
IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 1

Real-time neural signals decoding onto off-the-shelf

DSP processors for neuroprosthetic applications
Danilo Pani, Member, IEEE, Gianluca Barabino, Member, IEEE, Luca Citi, Member, IEEE,

Paolo Meloni, Member, IEEE, Stanisa Raspopovic, Member, IEEE, Silvestro Micera, Senior Member, IEEE,

and Luigi Raffo Member, IEEE,

Abstract—The control of upper limb neuroprostheses through
the peripheral nervous system (PNS) can allow restoring motor
functions in amputees. At present, the important aspect of
the real-time implementation of neural decoding algorithms on
embedded systems has been often overlooked, notwithstand-
ing the impact that limited hardware resources have on the
efficiency/effectiveness of any given algorithm. Present study
is addressing the optimization of a template matching based
algorithm for PNS signals decoding that is a milestone for its
real-time, full implementation onto a floating-point Digital Signal
Processor (DSP).

The proposed optimized real-time algorithm achieves up to
96% of correct classification on real PNS signals acquired
through LIFE electrodes on animals, and can correctly sort spikes
of a synthetic cortical dataset with sufficiently uncorrelated spike
morphologies (93% average correct classification) comparably to
the results obtained with top spike sorter (94% on average on
the same dataset). The power consumption enables more than
24 hours processing at the maximum load, and latency model
has been derived to enable a fair performance assessment. The
final embodiment demonstrates the real-time performance onto
a low-power off-the-shelf DSP, opening to experiments exploiting
the efferent signals to control a motor neuroprosthesis.

Index Terms—Neural prosthesis, Real-time systems, Digital
signal processing chips, Embedded software, Spike sorting

I. INTRODUCTION

A
CTIVE upper limb prostheses exploit external energy

sources to give rise to specific movements interpreting

the patient’s intention, which is extracted from a physio-

logical signal as Electroencephalogram (EEG), Electromyo-

gram (EMG) and Electroneurogram (ENG). Despite EMG-

controlled prostheses already entered the clinical practice,

ENG ones, which are necessarily invasive, requiring to access

D. Pani, G. Barabino, P. Meloni and L. Raffo are with the DIEE,
Dept. of Electrical and Electronic Engineering, University of Cagliari,
09123 Cagliari, Italy {danilo.pani, gianluca.barabino,
paolo.meloni, luigi}@diee.unica.it

L. Citi is with the School of Computer Science and Electronic Engineering,
University of Essex, Colchester, United Kingdom lciti@essex.ac.uk

S. Raspopovic, S. Micera are with the Translational Neural Engineer-
ing Laboratory, Center for Neuroprosthetics and Institute of Bioengi-
neering, School of Engineering, Ecole Polytechnique Federale de Lau-
sanne, Lausanne, Switzerland and Scuola Superiore Sant’Anna, Pisa, Italy
{stanisa.raspopovic, silvestro.micera}@epfl.ch

The research leading to these results has received funding by the Region
of Sardinia in the ELoRA project (Fundamental Research Programme, L.R.
7/2007, grant agreement CRP-60544), by the European Commission in the
NEBIAS project (FP7, FET Proactive, grant agreement 611687) and by the
Italian Ministry of Health in the NEMESIS project (Young Researchers, grant
agreement 064/GR-2009-1591615).

Manuscript received December 19, 2014; revised August 29, 2015.

the Peripheral Nervous System (PNS) [1], are still experimen-

tal. ENG is potentially able to provide more information than

EMG to control more degrees of freedom (unless approaches

such as targeted reinnervation [2] are used), at the expenses of

a significantly higher computational complexity [3]. In order

to control a motor neuroprosthesis, the decoding algorithm

must be implemented onto an embedded signal processing

platform, characterized by limited resources, low operating

frequency and tight real-time bounds to fulfil. This aspect is

often overlooked, assuming it as a second-order issue, with

obvious consequences on the validity of the achieved results

in a real scenario.

The aim of this paper is to present the real-time, full

implementation onto a floating-point Digital Signal Processor

(DSP), of a PNS signal decoding algorithm based on spike

sorting and classification. To the best of our knowledge, this is

the first time a completely embedded solution for PNS signals

decoding, with a power profile compatible with a wearable

implementation, is presented and evaluated. Different opti-

mization aspects are discussed, from the simplest steps needed

to switch from the off-line to an on-line implementation, to the

algorithm modifications aimed at achieving the smallest mem-

ory footprint and improved code efficiency. DSPs are presented

as valuable targets for on-line PNS signal decoding, being

able to effectively perform the required functions with all the

flexibility typical of microcoded implementations. Compared

to the very preliminary porting exploration [4], the current

solution enables the development of a completely stand-alone

neuroprosthesis, re-trainable without external computers.

The remainder of this paper is organized as follows. In

Sect. II, the background information on both the aim of this

work and the chosen original algorithm is provided. Sect. III

deals with the algorithm optimization and changes applied

to achieve real-time performance onto an off-the-shelf DSPs.

Porting details are provided in Sect. IV. The datasets used for

testing are illustrated in Sect. V, whereas the achieved results

are presented in Sect. VI. Conclusions are given in Sect. VII.

II. MOTIVATION AND BACKGROUND

Neural signal decoding is a critical signal processing stage

required by CNS- and PNS-based neuroprostheses, mainly

based on spike sorting algorithms to analyse the single neuron

activity from extra-cellular recordings [5]. Thanks to the

evolution of the neuronal interface at the PNS level with

intrafascicular electrodes characterized by a good selectivity

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74374808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 2

[6], in principle it is possible to perform decoding on the

PNS with techniques similar to those exploited for the CNS.

However, at cortical level, Signal-to-Noise Ratio (SNR) is

usually good enough to clearly recognize the action potentials,

whereas on the peripheral nerves their amplitude is typically

lower and so the SNR [7].

There is a huge number of techniques for CNS signals

decoding [8]. Some of them undoubtedly have clear on-line

vocation, as for those based on Kalman filtering [9], and

have been successfully exploited on human subjects [10].

Other techniques, more specific for PNS signals and based

on spike sorting and classification, are more challenging form

a computational perspective [7]. Taking into account the final

goal of this work, in this paper one of these algorithms has

been selected [11]. Originally tested on the animal model

to decode afferences, i.e. the tactile/proprioceptive stimuli

provided on the leg where the neural interface is implanted,

is has been successfully exploited for off-line decoding of

efferences on a human amputee [12].

Despite the chosen algorithm had potentialities to be

adopted in an on-line scenario, this is not true for other better

algorithms such as one of the top state-of-the-art ones (SPC,

[13]). This algorithm consists of the following processing

steps:

• a 4th order non-causal bidirectional elliptic IIR bandpass

filtering between 300Hz and 3kHz;

• SD using a fixed amplitude threshold based on the signal

variance;

• SS based on superparamagnetic clustering (SPC).

The algorithm assumes a refractory period of about 2 ms,

not including any strategy for the overlapping spikes. For each

detected spike, limited to 64 samples at a sampling frequency

of 24 kHz by a time windowing, the algorithm uses as features

for the classifier the wavelet transform coefficients that meet

the criterion of Kolmogorov-Smirnof normality. As last stage,

the algorithm includes the unsupervised SPC, automatically

selecting through a Monte Carlo simulation the temperature

parameter value, exploited to influence the cluster size and

modifiable by the user in order to really achieve the best

performance. This algorithm has been considered here as

golden standard for performance comparisons.

A. Original formulation of the chosen algorithm

The chosen algorithm [11] consists of four stages: wavelet

denoising (WD), spike detection (SD), spike sorting by tem-

plate matching (SS) for feature extraction, and classification

(CL). The signal is assumed to be sampled at 12 kHz. This

is in line with the current literature, stating that 10 kHz is the

optimal sampling frequency for similar recordings [14].

WD is performed exploiting a translation-invariant wavelet

transform with Symmlet 7 mother wavelet, three decompo-

sition levels, hard thresholding of the details and complete

removal of the approximation. The latter choice limits the sig-

nal bandwidth from 750Hz to 6 kHz. The minimax threshold

method is used, providing a scaling factor for the standard

deviation of the noise σn, computed through the median

absolute deviation, over 45 s of quiescent signal.

SD is based on a fixed threshold, computed as three times

the standard deviation of the samples in such time interval.

SS is performed by template matching based on the Pear-

son’s correlation coefficient. Every new detected spike is

extracted (variable support length) and compared by cross-

correlation with the existing templates. After the spike and a

template have been aligned on the highest correlation value,

when: (I) the correlation value is higher than a fixed threshold

thc = 0.9, (II) the ratio between the mean square difference

of the spike and template, and the power of the template,

is less than 0.5, then the spike matches the template. The

best matching template, ti, (exhibiting the highest correlation,

Mc) is selected. During the Tuning Phase (TPh), the templates

are created when at least one of the above conditions cannot

be satisfied, and the best matching template is updated by

synchronized averaging every time all the conditions are met.

At the end of TPh, the templates with a reciprocal correlation

higher than thc undergo a weighted synchronized averaging.

Then, only the most used nfeat templates are retained for the

SPh. After training, during Steady Phase (SPh), i.e. the same

procedure is performed without any template update.

A pattern to be recognized by the classifier is a 1 × nfeat

array of features where every element represents the percent-

age of spikes (in a L−sample long window of the input signal,

lasting tL seconds, where tL ranges from three to six seconds)

with a waveform highly similar to one of the nfeat templates

available from the SS stage. Classification is performed by a

ν− Support Vector Machine (SVM) with radial basis function

(RBF). To solve the multi-class problem (each class represent

a decoded stimulus) one-against-one approach was used.

III. OPTIMIZATIONS FOR REAL-TIME PERFORMANCE

Before making any change to the algorithm, the architectural

target needs to be identified. Application Specific Integrated

Circuits (ASIC) and Field Programmable Gate Arrays (FPGA)

represent an efficient solution but require a complex design and

exhibit limited flexibility. In fact, ASICs cannot be modified

after the production, whereas even though FPGAs can be

reconfigured, this requires more effort than a simple program

revision. Conversely, microprogrammed implementations are

more flexible but less efficient, due to the general-purpose

processor architecture. In this case, DSPs represent a valuable

target, being embedded processors expressly designed for

advanced signal processing. As any embedded processors,

DSPs presents limited resources and programming issue to

be considered. Nevertheless, when appropriately programmed,

they could easily outperform mainstream desktop processors

on signal processing tasks [15] or achieve comparable results

with dramatically better power consumption performance [16].

Once identified the architectural target, as a broad family of

devices such as DSPs, the algorithm needs to be adapted for

the on-line execution, and the code ported on the selected spe-

cific device. Despite porting is a rather specific task depending

on the chosen processor, also algorithms modifications to

enable on-line effective and efficient processing depend on

the chosen device.

IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 3

1) Block-on-line processing: In order to cope with the

conflicting requirements of processing and classification, a

block-on-line approach has been chosen for the on-line im-

plementation. The input is a stream at fs = 12 kHz (signal

samples) and the output is a class assigned to a classifier

sample (hereafter called pattern) at fp = 4Hz, which is

similar to other works in the literature [17]. Furthermore,

such a value, which can be modified, entails a fair delay

and a reasonable refresh rate for the prosthesis commands.

An additional trigger signal @fs is processed to mark the

underlying neural activity for training purposes.

To achieve a good spikeness for the pattern, intended as

the number of spikes per window, the observation window for

features computing should be large enough to contain several

spikes and should “slide” on the input signal with a frame rate

r adequate to follow local variations in the signal in real time.

Given tL, the frame rate r defines the time instants tn in which

the patterns will be extracted to be processed by the classifier,

i.e. tn = n tL
r

with n = 1, 2, · · · . It is possible to choose L =
b len× r, so that b len is the number of new signal samples,

forming a block, needed to push on the window (the window

slides with an overlap of 1− r−1, e.g. 75% for r = 4). Since

only the classifier requires to operate on the whole window, a

“virtual” sliding window is implemented in the code for the

first three stages (WD, SD, SS), the last one being in charge of

preserving a memory of the spike sorting results for the latest

r blocks (updated block-wise) to compute the features for a

single pattern. This choice reduces the memory requirements

and the computational redundancies. Noticeably, r is a user-

defined parameter.

To provide an overview of the proposed algorithm in its on-

line version, Fig. 1 describes with a pseudocode the different

processing parts executed every time a new block of b len

input samples is available. The different conditions responsible

for the transitions between the states of the algorithm can

be automatically set by the code at run-time (e.g. whenever

an established number of spikes has been processed, after a

specific amount of time, in response to an external trigger).

The sequence of the macro-states of the algorithm changes

over time in order to achieve the automatic tuning of the

various stages before the normal operation:

1) WD with threshold tuning in loop with SD;

2) WD and SD with established thresholds, followed by SS

in TPh;

3) templates reduction and definition of the final set of

nfeat templates;

4) WD and SD with established thresholds, followed by SS

in SPh;

5) CL creation and training;

6) WD and SD with established thresholds, followed by SS

in SPh and then by CL (pattern recognition).

A. Wavelet denoising optimization

For orthogonal wavelets, exploiting a dyadic discretization,

WD can be implemented using a trellis of quadrature mirror

FIR filters, a low-pass (H(z))/high-pass (G(z)) pair for anal-

ysis and their mirrored versions for synthesis. The analysis

//WD
Wavelet decomposition (Nscales scales)
if 1st block then

Evaluate the parameters to compute the WD threshold, for this block
Assign them to all the rσ elements required to compute the WD
threshold for a whole window
Compute the WD thresholds at the different scales

else if tuning threshold then
Evaluate the parameters to compute the threshold, for this block

end if

for i = 1 to Nscales do
Perform thresholding at scale 2i

end for

Wavelet recomposition
//SD
Spike detection (different approaches)
//SS
Crosscorrelate incoming spike with existing templates (if any)
if template creation mode then

if max(correlation) > thc then

Update corresponding template by synchronized averaging
else

Create a new template from incoming spike
end if

else if passing from template creation mode to sorting mode then

Perform templates merge and reduction to nfeat templates
else if sorting mode then

if max(correlation) > thc then

Periodically update corresponding template by synchronized averag-
ing
Update templates count for feature creation of current pattern

end if

end if
if low spikeness AND tuning threshold then

Compute the thresholds at the different scales
Update the WD threshold buffers

end if

//CL
if sorting mode then

if training classifier then
Classifier training

else

Classify the current pattern
end if

end if

Fig. 1. Main loop of the on-line algorithm, for every new block of data
(b len samples).

produces the approximation signal (a2i(z), low pass), passed

to the next level, and the detail one (d2i(z), high pass), retained

for thresholding. Since every low-pass filter in the analysis

trellis halves the Nyquist frequency of the approximation

signal, it is usually downsampled for both computational and

memory efficiency (the same filters can used in all the stages).

Such a scheme is not translation invariant so in [11] it is

combined with cycle spinning to overcome this limit. This

approach is not suited for real-time processing because of

the computational cost and the intrinsic off-line nature of

the procedure. An à trous approach, which oversamples at

each scale the analysis filters rather than downsampling the

associated streams, has been rather adopted.

Furthermore, the Symlet 7 mother wavelet, chosen to be

similar to a typical action potential [14] to exploit matched

filter properties in the processing, presents a large time sup-

port. This has reflections on both computational complexity

and delay, compared to shorter wavelets such as the Haar one

which will be alternatively considered.

Moreover, similarly to other works like [13], the WD-

IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 4

filtered signal bandwidth could be narrowed to 375Hz - 3kHz

by adding one level of WD and cleaning the first detail.

Remarkably, the upper cut-off frequency is still larger than

2 kHz, which is known to contain the most of the physio-

logical information [14]. With four levels, a latency of 196

samples can be experienced with the Symlet 7 whereas only

16 samples are required by the Haar. This affects the memory

footprint too, since between analysis and synthesis, the detail

signals need to be delayed to obtain the correct alignment in

time. This is achieved writing with the correct offset in the

recomposition filters buffer, taking into account the time lag

as t2i = t2i+1 + lat2i+1 , where:

lat2i = NGi(z) − (NGi(z)%2) (1)

NGi(z) being the length of the Gi(z) filter and % the reminder

of the integer division.

The minimax method for threshold computing presents

a dependency from the length N of the signal, which is

misleading in on-line processing where the window length is

extremely short. A fixed precomputed scaling factor equal to

3.9 has been used, corresponding to the value computed in

[11]. Moreover, the sample standard deviation can be more

efficiently used in place of the median absolute deviation

since, in an on-line integrated approach, σn can be updated

only when no spikes are detected in the signal. In order to

evaluate σn over a frame of samples larger than b len, i.e.

b len× rσ , optimizing the latency, it is possible to compute

for every incoming block of new b len samples (at each scale

i) their squared sum (all the detail coefficients are zero-mean)

sj,2i =
∑b len

n=1 d22i [n], so that for every new block of samples

the last rσ partial squared sums can be summed up, multiplied

by (b len× rσ − 1)−1 and then the squared root computed:

σn
2i

=

√

√

√

√

1

b len× rσ − 1

rσ
∑

j=1

sj,2i (2)

B. Spike detection optimization

Rather than a simple amplitude threshold, another one based

on a Nonlinear Energy Operator (NEO) [18] can be adopted

to improve the performance, obtaining a pre-emphasis of the

spikes:

η{x̂ [n]} = x̂2 [n]− x̂ [n+ 1] · x̂ [n− 1] (3)

The threshold is then obtained as a scaled version of the mean

value of the NEO in a predefined time interval:

Thr = C ·
1

N

N
∑

n=1

η{x̂ [n]} (4)

where C is empirically chosen. Tests performed on synthetic

datasets [19] showed that the NEO is generally less sensitive to

the choice of the amplitude threshold of the SD stage, and SD

is more accurate and with limited computational complexity.

Only the detected spikes whose support is shorter than a

parameter len (expressing a time value in terms of number

of samples) are analysed. During the TPh, larger spikes are

Other
samples?

SPh?

Detected?

INIT

yes

no

yes

no

no

yes

no

MAIN XCORR LOOP
ti: index best-matching
 template
Mc: max correlation

SPh?

yes

no

Buffer queue
operations

PART 2
return

Compute features for
CL; update counts;

clear counts for next
block (sample)

returnSD

Tuning WD
thresholds?

Spike extraction

yes

Nt = 0?

yes

no

Create new template.
occurrence(Nt)=1; Nt++

Mc > Thc?

yes

no

occurrence(ii)++

Mc > Thc?

no

yes
Update template ti

with synchronized avg.
occurrence(ii)++

Nt < MNt?

no

yes Create new template.
occurrence(Nt)=1; Nt++

rr = min(occurence)
Create new template in rr

occurrence(rr)=1

Buffer queue operations
PART 1

Fig. 2. The spike detection and sorting algorithms.

discarded whereas during SPh a smaller chunk of samples is

possibly extracted looking at the threshold crossing only. This

allows recognizing spikes embedded into bursts but does not

address the problem of the overlapping spikes.

C. Spike sorting optimization

The SS is a correlation-based algorithm (Fig. 2), which must

be able to work in real time both when the templates are being

created (TPh) and when they are stable (SPh). When the WD

thresholds are being computed, SS is skipped.

During the TPh, the algorithm can store up to MNt
wave-

forms in a templates matrix. Such a structure is stored in a

linear array, len×MNt
words long, row major, for faster access

on a DSP. An infinite template matrix is emulated during TPh

by overwriting the template with the lowest occurrence when a

new one needs to be stored and the matrix is full. To speed up

the computation of the cross-correlations with the Pearson’s

coefficient, the templates are standardized to have zero mean

and unitary variance.

During SPh, the SS acts as a feature extractor for the

classifier, which operates downstream. A periodic template

update can be allowed. Despite a new pattern is generated

every 0.25s, it takes into account the ENG activity over

L = b len × r samples. A matrix has been used to store

row by row the occurrences of each template in each of the r

blocks composing an L−wide sliding window. Such a matrix

is updated column-wise at every new block and a pattern

for the classifier is a feature vector obtained summing up by

columns the occurrences of each template and dividing all the

elements by the sum of the spikes occurrence in that window

(the spikeness index). Such an approach reduces the processing

time at the expenses of a slightly larger memory footprint.

Before training, the patterns undergo a normalization process.

IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 5

D. Classification optimization

Compared to the work presented in [4], the whole classifier

has been recoded, and the training has been also embedded

into the DSP firmware. A binary trigger has been exploited

for on-line labelling during training. In an interactive training

scenario, labelling can be performed exploiting GPIO pins of

the processor, by manually selecting the performed (or desired)

movement among a given set, or automatically (in case of

rigidly structured and synchronized training procedure). To

avoid calling the classifier in case of low ENG activity, when

the trigger flag is active the pattern is passed to the classifier

only if:

s ≥ µs +
1

2
σs (5)

where µs and σs represent respectively the sample mean and

standard deviation of the spikeness index s computed over the

whole signal which will be used for training.

The soft-margin version of SVM classifier (C-SVC) with

RBF kernel has been preferred to the original ν−SVM,

because of its easier optimization. The optimal values to be

assigned to the various parameters to maximize the results in

terms of classification accuracy and processing latency have

been experimentally selected (γ = 1 for the RBF, cost C = 1
for the C-SVC, tolerance of the termination criterion equal to

0.1). The multi-class problem can be better solved by means

of a “One-vs-The rest” approach rather than a “One-vs-One”,

since the number of classifier models to train is reduced to the

number of classes.

E. Algorithm versions

Despite some of the modifications do not introduce differ-

ences in terms of algorithm effectiveness, some others could.

To this aim, different versions of the algorithms have been

developed and tested, changing some aspects related to the

first three stages (regardless the chosen mother wavelet for

WD).

• V1, similar to [4] and then to the original algorithm (WD

with 3 levels, removing a23 , bandwidth 750Hz-6kHz, SS

on the output of the WD stage) but the NEO has been

introduced in the SD;

• V2, a modified version of V1 (WD with 3 levels, remov-

ing a23 , bandwidth 750Hz-6kHz, NEO for SD) but the SS

is performed on the output of a 300Hz-3kHz band-pass

filter as in [13], using WD only for the SD;

• V3, a modified version of V2 (NEO for SD, WD only for

the SD, SS on the band-pass filtered signal and not on

WD output) but exploiting a WD with 4 levels, removing

a24 and also d21 leading to a bandwidth of 375Hz-3kHz

which is close to [13];

• V4, similar to V1 (NEO for SD, SS on the output of the

WD stage) but, as in V3, the WD has 4 levels, removing

a24 and also d21 leading to a bandwidth of 375Hz-3kHz.

IV. ALGORITHM PORTING ON A DSP PLATFORM

Despite the presented optimizations could be applicable to

any architectural target, they have been studied to achieve

the highest performance on DSP platforms. For instance,

the choice of block-on-line processing rather than sample-

by-sample processing, is beneficial for DSPs because of the

presence of specialized hardware/software modules tacking

advantage from block processing (Direct Memory Access

(DMA), address generators, specialized software libraries,

etc.).

As target for this study, we chose a TMS320C6748 floating-

point DSP, hosted on the OMAP-L138 low-power applications

processor by Texas Instruments, also including an ARM core

and several shared resources. The ARM core can be exploited

to perform some processing tasks or as host processor, easily

managing the communication with external acquisition units,

I/O peripherals such as a small detachable LCD display or a

storage unit. The DSP can run up to 465MHz and presents

a Very Long Instruction Word (VLIW) architectural model

enabling the execution of up to eight arithmetic operations

(mixed fixed- and floating-point) in parallel. The efficiency

of the implementation on this kind of processor strongly

depends on the VLIW code density: the best results can be

obtained only by means of optimized libraries and an adequate

coding technique, also respectful of the processor memory

organization.

The chosen DSP presents a memory hierarchy organized

in four levels. Level 1 (L1D and L1P, 32kB each) includes

two memories configurable either as RAM or cache (data

and instructions). Level 2 (L2, 256kB) is a RAM that can

be configured partly or totally as second level cache. L1 and

L2 are internal to the DSP core. Level 3 (L3, 128kB) is an

on-chip shared memory, external to the DSP core, on the same

clock domain of L1 and L2 and theoretically with the same

bandwidth. Nevertheless L3 pays additional latency due to

competing traffic, prioritization, and use of shared resources.

Level 4 (L4) is the off-chip (external) memory. Potentially

bigger, it introduces a penalty of several clock cycles compared

to the others for the access. In our implementation, all the

code sections working on the data at 12 kHz, and the related

variables, have been placed in L2 (configured as all-RAM)

along with the on-line CL code at 4Hz, whereas both the code

and the variables used for the CL training have been placed

in L4.

The application code has been written in C. All the pa-

rameters requiring an on-line tuning are automatically set up

by the algorithm at run-time without any interaction with

the user. The minimal set of functions of the C++ LIBSVM

library [20], required by the implemented classifier, have

been translated in C with limited memory footprint. All the

advanced coding practices for this kind of platform, along

with a careful memory allocation, have been exploited, and

the code has been compiled with the highest optimization (-

o3). Some optimizations, which can be enabled or not, limit

the portability of the C code to the processors of the same

family. For instance, some data movements are managed by

the Enhanced Direct Memory Access (EDMA3) peripheral in

order to execute them in parallel with the CPU processing.

Advanced single-precision DSP library functions can be en-

abled at compile time to improve the VLIW code density,

thus leading to a better parallelism exploitation, which in turn

IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 6

means that more instructions can be performed in parallel

on the different issue slots of the processor. Some of these

functions, e.g. the DSPF sp fir gen(), used in the WD stage

for the FIR filtering, take advantage of the chosen block-

on-line approach, allowing to reach very high performance

compared to a sample-by-sample approach. Another library,

MATHLIB, has been used to speed up the processing of some

scalar math operations.

V. DATASETS EXPLOITED FOR TESTING

As stated before, different versions of the on-line algorithm

have been proposed, along with a different mother wavelet

selection (Haar rather than Symlet 7. In order to evaluate

their effectiveness relying on a ground truth, limitedly to the

first three stages of the algorithm, we exploited a synthetic

dataset [13]. It includes artificial mixtures of real spikes (from

three neurons), extracted from neocortex and basal ganglia,

and additive noise representing the contribution from other far

neurons. It can be also used also to test SS algorithms for

PNS signals decoding, when the action potentials can still be

identified because of a good SNR.

The synthetic dataset [13] includes different signals (Easy1,

Easy2, Difficult1, Difficult2) with increasing levels of com-

plexity. The complexity is related to the similarity in the

morphology of the action potentials of the three neurons,

revealed by the Pearson’s correlation coefficient (Easy1 con-

taining spikes correlated up to 0.8, the other datasets having

higher correlation). Since the proposed algorithm is based on

template matching, the results achieved on the Easy1 dataset

shall be considered with the greatest attention. The background

noise level is defined in terms of its standard deviation and it

ranges from 0.05 to 0.40. The average firing rate is 20Hz,

and the number of spikes per neuron is about 3000 in each

one-minute signal.

In order to test the CL stage too, we exploited real afferent

signals from the PNS, kindly provided by Prof. Xavier Navarro

and his team (Universitat Autònoma de Barcelona), acquired

through Longitudinal Intrafascicular Electrodes (LIFE) in the

sciatic nerve of rats [21] and recorded according to the

protocol used in [22]. Five classes of sensory events can

be identified on segments of the available signal, i.e. touch

sensation elicited over four different areas of the rat limb (A to

D) stimulated with Von Frey filaments, and flexion movement

performed with animal hind limb.

VI. RESULTS

The evaluation of the proposed algorithm and its imple-

mentation is presented in this section in terms of effectiveness

(quality of the different versions) and efficiency (in the light of

a real-time implementation). Effectiveness analysis will lead

to the selection of the best version to be analysed in terms

of efficiency, measured in terms of processing capabilities and

power consumption.

A. Effectiveness analysis

PNS neural signals are usually affected by a low SNR

[7]. From this perspective, WD represents an important pre-

processing stage whose influence on the spike detection can be

25

50

100

ea
sy

1
00

5

ea
sy

1
01

ea
sy

1
01

5

ea
sy

1
02

ea
sy

1
02

5

ea
sy

1
03

ea
sy

1
03

5

ea
sy

1
04

ea
sy

2
00

5

ea
sy

2
01

ea
sy

2
01

5

ea
sy

2
02

di
ff1

 0
05

di
ff1

 0
1

di
ff1

 0
15

di
ff1

 0
2

di
ff2

 0
05

di
ff2

 0
1

di
ff2

 0
15

di
ff2

 0
2

T
P

 R
a
te

 [
%

]

75

SPC

V1, V2 using Sym7
V3, V4 using Sym7

V1, V2 using Haar

V3, V4 using Haar

Fig. 3. Spike detection results in terms of TP rate using the Symlet 7 and
the Haar wavelets compared to SPC.

10

30

50

70

F
P

/m
in

SPC

V1, V2 using Sym7
V3, V4 using Sym7

V1, V2 using Haar

V3, V4 using Haar

ea
sy

1
00

5

ea
sy

1
01

ea
sy

1
01

5

ea
sy

1
02

ea
sy

1
02

5

ea
sy

1
03

ea
sy

1
03

5

ea
sy

1
04

ea
sy

2
00

5

ea
sy

2
01

ea
sy

2
01

5

ea
sy

2
02

di
ff1

 0
05

di
ff1

 0
1

di
ff1

 0
15

di
ff1

 0
2

di
ff2

 0
05

di
ff2

 0
1

di
ff2

 0
15

di
ff2

 0
2

Fig. 4. Spike detection results in terms of FP per minute using the Symlet 7
and the Haar wavelets compared to SPC.

demonstrated by using the synthetic dataset. V1-V4 version,

with both Symlet 7 and Haar wavelets, are compared with the

SPC only in terms of spike detection figures of merit, i.e. True

Positives (TP) rate (the percentage of true detected spikes over

those present in the signal, Fig. 3) and False Positives (FP) per

minute (Fig. 4).

In both cases, the proposed SD approach, combining WD

and NEO, performs better than the one of the SPC for the

largest part of the signals, with isolated exceptions on the

Easy1 database. The Haar wavelet reveals a higher TP rate

than the Symlet 7 but also a higher number of FP/min.

SS performance has been evaluated in terms of percentage

of matching. From Tab. I we can see that the results seem to

be strongly influenced by the noise level and are largely worse

than those achievable off-line with the SPC for all the dataset

but the Easy1 one, as expected. The best performance can be

achieved with the V4 version of the algorithm and the Haar

wavelet. Results are definitely worse for the versions of the

IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 7

0.5 1 1.5 2 2.5 3 3.5
60

65

70

75

80

85

90

95

100

tL [sec]

S
V

M
 c

la
s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 [
%

]

[10]
V4 Haar

Fig. 5. SVM classifier accuracy (mean and standard deviation over 3000
random training/test pairs on the same dataset) with len = 44 samples and
varying tL, comparing the algorithm implemented in [4] with the current V4
version using the Haar wavelet.

on-line algorithm performing the SS on a band-pass filtered

version of the signal rather than on the wavelet denoised one.

This seems to be correlated to the limited effect of band-pass

linear filtering on such signals when performing spike sorting

by correlation methods. Again the Haar wavelet seems to be

more effective than the Symlet 7. Remarkably, the SPC works

with features obtained from wavelet analysis, so that the effect

of band-pass filtering is superimposed to that of wavelet sub-

band analysis.

Since all the V1-V4 versions of the on-line algorithm

present the NEO as SD stage, it is worth to evaluate how much

this stage influences both detection and sorting, compared to

a solution based on a fixed threshold. Limiting our analysis to

V4 with the Haar wavelet, the behaviour of the two solutions

is similar, the NEO allowing a considerable reduction of the

FP/min, up to 75%. All the more so, in terms of matching,

as can be seen comparing SPC, V4-H and V4-H abs rows in

Tab. I, the results exploiting the NEO in the spike detection

are better than those achievable with a fixed threshold.

It is then worth to see whether such results reflect what

happens on the real PNS signals. Tests have been performed

evaluating the classification accuracy while varying the time

frame for a pattern (tL), comparing the algorithm implemented

in [4] with the current V4 version (Fig. 5). Accuracy has

been computed as average over 3000 different training/test

partitions of the same dataset, randomly divided every time

using 80% of samples for the training set and the rest for the

test set. V4 is more robust to the variation of tL, allowing

to obtain a more efficient hardware implementation for the

same classifier performance. Moreover, its accuracy is always

higher, particularly for the most interesting low values of tL,

from a minimum of about 74% to a maximum of 96% with a

standard deviation that decreases as tL increases.

B. Efficiency analysis

The previous analysis reveals how, compared to the orig-

inal algorithm and to its first tentative porting, the proposed

modifications lead to improved effectiveness performance. In

particular, the best version is V4, using the Haar wavelet. This

solution has been then profiled in order to derive a latency

model. This is a mathematical model, descending from cycle-

accurate profiling, able to provide (with some approximations)

the expected latency (CPU clock cycles) for a given code under

different test conditions. Since the code optimizations, and

consequently its performance, can be different if only a part of

the code is compiled, in order to create a fair latency model the

code was not modified (except for the parameters to tune) for

the analysis of the different sections but the input data changed

in order to be able to trigger specific behaviours. Compared

to other techniques, this approach is very time consuming but

allows pursuing accuracy.

The main issue in the creation of the latency model is the

high number of branches that the algorithm can take during the

different phases of its execution. Referring to Fig. 2, it is clear

that different latencies will be experienced when only the SD is

performed or when the system is creating the templates (TPh)

or during normal operation (SPh). Even if we created a model

for each possible combination, varying the proper parameters,

only the two worst-case working conditions will be analysed

hereafter. The worst case in the TPh is identified in Fig. 2

with the darkest shading, whereas the branches including the

lighter shading are those related to the SPh. White blocks can

be considered not part of any worst case scenario. Only the

parts of the code that must be executed in real time have

been evaluated for the latency model: the CL training and the

templates reduction have been profiled apart.

From the code profiling, the WD for the V4 version of

the algorithm, with the chosen window length, requires about

320kcycles with the Haar wavelet. Such a result cannot

be compared with that reported in [4] because the current

memory requirements are higher and then a larger use of

the external memory is required, with the consequent latency

penalties. Within the current framework, the implementation

of the original 3-level WD stage with the Symlet 7 wavelet

would require about 640kcycles. Taking also into account the

demonstrated superiority in terms of performance of the Haar

wavelet compared to the Symlet 7 one, the adoption of the

former should be preferred. The final model during the TPh

is described by the following relation:

c = [2slen + 1009.2 + (911.2MNt
+ 20.2) len + . . .

−16520MNt
]ns + 514495

(6)

where c is the cycle count, slen is the duration in samples of

the spikes, MNt
is the number of elements of the templates

matrix, len is the template length in samples, ns is the number

of spikes in a b len-sample window (b len = 3000 in our

case). It is worth to note that the dependence from slen is

very small compared to the other parameters. For this reason,

considering an average case of slen = 16.6, as from the

available signals, the final model during the TPh is:

c = [1042.4 + (911.2MNt
+ 20.2) len− 16520MNt

]ns + . . .

+514495
(7)

IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 8

TABLE I
TEMPLATE MATCHING PERCENTAGE USING THE HAAR AND THE SYMLET 7 MOTHER WAVELET, ON THE SYNTHETIC DATASET [13].

E
1

0
0
5

E
1

0
1

E
1

0
1
5

E
1

0
2

E
1

0
2
5

E
1

0
3

E
1

0
3
5

E
1

0
4

E
2

0
0
5

E
2

0
1

E
2

0
1
5

E
2

0
2

D
1

0
0
5

D
1

0
1

D
1

0
1
5

D
1

0
2

D
2

0
0
5

D
2

0
1

D
2

0
1
5

D
2

0
2

SPC 94 96 95 96 96 92 92 90 95 95 83 58 97 96 85 43 96 97 62 15

V1-H 66 69 71 64 85 72 89 80 32 28 34 15 15 38 28 36 54 51 55 59

V1-S7 63 59 77 61 73 74 72 72 60 58 43 42 26 47 43 30 49 49 41 50

V2-H 96 95 95 89 75 62 65 39 63 78 64 50 50 39 32 33 49 64 52 48

V2-S7 94 93 90 87 86 47 44 28 94 77 64 27 49 42 33 24 49 62 56 47

V3-H 96 96 95 87 85 67 61 46 82 79 52 46 45 39 36 22 48 52 51 48

V3-S7 96 96 93 85 78 47 52 35 62 77 67 41 44 48 33 30 48 63 49 54

V4-H 96 96 97 95 95 93 90 89 62 67 31 27 30 37 43 48 56 52 60 63

V4-S7 95 81 94 95 59 78 51 57 57 60 31 51 34 50 52 25 50 58 53 21

V4-H abs 96 96 96 96 95 92 88 83 60 41 14 39 28 37 31 36 57 44 53 63

Using this model, it is possible either to:

• know the latency for a given ns when the maximum

number of templates in this phase is fixed to MNt
and

every template length is len or

• invert the model considering the maximum number

of available cycles (Real-Time Bound RTB, which is

116.25Mcycles when clocking the DSP at 465 MHz) so

that, fixing the structural parameters, it is possible to

know how many spikes can be analysed in real time.

The second choice leads to the following model:

ns =
RTB − 514495

1042.4 + (911.2MNt
+ 20.2) len− 16520MNt

(8)

Some of the implemented optimizations forbid the adoption

of this model at a very fine granularity because, for instance,

the parameter len must be a multiple of four. The set of curves

in Fig. 6 (top chart) allows evaluating the maximum number

of processable spikes per second, during TPh, as a function of

MNt
, for different values of len.

Following a similar reasoning during the SPh, the final

latency model is the following, where nfeat is the number

of templates after their fusion (i.e. in the SPh) and nSV is the

number of support vectors.

ns =
RTB − 280nfeat − 1133nSV − 514981

(911.2len− 16520)nfeat + 578.5
(9)

The number of spikes per second in this case is depicted in

Fig. 6 (bottom chart), where nSV has been fixed to a typical

value of 700. With 40 templates in TPh and 10 in the SPh, and

exploiting the same len of the SPC algorithm for the synthetic

database (32 samples at 12kHz), the on-line algorithm is able

to process more than 890 spikes per second in TPh and more

than 3500 in SPh, which represents an important result in

terms of possible exploitation even in case of extension to

multichannel recordings. In this case, the computational power

can be distributed across the different channels with acceptable

performance levels.

In order to be able to appreciate the distribution of the

computational load across the different stages of the algorithm,

a point in the parameters domain has been taken and the

amount of clock cycles required to the processor to carry out

the different stages of the algorithm is presented in Tab. II.

10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

3500

M
Nt

sp
ik

es
/s

ec

5 6 7 8 9 10 11 12 13 14 15
0

1000

2000

3000

4000

5000

6000

7000

n
feat

sp
ik

es
/s

ec

len = 32
len = 36
len = 40
len = 44
len = 48
len = 52

Fig. 6. The maximum of processable spikes per second in TPh (top) and SPh
(bottom) as a function of MNt

and nfeat respectively (from top to bottom,
the curves are drawn for increasing values of len).

TABLE II
NUMBER OF CYCLES REQUIRED FOR THE EXECUTION OF THE FOUR

PROCESSING STEPS ON A BLOCK OF 3000 SAMPLES. IN THIS CASE len =
40, MNt

= 40 IN TPH, nf eat = 10 IN SPH, nSV = 700 AND ns = 100,
WHICH IS COMPATIBLE WITH HAVING A TRAIN OF 1.4 MS SPIKES,

SEPARATED BY A REFRACTORY PERIOD OF 1 MS.

WD NEO+SD SS CL

TPh 320437 136285 75443300 -

SPh 320437 136285 15072000 795900

In order to investigate the accuracy of the latency model in

the steady state, actual profiling data was compared to the

results obtained with the model for a different number of

incoming spikes. The same parameters used for the algorithm

evaluation on the real dataset (len = 40, nfeat = 10) was

employed. The model prediction error was of 5% on average

(standard deviation 0.58%). Remarkably, the model always

overestimates the actual cycle count.

In terms of memory footprint, the real-time code requires

IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 9

only 39kB of memory and the data in L2 expressly instantiated

in the code require 177kB of memory. Taking into account

also the other code sections (used by the DSP/BIOS operating

system of the DSP and its variables), the code on the internal

RAM reaches 252kB of the available 256kB. The L4 memory

usage reaches 580kB, including 259kB for the external data

section of the CL and 26kB for the related code.

C. Power consumption analysis

An accurate estimate of the power consumption of the more

demanding component in the system, the OMAP processor,

can be achieved by using the spreadsheet available in [23].

Accuracy depends on the realism of the operating parameters

used to fill in the spreadsheet. Compared to performing actual

measurements on an EVM, this methods allows overriding the

power consumption of the various hardware on-board compo-

nents sinking current from the power source although they

are not used. For this application, we chose a configuration

where both cores (DSP and ARM) are enabled and the mDDR

SDRAM, the EDMA3, PLL0 module, the SPI0 port and the

USB1.1 port (useful as interfaces towards external devices, e.g.

an acquisition unit) are also active. Percentage of utilization of

the SPI0 port has been obtained by comparing the maximum

bit rate for the port (50Mbps) with the expected one (12kHz, 8

channels, 16 bit per sample yield about 1Mbps). The utilization

of the mDDR has been derived directly from the cycle accurate

profiling of the application by counting the number of cycles

spent to perform data movement from/to the L4 memory. A

junction temperature of 50 ◦C has been used. The ARM core

has been supposed to be under a typical workload. Different

device frequencies and DSP loads have been tested in order

to obtain the power consumption vs. the number of processed

spikes, as shown in Fig. 7.

From this analysis it is possible to estimate which power

source could be used in practice. For example, with a standard

Li-Ion single cell battery (4.2V, 3000mAh capacity), supposing

the system must process 400 spikes/sec (which is compatible

with the duration of a spike), the projected duration of the

battery would be 34 hours when clocking the DSP at 456MHz

or 45 hours at 300 MHz. These numbers are compatible with

a real scenario.

VII. CONCLUSIONS

This paper presents a complete study of the optimization

of a state-of-the-art algorithm for PNS signals decoding,

already exploited off-line on animals and humans, in order to

obtain the best performance on a limited-resources embedded

platform such as an off-the-shelf DSP. Compared to custom

VLSI or FPGA implementations, the adoption of these highly

efficient micro-programmed architectures leads to a greater

flexibility. For the time being, this is particularly useful for

closed-loop experiments when the signal processing algo-

rithms need to be quickly adapted to previous experimental

evidences. The proposed work also identifies improvements

to the original algorithm able to guarantee the real-time

performance with higher quality in the results compared to

the original version.

0 500 1000 1500 2000 2500 3000
200

250

300

350

400

450

500

550

600

650

spikes/sec

po
w

er
 c

on
su

m
pt

io
n

[m
W

]

456 MHz
375 MHz
300 MHz

out of real time

out of real time

Fig. 7. Power consumption of the OMAP-L138 as a function of the number
of processed spikes during the SPh phase (from top to bottom, the curves are
drawn for decreasing values of operating frequency).

Several tests have been performed both on synthetic neural

datasets and on real afferent signals recorded in-vivo from

rodents. The optimal version of the algorithm allows achieving

an accuracy up to 96% in classification. Spikes sorting per-

formance on a synthetic dataset is on average of 93% correct

classification, which is comparable to the results obtained with

a top spike sorter (94%) on the same dataset. Due to the

template matching nature of the implemented algorithm, such

results are limited to the Easy1 part of the dataset, taking

into account that the others presents spikes with a correlation

higher than 0.8.

The derived latency model allows the identification of the

working point under different parameters setting. In a single-

channel implementation, the algorithm is able to process 890

spikes per second when the unsupervised templates creation

procedure is running (working on 40 templates), and up to

3500 after training (with 10 templates), in both cases with

2.7ms templates. Such numbers prompts the possible extension

to a multi-channel scenario involving closed-loop real-time

experiments including the complex phase of classifier training,

now included in the same embedded framework so that also

the training phase could be carried out without any external

tool. Power consumption reveals performance compatible with

a usage period longer than 24 hours, with a fanless device

requiring about 600mW in the worst-case condition.

ACKNOWLEDGMENT

The authors gratefully thank Prof. Xavier Navarro and his

team (Universitat Autònoma de Barcelona) for the collabora-

tion in the real data acquisition in rats.

REFERENCES

[1] S. Micera, P. M. Rossini, J. Rigosa, L. Citi, J. Carpaneto, S. Raspopovic,
M. Tombini, C. Cipriani, G. Assenza, M. C. Carrozza, K.-P. Hoffmann,
K. Yoshida, X. Navarro, and P. Dario, “Decoding of grasping information
from neural signals recorded using peripheral intrafascicular interfaces,”
Journal of NeuroEngineering and Rehabilitation, vol. 8, no. 53, pp.
1038–1051, 2011.

[2] T. A. Kuiken, L. A. Miller, R. D. Lipschutz, B. A. Lock, K. Stubblefield,
P. D. Marasco, P. Zhou, and G. A. Dumanian, “Targeted reinnervation
for enhanced prosthetic arm function in a woman with a proximal
amputation: a case study,” Lancet, vol. 369, pp. 371–380, Feb. 2007.

IEEE TRANSACTIONS ON NEURAL SYSTEMS & REHABILITATION ENGINEERING, VOL. XX, NO. XX, XX 2016 10

[3] X. Jia, M. A. Koenig, X. Zhang, J. Zhang, T. Chen, and Z. Chen,
“Residual motor signal in long-term human severed peripheral nerves
and feasibility of neural signal-controlled artificial limb,” J Hand Surg

Am, vol. 32, pp. 657–666, 2007.

[4] D. Pani, F. Usai, L. Citi, and L. Raffo, “Real-time processing of tfLIFE
neural signals on embedded dsp platforms: a case study,” in Proc. 5th

International IEEE EMBS Conference on Neural Engineering, 2011, pp.
44–47.

[5] H. Rey, C. Pedreira, and R. Q. Quiroga, “Past, present and future of
spike sorting techniques,” Brain Research Bulletin, 2015.

[6] J. Badia, T. Boretius, D. Andreu, C. Azevedo-Coste, T. Stieglitz,
and X. Navarro, “Comparative analysis of transverse intrafascicular
multichannel, longitudinal intrafascicular and multipolar cuff electrodes
for the selective stimulation of nerve fascicles,” Journal of Neural

Engineering, vol. 8, no. 3, p. 036023, 2011.

[7] S. Micera, J. Carpaneto, and S. Raspopovic, “Control of hand prostheses
using peripheral information,” Biomedical Engineering, IEEE Reviews

in, vol. 3, pp. 48–68, 2010.

[8] E. N. Brown, R. E. Kass, and P. P. Mitra, “Multiple neural spike train
data analysis: State-of-the-art and future challenges,” Nature Neuro-

science, vol. 7, pp. 456–461, 2004.

[9] W. Wu and N. Hatsopoulos, “Real-time decoding of nonstationary neural
activity in motor cortex,” IEEE Transactions on Neural Systems and

Rehabilitation Engineering, vol. 16, no. 3, pp. 213–222, June 2008.

[10] L. R. Hochberga, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh,
A. H. Caplan, A. Branner, D. Chen, R. D. Penn, , and J. P. Donoghue,
“Neuronal ensemble control of prosthetic devices by a human with
tetraplegia,” Nature, vol. 442, pp. 164–171, 2006.

[11] L. Citi, J. Carpaneto, K. Yoshida, K.-P. Hoffmann, K. P. Koch, P. Dario,
and S. Micera, “On the use of wavelet denoising and spike sorting tech-
niques to process electroneurographic signals recorded using intraneural
electrodes,” Journal of Neuroscience Methods, vol. 172, pp. 294–302,
2008.

[12] P. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. Citi,
C. Cipriani, L. Denaro, V. Denaro, G. D. Pino, F. Ferreri, E. Guglielmelli,
K. Hoffmann, S. Raspopovic, J. Rigosa, L. Rossini, M. Tombini, and
P. Dario, “Double nerve intraneural interface implant on a human
amputee for robotic hand control,” Clin. Neurophysiol., no. 121, pp.
777–883, May 2010.

[13] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike
detection and sorting with wavelets and superparamagnetic clustering,”
Neural Comput., vol. 16, no. 8, pp. 1661–1687, Aug. 2004.

[14] A. Diedrich, W. Charoensuk, R. J. Brychta, A. C. Ertl, and R. Shiavi,
“Analysis of raw microneurographic recordings based on wavelet de-
noising technique and classification algorithm: wavelet analysis in
microneurography,” IEEE Transactions on Biomedical Engineering,
vol. 50, no. 1, pp. 41–50, Jan. 2003.

[15] D. Pani, A. Pani, and L. Raffo, “Real-time blind audio source separation:
performance assessment on an advanced digital signal processor,” The

Journal of Supercomputing, vol. 70, no. 3, pp. 1555–1576, Dec. 2014.

[16] D. Pani, G. Barabino, and L. Raffo, “NInFEA: an embedded frame-
work for the real-time evaluation of fetal ECG extraction algorithms,”
Biomedizinische Technik/Biomedical Engineering, vol. 58, no. 1, pp. 13–
26, Dec. 2012.

[17] W. Wu, M. J. Black, Y. Gao, M. Serruya, A. Shaikhouni, J. P. Donoghue,
and E. Bienenstock, “Neural decoding of cursor motion using a kalman
filter,” in Advances in Neural Information Processing Systems 15. MIT
Press, 2002, pp. 117–124.

[18] J. Kaiser, “On a simple algorithm to calculate the ‘energy’ of a signal,”
in Proc. International Conference on Acoustics, Speech, and Signal

Processing, ICASSP-90, vol. 1, Apr. 1990, pp. 381–384.

[19] S. Gibson, J. Judy, and D. Markovic, “Technology-aware algorithm
design for neural spike detection, feature extraction, and dimensionality
reduction,” IEEE Transactions on Neural Systems and Rehabilitation

Engineering, vol. 18, no. 5, pp. 469–478, Oct. 2010.

[20] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[21] X. Navarro, N. Lago, M. Vivo, K. Yoshida, K. Koch, W. Poppendieck,
and S. Micera, “Neurobiological evaluation of thin-film longitudinal
intrafascicular electrodes as a peripheral nerve interface,” in IEEE 10th

International Conference on Rehabilitation Robotics ICORR 2007, Jun.
2007, pp. 643–649.

[22] S. Raspopovic, J. Carpaneto, E. Udina, X. Navarro, and S. Micera, “On
the identification of sensory information from mixed nerves by using

single-channel cuff electrodes,” J Neuroeng Rehabil., vol. 7, no. 17,
Apr. 2010.

[23] “Omap-l138 power consumption summary,” last accessed 10-
Oct-2014. [Online]. Available: http://processors.wiki.ti.com/index.php/
OMAP-L138 Power Consumption Summary\#Download

Danilo Pani, Ph.D., is non-tenure Assistant Profes-
sor in Biomedical Engineering at the Dept. Electrical
and Electronic Engineering, University of Cagliari,
Italy. Current main research topics are embedded
real-time biomedical signal processing, wearable
biomedical systems and tele-health.

Gianluca Barabino, is Ph.D. student at the Dept.
Electrical and Electronic Engineering of the Univer-
sity of Cagliari, Italy. His main research interests are
in the field of high performance DSP architectures
and algorithms, real-time neural signal processing
algorithms and systems, tele-health.

Luca Citi received a PhD in biorobotics sci-
ence and engineering at IMT and Scuola Superiore
Sant’Anna, Italy. He worked as postdoctoral research
fellow at MGH/Harvard Medical School, Boston,
and was affiliated with MIT, Cambridge. He is
currently a lecturer in computational intelligence at
the University of Essex, Colchester, UK.

Paolo Meloni is currently assistant professor at the
Department of Electrical and Electronic Engineering
(DIEE) in the University of Cagliari. His research
activity is mainly focused on the development of
advanced digital systems, with special emphasis on
the application-driven design and programming of
multi-core on-chip architectures.

Stanisa Raspopovic, PH.D, is scientist at both the
EPFL (Lausanne, Switzerland) and Scuola Superi-
ore Sant’Anna (Pisa, Italy). His research interests
include the bidirectional prosthetic control for am-
putees, hybrid modeling of electrical stimulation of
nerves, epidural electrical stimulation for movement
restoration in spinal cord injury and clinical transla-
tion of the animal experimentation.

Silvestro Micera, Ph.D. is Professor of Biomedi-
cal Engineering at the Scuola Superiore Sant’Anna
(Pisa, Italy), and Associate Professor of Biomedical
Engineering at the EPFL (Lausanne, Switzerland).
His research interests include the development of
neuroprostheses based on the use of implantable
neural interfaces with the central and peripheral
nervous system.

Luigi Raffo, Ph.D., is Full Professor of Electronics
at the University of Cagliari, Italy, since 2006. He
was President of the Course of Studies in Biomedical
Engineering (2006 to 2012), and coordinator of
several international projects. His research activity
is in the field of embedded systems and biomedical
signal processing.

