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Brain-computer interface (BCI) is technology that is developing fast, but it remains

inaccurate, unreliable and slow due to the difficulty to obtain precise information from

the brain. Consequently, the involvement of other biosignals to decode the user control

tasks has risen in importance. A traditional way to operate a BCI system is via motor

imagery (MI) tasks. As imaginary movements activate similar cortical structures and

vegetative mechanisms as a voluntary movement does, heart rate variability (HRV) has

been proposed as a parameter to improve the detection of MI related control tasks.

However, HR is very susceptible to body needs and environmental demands, and as

BCI systems require high levels of attention, perceptual processing and mental workload,

it is important to assess the practical effectiveness of HRV. The present study aimed

to determine if brain and heart electrical signals (HRV) are modulated by MI activity

used to control a BCI system, or if HRV is modulated by the user perceptions and

responses that result from the operation of a BCI system (i.e., user experience). For this

purpose, a database of 11 participants who were exposed to eight different situations

was used. The sensory-cognitive load (intake and rejection tasks) was controlled in those

situations. Two electrophysiological signals were utilized: electroencephalography and

electrocardiography. From those biosignals, event-related (de-)synchronization maps

and event-related HR changes were respectively estimated. The maps and the HR

changes were cross-correlated in order to verify if both biosignals were modulated due

to MI activity. The results suggest that HR varies according to the experience undergone

by the user in a BCI working environment, and not because of the MI activity used to

operate the system.

Keywords: brain-computer interface, motor imagery, event-related desynchronization, event-related
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INTRODUCTION

The impact of brain-computer interfaces (BCIs) has been
increasing over the past few years, owing to a great interest of
the scientific community for developing technology capable of
establishing communication between the human brain and a
computing system. Although, considerable advances have been
made to date, BCIs remain inaccurate, unreliable and slow
due to the difficulty to obtain precise information from the
brain. As a result, the involvement of other electrophysiological
signals to decode the mental state of a BCI user has risen in
importance. A BCI system that makes use of other biosignals
is called hybrid BCI (hBCI). To find the ideal combination
of biosignals that could enhance and enrich BCI performance
is a serious challenge because of the variable information
content between electrophysiological sources and the different
degrees of non-stationary (Allison et al., 2012; Müller-Putz
et al., 2015). However, there is a growing body of literature
(Müller-Putz et al., 2011; Amiri et al., 2013) that has shown
the improvement of BCI performance (in terms of accuracy
and information transfer rate) through the inclusion of other
biosignals such as electrocardiography (ECG), electromyography
or electrooculography.

A traditional way to control a BCI system is via motor
imagery (MI) tasks, and one of the auxiliary biosignal proposed
to improve the performance of this type of systems has
been ECG activity. Heart rate (HR) is the most common
parameter estimated to monitor ECG changes because this is
a psychophysiological marker of the adaptive environmental
engagement (Porges, 2007). HR is principally modulated by
respiration, blood pressure waves and central commands
(Tonhajzerova et al., 2012). It is extremely sensitive to central
influences, which reflect the dynamic interaction between
sympathetic and parasympathetic nervous systems, and is highly
influenced by mental activity, including states from stimulus
expectation to high-level cognitive processes (Martynova et al.,
2011). Specifically, HR deceleration has been related to stimulus
intake and orienting responses, whereas HR acceleration has
been associated with stimulus rejection and defensive responses.
It has been found that HR decreases during intensive attention
to stimuli, superior perceptual performance and practice of
transcendental meditation. Conversely, HR increases due to
physical activity, psychological stress, acquisition phase of verbal
learning, and mental elaboration in a problem solving tasks
(Andreassi, 2013).

With reference to motor activity, Florian et al. (1998)
demonstrated that slow movements provoked HR deceleration
during preparatory and execution phases, whereas brisk
movements brought about a biphasic deceleration-acceleration
effect. More recently, Pfurtscheller et al. (2006) showed that
voluntary self-paced hand movements are preceded by a slight
but stable HR deceleration. As real and imaginary movements
activate similar cortical structures, it is not surprising that
MI activates vegetative mechanisms as a voluntary movement
does (Pfurtscheller et al., 2006). In this regard, Decety et al.
(1991) hypothesized that central programming structures are
activated by MI because they anticipate the need for energetic

mobilization required by the forthcoming movement. In fact,
they later showed that HR was increased by about 50% in an
exercise condition, whereas this increase was about 32% in a
mental condition, where no work was produced but the same
movement was mentally executed (Decety et al., 1993). It also
seems that those central programming structures are activated
in proportion to the degree of mental effort involved in MI.
For instance, a more difficult MI task elicits a greater automatic
response (Decety et al., 1991; Oishi et al., 2000). As MI activity is
accompanied by a HR variation, this indicator has been proposed
to improve BCI performance in the following way (Pfurtscheller
et al., 2008, 2013). As MI related control tasks typically used to
operate a BCI system may be detected either by the modulation
of brain or heart electrical activity, researchers in the field have
proposed to use the ECG signal to identify a control task when
electroencephalographic (EEG) signals are very diffuse, and do
not determine the user desires. Indeed, some researchers have
gone further by attempting to identify MI related control tasks
only using cardiovascular activity (Marchal-Crespo et al., 2012).
In brief, the intention of all of this is to include ECG signals, or
even replace EEG signals, owing to the versatility of recording
heart activity in comparison with brain activity, so as to establish
a more effective brain-computer communication.

As far as we are concerned, the first study where HR was
evaluated as an external communication channel for BCI systems
was conducted by Pfurtscheller et al. (2006). They associated
HR deceleration with stimulus anticipation, motor preparation
and decision making; and related HR acceleration to competition
and mental effort. Another attempt to improve BCI functionality
via HR was made by Scherer et al. (2007), who proposed to
employ HR for self-initiation of a BCI. However, majority of
investigations have examined the fusion of EEG and ECG signals
to enhance BCI performance. First, Shahid et al. (2011) observed
that the average classification accuracy of this type of hBCIs
was sometimes slightly higher than the traditional BCI. The
system, however, was not reliable for all subjects. Then, Shahid
et al. (2013) improved offline and online performance of a hBCI
based on EEG and ECG, in comparison with a traditional BCI.
Finally, Marchal-Crespo et al. (2012) achieved the detection of
motor execution exclusively based on automatic nervous system
responses (blood pressure, breathing rate, skin conductance, and
HR), yielding an accuracy level of 84.5%.

As there is an increasing interest in employing the heart
rate variability (HRV) associated with the MI activity used as
control task in BCI systems, it is important to assess the practical
effectiveness of such cardiovascular parameter as an external
informative channel in this type of systems. Owing to the high
susceptibility of the HRV to body needs and environmental
demands, we question the possibility of improving the detection
of MI related control tasks based on automatic nervous system
responses, as has been proposed previously. To date, HRV due
to MI activity has been successfully used to identify different
imaginary movements, but only isolated situations have been
considered. The control of a BCI system, however, requires high
levels of attention, ability to perform the control task at hand (MI
in this case), perceptual processing, mental workload and many
others. We hypothesize that HRV in a BCI working environment
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is governed by the user experience, rather than the control tasks.
Namely, the user perceptions and responses that result from the
operation of a BCI system (Laar et al., 2011) determines the
HRV, and not the MI activity related to the control tasks in use.
To examine this hypothesis, it is proposed to study the HRV
that accompanies MI related control tasks during the human-
computer coupling in a BCI application, i.e., from training
sessions to online control. For this purpose, EEG and ECG signals
of 11 participants, who were guided from modulating their EEG
signals via MI tasks to controlling a BCI system in a simulated
living environment, are analyzed. The participant guidance was
undertaken in eight different stages, where perceptual processing
and number of tasks to attend were controlled. In this way, EEG
and ECG signals related to the control tasks used to operate a BCI
system were examined to determine

1. Whether both types of signals are modulated by MI activity as
has been suggested previously, or

2. Whether ECG signals are modulated by the user perceptions
and responses that result from the operation of a BCI system,
even when those signals are analyzed in the course of MI
activity.

METHODS

Data Collection
Data for this study were collected from 11 participants, who
studied or worked at the University of Essex (United Kingdom)
at the time of the experiment. Prior to data collection, ethical
clearance was obtained from the Ethics Committee of the
University. A written informed consent from the 11 participants
was obtained.

All the participants aged between 25 and 60 at the beginning of
the study. None of them reported auditory impairments and/or

neurological disorders, nine of them had normal vision, and
two of them had corrected-to-normal vision. Just over half the
sample (6:11) was right-handed male, and the rest (5:11) was
right-handed female.

For the purpose of this study, two electrophysiological signals
were employed: EEG and ECG. The EEG signals were recorded
using the international 10/10 system with 64 recording sites,
but only 2 EEG channels are used in this work. Those were
C3 and C4. The ECG signal was measured using the lead I
of the Einthoven triangle. To record both electrophysiological
activities, the ActiveTwo amplifier and the ActiView software
were employed. Both systems are produced by the BIOSEMI
Company (The Netherlands). The data were recorded at a
sampling rate of 256 Hz, within a frequency band between 0 and
52 Hz.

Experimental Procedure
The experiment was run on a simulated living environment
platform (SLEP), which was constituted of three modules: (1)
a synchronous MI-based BCI system called miBCI software
(Alonso-Valerdi and Sepulveda, 2015), (2) a computer program
to assist motor-impaired people in everyday situations called
assistive software, and (3) a virtual dwelling place. The SLEP
essentially functioned as follows. The miBCI software translated
MI (left and right hand imaginary movements) and non-
MI (relaxed but focused mental state) control tasks into
control commands for the assistive software. In turn, the
assistive software attended to priority demands grouped into
four tabs: “necessities and desires,” “mobility,” “environment
control,” and “messenger.” The tab titled “mobility” allowed to
navigate through the virtual dwelling place (Alonso-Valerdi and
Sepulveda, 2014).

All the participants attended to three sessions that lasted
between 120 and 180 min each one. They were exposed to nine

FIGURE 1 | Graphical-user interfaces used to familiarize participants with the assistive software. For scenario 1 (A), the traditional timing protocol was

applied to trigger three control tasks: left MI, right MI, and non-MI. Notice that this timing protocol was employed to trigger the control tasks in the rest of the

scenarios. For scenario 2 (B), right MI was a moving forward command; left MI was used to switch between menus and submenus, or to select a currently activated

task; and non-MI was employed as a waiting period for selecting a desired task in the last bar of tools, which was controlled automatically by the system.
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increasingly demanding scenarios organized in the following
way. In the first session, participants were familiarized with the
assistive software by running three scenarios. The first scenario
was the traditional paradigm used to modulate the participant
EEG signals through the three aforementioned control tasks
(Figure 1A). The second scenario was employed to associate
the control tasks with the control commands of the SLEP. This
means that right hand MI was associated with navigation, left
hand MI was related to selection, and non-MI was used as
waiting period (Figure 1B). In the third scenario, participants
interacted for the first time with the real application by practicing
their control tasks, and observing how those control tasks were
executed on the assistive software (Figure 2A). In the second
and the third sessions, participants were initially involved in
an adjustment cycle, where the BCI system first adapted to
participants (scenarios 4 and 7 respectively), and later, the BCI
system assessed participants’ skills to reproduce the control
tasks recorded previously in scenarios 4 and 7. The testing
scenarios were correspondingly numbered 5 and 8. Once the
BCI system had been personalized to every participant at the
beginning of second and third sessions, each participant was
immersed into two different simulated living situations. These
were scenarios 6 and 9. In scenario 6, an everyday situation
was set, a sequence of cues for the selection of 13 activities of
daily living (ADLs) framed by that situation was programmed,
and participants were required to select each of the 13 ADLs.
Whenever the BCI system failed to predict the cued control
task, neither navigation nor selection commands were executed
on the SLEP. Following these premises, participants did not
need to redirect the navigation strategy. Similar to scenario
6, an everyday situation was set along with nine associated
ADLs for scenario 9. The necessary cues to select the nine
ADLs were not pre-set, so the SLEP always reflected the control
command predicted by the BCI system. In both scenarios,
every time one of the ADLs was successfully selected, the SLEP

aurally emulated the activity process or visually simulated the
displacement from one room to another in the virtual dwelling
place (Figure 2B).

It is worth noting that the development of the platform, the
recruitment of participants and the data collection were done in
a previous study (Alonso-Valerdi and Sepulveda, 2014). For the
present analysis, we are making use of the raw data collected in
such study. It is also important to mention that scenario 9 was
discarded owing to the uncertainty to categorize the control tasks
into left MI, right MI, and non-MI. In line with these statements,
there were in total 48 conditions for EEG analysis (2 recording
sites × 3 control commands × 8 scenarios) and 24 conditions
for ECG analysis (3 control commands × 8 scenarios) per
participant. Besides, it is relevant to have in mind that final data
analysis of scenario 6 only included 9 of the 11 participants, since
two of them did not establish brain-computer communication in
scenario 6.

Analysis of the EEG Signals Using
ERD/ERS maps
Prior to analyzing the data, EEG signals related to the
control tasks were extracted according to the timing protocol
illustrated in Figure 1A. As a result, signals of 7 s were obtained
(warning, MI, and resting state of 2 s). After the extraction of
the control tasks, event-related desynchronization (ERD) and
synchronization (ERS) patterns were estimated using the method
proposed by Graimann et al. (2002). Using this method, a time-
frequency map showing power changes in narrow frequency
bands was obtained. ERD/ERS maps ranged from 7 to 34 Hz,
and were calculated with lower cut-off frequencies of 7, 8, ..., 26
Hz. Bandwidths of 2, 4, and 8 Hz were respectively used for the
following three frequency ranges: 7–15, 16–23, and 24–26 Hz. An
average of 250 ms over time samples to smooth data and reduce
variability was calculated. Only the two central recording sites

FIGURE 2 | Assistive software (A) and virtual dwelling place (B) (top view) of the SLEP. There were two different templates of tabs in the assistive software, the

one exemplified in the tab “environmental control” and the one illustrated in the tab “mobility.”
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(C3 and C4) where more significant MI activity is detected were
analyzed.

ERD/ERS maps reflect the power decrease (ERD) or power
increase (ERS) in comparison with a reference interval (1.5 s
in our case) before cue onset. These maps reflect sensory
stimulation, cognitive activities, and motor behavior. ERD is
involved in processing of sensory and cognitive information,
and production of motor behavior (Pfurtscheller and Lopes da
Silva, 1999; Neuper et al., 2009). ERS is associated with awake-
restful states, inhibition processes, rebound events, attention-
related demands (e.g., attentive expectation of relevant stimulus
omission, working memory activation, and episodic short-
term memory task), and cognitive-mnemonic processes (Pineda,
2005). What is expected of the MI related control tasks are
contralateral alpha (8–12 Hz) and beta (16–24 Hz) ERD, and
ipsilateral alpha and beta ERS over the sensorimotor cortical
area during movement preparation and imagination. After MI,
a beta ERS can be found as well (Neuper et al., 2006; Szurhaj and
Derambure, 2006).

Analysis of the ECG Signals Using ER-HR
Visualization
ECG activity was measured using the lead I of the Einthoven
triangle (left arm minus right arm leads). Based on that lead,
the ECG signal was high-pass filtered at 0.1 Hz. Thereafter, QRS
complexes were detected by an algorithm based on the Pan-
Tompkins method (Pan and Tompkins, 1985), and which was
implemented by Sedghamiz (2014). Once the complexes had
been localized, the NN intervals were determined. The term
“NN interval” refers to the distance between two adjacent QRS

complexes. Having determined the NN intervals, the event-
related HR (ER-HR) time course was estimated according to
the procedure of Pfurtscheller et al. (2006). Similar to ERD/ERS
maps, trials of 7 s with 1.5 s reference intervals were employed.

Notice that the number of trials in both cases (ERD/ERS maps
and ER-HR changes) varied from participant to participant. The
number of trials was determined by the participant performance
in each scenario (high performance implied low number of
trials). At least, 20 trials were obtained in each condition. For the
precise number of trials, refer to Alonso-Valerdi and Sepulveda
(2014).

Statistical Comparison between ERD/ERS
and ER-HR
To compare the ERD/ERS maps and the ER-HR changes, a
normalized cross-correlation was applied using the methods of
Shapiro andHaralick (1992) and Lewis (1995). The algorithmwas
implemented by MathWorks Corporation, and this computed
the similarity of the ER-HR changes and the ERD/ERS maps as
a function of the lag of the former relative to the latter.

To analyze the broad tendency among all the participants,
the mean value of the ERD/ERS maps, ER-HR changes and
normalized cross-correlations per condition was calculated.
Along with themean, the standard deviationwas obtained as well.
All these statistical results are reported in the next section.

RESULTS

ERD/ERS Maps
The mean ERD/ERS maps of all the participants in each scenario
are set out in Figure 3. As can be seen from those average

FIGURE 3 | ERD/ERS maps of two EEG channels (C3 and C4) and three control tasks (left MI, right MI, and non-MI) in eight different conditions

(scenarios). Every plot corresponds to the average map of all the participants.
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maps, neural desynchronization is detected on both hemispheres
(ipsilateral and contralateral) in MI related control tasks; in
contrast to non-MI related ones, where the desynchronization
effect is negligible in five of the eight conditions. Note that a slight
level of desynchronization is detected in scenarios 1, 5, and 8.
With regard to neural (de-) synchronizations in pre- and post-
movement stages, only a moderate ERS effect is visible in lower
frequency bands (7–10 Hz) after imaginary movement offset
(after 3.5 s). Surprisingly, the ERS effect is also visible in scenarios
1, 5, 6, and 8 for the non-MI related control task. Finally, it is
important to mention that ERD is less remarkable in scenarios 4,
7, and 8.

To evaluate the variation between individual ERD/ERS maps
(per participant) and the mean ERD/ERS maps presented in
Figure 3, the standard deviation was estimated in each condition
(per subplot in Figure 3). The maximum deviation (228.87%)
was found at low frequencies (<10 Hz) on MI-related control
tasks, at recording site C3, and scenario 8. Apart from this
particular case, the deviation of the majority of the conditions
was 21.76%± 2.65.

ER-HR Changes
Figure 4 shows the average ER-HR changes in every scenario
for left MI (blue line), right MI (red line), and non-MI (black
line) related control tasks, respectively. In scenarios 1 and 4, a
slight decrease of up to 2% is noticeable after cue onset in the
three control tasks. In scenarios 2 and 3, the ER-HR changes are
mostly kept below 2%, except for a modest increase of up to 2%
by the end of MI activity in both MI related control tasks. With
respect to the non-MI related control task, the HR changes are
near to 0%, except for slight increases of up to 2% in scenarios 2
and 3 (2 s post-stimulus), and 4 (3 s post-stimulus). In scenario

5, ER-HR in the three control tasks tends to decrease, yielding
a diminution of 3%, 2 s after cue onset. In scenario 6, ER-HR
in the non-MI related control task tends to decrease, yielding a
diminution of 4%. Similarly, ER-HR in MI related control tasks
tends to decrease after cue onset, but the diminution is around
2%. Finally, in scenarios 7 and 8, ER-HR in the three control
tasks shows a progressive decrease that tends toward 2 and 4%,
respectively.

Similar to the ERD/ERS maps, the variation between
individual ER-HR changes (per participant) and the mean ER-
HR changes provided in Figure 4, the standard deviation was
estimated in each condition (per subplot and control task in
Figure 4). The standard deviation of most of the conditions was
1.92%± 0.494, yielding maximum deviation of 4.7% in scenarios
5 and 8 for the three control tasks.

Normalized Cross-Correlation
The mean results of the correlational analysis are presented in
Figure 5. Although, there is lack of correlation between ERD/ERS
and ER-HR in most of the scenarios, this figure is quite revealing
in scenarios 5, 6, and 8, where feedback was provided. The
correlation between ER-HR and ERD/ERS is significant and
direct when the former variable is lagged with respect to the latter
variable. Note that the more surprising and stronger correlation
is presented in the non-MI related control task. The significance
of this correlation is supported by low standard deviation that
was around 0.351± 0.0484.

DISCUSSION AND CONCLUSION

The present study was designed to determine if EEG and ECG
signals are modulated by MI activity used to control a BCI

FIGURE 4 | ER-HR changes of the left MI (blue line), right MI (red line), and non-MI (black line) control tasks in eight different conditions (scenarios).

These are the average time series of all the participants.

Frontiers in Physiology | www.frontiersin.org 6 July 2016 | Volume 7 | Article 279

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Alonso-Valerdi et al. User Experience Produces Greater HRV

system, as has been suggested previously, or if ECG signals are
modulated by the user perceptions and responses that result
from the operation of a BCI system (user experience), even
when ECG signals are analyzed in the course of MI activity. To
date, several studies have proposed that HRV may be useful to
identify more effectively MI related control tasks, on the basis
that imaginary movements activate vegetative mechanisms as a
voluntary movement does. However, HRV is very susceptible
to the environmental demands and the effectiveness of this
parameter must be assessed. Therefore, EEG and ECG signals
recorded in the process of a BCI user-system adaptation were
analyzed (ERD/ERS maps and ER-HR changes, respectively)
and correlated in order to observe the effects of the user
experience on the HRV. The most relevant results are discussed
below.

ERD/ERS Maps
It is well-established that MI activity brings about contralateral
alpha and beta ERD, and ipsilateral alpha and beta ERS over the
sensorimotor cortical area, in addition to the well-known beta
ERS around 20 Hz (Jeannerod, 2006; Neuper et al., 2006, 2009).
Contrary to expectations, the ERD/ERSmaps of the current study
showed a widespread desynchronization during MI activity on
both hemispheres (C3 and C4 recording sites). This result may
be explained by the lack of the user skills to modulate the brain
signals using MI tasks. On the other hand, the minor neural
desynchronization effect during the non-MI related control task
can be also explained by the user incompetence in terms of MI
dominance. It is well known that the modulation of brain signals
through mental tasks (MI in this case) is a skill that requires
training (Schumacher et al., 2015).

Another important result was the ERS in the lowest
frequencies (7–10Hz) whenMI activity ceased. This event cannot
be associated with the post-movement beta synchronization
because such synchronization is around 20 Hz (Pfurtscheller
et al., 1996), and because this emerged in non-MI related control
tasks as well (scenarios 5, 6, and 7). The observed synchronization
might be result of the control command expectation. That
is, the user expectation that raised when he/she attended the
system execution that followed each of his control tasks. Alpha
synchronization (8–12 Hz) usually arises widespread over the
scalp and due to increasing attention demands (Fink et al.,
2005), what justifies the ERS appearance in the lowest frequencies
band.

Finally, another unanticipated result was the amplitude of
ERD in scenarios 4, 7, and 8, which diminished in comparison
with the rest of the scenarios. These differences can be explained
in part by the number of previous interactions with the scenario
at hand. Scenarios 4 and 7 were similar to scenario 3, and scenario
8 was similar to scenario 5. Furthermore, those three scenarios
(4, 7, and 8) were the only situations that were reproduced for a
second or a third time. On this basis, it seems possible that the
user interest at interacting with new human-computer interfaces
was higher, which in turn led users to put in a higher mental
effort on the control tasks. This result is consistent with that of
Myrden and Chau (2015) who showed that the BCI performance
significantly improved when participants experienced low or
moderate fatigue, and high frustration. In fact, the role of the
user mental state has been quite investigated, and it has been even
proposed to modify the BCI classification algorithm to adapt to
changes in the user mental state (Kleih et al., 2011; Myrden and
Chau, 2015).

FIGURE 5 | Normalized cross-correlation between ERD/ERS maps and ER-HR changes of three control tasks (left MI, right MI, and non-MI) in eight

different conditions (scenarios). These are the average cross-correlation of all the participants.
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ER-HR Changes
The most obvious finding to emerge from the ER-HR changes is
the cardiac deceleration after the cue onset for the three control
tasks in all the scenario. This finding matches that observed
in earlier studies reported by Andreassi (2013). According to
such report, the HR deceleration post-cue corresponds to a
preparation period to respond to an expected and significant
stimulus.

On the other hand, it is interesting to note that HR
significantly decelerates in the three control tasks from scenario
5 on ahead. Owing to the minor HR changes in the first four
scenarios and the HR diminution in the rest of scenarios, HRV
might closely associated with stimulus intake demands. Intake
tasks (which induce cardiac deceleration) require attention
to the environment, whereas rejection ones (which induce
cardiac acceleration) require environmental input to be reduced
and attention to be placed on internal cognitive processing
(Andreassi, 2013). Specifically, in this study, intake tasks concern
awareness of the warning periods, identification of the cues, and
interpretation of the system feedback. Conversely, rejection tasks
implicate MI activity and relaxed but focused mental states. If
HR slightly varied in the first four scenarios and significantly
diminished from scenario 5 on ahead, where feedback started
being provided, it seems possible to associate HRV with stimulus
intake demands. Furthermore, HR decreased in both MI and
non-MI related control tasks. On this basis, we hypothesize that
the environmental demands (intake tasks) could have played a
major role onHRV (thanMI activity) because the HR diminution
was significant when the environmental demands also increased.

This subsection is concluded by discussing one exceptional
case: HR increase in scenario 3. HR only increased in scenario
3. A possible explanation for this might be that participants
interacted with the assistive software for the first time in this
scenario. The software could have been attractive and eye-
catching for the users, so HR increased as a result of the user
interest and excitement. This result is in agreement with the work
of Pfurtscheller et al. (2006), who observed cardiac acceleration
in virtual environment experiments and they presumed this
phenomenon was owing to the user excitement.

Normalized Cross-Correlation
In line with the discussion of previous subsections, the most
relevant results were the following. ER-HR changes were directly
correlated to ERD/ERS patterns with time lags of around 5 s
(20 samples × 256 Hz) in scenarios 5, 6, and 8. In those
scenarios, there existed a real user-system interaction, and the
correlation between both electrophysiological signals was very
high, particularly in the non-MI control task. As participants
dealt with a larger number of intake tasks and the correlation
appeared in the three control tasks, the HR may have decreased
due to the environmental demands rather than the MI activity. If
a major correlation is observed in the non-MI related control task
might be due to the similar magnitude between ER-HR changes
and ERD/ERS patterns. Note that ER-HR changes yielded a
maximum decrease of 4%, when ERD can show a decrease of up
to 40%. Consequently, non-MI control tasks that only displayed
tiny ERD patterns could be much more correlated with ER-HR

changes because of the range of magnitude. Last but not least,
the inverse correlation observed in scenario 3 may be explained
by the user involvement due to the novelty of the system. This
correlation cannot be associated with the control tasks because
the mental tasks were the same in all the scenarios, and then the
mental effort was not modified in terms of motor activity.

Taken together, these results suggest that HR varies according
to the user perceptions and responses that result from the
operation of a BCI system (user experience), and it does not
reflect vegetative mechanisms associated with MI activity as had
been previously proposed. One of the issues that emerges from
this finding is that HRV is not a feasible parameter to improve the
detection of MI related control tasks, at least in early user-system
adaptation sessions. However, the results of this study have
important implications for moving toward the user experience
evaluation and the psychophysiological adaptation in BCIs. On
one hand, (Laar et al., 2011) emphasized that BCI systems are
generally evaluated in accordance with the system aspect only,
but no methodology has been proposed to evaluate the user
experience. On the other hand, Myrden and Chau (2015) stressed
the difficulty of maintaining high BCI performance during long
periods of time (intra-subject variability), and also commented
the possibility of this inconsistent performance as a result of
fluctuations in psychological variables. Authors suggested that
the development of BCI should include an overt adaptation to
keep user mental state within the optimal region, and a covert
adaptation that automatically modifies the system functionality
to adapt such system to changes in the user mental state. On this
basis, the present study raises the possibility of improving the BCI
functionality as follows. Firstly, the dispersion and magnitude of
the neural desynchronization due to MI activity cannot only be
used to detect the control tasks, but they might also be useful to
quantify the level of expertise (low aptitude: high dispersion), and
monitor the mental effort (low effort: low magnitude) at MI skill
acquisition. Secondly, HR deceleration is an indicator of the level
of interaction between user and system (larger number of intake
tasks to attend: HR diminution), whereas HR acceleration is a
sign of novel environmental stimulus processing (eye-catching
software: HR increase). Finally, the correlation between non-
MI related control tasks and HR deceleration could become an
effective way to discard false MI related control tasks when users
are dynamically interacting with the system, and they establish
brain-computer communication at will.

The generalizability of previous implications is, however,
subject to certain limitations. On one side, the low number
of trials in some cases of study could be a problem. As was
mentioned in Section Analysis of the ECG Signals using ER-
HR Visualization, the minimum number of trials recorded per
participant was 20. However, Graimann and Pfurtscheller (2006),
suggested to have at least 30 trials for an optimal quantification
and visualization of ERD/ERS patterns. On the other side, the
mean is only displaying the average tendency of the ERD/ERS
maps, ER-HR changes and the correlation thereof. Nonetheless,
each participant displayed specific tendencies that were in some
cases opposite to the overall behavior reported herein (high
standard deviation in some cases of study show this). Further
work is required on this issue since BCI systems are generally very
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personalized to each individual, and then, the consideration of
all these particularities are essential. In this respect, Shahid et al.
(2011) showed that hBCIs based on the fusion of EEG and ECG
were not reliable for all subjects.

Lastly, it is worth noting that this is an important issue for
future research. For instance, extensive research should focus
on determining whether HR is modulated via MI such as
the brain rhythms, after long training sessions. Demonstrating
this hypothesis, it can be more feasible to consider HRV as a
parameter to improve classification accuracy of EEG patterns.
Klimesch (2013) has suggested that brain-body interactions may
be described as a complex system that couples and decouples
on the basis of a specific harmonic frequency structure. The
understanding and inclusion of the coordinate system that
controls brain and body oscillations (brainstem oscillations that
trigger inhaling and exhaling, breathing frequency, and HRV)
could lead to develop more versatile, friendly and robust BCI
technology.

SUMMARY

In BCI research, it is not only important to optimize the system
performance by identifying the user control tasks accurately,
but knowledge about the user state is also necessary to achieve
a successful user-system adaptation. According to van Erp
et al. (2010), a user state should be regarded as the result of
many psychophysiological processes that regulate the brain-body
system in an attempt to put an individual in an optimal condition
to meet the demands of the working environment. Although, a
wide variety of physiological measures have been investigate to
decode the human cognitive state (including, arousal, fatigue,
vigilance, working memory load, cross-modality attention focus,
emotions, perception of user/machine errors, and decision-
making load), there is still not enough information about how
those physiological measures can be used adequately for an
appropriate user-system adaptation (Zander et al., 2010). The
biggest challenge of symbiotic systems such as BCIs is to identify
three conditions: low workload, high workload and overload.
Among those conditions, the highworkload condition is themost
difficult to identify because the user reaches optimal performance
by adding more effort. In this respect, the findings of the

present study make a significant contribution. It seems that HRV
associated with MI based control tasks reflects the engagement
level of the user with the system, which in turn can help to
identify the conditions of a symbiotic system. For example, ER-
HR changes were insignificant in the first four scenarios, where
user was trained to acquire MI skills and familiarized with the
system to control, but there was no a human-machine interaction
(low workload condition). In contrast, ER-HR decreased up
to 4% in the next scenarios, where BCI control in simulated
living situations was necessary (high workload condition).
In the future, scenarios simulating disturbing living effects
(e.g., traffic noise, public conversations, environmental music)
will be implemented to analyze HRV (overload condition).
Its seems that ER-HR is an adequate parameter to identify
accurately low and high workload conditions in BCI working

environments. In overload conditions, we would expect ER-
HR increases since it has been found that when tasks become
too difficult, there is tendency for human to disengage from
the task, resulting in an increase in HRV (Rowe et al., 1998).
As far as we know, only Rowe et al. (1998) had proposed to
include HRV as indicator of user state in human-computer
interaction. The present study provides evidence of how HRV
(specifically ER-HR) can become an external channel in BCI
systems as a user state indicator, rather than a control task
identifier.
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