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Abstract
We model the neuronal activity of the C.elegans net-

work by coupling Hindmarsh-Rose oscillators through
the adjacency matrix obtained from its corresponding
brain connectivity. By means of numerical simulations,
we produce the parameter spaces for quantities related
to synchronization, metastability and chimera-like dy-
namics, identifying, thus, interesting complex patterns
of collective behaviour.
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1 Introduction
The brain is an incredibly complex system where the

different parts (cortical areas) work together and, at
the same time, each part has its own special proper-
ties. Neural synchronization is important for cognitive
functions and takes place at various levels, within and
between cortical areas.
The topological properties of a brain network and

the local neuron dynamics affect synchronization. A
very interesting synchronization phenomenon where a
population of coupled oscillators spontaneously splits
into a coherent and an incoherent part, is the so-called
chimera state. Chimera states have been extensively
studied for various complex networks both theoreti-
cally and experimentally (see [Panaggio and Abrams,
2015] and references within). However, similar works
for modular networks, where interactions within and
across modules are attributed to different types of links,
are limited [Shanahan, 2010; Shanahan and Shanahan,
2012].
Chimera states might be attributed to important appli-

cations, in particular in neural systems. An example
might be the phenomenon of unihemispheric sleep ob-
served in birds and dolphins [Rattenborg, 2000], which
sleep with one eye open, meaning that half of the brain

is synchronized with the other half being desynchro-
nized. In the current work, we focus on the study of
synchronization, chimera-like, and metastable states in
a modular network based on the C.elegans brain con-
nectivity matrix.

2 Community Detection
The communities of the C.elegans brain network are

identified using the walktrap method [Pons and Latapy,
2005] with six steps following Ref. [Antonopoulos et
al., 2015]. The walktrap algorithm detects communi-
ties through a series of short random walks, based on
the the idea that vertices encountered on any given ran-
dom walk are more likely to lie within a community.
The algorithm initially treats all nodes as communities
of their own, then merges them into larger communi-
ties, and these into still larger ones and so on. Essen-
tially, it tries to find densely connected subgraphs (i.e.
communities) in a graph via random walks. The idea is
that short random walks tend to stay in the same com-
munity. Following this procedure we have been able
to identify six communities in the C.elegans brain net-
work.
In Ref. [Antonopoulos et al., 2015] the authors com-

puted various statistical quantities associated with the
C.elegans brain network, such as the global clustering
coefficient, the average of local clustering coefficients,
the mean shortest path, the degree pdf of the network
and the small-worldness measure. In the current study,
our focus is on the dynamics that take place on the
specific community-based network topology and how
this is affected by the interplay between the couplings
within and across the communities.

3 System Dynamics
For the dynamics of each node we employ the

Hindmarsh-Rose (HR) neural model [Hindmarsh and
Rose, 1984; Hizanidis et al., 2014]. The resulting undi-
rected brain network of N = 277 neurons connected
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simultaneously by electrical and chemical coupling is
mathematically described by the following equations:

ṗi = qi − αp3i + bp2i − ni + Iext

+ gl

N∑
j=1

GijH(pj) − gn(pi − Vsyn)

N∑
j=1

CijS(pj) ,

q̇i = c− dp2i − qi ,

ṅi = r[a(pi − p0)− ni] ,

ϕ̇i =
q̇ipi − ṗiqi
p2i + q2i

,

where pi is the membrane potential of the i-th neuron,
qi is associated with the fast current Na+ or K+, ni

with the slow current Ca2+, and ϕi is the phase of the i-
th oscillator. The other parameters are chosen as a = 1,
b = 3, c = 1, d = 5, r = 0.005, p0 = −1.6 and Iext =
3.2. Parameter r modulates the slow dynamics of the
system and determines the number of spikes per burst,
and we set it to 0.005 so that each neuron is chaotic.
The electrical coupling is given by the linear function
H(p) = p and the chemical coupling is given by the
nonlinear one S(p) = (1 + exp[−λ(p − Θsyn)])

−1,
where Θsyn = −0.25 and λ = 10. The parameter Vsyn
takes the value 2 for excitatory and −2 for inhibitory
coupling. We consider the excitatory version of the
network: If two neurons are connected under an excita-
tory synapse then, when the presynaptic neuron spikes,
it induces the postsynaptic neuron to spike. |pi| < 2,
thus, (pi − Vsyn) is negative for excitatory coupling.
Iext = 3.2, for which the system exhibits a multi-scale
chaotic behaviour characterized as spike bursting.
Gij is a Laplacian matrix and describes electrical cou-

pling within each community. Cij is an adjacency ma-
trix with diagonal elements equal to 0 and describes
chemical coupling between the communities. Param-
eters gn and gl are the coupling strength associated to
the chemical and electrical synapses, respectively.

3.1 Parameter Spaces
In order to quantify the synchronization level of the

neural activity in the whole network we use the global
order parameter ρg, which originates from the theory
of coupled phase oscillators of the Kuramoto type [Ku-
ramoto and Battogtokh, 2002] and, can be computed
by a complex number defined as:

ρg(t)e
iΦ(t) =

1

N

N∑
j=1

eiϕj(t),

where N is the number of oscillators. By taking the
modulus of this quantity, one can measure the phase
coherence in a certain population of N neurons. Φ(t)
is the average phase in the respective population of os-
cillators and ϕi is the phase variable of the i-th neuron
of the HR system.

We have calculated the converging value of ρg in the
parameter space of the two coupling strengths gl and
gn. The result is shown in the left panel of Fig. 1,
where we observe that high synchronization levels for
the entire network can be achieved only for low chem-
ical coupling strengths.
One should have in mind that complex systems (such

as the brain) do not converge to stable synchronized
states but, instead, exhibit metastability. This means
that temporarily they may be found in the vicinity
of one stable state before spontaneously leaving away
from it towards another. A second feature of many
complex systems is competition. In the context of
synchronization, this is demonstrated as chimera states
[Kuramoto and Battogtokh, 2002; Abrams and Stro-
gatz, 2004; Panaggio and Abrams, 2015; Omelchenko
et al., 2013; Vüllings et al., 2014; Bountis et al., 2014;
Omelchenko et al., 2015], where one community of
oscillators synchronizes while other communities are
desynchronized.
In order to quantify how metastable and chimera-like

the observed dynamics is, we employ the two measures
first introduced by M. Shanahan in [Shanahan, 2010].
The level of metastability can be calculated from the
so-called metastability index [Shanahan, 2010], given
but the expression:

λ = ⟨σmet⟩C , (2)

where

σmet(c) =
1

T − 1

∑
t≤T

(ρc(t)− ⟨ρc⟩T )
2. (3)

In the above equation, C is the set of all M commu-
nities. The order parameter of each community, ρc(t),
is sampled at discrete times t ∈ 1 . . . T . For a given
community, the variance σmet(c) of ρc(t) over all time
points, gives us an indication of how much the syn-
chrony in this community fluctuates in time. Averag-
ing over all communities in C gives us an index of the
metastability in the entire network.
Similarly, the so-called chimera-like index [Shanahan,

2010] is given by:

χ = ⟨σchi⟩T , (4)

where

σchi(t) =
1

M − 1

∑
c∈C

(ρc(t)− ⟨ρ(t)⟩C)
2. (5)

In the above expression, σchi(t) is an instantaneous
quantity that gives the variance of ϕc(t) over all com-
munities in C at a given time t. The average of this
quantity in time indicates how chimera-like a certain
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Figure 1. Parameter spaces in the (gn, gl) plane of the global order parameter ρg (left), the metastability index λ (middle), and the chimera-
like index χ (right).

Figure 2. Space-time plots of whole network for the 4 points marked in the parameter spaces of Fig. 1. A: λ and χ very low, B: λ high, χ
low, C: χ high, λ low, D: χ and λ of moderate value.

state is. The middle and right panel of Fig. 1 show how
the metastability and chimera-like index varies in the
parameter space (gl, gn), respectively.

3.2 Complex Patterns and Dynamical States
We select 4 points of interest on the (gl, gn) param-

eter space (marked by letters A-D) in order to high-
light some interesting patterns among the melange of
dynamical regimes the system exhibits. These points
are chosen such that the following four cases are cov-
ered: (A) both λ and χ are low-valued, (B) metasta-
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bility prevails i. e. λ >> χ (when normalized to 1),
(C) “chimera-likeness” prevails over metastability i. e.
χ >> λ (when normalized to 1), and (D) λ and χ are
equal and moderate-valued (around 0.5 when normal-
ized to 1).
Figure 2 shows the space-time plots of the p-variable

for points A-D. The nodes in the communities are rela-
beled such that each community is placed next to each
other in space (community 1 (far left), . . . , community
6 (far right)).
A: This point corresponds to low metastability and

low chimera-like index. This means that the network
as a whole does not switch to different synchroniza-
tion patters frequently in time, and simultaneously, the
6 communities are to a large extent in synchrony with
each other. This is expected for such a combination
of electrical and chemical couplings and is in agree-
ment with the high value of the global order parameter
(Fig. 1(left)).
B: This point shows the effect of metastability when

the chimera-like index is low-valued. This is illustrated
by the rather regular pattern in space (due to low χ)
which in time switches between slow quiescent periods
(yellow-red) to fast spiking intervals (blue-green) that
correspond to synchronous and incoherent regimes, re-
spectively.
C: This point corresponds to a chimera-like state,

where metastability is less prominent. Communities 1,
5 and 6 seem to be the ones that are more incoherent,
while communities 2 and 4 show long intervals of co-
herence. If one takes a snapshot in time, one may find
coexisting synchronized and desynchronized commu-
nities, a state reminiscent of the well-known chimera
states reported in many systems both theoretically and
experimentally.
D: This point refers to the case where both λ and χ

are prominent in the system.

4 Conclusion
We have identified complex patterns of collective be-

haviour and synchronization in a community-organized
network based on the C.elegans brain connectivity ma-
trix. In particular, metastable and chimera-like states
are observed as a result of the interaction between
topology and local dynamics.
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