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Abstract—Multi-objective EAs (MOEAs) are well established
population-based techniques for solving various search and
optimization problems. MOEAs employ different evolutionary
operators to evolve populations of solutions for approximating
the set of optimal solutions of the problem at hand in a
single simulation run. Different evolutionary operators suite
different problems. The use of multiple operators with a self-
adaptive capability can further improve the performance of
existing MOEAs. This paper suggests an enhanced version of a
genetically adaptive multi-algorithm for multi-objective (AMAL-
GAM) optimisation which includes differential evolution (DE),
particle swarm optimization (PSO), simulated binary crossover
(SBX), Pareto archive evolution strategy (PAES) and simplex
crossover (SPX) for population evolution during the course of
optimization. We examine the performance of this enhanced
version of AMALGAM experimentally over two different test
suites, the ZDT test problems and the test instances designed
recently for the special session on MOEA’s competition at the
Congress of Evolutionary Computing of 2009 (CEC’09). The
suggested algorithm has found better approximate solutions on
most test problems in terms of inverted generational distance
(IGD) as the metric indicator.

Keywords—Multi-objective optimization, Multi-objective Evolu-
tionary algorithms (MOEAs), Pareto Optimality, Multi-objective
Memetic Algorithm (MOMAs).

I. INTRODUCTION

Multi-objective evolutionary optimization is a subject of in-
tense interest in all fields of Science, Engineering, Economics,
Logistics and others. Multi-objective optimization problems
(MOPs) have more than one conflicting objective function and
they have many real-world applications [6], [59]. A general
MOP can mathematically be formulated as follows.

minimize F (x) = (f1(x), . . . , fm(x))T (1)
subject to x ∈ Ω

where Ω is the decision variable space, x = (x1, x2, . . . , xn)
T

is an individual or solution and xi, i = 1, . . . , n are their
decision variables, F (x) : Ω → Rm consists of m real
valued objective functions and Rm is called the objective
space. If Ω is a closed and connected region in Rn and all

the objective functions in (1) are continuous for x, we call it
a continuous MOP. Furthermore, if m ≥ 3, then problem (1)
is said to be a many objectives problem. In single objective
optimization, the main focus is on the decision space while
in multi-objective optimization, the focus is mainly on the
objective space because objective values are used in checking
for optimality [43]. In practical applications of optimization,
it is very common that the objective functions of the MOP
conflict with one another or are mostly incommensurable. One
needs a set of optimal solutions to solve these problems.A
solution u = (u1, u2, . . . , un) ∈ Ω is said to be Pareto optimal
if there exist no another solution v = (v1, v2, . . . , vn) ∈ Ω
such that fj(u) ≤ fj(v) for all j = 1, . . . ,m and also
fj(u) < fj(v) for at least index k. An objective vector is
said to be Pareto optimal if their corresponding decision vector
is Pareto optimal. All Pareto optimal solutions in the decision
space of MOP is called Pareto set (PS) and their corresponding
image in their objective space is called Pareto front (PF). The
idea Pareto optimality was first proposed by Francis Ysidro
Edgeworth in 1881 and then later on generalized by Vilfredo
Pareto in 1986 as discussed in [12], [10].

MOEAs are highly effective and powerful stochastic tech-
niques which can find a set optimal solutions in a single
simulation run due to their population-based nature, unlike
traditional mathematical programming.In the past two decades,
and since the inception of vector evaluated GA (VEGA) [48],
different types of MOEAs have been suggested, the Pareto
dominance based MOEAs [11], [13], [61], [60], [44], [19],
[18], [9], [27]), the decomposition based MOEAs [21], [20],
[54], [8], [7], [30], [56], [58], [55], [1], [34], [32], [39], [42],
[41], [26], [25], [35], [37], [33], [41]), and Indicator Based
algorithms [63], [5], [3], [22], [4], [2], [14]. They mainly
emphasize three conflicting goals: firstly, the final approximate
Pareto front (PF) should be as close as possible to the true
PF; secondly, the final set of Pareto optimal solutions should
be uniformly distributed and diverse over the true PF of the
problem (1); thirdly, the approximated PF should capture the
whole spectrum of the true PF. Different fitness assignment
procedures, elitism and diversity promoting strategies are
found in the current literature of evolutionary computing (EC).
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The Pareto dominance concept of MOEAs is very common for
solving MOPs [28], [12]. To promote diversity, most of these
algorithms use different diversity techniques such as fitness
sharing, niching, the kernel approach, the nearest neighbour
approach, the histogram technique, crowding or clustering,
a relaxed form of dominance and restricted mating [11].
Among them, a fast non-dominated sorting algorithm (NSGA-
II) [13], SPEA2 or improving the strength Pareto evolutionary
algorithm [60], the Pareto archive evolution strategy (PAES)
[27], multi-objective genetic algorithm (MOGA) [18], and
niched Pareto genetic algorithm (NPGA) [19] are long-familiar
and well known approaches. They have shown good behaviors
in several comparative analysis.

Multiobjective evolutionary algorithms (MOEAs) are ex-
tremely useful for dealing with MOPs. They evolve their
population solutions and provide Pareto optimal solutions in
single simulation unlike traditional optimization techniques. In
the past two decades, since the inception of vector evaluated
genetic algorithm (VEGA) [48], several MOEAs have been
suggested and [13], [61], [60], [17], [44], [19], [9], [11], [49],
[59], [32], [36], [38]. they have successfully tackled various
types of MOPs [16], [25], [35], [37], [33]. In general, classical
MOEAs can be divided into three main different classes,
namely, the Pareto dominance based MOEAs (e.g., [11], [13],
[61], [60], [44], [19], [18], [9], [27]), the decomposition based
MOEAs (e.g., [21], [20], [54], [8], [7], [30], [56], [58], [55],
[1], [34], [32], [39], [42], [41], [26]), and Indicator Based
algorithms (e.g., [63], [5], [3], [22], [4], [2], [14]). All these
algorithms try to obtain a set of Pareto optimal solutions
with three main features, firstly, It should close as much as
possible to the true PF. Secondly, the approximated set should
require expand uniformly distributive all over the true PF of the
problem (1). Thirdly, final Parerto optimal solutions obtained
by particular MOEA should require to desirably capture the
whole spectrum of the PF of the problems. The existing
algorithms implement different fitness assignment procedures
to to evolve their population in order to achieve aforementioned
three goals subject to No free Lunch concept [29]. The Pareto
dominance concept based MOEAs thoroughly applied for
coping with MOPs [28], [12]. To promote diversity, most of
these algorithms are utilizing different diversity techniques
such as fitness sharing, niching approach, Kernel approach,
nearest neighbour approach, histogram technique, crowding or
clustering, relaxed form of dominance and restricted mating
[11]. Among them, a fast non-dominated sorting algorithm
(NSGA-II) [13], SPEA2 or improving the strength Pareto evo-
lutionary algorithm [60], the Pareto archive evolution strategy
(PAES) [27], multi-objective genetic algorithm (MOGA) [18],
and niched Pareto genetic algorithm (NPGA) [19] have been
chosen in several comparative analysis.

Multi-objective memetic algorithms (MOMAs) form a new
and attractive area of research in EC. They are inspired by
models of adaptation found in nature. They are known as Bald-
winian EAs, Lamarckian EAs, cultural algorithms, or genetic
local search and hybrid MOEAs [45]. Hybrid MOEAs have
been developed with the aim to overcome the shortcomings of
stand-alone MOEAs [34], [32], [39], [42], [40].

A genetically adaptive multi-algorithm for multi-objective
(AMALGAM) optimisation is recently developed for solving
both multi-objective optimization problems [52] and single

optimization problems [53]. It employs multiple search op-
erators for its population evolution. The search operators used
include the particle swarm optimizer (PSO) [15], differential
evolution (DE) [47] and NSGA-II [13] and allocates resources
dynamically to each search operators based on their individual
performances. It does not involve any decomposition as in
MOEA/D (multio-bjective evolutionary algorithm based on
decomposition) [54].

MOEA/D [54] decomposes the approximated PF of the
given MOP into a number of different single objective opti-
mization subproblems (SOPs). It then optimizes all SOPs si-
multaneously using generic evolutionary algorithm. MOEA/D
paradigm have tackled diverse benchmark functions and it has
several enhanced versions [31], [34], [32], [39], [36], [42].
In this paper, our main objective is to further improve the
algorithmic performance of ALMAGAM by employing by
employing multiple search operators including the differential
evolution (DE) [46], particle swarm optimization (PSO) [15],
simulated binary crossover (SBX) [24], Pareto archive evolu-
tion strategy (PAES) [23] and simplex crossover (SPX) [50]
with self-adaptive alternative procedures for dealing with both
CEC’09 test instances [57] and ZDT test problems [62].

The main objective in this paper to develop an enhanced
version of ALMAGAM by employing multiple search opera-
tors such as differential evolution (DE) [46], particle swarm
optimization (PSO) [15], simulated binary crossover (SBX)
[24], Pareto archive evolution strategy (PAES) [23] and sim-
plex crossover (SPX) [50] with self-adaptive procedures for
dealing with both CEC’09 test instances [57] and ZDT test
problems [62].

The rest of this paper is organized as follows. Section
II outlines the framework of the enhanced version of the
genetically adaptive multi-algorithm multi-objective (AMAL-
GAM)method. Section III presents experimental results ob-
tained with the enhanced AMALGAM on both CEC’09 [57]
and five ZDT test problems [62]. Section IV is devoted to a
discussion on experimental results. Section V finally concludes
this paper and suggest further areas of research on this topic
an related ones.

II. ENHANCED VERSION OF MULTI-ALGORITHM
GENETICALLY ADAPTIVE FOR MULTIOBJECTIVE

OPTIMIZATION

Algorithm 1 outlines the framework of the an enhanced ver-
sion of the AMALGAM. In Sept 1, a population P with size N
has been generated uniformly and randomly within the search
space of the given MOPs. We then evaluate the fitness values of
solution of population P . We calculate the crowding distance
of each member of population after categorize them into
different layers by using fast non-dominating sorting procedure
adopted in NSGA-II [13] framework. After this, an Algorithm
1 divide the whole population according to k number of search
operators in order to work each search operator on specified
number of sub-populations N1,N2,N3 to generate Q offspring
population of sizes whose sum is equal to N . We have used
five different search operators such as differential evolution
(DE) [46], particle swarm optimization (PSO) [15], simulated
binary crossover (SBX) [24] and Pareto archive evolution
strategy (PAES) [23] and simplex crossover (SPX) [50] in
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the evolutionary process of the suggested algorithm. Each
individual search operator is getting resources at population
level according to their current individual performance based
on self-adaptive procedure as explained in subsection II-A.

Algorithm 1 Enhanced Version of Multi-algorithm Genetically
Adaptive for Multiobjective optimization

1: Input:
2: MOP: the multiobjective optimization problem; N : the

population size and other main parameters; Feval: maxi-
mum function evaluations;

3: Output:{x1, . . . , xN} and {F (x1), . . . , F (xN )};
4: Generate an initial population P of size N uniformly and

randomly.
5: Calculate the F-function values of each member of the P

population.
6: Assign rank to each member of P using fast non-

dominating procedure.
7: Assign sub-populations P = {P1, P2, . . . , Pk} to k op-

erators for creating an offspring population Q =
{Q1, Q2, . . . , Qk} of size N.

8: Calculate F-function values of Q offspring population.
9: Assign rank to each member of Q using fast non-

dominating procedure.
10: Combine the new and old population P and Q, R = P∪Q.
11: Select population P of size N from population R of size

2N based on their ranks and crowding distances for next
generation.

12: Update N best individuals among C population with high
ranks and crowding density.

13: Update P = {P1, P2, . . . , Pk} (Explanation can be found
in subsection II-A) based on the individual performances
of each search operator.

A. Alternative Adaptive Resources Allocation Scheme

• We calculate the number of solutions that successfully
enter to the next generation in the evolutionary process
of enhanced version of AMALGAM. A successful
solution is rewarded by 1 and unsuccessful by 0. An
efficient operator gets more resources in the form of
subpopulation to be operate on them as compared to
weaker one.

• Let δk, k = 1, 2, . . . , q are total number of non-
dominated solutions produced by q search operators
(i.e, differential evolution (DE) [46], particle swarm
optimization (PSO) [15], simulated binary crossover
(SBX) [24], Pareto archive evolution strategy (PAES)
[23] and simplex crossover (SPX) [50]) that enter
successfully to next generation are convert into nor-
malized form to develop probability formula (3)

Pk =
ζk∑q

k=1 ζk
, where ζk =

δk∑q
k=1 δk

(2)

Pk = αPk−1 ×N + (1− α)Pk ×N (3)

Where Pk is the current and Pk−1 is the previous probability
of successes of the k search operators. More importantly, the
above mentioned dynamic resources allocation did not switch
on at every generation of proposed algorithm.It can allocate

resources at every multiple of 5th generation to tackle ZDT test
problems [62]. The suggested enhanced AMALGAM allocates
resources to each of its embedded search operator at every
multiple of 10th generation for dealing with CEC’09 test
instances [57].

III. PARAMETERS SETTING AND EXPERIMENTAL
RESULTS

We have carried out Experiments using benchmark func-
tions with two and three objectives. The ZDT test [62] were
tackled with parameter settings as explained in the subsection
III-A while CEC’09 [57] were handled with parameter settings
are explained in the subsection III-B, respectively.

A. Parameter Settings for ZDT Problems

• N = 100: population size for 2-objective test in-
stances.

• F = 0.5: scaling factor of the DE;

• CR = 0.5: crossover probability for DE;

• w is the inertia factor which lies in [0.8, 1.2];

• c1 and c2 are the two acceleration constant or accel-
eration coefficients that usually lies between 1 and 4;

• ur ∈ [−1, 1] is a continuous uniform random number

• w = 0.5 + rand/2: inertia factor which lies in
[0.8, 1.2] and ξ = 1;

• c1 = c2 = 1.5: acceleration constant or acceleration
coefficients that usually lies between 1 and 4;

• Feval = 25000: maximum function evaluations;

B. Parameter Settings for CEC’09 Test Instances

This subsection explains the parameters setting to validate
enhanced AMALGAM on CEC’09 test instances [57].

• N = 600: population size for 2-objective test in-
stances;

• N = 1000: for 3-objective test instances;

• F = 0.5: scaling factor of the DE;

• CR = 1: crossover probability for DE;

• Feval = 300, 000: maximum function evaluations;

C. Performance Indicators

Two main goals for dealing with multiobjective evolu-
tionary optimization are very important: 1) convergence to-
wards the Pareto-optimal front, 2) to find uniform and well-
distributive set of multiple solutions that cover the whole
true PF of the problem at hand [12]. Several performance
metrics are found in the specialized literature of evolutionary
computing (EC) [51], [13], [12], [64] which are using to judge
which algorithm is better than others and in what aspects.
Inverted generational distance (IGD) [64], [57], relative hy-
pervolume [51], [12], Gamma Υ and delta ∆ [12], [13] which
are commonly in several comparative analysis of different
algorithms. The aforementioned performance indicators can
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use only if the reference set for the test problems are known
in advance or available. In this paper, we have used the
Inverted Generational Distance (IGD) as performance indicator
to judge the quality of final approximated set of Pareto optimal
solutions obtained by proposed algorithm in comparison with
other MOEAs.

Fig. 1. Inverted Generation Distance (IGD) has been used as a Performance
Indicator. The above solutions (blue fill circle) are approximated solution of the
algorithm and (black fill circle) are the Pareto solutions uniformly distributive
along the Pareto Front (PF).

Let P ∗ be a set of uniformly distributed points along the
PF. Let A be an approximate set to the PF, the average distance
from P ∗ to A is defined as [57]:

D(A,P ) =

∑
v∈P∗ d(v,A)

|P ∗|

where d(v,A) is the minimum Euclidean distance between v
and the points in A. If P ∗ is large enough to represent the
PF very well, D(A,P ) could measure both the diversity and
convergence of A in a sense. The closer the IGD metric values,
better is the approximation set. We have used P ∗ = 500 in
our carried experiments to tackle 2-objectives test instances
and P ∗ = 1000 to solve 3-objectives problems. For two
objectives case, the IGD metric is pictorially depicted in the
figure 1. It measures both the convergence and the spread
of the obtained solutions. Smaller IGD-metric values, better
will be approximated set of Pareto optimal of solutions of
corresponding MOEAs.

IV. DISCUSSION OF THE EXPERIMENTAL RESULTS
OBTAINED ON ZDT AND CEC’09 TEST INSTANCES

The simulation related parameters are as follows.

• Operating system: Windows XP Professional

• Programming language of the algorithms: Matlab

• CPU: Core 2 Quad 2.4 GHz

• RAM: 4 GB DDR2 1066 MHz

• 30 independent runs were performed on each test
problem.

.

A. Discussion of IGD-metric Values

Table I and Table II record the IGD-metric values in
terms of minimum (Best), Median, Mean, and standard devia-
tion(std) and maximum (worst) which are found by enhanced
AMALGAM and NSGA-II [13], respectively. These statistics
have been collected by executing each algorithm 30 times
independently with different random seeds on each ZDT test
problem [62] and CEC’09 test instance [57]. The average CPU
time spent by each algorithm are also provided in the last
columns of I and Table II. It is evident from these Tables, that
enhanced AMALGAM has found better approximated solution
set with reduced the IGD-metric values as compared to NSGA-
II [13] for most test problems. In most test problems, global
convergence has been got for both test suites of problems.
However, the complete Pareto front for some CEC’09 test
instances have not been attained by enhanced AMALGAM
in multiobjective optimization context. The primary reasons
of this weak performance could be reason of the complicated
objective functions profile of some CEC’09 test instances [57]
which are mostly multi-modal near the global Pareto-optimal
frontier and a slight perturbation in their optimization variables
causes their solutions to become dominated.

B. Discussion of the Pareto Fronts of ZDT and CEC’09 Test
Instances.

Table I and Table II record the IGD-metric values in terms
of minimum (Best), Median, Mean, and standard deviation
(std) and maximum (worst) which are found by enhanced
AMALGAM and NSGA-II [13], respectively. These statistics
have been collected by executing each algorithm 30 times
independently with different random seeds on each ZDT test
problem [62] and CEC’09 test instance [57]. The average
CPU time spent by each algorithm are also provided in the
last columns of I and Table II. It is evident from statistics
gathered in these Tables, that enhanced AMALGAM has
found a better approximate solution set with reduced IGD-
metric values compared to those of NSGA-II [13] for most
test problems. In most test problems, global convergence has
been achieved for both test suites of problems. However, the
complete Pareto front for some CEC’09 test instances has
not been attained by the enhanced AMALGAM algorithm, in
the multi-objective optimization context. The primary reasons
for this weak performance could be the complicated objective
functions profile in some CEC’09 test instances [57]; these
are mostly multi-modal near the global Pareto-optimal frontier
and a slight perturbation in their optimization variables causes
their solutions to become dominated.

Figure 2 and Figure 6 depict the approximated Pareto
front (PF) against the real PF of ZDT test problems displayed
by enhanced AMALGAM and NSGA-II [13], respectively.
These figures indicate that both algorithms have found better
approximated PF in their best run among 30 independent runs
on each ZDT test problem. We have plotted 30 PFs together
in Figures 3 and Figures 7 of the enhanced AMALGAM and
NSGA-II [13], respectively. These figures indicate that en-
hanced AMALGAM has displayed all 30 in better distribution
ranges in all 30 independent runs as compared to NSGA-II
[13].

Figures 4 display the best approximated PF of the CEC’09
test instances as demonstrated by enhanced AMALGAM
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TABLE I. THE IGD-METRIC VALUES OF THE ENHANCED AMALGAM FOR ZDT1-ZDT4 AND ZDT6. AVG-T MEANS AVERAGE CPU TIME IN
SECONDS.

ZDT Best Median Mean St.Dev. worst AVG-T
ZDT1 0.004301 0.004521 0.004603 0.000223 0.005065 14.940230
ZDT2 0.004235 0.004794 0.004613 0.000258 0.005643 14.633287
ZDT3 0.005067 0.005498 0.005565 0.000170 0.006134 14.580179
ZDT4 0.004696 0.005175 0.005235 0.000162 0.005575 14.696021
ZDT6 0.003615 0.004037 0.004045 0.000175 0.004691 14.395623

TABLE II. THE IGD-METRIC VALUES OF THE NSGA-II [13] FOR DEALING WITH ZDT1-ZDT4 AND ZDT6. AVG-T MEANS AVERAGE CPU TIME IN
SECONDS.

ZDT Best Median Mean St.Dev. worst AVG-T
ZDT1 0.0042193 0.004472 0.004369 0.000139 0.004258 18.01
ZDT2 0.0043213 0.004649 0.004656 0.000182 0.005011 22.85
ZDT3 0.005132 0.00546 0.00912 0.01388 0.0602182042 17.596
ZDT4 0.00482 0.006421 0.00825 0.009649 0.059017370 22.85
ZDT6 0.005606 0.007045 0.007003 0.0005878 0.0080474634 19.90

TABLE III. THE IGD-METRIC VALUES OBTAINED BY ENHANCED AMALGAM OVER CEC’09 TEST INSTANCES. AVG-T MEANS AVERAGE CPU TIME
IN SECONDS.

CEC’09 best mean median st. dev. worst AvG-T
UF1 0.028431 0.058596 0.057886 0.008465 0.070089 286.307532
UF2 0.011235 0.018219 0.013157 0.001349 0.016859 288.558110
UF3 0.091864 0.134375 0.136495 0.022836 0.198629 297.999586
UF4 0.040348 0.041052 0.041039 0.000337 0.041667 286.159044
UF5 0.165346 0.171338 0.171421 0.002796 0.176307 258.823135
UF6 0.068597 0.079037 0.078632 0.005978 0.088905 308.462841
UF7 0.014935 0.017689 0.017787 0.001267 0.020866 290.402351
UF8 0.103734 0.234131 0.230672 0.026091 0.261546 720.849149
UF9 0.056715 0.067789 0.114643 0.085653 0.325885 700.875474
UF10 0.273393 0.327878 0.326937 0.020029 0.360963 686.032888

TABLE IV. THE IGD-METRIC VALUES GENERATE BY NSGA-II [13] IN 30 INDEPENDENT RUNS FOR CEC’09 TEST INSTANCES. AVG-T MEANS
AVERAGE CPU TIME IN SECONDS.

CEC’09 best mean median st. dev. worst AvG-T
UF1 0.051996 0.106873 0.096076 0.024862 0.128739 759.27
UF2 0.016012 0.019849 0.020050 0.001407 0.023589 518.07
UF3 0.066353 0.098234 0.097065 0.017958 0.134235 491.95
UF4 0.052199 0.054388 0.054551 0.001274 0.056679 393.60
UF5 1.523087 1.671735 1.676288 0.099452 1.844279 792.28
UF6 0.705834 0.762023 0.762271 0.028052 0.831784 822.79
UF7 0.067270 0.114403 0.112305 0.012055 0.125719 722.11
UF8 0.095436 0.108548 0.120433 0.030475 0.195112 1443.73
UF9 0.088857 0.188603 0.160832 0.047975 0.218993 1270.73
UF10 0.473865 0.744428 0.781509 0.134987 1.043141 1359.30

within 30 times independent execution for dealing with each
problem. The Figure 8 is of the NSGA-II [13] produced
in its best run among 30 independent runs for CEC’09 test
instances [57]. The PFs displayed by enhanced AMALGAM
are more promising than NSGA-II [13] in terms of diversity
and proximity.

We have also plotted 30 PFs altogether estimated by
enhanced AMALGAM in the figure 5 and the figure 9 ex-
hibited by NSGA-II [13] in all 30times independent runs
over the problems UF1-UF4 and UF7-UF10. These figures
clearly indicate that enhanced AMALGAM has tackled the
most CEC’09 test instances more effectively and spend less
CPU time dealing with each test problem as compared to
NSGA-II [13].

The problems UF5 and UF6 have not been tackled by
both algorithms as per demand and genetic drift has been
occurred in their respective population due to the presence of
highly multi-modality in these problems like UF5-UF6. The
search process of both algorithms are get stuck in the local
basin of attraction of these problems and due to this both
algorithms have not shown further improvement dealing with

these problems.

V. CONCLUSION AND FURTHER WORK

Different operators suite different optimization and search
problems. The dynamic use of multiple operators in the EA
framework has exhibited good performance on complicated
MOPs, [31], [39], [34], [36], [32], [41], [40]. A multi-
algorithm genetically adaptive multi-objective (AMALGAM)
has recently been developed for solving both single objective
[53] and multi-objective optimization problems [52]. In this
paper, we have suggested new adaptive resource allocation
procedure and developed a enhanced version of AMALGAM
to cope with CEC’09, [57], and ZDT test problems [53]. The
suggested algorithm has shown promising results on most test
problems compared to NSGA-II [13] in terms of proximity
and diversity. Furthermore, the suggested algorithm is more
efficient which is desirable when solving real-word problems
where time can be an issue. In the future, we intend to examine
the performance of enhanced AMALGAM over real-world
problems such as:

• Tubular permanent magnet linear synchronous motor
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Fig. 2. Plots of the final non-dominated solutions in the objective space displayed by enhanced AMALGAM in its best run among 30 independent runs over
ZDT1-ZDT4 and ZDT6 problems.
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Fig. 3. Plots of the 30 PFs altogether in the objective space displayed by enhanced AMALGAM for ZDT1-ZDT4 and ZD6 problems.
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Fig. 4. Plots of the final non-dominated solutions in the objective space displayed by enhanced AMALGAM in its best run among 30 independent runs over
UF1-UF10 problems.
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Fig. 5. Plots of the 30 PFs altogether in the objective space displayed by enhanced AMALGAM for UF1-UF4 and UF7-UF10 problems.
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Fig. 6. Plots of the final non-dominated solutions in the objective space displayed by NSGA-II [13] in its best run among 30 independent runs over ZDT1-ZDT4
and ZDT6 problems.
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Fig. 7. Plots of the 30 PFs altogether in the objective space produced by NSGA-II [13] for ZDT1-ZD4 and ZDT6 problems.
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Fig. 8. Plots of the final non-dominated solutions in the objective space display by NSGA-II [13] in its best run among 30 independent runs over UF1-UF10
problems.
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Fig. 9. Plots of the 30 PFs altogether in the objective space display by NSGA-II [13] for UF1-UF4 and UF7-UF10 problems.
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(TPMLSM).

• Cancer chemotherapy problems.

• Fuzzy multi-objective reliability redundancy alloca-
tion problem.

• Multiobjective Engineering design problems.

• Multi-Objective Capacitated Arc Routing Problem.

• Passive Vehicle Suspension Optimization.

• Multi-objective mobile agent-based Sensor Network
Routing.

• Oil and Gas Well Drilling problems.

We will also examine the effect of various enhanced versions
of differential evolution [38] with self-adaptive capabilities in
our proposed algorithm on the problems mentioned above as
well as other complicated test problems.
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