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The ability of human participants to integrate
fragmented stimulus elements into perceived coherent
contours (amidst a field of distracter elements) has been
intensively studied across a large number of contour
element parameters, ranging from luminance contrast
and chromaticity to motion and stereo. The evidence
suggests that contour integration performance depends
on the low-level Fourier properties of the stimuli. Thus,
to understand contour integration, it would be
advantageous to understand the properties of the low-
level filters that the visual system uses to process
contour stimuli. We addressed this issue by examining
the role of stimulus element orientation bandwidth in
contour integration, a previously unexplored area. We
carried out three psychophysical experiments, and then
simulated all of the experiments using a recently
developed two-stage filter-overlap model whereby the
contour grouping occurs by virtue of the overlap
between the filter responses to different elements. The
first stage of the model responds to the elements, while
the second stage integrates the responses along the
contour. We found that the first stage had to be fairly
broadly tuned for orientation to account for our results.
The model showed a very good fit to a large data set
with relatively few free parameters, suggesting that this
class of model may have an important role to play in
helping us to better understand the mechanisms of
contour integration.

Introduction

The early stages of vision involve parallel channels
comprising neurons that can act like nonlinear filters.

Such filters are believed to decompose the retinal image
into a set of images that each contain information
specific to a particular band of spatial frequencies,
orientations, and phases, to name a few germane to the
current study (Carandini et al., 2005; De Valois,
Albrecht, & Thorell, 1982; De Valois, Yund, & Hepler,
1982; Field & Tolhurst, 1986; Maffei & Fiorentini,
1973; Merigan & Maunsell, 1993; Ringach, Shapley, &
Hawken, 2002; Shapley & Lennie, 1985). However,
such an account on its own is an overly simplified
description of the early visual representation—that is, it
provides little informative value regarding how such a
multidimensional representation is integrated to form
coherent percepts. For instance, one classic problem
facing the piecewise multidimensional visual represen-
tation is how such a representation can be used to solve
the problem of establishing perceived continuity of
background structure (e.g., a continuous edge or line
following a contour defined by the shape of any given
object) when occluded by content in the foreground.
Thus, it seems crucial that theories pertaining to the
early visual analysis of complex scenery incorporate an
early multidimensional representation that emphasizes
the integration of correlated information across local
regions of the visual field (unencumbered by gaps or
occluding foreground structure).

In an attempt to achieve the above, the ability of
human participants to integrate separate, oriented,
stimulus elements into perceived coherent contours
(amidst a field of distracter elements) has been
intensively studied across a large number of contour
element parameters, with such parameters ranging
from luminance contrast and chromaticity to motion
and stereo (Field & Hayes, 2003; Hess, Hayes, & Field,
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2003). The stimuli are typically arrays of Gabor
micropatches, each consisting of a sinusoidal function
of luminance (i.e., light and dark bars of luminance)
windowed with a Gaussian function to constrain the
sinusoidal luminance modulation to a particular region
in image space (see Figure 1 for an example of such a
stimulus).

The evidence suggests that the contour integration
process depends primarily on the low-level Fourier
properties of the individual contour elements, rather
than on their perceived appearance (Dakin & Hess,
1999). Since selectivity to the Fourier properties of the
stimuli is mediated by the low-level filters in the visual
system, Dakin and Hess’ (1999) finding suggests that to
understand contour integration, it is important to
understand the properties the low-level visual filters
used by the contour integration mechanisms. One way
of characterizing the visual filters is to measure their
spatial-frequency bandwidth. Dakin and Hess (1998)
found that contour integration performance was fairly
narrowly tuned to the spatial frequencies of the contour
elements. In their study, half the stimulus elements were
assigned one spatial frequency and the other half were
assigned a different spatial frequency. Dakin and Hess
(1998) fit Gaussian functions to the plots of perfor-
mance against spatial frequency difference, and found
bandwidths (full-width at half-height) of around 1.5
octaves for highly curved contours, and around 2–3
octaves for straight contours. Another way to charac-
terize the filters is to measure their orientation
bandwidth, and that is the subject of the current study.
Cortical neurons have been reported to possess
orientation tuning bandwidths (full-width at half-
height) ranging from 68 to 3608 (median ;408) in

primate cortex (e.g., De Valois, Yund, & Hepler, 1982;
Ringach et al., 2002), but we currently have little
knowledge of the orientation bandwidths of the
neurons that are used in contour integration.

To address this issue, we measured contour integra-
tion performance as a function of various parameters
related to the orientation bandwidth of the contour
elements. While it is usual to use narrowband spatial
frequency elements (e.g., Gabors) in tasks designed to
measure contour integration (Field, Hayes, & Hess,
1993), any manipulation of the orientation bandwidth
of such stimulus elements results in concurrent changes
in element coverage, and hence their second-order
content (i.e., contrast envelope size). To avoid these
related changes, we used elements composed of filtered
noise (filtered to possess a narrow bandwidth of spatial
frequency, and variable orientation bandwidth) so that
we could manipulate the orientation bandwidth of the
elements without any consequent changes to the global
layout of the stimulus (i.e., maintain a constant
envelope). Thus, the elements themselves do not
possess phase alignment along any particular angle, but
instead possess globally distributed (within the ele-
ments themselves) contrast along the range of orienta-
tions passed by the filter. Since contour integration has
been shown to be minimally influenced by the phase of
the contour elements (Dakin & Hess, 1999; Field,
Hayes, & Hess, 2000; Hansen & Hess, 2006), we
expected participants to have little difficulty integrating
contours made up of elements as described above.

Lastly, there is a critical distinction between the
orientation tuning of a psychophysical effect and the
orientation tuning of the underlying contour integra-
tion mechanism. The contour integration process is
exceedingly complicated, such that is not possible to
infer the orientation bandwidth of the contour inte-
gration mechanisms directly from the psychophysical
effects. We therefore sought to provide a quantitative
model of the underlying mechanisms. Given that the
current study is motivated to assess the effect of
orientation bandwidth on contour integration, it is
crucial to employ a functional model that is selective
for such low-level Fourier properties, and largely
unconstrained regarding the linking strength. The latter
point is important, as any preconceived assumptions
regarding contour element linking rules could seriously
influence estimates of element orientation bandwidths
leading to successful integration. We therefore simu-
lated all experiments in the current study using the two-
stage filter-overlap contour integration model intro-
duced by May and Hess (2008). Briefly, the key feature
of the May and Hess (2008) model is that it represents
the stimulus in a space that has a dimension
representing orientation, in addition to the two
dimensions of the image. The spread of the filter’s
response across image space and orientation has the

Figure 1. Example of a typical stimulus used in contour

integration experiments. The stimulus is composed of a field of

distractor Gabor elements, within which is embedded 12 Gabor

elements that are aligned to a predefined path, thereby

defining the contour. Here, the start and end points of the

target contour have been circled to facilitate viewing (i.e., those

elements were not highlighted during actual experiments).
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effect of blurring the representation along all three
dimensions so that the responses due to elements that
are close in space and orientation join up to form a
contour. The third dimension of the space allows
contours to overlap in space while forming separate
contours if they are sufficiently separated along the
orientation dimension at the point of overlap (May &
Hess, 2008, figure 9 and movie 1). All previous attempts
to model contour integration experiments quantita-
tively have used models based on Field and colleagues’
(1993) notion of an association field, which explicitly
links stimulus elements according to a set of rules. May
and Hess’ (2008) model works differently in that there
is no explicit linking between stimulus elements, and
the linking occurs simply by virtue of the overlap
between the model filter responses to different stimulus
elements, with no assumptions regarding the strength
of linkage between differently oriented contour ele-
ments. The critical role played by the filters in the
model suggested to us that the parameters of the filters
would be strongly constrained by our data on the effect
of orientation bandwidth of the stimulus elements. The
two-stage filter-overlap model is therefore ideally suited
to provide a quantitative depiction of the orientation
tuning bandwidth of the front-end of the contour
integration mechanism. So far, the performance of this
kind of model has been demonstrated by examining its
output to a handful of example stimuli (May & Hess,
2008; Rosenholtz, Twarog, Schinkel-Bielefeld, & Wat-
tenberg, 2009). Thus, in addition to employing this type
of model to estimate the front-end orientation tuning
bandwidth of contour integration mechanisms, the
current study also provides the first thorough quanti-
tative comparison of the performance of this kind of
model with that of human participants.

The current study consists of two parts. Part I was an
empirical study (Experiments 1 through 3) of contour
detection while manipulating orientation bandwidth of
the stimulus elements. Experiment 1 was designed to
allow for an indirect observation regarding the
tolerance of the contour integration mechanism to
increases in the orientation bandwidth of the stimulus
elements. Specifically, we were interested in estimating
the element orientation bandwidth of contour integra-
tion. We systematically varied the stimulus element
orientation bandwidth for different levels of contour
curvature and several different degrees of contour
element-to-contour path orientation alignment, and
measured contour detection performance for each
combination of stimulus parameters. Experiments 2
and 3 served as follow-ups to Experiment 1 (i.e., same
task, but with different stimulus manipulations) and
consisted of two different paradigms designed to
provide further data that would allow us to draw
meaningful conclusions regarding the orientation
bandwidth of contour integration. In Experiment 2 we

held stimulus element orientation bandwidth at a fixed
amount (258 full-width at half-height) and systemati-
cally removed increasing amounts of orientation
contrast from the center of the orientation passband
(i.e., notch filtered along the central element orienta-
tion). Experiment 3 employed contour elements that
alternated between narrow and broad orientation
bandwidths or alternated between different notch
bandwidths. Part II of the current study involved
simulating Experiments 1 through 3 with the May and
Hess (2008) two-stage filter-overlap contour integration
model.

Methods and materials

Apparatus

All stimuli were presented with an Intel Pentium IV
(2.84 GHz) processor equipped with 1GB RAM via a
VSG 2/5 graphics card (Cambridge Research Systems,
Rochester, UK) on a Sony G520 CRT monitor with a
maximum luminance of 80 cd/m2, frame rate of 120 Hz,
and resolution of 1024 · 768 pixels. The stimuli were
generated using C routines called from MATLAB (The
MathWorks, Inc., Natick, MA) version 7.0 and were
linearly scaled to fit the range 0–255 and stored in an 8-
bit frame store on the VSG card and subsequently
scaled to the correct contrast and gamma corrected by
mapping the 8-bit values onto 15-bit values. An
analogue input to the monitor was generated from
these 15-bit values using two 8-bit digital-to-analogue
converters in the VSG card. Participants viewed the
display binocularly from a distance of 60 cm.

Participants

Two of the authors, BCH and RFH (both experi-
enced psychophysical observers), participated in all
experiments.1 Both participants had normal or cor-
rected-to-normal vision. All experiments conformed to
the ethical standards of the Federal Code of Regula-
tions Title 45 (Public Welfare) and Department of
Health and Human Services, Part 46 (Protection of
Human Subjects). Institutional Review Board-ap-
proved (McGill University) informed written consent
was obtained.

Experiment 1: Stimulus generation

The individual Gabor micropatches in the stimuli
were filtered white noise to which a spatial circular
Gaussian envelope was applied. Filtering took place in
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the Fourier domain. The spatial frequency filter took
the form of an annulus in Fourier space, with a
Gaussian radial cross-section, which peaked at a spatial
frequency of f0¼ 4.5 cycles per degree (cpd), and had a
standard deviation of rf ¼ 2.25 cpd. Thus, if points in
Fourier space are defined in Polar coordinates (f, h),
where f is spatial frequency and h is angle (in degrees)
from the horizontal axis in Fourier space, then the
spatial frequency filter had the form

wf ð f; hÞ ¼ e

�ð f�f0Þ2

2r2
f

� �
ð1Þ

The orientation filter took the form of a pair of
wedges in Fourier space, with amplitude given by a
Gaussian function of orientation:

whð f; hÞ ¼ e

�ðh�h0Þ2

ð2r2
h
Þ

� �
þ e

�ðh�h0þ180Þ2

ð2r2
h
Þ

� �
ð2Þ

where h0 is the orientation of the element from vertical
(in stimulus space), and rh, which we call the orientation
bandwidth SD, controls the element’s orientation
bandwidth. The filter described in Equation 2 had to
contain two wedges to maintain a complex-conjugate
relationship between points on opposite sides of
Fourier space, so that the image obtained after inverse-
Fourier transforming did not contain any imaginary
components.

White noise was generated and filtered with the
orientation and frequency filters described in Equations
1 and 2 in Fourier space. If n( f, h) is the noise value at
position (f, h) in Fourier space, then the filtered noise
was given by n( f, h) · wf ( f, h) · wh( f, h). The
combined orientation and spatial frequency filter has
the property that the spatial frequency bandwidth is
constant across orientation, and the orientation band-
width is constant across spatial frequency. The direct
current (DC) component was then set to zero, and the
filtered noise was inverse-Fourier transformed, and
windowed with a circular Gaussian spatial envelope

with standard deviation 0.178 visual angle. Finally, the
element contrast was scaled to give a root-mean-square
(RMS) contrast of 0.12, and was set to possess a mean
pixel luminance that matched the background.

Stimuli were generated using a similar procedure to
that of Hansen and Hess (2006), which was based on
Field et al.’s (1993) original derivation. Briefly, the
stimulus area was divided into an invisible 16 · 16
square grid. For stimuli containing no contour, each
grid square was filled with one randomly oriented
filtered noise element, placed at a random location
within the square, subject to the constraint that the
elements did not overlap. For stimuli containing a
contour, the contour was first positioned randomly
within the grid and then each remaining empty grid
square was filled with one element with random
orientation and random position within the grid
square.2 Part of an example contour is represented
schematically in Figure 2. The contour was constructed
along an invisible backbone of nine line segments,
joined end to end. A contour element was placed at the
center of each segment. The absolute difference in
orientation between adjacent segments is referred to as
the path angle, a (which controls contour curvature),
and was varied systematically in our experiments. In
order to reduce any chance alignments of three or more
elements along the contour paths, we added 6108 of
random (uniform distribution) path angle jitter, Da, to
all contour elements in all experiments of the current
study (e.g., Hansen & Hess, 2006). Contour elements
were further randomly jittered by 65 pixels along the
contour path (i.e., Dd ). Finally, the element angle (i.e.,
the difference in orientation between a given path
segment and the central orientation of a given element)
was varied by adding a value, Dh, sampled from a zero-
mean Gaussian distribution whose standard deviation
(the angle SD) was varied systematically in the
experiment. Experiment 1 was designed to test the
effects of varying the parameters of (a) orientation
bandwidth SD of the stimulus field elements, (b)
element angle SD, and (c) the path angle on the ability
of humans to detect contours made up of orientation-
filtered random noise elements. All three parameters
were varied in a factorial design. In each trial, the
stimulus element orientation bandwidth, rh, was 28,
108, 208, 308, or 408. For stimuli containing contours,
the angle SD was 08, 108, 208, 308, or 408, and the path
angle was 08, 108, 208, or 308. Refer to Figure 3 for
stimulus examples.

Experiment 2: Stimulus generation

Individual stimulus elements were constructed with
the same protocol as described above for Experiment 1,
except that a notch in the orientation filter was

Figure 2. Schematic for building contours for all experiments in

the current study. See text for further details.
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introduced by subtracting from wh in Equation 2 a
narrower wedge shape, wnotch, given by

wnotchð f; hÞ ¼ e

�ðh�h0Þ2

ð2r2
notch

Þ

� �
þ e

�ðh�h0þ180Þ2

ð2r2
notch

Þ

� �
ð3Þ

where rnotch, which we call the notch SD, controls the
width of the notch. The orientation bandwidth SD, rh,
was set to 258 for Experiment 2, and rnotch took values
of 28, 68, or 128. As for Experiment 1 stimuli, the angle
SD could take values of 08, 108, 208, 308, or 408, and the
path angle took values of 08, 108, 208, or 308. See Figure
4 for stimulus examples. All three variables were varied
in a factorial design.

Experiment 3: Stimulus generation

Experiment 3 was designed to test the effects of
alternating either the orientation bandwidth or notch

width for successive elements along the contour. For
stimuli containing contours, the elements that made
up the contours were made to possess path angles of
08, 108, 208, or 308. Individual stimulus elements were
constructed using either the same protocol described
for Experiment 1 with orientation bandwidths of
either 28, 308, or 408 (full-width at half-height) or
Experiment 2 with orientation notch bandwidths of
either 68 or 128 (the notches were taken out of Gabor
filters with a bandwidth of 258). Stimulus element
fields and contours were constructed in an identical
fashion as described for Experiments 1 and 2, but with
the following modifications. For the alternating
orientation bandwidth condition, the stimulus element
fields were constructed with half of the elements
consisting of orientation filtered bandwidths of 28 and
the other half 308, or half of the elements consisting of
28 and the other half 408. The contours themselves
were made up of elements that alternated along the
contour between either 28 and 308 or 28 and 408,

Figure 3. Example stimuli from Experiment 1. Stimulus contours have been highlighted to facilitate viewing (i.e., contours were not

highlighted during the actual experiment).

Figure 4. Example stimuli from Experiment 2. Stimulus contours have been highlighted to facilitate viewing (i.e., contours were not

highlighted during the actual experiment).
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respectively. For the alternating orientation notch
filtered element condition, the stimulus element fields
were constructed with half of the elements consisting
of orientation notch filtered bandwidths of 08 (i.e., no
notch) and the other half 68, or half of the elements
consisting of 08 and the other half 128. The contours
themselves were made up of elements that alternated
between either 08 and 68 or 08 and 128, respectively.
For Experiment 3, all contour elements were aligned
with the contour path (i.e., element SD¼ 08) since it is
with that particular parameter setting that perfor-
mance is at its highest (therefore allowing a full range
of performance modulation).

Psychophysical procedure

The psychophysical procedure employed for all
experiments in Part I of the current study consisted of a
two-interval forced choice (2IFC) method of constant
stimuli paradigm. The stimulus intervals in the 2IFC
paradigm contained either a field of randomly orien-
tated filtered noise elements or a field of randomly
oriented filtered noise elements containing a contour.
Each trial began by presenting the participant with a
fixation point (500 ms) followed by Stimulus Interval 1
(1000 ms) followed by the fixation point (200 ms),
followed by Stimulus Interval 2 (1000 ms), after which
the display was set to mean luminance. At this point the
participant indicated which interval contained the
contour (the participant had unlimited time to
respond).

For Experiment 1, the three independent variables
(stimulus element orientation bandwidth, angle SD,
and path angle) were blocked by noise element
orientation bandwidth and angle SD; within each block
the path angle of the contour varied between one of the
four values mentioned above. Each block had 20 trials
per path angle, resulting in 80 trials per block. Each
block was repeated five times, resulting in 100 trials per
level of path angle for each noise element orientation
bandwidth and element angle (total number of trials for
Experiment 1 was 10,000).

For Experiment 2, the three independent variables
(notch SD, angle SD, and path angle) were blocked by
notch SD and element angle SD; within each block,
path angle varied between one of the four curvatures
mentioned above. Each block had 20 trials for each
level of path angle, resulting in 80 trials per block. Each
block was repeated five times, resulting in 100 trials per
level of curvature for each noise element orientation
notch bandwidth and angle SD (total number of trials
for Experiment 2 was 6,000).

Lastly, for Experiment 3, the three independent
variables (alternating noise element orientation band-
width, alternating notch bandwidth, and path angle)

were blocked by alternating noise element orientation
bandwidth or alternating notch bandwidth. Within
each block the path angle of the contour varied
between one of the four curvatures mentioned above.
For each level of curvature, one of 20 different
contours was embedded in the stimulus field, resulting
in 80 trials per block. Each block was repeated five
times resulting in 100 trials per level of curvature for
each alternating bandwidth or notch bandwidth
conditions (total number of trials for Experiment 3 was
1,600).

Thus, each participant completed 17,600 trials
(;16.5 hrs of psychophysics each) across all three
experiments.

Two-stage filter-overlap contour integration
model

To model the psychophysical results from Experi-
ments 1 through 3, we employed May and Hess’ (2008)
two-stage filter-overlap model for contour integration
which operates by filtering a given stimulus image with
a set of oriented filters. The resulting filtered images
from the different orientation channels are then stacked
on top of each other to create a three-dimensional (3-
D) space, where the dimensions are filter orientation
and the two spatial dimensions of the image. The filter
output values in this 3-D representation are thresh-
olded to 1 or 0, to create blobs or zero-bounded
response distributions (ZBRs) that can extend across
space and orientation. Each ZBR is taken to be a
contour. The contours can be rated on some property
that indicates strength or goodness of the contour, and
the stimulus with the higher rating on a particular trial
is selected as the target by the model. In our current
simulations, each contour rating was given by the
longest distance in the image plane between any two
pixels in the ZBR. The stimulus containing the highest-
rated contour was selected by the model as being the
target.

May and Hess’ (2008) model is entirely feed forward.
It contains orientation channels, spaced at 108 intervals
from 08 to 1708 (each filter kernel was even-symmetric,
with a complete cycle every 1808 of rotation). Each
orientation channel contains a filter-rectify-filter (FRF)
mechanism. A first-stage filter sensitive to the elements
is followed by a squaring operation, followed by a
second-stage filter, oriented identically to the first-stage
filter, with scale (i.e., size) large enough to bridge the
gap between successive contour elements. The first-
stage filter gives a strong positive or negative response
to individual elements of the same orientation as the
filter; the squaring operation makes the responses all
positive; and the second-stage filter blurs this positive
signal along the length of the contour, giving rise to a
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continuous ZBR that delineates the contour. The
rationale for the FRF mechanism was May and Hess’
(2008) finding that contour integration performance
was relatively unperturbed by increases in separation
between the elements, even for elements with high-
frequency carriers. May and Hess showed that this
finding could not be accounted for by a single filter
because a physiologically plausible filter kernel that was
large enough to bridge the gap between widely spaced
elements would not be sensitive to high-frequency
elements (a kernel sensitive to the high-frequency
elements would have needed an implausibly high
number of carrier cycles to bridge the gap between the
elements). In the FRF mechanism, the first-stage filter
scale can be tuned to the frequency of the stimulus
elements, and the second-stage filter scale can be tuned
to a size appropriate for the gaps between the elements,
allowing integration of elements with any carrier
frequency across any gap size. We do not currently
know how the visual system selects the filter scales but,
since all the stimuli in every experiment in the current
study used the same element spatial frequency distri-
bution and interelement spacing, we could just treat the
filter scales as free parameters, which were kept
constant across all conditions.

The model has seven parameters: three parameters
describe the first-stage Gabor filter kernel, three
parameters describe the second-stage Gabor filter
kernel, and the final parameter is the threshold on
the final filter output that creates the ZBRs. The
three Gabor filter parameters are as follows: k, the
carrier wavelength; ru, the envelope standard devia-
tion in a direction perpendicular to the bars of the

carrier (i.e., the receptive field width); rv, the
envelope standard deviation in a direction parallel to
the bars of the carrier (i.e., the receptive field length).
These three parameters (k, ru, rv) can alternatively be
presented as (ru, ru/k, rv/ru). The ru parameter
describes the overall scale (i.e., size) of the filter
kernel, while the ru/k and rv/ru parameters describe
the shape of the kernel. To constrain the fit, we set
the two shape parameters, ru/k and rv/ru, at each
filter stage to sensible values based on physiological
findings and the demands of the contour integration
task, and fit only the scale parameter, ru, of each
stage, and the threshold. The filter parameter values
that we used, along with the rationale, are given in
Table 1, with the extra subscript ‘‘1’’ or ‘‘2’’
indicating first- or second-stage filter kernel. The
fitting process itself was a manual procedure, guided
by intuition. Simulating the experiments with just
one set of parameter values was immensely time-
consuming, requiring many computers running in
parallel for many months, so it was not possible to fit
the parameters using standard fitting methods.
Instead, we simulated some selected conditions with a
few sets of Gabor filter parameters, and then, having
found the set of filter parameters that fit best to the
selected conditions, we proceeded to simulate every
condition of every experiment with these filter
parameters. The only parameter that was fit in the
conventional sense was the threshold since, having
obtained the filter outputs, we could easily set the
threshold at many different levels and map out the
contours for each threshold level. The threshold is
expressed in standard deviations above the mean

Parameter

Value

(degrees visual angle) Rationale

ru,1 0.0629 Fit to the data

ru,1/k1 0.2906 ru/k ¼ 0.2906 is the median value of this ratio from Jones and Palmer’s (1987)

physiological data set.

rv,1/ru,1 1.0714 Aspect ratio rv/ru ¼ 1.0714 is the smallest value from Jones and Palmer’s (1987) data set,

giving the largest physiologically plausible orientation bandwidth for the first-stage filter

(full-width at half-height was 70.58). The need for a wide orientation bandwidth for the

first-stage filter was indicated by the relatively mild effect of the notch in Experiment 2.

ru,2 0.5032 Fit to the data

ru,2/k2 0.33964 ru/k ¼ 0.33964 is the value of this ratio for Jones and Palmer’s (1987) cell with the highest

ratio of rv/k. May and Hess (2008) argued that a high value of rv/k would benefit

contour integration.

rv,2/ru,2 2.407 Aspect ratio rv/ru ¼ 2.407 is the aspect ratio of Jones and Palmer’s (1987) cell with the

highest ratio of rv/k, as described above. The orientation bandwidth (full-width at half-

height) was 26.58.

Table 1. The filter parameters used in the simulation of the experiments shown in Figures 10 through 13. Notes: Two were fit to the
data. The others were chosen intuitively on the basis of the requirements of the contour integration task, but constrained to be
physiologically plausible. While some of the filter parameters fall at the extremes of the physiologically plausible range, they are
nevertheless biologically plausible; the brain is likely to use the neurons that are most useful for the task at hand, even if these fall at
the extremes of the available range of parameters.
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second-stage filter response across all orientation
channels.

Results

Part I

The data for all experiments take the form of
proportion correct on each condition. The confidence
intervals displayed on all the graphs are 95% Bayes
credible intervals, which show the region in which there
is a 95% chance that the true probability of a correct
response lies, assuming a flat prior. It can be shown
that, if we assume a flat prior on the probability of a
correct response, then the probability density function
(PDF) of the true probability of a correct response is
the beta distribution, Beta(Xþ1, N�Xþ1), where N is
the total number of trials on that condition, and X is
the observed number of correct trials (Nicholson,
1985). The lower confidence limit is the 0.025 quantile
of this distribution, and the upper limit is the 0.975
quantile:

Lower Limit ¼ B�1ð0:025; Xþ 1;N� Xþ 1Þ;

Upper Limit ¼ B�1ð0:975;Xþ 1; N� Xþ 1Þ;
where B�1 is the inverse cumulative distribution
function of the beta distribution. These can be
calculated in MATLAB using the betainv function in
the Statistics Toolbox.

In order to assess whether or not the two partici-
pants performed similarly, we calculated the absolute
difference between the two subjects’ proportion of
correct scores for each condition of each experiment.
The mean absolute difference (MAD) across all
conditions of all experiments was only 0.0585, which is
a small proportion of the total range for two-
alternative forced choice (0.5 to 1). The standard error
of the mean was 0.00345. The MADs for the individual
experiments are as follows (standard errors in paren-
theses): Experiment 1: 0.0624 (0.00431); Experiment 2:
0.0593 (0.00661); Experiment 3, alternating bandwidth:
0.0175 (0.00675); Experiment 3, alternating notch
width: 0.0425 (0.0126). So for all experiments, the two
subjects performed similarly.

Experiment 1

Experiment 1 examined the effect of varying the
orientation bandwidth of the stimulus elements on
contour integration performance. Dakin and Hess
(1998) found that contour integration performance was
fairly narrowly tuned to the spatial frequencies of the

contour elements. Here, we investigated whether a
similar trend can be observed with respect to contour
element orientation bandwidth. Specifically, we were
interested in measuring proportion correct as a
function of element orientation bandwidth, and from
that function, calculate an estimate of orientation
tuning for contour integration. We also varied two
other stimulus properties: (a) the amount of curvature
(i.e., path angle) exhibited by the contour in a field of
distracter elements, and (b) the contour element-to-
path orientation alignment, i.e., the amount of noise in
the relative orientation alignment of the elements
making up the contour to that contour’s path trajectory
(referred to as angle SD). There were two reasons for
these other manipulations. Firstly, they would enable
us to see whether the influence of orientation band-
width interacted with the other stimulus properties;
secondly, the angle SD provided a manipulation that
could be compared in size with the orientation
bandwidth manipulation, in the same units.

Proportion correct on each condition of Experiment
1 for each participant is plotted in Figures 5 and 6.
These two figures plot identical data but in Figure 5,
each curve plots the performance as a function of
orientation bandwidth SD, whereas in Figure 6, each
curve plots the performance as a function of angle SD.
It is clear that performance drops much faster with
increasing angle SD (Figure 6) than with increasing
orientation bandwidth SD (Figure 5). This is a
meaningful comparison because both angle SD and
orientation bandwidth SD are expressed in the same
units. To quantify this comparison, we calculated the
drop in proportion correct as orientation bandwidth
SD increased from 108 to 408. Table 2 shows the mean
drop across subjects for each path angle and each angle
SD � 108. We also calculated the drop in proportion
correct as angle SD increased from 108 to 408. Table 3
shows the mean drop across subjects for each path
angle and each orientation bandwidth SD � 108. By
comparing corresponding cells in the two tables, we can
see how much more performance was impaired by the
increase in angle SD than by the increase in orientation
bandwidth SD (we omitted the smallest orientation
bandwidth SD and angle SD from this analysis, as they
were not identical, being equal to 08 and 28, respec-
tively, so these conditions were not directly compara-
ble). Table 4 shows the result of subtracting each cell of
Table 2 from the corresponding cell of Table 3. In every
case, the difference was positive, indicating that angle
SD had a greater effect. We subjected the data in Table
4 to a one-sample t test against a hypothesized mean of
zero, and found a highly significant difference, t(15) ¼
8.34, p¼ 5.15 · 10�7. This confirms that when the
orientation bandwidth SD is held at r while the angle
SD increases from 108 to 408, the drop in performance
is much greater than when the angle SD is held at r
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while the orientation bandwidth SD increases from 108

to 408.
While the orientation bandwidth SD controls the

spread of contrast energy across orientation for an
individual element, the angle SD controls how much
the peak of this distribution deviates from the element’s
contour path segment. It is clear that for fairly straight
paths, performance depends critically on alignment of
the peak of the energy distribution with the path
segment, and is relatively insensitive to the spread of
this distribution across orientation. This is still true to
some extent for the larger path angles (indicated by the
positive values in every cell of Table 4), but the effects

of angle SD and element orientation bandwidth SD are
more similar to each other, both converging at chance
performance. It therefore seems as though contour
integration performance is more narrowly tuned for
orientation bandwidth SD for larger path angles, as
long as the angle SD is small enough to avoid floor
effects (i.e., angle SD � 20). To verify this quantita-
tively, the participant-averaged performance curves
from Figure 5 for the 08 and 108 path angle conditions
(angle SD¼20 to avoid ceiling effects) were best fit by a
truncated Gaussian function [–90 90] with a bandwidth
(half-width at half-height) of ;408. Using the fitting
procedure described above, the participant-averaged

Figure 6. The same data as in Figure 5, but each curve within a panel plots proportion correct as a function of angle SD for a particular

orientation bandwidth SD.

Figure 5. Proportion correct (ordinate) for each subject in each condition of Experiment 1. Each curve within a panel plots proportion

correct as a function of orientation bandwidth SD (abscissa) for a particular angle SD (see legend to the far right). Error bars

represent 95% Bayes credible confidence intervals (refer to the text for further detail).
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performance curves for the 208 path angle conditions
yielded a bandwidth (half-width at half-height) of
;258. This difference in estimated bandwidth might
seem to imply a difference between the underlying
mechanisms for curved and straight contours, but in
fact we show later that a single contour integration
mechanism applied to all stimuli can account for this
effect.

Experiment 2

It is difficult to draw any direct conclusions about the
bandwidth of the contour integration mechanisms from
Experiment 1. It is not immediately obvious whether the
observed effects of orientation bandwidth are consistent
with a narrowband contour integration mechanism, a
broadband contour integration mechanism, or both. In
Experiment 2 we sought to address the issue by
introducing a notch into the orientation filter, centered
on the center orientation. This manipulation would
clearly defeat a narrowband contour integration mech-
anism, because a narrowband filter would show a very
weak response at the orientation of each contour
element; the response to the contour element would be a
bimodal distribution with peaks that deviated from the
element orientation, and the result would be similar to
manipulating the element-to-path angle, which Exper-
iment 1 showed had a very disruptive influence on
performance (the conditions with high angle SD). On
the other hand, a filter broadly tuned for orientation
would bridge the notch, resulting in a unimodal
distribution of energy centered on the element orienta-

tion, so a contour integration mechanism that was
broadly tuned for element orientation should still
perform reasonably well in the presence of a notch, as
long as the angle SD and path angles were low.

Averaged data from each participant are plotted in
Figure 7a (BCH) and 7b (RFH). The notch manipu-
lation led to an averaged performance reduction of
only 20% and 25% (from ceiling) at angle SDs of 08 and
108, respectively. As argued above, this suggests that
the elements are processed with a mechanism that is not
simply narrowly tuned for orientation; otherwise one
would expect to find chance (or near chance) perfor-
mance at the 68 and 128 notch conditions. We return to
this notion in the modeling section (Part II).

Experiment 3

Experiment 3 further assessed the orientation prop-
erties of contour integration for contours of different
curvature by alternating the contour elements with
respect to either two different element orientation
bandwidth SDs for two different orientation notch
filter bandwidth SDs. Dakin and Hess (1998) employed
a similar paradigm to assess the spatial frequency
tuning of contour integration performance. Thus, the
idea here was to provide an alternative paradigm to
that explored in Experiment 2. However, it is worth
noting that the spatial frequency alternation of contour
elements in Dakin and Hess (1998) does not cleanly
map onto a paradigm that alternates the orientation
bandwidth of contour elements. Specifically, mecha-
nisms tuned for spatial frequency will respond to some
spatial frequencies but not others. Thus, if the spatial
frequencies of the alternating elements differ by more
than the tuning width of the contour integration
mechanism, then contour integration will break down
(leaving the critical spatial frequency difference as a
measure of the tuning width of the contour integration
mechanism). However, it’s not clear whether such a
breakdown process could be expected for alternating
orientation bandwidths. Therefore, the primary moti-
vation for conducting Experiment 3 was to provide

Path

angle 08

Path

angle 108

Path

angle 208

Path

angle 308

Bandwidth SD 108 0.365 0.375 0.44 0.205

Bandwidth SD 208 0.47 0.33 0.285 0.215

Bandwidth SD 308 0.265 0.3 0.26 0.15

Bandwidth SD 408 0.275 0.195 0.045 0.125

Table 3. Drop in proportion correct as angle SD increases from
108 to 408. Note: The scores are the mean across the two
subjects.

Path

angle

08

Path

angle

108

Path

angle

208

Path

angle

308

Angle & bandwidth SD 108 0.195 0.18 0.15 0.025

Angle & bandwidth SD 208 0.3375 0.24375 0.15 0.225

Angle & bandwidth SD 308 0.27 0.3 0.305 0.105

Angle & bandwidth SD 408 0.195 0.18 0.15 0.025

Table 4. Result of subtracting each value in Table 2 from the
value in the corresponding cell in Table 3. Note: The positive
values in this table indicate that increasing angle SD impairs
performance more than increasing orientation bandwidth SD

by the same amount.

Path

angle 08

Path

angle 108

Path

angle 208

Path

angle 308

Angle SD 108 0.17 0.195 0.29 0.18

Angle SD 208 0.1325 0.08625 0.135 �0.01
Angle SD 308 �0.005 0 �0.045 0.045

Angle SD 408 0.08 0.015 �0.105 0.1

Table 2. Drop in proportion correct as orientation bandwidth SD

increases from 108 to 408. Notes: The scores are the mean
across the two subjects. Negative values indicate that
performance improved over this step in orientation bandwidth
SD.
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additional data to test the two-stage filter-overlap
contour integration model in order to develop a more
robust estimate of orientation bandwidth of the front-
end processes underlying the contour integration
mechanism.

Data from each observer (along with the data
averaged across observers) are shown in Figure 8.
Figure 8a plots performance for detecting contours
consisting of elements with orientation bandwidth SD
alternating between 28 and 308, or alternating between
28 and 408, with data replotted from Experiment 1 for
comparison.

For relatively straight contours, performance is
virtually identical to that obtained in Experiment 1 for
element bandwidths of 28 (probably resulting from a
ceiling effect). As path angle increases, performance for
the alternating contour falls to a level between
Experiment 1 performances for the two bandwidths
used in the Experiment 3 contour.

Figure 8b plots performance for detecting contours
consisting of elements with orientation notch band-
width SD alternating between 08 (i.e., no notch) and 68,
or alternating between 08 and 128, with data replotted
from Experiment 2 for comparison. Interestingly,
performance in both notch conditions (i.e., 08–68 or 08–
128) is much higher in the alternating no-notch and
notch bandwidths than in the notch conditions
measured in Experiment 2.

Part II

Computational modeling of Experiments 1 through 3

Contour integration is a complicated process; it is
difficult to know for certain what our data imply about

contour integration mechanisms without carrying out a
full implementation of a contour integration mecha-
nism. To this end, we simulated all our experiments
using the two-stage filter-overlap contour integration
model described by May and Hess (2008). This model
takes the stimulus images, processes them, and
delineates contours in the images. For each condition in
our experiment, we stimulated 200 trials by generating
200 pairs of stimuli (target and nontarget) using the
same software that we had used to generate stimuli in
the psychophysical experiments, and running the model
on these stimuli to extract contours. On each trial, we
generated a psychophysical response from the model’s
output to the two stimuli, and we recorded the
proportion correct for each condition. The results are
described below.

Figure 9 shows the MAD between mean human
performance and model performance as a function of
the threshold. To find the MAD, we averaged BCH and
RFH’s scores together, to produce a single proportion
correct for each condition; then, for each condition, we
found the absolute difference between the averaged
human score and the model’s score, and then we took
the mean absolute difference across conditions. Exper-
iments 1 and 2 were fairly insensitive to the threshold
level: Only Experiment 3, in which the contour elements
alternated in orientation bandwidth SD or notch width,
showed a substantial effect of the threshold. This shows
that, for more ordinary contours, which do not fluctuate
wildly in their properties from element to element, May
and Hess’s (2008) contour integration algorithm is quite
robust to changes in the threshold level, so the threshold
level does not have to be set to a precise value for the
mechanism to work well. This suggests that the model is

Figure 7. Individual data from Experiment 2, averaged across repetition. Each subpanel shows averaged proportion correct (ordinates)

for the four different path angles as a function of element orientation bandwidth (abscissa). Error bars are calculated in the same way

as in Figures 5 and 6.
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Figure 8. (a) Far left and middle panels: Individual data from Experiment 3, averaged across repetition, far right panel, data averaged

across participants. On the ordinates is averaged proportion correct, and on the abscissas is path angle. Gray and black traces are data

replotted from Figure 5 (i.e., Experiment 1). (b) Far left and middle panels: Individual data from Experiment 3, averaged across

repetition, far right panel, data averaged across participants. On the ordinates is averaged proportion correct, and on the abscissas is

path angle. Black traces are data replotted from Figure 7 (i.e., Experiment 2). Error bars are calculated in the same way as in Figures 5

through 7.
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a robust algorithm that could be implemented in
imperfect biological hardware.

The best-fitting threshold across all experiments was
2.6 SDs above the mean second-stage filter response.
Figures 10 through 13 plot the performance of the model
with this threshold level, and all the filter parameters
fixed at the values given in Table 1. This model, with a
single set of parameters across all conditions of all
experiments, gives a surprisingly good fit to the whole
data set: Mean absolute difference in proportion correct
between the model and the averaged human data was
only 0.0438 (this is the value plotted with the dashed line
for threshold 2.6 in Figure 9). Thus, the data for all the
different contours in our experiment can be accounted
for by a single contour integration mechanism. Given
the limited search of parameter space that we could
feasibly conduct, it is almost certain that we missed a set
of parameters that would have fit the data even better,
but the fits that we obtained with the parameter values in
Table 1 are very satisfactory.

Figure 14 takes the data from Figures 10 through 13
and plots the model’s performance against the mean
human performance for each condition of each exper-
iment. The Pearson correlation coefficient, r, between
these two datasets is 0.934, so the model explains 87.4%
of the variance in the psychophysical data (this is 100 ·
r2). The t statistic corresponding to r¼0.934 is given by t
¼ 48.2 (df¼ 174), which is so high that p evaluates to
zero in MATLAB, suggesting that p is too small to
represent using a 64-bit floating point number.

We reported above that the model gives a good fit to
the psychophysical data: The mean absolute difference
in proportion correct between the model and human
data was only 0.0438. But is the fit of the model to the
psychophysical data good enough? We now demon-
strate that it is.

Since the model is a model of human performance,
the most we could reasonably expect of the best-fitting
model is that it fits to the data of BCH and RFH as
closely as BCH’s data and RFH’s data fit to each other.
We found the MAD between BCH and RFH, and
compared that with the MAD between the human
subjects and the model. In finding the MAD between
the model and each subject, we needed to split the 200-
trial modeling dataset into two sets of 100 trials;
otherwise the MAD between model and human would
be unfairly reduced (compared with the MAD between
the two humans) due to the lower noise in the model’s
data. We therefore set up two simulated subjects, S1
and S2, one with the first 100 modeling trials on each
condition, and the other with the second 100 modeling
trials. This gave us two human subjects, BCH and
RFH, and two simulated subjects, S1 and S2, each of
whom performed 100 trials on the experiment. Figure
15 plots each of these four subjects’ scores against each
other subjects’ scores. Table 5 shows the MAD between
each set of scores, and Table 6 shows the Pearson
correlation between each set of scores. The MAD
between BCH and RFH (0.0585) falls within the range
of MADs between the simulated and human subjects
(0.0539–0.0625). Similarly, the correlation between
BCH and RFH (0.889) falls within the range of
correlations between the simulated and human subjects
(0.874–0.905). Thus, the fit between the two human
subjects is generally no better than the fit between the
model and the human subjects. This, as stated above, is
the best we can reasonably expect of the model fit.

Examining the effect of first-stage orientation bandwidth

Earlier, we gave an intuitive argument that the weak
effect of the notch found in Experiment 2 implied that
the elements were processed with filters that were not
narrowly tuned for orientation. Here, we provide
concrete support for this assertion. In May and Hess’
(2008) model, the stimulus elements are initially

Figure 9. MAD between mean human performance (across the

two subjects) and model performance as a function of the

threshold. All other model parameters were set to the values

given in Table 1. The colored lines plot the MADs for the

individual experiments. The solid black line plots the mean of

these values. The dashed black line plots the MAD across all

conditions of all the experiments. In the measurement shown

by the dashed line, each condition has equal weight. In the

measurement shown by the solid black line, each experiment

has equal weight. Both the dashed and solid lines have their

minimum value at a threshold value of 2.6. We also carried out

a similar analysis using root mean square error instead of MAD,

and obtained similar results, again with 2.6 as the best-fitting

threshold.
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processed by the first-stage filters, so we would expect
that these filters would have to be fairly broadband for
the model to be able to perform as well as humans
when the notch SD was large. We took the conditions
from the top-right panel of Figure 11 (notch SD 128,
path angle 08) and simulated these conditions with first-
stage filters set to have a narrower orientation
bandwidth. We refer to this new parameterization as
the ‘‘narrowband model’’; the parameterization shown
in Table 1 (and plotted in all the other figures) is
referred to as the ‘‘broadband model.’’ All the filter
parameters in the narrowband model were as in Table
1, except for the first-stage aspect ratio, rv,1/ru,1 which
was set to 2. The higher aspect ratio elongated the
Gabor envelope, resulting in an orientation bandwidth
(full-width at half-height) of 378. We varied the
threshold from 1.7 to 3.6 in steps of 0.1, and selected
the threshold that gave the lowest MAD between the
narrowband model and the human data (averaged
across subjects) from the five conditions in the top-right
panel of Figure 11. The best-fitting threshold for the
narrowband model was 1.8. Figure 16a plots the mean
of the human data from the top-right panel of Figure
11, along with the performance of the narrowband

model with a threshold of 1.8. For the smallest two
angle SDs (i.e., those with substantially above-chance
human performance), the confidence intervals for the
narrowband model and human data do not overlap. As
a comparison, Figure 16b replots the broadband model
data from the top-right panel of Figure 11, along with
the mean human data from that panel: The confidence
intervals of the broadband model and human data
overlap considerably. In summary, we have shown that
the model with the broadband first-stage filter is able to
perform as well as humans when the notch SD was
large, whereas the model with the more narrowband
first-stage filter cannot reach human performance. It
should be noted that this comparison was greatly
biased in favor of the narrowband model, because the
threshold in this model was fitted just to the data in
Figure 16, while the broadband model had its threshold
set to give the best fit across all 176 conditions in the
study. Yet, despite having this massive advantage, the
narrowband model was unable to reach human
performance levels on these conditions. We conclude
that a broadband first-stage filter is necessary for the
model to be able to integrate contours that contain a
128 orientation notch.

Figure 10. Model’s performance on Experiment 1. Symbols show human psychophysical data from subjects BCH (blue circles) and RFH

(green diamonds). The red lines show the performance of the model with filter parameters given in Table 1, and a threshold of 2.6.

Each column of panels gives data from a different angle SD, which controls the element-to-path alignment. Each row of panels gives

data for a different path angle, which controls the contour curvature. Within each panel, the proportion correct is plotted as a

function of orientation bandwidth SD, which controls the orientation bandwidth of the stimulus elements. The pink regions show

95% Bayes credible intervals for the model’s scores. The error bars show 95% Bayes credible intervals for the human subjects’ scores.
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Discussion

Experiment 1 suggests that contour integration
performance in human vision is relatively broadly
tuned for orientation bandwidth SD for small path
angles, and more narrowly tuned for larger path angles.
Experiment 2 showed that notch-filtering the stimulus
elements with a notch centered on the element
orientation impaired performance to some extent, but
did not completely disrupt the contour integration
process. The latter finding suggests that, in contour
integration, the stimulus is initially processed with
filters that have sufficiently wide orientation bandwidth
to be able to bridge the notch. This notion was
supported by the results of Experiment 3. As expected,

element-to-path orientation misalignment (i.e., in-
creased angle SD) had a detrimental impact on
integration performance, regardless of element orien-
tation bandwidth or path angle.

In order to provide a quantitative account of the
qualitative description given above regarding contour
integration performance, we simulated all the experi-
ments with the two-stage model of contour integration
presented by May and Hess (2008). The model takes
the stimulus images as input, and outputs ZBRs that
each correspond to a contour. The model has seven
parameters: three parameters for the first-stage Gabor
filters, three parameters for the second-stage Gabor
filters, and a threshold. The four filter parameters that
determined the shapes of the Gabor kernels (i.e., shapes
of the receptive field profiles) were set to values

Figure 11. Model’s performance on Experiment 2. Each column of panels gives data for a different notch SD, which controls the width

of the notch in the distribution of energy across orientation for the individual elements. Each row of panels gives data for a different

path angle. Within a panel, proportion correct is plotted as a function of angle SD, which controls the element-to-path alignment.

Symbols, lines, and confidence intervals follow the same plotting conventions as in Figure 10.
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constrained by taking into account both physiological
data and the task requirements. The two parameters
that determined the overall scales (i.e., sizes) of the first-
and second-stage filter kernels (ru,1 and ru,2) were fit to
the data, as was the threshold.

As shown by May and Hess (2008), the appropriate
filter scales depend on the stimulus properties: The first-
stage scale should be appropriate for the element
spatial frequency, and the second-stage scale should be
appropriate for the element spacing. We envisage that
the human visual system would select these scales
automatically. The mechanism by which this scale
selection occurs is currently unknown, but might be
similar to that which occurs in edge processing,
whereby feature detection at each point in the image
appears to be mediated by the filter with the strongest
response (Georgeson, May, Freeman, & Hesse, 2007;
May & Georgeson, 2007a, 2007b; McIlhagga & May,
2012). Given that the scale selection process in contour
integration is currently unknown, we simply fit the filter
scales, ru,1 and ru,2, as free parameters in the current

study. Since all conditions of all the experiments in this
study had the same element spatial frequency and
element spacing, all the conditions required the same
filter scale parameters, so these parameters could be
kept constant across all conditions. Keeping the
element spatial frequency and element spacing con-
stant, we varied several key stimulus parameters that
should reveal characteristics of the contour integration
mechanisms: These stimulus parameters were path
angle, angle SD, element orientation bandwidth, and
element orientation notch width. Each stimulus pa-
rameter was varied over a very wide range. Across this
large range of conditions, 100 (Experiment 1) þ 60
(Experiment 2) þ 8 (Experiment 3a)þ 8 (Experiment
3b)¼ 176 conditions, a single set of model parameters
fit well to all the data.

The results of our experiments (especially Experi-
ment 2) suggested the involvement of a filter that was
broadly tuned for orientation. This seemed to conflict
with the intuition that contour integration would best
be achieved with elongated (i.e., orientation-narrow-
band) receptive fields, which can bridge the gaps
between successive contour elements without picking
up too many distracter elements. The two-stage model
accommodates both requirements (see Table 1), with a
broadband first-stage filter that processes the elements,
and a narrowband second-stage filter that integrates the
elements to form a perceptually coherent contour.

There have only been a few previous attempts to
conduct full, quantitative, simulations of contour

Figure 12. Model’s performance on the conditions of Experi-

ment 3 where the stimuli consisted of alternating orientation

bandwidth SDs. Symbols, lines, and confidence intervals as in

Figure 10.

Figure 13. Model’s performance on the conditions of Experi-

ment 3 where the stimuli consisted of alternating notch SDs.

Symbols, lines, and confidence intervals as in Figure 10.

Figure 14. Plot of model performance against the mean human

performance. Each symbol represents one condition of one

experiment. The conditions are color-coded according to which

experiment they are from (see legend in the bottom right).

Experiment 3a is the part of Experiment 3 with alternating

bandwidth SD; Experiment 3b is the part of Experiment 3 with

alternating notch SD. The Model data are the modeling data

plotted in Figures 10 through 13, i.e., proportion correct over

200 trials. The mean human performance is the mean of BCH

and RFH’s data, giving a total of 200 trials per condition across

the two subjects.
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Figure 15. Scatter plots comparing the human and simulated subjects’ data. Each symbol represents one condition of one experiment.
The conditions are color-coded according to which experiment they are from (see legend in the bottom right panel). Experiment 3a is
the part of Experiment 3 with alternating bandwidth SD; Experiment 3b is the part of Experiment 3 with alternating notch SD. Each
axis label indicates which subject’s data are being plotted on that axis. BCH and RFH are the human subjects. S1 and S2 are the
simulated subjects, each generated by running the model on 100 stimuli on each condition.
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integration experiments. Without exception, these
studies have focused on the linking process without
much consideration of the effects of the stimulus
elements themselves and what this tells us about the
front-end filters used in contour integration. Some
studies did not include a front-end filter at all, the input
to the model being merely the positions and orienta-
tions of the stimulus elements (Ernst et al., 2012; May
& Hess, 2007; Watt, Ledgeway, & Dakin, 2008); these
models cannot distinguish between different element
properties, such as orientation bandwidth. Other
models have used front-end filters, but chosen on a
fairly ad-hoc basis, simply to provide an orientation-
selective response to the stimulus elements (Geisler,
Perry, Super, & Gallogly, 2001; Gintautas et al., 2011;
Pettet, McKee, & Grzywacz, 1998; Yen & Finkel,
1998). Our study is the first to examine in detail the
properties of the orientation-selective filters used in the
early stages of processing by contour integration
mechanisms in human vision.

It is important to stress that our conclusions
regarding the filter bandwidth are predicated on the
May and Hess (2008) model. An alternative class of
model is the association field model, in which local
units are linked by lateral connections. It is possible
that our results might be explained by an association
field model with narrowly tuned front-end filters but
wide orientation tuning on the lateral connections.
Indeed, Schinkel, Pawelzik, and Ernst (2005) reported
that disruption due to orientation jitter of the contour
elements could be overcome either by increasing the
input orientation uncertainty or by increasing the
association field width, so that wide orientation tuning
had similar effects whether it was in the front-end
processing, or in the association field. However, the
interpretation of Schinkel et al.’s results is not entirely

straightforward, as explained in the next two para-
graphs.

Firstly, their model did not actually carry out
contour grouping: The model calculated the saliency of
each location, and Schinkel et al. (2005) assumed the
contour was detected if three of the five most salient
locations corresponded to contour elements. A critical
part of the contour integration process is the perceptual
grouping of different sets of elements into different
contours, and this part of the process seems to be
missing from Schinkel et al.’s model. So the trade-off
between front-end and association field orientation
tuning has not been demonstrated in a model that
actually carries out a contour integration process. It is
possible that increasing the association field width
would cause more excessive grouping between dis-
tracter elements and contour elements than would be
caused by increasing the front-end tuning width.

Secondly, and more importantly, Schinkel et al.’s
(2005) model did not actually contain any front-end
filters. The input to the model (which they termed the
afferent input) at each spatial position was a probability
distribution giving the relative probability of an edge as
a function of orientation. Schinkel et al. assumed that
this probability distribution could be identified with the
cortical orientation tuning function. However, we
argue that this is a false analogy. The afferent input to
their model is essentially a posterior probability
distribution that would arise from decoding the local
orientation from the front-end neurons. The width of

BCH RFH S1 S2

BCH — 0.0585 0.0597 0.0539

RFH — — 0.0567 0.0625

S1 — — — 0.0482

S2 — — — —

Table 5. Mean absolute difference (MAD) between each
subject’s scores. Notes: BCH and RFH were the two human
subjects. S1 and S2 were the two simulated subjects.

BCH RFH S1 S2

BCH — 0.889 0.892 0.905

RFH — — 0.892 0.874

S1 — — — 0.923

S2 — — — —

Table 6. Pearson correlation between each subject’s scores.
Notes: BCH and RFH were the two human subjects. S1 and S2
were the two simulated subjects.

Figure 16. Failure of narrowband first-stage filter to integrate

contours with a wide notch. (a) Symbols plot the mean human

data (averaged across subjects) from the top right panel of

Figure 11 (notch SD 128, path angle 08). The red line plots the

performance of the narrowband model, with all filter

parameters as in Table 1 except the aspect ratio, rv,1/ru,1, which

was set to 2; the threshold for the narrowband model was 1.8,

which provides the best fit to these five data points. Confidence

intervals are illustrated using the conventions in Figures 10

through 13. (b) Symbols plot the same human data as in (a). The

red line and corresponding confidence intervals are replotted

from the top right panel of Figure 11, and show the broadband

model performance. This model had the filter parameters in

Table 1; the threshold was 2.6, which gave the best fit across all

176 conditions in this study.
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this posterior distribution does depend on neuronal
tuning width, but it also depends on the number of
neurons, the maximum spike rate of the neurons, the
spontaneous firing rate, the Fano factor (ratio of
neuronal spike variance to mean rate), and the stimulus
itself. Any of these factors can trade off with each other
in their contribution to decoding precision (see May &
Solomon, 2014). If all we know is the posterior
distribution, we cannot determine the cortical tuning
width. Therefore, it cannot be correct to identify the
afferent input to Schinkel et al.’s model with cortical
tuning functions. We conclude that, although Schinkel
et al.’s (2005) model is very interesting, it does not
demonstrate conclusively that increasing the associa-
tion field tuning can have similar effects to increasing
the front-end filter tuning width, and further work will
be needed to examine this hypothesis.

Finally, our study gives the first quantitative
comparison of human data with the performance of
an important new class of grouping models in which
grouping occurs by virtue of the overlap between the
filter responses to different elements. A key feature of
the model that we used is that it represents the
stimulus in a space that has a dimension representing
orientation, in addition to the two dimensions of the
image (May & Hess, 2008). The spread of the filter’s
response across image space and orientation has the
effect of blurring the representation along all three
dimensions so that the responses due to elements that
are close in space and orientation join up to form a
ZBR. Rosenholtz and colleagues (2009) extended this
idea to a much broader class of grouping processes.
To perform grouping on the basis of some feature
dimension, f, you can create a multidimensional space
(x, y, f ), where x and y are spatial coordinates, and
then plot the image in this space. Then image elements
with similar attributes and spatial positions will be
nearby and, if you blur the representation, they join
up. As noted earlier, a quantitative comparison of the
performance of this class of model with that of human
subjects has so far been lacking. Our quantitative
evaluation of the model showed a very good fit to a
large data set with relatively few free parameters,
suggesting that this class of model may have an
important role to play in helping us to understand the
mechanisms of contour integration, and perceptual
grouping more generally.

Keywords: contour integration, two-stage filter-over-
lap model, orientation tuning
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Footnotes

1 Given the extensively systematic nature of the
current study (e.g., 176 conditions in total), it is
necessary to have experienced psychophysical observers
so that they did not become better psychophysical
observers during the course of the study. Further, the
current study is completely exploratory, thus the
participants had no expectations regarding ad hoc
hypotheses and can both be considered naive to the
outcome of the study.

2 Note that the relative contour and background
elements were randomly positioned within each 16 ·
16 grid cell (which is standard practice), and thus their
distances from one another were also randomly
distributed, and did not lead to any reliable detection
cue when contour elements were present (note that
contour detection performance in several of the
conditions described later was at chance). Thus,
performance cannot have been mediated by differences
in density around the contours.
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