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The impact of bioaerosol emissions from urban, agricultural and industrial environments on local air
quality is of growing policy concern. Yet the risk exposure from outdoor emissions is difficult to quantify
in real-time as microbial concentration in air is low and varies depending on meteorological factors and
land use types. While there is also a large number of sampling methods in use, there is yet no stand-
ardised protocol established. In this review, a critical insight into chemical fingerprint analysis of mi-
crobial volatile organic compounds (MVOC) is provided. The most suitable techniques for sampling and
analysing MVOCs in outdoor environments are reviewed and the need for further studies on MVOCs from
outdoor environments including background levels is highlighted. There is yet no rapid and portable
technique that allows rapid detection and analysis of MVOCs on site. Further directions towards a

portable GC—MS coupled with SPME or an electronic nose are discussed.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Bioaerosols or the biological particles of aerosols are predomi-
nantly formed by microbial, plant and animal origin [ 1]. Bioaerosols
are ubiquitous in the environment and due to their small particle
size (<2.5 um) are easily dispersed in the air [2]. Given the potential
high concentration of bioaerosols from urban, agricultural and in-
dustrial emissions (such as composting and other biowaste pro-
cessing facilities), its impact on local air quality is of a growing
public health concern [3,4]. It is well known that the presence of
pathogenic microorganisms in air (bioaerosols) can induce respi-
ratory diseases and infections [5] including asthma [6,7]. Conse-
quently, there is increased concern about the accidental or
deliberate release of biological materials in the environment and
the associated impacts on human and/or animal health and the
economy [8] similar to the Q-fever outbreak in the Netherlands
caused by the bacteria Coxiella burnetii [9,10]. Yet, understanding
the identities, distribution and abundance of airborne microor-
ganisms remains in its infancy and the risk of exposure to bio-
aerosols occupationally and to the public from urban, rural and
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agricultural environments is difficult to quantify in real time
[411,12].

Current bioaerosol monitoring methods are labour intensive,
time consuming, expensive and often not reproducible [13,14]. In
addition, it is difficult to capture sufficient amounts of material to
generate statistically distinguishable and reproducible patterns for
bioaerosol identification and classification [15]. Some instruments
have been specifically designed for bioaerosol collection (eg
impaction onto agar plates), while many more have been adapted
from other applications (eg filters, impingers). No one method is
favoured over another, and the choice is typically determined by
the aims of the study. For example, impaction onto agar is suitable
for cultivation-based studies and offers the possibility of size frac-
tionation. However, the stress on the bioaerosols due to impaction
may reduce the retrieval of culturable microorganisms. Conse-
quently, there may be an underestimation of the diversity and
quantity of microbial load. Additionally, differences in sampling
strategies can hamper data comparison. Traditional culturing
methods have been used to determine the identity and concen-
tration of bioaerosols, despite less than 1% of viable microbes being
culturable under standard laboratory conditions under standard
laboratory conditions [16]. Other technologies have also been used
including microscopy, immunochemistry, flow cytometry, Raman
spectroscopy, Fourier transform infrared spectroscopy (FT-IR),
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fluorescent aerodynamic particle sizer (FLAPS) [17]. These tech-
niques are expensive but suitable for the identification and
numeration of microbial species. More recently real-time bio-
sensors such as Wideband Integrated Bioaerosol Sensor (WIBS) [18]
and Spectral Intensity Bioaerosol Sensor (SIBS) [19] or biosensors
based on microfluidic techniques [20] and carbon nanotube based
biosensors [14]| are getting special attention. These techniques
provide real time measurements and are able to discriminate bio-
logical particles from the total particles in air.

The use of mass spectrometry (MS) has also been reported for
the analysis of aerosolised material of biological origin, including
the Bioaerosol Mass Spectrometer (BMAS) [21]. BMAS is based on
the analysis of the mass spectrum of organism-specific peptides
and proteins as a signature to differentiate microbial species [4].
Microbial phospholipid fatty acids (PLFAs) are other type of bio-
markers used to provide insight into the broad composition of
microbial communities as well as to identify some specific micro-
bial taxa [4]. However PLFAs have a low taxonomic resolution and
since different microorganisms can have the same PLFAs in com-
mon, microbial identification cannot be conducted at the species
level [4,22].

The recent advances in analytical techniques open a new door
for the chemical characterisation of bioaerosol. Specifically, chem-
ical analysis of microbial volatile organic compounds (MVOCs) can
be a reliable and rapid assessment of the nature of ambient bio-
aerosols [23,24] as microbial communities express different MVOCs
profiles depending in which environment they are in Ref. [25].
Further to this, it has been shown that species-specific volatiles
may serve as marker compounds for the selective detection of
pathogenic microbial species in indoor and outdoor environments
[24]. MVOCs are secondary metabolites produced by fermentation
and are volatile due to their physicochemical properties (low mo-
lecular weight, low boiling point and high vapour pressure) [26].
Characterising and quantifying MVOCs, can also be used as a proxy
approach to estimate microbial concentration [27]. MVOCs analysis
have been applied in health care for example to diagnose Crohn's
disease from urine [28], or to detect invasive Aspergillus fumigatus
from breath samples [29]. They have been also used for the
detection of explosives, warfare and drugs [30] and at composting
facilities [31]. However, there is lack of studies from other envi-
ronmental sources such as wastewater treatment plants, anaerobic
digestion plants, agricultural farms or urban and recreational areas.
Concentration of MVOCs in the environment can be highly variable
between replicates and locations due to numerous factors
including among others the microbial source (substrate) [32], the
distance from the source, the weather conditions, wind direction
and landscape topography [33]. This variability is further illustrated
in Table 1, where the most common MVOCs reported for indoor and
outdoor environment are summarised. Overall MVOCs concentra-
tions tend to be higher in indoor environments mainly because
these environments remain closed and ventilation rates are often
low compared to outdoors [34]. MVOCs concentrations can also
vary significantly; for example dimethyl-disulfide concentration
range between 16 and 263,000 ng m . Although some pathogen
microorganisms produce specific MVOCs which are indicative of
microbial contamination it is still to date difficult to discriminate a
microbiologically contaminated area from a non-contaminated
area [35]. This is due to the lack of MVOCs data available for
different environments and especially outdoor environments. Until
now, most of the studies are focused on studying MVOCs from in-
door built environments while there are limited studies conducted
on the outdoor environments, mainly focusing on biowaste and
animal farm facilities. There is also a lack of information on how to
determine what actually constitutes a MVOC contaminant con-
centration threshold and therefore the concentration limits

reported in the literature are often contradictory. Moreover, there is
not yet an established database of standard/reference MVOCs for
specific environments (i.e. rural vs agricultural vs industrial vs ur-
ban) [36] and researchers measure different MVOCs which makes
comparison between studies impossible. For example, Lorenz et al.
[37] collected indoor air from buildings over a 240 min period at
0.5 ml min~! flow rate with SKC pumps and TD tubes coated with
activated charcoal (Anasorb®). They identified 1-octen-3-ol,
dimethyl disulphide and 3-methylfuran as the main indicators of
microbial growth and determined that there is an indoor microbial
contamination source when the detection of one of these MVOCs is
present at concentrations above 50 ng m~> (see SI Table 1). They
also reported that a microbial contamination source could be
considered when the sum of eight MVOCs including 1-octen-3-ol,
3-methylfurane, dimethyldisulfide, 3-methyl-1-butanol, 2-
pentanol, 2-hexanone, 2-heptanone, 3-octanone together with at
least one of the main MVOCs indicators of microbial growth equals
or exceeds 500 ng m~>. In contrast, Korpi et al. [44] indicated, based
on published data of indoor studies from buildings, that microbial
air contamination of an environment can be identified when the
concentrations of specific MVOCs reach or exceed the threshold
values reported in SI Table 1. Thus, human risk of exposure to
MVOCs is still difficult to quantify in real time and this risk is
directly linked to the concentration and type of microorganisms
[39—41]. Nevertheless, a more in-depth understanding of MVOCs is
still required and performance of specific analytics remains to be
established to allow separation and detection of microbial molec-
ular signatures. Specifically the detection, identification and clas-
sification of MVOCs can offer insights to microbial activity,
abundance, community structure, community-level and physio-
logical activity expressing characteristic profiles through distinct
chromatograms. Moreover, untargeted metabolomics offers
broader exploration of metabolites with opportunities to identi-
fying new compounds. In particular, species-specific MVOCs have a
potential to be used as marker for the selective detection of fungal
and bacterial species in the environment.

The purpose of this paper is to review the current state of art on
sampling and analysis of MVOCs from urban, rural and agricultural
emissions. We highlight the challenges on sampling, analytical
determination and speciation, before proposing a way forward to
develop rapid, sensitive and reproducible tools which allow the
characterisation of bioaerosols by focusing on MVOC fingerprints
analysis from a range of environmental sources.

2. Sample collection and analysis

Currently, there is a lack of standard guidelines for sample
collection and analysis of MVOCs. Albrecht et al. [41] published a set
of recommendations of how to design studies and which sampling
strategies to use for airborne microorganisms, MVOC and odours in
the surroundings of composting facilities but there is no informa-
tion available for sampling in other environments. Methodologies
presented in published studies are very variable, ranging in sam-
pling time from a few minutes to up to 48 h with different flow
rates and using a variety of different devices. For all of these rea-
sons, the comparison of data from different methods in published
studies is challenging. The sampling locations depend on the wind
direction on the day of sampling. For example the highest bio-
aerosol concentrations are found downwind of the composting
activities [46]. In fact, the analytical method used will affect the
obtained VOC profile. A schematic representation of the main
available techniques with GC—MS as posterior analysis is detailed
in Fig. 1. Briefly, MVOCs are often collected using thermal desorp-
tion (TD) tubes, impingers or filters. The main advantage of TD
tubes is that the air samples do not require sample preparation for
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Table 1

Concentrations of most common MVOCs (ng m~>) in indoor and outdoor environments.

Compound Indoor environments

Outdoor environments

Living environments™®

Problem buildings”

Normal buildings® Broiler sheds? Compost facilities®

2-Methyl-1-propanol 3000—10,400 nd-1740
2-Methyl-1-butanol na na

3-Methyl-1-butanol 3000 175—-260,000
3-Methyl-2-butanol 3610 190—-1190
3-Octanol 5330—-8800 nd-8860
1-Octen-3-ol 5240-11,800 nd-904,000
2-Octen-1-ol 5240-21,500 1560—266,000
2-Pentanol 3610—4800 nd-1400
2-Methylfuran 6300 na
3-Methylfuran 3360 nd-1800
2-Penthylfuran 5100 na
2-Heptanone 4670—16,900 nd-97
2-Hexanone 4100 25-8800
3-Octanone 5240—-11,600 nd-3020
Geosmin 6000—-7460 nd-550
Borneol 6900 na
2-Methyli-sorbenol 6880 nd-2800
Dimethylsulfide 1700 na

Dimethyl disulfide 3850—263,000 16—90
2-Isopropyl-3-methoxy-pyrazine 6220 nd-9500

340-1380 na na

na na 170—-1400
8700—110,000 nd-25,000 300-35,000
nd-160 na nd-70
nd-40 na nd-140
nd-7000 300—-6000 nd-1900
nd-14,000 na nd-6820
1700 na na

na na 75—1500
nd-160 na nd-110
na na 85—-1240
nd-1200 na nd-3000
7—-2900 na nd-800
nd-3000 na nd-2000
nd-50 na nd-10

na na 160—7000
nd-560 na nd-1180
na nd-1700 <50—-3300
nd-710 nd-263,000 nd-6000
nd-3 na nd-340

na = not analysed; nd = not detected.
2 Living environments = houses [35,43,44].
b problem buildings = Buildings with damp problems [34,38].
¢ Normal buildings = without damp problems or non-complaint areas [35,44,45].
d Broiler sheds [44].
€ Compost facilities [39,45].

gas chromatography coupled to mass spectrometry (GC—MS)
analysis whereas air samples collected using filters or Coriolis de-
vices need extraction steps. A range of statistical analysis such as
principal component analysis (PCA), canonical correspondence
analysis (CCA) or hierarchical cluster analysis (HCA) or multidi-
mensional scale analysis (MDS) can be then carried out to identify
correlations, trends and specific MVOC markers between different
outdoor environments. A summary of the most commonly used
sampling and analytical techniques for MVOCs studies and their
advantages and disadvantages of each one of them is also provided
in Table 2.

2.1. Sampling techniques

MVOCs are very diverse in polarity and chemical structure and
they are present in trace levels; therefore efficient sampling
methods are required. A range of sampling techniques is available
to characterise ambient MVOCs (Table 2). With reference to iden-
tification and characterisation of MVOCs, sampling is carried out by
charcoal pads [47], thermal desorption tubes (TD) [48,49] or by ion
mobility spectrometry (IMS) gas sensors [50] including the elec-
tronic nose [40]. Chemical analysis is often done by GC—MS as it
offers a good chromatographic separation of the compounds and
high sensitivity [51].

2.1.1. Activated charcoal pads

Charcoal pads are diffusive samplers and are cheap, light and
easy to use since they can be operated without electricity [52].
However, there are few studies reporting MVOCs data using char-
coal pads. This technique is advantageous when monitoring an area
during hours, days or weeks by static diffusive passive sampling
[47,52]. Sample preparation is easy as charcoal pads just need to be
solvent extracted with carbon disulphide [47]. This is also a limi-
tation, since there is a probability of losing sample and, in fact, this
technique is not very sensitive.

2.1.2. Impingers

Glass impingers and cyclones collect air samples into a liquid
medium by suction. These techniques have a potential for MVOCs
analysis as allow the collection of high sample volume in a short
time period (10—30 min) without microbial loss caused by drying
issues as the microorganisms are collected within a liquid [53].
The disadvantage of the impingers is the potential loss of the
collection fluid due to the high flow rate used. For field work
cyclone techniques are preferable as they have less liquid loss for
evaporation compared to glass impingers (15% loss vs 30% during
30 min sampling time), are easier to sterilise and also easier to
transport [54]. The short sampling time of impingers compared to
longer sampling techniques such as filtration or charcoal pads
can affect the reproducibility, obtaining more variability in con-
centrations between replicates. Currently, a variety of high-
volume samplers have been used for bioaerosol monitoring,
including the BioGuardian air sampler (InnovaTek, Inc.), the
SpinCon air sampler (Specter Industries, Inc.) or the BioCapture
650 (MesoSystems Technology, Inc.) Han [55]. The cyclone
sampler Coriolis®p is a further high volume sampling unit [1,56]
but differing from the rest of the impingers, its size makes it easy
to handle and it is easily portable [57]. “BioSampler” (SKC, Eight
Four,PA, USA) is an all-glass cheap impinger (Ace Glass Inc., NJ.,
USA), but less efficient than the other mentioned techniques
change [17].

2.1.3. Thermal desorption tubes

Among all the sampling techniques used for environmental
MVOCs, thermal desorption (TD) tubes filled with Tenax® or
Tenax®-Carbotrap 50/50 v/v are the most common ones [58]. Gal-
lego et al. [59] compared between TD tubes coated with a Tenax® or
a multi-sorbent bed of carbonaceous adsorbents and they recom-
mended the use of the latter to assure a complete gathering of very
volatile organic compounds without losing any sample. TD tubes
coated with activated charcoal (Anasorb®) allow more sampling
time and are good for collecting very volatile MVOCs but, for
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Fig. 1. Schematic representation of different sampling techniques depending on the downstream analysis required.

instance, the recoveries for less volatile and reactive MVOCs such as
amines, phenols, aldehydes and unsaturated hydrocarbons are poor
[34,47]. To sample carbonyl compounds, TD coated with Sep-Pak®
gels are the most efficient, but the recoveries of the rest of the
MVOCs are not good [44,62]. TD tubes are directly desorbed into
the GC—MS avoiding sample preparation [28,58]. This is a rapid
technique which is very sensitive in environments where MVOCs

levels are low (<250 pg L~1) [42] and it also provides good MVOC
recoveries and low bias for analysis [33].

2.14. Electronic nose

Electronic noses have been used to monitor MVOCs concentra-
tions because they are portable and provide real time analysis [40].
These devices are formed by electronic chemical sensors combined
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Table 2
Advantages and limitations of different sampling and analytical techniques.
Sampling Sampling Sample Sensitivity ~ Real time  Portable  Suitable for References
time volume preparation analysis MVOCs analysis
Sampling Activated charcoal pads Long High Yes Low No Yes Volatile MVOCs only [47,52]
techniques  Impingers Short High Yes Low No Yes No [55,63,64]
Tenax® Desorption tubes  Short Low No High No Yes Yes [28,31,42,65]
Activated charcoal Long High Yes Low No Yes Very volatile MVOCs only [34,47]
Desorption tubes
Sep-Pak cartridges Short High Yes Low No Yes Carbonyl compounds only  [44]
Electronic nose Short Low Yes Low Yes Yes Limited [40,62,66]
Analytical GC-MS n.a. n.a. n.a. High No No Yes [47,51,67]
techniques ~ GC—HS—SPME n.a. n.a. n.a. High No No Yes [47,67—71]
Liquid chromatography n.a. n.a. n.a. Low No No No [60,72]

n.a. = not applied.

with an information processing unit, pattern recognition software,
and a reference library which qualitatively recognises volatile
organic compounds from simple or complex odours [61,62]. The use
of an electronic nose for fungal detection has potential in clinical
and pathological diagnoses as well as in food safety industry [62].
However, for detection and identification of outdoor MVOCs for
instance, the limit of detection is poor and the sensor can easily be
activated and make false measurements. Apart from this, the
samples need to be cleaned and pre-concentrated in order to
remove interferences [40].

2.2. Analytical techniques for MVOCs fingerprinting

Due to the volatile character of the MVOCs, these are commonly
analysed by gas chromatography coupled to mass spectrometry
(GC—MS) [73]. The use of MS has already been reported for the
analysis of MVOCs including the Bioaerosol Mass Spectrometer
(BMAS) developed for the detection of microorganisms. GC—MS is
very specific and has a very low limit of detection (pg m—>) which
allows both the identification and quantification, even at low
concentration, of MVOCs from complex environmental matrices.
However, a combination of both chemical impact (CI) and electron
impact ionizations (EI) should be considered when analysing
MVOCs, as several studies reported that some MVOCs are only
identified when using a specific ionization source. For example, 2-
pentanol is not detected by chemical impact (CI) ionization and 2-
methyl-1-butanol is not detected by electron impact ionization (EI).
Hence EI and CI should be used as complimentary mass spec-
trometry methods to study MVOCs in environmental matrices
[47,67]. MVOCs from TD tubes are desorbed and directly connected
to the GC—MS [48]. When MVOCs are collected on a charcoal pad
they are solvent extracted although solvent extraction and heat
produce VOC degradation products [47].

Headspace solid phase micro-extraction (HS-SPME) is the most
widely used and established extraction method of MVOCs from
liquid samples. MVOCs are extracted with a short fused silica fibre
and desorbed at high temperatures-without the need of any sol-
vent [67]. This is a robust technique which is very sensitive at
trace levels (pg L~! to ng L~!) and it has a powerful separation
capacity. In contrast, the extraction efficiency is limited and some
MVOCs might not be detected [47,66]. HPLC techniques are less
commonly used as they are only efficient for the analysis of
carbonyl compounds but are not very suitable for volatile com-
pounds [60].

2.3. MVOC separation, speciation and data mining

Future trends are moving towards the identification of micro-
organisms existing in air using chemometrics as this is a quicker

and a cost effective approach compared to cell culturing or mo-
lecular analysis [24]. Chemometrics is the analysis of chemical data
using mathematics and statistics to extract maximum chemical
information from a sample by optimising process data analysis,
signal processing and multivariate analysis [74]. Thus, firstly peak
identification of the chromatogram is performed with a MS data-
base (i.e., NIST, ADMIS, METLIN, mzCloud, etc). Peak deconvolution
allows accurate mass spectra for the abundant and sometimes
coeluting peaks from complex chromatograms that could other-
wise be overlooked when scanning. Due to the large number and
varying concentrations of MVOCs obtained from the analysis,
multivariate analysis is required to recognize patterns from the
different environmental samples [26,70]. Principal component
analysis (PCA), HCA or Multidimensional scaling analysis (MDS) are
performed with the m/z spectra. A wide range of statistical software
(ADAPT, MATLAB, etc.) or chemometric software (ACD/MS Manager,
Mass Profiler Professional, OpenChrom, SpectConnect) can be used
[75]. Identifying species-specific MVOCs is not easy because not all
MVOCs are specific to specific microbial species [76]. Vishwanath
et al. [36] did not succeed in finding a correlation between MVOCs,
VOCs and secondary metabolites from environmental samples due
to the ambiguity of MVOCs and the lack of certified reference
environmental samples reporting MVOCs levels. Terpenes and
sesquiterpenes can either be from a microbial origin (MVOCs) or
from chemicals (VOCs) (cosmetics, perfumes, fruits, cleaning
products, wood etc) [77]. Methylfuranes can also be emitted from
tobacco smoke by the pyrolysis of tobacco components [78] and
other MVOCs have been related to VOCs emitted from building
materials [40].

There are generic MVOCs (Table 3) which can be uniquely
related to microbial activity such as 2-hexanone and 3-methyl-1-
butanol. However, they are emitted by all microorganisms (fungi
and bacteria) and therefore their detection cannot be attributed to
any specific microbe. There are also other MVOCs like 3-octanol
that are only emitted by fungi and compounds such as 3-methyl-
2-butanol, Geosmin, borneol, 2-methyl-isorbenol and 2-isopropryl-
3-methoxypyrazine that are solely emitted by bacteria (Table 3).

To date, only a limited number of MVOCs can be attributed to
genus level and rarely to species level due to their complexity. In
fact, the literature shows discrepancies about which MVOC is
emitted by which microorganism. For example, one study reported
2-pentyl furan as specific MVOC from A. fumigatus [32] whereas
other studies reported that it was also emitted by other Aspergillus
sp. (Aspergillus terreus, Aspergillus flavus and Aspergillus niger) and
other fungus genera (Fugarium spp and Scedosporium apio-
spermum) as well as by the bacteria Streptococcus pneumonia
[29,80]. Initially 3-octanone was thought to be specific from
A. fumigatus but other research groups found that it was also
emitted by A. flavus [81]. Based on the critical review carried out in
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Table 3
Microbial origin and chemical properties of most frequently reported MVOCs in the environment [24,38,42,76,79].
Chemical group Compound Microbial origin Chemical Molecular Boiling point (°C) Vapour pressure “log Kow
formula weight at 101.3 kPa (kPa at 25 °C)

Alcohols 2-Methyl-1-propanol Bacteria and fungi C4H100 74.12 108 133 0.65—0.83
2-Methyl-1-butanol Bacteria and fungi CsH120 88.15 128 0.416 1.29
3-Methyl-1-butanol Bacteria and fungi CsHq20 88.15 130.5 0.316 1.16
3-Methyl-2-butanol Bacteria CsHq20 88.15 1115 1.22 1.28
3-Octanol Fungi CgH150 130.23 169 0.068 2.73
1-Octen-3-ol Bacteria and fungi CgH160 128.21 180 0.071 2.6
2-Octen-1-ol Bacteria and fungi CgH160 128.21 195.8 + 8.0 0.014 2.59
2-Pentanol Bacteria and fungi CsHq20 88.15 119.0-119.3 0.815 1.19
Methanol Bacteria and fungi CH40 32.04 64.7 32 -0.5

Ethers 2-Methylfuran Bacteria and fungi C5H60 82.1 65 23.48 1.85
3-Methylfuran Bacteria and fungi CsHgO 82.1 65—66 21.46 191

Ketones 2-heptanone Bacteria and fungi C7H140 114.19 150.6—151.5 0.213-0.28 2.03
2-hexanone Bacteria and fungi CgH120 100.16 126—-128 1.47,0.36 1.38
3-Octanone Bacteria and fungi CgH160 128.21 157—-162 0.267 2.22

Terpenes Geosmin Bacteria C12H20 182.31 2524 + 8.0 0.00041 3.57
Borneol Bacteria C10H150 154.25 213 0.009 230
2-methylisorbenol Bacteria Cq11H200 168.28 208.7 + 8.0 0.0065 3.31
B-Caryophyllene Bacteria CisHog 204.35 254 NA NA
a-Pinene Bacteria and fungi CioH16 136.23 155 0.4 2.8
Camphene Fungi CioH16 136.23 159 NA 33
Camphor Bacteria and fungi C10H160 152.23 209 0.53 2.2

Sulphur and Dimethylsulfide Bacteria and fungi C2HeS 62.134 188.8 53.7 0.977

nitrogen compounds Dimethyl disulfide Bacteria and fungi CHeS2 94.19 109.8 3.83 1.77

2-Isopropyl-3-methoxypyrazine Bacteria CgH12N,0 152.2 210.8 + 30.0 0.036 2.37

Aldehydes Acetaldehyde Bacteria and fungi C,H4,0 44,05 20.2 101 -0.3
Furfural Bacteria and fungi CsH40, 96.08 162 0.15 0.41

Acids Butanoic acid Bacteria and fungi C4HgO, 88.10 163.75 0.74 0.8
Propanoic acid Bacteria C3HgO- 74.07 141.15 0.47 0.3

2 log Kow = Octanol—Water partition coefficient.

this study and the MVOCs database developed by Lemfack et al.
[24], we have found a set of MVOCs which are less commonly re-
ported but are more specific (at genus or species level) (see Table 4).
Previous research with in vitro cultures have shown the possibility
to differentiate fungal species based on MVOCs emissions; this is
called chemotyping or chemotaxonomy [55,82—84]. Apart from
identifying these MVOCs in air, significant developments are
required towards the analytical approaches to advance metabolite
annotation in different ambient environments. A sensitive and
portable GC—MS unit coupled with SPME or a more improved
electronic nose that MCOCs at trace levels would be crucial in order
to perform real time analysis as current analytical techniques are
lab based and cannot provide us with immediate results. Further-
more, species-specific MVOCs could serve as markers for the rapid
identification of microbes.

3. Conclusions and future perspectives

Bioaerosols have been studied for over 30 years, but there is
still a need to expand our understanding and ability to charac-
terise, identify and quantify these and their metabolites from
different ambient environments. Characterisation of MVOCs has
a potential to be used as a tool to elucidate atmospheric bio-
aerosols. Hence there is a need to develop a rapid, reliable and
replicable procedure for sample collection and analysis of mi-
crobial VOCs. Due to the nature of the outdoor environment as an
open system, outdoor MVOCs concentrations are lower than
those indoors and therefore powerful sample capture and
analytical techniques are required. Analytical techniques have
become more sensitive and nowadays allow us to detect com-
pounds at trace levels. In addition, analytical techniques are
quicker and more cost effective than the conventional microbial
and molecular approaches. Up to now, there is no technique that
allows the detection of MVOCs at environmental levels in real

time. Therefore, future trends should move towards the chemical
characterisation of bioaerosols looking at MVOCs. TD sampling
tubes coupled with GC—MS analysis seems to be the most sen-
sitive and robust technique, being also the most extensively used
one. Impingement techniques with a Coriolis®p is also a prom-
ising device as it is portable, easy to use and without microbial
loss, despite there being issues with sampling efficiency. Liquid
samples from impingers are directly analysed in GC—MS coupled
with a headspace (HS) autosampler without the need of sample
preparation. Compared to TD-GCMS, HS autosampler is not as
sensitive and a SPME fibre needs to be added in the injector to
concentrate the analytes before the injection into the GC—MS.
Unfortunately there does not seem to be a unique analytical
technique suitable for all the groups of MVOCs and the technique
that covers the maximum range of compounds offering a robust,
reproducible and sensitive analysis should be chosen. Depending
on the sample device used, different sample injection will be
needed (SPME, solvent injection, TD-GCMS). Apart from these, at
the moment there is a lack of techniques available for real time
on site detection of MVOCs as most of the analytical techniques
allowing MVOC detection at low concentrations are lab based. A
development of a more sensitive and portable GC—MS unit
coupled with SPME or an electronic nose would be required for a
rapid detection of MVOCs. The combination of the chemical
characterisation of bioaerosols with speciation analysis are
identified as the next step for the identification of species specific
MVOCs. Future perspectives should move towards the develop-
ment of a rapid analysis and evaluation of ambient air creating a
standardised database of the most abundant MVOCs found in a
range of environments (industrial, urban and rural). This data-
base should contain specific MVOCs for each of the most relevant
microbes in air to be able to immediately identify the microbial
pathogens without the need of culturing them or applying mo-
lecular techniques.
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Table 4
Possible specific MVOCs and its physicochemical properties.
Microorganism References Specific MVOCs Molecular formula Molecular
weight (g mol 1)
Aspergillus flavus [85] cis2-octen-1-ol CgH160 128.21
Aspergillus fumigatus [66,85] 2,4-Pentadione (Acetylacetone) CsHgO- 100.12
3-Methyl-1,3-pentandione CH5COCH(CH3)COCH;3 114.14
p-Mentha-6,8-dien-2-ol acetate C12H1802 194.27
Aspergillus versicolor [47,85] Trimethylnonanoic acid methylester Ci14H250, 228.37
1-(3-Methylphenyl)-ethanone CoH100 134.18
Aspergillus candidus [85,86] 3-Cyclohepten-1-one isomer Cq8H320; 280.45
Emericella nidulans [86] beta-Fenchyl alcohol Cy0H180 154.25
2-Methyl-butanoic acid methyl ester C7H140, 130.18
4,4-Dimethyl-pentenoic acid methyl ester n/a n/a
Penicillium clavigerum [85,86] Bicyclooctan-2-one CgHy20 124.18
Penicillium crustosum [85,86] 2-Ethyl-5-methyl-furan C7H100 110.15
4-Ethylbutan-4-olide ((S)-gamma-hexalactone) CgH1002 114.14
Isopropylfuran C7H100 110.15
Penicillium cyclopium [85,86] 2-Methyl-2-bornene isomer n/a n/a
delta-2-Dodecanol n/a n/a
4-Methyl-2-(3-methyl-2-butenyl)-furan C1oH140 150.22
Penicillium roqueforti [66] beta-patchoulene-isomer CisHaa 204.35
beta-elemene-isomer CysHag 204.36
(1,1-dimethylethyl)-2-methylphenol n/a n/a
Butanoic acid, 2-methyl-2-methylpropyl ester CgH1602 144.21
alpha-selinene CysHag 204.35
1-methyl-4-(1-methylethyl) benzene (p-Cymene) CioH14 134.22
Propanoic acid 2-methyl-2-methylpropyl ester CgH1602 144.21
(or Propanoic acid, 2-methyl-3-methylbutyl
ester or Isobutyric acid)
alpha-chamigrene CisHog 204.35
Paecilomy cesvariotii [4] 3,5,7-Trimethyl-2E,4E,8E-decatetraene Cy3H20 176.30
2-Methyl-2,4-hexadiene C;Hq2 96.17
delta-4-Carene CioH16 136.23
Trichodema pseudokoningii [4] 2-Methyl-pentane CeHiq 86.18
Muscodor crispans [4] Hexane, 2,3-dimethyl- CsgHis 114.23
Formamide, N-(1-methylpropyl) C7H15NOy 145.20
Cyclohexane, 1,2-dimethyl-3,5-bis(1-methylethenyl) Cyi4Ha4 192.34
Arthrobacter globiformis [4] 2-Phenylethylamine CgH1N 121.18
Mycobacterium [4] 5-Methylhexan-3-ol C7H160 116.20
7-Methyloctan-3-one CoH150 142.24
5-Methyl-4-hexen-3-one C7H 20 112.17
Cyanoisoquinoline C1oH6N, 154.17
Bacillus spp. (4] (2R,3R)-Butane-2,3-diol C4H1002 90.12
Geobacillus stearothermophillus [4] Dimethyl ditelluride CyHgTe 157.67
Methanetellurol CH4Te 143.64
dimethylselenodisulfide n/a 173.15
dimethyltellurenalsulfide n/a 189.73
Paenibacillus polymyxa [4] 2-(2-Methylpropyl)pyrazine CoH14N20 166.22
2,6-Diisobutylpyrazine Cq2Ha0N>2 192.30
2-Methyl-5-isobutylpyrazine CoH14N> 150.22
Stapahylococcus aureus [4] 2,3,4,5- tetrahydropyridazine C4HsgN; 84.12
4-methylhexanoic acid CH5CH,CH(CH3)CH,CH,COOH 130.18
Butyl butanoate (butyl butyrate) CgH1602 144.21
Pseudomonas sp. [87] 2,4-Diacetylphloroglucinol C10H1005 210.18
Pseudomonas trivialis [85] Undecadiene Cqy1Hao 152.28
Benzyloxybenzonitrile Ci4H11NO 209.25
Escherichia coli [85] Pentylcyclopropane CgHig 112.21
Acinetobacter calcoaceticus [85] Sulfoacetaldehyde CoH404S 124.12
Klebsiella sp. [85] Pentylbutanoate (or pentyl butyrate) CoH1502 158.24
Streptomyces citreus [85] Dihydroagarofuran (sesquiterpenoid) Cq5H260 222.37
Bicyclogermacrene CisHag 204.35
betabourbonene CysHag 204.35
delta-elemene CisHog 204.36
Alternaria alternata [85] 6-Methylheptanol CgHq50 130.23
Rhizopus stolonifer [85] 1-Octene CsHie 112.24
3-Methyl-3-buten-1-ol CH,=C(CH3)CH,CH,0H 86.13
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