly understood

to have a hierarchical structure (Grosz and Sidner,

1986) and our grammar model is an ideal frame-

work for this goal. Tree structures also have other

advantages, for example, we do not predefine the

number of expected topic segments in a conversa-

tion tree, a requirement posed by many prior seg-

1544

mentation algorithms. The second limitation of

prior studies is assuming that topics do not recur

in the same document. But linguistic theories al-

low for non-adjacent utterances to belong to the

same topic segment (Grosz and Sidner, 1986) and

this fact is empirically true in chat and forum con-

versations (Elsner and Charniak, 2010; Wang et

al., 2011). Our models can flexibly handle and

link recurring topics within and across threads.

As a final note, because of the annotations re-

quired, most prior work on forums or IRC chats

have typically used few hundred threads. We

present a heuristically derived large corpus of

topic structure on which we evaluate our models.

3 Background

Our topic discovery methods are based on two

constituency grammar formalisms.

3.1 Probabilistic Context-Free Grammars

A PCFG is defined by a 5-tuple GC =(N , T ,

P , S, D) where N is a set of non-terminal sym-

bols, T a set of terminal symbols, and S is the

start symbol. P is a set of production rules of

the form A → β where A is a non-terminal and

β ∈ {N ∪ T}∗. D is a function that associates

each production rule with a conditional probabil-

ity of the form p(A → β|A). This probability in-

dicates how often the non-terminal A expands into

β. The probabilities of all the rules conditioned on

a particular non-terminal should sum to 1.

The joint probability of a tree T with yield Y ,

P (T, Y), is the product of the probabilities of all
the productions used to construct T . The parsing

problem is to find the tree T̂ which is most likely

given the yield Y . T̂ = arg maxT P (T |Y) =
arg maxT P (T, Y).

Given training trees, we can enumerate the pro-

ductions and compute their probabilities using

maximum likelihood estimates (MLE):

p(A → β|A) =
count(A → β)

count(A)

which is the fraction of the times the non-terminal

A expands into β.
The most likely parse tree can be found using

a number of algorithms. In this work, we use

the CYK algorithm for PCFGs in Chomsky Nor-

mal Form. This algorithm has complexity O(n3)
where n is the length of the yield.

PCFGs do not capture a frequently occurring

property of forum threads, discontinuous seg-

ments on the same topic. Indirectly however, a

PCFG may assign the same non-terminal for each

of these segments. To model these discontinuities

more directly, we present a second model based

on PLCFRS where non-terminals are allowed to

span discontinuous yield strings.

3.2 Probabilistic Linear Context-Free

Rewriting Systems

LCFRS grammars (Vijay-Shanker et al., 1987)

generalize CFGs, where non-terminals can span

discontinuous constituents. Formally, the span

of an LCFRS non-terminal is a tuple, with size

k ≥ 1, of strings, where k is the non-terminal

“fan-out”. As such, the fan-out of a CFG non-

terminal is 1.

An LCFRS GL =(N , T , P , S, V) where N is

the set of non-terminals, T the terminals and S is

the start symbol. A function f : N → N gives

the fan-out of each non-terminal. P is the set of

productions or otherwise called rewriting rules of

the LCFRS. V is a set of variables used to indicate

the spans of each non-terminal in these rules. A

rewriting rule has the form:

A(α1, α2, . . . , αf(A)) →
A1(x1

1 . . . , x1
f(A1)), . . . , Am(xm

1 , . . . , xm
f(Am))

Here A,A1,. . .,Am ∈ N . Since there are m
non-terminals on the RHS, this rule has rank m.

xi
j ∈ V for 1 ≤ i ≤ m and 1 ≤ j ≤ f(Ai) indi-

cate the f(Ai) discontinuous spans dominated by

Ai. αi ∈ (T ∪ V)∗, 1 ≤ i ≤ f(A) are the spans
of the LHS non-terminal A.

A rewriting rule explains how the left-hand

side (LHS) non-terminal’s span can be com-

posed from the yields of the right-hand side

(RHS) non-terminals. For example, in the rule

A(x1x2, x3) → B(x1)C(x2, x3), A and C have

fan-out 2, B has fan-out 1. The two spans of A,

x1x2 and x3, are composed from the spans of B
and C . For comparison, the productions of a CFG

take the single spans of each non-terminal on the

RHS and concatenate them in the same order to

yield a single span of the LHS non-terminal.

A Probabilistic LCFRS (PLCFRS) (Levy,

2005) also contains D, a function which assigns

conditional probabilities p(A(~x) → ~φ|A(~x)) to
the rules. The probabilities conditioned on a par-

ticular non-terminal and span configuration, A(~x)
should sum to 1. Given a training corpus, LCFRS

rules can be read out and probabilities computed

similar to CFG rules.

1545

To find the most likely parse tree, we use the

parsing algorithm proposed by Kallmeyer and

Maier (2013) for binary PLCFRS. The approach

uses weighted deduction rules (Shieber et al.,

1995; Nederhof, 2003), which specify how to

compute a new item from other existing items.

Each item is of the form [A, ~ρ] where A is a

non-terminal and ~ρ is a vector indicating the spans

dominated by A. A weight w is attached to each

item which gives the |log| of the Viterbi inside

probability of the subtree under that item. A set

of goal items specify the form of complete parse

trees. By using the Knuth’s generalization (Knuth,

1977) of the shortest paths algorithm, the most

likely tree can be found without exhaustive pars-

ing as in Viterbi parsing of CFGs. The complexity

of parsing is O(n3k) where k is the fan-out of the

grammar (the maximum fan-out of its rules).

4 Problem Formulation

Given a thread consisting of a sequence of posts

(p1, p2, . . . , pn) in chronological order, the task

is to produce a constituency tree with yield (p1,

p2 . . . pn). A leaf in this tree spans an entire

post. Non-terminals identify the topic of the posts

within their span. Non-terminals at higher levels

of the tree represent coarser topics in the conver-

sation (the span covered by these nodes contain

more posts) than those lower in the tree. The root

topic node indicates the overall topic of the thread.

Below we define a Context-Free Grammar

(CFG) for such trees.

4.1 A Grammar for Conversation Trees

GB is our base grammar which is context-free

and has four non-terminals {S, X, T , C}. Each

post p in the corpus is a terminal symbol (i.e. a ter-

minal symbol is a bag of words). The productions

in GB are: S → T X∗, X → T X∗ and T → p.

GB generates trees with the following structure.

A root-level topic S characterizes the content of

the entire thread. Thread-starting rules are of the

form, S → T X∗, where X∗ indicates a sequence
of zero or more X non-terminals. T nodes are

pre-terminals analogous to part-of-speech tags in

the case of syntactic parsing. In our grammar,

the T → p rule generates a post in the thread.

In the thread-starting rules, T generates the first

post of the thread which poses the query or com-

ment that elicits the rest of the conversation. The

X∗ sequence denotes topic branches, the subtree

under each X is assumed to correspond to a dif-

S[11]

T[3]

p0

X[5]

T[6]

p1

X[8]

T[7]

p2

X[12]

T[2]

p3

X[7]

T[4]

p4

X[5]

T[6]

p5

Figure 1: Example conversation tree for the thread

in Table 1

ferent topic. These X’s characterize all but the

first post of the thread. The continuation rules,

X → T X∗, recursively subdivide the X subtrees

into topics spanning fewer posts. In each case, the

T node on the right-hand side of these rules gener-

ates the first post (in terms of posting time) in that

subtree. Therefore posts made earlier in time al-

ways dominate (in the tree structure) those which

come later in the thread. We define the head of a

non-terminal as the first post as per the chronolog-

ical order of posts in the span of the non-terminal.

This grammar does not generate binary trees.

We binarize the tree with C nodes to obtain an

equivalent grammar in Chomsky Normal Form

(CNF) (CNF yields parsing algorithms with lower

complexity)2 : S → T C | T , X → T C | T ,

T → p and C → X | X X| X C . The C nodes

can be collapsed and its daughters attached to the

parent of C to revert back to the non-binary tree.

While this CFG defines the structure of conver-

sation trees, by itself this grammar is insufficient

for our task. In particular, it contains a single non-

terminal of each type (S, X, T , C) and so does

not distinguish between topics. We extend this

grammar to create GE which has a set of non-

terminals corresponding to each non-terminal in

GB , these fine-grained non-terminals correspond

to different topics. GE is created using latent an-

notations (Matsuzaki et al., 2005) on the X, T ,

S and C non-terminals from GB . The resulting

non-terminals for GE are S[i], X[j], T [k] and

C[l], such that 1 ≤ i ≤ NS , 1 ≤ j ≤ NX ,

1 ≤ k ≤ NT , 1 ≤ l ≤ NC . i, j, k and l identify
specific topics attached to a particular node type.

Our output trees are created with GE to depict

the topic segmentation of the thread and are non-

binary. The binary trees produced by our algo-

rithms are converted by collapsing the C . As a

result, conversation trees have S[i], X[j] and T [k]
2Any context-free grammar can be converted to an equiv-

alent CNF grammar. Our algorithms support unary rules.

1546

nodes but no C[l] nodes.
An example conversation tree for the thread in

Table 1 is shown in Figure 1. At level 1, T [3] de-
scribes the topic of the first post while the remain-

ing posts are under X[5] which may indicate a

driver topic, and X[12], a speaker hardware topic.
Note how X[5] may re-occur in the conversation

to accommodate post p5 on the driver topic.

4.2 Supervised learning framework

We use a supervised framework for learning the

models. We assume that we have training trees

according to the base grammar, GB . The follow-

ing section describes our data and how we obtain

these GB-based trees. In Section 6, we present

a method for creating GE-type trees with non-

terminal refinements. Estimates of rule probabili-

ties from this augmented training corpus are used

to develop the parsers for topic segmentation.

5 Data

We collected 13,352 computer-troubleshooting

related threads from http://forums.cnet.

com/. The number of posts per thread varies

greatly between 1 and 394, and the average is

around 5 posts. We divide these threads into train-

ing, development and test sets. The most frequent

100 words from the training set are used as stop-

words. After filtering stopwords, a post contains

39 tokens on average and the vocabulary size of

our corpus is 81,707. For development and test-

ing, we only keep threads with a minimum of 3

posts (so that the problem is non-trivial) and a

maximum of 50 posts (due to complexity of pars-

ing). We have 9,243 training threads, 2,014 for

development, and 2,071 for testing.

A particular feature of the forums on cnet.

com is the explicit reply structure present in the

threads. The forum interface elicits these reply re-

lationships as users develop a thread. When a user

replies in a particular thread, she has to choose

(only) one of the earlier posts in the thread (in-

cluding the question post) to attach her reply to. In

this way, each post is linked to a unique post ear-

lier in time in the same thread. This reply structure

forms a dependency tree. Figure 2 (a) is a possible

reply tree for the thread in Table 1.

5.1 Deriving conversation trees

Next we convert these reply-link trees into phrase-

structure conversation trees. We developed a de-

terministic conversion method that uses the gen-

(a)
hp0h hp1h hp2h hp3h hp4h hp5h

(b) S

T X X

p0 T X T X

p1 T T T X

p2 p3 p4 T

p5

Figure 2: (a) A reply structure tree for the thread

in Table 1 and (b) the derived conversation tree

erative process defined by the base grammar GB .

The key idea is to track when the conversation

branches into sub-topics and when the replies are

proceeding within the same topic.

The algorithm traverses the nodes of the depen-

dency tree D in breadth-first order, starting at the

root (first) post. We create a root S node in the

phrase structure tree H . Then the thread-starting

rule from GB , S → T X∗, is used to create one

T and k X nodes as children of S. The first post
p0 is attached as a child of the T node. k is equal

to the number of replies to p0 (children of p0 in

D). For each of these k X nodes, we instanti-

ate a X → T X∗ rule in H . The k replies of p0

are attached one each as a child of the T nodes

in these rules. Any set of children are always in-

stantiated in chronological order. So the span of a

non-terminal in H always contains posts in non-

decreasing time order. We continue the procedure

with the next post from D in the traversal order.

This procedure converts the reply tree of Figure

2 (a) into the conversation tree (b). Note that (a) is

a possible reply structure for our example thread

in Table 1. The conversation tree (b) derived ac-

cording to this reply structure has a non-projective

structure where p1, p2 and p5 are linked under one

X node (at level 1). Such a tree can be produced

by our LCFRS model. The ideal PCFG tree will

repeat the topic branch as in Figure 1.

The derived trees at this stage follow GB and

contain only the S, X, T non-terminals (without

any latent annotations). This tree is converted into

Chomsky Normal Form using C nodes.

5.2 Discontinuous topic segments

As in our example above, non-projective edges

in the reply structure are rather frequent. Of the

1547

total threads in our corpus 14.5% contain a non-

projective edge. A thread should have a mini-

mum of four posts to have the possibility of non-

projective edges. Among the 7,691 threads with at

least four posts, the percentage of non-projective

trees is even higher, 25%. This finding suggests

that in any thread of reasonable size which we

wish to summarize or categorize, non-projective

edges will be common. Hence a direct approach

for addressing discontinuous segments such as our

PLCFRS model is important for this domain.

6 Parsers for Conversation Trees

The training data are conversation trees with rules

from GB . We refine the non-terminals to cre-

ate GE , extract PCFG or PLCFRS rules from the

training trees, and build a CYK parser that pre-

dicts the most likely tree according to GE .

6.1 Refining the non-terminals

We use a clustering approach, akin to the spectral

algorithm of Cohen et al. (2013) and Narayan and

Cohen (2015),3 to create finer grained categories

corresponding to GB’s non-terminals: S, X, C
and T . Each node in each tree in the training data

is associated with a feature vector, which is a func-

tion of the tree and the anchor node. These vectors

are clustered (for each of the non-terminals sepa-

rately) and then, each node is annotated with the

corresponding cluster. This process gives us the

non-terminals S[i], X[j], T [k] and C[l] of GE .

The features for a node nl are: depth of nl in the

tree, root is at depth 0; maximum depth of the sub-

tree under nl; number of siblings of nl; number of

children of nl; number of posts in the span of nl;

average length (in terms of tokens) of the posts in

the span of nl; average similarity of the span of nl

with the span of nl’s siblings
4 ; similarity of nl’s

span with the span of its left-most sibling; elapsed

time between the first and last posts in nl’s span.

We use CLUTO toolkit (Karypis, 2002) to per-

form clustering. The algorithm maximizes the

pairwise cosine similarity between the feature

vectors of nodes within the same cluster. The

3The main difference between our algorithm and the al-
gorithm by Narayan and Cohen (2015) is that we do not de-
compose the trees into “inside” trees and “outside” trees, or
use a singular value decomposition step before clustering the
features.

4The span of nl and that of a sibling are each represented
by binary vectors indicating the presence and absence of a
term in the span. The similarity value is computing using
cosine overlap between the vectors and the average across all
siblings is recorded.

best number of clusters for the four non-terminal

node types are tuned jointly to give the best per-

formance on our final topic segmentation task.

6.2 Learning rule probabilities

As mentioned previously, each terminal in our

grammar is an entire post’s text. For the pre-

terminal to terminal productions in our grammar

T [j] → pi, we compute p(T [j] → pi|T [j]) as

the probability under a unigram language model

Lj which is trained on the collection of the posts

from the training corpus which are dominated by

T [j] nodes. p(T [j] → pi|T [j]) =
∏Npi

k=1 Lj(wi
k)

where wi
1, w

i
2...w

i
Npi

are the tokens in post pi.

The rest of the production probabilities are

learned using MLE on the training trees. In the

case of LCFRS rules, the gap information is also

obtained during the extraction.

6.3 CYK parsing

For both PCFG and LCFRS we use CYK style

algorithms, as outlined in §3, to obtain the most

likely tree. For the more computationally com-

plex LCFRS model, we make a number of addi-

tions to improve speed. First, we restrict the fan-

out of the grammar to 2, i.e. any non-terminal

can only span a maximum of two discontinuous

segments. 97% of the productions in fact have

only non-terminals with fan-out ≤ 2. Second, we

use A∗ search (Maier et al., 2012) to prioritize

our agenda. Last, we reduce the number of items

added to the agenda. An item has the form [A,

~ρ], A is a non-terminal and ~ρ is the spans cov-

ered by A. For every span, we only keep the top 5

non-terminal items according to the score. In ad-

dition, we only allow spans with a gap of at most

2 since 77% of all gaps (dominated by fan-out ≤
2) non-terminals are ≤ 2 posts. Moreover, after

a certain number of items (10,000) are added to

the chart, we only allow the creation of new items

which have a contiguous span.

7 Systems for comparison

We compare our models to two types of systems.

7.1 STRUCTURE ONLY

The first type generate tree structures without con-

sidering the content of the threads.

Right-branching tree (RBT). produces a

strictly right branching tree where each post is

dominated by the immediately previous (accord-

ing to time) post in the thread. It uses the grammar

1548

with the rules {S → TX, X → TX, X → T ,

T → p}. This method does not perform use-

ful topic segmentation as it produces only a single

topic branch containing all the posts.

Attach-to-root tree (ART). attaches each post

to the root of the tree. The grammar rules are

{S → TX1...Xn, X → T , T → p}, where n is

the number of posts in the thread. This approach

assumes each post belongs to a different topic in

the thread. In contrast to RBT, ART contains too

many topic branches, one per post in the thread.

Random tree (RAND).mixes decisions to cre-

ate a new topic branch or continue in the same

branch. The generation process is top down, at

each step, the algorithm chooses a certain num-

ber of topic branches (Xs) to create (≤ number of

posts left to add to the tree). Then, the number

of posts under each branch is sampled (such that

each branch has at least one post). This process is

then recursively done at the new topic branches.

7.2 STRUCTURE AND CONTENT

These approaches produce tree structures in-

formed by content. We build these parsers by

modifying prior models for chat disentanglement

and linear topic segmentation of documents.

Similarity tree (SIM). produces trees by at-

taching each post as a child of the most similar of

the previous (by time) posts (Wang et al., 2008).

We use cosine similarity between vector represen-

tations of two posts in order to compute similar-

ity. When the similarity exceeds a threshold value,

the post is added under the topic branch of the

prior post. Otherwise the post is under a new topic

branch attached to the root of the tree. A thresh-

old of 0.15 was chosen after tuning on the devel-

opment data.

Cluster tree (CLUS). uses an approach re-

lated to chat disentanglement (Elsner and Char-

niak, 2010). The posts within each thread are clus-

tered separately into kl clusters where kl = l/h
depends on the number of posts in the thread, l.
h = 6 was chosen by tuning. The posts in each

cluster are ordered by time and a right branching

tree is created over them. These kl cluster-level

trees are then attached as children of a new node

to create a thread-level tree. The cluster-trees are

ordered left to right in the thread-tree according to

the time of the earliest post in each cluster.

Linear segmentation tree (LSEG). is based

on postprocessing the output of a Bayesian linear

topic segmentation model (Eisenstein and Barzi-

lay, 2008). Each post’s content is treated as a sen-

tence and a document is created for each thread by

appending its posts in their time order. The model

is then used to group consecutive sentences into kl

segments. For each thread of length l, kl = l/h,
h = 6 was chosen by tuning. For each segment, a

right branching tree is created and these segment-

level trees are made siblings in a thread-level tree.

The segments are added left to right in the thread-

tree as per their order in the text.

All STRUCTURE trees contain thread structure

but no topic labels. In other words, they have

coarse non-terminals (X, T and S) only. The

STRUCTURE AND CONTENT trees, LSEG and

CLUS contain topics or groups but only at one top

level, and further the number and labels of these

topics are different per thread. Hence there is no

linking across threads. Within a thread, the SIM

and CLUS tree can link non-adjacent posts under

the same topic. These links are also not available

from a LSEG tree.

8 Evaluation metrics

To evaluate the topic segmentation, we develop a

node-governance based measure. Our score com-

pares two conversation trees g and h, where g is

the gold-standard tree and h is the hypothesized

one. We assume that g and h are in dependency

format, reversing the transformation from §5.1.
We break g (and h) into a set of pairs, for each

pair of nodes in the tree (each node is a post in the

thread). For each such pair, p and q, we find their

least common ancestor, ℓ(p, q|g) (or ℓ(p, q|h). If
these nodes are in a governing relation (p domi-

nates q or vice versa), then ℓ(p, q) is the dominat-

ing node. We then define the following sets and

quantities for · ∈ {g, h}:
• S1(·) = {(p, q, ℓ(p, q)) | ℓ(p, q|·) ∈ {p, q}}.
• S2(·) = {(p, q, ℓ(p, q)) | ℓ(p, q|·) /∈ {p, q}}.
• n1(g, h) = |S1(g) ∩ S1(h)|.
• n2(g, h) = |S2(g) ∩ S2(h)|.

s1(·) and s2(·) are defined as the size of

S1(·) and S2(·), repsectively. Let g1, . . . , gn and

h1, . . . , hn be a corpus of gold-standard conver-

sation trees and their corresponding hypothesized

conversation trees. Then the evaluation metric

we compute is the harmonic mean (Fscore) of the

micro-average of the precision for governing (G-

p) and non-governing (NG-p) pairs, and recall for

governing (G-r) and non-governing (NG-r) pairs.

For example, G-p is calculated as

1549

G-p =
∑n

i=1 n1(gi, hi)∑n
i=1 s1(hi)

.

Traditional parsing evaluation measures such as

constituency bracketting and dependency attach-

ment scores were too local for our purpose. For

example, if a long chain of posts is placed in a dif-

ferent topic but their local dependencies are main-

tained, we only penalize one constituent and one

node’s parent in the constituency and dependency

scores respectively. But the topic segmentation

created by this change has several posts placed in

the wrong topic branch. Our scores overcome this

problem by considering the relationship between

all pairs of posts and also dividing the relationship

in the pair as governing or non-governing.

9 Results and discussion

We tune the number of latent topic annotations for

the non-terminals using grid search on the devel-

opment set. The best settings are 40 S, 100 X, 20

C , 80 T clusters for PCFG and 10 S, 5 X, 15 C ,

40 T for LCFRS.

Below we show an example non-projective tree

created by our LCFRS parser. The topics are indi-

cated with the most frequent 5 words in the match-

ing cluster.
S[9]: problem, time,

windows, pc, could

T[1]:thank, time, i’ll,

really, try

p0

X[4]:power, time, go,

problem, same

T[17]:printer,

ink, hp,

printers, print

p1

X[4]

T[17]

p4

X[3]:drive, try, windows,

hard, problem

T[6]: cd, drive,

windows,

problem, dvd

p2

X[3]

T[6]

p3

Here post p4 though later in posting time is pre-

dicted to be on the same topic as p1.

The non-terminals in our trees enable useful

topic segmentation and we found that perfor-

mance is extremely sensitive to the number of

non-terminals of each type S, X, C and T . Cur-

rently, we do not have a direct method to evaluate

the non-terminals in our tree but we plan to use the

information in other applications as an evaluation.

Table 2 and 3 shows the segmentation perfor-

mance of the models (as percentages). The per-

formance varied greatly depending on the length

of the threads and hence we show the results sepa-

rately for threads with up to 15 posts (SHORT) and

those with 16 to 50 posts (LONG). The results are

divided into sections based on the subset of test

data on which the evaluation is performed. The

first section (R1.) is performance on all threads,

(R2.) only on the projective threads in the test

data, and (R3.) only on the non-projective threads.

Among the baselines, the Right-branching trees

(RBT) or Attaching to the root (ART) have some

advantages: the RBT receives 100% recall of the

governing pairs and the ART tree has high recall

of the non-governing pairs. However, their Fs-

cores are 0. Recall that the RBT contains a single

topic branch and hence no useful segmentation is

done; ART is the other extreme where every post

is put in a separate topic branch. RAND is the av-

erage performance of 3 randomly generated trees

for each thread. This method has a better balance

between branching and depth leading to 33.4 Fs-

core for SHORT and 21.5 for LONG threads.

The PCFG and the LCFRS models clearly out-

perform these baselines. The Fscore improves up

to 15% over RAND on SHORT and LONG threads.

The grammar models also consistently outperform

SIM systems.

With regard to CLUS and LSEG, there is a

difference in performance between SHORT and

LONG threads and based on whether the desired

structure was projective or non-projective. On

SHORT threads, the grammar models outperform

LSEG and CLUS particularly on the projective

threads (the LCFRS model has a 22% higher Fs-

core). On the longer threads however, the CLUS

and LSEG models perform best overall and for

non-projective threads. CLUS and LSEG directly

model the content similarity of posts while the

grammar models make many decisions at level of

topic nodes. Remember that the clustering is done

per thread in CLUS and LSEG compared to using

a common set of topics across all threads. Making

such fine-grained similarity comparison appears

to be helpful especially for longer threads and

even though LSEG does not make non-projective

decisions, its accuracy is high on the attachments

it makes leading to good performance on non-

projective threads too. In future work, we plan

to explore how we can combine the advantages of

direct similarity with the grammar models.

Between the two grammar models, the LCFRS

model is better than PCFG, even on projective

threads, and can produce non-projective trees.

Part of this improvement on projective trees could

be due to more data being available in the LCFRS

model since all the data can be used for training it.

1550

Model Ex G-p G-r NG-p NG-r F

R1. On all gold threads
(1,971 threads, 24,620 post pairs)

RBT 20.4 50.8 100.0 100.0 0.0 0.0
ART 5.6 100.0 0.0 42.3 86.0 0.0
RAND 5.2 55.5 19.4 39.2 65.5 33.4

SIM 5.7 68.2 13.3 43.1 79.0 27.9
CLUS 20.2 52.9 85.5 47.5 17.2 42.8
LSEG 20.2 53.0 88.2 52.2 16.5 42.8

PCFG 9.7 52.7 60.4 41.0 34.9 48.3
LCFRS 11.4 53.3 62.5 43.6 35.9 49.9

R2. On projective gold threads only

RBT 24.4 59.8 100.0 100.0 0.0 0.0
ART 6.7 100.0 0.0 35.1 87.4 0.0
RAND 6.2 62.0 22.0 32.4 63.5 35.3

SIM 5.9 73.8 13.9 36.0 79.6 28.4
CLUS 24.2 59.8 90.6 31.3 7.3 26.8
LSEG 24.2 60.1 91.9 35.6 7.6 27.9

PCFG 11.7 61.2 60.5 35.8 36.4 49.5
LCFRS 13.5 62.0 64.5 37.6 35.3 50.8

R3. On non-projective gold threads only

RBT 0.0 39.1 100.0 100.0 0.0 0.0
ART 0.0 100.0 0.0 51.7 84.8 0.0
RAND 0.0 42.0 14.3 47.3 67.3 26.9

SIM 4.3 58.1 12.1 52.1 78.5 26.0
CLUS 0.0 41.2 75.1 54.4 25.8 45.4
LSEG 0.0 41.8 80.7 59.8 24.1 45.9

PCFG 0.0 41.1 60.1 47.6 33.5 45.2
LCFRS 0.3 40.8 58.5 50.4 36.4 46.0

Table 2: Results on threads with up to 15 posts:

for the grammar models (PCFG and LCFRS) and

comparison systems (See Section 7). ‘Ex’ is per-

centage of fully correct trees and other scores are

from Section 8. Top two Fscores are in bold.

For the PCFG model, only the projective data can

be used for training.

Overall, the LCFRS model is powerful on pro-

jective threads and SHORT non-projective threads.

Compared to PCFG, the LCFRSmodel has a num-

ber of advantages: we can use more data, can pre-

dict non-projective trees. Some of the constraints

we imposed on the LCFRS parser, such as restrict-

ing the gap degree are likely to have limited the

ability of the model to generate more flexible non-

projective edges. We believe that as we figure out

how to make these parsers faster, we will see even

more improvements from the LCFRS models.

10 Conclusions

This work represents a first approach to learn dis-

course structure of forum threads within an ex-

plicit grammar framework. We show that a coarse

Model Ex G-p G-r NG-p NG-r F

R1. On all gold threads
(100 threads, 27,590 post pairs)

RBT 0.0 21.2 100.0 100.0 0.0 0.0
ART 0.0 100.0 0.0 69.8 88.6 0.0
RAND 0.0 38.9 10.0 65.4 78.4 21.5

SIM 0.0 37.0 8.9 67.2 80.9 19.6
CLUS 0.0 32.6 37.3 73.3 70.5 42.0
LSEG 0.0 35.4 50.4 76.8 68.0 48.4

PCFG 0.0 24.6 54.1 54.3 36.8 36.6
LCFRS 0.0 22.8 71.4 68.7 29.4 36.5

R2. On projective gold threads only

RBT 0.0 36.7 100.0 100.0 0.0 0.0
ART 0.0 100.0 0.0 57.1 90.3 0.0
RAND 0.0 59.9 11.0 56.0 82.6 24.3

SIM 0.0 45.9 8.3 54.4 80.2 19.1
CLUS 0.0 42.0 38.1 60.0 63.2 45.3
LSEG 0.0 51.3 55.0 68.0 65.1 56.9

PCFG 0.0 42.2 66.6 34.5 22.9 39.9
LCFRS 0.0 49.0 65.3 51.6 41.7 52.3

R3. On non-projective gold threads only

RBT 0.0 19.6 100.0 100.0 0.0 0.0
ART 0.0 100.0 0.0 71.1 88.5 0.0
RAND 0.0 36.1 9.9 66.3 78.1 20.9

SIM 0.0 35.8 9.0 68.5 81.0 19.7
CLUS 0.0 31.2 37.1 74.6 71.1 41.3
LSEG 0.0 33.2 49.6 77.6 68.2 46.8

PCFG 0.0 22.3 51.6 55.8 37.9 34.8
LCFRS 0.0 20.9 72.6 71.6 28.4 34.8

Table 3: Results on threads with > 15 posts

grammar for structure can be refined using latent

annotations to indicate the finer topic differences.

Our trees have good segmentation performance

and provide useful summaries of the thread con-

tent at the non-terminal nodes. A main goal for

future work is to incorporate further domain spe-

cific constraints on the models to improve parsing

speed and at the same time allow more flexible

trees. We also plan to evaluate the usefulness of

conversation trees in tasks such as predicting if a

thread is resolved, and user expertise.

Acknowledgements

We thank the anonymous reviewers for their sug-

gestions. We also thank Bonnie Webber, Adam

Lopez and other members of the Probabilistic

Models of Language reading group at the Univer-

sity of Edinburgh for helpful discussions. The first

author was supported by a Newton International

Fellowship (NF120479) from the Royal Society

and the British Academy.

1551

References

P. H. Adams and C. H. Martell. 2008. Topic detection
and extraction in chat. In Proceedings of the IEEE
International Conference on Semantic Computing,
pages 581–588.

E. Agichtein, C. Castillo, D. Donato, A. Gionis, and
G. Mishne. 2008. Finding high-quality content in
social media. In Proceedings of WSDM, pages 183–
194.

H. Chen, S. R. K. Branavan, R. Barzilay, and D. R.
Karger. 2009. Content modeling using latent per-
mutations. Journal of Artificial Intelligence Re-
search, 36(1):129–163.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and
L. Ungar. 2013. Experiments with spectral learn-
ing of latent-variable PCFGs. In Proceedings of
NAACL.

G. Cong, L. Wang, C. Lin, Y. Song, and Y. Sun. 2008.
Finding question-answer pairs from online forums.
In Proceedings of SIGIR, pages 467–474.

L. Du, J. K. Pate, and M. Johnson. 2015. Topic seg-
mentation with an ordering-based topic model. In
Proceedings of AAAI, pages 2232–2238.

J. Eisenstein and R. Barzilay. 2008. Bayesian un-
supervised topic segmentation. In Proceedings of
EMNLP, pages 334–343.

J. Eisenstein. 2009. Hierarchical text segmentation
from multi-scale lexical cohesion. In Proceedings
of HLT:NAACL, pages 353–361.

M. Elsner and E. Charniak. 2010. Disentangling chat.
Computational Linguistics, 36(3):389–409.

M. Galley, K. McKeown, E. Fosler-Lussier, and
H. Jing. 2003. Discourse segmentation of multi-
party conversation. In Proceedings of ACL, pages
562–569.

B. J. Grosz and C. L. Sidner. 1986. Attention, inten-
tions, and the structure of discourse. Computational
Linguistics, 12(3):175–204, July.

M.A. Hearst. 1994. Multi-paragraph segmentation of
expository text. In Proceedings of ACL, pages 9–16.

M. Jeong and I. Titov. 2010. Unsupervised discourse
segmentation of documents with inherently paral-
lel structure. In Proceedings of ACL: Short papers,
pages 151–155.

S. Joty, G. Carenini, and R. T. Ng. 2013. Topic seg-
mentation and labeling in asynchronous conversa-
tions. Journal of Artificial Intelligence Research,
47(1):521–573.

L. Kallmeyer and W. Maier. 2013. Data-driven pars-
ing using probabilistic linear context-free rewriting
systems. Computational Linguistics, 39(1):87–119.

G. Karypis. 2002. Cluto - a clustering toolkit. Techni-
cal Report TR-02-017, Dept. of Computer Science,
University of Minnesota.

S. Kim, L. Cavedon, and T. Baldwin. 2010. Clas-
sifying dialogue acts in one-on-one live chats. In
Proceedings of EMNLP, pages 862–871.

D. E. Knuth. 1977. A generalization of dijkstra’s al-
gorithm. Information Processing Letters, 6(1):1–5.

R. Levy. 2005. Probabilistic models of word order
and syntactic discontinuity. Ph.D. thesis, Stanford
University.

M. Lui and T. Baldwin. 2009. Classifying user forum
participants: Separating the gurus from the hacks,
and other tales of the internet. In Proceedings of the
2010 Australasian Language Technology Workshop,
pages 49–57.

W. Maier, M. Kaeshammer, and L. Kallmeyer. 2012.
Plcfrs parsing revisited: Restricting the fan-out to
two. In Proceedings of the 11th International Work-
shop on Tree Adjoining Grammar and Related For-
malisms.

I. Malioutov and R. Barzilay. 2006. Minimum cut
model for spoken lecture segmentation. In Proceed-
ings of COLING-ACL, pages 25–32.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Proba-
bilistic cfg with latent annotations. In Proceedings
of ACL, pages 75–82.

S. Narayan and S. B. Cohen. 2015. Diversity in spec-
tral learning for natural language parsing. In Pro-
ceedings of EMNLP.

M. Nederhof. 2003. Weighted deductive parsing
and knuth’s algorithm. Computational Linguistics,
29(1):135–143.

A. Nenkova and A. Bagga. 2003. Facilitating email
thread access by extractive summary generation. In
Proceedings of RANLP.

D. Shen, Q. Yang, J. Sun, and Z. Chen. 2006. Thread
detection in dynamic text message streams. In Pro-
ceedings of SIGIR, pages 35–42.

S. M. Shieber, Y. Schabes, and F. C. N. Pereira. 1995.
Principles and implementation of deductive parsing.
Journal of Logic Programming, 24(1&2):3–36.

M. Utiyama and H. Isahara. 2001. A statistical model
for domain-independent text segmentation. In Pro-
ceedings of ACL, pages 499–506.

K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. 1987.
Characterizing structural descriptions produced by
various grammatical formalisms. In Proceedings of
ACL, pages 104–111.

Y. Wang, M. Joshi, W. Cohen, and C. P. Rosé. 2008.
Recovering implicit thread structure in newsgroup
style conversations. In Proceedings of ICWSM.

1552

L. Wang, M. Lui, S. Kim, J. Nivre, and T. Baldwin.
2011. Predicting thread discourse structure over
technical web forums. In Proceedings of EMNLP,
pages 13–25.

1553

