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A NEW LANCZOS-TYPE ALGORITHM FOR SYSTEMS
OF LINEAR EQUATIONS

MUHAMMAD FAROOQ1 AND ABDELLAH SALHI2

Abstract. Lanczos-type algorithms are efficient and easy to imple-
ment. Unfortunately they breakdown frequently and well before con-
vergence has been achieved. These algorithms are typically based on
recurrence relations which involve formal orthogonal polynomials of
low degree. In this paper, we consider a recurrence relation that has
not been studied before and which involves a relatively higher degree
polynomial. Interestingly, it leads to an algorithm that shows su-
perior stability when compared to existing Lanczos-type algorithms.
This new algorithm is derived and described. It is then compared
to the best known algorithms of this type, namely A5/B10, A8/B10,
as well as Arnoldi’s algorithm, on a set of standard test problems.
Numerical results are included.
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1. Introduction and background

The Lanczos algorithm, [28, 29, 14], is an iterative process that has
been primarily designed to calculate the eigenvalues of a matrix. How-
ever, it has found a wide application in the area of Systems of Lin-
ear Equations (SLE’s) where it now is a well established solver. Its
attraction resides in its efficiency as it only involves vector-to-vector
and matrix-to-vector products. Moreover, in exact arithmetic, it con-
verges to the exact solution in at most n steps, where n is the dimension
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of the problem, [29]. While efficiency is its strong point, stability is
not. Indeed, it is well known to breakdown as orthogonality of the so
called Lanczos vectors, generated during the solution process, is lost.
Efforts to avoid this breakdown led to a flurry of papers particularly
from Brezinski and his team, [2, 5, 6, 7, 10, 12, 11, 13], and others,
[4, 8, 15, 17, 20, 21, 23, 24, 31, 32, 33, 35, 38, 39].

Several Lanczos-type algorithms have been designed and among them,
the famous conjugate gradient algorithm of Hestenes and Stiefel, [25],
when the matrix is Hermitian and the bi-conjugate gradient algorithm of
Fletcher, [22], and the algorithm of Arnoldi, [1, 36], in the general case.

Lanczos-type algorithms are commonly derived from recurrence rela-
tions typically using Formal Orthogonal Polynomials (FOP’s) of low de-
gree, [29, 6, 16, 37]. Recurrence relations using relatively higher degree
FOP’s have not been investigated. Here, we set out to design an algo-
rithm that is based on such recurrence relations and FOP’s, and study
its properties and, in particular, its stability.

1.1. The Lanczos Process. Consider the SLE

Ax = b, (1)

where A ∈ Rn×n, b ∈ Rn and x ∈ Rn.

Let x0 and y be two arbitrary vectors in Rn such that y 6= 0 then
Lanczos method [29] consists in constructing a sequence of vectors xk ∈
Rn defined as follows

xk − x0 ∈ Kk(A, r0) = span(r0,Ar0, . . . ,A
k−1r0), (2)

rk = b− Axk⊥Lk(A
T ,y) = span(y,ATy, . . . ,AT k−1

y), (3)

where AT denotes the transpose of A.
Equation (2) gives,

xk − x0 = −α1r0 − α2Ar0 − · · · − αkA
k−1r0. (4)

Multiplying both sides by A and adding and subtracting b on the left
hand side gives

rk = r0 + α1r0 + α2Ar0 + · · ·+ αkA
k−1r0. (5)

If we set
Pk(x) = 1 + α1x + ... + αkx,

then we can write from (5)

rk = Pk(A)r0. (6)
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From (3), the orthogonality condition gives

(AT i
y, rk) = (y,Airk) = (y,AiPk(A)r0) = 0, for i = 0, ..., k − 1.

Thus, the coefficients α1,...,αk form a solution of SLE’s,

α1(y,Ai+1r0)+ ...+αk(y,Ai+kr0) = −(y,Air0), for i = 0, . . . , k−1. (7)

If the determinant of the above system is not zero then its solution exists
and allows to obtain xk and rk. Obviously, in practice, solving the above
system directly for increasing values of k is not feasible; k is the order
of the iterate in the solution process. We shall see now how to solve this
system for increasing values of k recursively, that is, if polynomials Pk can
be computed recursively. Such computation is feasible, since polynomials
Pk form a family of FOP’s which will briefly be explained below.

1.2. Formal Orthogonal Polynomials. Define a linear functional c
on the space of reel polynomials by

c(xi) = ci for i = 0, 1, . . .

where

ci = (AT i
y, rk) = (y,Airk) for i = 0, 1, . . .

Write the orthogonality condition as,

c(xiPk) = 0 for i = 0, . . . , k − 1. (8)

The above condition shows that Pk is the polynomial of degree at most
k and is a FOP with respect to the functional c, [5]. The normalization
condition for these polynomials is Pk(0) = 1; Pk exists and is unique if
the following Hankel determinant

H
(1)
k =

∣∣∣∣∣∣∣∣

c1 c2 · · · ck

c2 c3 · · · ck+1
...

...
...

ck ck+1 · · · c2k−1

∣∣∣∣∣∣∣∣

is not zero. In that case we can write Pk(x) as follows.
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Pk(x) =

∣∣∣∣∣∣∣∣

1 x · · · xk

c0 c1 · · · ck
...

...
...

ck−1 ck · · · c2k−1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣

c1 · · · ck
...

...
ck · · · c2k−1

∣∣∣∣∣∣

, (9)

where the denominator of this polynomial is H
(1)
k , the determinant of

the system (7). We assume that ∀ k, H
(1)
k 6= 0 and therefore all the

polynomials Pk exist for all k. If for some k, H
(1)
k = 0, then Pk does not

exist and breakdown occurs in the algorithm, [6, 10, 11, 13, 8].

A Lanczos-type method consists in computing Pk recursively, then rk

and finally xk such that rk = b − Axk, without inverting matrix A. In
exact arithmetic, this gives the solution of the system (1) in at most n
steps, where n is the dimension of the SLE, [6, 12].

1.3. Notation and organization. The notation introduced by Baheux,
in [2, 3], for recurrence relations with three terms is adopted here. It puts
recurrence relations involving FOP’s Pk(x) (the polynomials of degree at

most k with regard to the linear functional c) and/or FOP’s P
(1)
k (x) (the

polynomials of degree at most k with regard to linear functional c(1),
[9]) into two groups: Ai and Bj. Although relations Ai, when they exist,
rarely lead to Lanczos-type algorithms on their own (the exceptions being
A4, [2, 3], and A12, [17], so far), relations Bj never lead to such algorithms
for obvious reasons. It is the combination of recurrence relations Ai

and Bj, denoted as Ai/Bj, when both exist, that lead to Lanczos-type
algorithms. In the following we will refer to algorithms by the relation(s)
that lead to them. Hence, there are, potentially, algorithms Ai and
algorithms Ai/Bj, for some i = 1, 2, . . . and some j = 1, 2, . . .

In this paper, a new algorithm based on a recurrence relation that has
not been studied before, is derived. It is then compared to three other
algorithms, one of which is the Arnoldi algorithm.

The rest of the paper is organized as follows. In the next section,
the Lanczos-type algorithm A8/B10, [2], and the estimation of the coeffi-
cients of the recurrence relations A8 and B10 used to derive it are given.
Section 3 is on the estimation of the coefficients of recurrence relation
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A12, [17], used to derive the new algorithm of the same name. Section
4 describes the test problems and reports numerical results. Section 5 is
the conclusion and further work.

2. Baheux algorithm A8/B10

The choice of algorithm A8/B10, for comparison with our own is dic-
tated by the fact that this is the most robust of the algorithms considered
in [2, 3] on some of the problems considered here. So, outperforming this
algorithm implies outperforming the rest of the algorithms considered
therein.

For completeness, we recall the relevant relations between adjacent
FOPs that lead to A8/B10 and their coefficients estimates. These are A8

and B10. The details of algorithm A5/B10 are given in [3].

2.1. Recurrence relation A8. Relation A8 is

Pk(x) = (Akx + Bk)P
(1)
k−1(x) + (Ckx + Dk)Pk−1(x), (10)

first investigated in [2, 3]. Its coefficients are estimated as

Bk = 0, (11)

Ck = 0, (12)

Dk = 1, (13)

and

Ak = −c(xk−1Pk−1(x))

c(xkP
(1)
k−1(x))

. (14)

As we know{
c(xkPk) = (AT k

y, Pk(A)r0) = (yk, rk),

c(xkP
(1)
k ) = (AT k

y, P
(1)
k (A)r0) = (yk, zk),

(15)

with yk = ATyk−1 and zk is defined in (21). Using (15), equation (14)
becomes

Ak = −(yk−1, rk−1)

(yk, zk−1)
= − (yk−1, rk−1)

(yk−1,Azk−1)
. (16)



A New Lanczos-type Algorithm for Systems of Linear Equations 109

2.2. Recurrence relation B10. This relation, first investigated in [2, 3],
is

P
(1)
k (x) = (A1

kx + B1
k)P

(1)
k−1(x) + C1

kPk(x), (17)

Its coefficients are estimated as

A1
k = 0, (18)

C1
kak = 1, (19)

where ak is the coefficient of xk in Pk(x) defined in (10) and

B1
k = −C1

kc(yk, rk)

c(yk, zk−1)
. (20)

Equation (17) gives

zk = B1
kzk−1 + C1

krk. (21)

2.3. Algorithm A8/B10. The pseudo-code of A8/B10, due to Baheux,
[2, 3], is as follows.

Algorithm 1 Algorithm A8/B10

Choose x0 and y such that y 6= 0, and ε arbitrarily small and positive.
Set r0 = b− Ax0,
z0 = r0,
y0 = y,
for k = 0, 1, 2, . . . , do

Ak+1 = − (yk,rk)
(yk,Azk)

,

rk+1 = rk + Ak+1Azk,
xk+1 = xk − Ak+1zk.
if ||rk+1|| ≥ ε, then

yk+1 = ATyk,
C1

k+1 = 1
Ak+1

,

B1
k+1 = −C1

k+1(yk+1,rk+1)

(yk,Azk)
,

zk+1 = B1
k+1zk + C1

k+1rk+1.
else

Stop; solution found.
end if

end for
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3. A new Lanczos-type algorithm

In the following, a new recurrence relation which leads to a new variant
of the Lanczos algorithm is considered.

3.1. Recurrence relation A12. Consider the following recurrence rela-
tion, [17, 19]

Pk(x) = Ak[(x
2 +Bkx+Ck)Pk−2(x)+(Dkx

3 +Ekx
2 +Fkx+Gk)Pk−3(x)],

(22)
for k ≥ 3, where Ak, Bk, Ck, Dk, Ek, Fk and Gk are constants to be deter-
mined using the normalization condition Pk(0) = 1 and the orthogonality
conditions c(xiPk) = 0, ∀i = 0, . . . , k − 1, xi being a monic polynomial
of exact degree i. To find these coefficients, we proceed as follows. Since
∀k, Pk(0) = 1, equation (22) gives

1 = Ak[Ck + Gk].

Multiplying both sides of (22) by xi and then applying the linear func-
tional c, we get

c(xiPk) = Ak{c(xi+2Pk−2) + Bkc(x
i+1Pk−2) + Ckc(x

iPk−2) + Dkc(x
i+3Pk−3)

+Ekc(x
i+2Pk−3) + Fkc(x

i+1Pk−3) + Gkc(x
iPk−3)}.

(23)
Equation (23) is always true for i = 0, ..., k − 7.
For i = k − 6, we have

0 = Dkc(x
k−3Pk−3).

Since c(xk−3Pk−3) 6= 0, we have

Dk = 0.

For i = k − 5, we get

0 = Ekc(x
k−3Pk−3).

But c(xk−3Pk−3) 6= 0; therefore

Ek = 0.

For i = k − 4, (23) gives

Fk = −c(xk−2Pk−2)

c(xk−3Pk−3)
. (24)
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For i = k − 3, i = k − 2 and i = k − 1 we get the following equations
respectively

Bkc(x
k−2Pk−2)+Gkc(x

k−3Pk−3) = −c(xk−1Pk−2)−Fkc(x
k−2Pk−3), (25)

Bkc(x
k−1Pk−2) + Ckc(x

k−2Pk−2) + Gkc(x
k−2Pk−3)

= −c(xkPk−2)− Fkc(x
k−1Pk−3),

(26)

and
Bkc(x

kPk−2) + Ckc(x
k−1Pk−2) + Gkc(x

k−1Pk−3)
= −c(xk+1Pk−2)− Fkc(x

kPk−3).
(27)

Let a11, a12, a13, a21, a22, a23, a31, a32, and a33 be the coefficients of Bk,
Ck and Gk in equations (25), (26) and (27) respectively and let b1, b2 and
b3 be the corresponding right sides of these equations. If ∆k represents
the determinant of the coefficients matrix of the above mentioned system
of equations then, we have

a11 = c(xk−2Pk−2), a12 = 0, a13 = c(xk−3Pk−3),

a21 = c(xk−1Pk−2), a22 = c(xk−2Pk−2), a23 = c(xk−2Pk−3),

a31 = c(xkPk−2), a32 = c(xk−1Pk−2), a33 = c(xk−1Pk−3),

b1 = −c(xk−1Pk−2)− Fkc(x
k−2Pk−3) = −a21 − Fka23,

b2 = −c(xkPk−2)− Fkc(x
k−1Pk−3) = −a31 − Fka33,

b3 = −c(xk+1Pk−2) − Fkc(x
kPk−3) = −s − Fkt, where s = c(xk+1Pk−2)

and t = c(xkPk−3).

Therefore, equations (25), (26) and (27) can be written as

a11Bk + 0Ck + a13Gk = b1, (28)

a21Bk + a22Ck + a23Gk = b2, (29)

a31Bk + a32Ck + a33Gk = b3. (30)

To solve for Bk, Ck and Gk, Cramer’s rule requires

∆k = a11(a22a33 − a32a23) + a13(a21a32 − a31a22).

If ∆k 6= 0, then

Bk =
b1(a22a33 − a32a23) + a13(b2a32 − b3a22)

∆k

, (31)

Gk =
b1 − a11Bk

a13

, (32)

Ck =
b2 − a21Bk − a23Gk

a22

, (33)
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and
1 = Ak[Ck + Gk]. (34)

With all the necessary coefficients now determined, the expression of
the polynomials Pk(x) becomes

Pk(x) = Ak{(x2 + Bkx + Ck)Pk−2(x) + (Fkx + Gk)Pk−3(x)}. (35)

Let us now use the relation (35) to compute Pk(x), necessary for the com-
putation of the residual rk = b− Axk = Pk(A)r0 and the corresponding
vector xk.

Assume that Pk has exact degree k and the 3-term recurrence rela-
tionship (35) holds. To move to the Krylov space, replace x by A and
multiply both side of (35) by r0 to get,

Pk(A)r0 = Ak[(A
2+BkA+CkI)Pk−2(A)r0+(FkA+GkI)Pk−3(A)r0]. (36)

Using equation (6), gives

rk = Ak{(A2 + BkA + CkI)rk−2 + (FkA + GkI)rk−3}. (37)

And using rk = b− Axk, gives

xk = Ak{Ckxk−2 + Gkxk−3 − (Ark−2 + Bkrk−2 + Fkrk−3)}, (38)

with Fk as in equation (24). Using (15), Fk can be written as

Fk = −(yk−2, rk−2)

(yk−3, rk−3)
.

Condition (15) can be used equally to rewrite the expressions of a11,
through a33, b1 to b3 as follows.

a11 = (yk−2, rk−2), a12 = 0, a13 = (yk−3, rk−3),

a21 = (yk−1, rk−2), a22 = (yk−2, rk−2), a23 = (yk−2, rk−3),

a31 = (yk, rk−2), a32 = (yk−1, rk−2), a33 = (yk−1, rk−3),

b1 = −a21 − Fka23, b2 = −a31 − Fka33, b3 = −s− Fkt,

where s = (yk+1, rk−2) and t = (yk, rk−3).

These parameters allow the explicit computation of Bk, Gk, Ck, and Ak

as is given by equations 31, 32, 33 and 34 respectively. Equations (37)
and (38) define the new Lanczos-type algorithm.
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Now, since all previous formulae are only valid for k ≥ 3, it is necessary
to find the expressions of the polynomials of degrees 1 and 2. From (9),
we can write

P1(x) =

∣∣∣∣
1 x
c0 c1

∣∣∣∣
c1

,

P1(x) = 1− c0

c1

x,

r1 = r0 − c0
c1

Ar0, and x1 = x0 + c0
c1

r0, where ci = (y,Air0).

Using (9) again, we can write

P2(x) =

∣∣∣∣∣∣

1 x x2

c0 c1 c2

c1 c2 c3

∣∣∣∣∣∣
∣∣∣∣

c1 c2

c2 c3

∣∣∣∣
,

P2(x) = 1− c0c3 − c1c2

c1c3 − c2
2

x +
c0c2 − c2

1

c1c3 − c2
2

x2,

r2 = r0− αAr0 + βA2r0, and x2 = x0 + αr0− βAr0, where α = c0c3−c1c2
δ

,

β =
c0c2−c21

δ
and δ = c1c3 − c2

2.

3.2. Algorithm A12. Putting together the various steps given in the
above section, the new algorithm can be described as follows.
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Algorithm 2 Algorithm A12

Choose x0 and y such that y 6= 0, and choose ε arbitrarily small and
positive.
Set r0 = b− Ax0, y0 = y, p = Ar0, p1 = Ap, c0 = (y, r0),
c1 = (y,p), c2 = (y,p1), c3 = (y, Ap1), δ = c1c3 − c2

2,

α = c0c3−c1c2
δ

, β =
c0c2−c21

δ
,

r1 = r0 − c0
c1

p, x1 = x0 + c0
c1

r0,
r2 = r0 − αp + βp1, x2 = x0 + αr0 − βp,
y1 = ATy0, y2 = ATy1, y3 = ATy2, k = 3.
while ||rk|| ≥ ε do

yk+1 = ATyk, q1 = Ark−1, q2 = Aq1, q3 = Ark−2,
a11 = (yk−2, rk−2), a13 = (yk−3, rk−3), a21 = (yk−1, rk−2), a22 = a11,
a23 = (yk−2, rk−3), a31 = (yk, rk−2), a32 = a21, a33 = (yk−1, rk−3),
s = (yk+1, rk−2), t = (yk, rk−3), Fk = −a11

a13
,

b1 = −a21 − a23Fk, b2 = −a31 − a33Fk, b3 = −s− tFk,
∆k = a11(a22a33 − a32a23) + a13(a21a32 − a31a22),

Bk = b1(a22a33−a32a23)+a13(b2a32−b3a22)
∆k

,

Gk = b1−a11Bk

a13
,

Ck = b2−a21Bk−a23Gk

a22
,

Ak = 1
Ck+Gk

,

rk = Ak{q2 + Bkq1 + Ckrk−2 + Fkq3 + Gkrk−3},
xk = Ak{Ckxk−2 + Gkxk−3 − (q1 + Bkrk−2 + Fkrk−3)},
k = k + 1.

end while
Stop; solution found.

4. Numerical results

A12, [17], the algorithm described in the above section, has been tested
against algorithms A5/B10 and A8/B10, the best algorithms according to
[3, 2], as well as against the established Arnoldi algorithm, [1, 36].

4.1. Test problems I. The test problems considered here arise in the 5-
point discretisation of the operator −d2

dx2 − d2

dy2 +γ d
dx

on a rectangular region.

Comparative results on instances of the following problem ranging from
dimension 10 to 100 for parameter δ taking values 0.0 and 0.2 respectively,
are recorded in Table 1 and Table 2.
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A =




B −I · · · · · · 0

−I B −I
...

...
. . . . . . . . .

...
... −I B −I
0 · · · · · · −I B




, with B =




4 α · · · · · · 0

β 4 α
...

...
. . . . . . . . .

...
... β 4 α
0 · · · β 4




.

and α = −1 + δ, and β = −1− δ. The right-hand side is b = Ax, where
x = (1, 1, . . . , 1)T , is the solution of the system. The dimension of B is
10.

Table 1. Experimental results for problems when δ = 0

Arnoldi A5/B10 A8/B10 A12

n ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec)
10 1.2514E−10 0.001450 2.2940E−13 0.001892 1.7704E−13 0.002770 4.9623E−13 0.002819
20 1.7733E−11 0.002207 2.5256E−14 0.001842 1.7489E−13 0.002654 1.7536E−13 0.002904
30 1.2990E−14 0.003602 3.9026E−09 0.002220 4.9472E−09 0.003179 5.4705E−08 0.003370
40 3.5434E−11 0.006071 1.4770E−10 0.002416 8.4658E−10 0.003095 1.4776E−08 0.003526
50 6.1827E−08 0.008870 1.9959E−06 0.002962 1.3598E−06 0.003696 4.7994E−06 0.003980
60 2.9843E−14 0.012282 9.1910E−06 0.003001 3.7470E−06 0.003776 5.0010E−06 0.004354
70 4.2642E−13 0.017151 4.9035E−06 0.003622 4.2579E−06 0.004194 1.3781E−06 0.005658
80 5.0951E−08 0.021938 4.4311E−06 0.004498 7.7199E−06 0.005504 7.5581E−06 0.005271
90 9.6960E−13 0.029083 NaN 8.5560E−06 0.007900 3.7301E−06 0.006541
100 1.1397E−13 0.036462 1.1889E−06 0.003849 3.1695E−06 0.004499 8.9530E−07 0.005084

Table 2. Experimental results for problems when δ = 0.2

Arnoldi A5/B10 A8/B10 A12

n ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec)
10 2.3499E−15 0.001377 5.2347E−04 0.002339 5.2347E−04 0.002948 5.2347E−04 0.003231
20 5.6622E−11 0.002149 4.1778E−11 0.001842 5.8526E−11 0.003090 6.3915E−10 0.003372
30 6.8771E−15 0.003573 8.9881E−04 0.002220 8.9880E−04 0.003580 8.9880E−04 0.003847
40 1.8106E−10 0.006137 8.7583E−04 0.002830 9.3988E−04 0.003620 9.1261E−04 0.003977
50 3.5345E−08 0.008552 6.2669E−04 0.003360 5.7269E−04 0.004055 2.5040E−04 0.004964
60 2.8757E−13 0.012544 6.3670E−04 0.003877 8.4915E−04 0.004885 7.3489E−04 0.005345
70 4.2552E−13 0.017352 8.5670E−04 0.003902 7.0703E−04 0.006158 9.9086E−04 0.005052
80 1.7785E−04 0.021629 NaN NaN 6.5602E−04 0.012131
90 1.4837E−04 0.029332 NaN 7.5451E−04 0.011230 9.5294E−04 0.011842
100 5.8942E−13 0.037067 NaN NaN 9.9710E−04 0.018899

4.2. Test problems II. The coefficient matrix here is taken as the
Hilbert matrix, i.e. A = hilb(n), where hilb(n) is a Matlab function,
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n being the dimension of A. The right-hand side b and the solution x,
are defined in the same way as in test problems I. The Hilbert matrix
is notoriously ill-conditioned. Ill-conditioned systems of linear equations
are notoriously difficult to solve to any useful accuracy, [18, 27, 34]

Table 3. Experimental results when A is a Hilbert matrix.

Arnoldi A5/B10 A8/B10 A12

n ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec)
10 3.2101E−15 0.002364 4.4809E−06 0.001945 4.4809E−06 0.002834 4.4809E−06 0.002706
20 2.2288E−15 0.003285 9.6002E−05 0.001772 9.6002E−05 0.002839 9.6002E−05 0.002787
30 3.8953E−15 0.004148 1.3341E−05 0.001929 1.3376E−05 0.003050 1.3340E−05 0.002791
40 3.2251E−14 0.005521 3.8228E−05 0.001880 3.8276E−05 0.003327 3.8229E−05 0.002772
50 2.8673E−15 0.007068 7.9457E−05 0.001997 7.9463E−05 0.003475 7.9457E−05 0.003334

All algorithms have been implemented in Matlab version 7.8.0 and
run on a PC, under Microsoft Windows XP Professional Operating Sys-
tem, with 3.2GB RAM, and 2.40 GHz Intel(R) Core(TM) 2 CPU 6600.
The problems are solved as dense problems, i.e. no sparsity has been
exploited. The results point to the Arnoldi algorithm being the most ro-
bust overall, but also the slowest overall. Algorithms A5/B10 and A8/B10

are the fastest overall, but the least robust overall; in fact they have
failed to solve some problems in high dimension due to breakdown, of
course, which is endemic in Lanczos-type algorithms. Algorithm A12,
like Arnoldi, solved all problems but faster and not as accurately. It is
also more robust than A5/B10 and A8/B10 overall, but slower than both
of them overall. Its lower speed compared to that of A5/B10 and A8/B10

is expected since the recurrence relation A12 involves more coefficients
than both recurrence relations A5/B10 and A8/B10. Note that on the
Hilbert-type problems, Table 3, the algorithms could not cope with di-
mensions higher than 50. Arnoldi is again the most stable overall and the
slowest as the dimension grows. The other three algorithms have similar
performances.

5. Conclusion and further work

The way Lanczos-type algorithms are derived using recurrence rela-
tions involving FOP’s means that many such algorithms can be created,
each based on a different set of relations. The choice of recurrence re-
lations to use is dictated by the degree of FOP’s to be involved; high
degrees mean a large number of coefficients have to be calculated in the
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concerned Lanczos process. This, consequently, dictates the computa-
tional complexity of the resulting Lanczos-type algorithm. However, it
is well known, [26, 30], that computational complexity does not always
imply efficiency, or indeed robustness. Moreover, robustness and accu-
racy are often more important. It is therefore worthwhile to look beyond
complexity issues sometimes, like we did here.

In this paper we have shown that, indeed, there are recurrence rela-
tions worth exploring since they lead to more robust algorithms. As a
result, a new Lanczos-type algorithm, A12 has been designed. The nu-
merical performance of this algorithm is compared to that of two existing
Lanczos-type algorithms, which were found to be the best among a num-
ber of Lanczos-type algorithms, [2, 3], on the same set of problems as
considered here. It is also compared to the well established Arnoldi algo-
rithm. It is interesting to find that algorithm A12 is overall more robust
than A5/B10 and A8/B10 and faster than Arnoldi’s. This makes it occupy,
at least on the set of problems used here and elsewhere, a happy medium
position. It is therefore the ideal candidate for time-limited applications
which do not require high accuracy.
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[37] G. Szegö. Orthogonal Polynomials. American Mathematical Society, Providence,

Rhode Island, 1939.
[38] H. A. Van der Vorst. An iterative solution method for solving f(A)x=b, using

Krylov subspace information obtained for the symmetric positive definite matrix
A. Journal of Computational and Applied Mathematics, 18(2) (1987):249–263.

[39] Q. Ye. A Breakdown-Free Variation of the Nonsymmetric Lanczos Algorithms.
Mathematics of Computation, 62 (1994):179–207.


