
Obvious strategyproofness needs monitoring for good approximations

Diodato Ferraioli
DIEM, Università degli Studi di Salerno, Italy

dferraioli@unisa.it

Carmine Ventre
CSEE, University of Essex, UK

carmine.ventre@gmail.com

Abstract

Obvious strategyproofness (OSP) is an appealing concept as
it allows to maintain incentive compatibility even in the pres-
ence of agents that are not fully rational, e.g., those who strug-
gle with contingent reasoning (Li 2015). However, it has been
shown to impose some limitations, e.g., no OSP mechanism
can return a stable matching (Ashlagi and Gonczarowski
2015).
We here deepen the study of the limitations of OSP mecha-
nisms by looking at their approximation guarantees for ba-
sic optimization problems paradigmatic of the area, i.e., ma-
chine scheduling and facility location. We prove a number of
bounds on the approximation guarantee of OSP mechanisms,
which show that OSP can come at a significant cost. How-
ever, rather surprisingly, we prove that OSP mechanisms can
return optimal solutions when they use monitoring — a novel
mechanism design paradigm that introduces a mild level of
scrutiny on agents’ declarations (Kovács, Meyer, and Ventre
2015).

Introduction
Algorithmic Mechanism Design (AMD) is by now an estab-
lished research area in computer science that aims at con-
ceiving algorithms resistant to selfish manipulations. As the
number of parties (a.k.a., agents) involved in the computa-
tion increases, there is, in fact, the need to realign their indi-
vidual interests with the designer’s. Truthfulness is the chief
concept to achieve that: in a truthful mechanism, no selfish
and rational agent has an interest to misguide the mecha-
nism. A valid question of recent interest is, however, how
easy it is for the selfish agents to understand that it is use-
less (and possibly costly) to strategize against the truthful
mechanism at hand.

Recent research has come up with different approaches
to deal with this question. Some authors (Sandholm and
Gilpin 2003; Babaioff et al. 2014; Chawla et al. 2010;
Adamczyk et al. 2015) suggest to focus on “simple” mech-
anisms; e.g., in posted-price mechanisms one’s own bid is
immaterial for the price paid to get some goods of inter-
est – this should immediately suggest that trying to play
the mechanism is worthless no matter the cognitive abilities

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the agents. However, in such a body of work, this prop-
erty remains unsatisfactorily vague. An orthogonal approach
is that of verifiably truthful mechanisms (Brânzei and Pro-
caccia 2015), wherein agents can run some algorithm to ef-
fectively check that the mechanism is incentive compatible.
Nevertheless, these verification algorithms can run for long
(i.e., time exponential in the input size) and are so far known
only for quite limited scenarios. Importantly, moreover, they
seem to transfer the question from the mechanism itself to
the verification algorithm.

Li (2015) has recently formalized the aforementioned idea
of simple mechanisms, by introducing the concept of Obvi-
ously Strategy-Proof (OSP) mechanisms. This notion stems
from the observation that the very same mechanism can be
more or less truthful in practice depending on the implemen-
tation details. For example, in lab experiments, Vickrey’s
famous second-price mechanism results to be “less” truth-
ful when implemented via a sealed-bid auction, and “more”
truthful when run via an ascending auction. The quite techni-
cal definition of OSP formally captures how implementation
details matter by looking at a mechanism as an extensive-
form game; roughly speaking, OSP demands that strategy-
proofness holds among subtrees of the game (see below for
a formal definition). An important validation for the ‘obvi-
ousness’ is further provided by Li (2015) via a characteri-
zation of these mechanisms in terms of agents with limited
cognitive abilities (i.e., agents with limited skills in contin-
gent reasoning). Specifically, Li shows that a strategy is ob-
viously dominant if and only if these “limited” agents can
recognize it as such.

Nevertheless, for all its significant aspects, there appear
to be hints that the notion of OSP mechanisms might be too
restrictive. Ashlagi and Gonczarowski (2015) prove, for ex-
ample, that no OSP mechanism can return a stable matching
– thus implying that the Gale-Shapley matching algorithm is
not OSP despite its apparent simplicity.
Our contribution. We investigate the power of OSP mech-
anisms in more detail from a theoretical computer science
perspective. In particular, we want to understand the quality
of approximate solutions that can be output by OSP mecha-
nisms. To answer this question, we focus on two fundamen-
tal optimization problems, machine scheduling (Archer and
Tardos 2001) and facility location (Moulin 1980), arguably
(among) the paradigmatic problems in AMD.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74375307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For the former problem, we want to compute a schedule
of jobs on selfish related machines (i.e., machines with job-
independent speeds) so to minimize the makespan. For this
single-dimensional problem, it is known that a truthful PTAS
is possible (Christodoulou and Kovács 2013). In contrast, we
show that there is no better than 2-approximate OSP mech-
anism for this problem independently from the running time
of the mechanism.

For the facility location problem, we want to determine
the location of a facility on the real line given the preferred
locations of n agents. The objective is to minimize the social
cost, defined as the sum of the individual agents’ distances
between their preferred location and the facility’s. Moulin
(1980) proves that the optimal mechanism, that places the
facility on the median of the reported locations, is truthful
without money (i.e., the mechanism does not pay or charge
the agents). OSP mechanisms without money turn out to be
much weaker than that. We prove in fact a tight bound of
n − 1. Interestingly, a linear bound also holds for mecha-
nisms that use money, thus showing that transfers are not
that useful to enforce OSP.

However, a surprising connection of OSP mechanisms
with a novel mechanism design paradigm – called moni-
toring – allows us to prove strong positive results. Building
upon the notion of mechanisms with verification (Nisan and
Ronen 2001; Penna and Ventre 2014), Kovács, Meyer, and
Ventre (2015) introduce the idea that a mechanism can check
the declarations of the agents at running time and guarantee
that those who overreported their costs end up paying the
exaggerated costs. This can be enforced whenever costs can
be easily measured and certified. For example, a mechanism
can force a machine that in her declaration has augmented
her running time to work that long by keeping her idle for
the difference between real and reported running time. We
prove that, for both our problems of interest, there is an
optimal OSP mechanism with monitoring. Both our mech-
anisms have quite interesting and distinctive features. The
construction of the mechanism for machine scheduling can
use any algorithm for the problem as a black box, thus im-
plying that there is PTAS that is OSP. The mechanism for
facility location, instead, is the first direct-revelation mecha-
nism that is OSP – previously known constructions relied on
indirect mechanisms querying agents to find out more about
their types. Our constructions are based upon the first-price
(truthful) mechanism (with monitoring) recently designed in
(Serafino, Vidali, and Ventre 2016). Our results effectively
show how it is possible to modify this mechanism to allow
OSP implementations.

Preliminaries
Mechanisms and Strategy-proofness. In this work we con-
sider a classical mechanism design setting, in which we have
a set of outcomes O and n selfish agents. Each agent i has
a type ti ∈ Di, where Di is defined as the domain of i. The
type ti is private knowledge of agent i. Moreover, each self-
ish agent i has a cost function ci : Di×O → R. For ti ∈ Di

and X ∈ O, ci(ti, X) is the cost paid by agent i to imple-
ment X when her type is ti.

A mechanism consists of a protocol whose goal is to de-
termine an outcome X ∈ O. To this aim, the mechanism
is allowed to interact with agents. During this interaction,
agent i is observed to take actions (e.g., saying yes/no);
these actions may depend on her presumed type bi ∈ Di

that can be different from the real type ti (e.g., saying yes
could “signal” that the presumed type has some properties
that bi alone might enjoy). We say that agent i takes ac-
tions according to bi to stress this. For a mechanismM, we
let M(b) denote the outcome returned by the mechanism
when agents take actions according to their presumed types
b = (b1, . . . , bn). Usually, this outcome is given by a pair
(f,p), where f = f(b) (termed social choice function or,
simply, algorithm) maps the actions taken by the agents ac-
cording to b to a feasible solution for the problem at the hand
(e.g., an allocation of jobs to machines that enjoys particu-
lar properties), and p = p(b) = (p1(b), . . . , pn(b)) ∈ Rn
maps the actions taken by the agents according to b to pay-
ments from the mechanism to each agent i. Note that the
pi’s can be positive (meaning that the mechanism will pay
the agents) or negative (meaning that the agents will pay the
mechanism).

A mechanisms is said without money if pi(b) = 0 for
every agent i and every profile b ∈ D = D1 × · · · × Dn.
Our definitions below do naturally extend to this case by
considering null payments.

A mechanism M is strategy-proof if for every i, every
b−i = (b1, . . . , bi−1, bi+1, . . . , bn) and every bi ∈ Di, it
holds that ci(ti,M(ti,b−i)) ≤ ci(ti,M(bi,b−i)), where
ti is the true type of i. That is, in a strategy-proof mechanism
the actions taken according to the true type are dominant for
each agent.

Moreover, a mechanism M is said to satisfy voluntary
participation if for every i and every b−i, it holds that
ci(ti,M(ti,b−i)) ≤ 0.
Obvious Strategy-proofness. Let us now formally define
the concept of obviously strategy-proof mechanism. This
concept has been introduced in (Li 2015). The original def-
inition turns out to be very general and, consequently, quite
complex. For this reason, in this work we follow Ashlagi
and Gonczarowski (2015) and rephrase this definition for
our setting of interest. Note that we focus on deterministic
mechanisms only.

We being by formally modeling how a mechanism works
and subsequently give some intuition behind the mathemat-
ical definition. Specifically, we have that an extensive-form
mechanismM is defined by a directed tree (V,E) such that:
• every leaf ` of the tree is labeled by a possible outcome
X(`) ∈ O of the mechanism;

• every internal vertex u ∈ V is labeled by a subset S(u) ⊆
[n] of agents;

• every edge e = (u, v) ∈ E is labeled by a subset T (e) ⊆
D of type profiles such that:
– the subsets of profiles that label the edges outgoing

from the same vertex u are disjoint, i.e., for every
triple of vertices u, v, v′ such that (u, v) ∈ E and
(u, v′) ∈ E, we have that T (u, v) ∩ T (u, v′) = ∅;

– the union of the subsets of profiles that label the edges
outgoing from a non-root vertex u is equal to the sub-
set of profiles that label the edge going in u, i.e.,⋃
v : (u,v)∈E T (u, v) = T (φ(u), u), where φ(u) is the

parent of u in T ;
– the union of the subsets of profiles that label the edges

outgoing from the root vertex r is equal to the set of all
profiles, i.e.,

⋃
v : (r,v)∈E T (r, v) = D;

– for every u, v such that (u, v) ∈ E and for every two
profiles b,b′ ∈ T (φ(u), u) such that (bi)i∈S(u) =
(b′i)i∈S(u), if b belongs to T (u, v), then also b′ must
belong to T (u, v).

Roughly speaking, the tree represents the steps of the exe-
cution of the mechanism. As long as the current visited ver-
tex u is not a leaf, the mechanism concurrently interacts with
agents in S(u). Different edges outgoing from vertex u are
used for modeling the different actions that agents can take
during this interaction with the mechanism. In particular,
each possible action is assigned to an edge outgoing from
u. As suggested above, the action that agent i takes may de-
pend on her presumed type bi ∈ Di. That is, different pre-
sumed types may correspond to taking different actions, and
thus to different edges. The label T (e) on edge e = (u, v)
then lists the type profiles that enable agents in S(u) to take
those actions that have been assigned to e. In other words,
when the agents take the actions assigned to edge e, then the
mechanism (and the other agents) can infer that the type pro-
file must be contained in T (e). The constraints on the edges’
label can be then explained as follows: first we can safely as-
sume that different actions must correspond to different type
profiles (indeed, if two different actions are enabled by the
same profiles we can consider them as a single action); sec-
ond, we can safely assume that each action must correspond
to at least one type profile that has not been excluded yet
by actions taken before node u was visited (otherwise, we
could have excluded this type profile earlier); third, we have
that the action taken by agents in S(u) can only inform about
types of agents in S(u) and not about the type of the remain-
ing agents (that are completely unknown to agents in S(u)).
The execution ends when we reach a leaf ` of the tree. In this
case, the mechanism returns the outcome that labels `.

Observe that, according to the definition above, for every
profile b there is only one leaf ` = `(b) such that b belongs
to T (φ(`), `). For this reason we say that M(b) = X(`).
Moreover, for every type profile b and every node u ∈ V , we
say that b is compatible with u if b ∈ T (φ(u), u). Finally,
two profiles b, b′ are said to diverge at vertex u if there are
two vertices v, v′ such that (u, v) ∈ E, (u, v′) ∈ E and
b ∈ T (u, v), whereas b′ ∈ T (u, v′).

We are now ready to define obvious strategy-proofness.
An extensive-form mechanism M is obviously strategy-
proof (OSP) if for every agent i, for every vertex u such
that i ∈ S(u), for every b−i,b

′
−i, and for every bi ∈

Di such that (ti,b−i) and (bi,b
′
−i) are compatible with

u, but diverge at u, it holds that ci(ti,M(ti,b−i)) ≤
ci(ti,M(bi,b

′
−i)). Roughly speaking, an obvious strategy-

proof mechanism requires that, at each time step agent i is
asked to take a decision that depends on her type, the worst

cost that she can pay if at this time step she behaves ac-
cording to her true type is at least the same as the best cost
achievable by behaving as she had a different type.

Hence, if a mechanism is obviously strategy-proof, then
it is also strategy-proof. Indeed, the latter requires that truth-
ful behavior is a dominant strategy when agents know the
entire type profile, whereas the former requires that it con-
tinues to be a dominant strategy even if agents have only a
partial knowledge of profiles1, limited to what they observed
in the mechanism up to the time they are called to take their
choices.

We say that an extensive-form mechanism is trivial if for
every vertex u ∈ V and for every two type profiles b,b′,
it holds that b and b′ do not diverge at u. That is, a mech-
anism is trivial if it never requires that agents take actions
that depend on their type. Observe that if a mechanismM is
not trivial, then every path from the root to one leaf goes
through a vertex u? such that there are two type profiles
b,b′ that diverge at u?. Since b 6= b′, then there exists
at least one agent i? such that bi? 6= b′i? . Moreover, by our
definition of extensive-form mechanism, it must be the case
that i? ∈ S(u?). For this reason, we call i? as the divergent
agent for the mechanismM. Note that the divergent agent
takes a decision that depends on her own type before any
other agents revealed any information about their own type.
For this reason, in order to prove that a mechanism is not ob-
viously strategy-proof, it is sufficient to show that there are
two type profiles b,b′ with bi? 6= b′i? such that they diverge
at u?, and ci?(bi? ,M(b)) > ci?(bi? ,M(b′)).

Let us state two further properties of obvious strategy-
proofness, that turn out to be very useful in the rest of the
paper. First, it is not hard to see that ifM is OSP when the
type profile is taken from D, then it continues to enjoy this
property even if the types are only allowed to be selected
from D′ = D′1 × · · · ×D′n, where D′i ⊆ Di. Moreover, let
us defineM′ obtained fromM by pruning the paths involv-
ing actions corresponding to types in D \D′. IfM is OSP,
then alsoM′ enjoys this property (Li 2015).
Monitoring. Let M(b) denote the outcome returned by
mechanism M = (f,p) when agents take actions accord-
ing to b. Commonly, the cost paid by agent i to implement
M(b) is defined as a quasi-linear combination of agent’s
true cost2 ti(f(b)) and payment pi(b), i.e., ci(ti,M(b)) =
ti(f(b))− pi(b). This approach disregards the agent’s dec-
laration for evaluating her cost.

In mechanisms with monitoring the usual quasi-linear
definition is maintained but costs paid by the agents are more
strictly tied to their declarations (Kovács, Meyer, and Ven-
tre 2015). Specifically, in a mechanism with monitoringM,
the bid bi is a lower bound on agent i’s cost for f(bi,b−i),
so an agent is allowed to have a real cost higher than
bi(f(b)) but not lower. Formally, we have ci(ti,M(b)) =
max{ti(f(b)), bi(f(b))} − pi(b).

We next describe two specific problems of interest.

1In fact, OSP implies – but is not equivalent to – weakly group
strategy-proofness (Li 2015).

2Note that ti(f(b)) depends only on her type and the outcome
of the social choice function.

Machine scheduling. Here, we are given a set of m dif-
ferent jobs to execute and the n agents control related ma-
chines. That is, agent i has a job-independent processing
time ti per unit of job (equivalently, an execution speed
1/ti that is independent from the actual jobs). Therefore,
the social choice function f must choose a possible sched-
ule f(b) = (f1(b), . . . , fn(b)) of jobs to the machines,
where fi(b) denotes the job load assigned to machine i
when agents take actions according to b. The cost that agent
i faces for the schedule f(b) is ti(f(b)) = ti · fi(b). Note
that our mechanisms for machine scheduling will always
pay the agents.

Monitoring can be readily implemented for this setting.
In fact, monitoring means that those agents who have exag-
gerated their unitary processing time, i.e., they take actions
according to bi > ti, can be made to process up to time bi
instead of the true processing time ti. For example, we could
not allow any other operation in the time interval [ti, bi] or
charge bi − ti.

We focus on social choice functions f∗ optimizing the
makespan, i.e.,

f∗(b) ∈ arg min
x

mc(x,b), mc(x,b) =
n

max
i=1

bi(x).

We say that f is α-approximate if it returns a solution whose
cost is a factor α away from the optimum.
Facility location. In the facility location problem, the type
ti of each agent consists of her position on the real line. The
social choice function f must choose a position f(b) ∈ R
for the facility. The cost that agent i pays for a chosen po-
sition f(b) is ti(f(b)) = d(ti, f(b)) = |ti − f(b)|. So,
ti(f(b)) denotes the distance between ti and the location of
the facility computed by f when agents take actions accord-
ing to b.

We can implement monitoring also in this setting when-
ever evidences of the distance can be provided (and cannot
be counterfeited). In fact, in this context, monitoring means
that ti(f(b)) = max{d(ti, f(b)), d(bi, f(b))}. Therefore,
once the evidence is provided, the mechanism can check
whether ti(f(b)) < bi(f(b)) and charge the agent the dif-
ference for cheating.

We focus on social choice functions f∗ optimizing the
social cost, i.e.,

f∗(b) ∈ arg min
x∈R

cost(x,b), cost(x,b) =

n∑
i=1

bi(x).

As above, we say that f is α-approximate if it returns a so-
lution whose cost is at most α away from the optimum.

Machine Scheduling
Let us start by showing that there is no OSP mechanism that
satisfies voluntary participation and returns an assignment
of jobs to machines whose makespan is at most twice the
makespan of the optimal assignment. Interestingly, this is
the same lower bound that Nisan and Ronen (2001) proved
for the approximation ratio of strategy-proof mechanisms
for unrelated machines, i.e., when it is not possible to ex-
press the processing time of jobs on machines as a product

of jobs’ load and machine’s unit processing time. We wonder
if a more deep relationship exists between OSP mechanisms
for scheduling on related machines and strategy-proof mech-
anisms for scheduling on unrelated machines, and if one can
improve the lower bound for the former problem in order
to match the best known lower bounds for the latter, i.e.,
1 + φ ≈ 2, 61 for general mechanisms (Koutsoupias and
Vidali 2007), and n for anonymous mechanisms (Ashlagi,
Dobzinski, and Lavi 2012).
Theorem 1. For every ε > 0, there is no (2 − ε)-
approximate mechanism for the machine scheduling prob-
lem that is OSP without monitoring and satisfies voluntary
participation.

Proof. Let us consider the simple setting in which there are
exactly two machines, that we denote with 0 and 1, and two
equivalent jobs of unit length. We will denote with t0 and t1
the type, i.e., the job processing time, of machine 0 and 1,
respectively. Suppose there is a k-approximate, with k < 2,
OSP mechanismM that satisfies voluntary participation.

Since the mechanism is k-approximate, then it must be the
case that: if t0 < t1

2k , thenM assigns both jobs to machine
0; if t0 > 2k · t1, thenM assigns both jobs to machine 1; if
k
2 ·t1 < t0 <

2
k ·t1, thenM assigns one job to each machine.

Moreover, since mechanism M = (f,p) is OSP, then
it must be also strategy-proof. Archer and Tardos (2001)
proved that a mechanism for the machine scheduling prob-
lem is strategy-proof and satisfies voluntary participation if
and only if (i) the allocation of jobs to machine i ∈ {0, 1}
returned by f when the type of the other machine is t1−i
is monotone, i.e., if fi(ti, t1−i) ≤ fi(t

′
i, t1−i) whenever

ti > t′i; (ii) the payment that the machine i receives is

pi(ti, t1−i) = tifi(ti, t1−i) +

∫ ∞
ti

fi(x, t1−i)dx.

In our setting, the monotonicity requirement implies that,
for every t1−i, there are t′ ∈

[
t1−i

2k ,
k
2 · t1−i

]
and t′′ ∈[

2
k · t1−i, 2k · t1−i

]
, such that machine i is assigned both

jobs if ti < t′, only one job if t′ ≤ ti ≤ t′′, and no
jobs if ti > t′′. Hence, pi(ti, t1−i) = t′ + t′′ if ti < t′,
pi(ti, t1−i) = t′′ if t′ ≤ ti ≤ t′′, and pi(ti, t1−i) = 0 other-
wise.

Let us now restrict the domain of the agents to D′ =
{a, b}2, with b > k2a. LetM′ be the mechanism obtained
by pruningM according to this restriction. As stated above,
M′ must be an OSP mechanism. Moreover, the approxima-
tion ratio of M′ cannot be worse than the approximation
ratio of M. Hence, M′ cannot be trivial (indeed, a trivial
mechanism would have approximation ratio worse than k).

Let i be the divergent agent ofM′. Clearly, a and b are the
types in which i diverges. Suppose that ti = a. If i behaves
according to ti, then it may be the case that the other agent
behaves according type a too. As showed above, in this case
machine i receives one job and payment t′′ ≤ 2ka. Hence,
ci(a,M(a, a)) ≥ a − 2ka. Suppose instead that i behaves
as if her type was b. It may be the case that the other agent
behaves according type b too. Then, machine i still receives

one job and a payment t′′ ≥ 2
k · b. Hence,

ci(a,M(b, b)) ≤ a− 2

k
· b < a− 2ka = ci(a,M(a, a)),

where we used that b > k2a. In words, the best cost paid
by i if she does not behave according to her true type can be
lower than the worst cost she can pay if she behaves accord-
ing to her true type. Then, the mechanism M′ is not OSP,
contradicting our hypothesis.

We next show that it is possible to achieve better OSP
mechanisms, if one allows monitoring. Specifically, we
show in Theorem 2 below, that there is a mechanism that
is OSP with monitoring that may use every (approximation)
algorithm as a black box.

This positive result holds under the assumption that
agents’ domains are finite. Such an assumption is needed
because we are dealing with an indirect mechanism, that is,
the mechanism queries the agents to find out what their type
is. An easy way to have a well-defined mechanism, that runs
in finite time, is to require agents’ domains to be finite as
well so that each query can be linked to each value in the
domain. For more general domains, there would need to be
some way for the designer to link each query to more than
one type. Such an assumption is done in (Li 2015) for his
OSP mechanisms. Namely, Li (2015) assumes that mecha-
nisms admit a finite partition of the set D of type profiles in
subsets ∆1, . . . ,∆s such that to every profile b ∈ ∆i there
corresponds the same outcome. We remark that plugging in
this assumption in Theorem 2 would be equivalent to requir-
ing finite domains. Assume to the contrary that agents do-
mains are infinite and let f be the algorithm that minimizes
the social cost for machine scheduling. Consider the case in
which we have three players and two jobs of unitary weight.
Take two bid vectors b = (a, c, d) and b′ = (b, c, d) where
a < b < c and d ∈ (a, b). Since the domains are infinite, we
can always find a, b, c and d as from above. But then since f
minimizes the social welfare we have that f(b) 6= f(b′) as
player 1 gets a job when declaring a but does not when say-
ing b. By repeating the same reasoning for all pairs a, b ∈ D1

we reach the contradiction that the mechanism, defined upon
f , does not admit a finite partition.
Theorem 2. For every α-approximate algorithm f for the
machine scheduling problem on related machines there is
an α-approximate mechanism for the same problem that is
OSP with monitoring and satisfies voluntary participation.

Proof. As suggested above, in order to implement an in-
direct OSP mechanism we assume that domains of agents
are finite. To simplify exposition3, we assume here that
agents’ types are discrete in the interval [a, b] with dis-
cretization parameter δ > 0, i.e., the domain of agent i is
Di = {a, a+ δ, . . . , b}.

Consider then the following mechanismM:

• Let p = a and let A contain all the machines;
3For more general finite domains, the mechanism would only

require to take the structure of different Di’s (e.g., the different
“gaps” in the domain) into consideration.

• While A is not empty, do:
– Concurrently ask each machine i ∈ A, if she accepts to

execute any jobs for a payment of p per unit of load;
– If machine i ∈ A does not accept, then we set A =
A \ {i}, bi = p+ δ;

– Set p = p− δ;
• Return the allocation f(b) = (f1(b), . . . , fn(b));
• Assign to each machine a payment pi(b) = fi(b) · bi.

We will next prove that this mechanism is OSP, and thus,
at the end of the algorithm, each bi corresponds to the real
type of agent i. The claim then follows sinceM returns the
allocation computed by an α-approximate algorithm on the
declared types.

In order to prove that M is OSP, consider agent i and
let ti be her processing time for unit of load. We say that
agent i adopts the truthful strategy if she accepts the offer as
long as p ≥ ti, and refuses otherwise. Note that, if i adopts
the truthful strategy, then, at the end of the algorithm, bi =
ti. We next show that for agent i it is always convenient to
adopt the truthful strategy, regardless of the decision taken
in previous iterations by other machines. To this aim, let us
recall that in a mechanism with monitoring the cost that i
pays, given the submitted type profile is b, is

ci(ti,M(b)) = max{ti, bi} · fi(b)− pi(b).

Suppose that i adopts the truthful strategy, then for every
b−i, it turns out that

ci(ti,M(ti,b−i)) = ti · fi(ti,b−i)− pi(ti,b−i) = 0.

Suppose, instead, that i adopts a different strategy. Since the
mechanism stops to interact with machine i as soon as she
refuses an offer, we only need to care about the time in which
this refusal occurs.

If the first refusal occurs when i has been offered a pay-
ment p ≥ ti, then bi > ti at the end of the algorithm. Hence,
for every b−i,

ci(ti,M(bi,b−i)) = bi · fi(bi,b−i)− pi(bi,b−i) = 0.

If the first refusal occurs when i has been offered a pay-
ment p < ti − δ, then ti > bi at the end of the algorithm.
Hence, for every b−i,

ci(ti,M(bi,b−i)) = ti · fi(bi,b−i)− pi(bi,b−i) > 0.

Thus, in both cases the best cost that i can obtain by adopt-
ing a strategy different from the truthful one is not smaller
than the worst cost that i can obtain by adopting the truthful
strategy, as desired.

Since there is a PTAS for the allocation of jobs to related
machines (Hochbaum and Shmoys 1988), then we have the
following corollary. (To turn the PTAS algorithm into a
PTAS mechanism that is OSP, we need to additionally as-
sume that the domains have size polynomial in the input of
the problem.)
Corollary 1. There is an OSP mechanism with monitoring
that computes the optimal scheduling of jobs to related ma-
chines. Moreover, there is an OSP mechanism with monitor-
ing that is a PTAS for the same problem. Both mechanisms
satisfy voluntary participation.

Facility Location without Money
Theorem 3. For every ε > 0, there is no (n − 1 − ε)-
approximate mechanism without money for the facility lo-
cation problem that is OSP, even with monitoring.

In order to prove Theorem 3, we first need to state the
following lemma.
Lemma 1. Consider a type profile b such that bi = x
for some i and bj = x − α for every j 6= i. Then
for every k-approximate mechanism we have that f(b) ∈[
x− α

(
1 + k−1

n

)
, x− α

(
1− k−1

n−2

)]
.

Proof. The optimal facility location for the given setting
consists in placing the facility in position x − α. The total
cost in this case is α.

If f(b) < x − α
(
1 + k−1

n

)
, then the total cost is larger

than (n − 1) (k−1)α
n + α + (k−1)α

n = kα, thus no k-
approximate mechanism can place the facility in f(b). Sim-
ilarly, if f(b) > x − α

(
1− k−1

n−2

)
, then the total cost is

(n−1)(f−x+α)+x−f = (n−2)(f−x)+(n−1)α > kα,
thus no k-approximate mechanism can place the facility in
f(b).

We are now ready to prove Theorem 3.

Proof of Theorem 3. Suppose there is an OSP mechanism
M that is (n−1−ε)-approximate. Clearly, the mechanism is
non-trivial, otherwise its approximation ratio would be un-
bounded. Then, let i be the divergent agent ofM, and let xi
and yi be the types in which i diverges. W.l.o.g., assume that
xi > yi. Let λ = 2 (xi − yi) and α = λ · n−2ε . Let xi be the
truthful position of this agent. If i plays truthfully, then she
can face the setting in which the remaining n− 1 agents are
in position xi−α. By applying Lemma 1 with k = n−1−ε
and x = xi, we have that the distance of agent i from the fa-
cility must be at least xi−xi+α

(
1− n−2−ε

n−2

)
= α· ε

n−2 =

λ.
Suppose that instead i plays as if her real location would

be yi. It may be then the case that the remaining n − 1
agents are exactly in the same position. Then, any mecha-
nism with bounded approximation must place the facility in
yi = xi − λ

2 . Recall that, with monitoring, the cost of agent
i must be taken as the maximum between the distance to
the facility either from the real position or from the declared
position. In this case, this is given by the former distance
and it is λ

2 < λ. Thus, the best cost paid by i by not play-
ing truthfully is lower than the worst cost that she can pay
by playing truthfully. Then, the mechanismM is not OSP,
contradicting our hypothesis.

The bound above is tight, as showed by the next theorem.
Theorem 4. There is a (n − 1)-approximate mechanism
without money for the facility location problem that is OSP,
even without monitoring.

Proof. Consider the dictatorship mechanism, in which only
the dictator i is queried for her position. It is well-known
that this mechanism is (n− 1)-approximate. We next prove

that it is also OSP. Agent i is the only agent that is involved
in a decision and it is always better for her to reveal her real
position xi: indeed, in this case the facility will be located
exactly in her position and the cost of i will be 0, whereas
by declaring a different position x 6= xi the cost will be
|x− xi| > 0.

Facility Location with Money
Theorem 5. For every ε > 0, there is no

(
n
2 − ε

)
-

approximate mechanism for the facility location problem
that is OSP without monitoring.

Proof. Let M = (f,p) be a
(
n
2 − ε

)
-approximate mech-

anism that is OSP without monitoring. Let us restrict the
domain of agent i to D′i = {a, b}, with a < b. Let M′
be the mechanism obtained by pruningM according to this
restriction. As stated above, M′ must be an OSP mecha-
nism. Moreover, the approximation ratio of M′ cannot be
worse than the approximation ratio ofM. Hence,M′ can-
not be trivial, otherwise its approximation ratio would be
unbounded.

Then, let i be the divergent agent ofM′. Clearly, a and b
are the types in which i diverges. Let x be the profile such
that xi = b and xj = a for every j 6= i, and let y be the
profile such that yi = a and yj = b for every j 6= i. Without
loss of generality we can assume that

ci(yi,M′(y)) ≥ ci(xi,M′(x)). (1)

Lemma 1 with x = b, α = b − a, k = n
2 − ε im-

plies that f(x) ∈
[
a− α

(
1
2 −

1+ε
n

)
, b− α

(
1
2 + ε

n−2

)]
.

Then, d(xi, f(x)) ≥ α
(

1
2 + ε

n−2

)
, and d(yi, f(x)) ≤

α · max
{(

1
2 −

1+ε
n

)
,
(

1
2 −

ε
n−2

)}
. Thus, d(xi, f(x)) >

d(yi, f(x)).
SinceM′ is OSP and x and y diverge, it must be the case

that
ci(yi,M′(y)) ≤ ci(yi,M′(x)) = d(yi, f(x)) + pi(x)

< d(xi, f(x)) + pi(x) = ci(xi,M′(x)).

The theorem then follows since the inequality above contra-
dicts (1).

Interestingly, monitoring gives an enormous power in this
setting. We are going to assume that we are given some
bounds on the agents’ potential locations. (Note that in some
of the related literature on facility location, agents can de-
clare any location in R.) To simplify the notation, we as-
sume that Di = [a, b] for all agents i. Consider now the
following direct-revelation mechanism, that we call interval
mechanism:

1. Query agents for their position.
2. Let x be the profile of the collected positions. Then fix the

location f(x) of the facility to be the median of x. In case
of multiple medians, the facility is located on the leftmost
median.

3. For every agent i = 1, . . . , n, set pi(x) = d(xi, f(x)) −
(b− a).

Theorem 6. The interval mechanism is an optimal mecha-
nism that is OSP with monitoring.

Proof. We will next prove that the mechanism is OSP, and
thus each agent has an incentive to declare her real posi-
tion. Since the mechanism places the facility in the median
of these positions, it then turns out to be optimal as well.

In order to prove that it is OSP, recall that in a mecha-
nism with monitoring the cost that i pays is ci(xi,M(y)) =
max{d(xi, f(y)), d(yi, f(y))}−pi(y). Consider then agent
i and let xi be her real position. If i declares the real position,
then her total cost will be b− a. If i declares a different po-
sition x′i, then there are two cases: if minx′−i

ci(xi,M(x′))

is achieved in a profile x′−i such that f(x′) 6= x′i, then

ci(xi,M(x′)) = max{d(xi, f(x′)), d(x′i, f(x′))} − pi(x′)
≥ d(x′i, f(x′))− pi(x′) = b− a;

otherwise (that is, if f(x′) = x′i 6= xi)

ci(xi,M(x′)) = max{d(xi, f(x′)), d(x′i, f(x′))} − pi(x′)
= d(xi, x

′
i)− pi(x′) > b− a.

Thus, in both cases the best cost that i can obtain by declar-
ing a position different from the real one is not smaller than
the worst cost that i can obtain by playing truthfully.

Conclusions
We have studied the limitations of OSP mechanisms in terms
of the approximation guarantee of their outputs. By focus-
ing on two paradigmatic problems in the literature, machine
scheduling and facility location, we have shown that OSP
can yield a significant loss in the quality of the solutions
returned. We have proposed the use of a novel mechanism
design paradigm, namely monitoring, as a way to reconcile
OSP with good approximations. Our positive results show
how the ingredients needed for truthfulness with monitoring
marry up the demands needed for OSP.

We leave open the problem of understanding the extent
to which this parallel holds in general. Several additional
open problems pertain the two case studies considered. For
machine scheduling, it would be interesting to see whether
the lower bound can be improved and/or understand how to
deal with infinite domains. For facility location, the inter-
val mechanism effectively charges the agents so that their
utilities equal the length of the interval. Do less punitive
mechanisms exist? Can we design OSP mechanisms for un-
bounded domains? More generally, the mechanisms with
monitoring for which we provide an OSP implementation
are shown to be collusion-resistant; does a concept of ob-
vious collusion-resistance make sense? Would our mecha-
nisms satisfy this notion?

Acknowledgements. Carmine Ventre was supported by
the EPSRC grant EP/M018113/1.

References
Adamczyk, M.; Borodin, A.; Ferraioli, D.; de Keijzer, B.;
and Leonardi, S. 2015. Sequential posted price mechanisms

with correlated valuations. In International Conference on
Web and Internet Economics, 1–15. Springer.
Archer, A., and Tardos, É. 2001. Truthful mechanisms for
one-parameter agents. In 42nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2001, 482–491.
Ashlagi, I., and Gonczarowski, Y. A. 2015. No stable match-
ing mechanism is obviously strategy-proof. arXiv preprint
arXiv:1511.00452.
Ashlagi, I.; Dobzinski, S.; and Lavi, R. 2012. Optimal lower
bounds for anonymous scheduling mechanisms. Mathemat-
ics of Operations Research 37(2):244–258.
Babaioff, M.; Immorlica, N.; Lucier, B.; and Weinberg,
S. M. 2014. A simple and approximately optimal mech-
anism for an additive buyer. In 55th Annual Symposium
on Foundations of Computer Science (FOCS), 2014, 21–30.
IEEE.
Brânzei, S., and Procaccia, A. D. 2015. Verifiably truth-
ful mechanisms. In Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science, ITCS 2015,
297–306.
Chawla, S.; Hartline, J. D.; Malec, D. L.; and Sivan, B. 2010.
Multi-parameter mechanism design and sequential posted
pricing. In Proceedings of the forty-second ACM symposium
on Theory of computing, 311–320. ACM.
Christodoulou, G., and Kovács, A. 2013. A determinis-
tic truthful PTAS for scheduling related machines. SIAM J.
Comput. 42(4):1572–1595.
Hochbaum, D. S., and Shmoys, D. B. 1988. A polynomial
approximation scheme for scheduling on uniform proces-
sors: Using the dual approximation approach. SIAM journal
on computing 17(3):539–551.
Koutsoupias, E., and Vidali, A. 2007. A lower bound of 1+
ϕ for truthful scheduling mechanisms. In International Sym-
posium on Mathematical Foundations of Computer Science,
454–464. Springer.
Kovács, A.; Meyer, U.; and Ventre, C. 2015. Mechanisms
with monitoring for truthful ram allocation. In Interna-
tional Conference on Web and Internet Economics, 398–
412. Springer.
Li, S. 2015. Obviously strategy-proof mechanisms. Avail-
able at SSRN 2560028.
Moulin, H. 1980. On strategy-proofness and single-
peakedness. Public Choice 35:437–455.
Nisan, N., and Ronen, A. 2001. Algorithmic Mechanism
Design. Games and Economic Behavior 35:166–196.
Penna, P., and Ventre, C. 2014. Optimal collusion-resistant
mechanisms with verification. Games and Economic Behav-
ior 86:491–509.
Sandholm, T., and Gilpin, A. 2003. Sequences of take-it-or-
leave-it offers: Near-optimal auctions without full valuation
revelation. In International Workshop on Agent-Mediated
Electronic Commerce, 73–91. Springer.
Serafino, P.; Vidali, A.; and Ventre, C. 2016. Towards a
characterization of budget-feasible mechanisms with moni-
toring.

