

J. Math. Fund. Sci., Vol. 47, No. 2, 2015, 167-184 167

Received March 17rd, 2015, 1st Revision March 25th, 2015, Accepted for publication April 7th, 2015.
Copyright © 2015 Published by ITB Journal Publisher, ISSN: 2337-5760, DOI: 10.5614/j.math.fund.sci.2015.47.2.6

Restarting from Specific Points to Cure Breakdown in
Lanczos-type Algorithms

Maharani1,2 & Abdellah Salhi1

1Department of Mathematical Sciences, University of Essex,
Wivenhoe Park, Colchester, CO43SQ, United Kingdom

2 Department of Mathematics, University of Jenderal Soedirman,
Jalan Prof. Dr. H.R. Boenyamin No.708 Purwokerto 53122, Indonesia

Email: mmahar@essex.ac.uk

Abstract. Breakdown in Lanczos-type algorithms is a common phenomenon
which is due to the non-existence of some orthogonal polynomials. It causes the
solution process to halt. It is, therefore, important to deal with it to improve the
resilience of the algorithms and increase their usability. In this paper, we
consider restarting from a number of different approximate solutions that seem to
be attractive starting points. They are: (a) the last iterate preceding breakdown,
(b) the iterate with minimum residual norm found so far, and (c) the approximate
solution whose entries are the median values of entries of all iterates generated
by the Lanczos-type algorithm considered. Although it has been shown
theoretically in the context of Arnoldi-type algorithms as well as Lanczos-type
algorithms that restarting mitigates breakdown and allows the iterative process to
continue and converge to good solutions, here we give an alternative theorem to
that effect and a proof of it. However, emphasis is on the quality of the restarting
points. Numerical results are included.

Keywords: breakdown; formal orthogonal polynomial; Lanczos-type algorithms,
systems of linear equations; restarting.

1 0BIntroduction
Lanczos-type algorithms are effective methods to solve systems of linear
equations (SLE). One of their attractions is that, in exact arithmetic, they
achieve an exact solution in n steps where n is the dimension of the problem [1].
However, they have a weakness linked to their need to estimate the coefficients
of the orthogonal polynomials used in the recurrence relationships on which
they are based. For instance, when the denominator of any of these coefficients
is zero, then the corresponding orthogonal polynomial does not exist; the
solution process stops and fails to reach the solution. This is known as the
breakdown phenomenon. There are many forms of this, such as hard, soft,
curable, incurable [2], true, and ghost breakdowns [1,3]. Here, we are concerned
with true or hard breakdown.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74375175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

168 Maharani & Abdellah Salhi

Note that the more iterations we do, the more likely breakdown will occur.
Since we do not work in exact arithmetic, to get good approximate solutions, a
number of iterations exceeding the dimension of the problem is often required.
Therefore, breakdown is even more likely to occur. That is why Lanczos-type
algorithms suffer from breakdown and that is why approaches to dealing with
this problem are continually being developed [4-6].

There are already many strategies to tackle breakdown, such as the look-ahead
strategy [7], also called the method of recursive zoom (MRZ), and the look-
around strategy [8,9]. These typically try to get over and/or around the non-
existing orthogonal polynomials. Attempts based on different strategies, such as
switching between Lanczos-type algorithms and restarting them, have also been
considered [4-6]. These latter approaches have been shown to perform better
than MRZ in terms of robustness [5,6].

In this paper, we will focus on restarting from three specific points which are
attractive as starting points: the last iterate preceding breakdown, the iterate
with the lowest residual norm, and the iterate whose entries are the median
values of all entries of the iterates generated so far.

It is reasonable to restart from the point immediately before the breakdown
occurred since this leads one to believe that the sequence that has been broken is
continued somehow, albeit in a different Krylov space. However, there is no
theoretical evidence for this. Indeed, it may be counter-productive since just
before breakdown the quality of the iterates deteriorated from the point of view
of the residual norm. Our numerical results support this view, as will be seen
later.

Restarting from the iterate with minimum residual norm in the sequence of
solutions generated so far is also reasonable since we now have a good starting
point which is not just a guess. Numerical results included here, also support
this idea.

Finally, restarting from an approximate solution whose entries are the median of
the entries of all the iterates generated so far also sounds like a reasonable
starting point. This is because one might think that the median values of the
entries capture the intrinsic qualities of the sequence of solutions found so far.
However, it is also clear that it will include information from points that are
very bad since they lead to the process of blowing up (breakdown) in terms of
their residual values. As one would expect, the results point to this artificially
made-up iterate as being in between the other two in terms of quality.

 Restarting from Specific Points 169

We will also look at the theoretical aspect of restarting. This has been
considered previously in [2,10]. Numerical results obtained on problems
ranging from 1000 to 70000 dimensions will be provided.

2 Lanczos-type Algorithms for SLE’s and the Issue of
Breakdown

2.1 Lanczos-type Algorithms: Review
Consider the system of linear equations

 𝐴𝐱 = 𝐛, (1)

where 𝐴 ∈ 𝑅𝑛𝑥𝑛 and vectors 𝐱 and 𝐛 ∈ 𝑅𝑛. Lanczos-type methods for solving
Eq. (1) can be derived by combining the method of Krylov subspace and the
method of projections, [11]. It is started by choosing an initial approximate
solution 𝑥0 and defining the sequence of vectors 𝐱𝑘 by two conditions:

 𝐱𝑘 − 𝐱0 ∈ 𝐾𝑘(𝐴, 𝐫0), (2)

and

 𝐫𝑘 = 𝐛 − 𝐴𝐱𝑘 ⊥ 𝐿𝑘 = 𝐾𝑘(𝐴, 𝐲) , (3)

where 𝐫0 = 𝐛 – 𝐴𝐱0 is the corresponding residual vector, 𝐲 is an arbitrary non-
zero vector, and 𝐾𝑘(𝐴, 𝐫0) is a Krylov subspace. From Eq. (2) we have:

 𝐱𝑘 − 𝐱0 = −𝛼1𝐫0 − 𝛼2𝐴𝐫0 − ⋯− 𝛼𝑘𝐴(𝑘−1)𝐫𝟎. (4)

Thus, multiplying both sides by 𝐴, adding and substracting 𝐛, we obtain:

 𝐴(𝐱𝑘 − 𝐱0) = 𝐴 (−𝛼1𝐫0 − 𝛼2𝐴 𝐫0 − ⋯− 𝛼𝑘𝐴(𝑘−1))𝐫0,
 𝐴 𝐱𝑘– 𝐴 𝐱0 = −𝛼1𝐴 𝐫𝟎 − 𝛼2𝐴2𝐫0 − ⋯− 𝛼𝑘𝐴𝑘𝐫0,
 𝐛 − �𝐴 𝐱𝑘– 𝐴 𝐱0� = 𝐛 + 𝛼1𝐴 𝐫0 + 𝛼2𝐴2𝐫0 + ⋯+ 𝛼𝑘𝐴𝑘𝐫0,

 𝐛 – 𝐴 𝐱𝑘 = (𝑏 – 𝐴 𝐱0) + 𝛼1𝐴 𝐫0 + 𝛼2𝐴2𝐫0 + ⋯+ 𝛼𝑘𝐴𝑘𝐫0,

 𝐫𝑘 = 𝐫0 + 𝛼1𝐴 𝐫0 + 𝛼2𝐴2𝐫0 + ⋯+ 𝛼𝑘𝐴𝑘𝐫0. (5)

From the last relation, we can write

 𝐫𝑘 = 𝑃𝑘(𝐴)𝐫0, (6)

where 𝑃𝑘(𝐴) = 1 + 𝛼1𝐴 + ⋯ + 𝛼𝑘𝐴𝑘 is of degree 𝑘 at most, and satisfies
the normality condition 𝑃𝑘(0) = 1.

170 Maharani & Abdellah Salhi

Following the definition of the family of orthogonal polynomials given in [3],
we set 𝑐𝑖 = ⟨𝐲,𝐴𝑖𝐫0�, with 𝑐 a linear functional on the vector space of
polynomials defined by

 𝑐𝑖 = 𝑐� 𝑥𝑖�, 𝑖 = 1, 2,⋯ (7)

The condition Eq. (6) can be written as

 𝑐 �𝑡𝑖𝑃𝑘(𝑡)� = 0, 𝑖 = 0,1, … ,𝑘 − 1, (8)

which shows that 𝑃𝑘 is the polynomial of degree 𝑘 at most, normalized by
𝑃𝑘(0) = 1, belonging to the family of orthogonal polynomials with respect to
functional 𝑐. Thus, the Lanczos method consists of determining implicitly the
polynomial 𝑃𝑘, computing recursively the residual 𝐫𝑘 = 𝑃𝑘(𝐴)𝐫0, and finding
𝐱𝑘 from 𝐱𝑘 = 𝐛 – 𝐴 𝐫𝑘 without inverting the matrix 𝐴.

Some Lanczos-type algorithms have been discussed by Brezinski and his team,
which are expressed in a table containing formulae 𝐴𝑖 and 𝐵𝑗, [12-14].
Basically, the computations of the recurrence relations are based on 𝑃𝑘 and
𝑃𝑘

(1) respectively, with degrees of the polynomials on the right and left hand
sides differing by one or two degrees at most. The new formulae which involve
the polynomials with a difference in degrees of at most two or three can be seen
in [4,15].

2.2 The Breakdown Phenomenon
Breakdown in Lanczos-type algorithms can be caused by either the non-
existence of some orthogonal polynomials or because the recurrence
relationship used is not appropriate. Following the explanation in [16], consider
how breakdown occurs when estimating the coefficients of orthogonal
polynomials.

Consider the three term recurrence relationship of the monic polynomial 𝑃𝑘+1
as follows:

 𝑃𝑘+1(𝑡) = (𝛼𝑡 + 𝛽)𝑃𝑘(𝑡) + 𝛾 𝑃𝑘−1(𝑡), (9)

where 𝑘 = 0,1,⋯. This polynomial satisfies the conditions: (1) 𝑃−1(𝑡) = 0,
(2) 𝑃0(𝑡) = 1, and (3) 𝑐�𝑡𝑖𝑃𝑘� = 0, for 𝑖 = 0,1,⋯ ,𝑘 − 1, where 𝑐 is a linear
function. The last condition, which is also known as the orthogonality
condition, gives:

𝑐(𝑡^𝑖 𝑃_𝑘 + 1) = 𝛼𝑐(𝑡^𝑖 + 1 𝑃_𝑘 (𝑡)) + 𝛽 𝑐(𝑡^𝑖 𝑃_𝑘 (𝑡)) +

 𝛾 𝑐(𝑡^𝑖 𝑃_(𝑘 − 1) (𝑡)), (10)

 Restarting from Specific Points 171

For 𝑖 = 0,1,⋯ ,𝑘 . In particular, for 𝑖 = 𝑘 − 1 and 𝑖 = 𝑘 we get relations

 0 = 𝛼𝑐(𝑡𝑘 𝑃𝑘 (𝑡)) + 𝛾𝑐(𝑡𝑘 − 1 {𝑃𝑘 − 1 (𝑡)) (11)

 0 = 𝛼𝑐 �𝑡𝑘 + 1 𝑃𝑘(𝑡)� + 𝛽𝑐 �𝑡𝑘𝑃𝑘(𝑡)� + 𝛾𝑐 �𝑡𝑘𝑃𝑘−1 (𝑡)� (12)

respectively. The second condition leads to the equation,

 1 = 𝛽 + 𝛾. (13)

As we can see, we now have a system of linear equations in 𝛼,𝛽, 𝛾. Solving for
𝛼,𝛽, 𝛾 gives:

 𝛼 = 1

 𝛾 =
−𝑐�𝑡𝑘𝑃𝑘(𝑡)�

𝑐�𝑡𝑘−1𝑃𝑘−1(𝑡)�
,

 𝛽 =
𝛾 𝑐�𝑡𝑘𝑃𝑘−1 (𝑡)�– 𝑐 𝑡𝑘+1 𝑃𝑘(𝑡)

𝑐�𝑡𝑘𝑃𝑘(𝑡)�
. (14)

In order for relation Eq. (9) to be finite, the scalars 𝑐 �𝑡𝑘−1 𝑃𝑘−1 (𝑡)� and

𝑐 �𝑡𝑘𝑃𝑘(𝑡)� must not be zero, or sufficiently close to zero, i.e. small enough to
cause an NaN output in the computation. Otherwise, a breakdown occurs.

3 Restarting Lanczos-type Algorithms
Here, we introduce the different implementations of restarting Lanczos-type
algorithms from three different points. RLLastIt restarts from the last iterate;
RLMinRes restarts from the iterate with the minimum residual norm;
RLMedVal restarts from a point made up of the median values of all the entries
of previous iterates in a sequence generated by the Lanczos-type algorithm
under consideration. Restarting in all cases is of the pre-emptive type as
described in [5].

3.1 Restarting Lanczos-type Algorithms from the Last Iterate
Assume that we stop the algorithm after 𝑘 iterations. Also assume that
breakdown does not occur within 𝑘 iterations. Note that a high 𝑘 means the
algorithm may break down. Consider the iterate 𝐱𝑘, as the last iterate, with
residual norm ‖𝐫𝑘‖. Initialize the algorithm as follows,

 𝐱0 = 𝐱𝑘 (15)

 𝐲 = 𝐛 – 𝐴𝐱0 (16)

172 Maharani & Abdellah Salhi

 RLLastIt is described in Algorithm 1.

 Algorithm 1 The RLastIt Algorithm.

1. Fix the number of iterations to, say, 𝑘, and the tolerance, 𝜖 , to 1E-13.
2. Run a Lanczos-type algorithm for 𝑘 iterations and get the approximate

solution 𝑠𝑜𝑙𝑙𝑎𝑠𝑡 = 𝐱𝑘, as well as the residual norm 𝑛𝑜𝑟𝑚𝑙𝑎𝑠𝑡 = ‖𝐫𝑘‖.
3. while 𝑛𝑜𝑟𝑚𝑙𝑎𝑠𝑡 ≥ 𝜖 do
4. Initialize the algorithm with

𝐱 = 𝑠𝑜𝑙𝑙𝑎𝑠𝑡,
𝐲 = 𝐛 – 𝐴 𝐱.

5. Run the Lanczos-type algorithm for 𝑘 iterations.
6. endwhile.
7. Take 𝑠𝑜𝑙𝑙𝑎𝑠𝑡 as the approximate solution.
8. Stop.

3.2 Restarting Lanczos-type Algorithms from the Iterate with the
Minimum Residual Norm

Because of the potential accumulation of errors, the last iterate after 𝑘 iterations
is not necessarily the one with the smallest residual norm. It is therefore
reasonable to consider restarting from the point among the 𝑘 iterates with the
lowest residual norm. Figure 1 illustrates the residual norm behaviour of the
iterates after running the Orthodir algorithm [12] when solving problems in 300
dimensions using 150 iterations. This figure describes the situation mentioned
earlier that the last iterate is not always the best one. In this case, the iterate with
the lowest residual norm is the 29𝑡ℎ.

To run RLMinRes, we collect all of the iterates generated in k iterations and
their residual norms.

 𝑑𝑎𝑡𝑎𝑠𝑜𝑙 = {𝐱1,𝐱2, … , 𝐱𝑘}, (17)

 𝑑𝑎𝑡𝑎𝑟𝑒𝑠𝑛𝑜𝑟𝑚 = {‖𝐫1‖,‖𝐫2‖,⋯ , ‖𝐫𝑘‖ }. (18)

We then find the minimum value of Eq. (18) as

 𝑛𝑜𝑟𝑚min = min(𝑑𝑎𝑡𝑎𝑟𝑒𝑠𝑛𝑜𝑟𝑚), (19)

and its index 𝑚. Our new solution is the iterate in Eq. (17) with index 𝑚.

 Restarting from Specific Points 173

Figure 1 The behaviour of the residual norms of an SLE in 300 dimensions.

As in RLLastIt, RLMinRes is initialized as follows

 𝐱0 = 𝐱𝑚, (20)

and 𝒚 as in Eq. (16). If we repeat this step, we will find a good approximate
solution as explained previously. The procedures of LMinRes and RLMinRes
are presented in Algorithm 2 and Algorithm 3 respectively.

Algorithm 2 The LMinRes Algorithm.
1. Fix the number of iterations to, say, 𝑘, and the tolerance, 𝜖 , to 1E-13.
2. Collect all 𝑘 iterates as in Eq. (17).
3. Collect all of the residual norms as in Eq. (18).
4. Compute the minimum values as in Eq. (19) and specify the index of the

minimum value as 𝑚.
5. Obtain the approximate solution as well as the residual norm as follows

𝑠𝑜𝑙𝑚𝑖𝑛 = 𝑑𝑎𝑡𝑎𝑠𝑜𝑙(𝑚), (21)
𝑛𝑜𝑟𝑚𝑚𝑖𝑛 = ‖𝐫𝑚‖. (22)

6. Stop.

174 Maharani & Abdellah Salhi

Algorithm 3 TheRLMinRes algorithm.

1. Initialize a Lanczos-type algorithm with initial guesses 𝐱0 and 𝐲.
2. Run LMinRes algorithm for 𝑘 iterations and obtain 𝑠𝑜𝑙𝑚𝑖𝑛 and 𝑛𝑜𝑟𝑚𝑚𝑖𝑛.
3. while 𝑛𝑜𝑟𝑚𝑚𝑖𝑛 ≥ 𝜖 do

i. 𝐱 = 𝑠𝑜𝑙𝑚𝑖𝑛,
ii. 𝐲 = 𝐛 – 𝐴 𝐱.

4. Run LMinRes algorithm for 𝑘 iterations.
5. endwhile .
6. Take 𝑠𝑜𝑙𝑚𝑖𝑛 as the approximate solution.
7. Stop.

3.3 Restarting Lanczos-type Algorithms with the Vector of
Median Values

Consider again relations Eq. (17) and Eq. (18). For each 𝑥𝑖, 𝑖 = 1, 2, … ,𝑛, we
set
 𝑤1 = �𝑥1

(1),𝑥2
(1),⋯ , 𝑥𝑘

(1)�

 𝑤2 = �𝑥1
(2),𝑥2

(2),⋯ , 𝑥𝑘
(2)� (23)

 ⋮

 𝑤𝑛 = �𝑥1
(𝑛), 𝑥2

(𝑛),⋯ , 𝑥𝑘
(𝑛)�

where 𝑤𝑖 is arranged such that it consists of the 𝑖𝑡ℎ entry of each vector 𝐱𝑖, for
𝑖 = 1, 2, … ,𝑛. For instance, 𝑤1 is the set of all of the first entries of the
iterates, 𝑤2 is the set of all of the second entries of the iterates, etc. Thus, if we
calculate the mean, median, and mode values of each 𝑤𝑖 and we use them as the
first entry, the second entry, etc... of a vector, it leads to a new vector solution.
In other words, the new vector contains the values of either mean, median, or
mode of all the first entries, the second entries, etc... of all the iterates. Our
investigation of these entries showed that the best results are obtained with the
median values. The approximate solution based on the median values of entries
is as follows,

 𝐱𝑚𝑒𝑑 =

⎣
⎢
⎢
⎡𝑥1

𝑚𝑒𝑑

𝑥2𝑚𝑒𝑑

⋮
𝑥𝑛𝑚𝑒𝑑⎦

⎥
⎥
⎤
 (24)

and 𝑥𝑖𝑚𝑒𝑑 = 𝑚𝑒𝑑 {𝑤𝑖}, for 𝑖 = 1,2, … ,𝑛.

 Restarting from Specific Points 175

The procedure described above for creating an approximate solution from the
median values of the entries of iterates generated by the Lanczos-type algorithm
used is presented in algorithmic form as Algorithm 4 or LMedVal.

Algorithm 4 The LMedVal algorithm.

1. Initialize a Lanczos-type algorithm with initial guesses 𝐱0 and 𝐲. Run it for
𝑘 iterations.

2. Collect all of 𝑘 iterates as in Eq. (17).
3. for 𝑖 = 1, 2, … ,𝑛
4. Set 𝑤𝑖 as in Eq. (23)
5. Compute the median value of the entries of each 𝑤𝑖 as follows
 𝑚𝑒𝑑(𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑤𝑖).
6. endfor
7. Compute the approximate solution as follows
 𝐱𝑚𝑒𝑑 = 𝑚𝑒𝑑(1:𝑛)𝑇
8. Compute the residual norm of the solution as follows
 𝑟𝑒𝑠𝑚𝑒𝑑 = 𝐛 – 𝐴 𝐱𝑚𝑒𝑑,
 𝑛𝑜𝑟𝑚_𝑚𝑒𝑑 = 𝑛𝑜𝑟𝑚(𝑟𝑒𝑠𝑚𝑒𝑑).
9. Stop

The procedure described above to restart the Lanczos-type algorithm from the
output of LMedVal is presented in algorithmic form as Algorithm 5 or
RLMedVal. Its initialization is as follows,

 𝐱0 = 𝐱𝑚𝑒𝑑, (25)

and vector 𝐲 as in Eq. (16), where 𝐱𝑚𝑒𝑑 as in Eq. (24).

Algorithm 5 TheRLMedVal algorithm
1. Fix the number of iterations to 𝑘 and the tolerance 𝜖 to 1E-13.
2. Run LMedVal for 𝑘 iterations and obtain 𝑠𝑜𝑙𝑚𝑒𝑑 as well as 𝑛𝑜𝑟𝑚𝑚𝑒𝑑.
3. while 𝑛𝑜𝑟𝑚𝑚𝑒𝑑 ≥ 𝜖 do

i. 𝐱 = 𝐱𝑚𝑒𝑑,
ii. 𝐲 = 𝐛 − 𝐴𝐱.

4. Run LMedVal for 𝑘 iterations.
5. endwhile.
6. Take 𝑠𝑜𝑙𝑚𝑒𝑑 as the approximate solution.
7. Stop.

176 Maharani & Abdellah Salhi

3.4 The Theoretical Point of View

Suppose we solve an SLE using RLLastIt. Denote 𝒙𝒌
(𝑗), 𝑗 = 1, 2, … , 𝑠, and

𝑠 > 0 integer, as the 𝑘𝑡ℎ iterate of the 𝑗𝑡ℎ run of a Lanczos-type algorithm. In
other words, 𝑠 is the number of cycles of RLLastIt. Assume that the residual
norm of the first cycle is greater than the convergence tolerance, i.e.

 �𝐫𝑘
(1)� > 𝜖1, (26)

for some 𝜖1 > 0. Obviously, if this is not the case, the algorithm would have
stopped with an acceptable approximate solution. Consider the results of
Section 3.1 and by the definition of the Krylov subspace given in Section 2.1,
iterate

𝐱𝑘
(2) of the second cycle of RLLasIt satisfies the following two conditions:

 𝐱𝑘
(2) − 𝐱0 ∈ 𝐾𝑘(𝐴, 𝐫0), (27)

 𝐫𝑘
(2) = 𝐛 – 𝐴 𝐱𝑘

(2) ⊥ 𝐾𝑘(𝐴𝑇 ,𝐲), (28)

where 𝐫0 = 𝐫𝑘
(1).

Substitute Eq. (15) into Eq. (27) to get:

 𝐱𝑘
(2) − 𝐱𝑘

(1) ∈ 𝐾𝑘 �𝐴, 𝐫𝑘
(1)�. (29)

Following the results in Eq. (5), we have:

𝐫𝑘
(2) = 𝐫𝑘

(1) + 𝛼1𝐴 𝐫𝑘
(1) + 𝛼2𝐴2𝐫𝑘

(1) + ⋯+ 𝛼𝑘𝐴𝑘𝐫𝑘
(1)

 = 𝑃𝑘(𝐴)𝐫𝑘
(1), (30)

where 𝑃𝑘(𝐴) = 1 + 𝛼1𝐴 + ⋯ + 𝛼𝑘𝐴𝑘 .

Calculating the norm of 𝐫𝑘
(2) in Eq. (30) yields

 �𝐫𝑘
(2)� = �𝑃𝑘(𝐴)𝐫𝑘

(1)�

 ≤ ‖𝑃𝑘(𝐴)‖ �𝐫𝑘
(1)�. (31)

If this residual norm is still bigger than the tolerance 𝜖1 , we restart again, in
which case we will have the third cycle, giving

 𝐫𝑘
(3) = 𝑃𝑘(𝐴)𝐫𝑘

(2). (32)

 Restarting from Specific Points 177

Calculating the norm of 𝐫𝑘
(3) as

 �𝐫𝑘
(3)� = �𝑃𝑘(𝐴)𝐫𝑘

(2)�

 ≤ ‖𝑃𝑘(𝐴)‖�𝐫𝑘
(2)� ≤ ‖𝑃𝑘(𝐴)‖2 �𝐫𝑘

(1)� , from Eq. (31) (33)

If this procedure is continued, then for the 𝑠𝑡ℎ cycle we have:

 �𝐫𝑘
(𝑠)� = �𝑃𝑘(𝐴)𝐫𝑘

(𝑠−1)� ≤ ‖𝑃𝑘(𝐴)‖𝑠 �𝐫𝑘
(1)� (34)

From Eq. (31), Eq. (33), and Eq. (34), and since ‖𝑃𝑘(𝐴)‖ > 0, we conclude that

 �𝐫𝑘
(𝑠)� ≤ �𝐫𝑘

(𝑠−1)� ≤ ⋯�𝐫𝑘
(1)� (35)

where 𝑠 ≥ 1 is the number of cycles. This leads to the following result:

Theorem 1 Suppose we solve an SLE using a Lanczos-type algorithm. Let 𝑥𝑘
(1)

be the last iterate generated by this algorithm after 𝑘 iterations. Given a
tolerance 𝜖 > 0, we assume that the associated residual norm �𝑟𝑘

(1)� > 𝜖.

Restarting the algorithm with 𝑥𝑘
(1) allows it to generate an iterate with a better

residual norm than those of the previous iterates.

Practically, breakdown may still occur between cycles, which causes the
algorithm to stop before reaching a good approximate solution. We cannot
guarantee that a breakdown will not occur in the first cycle, or any cycle for that
matter.

4 Numerical Results and Discussion
We solved different size problems ranging from dimension 1000 to 70000. The
test problems were carried out in MatLab 2012b using two different systems,
Windows with processor RAM 6GB for solving the medium-scale problems,
and Unix0 with 256 GB for solving the large-scale problems. We implemented
the RLLastIt, RLMinRes, and RLMedVal algorithms, as well as other
supporting procedures such as LMedVal. The experiments were carried out via
Algorithm 6, which calls RLLastIt, RLMinRes, RLMedVal.

Algorithm 6 Restarting Lanczos-type algorithms from three different points.

1. Fix the number of iterations to 𝑘 and the tolerance 𝜖 to 1E-13.
2. Run RLLastIt, RLMinRes, RLMedVal for 𝑘 iterations.
3. WHILE 𝑛𝑜𝑟𝑚𝑙𝑎𝑠𝑡 ≥ 𝜖 do
4. Run RLLastIt for 𝑘 iterations.

178 Maharani & Abdellah Salhi

5. Run RLMinRes for 𝑘 iterations.
6. Run RLMedVal for 𝑘 iterations.
7. ENDWHILE.
8. Take 𝑙𝑙𝑎𝑠𝑡 , 𝑠𝑜𝑙𝑚𝑖𝑛 and 𝑠𝑜𝑙𝑚𝑒𝑑 as the approximate solution of each

above algorithm, respectively.
9. Stop.

We solve several systems of linear equations 𝐴𝐱 = 𝐛, with matrix 𝐴 being of
the form

 𝐴 =

⎝

⎜
⎛
𝐵 −𝐼 ⋯ ⋯ 0
−𝐼 𝐵 −𝐼 ⋯ ⋯
⋮ ⋱ ⋱ ⋱ ⋮

−𝐼 𝐵 −𝐼
0 ⋯ ⋯ −𝐼 𝐵 ⎠

⎟
⎞

 (36)

where

 𝐵 =

⎝

⎜
⎛

4 𝛼 ⋯ ⋯ 0
𝛽 4 𝛼 ⋯ ⋯
⋮ ⋱ ⋱ ⋱ ⋮

𝛽 4 𝛼
0 ⋯ ⋯ 𝛽 4⎠

⎟
⎞

 (37)

with 𝛼 = −1 + 𝛿 , 𝛽 = −1− 𝛿 , and 𝛿 takes values 0.0, 0.2, 0.5, 0.8, 5.0, and
8.0. Matrix 𝐴 is the result of the descritization of a linear differential operator
[1]. We use the Orthodir algorithm, or Algorithm 7, in this experiment as a
representative of Lanczos-type algorithms. We also use 100 iterations to make
up a cycle, which means that the intermediate solution is found after 100
iterations.

Algorithm 7 Orthodir Algorithm [12].
1. Initialization. Choose 𝐱0 and 𝐲0 . Set 𝐱 = 𝐱0, 𝐫0 = 𝐛 – 𝐴𝐱0, 𝐲0 = 𝐲, and

𝐳0 = 𝐫0.
2. for 𝑘 = 0,1,2, … do
3. 𝐲𝑘 = 𝐴𝑇𝐲𝑘 − 1

4. 𝐴𝑘+1 = ⟨−𝐲𝑘|𝐫𝐤⟩
⟨𝐲𝑘|𝐴𝐳𝑘⟩

 .

5. 𝐱𝑘+1 = 𝐱𝑘– 𝐴𝑘+1 𝐳𝑘.
6. 𝐫𝑘+1 = 𝐫𝐤 + 𝐴𝑘+1 𝐴 𝐳𝑘 .
7. Run RLMedVal for 𝑘 iterations.
8. end for
9. 𝑠𝑜𝑙𝑙𝑎𝑠𝑡 = 𝐱𝑘 .
10. 𝑛𝑜𝑟𝑚𝑙𝑎𝑠𝑡 = ‖𝐫𝑘‖.
11. Stop.

 Restarting from Specific Points 179

Table 1 Results of RLLastIt, RLMinRes, and RLMedVal on problems with
𝛿 = 0.0.

Dim RLLastIt RLMinRes RLMedVal
n ‖𝐫𝒌‖ T (s) cycles ‖𝐫𝒎𝒊𝒏‖ T (s) cycles ‖𝐫𝒎𝒆𝒅‖ T (s) cycles

1000 5.7290E-14 2.0159 16 7.4630E-14 1.1293 11 7.7686E-14 1.9818 12
2000 NaN NA NA 7.9179E-14 3.5393 10 7.2049E-14 5.1083 8
3000 NaN NA NA 7.1515E-14 8.0831 10 9.2942E-14 10.2765 12
4000 6.6150E-14 34.3719 24 7.1737E-14 12.2651 9 9.7700E-14 17.8791 12
5000 5.3701E-14 79.1186 36 6.8902E-14 18.5584 9 7.9847E-14 24.7685 12
6000 NaN NA NA 7.1850E-14 25.8040 9 7.4920E-14 101.59 9
7000 NaN NA NA 7.9874E-14 37.3090 12 7.4949E-14 50.6792 12
8000 9.0251E-14 67.9472 14 6.7684E-14 45.5536 9 NaN NA NA
9000 6.0401E-14 161.2933 24 7.0927E-14 63.9086 10 8.5236E-14 70.1496 11
10000 6.6456E-14 165.7143 20 8.1881E-14 79.8814 10 8.5545E-14 93.5818 11
20000 7.2688E-14 1285.5 40 7.4526E-14 318.159 10 9.9168E-14 1.2345E+03 12
30000 NaN NA NA 7.9381E-14 2.2848E+04 9 NaN NA NA
40000 9.5703E-14 1.9798E+04 47 8.0789E-14 9.5895E+04 13 NaN NA NA
50000 202.3106 1.7797E+04 10 8.5386E-14 1.5375E+04 10 NaN NA NA
60000 0.0014 2.6531E+04 10 7.5384E-14 2.1178E+04 10 NaN NA NA
70000 3.8427E-08 5.0351E+04 15 9.2520E-14 3.0739E+04 10 8.4645E-14 6.4255E+04 15

Table 2 Results of RLLastIt, RLMinRes, and RLMedVal on problems with
𝛿 = 0.2.

Dim RLLastIt RLMinRes RLMedVal
n ‖𝐫𝒌‖ T (s) cycles ‖𝐫𝒎𝒊𝒏‖ T (s) cycles ‖𝐫𝒎𝒆𝒅‖ T (s) cycles

1000 6.5481E-14 2.0260 16 8.0389E-14 0.8079 7 7.7606E-14 1.9484 8
2000 3.3041E-14 5.7515 14 1.2429E-13 7.6131 14 7.9129E-14 6.750 8
3000 NaN NA NA 8.7363E-14 6.9168 8 NaN NA NA
4000 4.0211E-14 23.8768 16 7.9746E-14 9.8956 7 NaN NA NA
5000 NaN NA NA 5.1093E-14 17.1567 9 NaN NA NA
6000 3.3399E-14 49.6966 15 7.0909E-14 21.6026 7 6.4865E-14 45.8989 9
7000 5.4049E-14 76.8363 17 7.3018E-14 34.2061 8 8.6172E-14 68.6571 10
8000 NaN NA NA 8.0677E-14 35.2509 7 7.8672E-14 71.3026 8
9000 5.0507E-14 152.2841 21 6.6680E-14 48.2827 7 8.9150E-14 106.9637 8
10000 5.6855E-14 205.5778 25 6.3812E-14 61.9360 8 8.2954E-14 118.8027 8
20000 NaN NA NA 7.4526E-14 318.1595 10 NaN NA NA
30000 9.7800E-14 1.1635E+04 50 6.7992E-14 3.11E+03 9 7.6804E-14 7.12E+03 10
40000 NaN NA NA 5.9208E-14 6.16E+03 8 NaN NA NA
50000 9.9120E-14 3.6563E+04 75 7.4136E-14 7.38E+03 8 9.8225E-14 1.36E+04 10
60000 9.9668E-14 2.5750E+04 44 8.3763E-14 9.68E+03 7 8.5780E-14 2.31E+04 11
70000 1.5299E+03 5.5568E+04 10 7.1895E-14 1.56E+04 8 9.2065E-14 2.74E+04 10

Table 3 Results of RLLastIt, RLMinRes, and RLMedVal on problems with
𝛿 = 0.5.

Dim RLLastIt RLMinRes RLMedVal
n ‖𝐫𝒌‖ T (s) cycles ‖𝐫𝒎𝒊𝒏‖ T (s) cycles ‖𝐫𝒎𝒆𝒅‖ T (s) cycles

1000 NaN NA NA 6.7241E-14 0.4985 6 8.0317E-14 0.9676 6
2000 6.6028E-14 3.0730 8 7.1644E-14 1.6560 5 NaN NA NA
3000 2.0914E-14 6.1322 8 2.9349E-14 3.7583 5 8.2315E-14 5.5742 7
4000 4.0636E-14 10.5073 8 8.5704E-14 6.8387 5 7.3850E-14 8.6492 6
5000 5.3701E-14 13.8288 7 8.7432E-14 9.4709 5 6.6026E-14 13.3348 7
6000 4.0015E-14 14.3912 8 4.4088E-14 13.5595 5 7.9435E-14 19.0317 7
7000 7.6507E-14 28.4045 7 6.1367E-14 19.8723 5 9.3416E-14 23.4865 7
8000 7.6507E-14 46.6633 9 6.7684E-14 24.9942 5 7.3388E-14 23.4865 7
9000 2.0877E-14 47.3239 10 8.1464E-14 32.4579 6 7.5110E-14 43.3506 6
10000 NaN NA NA 7.6418E-14 36.7934 5 NaN NA NA
20000 NaN NA NA 5.5184E-14 171.5886 6 7.9658E-14 164.7378 6
30000 3.0472E-14 456.2760 8 8.3265E-14 435.3542 6 8.6487E-14 438.9958 6
40000 9.1562E-14 1.3454E+04 18 7.6668E-14 4.95E+03 6 8.5023E-14 10546.413 7
50000 7.5725E-14 1.3499E+03 12 8.0480E-14 9.21E+03 5 8.8901E-14 17177.462 7
60000 9.5620E-14 17342.312 20 7.8496E-14 9.69E+03 6 8.1470E-14 1.55E+03 6
70000 9.8198E-14 3.3085E+04 25 6.9337E-14 1.19E+04 7 8.2264E-14 2.32E+04 7

180 Maharani & Abdellah Salhi

Table 4 Results of RLLastIt, RLMinRes, and RLMedVal on problems with
𝛿 = 0.8.

Dim RLLastIt RLMinRes RLMedVal
n ‖𝐫𝒌‖ T (s) cycles ‖𝐫𝒎𝒊𝒏‖ T (s) cycles ‖𝐫𝒎𝒆𝒅‖ T (s) cycles

1000 4.6646E-14 0.3958 4 1.2362E-13 0.4031 4 1.9188E-13 0.5585 4
2000 9.0517E-14 2.7572 6 7.1644E-14 1.6560 6 6.2576E-14 3.0358 6
3000 5.2252E-14 3.5538 5 9.9039E-14 2.7697 4 9.1631E-14 3.4874 5
4000 5.1236E-14 6.2464 5 5.0994E-14 4.8783 5 8.4532E-14 6.1081 6
5000 2.6627E-14 9.3331 5 4.6503E-14 6.4221 4 7.5342E-14 8.7590 6
6000 4.0015E-14 14.3912 5 1.5693E-14 13.8603 5 8.5979E-14 14.7563 5
7000 NaN NA NA 6.4924E-14 15.4388 5 NaN NA NA
8000 NaN NA NA 4.8607E-14 25.5804 5 6.8697E-14 24.2593 7
9000 7.2386E-14 32.2374 5 6.9432E-14 28.7406 4 8.7765E-14 27.7122 5
10000 4.4203E-14 40.7000 5 5.8453E-14 30.8759 5 9.5466E-14 35.9651 6
20000 3.3223E-14 159.2071 5 6.9427E-14 117.3181 4 8.1042E-14 133.124 5
30000 NaN NA NA 8.5189E-14 408.2613 6 NaN NA NA
40000 9.3120E-14 3.4339E+03 14 9.9397E-14 3.8403E+03 5 9.7811E-14 6.969E+03 4
50000 7.3387E-14 3.9644E+03 6 8.0193E-14 4.3404E+03 4 8.3000E-14 7.910E+03 6
60000 7.7921E-14 1.295E+04 8 9.4813E-14 7.5053E+03 4 8.0392E-14 7.492E+03 6
70000 8.4024E-14 1.902E+04 8 7.8985E-14 9.986E+04 4 7.5368E-14 1.329E+04 5

Table 5 Results of RLLastIt, RLMinRes, and RLMedVal on problems with
𝛿 = 5.

Dim RLLastIt RLMinRes RLMedVal
n ‖𝐫𝒌‖ T (s) cycles ‖𝐫𝒎𝒊𝒏‖ T (s) cycles ‖𝐫𝒎𝒆𝒅‖ T (s) cycles

1000 6.6783E-13 0.8566 9 1.1544E-13 0.7058 9 7.5428E-14 0.9535 9
2000 9.0517E-14 2.4700 9 1.6451E-13 2.1698 9 4.3856E-14 3.0832 9
3000 8.9938E-14 6.1439 8 1.1733E-13 5.2819 8 5.1801E-14 6.3681 8
4000 2.0649E-13 6.2464 6 1.4507E-13 8.6705 6 9.6175E-14 12.1345 6
5000 2.0727E-13 9.8154 8 1.3336E-13 12.3384 8 8.6350E-14 14.3220 7
6000 9.1796E-14 16.0040 10 2.1285E-13 19.3882 10 7.6867E-14 14.7563 7
7000 9.2341E-14 21.2654 13 1.1998E-13 29.0991 13 9.6799E-14 21.5071 7
8000 9.4310E-14 32.1371 12 1.1228E-13 37.4504 12 9.4843E-14 28.639 7
9000 9.9740E-13 32.2374 10 1.1051E-13 40.1467 10 9.9463E-14 41.8971 6
10000 1.0468E-13 43.2287 13 1.2264E-13 71.6121 13 8.6507E-14 45.5433 6
20000 9.8099E-14 45.5492 183 1.8305E-13 758.8923 183 9.2670E-14 74.9466 7
30000 2.5585E-13 81.2740 8 1.3291E-13 475.0696 8 9.3863E-14 222.3481 8
40000 1.6819E-12 785.5109 10 1.3931E-13 4.4190E+03 10 9.4113E-14 532.888 8
50000 1.3379E-12 594.4041 12 1.5053E-13 1.2285E+04 12 9.5873E-14 8213.771 10
60000 1.5239E-12 5486.982 12 1.5722E-13 1.238E+04 12 9.9868E-14 20937.43 12
70000 1.2905E-12 1.161E+04 13 1.5767E-13 2.6015E+04 13 9.8246E-14 23439.0 13

Table 6 Results of RLLastIt, RLMinRes, and RLMedVal on problems with
𝛿 = 8.

Dim RLLastIt RLMinRes RLMedVal
n ‖𝐫𝒌‖ T (s) cycles ‖𝐫𝒎𝒊𝒏‖ T (s) cycles ‖𝐫𝒎𝒆𝒅‖ T (s) cycles

1000 9.4847E-14 0.8644 12 1.4204E-13 0.7227 12 7.5478E-14 2.0025 9
2000 9.7642E-14 3.2058 18 1.2579E-13 2.8480 9 6.2576E-14 2.8289 9
3000 1.8544E-13 7.3663 9 1.2535E-13 5.7008 9 7.6937E-14 6.4005 9
4000 2.6912E-13 9.8464 9 1.0890E-13 9.8928 9 9.6175E-14 11.1164 9
5000 2.1612E-13 18.2973 9 1.5348E-13 15.7859 9 8.2624E-14 16.1618 9
6000 2.4049E-13 26.4696 9 1.8742E-13 20.8982 9 8.7058E-14 23.6583 9
7000 3.8371E-13 33.9227 9 1.1998E-13 30.0858 8 9.4308E-14 32.8377 9
8000 1.0312E-13 41.5876 8 1.4894E-13 39.6557 10 9.8204E-14 42.3492 8
9000 2.9206E-13 55.3891 10 1.4201E-13 50.4974 9 8.5654E-14 57.2675 10
10000 3.3040E-13 69.0426 9 1.5087E-13 62.4519 11 8.6507E-14 62.4430 9
20000 3.9022E-13 276.9322 11 1.4875E-13 259.4267 6 9.8224E-14 288.0455 11
30000 NaN NA NA 8.5189E-14 408.2613 8 9.3115E-14 NA NA
40000 12629.47 12629.417 20 1.6024E-13 6.249E+03 20 NaN 7.236E+03 20
50000 8.5401E-13 33035.391 26 1.0820E-13 1.696E+04 26 9.9614E-14 1.4038+04 26
60000 1.3279E-12 32253 7 1.1333E-13 1.722E+04 7 9.9792E-14 2.0937E+04 7
70000 1.2417E-13 53545.694 10 3.9254E-13 2.652E+04 6 5.4308E-13 2.0694E+04 7

 Restarting from Specific Points 181

(a) Dim 1000 (b) Dim 5000

(c) Dim 9000 (d) Dim 10000

Figure 2 Performance of RLLastIt, RLMinRes, and RLMedVal on SLE’s of
several dimensions, for δ = 0.2.

4.1 Discussion
We consider two cases, (i) the cases with δ = 0.0, δ = 0.2, δ = 0.5, and δ = 0.8,
leading to SLE’s with matrices A having condition numbers 119.9999, 98.6081,
62.2227, and 44.3210, respectively; (ii) the cases with δ = 5 and δ = 8, leading
to SLE’s with matrices A having condition numbers 27.4932 and 24.4970,
respectively. Note that the matrices of case (i) have slightly larger condition
numbers compared to those of case (ii). However, according to [17-19], the
systems are categorized as well-conditioned.

For the first case, RLMinRes has the best performance in terms of accuracy and
stability compared to RLLastIt and RLMedVal. As can be seen in Table 1,
RLMinRes consistently meets the tolerance when solving several problems. In
fact, it is also more robust than RLLastIt and RLMedVal, where there is no
breakdown. These results are similar to those of Tables 2, 3 and 4, where they
are related to the cases of 𝛿 = 0.2 , 𝛿 = 0.5, and , 𝛿 = 0.8 respectively. For the

182 Maharani & Abdellah Salhi

second case, the results of which are in Tables 5 and 6, RLMedVal is more
accurate than RLMinRes, though it is slower. The worst performance in both
cases is that of RLLastIt. In fact, it still suffers from breakdown. The behaviour
of the restarting from three different points is represented in Figure 2.

5 Summary
In this study we have discussed restarting Lanczos-type algorithms from three
different, reasonable points to combat breakdown when solving SLE’s.
Algorithms called RLLastIt, RLMinRes, and RLMedVal, corresponding to the
three different restartings, have been implemented. The numerical results point
to restarting from the iterate with lowest residual norm, i.e. RLMinRes, as the
most successful. Restarting from the iterate whose entries are the median values
of the entries of previous iterates, i.e. alorithm RLMedVal, is sometimes more
robust than RLMinRes. Restarting from the last iterate, or RLLastIt, is the worst
in both cases. These results confirm our intuitive assessment of each case. For
instance, restarting from the best approximate solution found so far, as in
RLMinRes, should perform well. And it does indeed. Note that we have solved
problems with dimension up to 70000. These are not trivial problems to solve
numerically with any method. Moreover, Lanczos-type algorithms can’t solve
them without restarting or switching.

Interesting questions following from this work could be to investigate whether
the quality of the Krylov subspace in which approximate solutions are generated
can be estimated from the starting point. Is there any way to tell whether one
Krylov subspace is better than another? Can the length of the cycle be
determined accurately to avoid stopping too early before breakdown? These
issues are relevant in other contexts too and certainly in the context of
switching.

Acknowledgements
This project is supported by the Indonesian Government through the Directorate
General of Higher Education (DIKTI) Scholarship 2010.

References
[1] Brezinski, C., Zaglia, R. & Sadok, H., Avoiding Breakdown and Near-

Breakdown in Lanczos-type Algorithms, Numerical Algorithms, 1, pp.
261-284, 1991.

[2] Joubert, W., On Restarting the Arnoldi Method for Large Nonsymmetric
Eigenvalue Problems, SIAM J. Matrix Anal. App, 1992.

 Restarting from Specific Points 183

[3] Brezinski, C., Zaglia, R. & Sadok, H., A Breakdown-free Lanczos-type
Algorithms for Solving Linear Systems, Numerical Mathematics, 63, pp.
29-38, 1992.

[4] Farooq, M., New Lanczos-type Algorithms and their Implementation,
Ph.D dissertation, Department of Mathematical Sciences, University of
Essex, Colchester, 2011.

[5] Farooq, M. & Salhi, A., A Preemptive Restarting Approach to Beating
Inherent Instability, Iranian Journal of Science and Technology
Transaction a Science, 37A3, pp. 349-358, 2013.

[6] Farooq, M. & Salhi, A., A Switching Approach to Avoid Breakdown in
Lanczos-type Algorithms, Applied Mathematics and Information
Sciences, 5(8), pp. 2161-2169, 2014.

[7] Brezinski, C. & Zaglia, R.H., A New Presentation of Orthogonal
Polynomials with Applications to their Computation, Numerical
Algorithm, 1, pp. 207-221, 1991.

[8] Grave-Morris, P., A Look-Around Lanczos Algorithms for Solving a
Systems of Linear Equations, Numerical Algorithm, 15, pp. 247-274,
1997.

[9] Guennouni, E.A, Unified Approach to Some Strategies for the
Treatment of Breakdown in Lanczos-type Algorithms, Application
Mathematics, 26, pp. 477-488, 1999.

[10] Morgan, R.B., Lanczos Methods for the Solution of Nonsymmetric
Systems of Linear Equations, Mathematics of Computation, 5(215), pp.
1213-1230, 1992.

[11] Saad, Y., Iterative Methods for Sparse Linear Systems, 3rd ed.,
Philadelphia: Society for Industrial and Applied Mathematics, pp. 122-124
& 144-145, 2003.

[12] Baheux, C., New Implementations of Lanczos Method, Journal Of
Computational and Applied Mathematics, 57, pp. 3-155, 1995.

[13] Brezinski, C. & Sadok, H., Lanczos-type Algorthms for Solving Systems
of Linear Equation, Applied Numerical Mathematics, 11, pp. 443-473,
1993.

[14] Brezinski, C., Zaglia, R. & Sadok, H., The Matrix and Polynomial
Approaches to Lanczos-type Algorithms, Journal of Computational and
Applied Mathematics, 123(1-2), pp. 241-260,2000.

[15] Farooq, M. & Salhi, A., New Recurrence Relationships between
Orthogonal Polynomials which Lead to New Lanczos-type Algorithms,
Journal of Prime Research in Mathematics, 8, pp. 61-75, 2012.

[16] Brezinski, C. & Zaglia, R.H., Breakdowns in the Computation of
Orthogonal Polynomials, Nonlinear Numerical Methods and Rational
Approximation, pp. 49-59, 1994.

184 Maharani & Abdellah Salhi

[17] Datta, B.N., Numerical Linear Algebra and Applications, Philadelphia:
Society for Industrial and Applied Mathematics, 5th ed., pp. 155-158,
2010.

[18] Farooq, M. & Salhi, A., Improving the Solvability of Ill-Conditioned
Systems of Linear Equations by Reducing the Condition Number of
Their Matrices, Journal Korean Math. Soc, 5(48), pp. 939-952, 2011.

[19] Higham, Nicholas J., Accuracy and Stability of Numerical Algorithms,
3rd ed., Philadelphia: Society for Industrial and Applied Mathematics, 25-
26, 2002.

	1 Introduction
	2 Lanczos-type Algorithms for SLE’s and the Issue of Breakdown
	2.1 Lanczos-type Algorithms: Review
	2.2 The Breakdown Phenomenon

	3 Restarting Lanczos-type Algorithms
	3.1 Restarting Lanczos-type Algorithms from the Last Iterate
	3.2 Restarting Lanczos-type Algorithms from the Iterate with the Minimum Residual Norm
	3.3 Restarting Lanczos-type Algorithms with the Vector of Median Values
	3.4 The Theoretical Point of View

	4 Numerical Results and Discussion
	4.1 Discussion

	5 Summary

