
Optimising Agent Behaviours

and Game Parameters to Meet

Designer’s Objectives

W. Sombat

A thesis submitted for the degree ofDoctor of Philosophy

School of Computer Science and Electronic Engineering

University of Essex

Date of submission September 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74374708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I would like to dedicate this thesis to my loving family without

whom I would have not survived the life of academic years. To my

wife, Saowanee Sombat, who stood by for all those years supporting,

caring, and understanding. To my older son, Pichai Sombat, whose

achievements kept me proud and that I had not been lost and was

doing the right thing. My younger son, Amornthep Sombat, who

took me into pleasant journeys beyond imagining every night before

bed after I came home wearied and depressed.

For my father, Suay Sombat, whose role model I took from. Whose

motivation and concerns kept me in the path to this day.

To my colleagues and co-workers and my boss at Ubon Ratchathani

University, thank you for supporting, understanding and for those

extra work you had to cover for me during my academic years.

To my scholarship provider, Ministry of Science and Technology of

Thailand, without the financial support I would not be able to raise

my family here.

Acknowledgements

I cannot express enough sincere thanks to my supervisory board for

their support and encouragement: Professor Massimo Poesio, super-

visory board chair, Professor Richard Bartle, Professor Simon M. Lu-

cas. I would like to give special thank to my supervisor, Professor

Simon M. Lucas, for whose understanding, supporting, and insight

knowledge helped keep me on track time after time.

My experiment could not have been accomplished without the sup-

port from my colleagues under the same supervision. Their tips and

guidelines are priceless.

Abstract

The game industry is one of the biggest economic sector in the en-

tertainment business whose product rely heavily on the quality of the

interactivity to stay relevant. Non-Player Character (NPC) is the

main mechanic used for this purpose and it has to be optimised for

its designated behaviour. The development process iteratively cir-

culates the results among game designers, game AI developers, and

game testers. Automatic optimisation of NPCs to designer’s objec-

tive will increase the speed of each iteration, and reduce the overall

production time.

Previous attempts used entropy evaluation metrics which are difficult

to translate the terms to the optimising game and a slight misinter-

pretation often leads to incorrect measurement. This thesis proposes

an alternative method which evaluates generated game data with ref-

erence result from the testers. The thesis first presents a reliable way

to extract information for NPCs classification called Relative Region

Feature (RRF). RRF provides an excellent data compression method,

a way to effectively classify, and a way to optimise objective-oriented

adaptive NPCs. The formalised optimisation is also proved to work

on classifying player skill with the reference hall-of-fame scores.

The demonstration are done on the on-line competition version of

Ms PacMan. The generated games from participating entries provide

challenging optimising problems for various evolutionary optimisers.

The thesis developed modified version of CMA-ES and PSO to ef-

fectively tackle the problems. It also demonstrates the adaptivity of

MCTS NPC which uses the evaluation method. This NPC performs

reasonably well given adequate resources and no reference NPC is

required.

Contents

Contents iv

List of Figures x

Nomenclature xi

1 Introduction 1

1.1 Thesis Statement . 1

1.2 Motivation . 2

1.3 Goals and Scope . 3

1.4 Structure of The Thesis . 3

1.5 Contribution . 5

2 Background and Related Work 7

2.1 Game Design . 7

2.2 Game Development . 10

2.3 Optimisation . 11

2.3.1 Convex Optimisation . 11

2.3.2 Non-convex Optimisation 12

iv

CONTENTS

2.4 Evolutionary Optimisation . 12

2.5 Preference Learning . 14

2.5.1 Related Research on Preference Learning 15

2.6 MCTS . 16

2.6.1 General MCTS Algorithm 17

2.6.2 Upper Confidence Bounds for Tree (UCT) 20

2.6.3 MCTS for Ms Pac-Man . 20

2.7 CMA-ES . 22

2.7.1 Principles . 22

2.7.1.1 Maximum-likelihood 22

2.7.1.2 Search/Evolution Path 23

2.7.2 Algorithm . 23

2.7.2.1 pseudo-code . 24

2.8 PSO . 25

2.8.1 Standard PSO . 26

2.8.2 Discrete PSO . 27

3 Characterising NPC Behaviour 28

3.1 Ms Pac-Man . 28

3.2 Related Work . 30

3.3 Game Entertainment Evaluation 30

3.3.1 Level of Challenge (C) . 32

3.3.2 Level of Behaviour Diversity (B) 32

3.3.3 Level of Spatial Diversity (S) 33

3.3.4 Interest Function . 33

v

CONTENTS

3.4 The Ms Pac-Man vs Ghosts Competition 34

3.4.1 Ms Pac-Man . 34

3.4.2 Ms Pac-Man vs Ghosts . 35

3.5 Classification of Ghost Teams . 36

3.5.1 Measuring Decision Overlap 36

3.5.2 Analysis of Ghost Decision 40

3.5.3 Experimental Setup For Ranking and Classification 41

3.5.4 Ghost Teams Ranking with Interest Function 41

3.5.5 Relative Region Feature: RRF 44

3.5.6 Ghost Team Classification 45

3.6 Ghost Team Ranking With Classifier 48

3.6.1 Classifiers Evaluation . 51

3.6.2 PacMan Selection . 51

3.6.3 Ghosts Team Evaluation 54

3.7 Conclusions . 55

4 Player Experience Levels 57

4.1 Experiment setting . 57

4.2 PacMan entry selection . 60

4.3 Classifier result . 61

4.4 Update result for selecting pacman entry 65

4.5 Using the classifier as ranker . 66

4.6 Ranking Result With Leave-One-Out 69

4.6.1 Ranking by grouping . 71

4.6.2 Remarks on using weighted ranking score 74

vi

CONTENTS

4.6.3 Fixing the weighted ranking score 75

4.7 User Experience Ranking . 76

4.7.1 Ranked Groups as User Experience Levels 77

4.7.2 Ranker for User Experience Levels 78

4.8 Optimal User Experience Ranker 80

4.9 Blending Ghosts Team . 82

4.9.1 Implementation . 82

4.9.2 Weight Variation and Result 83

4.10 Conclusions . 85

5 Player Skill Levels 86

5.1 Experiment data . 86

5.1.1 Generating dataset . 87

5.2 Predictability of the dataset . 88

5.2.1 Data preparation . 88

5.2.2 Predictability Result . 88

5.3 Reference Ghosts Team Selection 90

5.3.1 Data Preparation . 90

5.3.2 Classification Result . 91

5.4 Player Skill Ranking . 93

5.4.1 Data Preparation . 93

5.4.2 Ranking . 94

5.5 Optimal Player Skill Ranker . 97

5.6 Blending PacMan . 99

5.6.1 Data generation . 100

vii

CONTENTS

5.6.2 Ranking . 100

5.7 Conclusion . 102

6 Optimisation 104

6.1 Optimising User Experience Rankers 104

6.1.1 Individual Encoding . 106

6.1.2 Algorithms . 106

6.1.2.1 Rolling Discrete PSO: RDPSO 107

6.1.3 Evaluation Method . 108

6.1.4 Results . 109

6.2 Optimising Player Skill Rankers 113

6.2.1 Individual Encoding . 115

6.2.2 Result . 116

6.3 Adaptive Tic-Tac-Toe NPCs using MCTS 119

6.3.1 Statistics . 119

6.3.2 NPC Objectives . 120

6.3.3 Implementation . 120

6.3.4 Results . 121

6.3.4.1 R - prefers to win by row 121

6.3.4.2 C - prefers to win by column 123

6.3.4.3 D - prefers to win by diagonal 124

6.4 Adapting MCTS NPC for Ms PacMan 125

6.4.1 State Evaluation . 126

6.4.2 Decision Time Constraint 127

6.5 Result . 129

viii

CONTENTS

6.6 Conclusion . 130

7 Conclusion 133

7.1 RRF . 134

7.2 Ranking . 135

7.3 Evaluation . 135

7.4 Optimisation . 136

7.5 Future Work . 137

7.6 Summary . 138

Bibliography 139

ix

List of Figures

2.1 Label Ranking . 14

2.2 Instance Ranking . 15

2.3 Object Ranking . 15

2.4 MCTS Iteration Process [Chaslot et al., 2008] 17

3.1 Confusion matrix of the percentages of similar decision made by

the ghost teams. 39

3.2 Region numbering (left) and overlay of regions relative to the po-

sition of Ms Pac-Man (right). 46

3.3 Confusion matrices for different region sizes (small, medium, and

large; left to right) with SVMC Pipeline. 49

3.4 Confusion Matrix for Classifier built with Spooks pacman. 53

3.5 Confusion Matrix for Classifier built with NearestPill pacman. . . 54

4.1 Confusion Matrix for Classifier Trained with SpooksPacman Games 62

4.2 Confusion Matrix for Classifier Trained with SpooksPacman Games

After Removing Duplicate Entry 64

4.3 Histogram of 486 User Experience Rankers 81

x

LIST OF FIGURES

5.1 Selection of Pacman Entries for Evaluation 95

5.2 Histogram of 243 Player Skill Rankers With Spearman’s ρ Values 99

5.3 Plotting of Weight Variation and Skill Level 102

6.1 Search Space of 7,776 User Experience Rankers 105

6.2 Number of Evaluations Calls by Random Sampling) 109

6.3 An Optimising Result with (µ+ λ) ES 110

6.4 A Exploring Run with GA . 111

6.5 Optimisers Result On User Experience Ranking Problem 112

6.6 Search Space of 4,131 Player Skill Rankers 114

6.7 Reference Random Sampling for Player Skill Optimisation 115

6.8 A Success Run with RDPSO . 117

6.9 Performance Comparison on Player Skill Optimisation 118

6.10 Result when vary row-win weight w0 123

6.11 Result when vary column-win weight w1 124

6.12 Result when vary diagonal-win weight w2 125

xi

Chapter 1

Introduction

1.1 Thesis Statement

In video games, controlling Non-Player Characters (NPCs) to deliver the required

dynamics is essential to provide a satisfactory experience to the player. Big range

of possible methods for implementing NPC AI, from hand-coding, finite state

machine, through to a behavioural tree and neural networks. NPCs may vary

greatly in how they adapt to the action of the player, and the intelligence it

exhibits. Many of these have parameters that can be tuned. This thesis explores

several ways of optimising the NPC AI. The optimiser ensures optimal settings for

the NPCs to provide good user experience. The optimal settings drive the NPC

to follow its designate mechanics. This thesis outlines the optimisation process

and propose the methodology for generating, evaluating and optimising NPCs.

1

1.2 Motivation

Video games constitute major part of the entertainment industry and most pop-

ular video games rely on NPCs to entertain the players. Therefore, it is essential

that the NPCs’ behaviour matches the intention of the designer. However, the

NPCs have to provide a good experience for as many players as possible. Player

may have different skills and preferences. The game designers are responsible

for balancing internal mechanics of the game. Game balancing is the fine-tuning

phase in which a functioning game is adjusted to be deep, fair, and interesting

[Jaffe et al., 2012]. Groups of researchers have contributed to the field, most no-

tably the procedural content generation group [Togelius et al., 2011b]. Especially,

on hamlet game engine where they control the flow experience by adjusting item

properties.

Important questions of the field are (1) how to measure balance and (2) how

reliable the measurement is. Important research in the field focuses on quantifying

various aspects of the games. This includes work on quantifying properties of

game levels [Liapis et al., 2013] and entertainment measurement [Yannakakis,

2005]. However, most measurement metrics are not guaranteed to work across all

genre of games, and might also have differed result on particular group of players

[Sombat et al., 2012b].

Along with a quantification system and an evaluation framework to generate

systematic gameplay, optimisation is of equal importance. Once the evaluation

system has been agreed upon and the feedback from the players have been re-

ceived, optimisation should guarantee suitable gameplay.

2

1.3 Goals and Scope

The goal of this thesis is to study the process of generating NPCs to match

a designated goal. This includes investigation of a suitable test-bed game, the

measurement method, and the optimisation process. The thesis aims to provide

a formalised methodology to optimise NPCs given a reference objectives.

The resulting NPCs should closely follow the intended high level behaviour of

the reference objectives. Its result should be evident on the test-bed game; Ms

Pac-Man, and the process should be thorough.

1.4 Structure of The Thesis

The rest of the thesis will guide the reader through the process of generating

adaptive NPCs and classifying their behaviour.

Next chapter provides the necessary background on the subject. It describes

the game development process with an emphasis on game AI. This should pro-

vide adequate knowledge for creating NPCs for game. The chapter continues on

optimisation background from mathematical optimisation to evolutionary opti-

misation. After explaining the advantages of evolutionary optimisation, it will

provide important optimisation techniques in the field. These optimisation tech-

niques will be applied in subsequent chapters. The chapter should prove useful

in understanding the modified versions proposed later on. These optimisation

techniques includes genetic algorithm, evolutionary strategies, Covariance Ma-

trix Adaptation Evolutionary Strategies (CMA-ES), Particle Swarm Optimisa-

tion (PSO), and Monte Carlo Tree Search (MCTS).

3

Once the background has been established, the chapter moves on to analysing

the evaluation metrics suggested by previous work. This includes the definition

and formulae used to calculate the translated entropy for Ms PacMan game. An

experiment is initiated to measure the performance of the evaluation metrics.

Detail of the experiment is also reviewed along with the inconclusive result. The

chapter, then, explains an alternative evaluation method for the prey-predator

game. It proposes the relative region feature (RRF) extraction technique whose

generated data is used in later chapters.

Chapter 4 describes how to create adaptive NPC by altering actions among

selected agents. Given, the agents and the user preference ranking from the on-

line competition, the chapter explains how an adaptive NPC could be generated.

It also gives the formal procedure to create a user experience ranker when the

number of preference ranking levels is lower than the number of participating

agents. A ranker could be created from many configurations holding one reference

player agent. A Thorough evaluation on the rankers is done to find an optimal

ranker. The ranker is capable of ranking game data from unknown agents with

high correlation to the preference ranks. An optimal configuration is selected to

generate adaptive NPCs. The adaptability is demonstrated by the last experiment

in the chapter.

Chapter 5 repeats the procedure established previously on the player hall-of-

fame scores. This hall-of-fame list ranks players’ score from highest to lowest

which are then grouped into skill levels. Players’ agents with higher scores are

assumed to have higher skill. The created ranker also shows results highly corre-

lated to the skill ranking levels.

Chapter 6 deals mostly with optimisation. The chapter presents two sets of

4

optimisation problem with known optimal solutions. These problems are find-

ing optimal rankers for user experience ranking and finding optimal rankers for

player skill ranking from the previous two chapters. They provide challenges to

the optimisation techniques mentioned in the background chapter. The chap-

ter proposes the modification algorithm and compares the performance results.In

player skill level ranking problem, a modified version of PSO is developed and

shown to outperform the others by a significant value.

Later in the chapter, we introduce a way to create adaptive NPC by utilising

MCTS. This approach has an advantage over the agent-switching NPCs as it

requires no agent in the implementation. MCTS is used to find appropriate

response using the ranker as the evaluator. The experiment starts by analysing

game data for the decision statistics to be used in optimising MCTS parameters.

CMA-ES optimises MCTS parameters for real time constrained by the average

decision time limit. The comparison shows better correlation value for game data

generated by this MCTS-based adaptive NPC.

1.5 Contribution

The thesis provides a reliable way of optimising NPCs to fit user experience and

player skill criteria. It proposes a game data extraction technique which can be

used to create the user experience rankers and the player skill rankers. The opti-

mal rankers can reliably rank game data from unknown agents. A Re-calibration

calculation is proposed to improve the ranker’s scoring system. The thesis, also,

proposes modified version of CMA-ES and PSO for finding the optimal rankers.

User experience rankers and player skill rankers are generated to evaluate an

5

adaptive NPCs; agent-blending NPCs. This NPC adapts by stochasticly select

reference NPCs to response. For game starting out with a limit number of NPCs

or no NPC, we also propose an adaptive MCTS NPC which performs equally well

to the agent-blending NPC without the requirement.

6

Chapter 2

Background and Related Work

This chapter contains the necessary background material to understand the pro-

posed system from game design to optimisation.

The first section reviews game design elements and discusses an attempt to

quantify some of the cognitive terms while the second discusses the game de-

velopment process. Introduction to optimisation is in the third section. The

remaining sections detail advanced techniques used to accomplish the goal when

the mathematical functions need to be approximated.

2.1 Game Design

Games consists of four main elements: mechanics, story, aesthetics, and technol-

ogy [Schell, 2008]. Understanding each element in the game is important in order

to create a successful game. These elements can be described as followed:

• Mechanics consists of the rules, the procedures, and the goals.

7

• Story defines the sequence of events in the games along with the message

and information giving to the player.

• Aesthetics defines the looks and feels of the game including the sound and

music.

• Technology are the necessary tools that the player need to play game, e.g.,

input devices, display devices, or hand-held devices.

An attempt to standardise the tool used to analyse video games is called

Mechanics-Dynamics-Aesthetics framework (MDA) [Hunicke et al., 2004]. The

framework formalises the terms as follows:

• Aesthetics is the appeal of the game, including but not limited to the fol-

lowing taxonomy

– Sensation - game as sense-pleasure

– Fantasy - game as make-believe

– Narrative - game as drama

– Challenge - game as obstacle course

– Fellowship - game as social framework

– Discovery - game as uncharted territory

– Expression - game as self-discovery

– Submission - game as pastime

• Dynamics work to create aesthetic experiences for example, challenge is

created through time pressure and opponent play.

8

• Mechanics are the various actions, behaviour and control mechanisms in

the game.

The framework works nicely as a bridge to the gap between game design

and development, game criticism, and technical game research. For large game

project, the game development flows smoothly among the teams. However, there

is still a gap to be bridged between the designer’s objectives and game AI de-

velopment team. The framework has no detail specification on how designers’

objectives could be achieved at the implementation level.

One view of game design from Koster and Wright [2004], is that games are

made out of smaller games. The smallest level of a game is called a game atom.

These game atoms consist of input, model, feedback and mastery to characterise

the following:

• Input - a player does something.

• Model - the opponent or NPCs calculates a response.

• Feedback - the player get feedback.

• Mastery - the player learns from this feedback, and gets to do something

again.

In this scenario, the opponent or NPCs constitutes most of the aesthetic of

the game. Therefore, well-designed games with clear objectives for NPCs have

better chance of success. Controlling or optimising NPCs behaviour to meet the

designer’s objectives is just as important.

9

2.2 Game Development

A video game is a software product therefore its development is also a software

development [Bethke, 2003]. Just as any software development, game developers

iteratively improve their product on each production cycle. A production cycle

consists of four phases; pre-production, production, testing, and wrap-up [Chan-

dler, 2009]. Pre-production is the planing and designing phase where at least the

game concept and the development plan must be realised. Production is where

the coding and asset building begins. The time frame between these two phases

may be overlapped. Some tasks in the production phase can start parallel to the

pre-production phase. The testing phase is a critical phase in game development

[Chandler, 2009]. It includes plan validation and code release. Post-production

is when the product is actually completed and the teams need to take notes for

future project.

In some cases, the production cycle resolves to; concept, pre-production, pro-

duction, and post-production where post-production includes testing and releas-

ing game. In either case, the connections are clear between the designing team,

the production team, and the testing team.

The focus of this thesis is on the AI developers team who are directly responsi-

ble for creating the designed NPC AI. The work is related to Procedural Content

Generation (PCG) because its definition is given as the algorithmical creation of

game content with limited or indirect user input [Togelius et al., 2011a]. Exam-

ples of PCG are software tools that create game maps, systems that create new

weapons, programs that generate balanced board games, game engines that can

populate a game world, and map editors [Togelius et al., 2015].

10

The next section gives an overview of the field of optimisation which will be

used to automate the NPC generation process. The content covers mathematical

optimisation techniques as well as evolutionary approaches.

2.3 Optimisation

Optimisation is the process of finding the best solution from all feasible solutions

[Boyd and Vandenberghe, 2004]. Optimisation can be classified as either convex

optimisation or non-convex optimisation (e.g., non-linear optimisation).

2.3.1 Convex Optimisation

Convex optimisation guarantees to solve the problem reliably and efficiently given

the problem is well-formula and conformed to convex properties. Convex optimi-

sation problem can be generalised as:

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, · · · ,m

Where each function fi must be convex (e.g., has the following property).

fi(αx+ βy) ≤ αfi(x) + βfi(y)

if α + β = 1, α ≥ 0, β ≥ 0

It is worth noting that both least-squares problems and linear programs are

special cases of convex optimisation problem.

11

2.3.2 Non-convex Optimisation

Traditional techniques for general non-convex problems usually involve problem

decomposition and solving the convex sub-problems [Boyd and Vandenberghe,

2004]. The common techniques are:

• Local optimisation methods which uses non-linear programming tech-

niques to approach the task.

– find a point that minimises f0 among feasible points near it.

– fast, can handle large problems

– require initial guess

– provide no information about distance to (global) optimum.

• Global optimisation methods with the following characteristics.

– find the (global) solution

– problems might not be well-defined or too complex to be modelled

[Weise, 2008].

– worst-case complexity grows exponentially with problem size

– advance techniques from many fields: machine learning, reinforcement

learning, evolutionary optimisation, preference learning results in the

field called meta-heuristic optimisation [Luke, 2013]

2.4 Evolutionary Optimisation

Evolutionary algorithms are an umbrella term used to describe computer-based

problem solving systems which use computational models of some known mech-

12

anisms of evolution as key elements in their design and implementation [Spears

et al., 1993]. These algorithms share a common conceptual base of simulating the

evolution of individual structures via process of selection, mutation and repro-

duction. The processes depend on the perceived performance of the individual

structures as defined by an environment.

In other words, evolutionary algorithms maintain a population of structures,

that evolve according to rules of selection and other operators, that are referred

to as “genetic operators”, such as recombination and mutation. Each individual

in the population receives a measure of its fitness in the environment. Recombi-

nation operation signifies exploration whereas mutation signifies exploitation.

Evolutionary algorithms consists of the following three main categories [Back

et al., 1996].

• Genetic Algorithms - commonly used to solve optimisation problems by

searching feasible solution space using string of numbers with common op-

erators such as recombination and mutation.

• Evolution Strategies - optimisation techniques that searches for solution

using real-value vector by iteratively evolving a population from an initial

pool of candidates. The techniques use natural problem-dependent repre-

sentations where the primary search operations are mutation and selection.

Mutation is normally done by adding a random value to each vector com-

ponent. Individual step sizes are either governed by self-adaptation or by

covariance matrix adaptation (CMA-ES [Hansen and Ostermeier, 1996]).

• Genetic Programming - stochastically transforms populations of programs

into new population to perform a user-defined task [Poli et al., 2008].

13

2.5 Preference Learning

Preference learning is about inducing predictive preference models from empir-

ical data using utility functions and preference relations [Fürnkranz and Hüller-

meier, 2010]. From a machine learning point of view, these two approaches pose

two learning problems: learning utility functions and learning preference rela-

tions. Learning preference relations deviates from conventional problems like

classification and regression, as it involves the prediction of complex structures,

such as rankings or partial order relations, rather than single values. Moreover,

training input in preference learning will not be offered in the form of complete

examples but may comprise more general types of information, such as relative

preferences or different kinds of indirect feedback and implicit preference informa-

tion [FÜRNKRANZ and HÜLLERMEIER, 2003]. Preference learning has three

types of rankings problems as shown in Figure 2.1, 2.2, and 2.3.

Figure 2.1: Label Ranking
Given:

1. a set of training instances {xl|l = 1, 2, . . . , n} ∈ X

2. a set of labels Y = {yi|i = 1, 2, . . . , k}

3. for each training instance xl: a set of pairwise preferences of the form
yi �xl yj

4. for each training example ek:

Find:

• a ranking function that maps any x ∈ X to a ranking �x of Y (permutation
πx ∈ Sk)

14

Figure 2.2: Instance Ranking
Given:

1. a set of training instances {xl|l = 1, 2, . . . , n} ∈ X

2. a set of labels Y = {yi|i = 1, 2, . . . , k}

3. for each training instance xl and associated label yl

Find:

• a ranking function that allows one to order a new set of instances {xj}tj=1

according to their (unknown) preference degrees.

Figure 2.3: Object Ranking
Given:

1. a set of training instances {xl|l = 1, 2, . . . , n} ∈ X

2. a set of labels Y = {yi|i = 1, 2, . . . , k}

3. for each training instance xl: a set of pairwise preferences of the form
yi �xl yj

4. for each training example ek:

Find:

• a ranking function that maps any x ∈ X to a ranking �x of Y (permutation
πx ∈ Sk)

2.5.1 Related Research on Preference Learning

In recent research, pair-wise preference learning is used to rank the preferred ghost

teams from the Ms. Pac-Man competition [Sombat et al., 2012a] using on-line

evaluation from real players. This paper used preference learning in conjunction

with classification tools to verify that the reliability in specifying the ghost team

from game replays. Classification and preference learning can also be used in

15

place of heuristic evaluation with learning algorithm. This technique usually out-

performs the latter in the case where the learning agent tries to imitate human

player from game replays where high similarity of actions selected might not

be optimal strategy [Wistuba et al., 2012]. Preference learning is also used to

predict move in Othello game [Lucas and Runarsson] when combining with board

inversion provides the best result beating many other methods.

2.6 MCTS

In 1940s Fermi, Ulam, von Neumann, Metroplois and others began to use random

numbers to solve different problems in physics from a stochastic perspective [Lan-

dau and Binder, 2005]. Since then Monte Carlo methods have been applied widely

even though much of the work were unpublished. Researchers now acknowledge

that MCTS originated in statistical physics where they have been used to obtain

approximations to intractable integrals. They have since been used in a wide

array of domains including games research. Monte Carlo approaches in which

the actions of a given state are uniformly sampled are described as flat Monte

Carlo which is used to achieve world champion level play in Bridge and Scrabble

[Ginsberg, 2001; Sheppard, 2002].

MCTS is a method for finding optimal decisions in a given domain by taking

random samples in the decision space and building a search tree according to the

results. This has great impact on computational intelligence especially in games

where states can be represented as trees of decisions [Cameron Browne, 2012] .

MCTS assumes that the true value of an action may be approximated using

random simulation; and the values may be used efficiently to adjust the policy

16

towards a best-first strategy. The algorithm progressively builds a partial game

tree, guided by the results of previous exploration of the leaf nodes. The tree will

assemble that of the actual game tree and presumably more accurate as the tree

is built.

2.6.1 General MCTS Algorithm

The basic algorithm involves iteratively building a search tree until some prede-

fined computational budget typically a time, memory or iteration constraint is

reached, at which point the search is halted and the best-performing root action

returned. Each node in the search tree represents a state of the domain, and

directed links to child nodes represent actions leading to subsequent states. The

iteration process of the algorithm is presented in 2.4.

Figure 2.4: MCTS Iteration Process [Chaslot et al., 2008]

Four steps are applied per search iteration:

1. Selection: Starting at the root node, a child selection policy is recursively

17

applied to descend through the tree until the most urgent expandable node

is reached. A node is expandable if it represents a non-terminal state and

has unvisited (i.e. unexpanded) children.

2. Expansion: One (or more) child nodes are added to expand the tree, ac-

cording to the available actions.

3. Simulation: A simulation is run from the new node(s) according to the

default policy to produce an outcome.

4. Back-propagation: The simulation result is backed up (i.e. back-propagated)

through the selected nodes to update their statistics.

These may be grouped into two distinct policies:

1. Tree Policy: Select or create a leaf node from the nodes already contained

within the search tree (selection and expansion).

2. Default Policy: Play out the domain from a given non-terminal state to

produce a value estimate (simulation).

The back-propagation step does not use a policy itself, but updates node statistics

that inform future tree policy decisions as illustrate in Algorithm 1.

create root node v0 with state s0;
while within computational budget do

vl ← TreePolicy(v0);
∆← DefaultPolicy(s(vl));
Backup(vl,∆);

end
return α(BestChild(v0, 0))

Algorithm 1: General MCTS Approach [Cameron Browne, 2012]

18

Input: v
choose ain untried actions from A(s(v));
add a new child v′ to v;
with s(v′) = f(s(v), a);
and a(v′) = a;
return v′

Algorithm 2: Expand node expansion procedure [Cameron Browne, 2012]

Input: v, c
Output: child with best UCT value

return argmax
v′∈children(v)

Q(vi)
N(v′)

+ c
√

2lnN(v)
N(v′)

;

Algorithm 3: BestChild finds best child using UCT [Cameron Browne,
2012]

Input: v,∆
while v is not null do

N(v)← N(v) + 1;
Q(v)← Q(v) + ∆(v, p);
v ← parent of v;

end

Algorithm 4: Backup rollouts result back propagation [Cameron Browne,
2012]

19

2.6.2 Upper Confidence Bounds for Tree (UCT)

Kocsis and Szepesvári proposed the use of UCB1 as tree policy which value a child

node with the expected reward approximated by the Monte Carlo simulations

[de Mesmay et al., 2009]. Every time a node is to be selected within the existing

tree, the choice may be modelled as an independent multi-armed bandit problem.

A child node j is selected to maximise:

UCT = X̄j + 2Cp

√
2ln(n)

nj

where n is the number of times the current (parent) node has been visited, nj the

number of times child j has been visited and Cp > 0 is a constant. If more than

one child node has the same maximal value, the tie is usually broken randomly.

The values of Xi,t and thus of Xj are understood to be within [0, 1].

Input: s0
create root node v0 with state s0;
while within computational budget do

vl ← TreePolicy(v0);
∆← DefaultPolicy(s(vl));
Backup(vl,∆);

end
return α(BestChild(v0, 0))

Algorithm 5: UCT [Cameron Browne, 2012]

2.6.3 MCTS for Ms Pac-Man

Ms Pac-Man has enormous game tree due the size of nodes in the mazes and

the possibility that the path could repeat itself even with limit number of children

a node can have. Monte Carlo sampling approaches have been proposed to tackle

20

Input: v0
v ← v0;
while v is nonterminal do

if v not fully expanded then return Expand(v) ;
else v ← BestChild(v, Cp) ;

end
return v

Algorithm 6: Tree Policy Function [Cameron Browne, 2012]

Input: s
while s is non-terminal do

choose a ∈ A(s) uniformly at random;
s← f(s, a);

end
return reward for state s

Algorithm 7: Default Policy Function [Cameron Browne, 2012]

Input: v,∆
while v is not null do

N(v)← N(v) + 1;
Q(v)← Q(v) + ∆(v, p);
v ← parent of v;
∆← −∆;

end

Algorithm 8: BackupNegamax [Cameron Browne, 2012]

21

this including finding optimal routes in real-time [Pepels and Winands, 2012].

Robles and Lucas [2009] used a route-tree based on possible moves that Ms Pac-

Man can take. Flat Monte Carlo approach for the endgame strategy is also used

to improved the agent’s score by 20% with some basic assumptions regarding

the character’s movements [Bruce Kwong-Bun Tong, 2011]. Samothrakis et al.

[2011] used MCTS with a 5-player max-n game tree, in which each ghost is

treated as an individual player. Other applications of MCTS on Ms Pac-Man are

avoiding trapped moves, move planning [Nguyen and Thawonmas, 2011], and in

combination with heuristics learned from game-play to create better agent.

2.7 CMA-ES

CMA-ES stands for Covariance Matrix Adaptation Evolution Strategy. Evolution

strategies (ES) are stochastic, derivative-free methods for numerical optimization

of non-linear or non-convex continuous optimization problems. This uses an

adaptation scheme for adapting arbitrary normal mutation distributions [Hansen

and Ostermeier, 1996].

2.7.1 Principles

2.7.1.1 Maximum-likelihood

This principle is based on the idea to increase the probability of successful can-

didate solutions and search steps. The mean of the distribution is updated such

that the likelihood of previously successful candidate solutions is maximized.

The covariance matrix of the distribution is updated (incrementally) such that

22

the likelihood of previously successful search steps is increased [Hansen et al.,

1995] Both updates can be interpreted as a natural gradient descent. Also, in

consequence, CMA-ES conducts an iterated principal components analysis of suc-

cessful search steps while retaining all principal axes. Estimation of distribution

algorithms and the cross-entropy method are based on very similar ideas, but

estimate (non-incrementally) the covariance matrix by maximizing the likelihood

of successful solution points instead of successful search steps.

2.7.1.2 Search/Evolution Path

Two paths of the time evolution of the distribution mean of the strategy are

recorded, called search or evolution paths. These paths contain significant infor-

mation about the correlation between consecutive steps. Specifically, if consecu-

tive steps are taken in a similar direction, the evolution paths become lone. The

evolution paths are exploited in two ways. One path is used for the covariance

matrix adaptation procedure in place of single successful search steps and facili-

tates a possibly much faster variance increase of favorable directions. The other

path is used to conduct an additional step-size control. This step-size control

aims to make consecutive movements of the distribution mean orthogonal in ex-

pectation. The step-size control effectively prevents premature convergence yet

allowing fast convergence to an optimum.

2.7.2 Algorithm

In the following the most commonly used (µ/µw, λ)-CMA-ES is outlined, where

in each iteration step a weighted combination of the µ best out of λ new candidate

solutions is used to update the distribution parameters. The main loop consists

23

of three main parts:

• sampling of new solutions

• re-ordering of the sampled solutions based on their fitness

• update of the internal state variables based on the re-ordered samples

2.7.2.1 pseudo-code

set λ;

initialize m,σ,C = I, pσ = 0, pc = 0 ;

while not terminate do

for i← 1 to λ do

xi = sample multivariate normal(m, covariance matrix=σ2C);

fi = fitness(xi);

end

x1..λ ← xs(1)..s(λ) with s(i) = argsort(f1..λ, i);

m′ = m ;

m← update m(x1, .., xλ);

pσ ← update ps(pσ, σ
−1C−1/2(m−m′)) ;

pc ← update pc(pc, σ
−1(m−m′), ||pσ||);

C ← update C(C, pc, (x1 −m′)/σ, .., (xλ −m′)/σ) ;

σ ← update sigma(σ, ||pσ||) ;

end

return m or x1
Algorithm 9: CMA-ES Algorithm [Hansen, 2011]

24

2.8 PSO

PSO stands for particle swarm optimization. It is an evolutionary optimisation

developed by Kennedy and Eberhart [1995] in 1995. It was inspired by the social

behaviour of bird flocking and fish schooling [Eberhart and Kennedy, 1995]. It

works by guiding a group of particles through problem space by manipulating

their velocities. The velocity of each particle is stochastically adjusted with the

influence of its best known position and the population best position. The term

swarm comes from the irregular movements of the particles in the problem space,

similar to a swarm of mosquitoes [Eberhart, 2001]. PSO has advantages over

other optimisation techniques because it is not largely affected by the size and

non-linearity of the problem [Del Valle et al., 2008]. In general, PSO has the

following properties:

• Straightforward to implement.

• Few parameters to configure.

• Manages memory efficiently by keeping track of particle best position and

population best position.

• More efficient in maintaining the diversity of the swarm as oppose to us-

ing selection for new population generation in which worst parent is most

likely to be discarded. This property is especially valuable when optimizing

problems that contain many local minima [Van den Bergh and Engelbrecht,

2006].

25

2.8.1 Standard PSO

Standard PSO was created to solve continuous problem space. Its algorithm is

given in algorithm 10 and the update equation for the velocity and the position

of a particle are given in equation 2.1.

Data: s, ri, φp, φg, f(), MAXGEN
Result: best particle g
swarm = { g, pi };
for i = 1, .., s do

pi.x = U(ri);
pi.v = U(−ri, ri);
pi.b = pi.x;

end
g = best pi;
if g = global optimum then

return g;
end
while g not optimal and not MAXGEN do

updateParticle(pi.v, pi.x);
evaluate(pi.x);
for i = 1, .., s do

if f(pi.x) > f(pi.b) then
pi.b = pi.x;
if f(pi.b) > f(g) then

g = pi.b
end

end

end
if g = global optimum then

return g;
end

end

Algorithm 10: Adapted from Standard PSO: SPSO

26

p.vj += φpu(0, 1)(p.bj − p.xj) + φgu(0, 1)(gj − p.xj)

p.xj += p.vj

(2.1)

2.8.2 Discrete PSO

The first discrete version of the optimiser is the binary PSO proposed by Kennedy

and Eberhart [1997]. The binary uses the same equation to update particle’s

velocity while relies on equation 2.2 to alter solution value between 0 and 1.

p.xj =

 1 if u(0, 1) < 1

1+e−p.vj

0 otherwise
(2.2)

Laskari et al. [2002] has suggested rounding off the continuous optimum values

to the nearest integer for solving discrete problem space. Pan et al. [2008] has

suggested cross-over operation when particle’s best position required updating.

When the integer solution is assumed to be sampled from a single universe, the

solution can be obtained using Set-Based PSO by Langeveld and Engelbrecht.

This PSO version discretised velocity and used set operations in the original

velocity equation.

The sigmoid function in equation 2.2 is used as a switch function in the binary

version. It specifies whether or not to ignore the variable. The proposing PSO

algorithm in later chapter uses this function to decide whether to move up or

down the rank.

CMA-ES also requires modification to select only from valid integral candi-

dates and the candidates only use the sign of the different vector when adjust-

ments are required.

27

Chapter 3

Characterising NPC Behaviour

This chapter starts with the discussion of the related work either having common

goals or using the same techniques. The followed section details an attempt

to formulate player enjoyment metrics and discuss the challenges it proposed.

The next section provides a methodology for gathering human player preference

data through on-line questionnaires, followed by the analysis section. The last

section describes the process of ghosts team ranking and classification in search

for the corresponding features responsible for higher preference ranking by on-line

players.

3.1 Ms Pac-Man

Ms Pac-Man is an arcade video game produced by Midway in 1981. The game is

classified in the Maze genre as the original Pac-Man from Namco in 1980 [Lucas,

2007]. Pac-Man is a one-player game where the player controls the character to

gather points by eating dots. The player moves the character around a maze to

28

clear the dots while avoiding the four ghosts. Player loses a life when contact

with one of the ghosts. However, the ghosts turns edible for a brief period of time

when the character eat a power dot. There are fewer power dots in a maze than

the normal ones. Both power dot and edible ghost have higher scores than the

normal dots.

Related differences between Ms Pac-Man and the original Pac-Man are:

• Gender of the character. Pac-Man represents male while Ms Pac-Man rep-

resents female.

• Number of mazes. Pac-Man has one maze while Ms Pac-Man consists of

four mazes.

• Number of tunnels. The maze in the original Pac-Man game has only 1

tunnel. In Ms Pac-Man, one maze has 1 tunnel while the other three mazes

has 2 tunnels.

• Number of dots. There are 240 dots and 4 power dots in the original Pac-

Man. In Ms Pac-Man, the number of normal dots in the four mazes are

220, 240, 238, and 234, repectively when the number of power dots are the

same as that of the original game.

The game consists of four mazes in total labelled A, B, C and D and cycle

throughout the game with maximum number 16 mazes to clear. The player

starts in maze A with three lives; an additional life is awarded at 10000 points.

Each pill eaten scores 10 points, each power pill is worth 50 points. The NPCs

are the four ghosts: Blinky (red), Pinky (pink), Inky (green) and Sue (brown).

When a power pill is eaten the ghosts reverse the directions and turn them blue.

29

The score for eating each blue ghost in succession immediately after a power pill

has been consumed starts at 200 points and doubles each time, for a total of

200+400+800+1600=3000 additional points.

3.2 Related Work

Controlling NPC behaviour has been the major aim of game AI research for a

long time. Different techniques have been studied in variety of context. Some

work focuses on controlling NPCs on a single game while the others aims for

multiple games [Bjrnsson and Finnsson, 2009; Mhat and Cazenave, 2010]. The

research can also be categorized into controlling NPCs in real time (on-line) or

ahead of time (off-line). Common NPC controlling techniques are reinforcement

learning [McPartland and Gallagher, 2011; Wang et al., 2010], neural networks

[Parker and Bryant, 2012], evolutionary strategies [Recio et al., 2012], MCTS

[Maes et al., 2012; Nguyen and Thawonmas, 2013; Samothrakis et al., 2011].

3.3 Game Entertainment Evaluation

On some classic games such as chess, checker and Othello, computer can plays

human at any level with the exception of Go. But with the use of Monte Carlo

Tree Search [Browne et al., 2012], computer opponents in Go are improving re-

sults. Strong AI components is not the only area of research for video games as

highlighted by Laird and V. [2000]. And since then there has been significant

research in the area including - designing AI for NPCs, game content creation

[Shaker et al., 2010], and player entertainment/satisfaction. AI are now also used

30

to provide entertaining and engaging NPCs for the human players, since the game

industry already has acceptable AI for NPCs for most purposes according to N.

[2012]. On the other hand, Lucas et al. [2012] argues that there is great potential

in making game AI better, and that when the bots are smarter new possibilities

for interesting game play will naturally emerge.

One trend is to design game agents that are more interesting and fun to play

against. The holy grail of this research is to have reliable quantitative measures of

what makes a game fun. Each individual player has their own idea of what makes

a game enjoyable, and different players are looking for different things. Theoret-

ical approaches to define fun in computer games are based on the well-known

theory of flow [Csikszentmihalyi, 1991] which results in a model for evaluating

player enjoyment called GameFlow [P. Sweetser and P. Wyeth, 2005]. Quantita-

tive approaches came later with an attempt to capture the entertainment value

of a game. The works of Vorderer et al. [2003], Malone [1981] and N. et al. [2006]

agree that the level of challenge significantly impacts player satisfaction, espe-

cially when the challenge of the task matches the player’s abilities. Yannakakis

[2005] developed some measures that attempted to quantify fun in prey-predator

games such as Pac-Man. He developed an “interest function” consisting of three

distinct factors: challenge, behavioural diversity and spatial diversity. Although

the measures are a useful first step, it was not clear to us how well they would

work in practice for our reasonably faithful implementation of Ms Pac-Man, since

they were developed in the context of simpler examples and designed to apply

to a general class of games. The measures therefore omit a great deal of game-

specific information that can be used to better understand the player experience.

The formula are listed below for reference.

31

3.3.1 Level of Challenge (C)

This concept is based on how long the ghosts take to capture the player: the

longer the capturing time the easier the game, as expressed by Equation 3.1.

C =

[
1−

(
E {tk}

max {tk}

)]p1
(3.1)

where tk is the number of game ticks the ghosts take to capture Ms Pac-Man the

k-th time. E {tk} is the expected number of game ticks for a player to lose a

life, max {tk} the maximum game ticks taken over N games and p1 is a weighting

parameter.

3.3.2 Level of Behaviour Diversity (B)

This measure is based on the idea that behavioural diversity can be measured

by variations in the score obtained by a player over a series of games. Since the

Level of Challenge is based on the number of game ticks, the level of Behaviour

Diversity is defined using the standard deviation of the duration a player manages

to survive:

B =

(
σtk
σmax

)p2
(3.2)

where

σmax =
1

2

√
N

(N − 1)
(tmax − tmin) (3.3)

and where σtk is the standard deviation of tk over N games, p2 a weighting

parameter and tmin ≤ tk.

32

3.3.3 Level of Spatial Diversity (S)

Yannakakis used the following idea to define the concept of spatial diversity:

to make the game more enjoyable, the ghosts must behave aggressively and ex-

ploratory to capture the player unexpectedly at times. The level of spatial diver-

sity is formulated using number of nodes in the graph and number of visits to the

nodes. Presumably, more exploratory ghosts cover all nodes more uniformly.

The level of spatial diversity is defined to be the average of the distribution

value on different maze levels:

S = E {Hn} (3.4)

where

Hn =

[
− 1

logV n

∑ vin
V n

log
(vin
V n

)]p3
(3.5)

and where vin is the number of visits to graph node i in maze n, Vn =
∑

i vin the

total number of visits in maze n and vin is the number of visits to cell i in maze

n.

3.3.4 Interest Function

The overall Interest Function is then defined to be a weighted sum of the three

individual measures outlined above:

I =
γC + δB + εS

γ + δ + ε
(3.6)

33

This measure may subsequently be used to assign a scalar value to a ghost team

that indicates its perceived level of entertainment. Later in the chapter, we will

test how it work in Ms PacMan.

3.4 The Ms Pac-Man vs Ghosts Competition

3.4.1 Ms Pac-Man

Ms Pac-Man is an arcade video game produced by Midway in 1981. The game is

classified in the Maze genre as the original Pac-Man from Namco in 1980 Lucas

[2007]. The test-bed implementation maintain compatibility to the original game.

The player controls the agent to gather points by eating dots and avoiding ghosts.

Player loses a life when contact with one of the ghosts. The ghosts turns edible

for a while when player eat a power dot. Power dots and edible ghosts have higher

scores than the normal dots.

The game consists of four mazes in total labelled A, B, C and D and cycle

throughout the game with maximum number 16 mazes to clear. The player starts

in maze A with three lives; an additional life is awarded at 10000 points. Each

pill eaten scores 10 points, each power pill is worth 50 points. The non-player

4character (NPC) are the four ghosts: Blinky (red), Pinky (pink), Inky (green)

and Sue (brown). When a power pill is eaten the ghosts reverse the directions and

turn them blue. The score for eating each blue ghost in succession immediately

after a power pill has been consumed starts at 200 points and doubles each time,

for a total of 200+400+800+1600=3000 additional points.

The arcade game Ms Pac-Man is the most popular successor to the classic

34

Pac-Man, one of the most successful arcade games ever made. The player takes

control of Ms Pac-Man using a 4-way joystick and needs to navigate her across a

series of mazes. Ms Pac-Man scores points by eating the pills that are scattered

around the maze but is chased by four ghosts at the same time. Whenever a

ghost gets too close to Ms Pac-Man she loses a life. However, there are also four

power pills in each maze which, when eaten, turn the ghosts edible for a short

period of time, allowing Ms Pac-Man to chase and eat them instead. The first

ghost eaten awards 200 points and this reward doubles with each ghost eaten in

succession.

The game consists of four mazes which are played in order: whenever a maze

is cleared (i.e., all pills have been eaten), the game moves on to the next maze

until the game is over. Each maze contains a different layout with pills and power

pills placed at specific locations. Each pill eaten scores 10 points, each power pill

is worth 50 points. Ms Pac-Man starts the game with three lives; an additional

life is awarded at 10,000 points. At the start of each level, the ghosts start in the

lair in the middle of the maze and, after some idle time, enter the maze in their

pursuit of Ms Pac-Man.

3.4.2 Ms Pac-Man vs Ghosts

The Ms Pac-Man vs Ghosts Competition is currently in its third iteration, having

built on the success of the Ms Pac-Man Screen-Capture Competitions: competi-

tors are asked to write controllers for either or both Ms Pac-Man and the ghosts

and all entries compete with one another in a round-robin tournament to establish

the best controllers. Ms Pac-Man controllers attempt to maximise the score of

35

the game while the ghosts strive to minimise the score. There are no restrictions

regarding the techniques or algorithms used to create the logic for either side but

controllers have only 40ms per game step to compute a move. Each game lasts a

maximum of 16 levels and each level is limited to 3000 time steps to avoid infinite

games that do not progress. Whenever the time limit of a level has been reached,

the game moves on to the next level, awarding the points associated with the

remaining pills to Ms Pac-Man; this is to encourage more aggressive behaviour

of the ghosts, and avoids the ghosts spoiling a game by grouping together and

circling a few remaining pills.

3.5 Classification of Ghost Teams

Each ghost team is designed and implemented with different strategies. Individual

ghost in a ghost team follows a specific rule governed by the overall strategy. Each

strategy orchestrates the ghosts differently and more sophisticated strategies are

exhibited by the ghost teams with high scores. This section studies the movement

of the ghosts and the overlapping decisions among the ghost teams.

3.5.1 Measuring Decision Overlap

We are interested to see how distinct the ghost teams are from each other so we

designed an experiment to measure deviations in the action space. Each ghost

team was asked to return actions for 2, 000 unique game states that were generated

from games played by the starter controllers; only game states where three or four

ghosts need to make a decision were considered (ghosts are not allowed to reverse

so they only make decisions at junctions). The actions returned are integers

36

in the range [0, 4] and any invalid directions are converted to “neutral” prior

evaluation. The value 5 is used to signify if a ghost was not required to take

an action. The response of each ghost team thus consists of a 4-digit string

specifying the actions for Blinky, Inky, Pinky, and Sue sequentially. We can then

calculate the percentages of overlapping actions between the different ghost teams

in identical situations, ignoring actions from ghosts that are not required to take

an action. This data is shown in Table 3.2 using equation 3.7 such that each

entry in the table shows the percentage of similar actions made by ghost team i

and ghost team j; the data is also visualised in Figure 3.1.

Pij = 100× bij + iij + pij + sij
B + I + P + S

(3.7)

where bij (iij, pij, sij) is number of the identical actions made by Blinky (Inky,

Pinky, Sue) for ghost teams i and j and B (I, P , S) is the total number of actions

Blinky (Inky, Pinky, Sue) is required to take.

Table 3.1 shows the controller entries for the CIG11 competition.

37

Name ID PacMan ID Ghosts ID Vote Rank

NearestPillPacMan 20 20 - -

Legacy 24 - 24 1

Legacy2TheReckoning 25 - 25 17

xsl11 27 27 27 9

PhantomMenace 28 28 28 14

brucetong 60 60 60 15

mcharles 64 64 64 7

GLaDOS 66 - 66 16

Ant Bot 67 67 - -

num01 71 - 71 13

Nostalgia 73 - 73 2

kveykva 74 - 74 11

Zekna 76 76 -

hacklash 78 78 78 8

jackhftang 79 - 79 6

Spooks 80 80 80 10

ICEgUCT CIG11 81 - 81 5

ICEpAmbush CIG11 82 82 -

rcpinto 83 83 83 12

KaiserKyle 86 - 86 4

Scintillants 87 - 87 3

schrum2 88 88 -

CERRLA 89 89 -

emgallar 90 90 -

Random 91 91 91 18

garner 92 92 -

26 16 18

Table 3.1: Controller Entries for the CIG11 Competition

38

Figure 3.1: Confusion matrix of the percentages of similar decision made by the

ghost teams.

39

24 25 27 28 60 64 66 71 73 74 78 79 80 81 83 86 87 91

24 38 38 49 34 39 26 50 22 38 61 40 51 33 37 46 40 39

25 38 58 66 46 95 66 71 28 95 48 45 60 42 88 56 72 45

27 38 58 67 37 58 53 67 38 58 49 63 70 43 58 63 64 44

28 49 66 67 33 66 56 80 28 66 55 50 82 38 59 73 67 45

60 34 46 37 33 46 38 33 22 46 39 34 37 26 47 35 41 38

64 39 95 58 66 46 66 71 26 96 49 45 61 43 89 56 73 45

66 26 66 53 56 38 66 55 27 66 41 53 52 31 60 50 54 46

71 50 71 67 80 33 71 55 27 71 62 48 77 43 63 69 60 45

73 22 28 38 28 22 26 27 27 27 29 39 24 18 24 28 28 27

74 38 95 58 66 46 96 66 71 27 48 45 61 43 89 56 73 45

78 61 48 49 55 39 49 41 62 29 48 47 60 36 47 49 47 45

79 40 45 63 50 34 45 53 48 39 45 47 55 31 44 50 52 42

80 51 60 70 82 37 61 52 77 24 61 60 55 43 62 71 68 44

81 33 42 43 38 26 43 31 43 18 43 36 31 43 45 36 40 32

83 37 88 58 59 47 89 60 63 24 89 47 44 62 45 52 79 45

86 46 56 63 73 35 56 50 69 28 56 49 50 71 36 52 57 44

87 40 72 64 67 41 73 54 60 28 73 47 52 68 40 79 57 43

91 39 45 44 45 38 45 46 45 27 45 45 42 44 32 45 44 43

Table 3.2: Confusion matrix shows number of time the ghost teams made the

same decision in percentages.

3.5.2 Analysis of Ghost Decision

The 2, 000 game states used require a total of 6, 009 decisions to be made: Blinky

is required take 1,806 decision, Inky is required to take 1,877 decisions, Pinky is

required to take 440 decisions and Sue is required to take 1,886 decisions. The

percentage of entries that makes the same decisions more than 50% of the time

is 47% while the percentage of entries that make the same decisions more than

40

80% of the time is 10%. There are a few entries that shows high percentages of

similarity all of which are rule-based entries with conditionally using the same

rule to make decision at the implementation level.

3.5.3 Experimental Setup For Ranking and Classification

In this experiment, 18 ghost teams and 15 Ms Pac-Man controllers are pitted

against one another and games are recorded. The process begins by selecting one

ghost team and one Ms Pac-Man controller from the pool to play 20 matches.

Each match is run normally until the game is over. During the match important

game information is saved at each time step for replays and analysis:

• total time, level time, score, maze, level

• action, location and direction of Ms Pac-Man

• number of lives remaining

• statuses of all pills and power pills (eaten or not)

• location, direction, edible time, lair time of each ghost

Even though the size of game state is fixed, the size of a match may vary depend-

ing on how long the match takes. All 5,400 matches were played and recorded

sequentially.

3.5.4 Ghost Teams Ranking with Interest Function

To obtain the interest value mentioned in Section 3.3 we ran the following pro-

cedure through all 300 matches: the game states are read and the duration Ms

41

Pac-Man survived is recorded by counting the number of game states passed to

produce all tk value from which the average and maximum is easily obtained

(3.1). At this point we can also calculate equation 3.2 by finding the standard

deviation of tk get the maximum and minimum to feed to equation 3.3.

For the spatial diversity equation 3.4, because the we need to calculate number

of visits to each cell (node), this needs to be calculated separately depending on

which of the four mazes the game state is in. This can be done in one of the

following two ways: (1) by evaluating match one by one and average the value if

the match played on more than one maze and (2) by keeping tracks of all visiting

counts for 4 mazes, then all 300 matches can be read, and calculate once all the

reading is done. There is minor value differences between the two method. In

this experiment we used the first approach since it can be done incrementally.

In final step, we calculate the interest value of the ghost team by calculating

equation 3.6 with suggesting weight for parameters from the original author using:

p1 = 0.5, p2 = 1, p3 = 4, γ = 1, δ = 2, ε = 3

The interest values for all ghost teams is presented in rank order of this mea-

sure of interest in table IV. This bears no relationship to the rank order of pref-

erences expressed by human players in table 3.4, and actually ranks the Random

team highest, which human players found least interesting to play against.

42

Name 100*C 100*B 100*S 100*I Rank Vote Rank

Random 93.00 32.65 31.46 42.11 1 18

jackhftang 93.17 22.63 32.85 39.50 2 6

GLaDOS 96.78 25.68 28.24 38.81 3 16

Spooks 95.49 22.59 28.53 37.71 4 10

xsl11 94.41 19.14 31.10 37.67 5 9

num01 94.56 27.85 25.20 37.64 6 13

Nostalgia 97.14 20.70 28.89 37.53 7 2

PhantomMenace 95.70 19.68 29.52 37.27 8 14

Legacy 97.10 19.46 29.03 37.19 9 1

ICEgUCT CIG11 97.47 16.25 30.74 37.03 10 5

KaiserKyle 97.72 17.53 29.33 36.80 11 4

Scintillants 96.95 16.90 29.59 36.59 12 3

kveykva 95.70 27.00 22.28 36.09 13 11

Legacy2TheRec. 96.23 24.43 23.27 35.82 14 17

hacklash 97.97 17.24 26.93 35.54 15 8

brucetong 98.62 13.89 28.53 35.33 16 15

mcharles 98.79 14.06 28.15 35.22 17 7

rcpinto 96.12 25.22 20.43 34.64 18 12

Table 3.3: Results from the analysis of games using proposed measurement.

43

Rank Name Elo + - games score oppo. draws

1 Legacy 108 88 83 53 62% 4 0%

2 Nostalgia 76 86 82 55 60% -9 0%

3 Scintillants 72 94 91 45 58% 4 0%

4 KaiserKylets 67 80 77 60 58% -4 0%

5 ICEgUCT CIG11 51 74 72 71 56% -5 0%

6 jackhftangts 32 80 79 59 54% 0 0%

7 mcharles 27 84 83 53 53% 4 0%

8 hacklash 26 86 85 52 54% 1 0%

9 xsl11 21 79 78 61 52% 5 0%

10 Spooks 15 76 76 65 52% 1 0%

11 kveykva -14 80 81 59 47% 6 0%

12 rcpinto -46 83 86 52 44% -4 0%

13 num01 -57 76 78 64 42% 6 0%

14 PhantomMenace -58 80 82 58 43% 5 0%

15 brucetong -60 85 88 52 42% -2 0%

16 GLaDOS -63 79 81 59 44% -16 0%

17 Legacy2TheReckoning -91 77 80 62 40% -5 0%

18 RandomGhosts -108 85 90 52 37% 1 0%

Table 3.4: Results of Bayes Elo Analysis From On-line User Preference Sombat

et al. [2012b]

3.5.5 Relative Region Feature: RRF

Results in Section 3.5.2 show that ghost teams can be distinguished from each

other by the decisions they make given a set of game states. However, measuring

each decision offers a microscopic view of behaviour, and does not lead directly

to any useful analysis of what might make a game fun. In pursuit of this goal,

44

we designed a feature space that should be able to classify game logs as belong

to a particular ghost team, and also be useful in estimating fun.

The original Ms Pac-Man ghosts are fun to play against, and the rules control-

ling their behaviour ensure that they come at Pac-Man from different directions,

and are sometimes close by and sometimes far away. Hence, we developed relative

features that would account for the distances and directions of each individual

ghost to the Pac-Man. This is depicted in Figure 3.2 which labels the regions

relative to the position of the Pac-Man.

We further clarify this by plotting ghosts positions relative to the Pac-Man,

and found that the density of the relative ghosts positions exhibits differences.

This leads to region separations as to whether the ghosts likely to be in the

left-right-up-down position to location of Ms Pac-Man. Figure 3.2 shows regions

numbering where Ms Pac-Man is at the centre of the diagram on the left. The

picture in the right hand side in Figure 3.2 is a game state of a match at game

tick 530 with score 1,180 in level 1. Mapping the region for the ghost at that

game state would result in Blinky at region number 2, Inky is in region number

3, Pinky is in region number 0, and Sue is in region number 6.

3.5.6 Ghost Team Classification

The first step of the classification is to turns all the matches into region data.

This is done match by match. One match file turns into one region file. The

converter programs will turn each game state in the match one-by-one to region

data, with each game state mapping to a single region string. For example, the

game state on the right of Figure 3.2 is turns to 4-digit region string ’2306’. The

45

Figure 3.2: Region numbering (left) and overlay of regions relative to the position
of Ms Pac-Man (right).

region string varies on the size of the regions chosen, but is always of length 4.

In this experiment, three regions sizes are set-up. Small-size regions is the same

size as the maze. Large-size regions covers twice the size of the maze to keep the

ghosts in the range of region number 1 to 8. Medium-size regions is the middle

size between the two size.

The region data of a match is essentially a text file where each line is a region

string converted from the game state where the game tick is the same as the

line number. The data is then organised for the classification by grouping them

using the ghost teams identification irrespective of which Ms Pac-Man team it

is playing. The files are organised into 18 directories corresponding to the ghost

teams where each directory contains 300 region data files. These traces alter

significantly with depending on ghost team behaviour.

The text classifiers includes the step of preprocessing and transforming which

would help us discern the noisy data in developing custom classifier. For example

the term frequency inverse document frequency will take care of our high fre-

46

quency value for region string 0000 and scale the dimensions of the feature vector

for us [Joachims, 1998]. In this experiment we apply popular text classifier from

scikit-learn [Pedregosa et al., 2011]. The selected classifiers are Ridge classifier

(RidgeC), k-Nearest Neighbour Classifier (KNNC) [Dasarathy, 1991], Support

Vector Machine classifier [Joachims, 1998] using LIBLINEAR [Fan et al., 2008]

(SVMC), Stochastic Gradient Descent classifier (SGDC) Yin and Kushner [2003],

and Bernoulli Naive Bayes classifier (BNBC) Rish [2001]. In addition to the five

classifiers, we have created a custom classification pipeline. This pipeline consists

of a count vectorizer for feature extraction, TF-IDF for vector transformer, and

SVMC as the classifier (SVMC Pipeline).

All classifiers are trained with 3,510 region data files with 195 files from each

ghost teams. The remaining 105 region data files for each ghost team are used

for testing and validation. The classifiers scores are then evaluated with 1,890

region data files. Table 3.5 shows the F1-scores for all the classifiers, with the

overall best result being the SVMC Pipeline using the small region features. The

classifiers perform better with small region RRF dataset. Small region RRF

dataset outperforms medium size by 2.43% and it outperforms large size dataset

by 5.97%. The table also shows that the best classifier outperforms the second

best by 3.13%.

Figure 3.3 shows the confusion matrices for the SVMC classifier based on

small, medium and large regions respectively. The F1-score is the harmonic mean

of precision and recall, see equation 3.8.

F1 = 2 ∗
(
precision ∗ recall
precision+ recall

)
(3.8)

47

precision =
tp

tp+ fp
(3.9)

recall =
tp

tp+ fn
(3.10)

where tp (true positive) is the number of matches the ghost team played and

correctly classified, fp (false negative) the number of matches other ghost team

played but incorrectly classified and fn (false negative) the number of matches

other ghost team played and classified as not belong to the ghost team.

Small Medium Large

RidgeC 0.74 0.71 0.68

KNNC (n= 5) 0.65 0.63 0.61

KNNC (n=10) 0.60 0.60 0.57

KNNC (n=20) 0.54 0.57 0.54

SVMC 0.74 0.72 0.69

SGDC 0.74 0.73 0.70

BNBC 0.57 0.53 0.53

SVMC Pipeline 0.78 0.74 0.72

Table 3.5: Classifiers F1 Scores.

3.6 Ghost Team Ranking With Classifier

As shown in previous section, reliable classifiers can be generated using region-

base movement for Ms Pac-Man game. This section demonstrates that with

appropriate Pac-Man agent new ghosts controller can be ranked and rated. Table

48

Figure 3.3: Confusion matrices for different region sizes (small, medium, and
large; left to right) with SVMC Pipeline.

3.6 lists all entries for the experiment.

49

Name ID PacMan ID Ghosts ID

NearestPillPacMan 20 20 -

Legacy 24 - 24

Legacy2TheReckoning 25 - 25

xsl11 27 27 27

PhantomMenace 28 28 28

brucetong 60 60 60

mcharles 64 64 64

GLaDOS 66 - 66

Ant Bot 67 - 67

num01 71 - 71

Nostalgia 73 - 73

kveykva 74 - 74

Zekna 76 - 76

hacklash 78 78 78

jackhftang 79 - 79

Spooks 80 80 80

ICEgUCT CIG11 81 - 81

ICEpAmbush CIG11 82 82 -

rcpinto 83 83 83

KaiserKyle 86 - 86

Scintillants 87 - 87

schrum2 88 88 -

CERRLA 89 89 -

emgallar 90 90 -

Random 91 91 91

garner 92 92 -

26 17 18

Table 3.6: CIG11 Entries Used In The Experiment

50

In order to create reliable ghost ranking classifier, reliable pacman agents

need to be identified. The next experiment is setup to find most reliable pacman

entries to use as classification. is required as Some pacman entries especially the

entries that

3.6.1 Classifiers Evaluation

Comparing modern text classifications: SVC, MultinomialNB, and SGD. Set up

for evaluation:

• select based pacman controller, NearestPill pacman.

• Generate 400 games against each ghosts team total of 18*400 = 7,200 sam-

ples

• feature vectorizer - CountVectorizer

• classifiers - SVC, MultinomialNB, SGD

• classifier evaluation using StratifiedKFold - folds = 4

3.6.2 PacMan Selection

Because pacman entries implemented differently, some pacman should be more

reliable than the others when used as evaluating pacman agent in the classifier.

Rule-based entries should yield more reliable classifier than those with random

decision making.

Match data is generated from round-robin tournament of all pacman entries

versus all ghost entries. Each of the 17 pacman entries will have 18 ghosts team to

51

play against. There are 17*18 or 306 possible matches. Each match will generate

500 games and converted to region-based data where 400 of those are used as a

training dataset and the remaining 100 games as the testing dataset.

ID Name SVC SGD MuiltinomailNB

20 NearestPill 0.69 0.68 0.68

27 xsl11 0.85 0.83 0.80

28 PhantomMenace 0.85 0.84 0.83

60 brucetong 0.69 0.65 0.61

64 mcharles 0.83 0.82 0.75

67 Ant Bot 0.54 0.52 0.54

76 Zekna 0.78 0.72 0.90

78 hacklash 0.53 0.53 0.51

80 Spooks 0.92 0.89 0.91

82 ICEpAmbush CIG11 0.57 0.55 0.54

83 rcpinto 0.87 0.86 0.85

88 schrum2 0.67 0.66 0.64

89 CERRLA 0.83 0.82 0.81

90 emgallar 0.63 0.58 0.62

91 RandomNonRev 0.36 0.35 0.35

92 garner 0.71 0.68 0.65

Table 3.7: classifiers performance based on pacman entries

The SVMC classifiers are generated from the training dataset corresponding

to each pacman entries. Model evaluation are performed on Each classifier f1-

score report and confusion matrix is inspected. The table 3.7 reports f1-score on

all classifiers.

52

Figure 3.4: Confusion Matrix for Classifier built with Spooks pacman.

The highlighted classifier build from Spooks pacman has the highest f1-score

as show in table 4.2 and with Figure 3.4. Figure 3.5 shows the confusion matrix

for nearest pill pacman.

53

Figure 3.5: Confusion Matrix for Classifier built with NearestPill pacman.

3.6.3 Ghosts Team Evaluation

Overall classifiers performance based on ghosts entries.

54

ID Name SVC SGD MuiltinomailNB

24 Legacy 0.85 0.85 0.80

25 Legacy2TheReckoning 0.86 0.80 0.84

27 xsl11 0.73 0.72 0.63

28 PhantomMenace 0.61 0.58 0.56

60 brucetong 0.75 0.77 0.75

64 mcharles 0.32 0.35 0.32

66 GLaDOS 0.66 0.64 0.69

71 num01 0.84 0.81 0.79

73 Nostalgia 0.83 0.82 0.81

74 kveykva 0.27 0.07 0.30

78 hacklash 0.72 0.72 0.68

79 jackhftang 0.77 0.76 0.75

80 Spooks 0.81 0.76 0.76

81 ICEgUCT CIG11 0.78 0.75 0.79

83 rcpinto 0.78 0.77 0.83

86 KaiserKyle 0.77 0.79 0.76

87 Scintillants 0.63 0.67 0.58

91 Random 0.74 0.74 0.71

Table 3.8: classifiers performance based on ghosts entries

3.7 Conclusions

Creating AI for game NPCs to match player preferences is possible given adequate

implementation of NPCs implementation. In the experimental study that directly

measures human preferences in the game of Ms Pac-Man using a set of ghost

teams from a recent Ms Pac-Man versus Ghosts Competition. The competition

55

not only allowed us access to numerous distinct ghost teams but also gave us

a good idea of the playing strengths of these teams. To make the most of the

noisy preference data we used the Bayes Elo tool to optimally fit a Bradley-Terry

model and found that some teams were significantly preferred to other teams.

The Yannakakis model of interest [Yannakakis, 2005] was found to not produce

useful estimates. However, we developed a relative region approach that is more

directly applicable to the game of Pac-Man, and found that text classification

algorithms were able to classify ghost teams with reasonable accuracy. The idea

of using classification to evaluate automated game-play based on user preference

data can be extended to other type of games. This study demonstrates how

to extract movement traces from Ms Pac-Man which is equally applicable to any

other predator-prey game where similar behaviours are prominent. This approach

can also be used in platform games where movement traces such as ‘jumping on’

and ‘jumping over’ enemies and objects (e.g., Super Mario) can be used as an

indication of the gamer enjoying the game. This approach may also be generalised

to other types of games especially those where replays are widely available (as is

often the case with real-time strategy games used in gaming competitions).

56

Chapter 4

Player Experience Levels

This chapter presents a systematic method for creating NPCs with ability to

adapt to player experience levels in Ms PacMan game. The user experience levels

uses on-line user preference data as reference resource.

The research uses the RRF 3.5.5 technique in search for a way to correctly

rank player experience levels of NPCs. The methodology should be applicable to

other criteria as well such as difficulty levels based on NPCs scores.

4.1 Experiment setting

The experiment uses 15 pacmans entries and 18 ghosts teams entries from the

CIG11 pacman-vs-ghosts on-line contest. In addition to previous evaluation of

fun evaluation of the ghosts team entries, this experiment adds additional a ruled-

base pacman controller called, NearestPillPacMan. The pacman controller aims

to collect as many pills as possible by selecting the shortest path to the closest

pill. The total number of pacman controllers used is 16. There are 16×18 possible

57

matches and 200 unique games are generated for each match. The total of 57, 600

games are used in this experiment. Table 4.1 shows all of the entries.

58

Name ID PacMan ID Ghosts ID Vote Rank

NearestPillPacMan 20 20 - -

Legacy 24 - 24 1

Legacy2TheReckoning 25 - 25 17

xsl11 27 27 27 9

PhantomMenace 28 28 28 14

brucetong 60 60 60 15

mcharles 64 64 64 7

GLaDOS 66 - 66 16

Ant Bot 67 67 - -

num01 71 - 71 13

Nostalgia 73 - 73 2

kveykva 74 - 74 11

Zekna 76 76 -

hacklash 78 78 78 8

jackhftang 79 - 79 6

Spooks 80 80 80 10

ICEgUCT CIG11 81 - 81 5

ICEpAmbush CIG11 82 82 -

rcpinto 83 83 83 12

KaiserKyle 86 - 86 4

Scintillants 87 - 87 3

schrum2 88 88 -

CERRLA 89 89 -

emgallar 90 90 -

Random 91 91 91 18

garner 92 92 -

26 16 18

Table 4.1: Controller Entries for CIG11 Competition

59

4.2 PacMan entry selection

Sixteen classifiers is built based on 16 pacman entries. Each classifier is corre-

sponding to a pacman entry. Each classifier is trained on 2,700 games taking

from 150 games from each of the 18 ghosts teams entries. The remaining 900

games are testing games drawing 50 games from each ghosts team entry. Table

4.2 displays the performance of all the classifiers. Each row shows the precision,

recall and the F1 score on the corresponding classifier with the title pacman entry.

The precision is the positive predictive value calculated with precision. The recall

is the sensitivity or true positive rate calculated with recall. The F1 score is the

harmonic mean of precision and recall calculated with F1. TP , FN , and FP are

shorten for true positive, false negative, and false positive respectively. Table 4.2

also hilights pacman entry with highest accurate score.

60

PacMan Entries Precision Recall F1 Score

20 NearestPill 0.81 0.80 0.80

27 xsl11 0.82 0.80 0.81

28 PhantomMenace 0.81 0.81 0.80

60 brucetong 0.59 0.57 0.56

64 mcharles 0.80 0.80 0.79

67 Ant Bot 0.47 0.47 0.46

76 Zekna 0.86 0.81 0.80

78 hacklash 0.58 0.54 0.53

80 Spooks 0.92 0.92 0.92

82 ICEpAmbush CIG11 0.63 0.56 0.55

83 rcpinto 0.73 0.73 0.73

88 schrum2 0.53 0.50 0.50

89 CERRLA 0.80 0.78 0.78

90 emgallar 0.55 0.54 0.54

91 RandomNonRev 0.31 0.30 0.29

92 garner 0.58 0.58 0.57

0.67 0.66 0.65

Table 4.2: Performance of classifiers built with different PacMan entries

4.3 Classifier result

As hilighted in table 4.2, classifier trained with Spooks pacman entry has the

highest F1 score of 0.915. The classified result of the classifier can be visualised

with confusion matrix in figure 4.1. The confusion matrix shows that the ghosts

team entries 64 and 74 have negative effect on the accuracy. These are mcharles

61

and kveykva ghosts teams. In fact, these two ghosts teams has identical imple-

mentation. They are the startup ghosts controller provided by the competition.

Further experiment will exclude ghosts team 64, and will regard ghosts team 74

as a valid entry. The rank differences should not affect the classification or the

ranking order. The reason is that the classification treats the rank value as label

not ordinal while the ranking order depends only on the voted rank. Table 4.3

shows the detail accurate scores before excluding ghosts team 64.

Figure 4.1: Confusion Matrix for Classifier Trained with SpooksPacman Games

62

ID Ghosts Team Precision Recall F1-Score

24 Legacy 1.00 1.00 1.00

25 Legacy2TheReckoning 0.98 1.00 0.99

27 xsl11 0.98 0.94 0.96

28 PhantomMenace 0.93 1.00 0.96

60 brucetong 1.00 0.96 0.98

64 mcharles 0.48 0.78 0.59

66 GLaDOS 0.98 0.98 0.98

71 num01 0.98 0.98 0.98

73 Nostalgia 1.00 1.00 1.00

74 kveykva 0.48 0.22 0.30

78 hacklash 0.95 0.82 0.88

79 jackhftang 0.96 0.98 0.97

80 Spooks 1.00 0.98 0.99

81 ICEgUCT CIG11 1.00 1.00 1.00

83 rcpinto 0.98 0.94 0.96

86 KaiserKyle 0.96 1.00 0.98

87 Scintillants 0.94 0.96 0.95

91 Random 1.00 1.00 1.00

0.92 0.92 0.92

Table 4.3: Accuracy Score Report for Classifier Trained with SpooksPacman

Games

Figure 4.2 shows confusion matrix of the classifier trained with Spooks pacman

games excluding games from ghosts team 64. Table 4.4 shows the actual accurate

scores.

63

Figure 4.2: Confusion Matrix for Classifier Trained with SpooksPacman Games

After Removing Duplicate Entry

64

ID Ghosts Team Precision Recall F1-Score

24 Legacy 1.00 1.00 1.00

25 Legacy2TheReckoning 0.98 1.00 0.99

27 xsl11 0.98 0.94 0.96

28 PhantomMenace 0.93 1.00 0.96

60 brucetong 1.00 0.96 0.98

66 GLaDOS 1.00 0.98 0.99

71 num01 0.98 0.98 0.98

73 Nostalgia 1.00 1.00 1.00

74 kveykva 0.87 0.96 0.91

78 hacklash 0.96 0.84 0.89

79 jackhftang 0.96 0.98 0.97

80 Spooks 1.00 0.98 0.99

81 ICEgUCT CIG11 1.00 1.00 1.00

83 rcpinto 0.98 0.94 0.96

86 KaiserKyle 0.96 1.00 0.98

87 Scintillants 0.94 0.96 0.95

91 Random 1.00 1.00 1.00

0.97 0.97 0.97

Table 4.4: Accuracy Score Report for Classifier Trained with SpooksPacman

Games

4.4 Update result for selecting pacman entry

The experiment re-evaluates the classifiers for each pacman entries after removing

the duplicate ghosts team entries. Table 4.5 shows the performance result where

the classifier trained with SpooksPacman still remains the highest accurate clas-

65

sifier.

PacMan Entries Precision Recall F1 Score

20 NearestPill 0.849 0.846 0.845

27 xsl11 0.863 0.839 0.844

28 PhantomMenace 0.866 0.859 0.861

60 brucetong 0.609 0.589 0.585

64 mcharles 0.855 0.848 0.849

67 Ant Bot 0.504 0.494 0.492

76 Zekna 0.914 0.853 0.847

78 hacklash 0.615 0.572 0.565

80 Spooks 0.973 0.972 0.972

82 ICEpAmbush CIG11 0.677 0.588 0.597

83 rcpinto 0.795 0.779 0.780

88 schrum2 0.574 0.535 0.535

89 CERRLA 0.837 0.819 0.821

90 emgallar 0.576 0.562 0.563

91 RandomNonRev 0.332 0.319 0.311

92 garner 0.619 0.618 0.609

0.716 0.693 0.692

Table 4.5: Classifiers Comparison After Removing Duplicate Ghosts Team Entries

4.5 Using the classifier as ranker

Base on the performance shown in table 4.5, the most promising classifier is the

one trained using SpooksPacman. The experiment uses this classifiers as a ranker

to match that of voted rank by human players.

To rank a set of games, the experiment adds extra step after the games pre-

66

diction - rank score calculation. Two type of rank score calculations are used

in the experiment: weighted rank and max rank. The equation for weighted

rank is r =
∑17

i=1 civi where i indicates the index of ghosts team entry. ci is the

number of games classified as belonging to the ith ghosts team entry. vi is the

voted rank for the ith ghosts team entry. Max rank simply uses the voted rank

of the most predicted ghosts team entry. The experiment deploys two ranking

correlation coefficient to evaluate the predicted rank to the voted rank: Spear-

man’s ρ, and Kendall’s τ . Both Spearman’s ρ and Kendall’s τ output value in

the range -1 to 1. Value closes to 1 indicates strong correlation, where value

closes to -1 indicates negative association. Spearman’s ρ concerns only the rank

distances in its equation ρ = 1− 6
∑
d2i

n(n2−1) . Kendall’s τ equation for this experiment

is τ = nc−nd√
(n0−n1)(n0−n2)

. n0 = n(n−1)
2

n1 =
∑

i
ti(ti−1)

2

n2 =
∑

j
uj(uj−1)

2

nc = number of concordant pairs

nd = number of discordant pairs

ti = number of tied values in the ithgroup of ties for the first quantity

uj = number of tied values in the jthgroup of ties for the second quantity

Kendall’s τ is preferable when predicted rank contains ties. The experiment

also reports the p-value from significance test from each calculation. The p-value,

based on 10% significance level, can be interpreted against null hypothesis as

followed:

• p ≤ 0.01 very strong presumption.

67

• 0.01 < p ≤ 0.05 strong presumption.

• 0.05 < p ≤ 0.1 low presumption.

• 0.1 < p no presumption.

Table 4.6 shows ranking result of the classifier training on all 17 ghosts team

entries. The ranking result shows a perfect ranking systems when equally trained

on two thirds of the games from all 17 ghosts teams leaving one third of the

portion for testing.

68

Ghosts 24 25 27 28 60 66 71 73 74 78 79 80 81 83 86 87 91 Voted Weighted Max

24 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.00 1

25 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 17.00 17

27 0 0 47 2 0 0 0 0 0 0 0 0 0 0 0 1 0 9 9.08 9

28 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 14 14.00 14

60 0 0 1 0 48 0 0 0 0 0 0 0 0 0 0 1 0 15 14.64 15

66 0 0 0 0 0 49 0 0 0 0 0 0 0 0 1 0 0 16 15.76 16

71 0 0 0 0 0 0 49 0 0 0 0 0 0 1 0 0 0 13 12.98 13

73 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 2 2.00 2

74 0 0 0 0 0 0 0 0 48 2 0 0 0 0 0 0 0 11 10.88 11

78 0 1 0 0 0 0 0 0 5 42 1 0 0 0 0 1 0 8 8.34 8

79 0 0 0 1 0 0 0 0 0 0 49 0 0 0 0 0 0 6 6.16 6

80 0 0 0 0 0 0 0 0 0 0 0 49 0 0 1 0 0 10 9.88 10

81 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 5 5.00 5

83 0 0 0 0 0 0 1 0 2 0 0 0 0 47 0 0 0 12 11.98 12

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 4 4.00 4

87 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 48 0 3 3.28 3

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 18 18.00 18

ρ 1.00 1.00 1.00

p value 0.00 0.00 0.00

τ 1.00 1.00 1.00

p value 0.00 0.00 0.00

Table 4.6: Ranking results from classifier trained with 17*150 games tested with

17*50 games.

4.6 Ranking Result With Leave-One-Out

The experiment applies leave-one-out validation to measure the ranking perfor-

mance on untrained games presumably from unknown ghosts team. Seventeen

rankers are generated each of which is trained by omitting games from one ghosts

69

team entry. The ith ranker omits the games from ghosts team entry index i. It

will train on 16×150 games and test on 100 games from ghosts team entry index

i. Omitting ghosts team serve as unknown ghosts team entry. Leave-one-out is a

common technique to prevent overfitting problem and alternately evaluate how

well the ranker will works on unseen samples drawing from the population. Table

4.7 shows the result of the rankers and the overall correlation of the weighted

rank and max rank. Even though, both coefficients show positive correlation

to the voted rank, the values are not significant enough to draw the conclusion.

However, the p-value is close to the targeting 0.1 on significance level of 10%.

Future research could fine tune the classifiers to get a better ranking result. Hy-

perparameter techniques or gridsearch should lead to a better result.

70

Ghosts 24 25 27 28 60 66 71 73 74 78 79 80 81 83 86 87 91 Vote Weight Max

24 - 0 0 0 1 10 0 0 1 28 5 0 0 0 5 0 0 1 9.20 8

25 0 - 0 0 0 2 0 0 28 18 0 0 0 2 0 0 0 17 10.16 11

27 0 0 - 21 0 0 0 0 0 0 9 0 0 0 0 20 0 9 8.16 14

28 0 0 2 - 1 17 1 0 0 0 0 5 0 0 0 24 0 14 8.80 3

60 0 5 2 10 - 27 0 0 1 0 0 0 0 2 0 2 1 15 14.68 16

66 0 0 0 19 6 - 0 0 10 1 0 14 0 0 0 0 0 16 12.28 14

71 0 0 0 0 1 0 - 0 12 0 0 0 0 37 0 0 0 13 11.82 12

73 0 8 0 22 0 8 2 - 1 4 0 0 0 0 0 0 5 2 14.62 14

74 0 1 0 0 0 3 1 0 - 34 0 0 0 11 0 0 0 11 9.64 8

78 0 5 0 1 0 2 0 0 39 - 0 2 0 0 1 0 0 8 11.68 11

79 0 0 2 15 2 3 0 0 0 0 - 20 0 0 4 4 0 6 10.68 10

80 0 0 0 9 0 8 0 0 2 8 15 - 0 0 8 0 0 10 9.24 6

81 0 0 0 0 4 5 0 0 0 0 38 0 - 0 0 0 3 5 8.44 6

83 0 0 0 0 0 0 21 0 28 0 0 1 0 - 0 0 0 12 11.82 11

86 0 0 0 1 0 0 0 0 0 28 5 15 0 0 - 1 0 4 8.42 8

87 0 0 3 46 1 0 0 0 0 0 0 0 0 0 0 - 0 3 13.72 14

91 0 0 0 1 27 12 0 8 0 0 0 0 0 2 0 0 - 18 13.02 15

ρ 1.00 0.24 0.28

p 0.00 0.35 0.27

τ 1.00 0.21 0.21

p 0.00 0.23 0.24

Table 4.7: Leave-One-Out Ranking Result

4.6.1 Ranking by grouping

Generally a video games has a small number difficulty levels for player to choose

from. Exceptions are games with subjective difficulty which intention to offer

challenges appropriate to players of different skill levels. Most video games set

AI difficulty levels to a small number ranging from 4 to 8 levels. The original

Ms. PacMan prompts player with four difficulty levels and challenges the player

71

with speed-up where higher levels incur faster NPCs movements. The modified

version of Ms. PacMan for the competition, however, has removed the speed-up

factor. Hence, the difficulty levels relies solely on the challenging levels of the

ghosts team.

To achieve lower number of fun levels, the ghosts team entries are ranked in

descending order and divided into the desired number of groups. Therefore the

game data generated from the ghosts entries in the same group belongs to the

same label or have the same rank. The group number indicates the rank. The

lower number group has higher preference to the ones with higher number.

The experiment trains and verifies the classifiers on the group-wise game data.

The verification process uses a common cross-validation technique called leave-

one-out where each iteration reports the rank of the unseen game data using

weighted rank algorithm 11.

Table 4.8, 4.9, and 4.10 shows the result when the number of groups are 4, 5,

and 6 respectively.

72

Group 1 2 3 4 Voted Weighted Max

1 - 116 10 74 1 2.79 2

2 76 - 46 78 2 2.63 4

3 16 58 - 126 3 3.18 4

4 48 68 134 - 4 2.34 3

ρ 1.00 -0.40 0.32

p value 0.00 0.60 0.68

τ 1.00 -0.33 0.18

p value 0.04 0.50 0.71

Table 4.8: Ranking result when separating ghosts teams into 4 levels

Group 1 2 3 4 5 Voted Weighted Max

1 - 23 61 20 46 1 3.59 3

2 38 - 68 7 37 2 3.03 3

3 39 33 - 51 27 3 2.96 4

4 32 0 58 - 110 4 3.78 5

5 32 3 26 139 - 5 3.36 4

ρ 1.00 0.10 0.79

p value 0.00 0.87 0.11

τ 1.00 0.00 0.67

p value 0.01 1.00 0.10

Table 4.9: Ranking result when separating ghosts teams into 5 levels

73

Group 1 2 3 4 5 6 Voted Weighted Max

1 - 20 41 0 35 54 1 4.41 6

2 36 - 67 0 44 3 2 3.17 3

3 25 30 - 31 41 23 3 3.68 5

4 0 0 48 - 4 98 4 5.01 6

5 34 3 13 2 - 98 5 4.50 6

6 4 0 18 26 102 - 6 4.48 5

ρ 1.00 0.60 0.06

p value 0.00 0.21 0.91

τ 1.00 0.33 0.08

p value 0.00 0.35 0.83

Table 4.10: Ranking result when separating ghosts teams into 6 levels

4.6.2 Remarks on using weighted ranking score

Table 4.10 demonstrates the drawback of using rank calculated with the weighted

ranking score when classified games from group number 6. Majority of the games

are classified as the lowest rank possible. Intuitively, the rank should be close to

6 instead the calculation yield 4.48 resulting in ρ = 0.608. The ranking correla-

tion will increase to ρ = 0.771 with p-value = 0.072 if the rank of 5.1 is used.

Meaningful conclusion could be drawn.

74

4.6.3 Fixing the weighted ranking score

The following algorithms is used to solve the weighted rank scoring problem. Ta-

ble 4.11 shows the result of the recalibration algorithm. The new rank correlation

increases to 0.771 with significance level of 0.072. The result is an improvement

over the original weighted rank technique. The original result is:

Data: prediction(p), rank(r)
Result: weighted rank(w)
f(i) = frequency of rank i in prediction p;
w =

∑
i=1 i× f(i);

Algorithm 11: Weighted Rank

Data: prediction(p), rank(r), leaveoutindex(e)
Result: recalibrated rank(w)
r = [rmin, rmax]
remove efrom rand sequentialise element without skipping values
r′ = recalibrate(r − e)
r′ = [r′min, r

′
max]

w =
(x− r′min)(rmax − rmin)

(r′max − r′min)
+ rmin

Algorithm 12: Recalibrate Weighted Rank

75

Group 1 2 3 4 5 6 Voted Weighted Recalibrate Max

1 - 20 41 0 35 54 1 4.41 3.02 6

2 36 - 67 0 44 3 2 3.17 1.76 3

3 25 30 - 31 41 23 3 3.68 2.56 5

4 0 0 48 - 4 98 4 5.01 4.17 6

5 34 3 13 2 - 98 5 4.50 3.56 6

6 4 0 18 26 102 - 6 4.48 4.35 5

ρ 1.00 0.60 0.77 0.06

p value 0.00 0.21 0.07 0.91

τ 1.00 0.33 0.60 0.08

p value 0.01 0.35 0.09 0.83

Table 4.11: Leave-one-out validation result of the ranker when group the ghosts

team into 6 groups.

4.7 User Experience Ranking

When the labels for the classification is small, leave-one-out technique performs

badly as demonstrated in previous section. This prompts for a better way to

evaluate the classifier. The simple approach is to treat each member of the group

separately not as a whole. Since each member of a group is a ghosts team entry,

leaving any of the member out as a validation sample is reasonable. Moreover,

the skipped ghosts teams could be considered unknown to the ranker because no

data from ghosts team entry are available during the training process.

In actual event of ranking a new ghosts team, the game data must be gen-

erated. This is done by playing out the game using a reference pacman entry.

76

The reference pacman entry should provides best support for the ranker. Hence,

it is commonly the most accurate pacman entry in the pool. Without loss of

generality, this experiment uses Spooks 80 as the reference. The dataset are from

the reference pacman entry.

4.7.1 Ranked Groups as User Experience Levels

Previous chapter has analysed the on-line user preference data and presented the

user preference ranking of the ghosts teams. The users prefer to play against the

ghosts teams on the top of the rank to the ones at the bottom of the table. These

ghosts teams offer better experience to majority of the users. The preference

order gives natural order for categorizing the levels of user experience from best

to worst. Rather than trying to quantify the preference, the experiment focuses

on maintaining equal group size. There are two main argument for this. Firstly,

equal group size will most likely maintain equal unique features exhibited by each

ghosts team member. Secondly, each group will have the fair amount samples for

both training and testing.

Table 4.12 shows the user experience levels when categorised into 6 levels.

77

User Experience Level ID Ghosts Name Vote Rank

1

24 Legacy 1

73 Nostalgia 2

87 Scintillants 3

2

86 KaiserKyle 4

81 ICEgUCT CIG11 5

79 jackhftang 6

3

78 hacklash 8

27 xsl11 9

80 Spooks 10

4

74 kveykva 11

83 rcpinto 12

71 num01 13

5

28 PhantomMenace 14

60 brucetong 15

66 GLaDOS 16

6

25 Legacy2TheReckoning 17

91 Random 18

Table 4.12: Ghosts Team Ranking with 6 User Experience Levels

4.7.2 Ranker for User Experience Levels

Given an unknown ghosts team data, the final ranker should reliably identify the

user experience level or the preference level.

To ensure the ranker performance, the test samples should equally fall into

78

any of the user experience level. One way to simulate such process is to reserve

one member from each level as the test sample. Then, the ranker trains on the

remaining sample. A ranker is uniquely govern by its reserving list hence there

are 486 rankers.

One such instance is the ranker with the reserving list 87−79−80−71−66−91.

The experiment generates this ranker by a training SVM classifier with 2,200

samples. The training samples are from the remaining 11 ghosts teams each of

which provides 200 samples. The ranker classifies the testing ghosts team one by

one. Each time it reports the distribution of 100 classified samples among the

levels along with the weighted value and the level with maximum frequency.

Finally the score for the ranker is calculated using Spearman’s rank correlation

between the actual rank and the weighted rank. Table 4.13 is the score report of

this ranker.

79

Group 1 2 3 4 5 6 Rank Weighted Max

1 0 0 12 0 38 0 1 4.52 5

2 1 21 5 0 23 0 2 3.46 5

3 1 8 34 2 5 0 3 3.04 3

4 0 0 0 48 2 0 4 4.04 4

5 0 1 6 2 41 0 5 4.66 5

6 3 0 0 0 47 0 6 4.76 5

ρ 1.00 0.60 0.03

p value 0.00 0.21 0.95

τ 1.00 0.47 0.09

p value 0.00 0.19 0.81

Table 4.13: Ghosts Team Ranking with 6 User Experience Levels

4.8 Optimal User Experience Ranker

Further study of the experience rankers shows that there are diversity of perfor-

mances. The correlation scores range from -0.71 to 0.94. There are 20 instances

with the 0.94 while there is only 1 ranker scores -0.71. The mean for all 486

rankers is 0.32 with 0.37 standard deviation. The histogram of the study is in

figure 4.3.

80

Figure 4.3: Histogram of 486 User Experience Rankers

Table 4.14 shows an optimal experience ranker using Spooks as pacman ref-

erence.

81

Group 1 2 3 4 5 6 Rank Weighted Max

1 0 15 30 0 5 0 1 2.90 3

2 0 0 49 0 1 0 2 3.04 3

3 2 1 12 32 3 0 3 3.66 4

4 0 0 3 45 2 0 4 3.98 4

5 0 0 8 0 42 0 5 4.68 5

6 1 0 6 22 21 0 6 4.24 4

ρ 1.00 0.94 0.80

p value 0.0 0.00 0.05

τ 1.00 0.87 0.70

p value 0.00 0.01 0.05

Table 4.14: An Optimal User Experience Ranker 24−86−78−74−66−25−200

4.9 Blending Ghosts Team

In this experiment, an evolvable ghosts team is implemented using the optimal

user experience ranker from previous section. The ranker reports that game data

from the reserving list 24− 86− 78− 74− 66− 25 gives the most relevant ranks.

The ranker uses Spooks as the reference pacman entry.

4.9.1 Implementation

The BlendingGhosts will alter its responding actions by switching the index

through the reserving list. The index value directly maps to user experience

level minus one. When the calculated index is 0, the BlendingGhosts responds

with the Legacy, 24, decision. When the calculated index is 1, the BlendingGhosts

82

responds with the KaiserKyle, 86, decision, and so forth. The ghosts changes by

varying the weight variable. It uses algorithm 13 to find the index value from the

given weight in the action selection process.

Data: weight: w, ranks: n

Result: ghosts actions

r = (n− 1) ∗ w;

i = brc;

if u(0, 1) > r − i then

i = i+ 1;

end

actions = ghosts[i].getAction();

Algorithm 13: actions selection for blending ghosts team

4.9.2 Weight Variation and Result

To show the effect of weight variation, the experiment uses the ranker to rank

games generated using SpooksPacMan and BlendingGhosts. Weight assigned

to the BlendingGhosts varies from 0 to 1 with the step size of 0.05. For each

corresponding weight value, the experiment generates 100 games as the testing

data for the ranker. The total number of training games for the ranker is 2,200

games. The games are from 11 ghosts teams play against SpooksPacMan. These

are all the ghosts teams from the entries except for the 6 ghosts teams used in

the BlendingGhosts. Table 4.15 show the result of different weight values and the

calculated rank.

83

Weight% 1 2 3 4 5 6 Weight Weighted Max

0 0 41 41 1 17 0 0.00 2.94 2.50

5 1 30 63 0 6 0 0.05 2.80 3

10 1 21 71 0 7 0 0.10 2.91 3

15 2 16 79 0 3 0 0.15 2.86 3

20 3 2 88 3 4 0 0.20 3.03 3

25 5 6 69 8 12 0 0.25 3.16 3

30 6 4 75 3 12 0 0.30 3.11 3

35 3 5 70 2 20 0 0.35 3.31 3

40 3 3 53 14 27 0 0.40 3.59 3

45 0 3 42 26 29 0 0.45 3.81 3

50 2 1 54 18 25 0 0.50 3.63 3

55 0 0 43 26 31 0 0.55 3.88 3

60 1 1 22 64 12 0 0.60 3.85 4

65 0 8 45 5 42 0 0.65 3.81 3

70 1 14 38 0 47 0 0.70 3.78 5

75 0 11 45 0 44 0 0.75 3.77 3

80 1 3 66 0 30 0 0.80 3.55 3

85 3 3 32 0 62 0 0.85 4.15 5

90 2 2 28 0 68 0 0.90 4.30 5

95 0 0 40 2 58 0 0.95 4.18 5

100 1 0 26 7 66 0 1.00 4.37 5

ρ 1.00 0.90 0.76

p value 0.00 0.00 0.00

τ 1.00 0.74 0.65

p value 0.00 0.00 0.00

Table 4.15: user experience levels corresponding to various weight of Blending-

Ghosts

84

4.10 Conclusions

This chapter gives details on to classify and rank the ghosts team entries for Ms

PacMan. It shows that RRF 3.5.5 data can be used to classify and rank the

ghosts team entries with high accuracy. The ghosts teams can be grouped and

ranked according to the user on-line preferences ranking.

The experiment also propose a recalibrating calculation 12 for weighted rank

in each iteration of leave-one-out.

Despite the success, the technique describe in this chapter requires user on-

line evaluation as well as the consistency of the extracted RRF data. RRF data

of some games might not represent the game state as well as Ms. PacMan.

However the ranking technique should be applicable on games whose state could

be extracted in much the same way as the RRF.

85

Chapter 5

Player Skill Levels

This chapter will evaluate the performance of using the RRF 3.5.5 technique to

classify Ms PacMan difficulty levels. First section describes the generated data

for the classification. Next section gives details on the ranking problem and how

to group the pacman entries into fewer levels.

5.1 Experiment data

The experiment for this chapter uses only the entries from the CIG11 3.4 com-

petition. This consists of 15 pacman entries and 17 unique ghosts team entries.

When the competition is over, the competition reports the hall-of-fame for all

of the entries. Pacman entries are listed by the average score of all of possible

matches. The hall-of-fame list is shown in table 5.1 in descending order of their

average scores. The strongest pacman entry is at the top of the table while the

weakest one is on the bottom. There is no game data available from the competi-

tion therefore the experiment has to generate the games first before the analysis.

86

The hall-of-fame score list is the only reference resource used in this experiment.

Rank ID Name Affiliation Avg. Score

1 80 Spooks Private 41,447

2 28 PhantomMenace Private 32,108

3 82 ICEpAmbush CIG11 Ritsumeikan University 20,009

4 67 Ant Bot University Carlos III de Madrid 17,301

5 60 brucetong City University of Hong Kong 15,316

6 76 Zekna Private 13,386

7 78 hacklash Brigham Young University 12,825

8 90 emgallar University Carlos III de Madrid 12,148

9 27 xsl11 Private 8265

10 92 garner Private 7762

11 83 rcpinto UFRGS 6504

12 64 mcharles University of California 5755

13 89 CERRLA The University of Waikato 4277

14 88 schrum2 University of Texas at Austin 3796

15 22 RandomNonRevPacMan University of Essex 1197

Table 5.1: Pacman Hall-of-fame List

5.1.1 Generating dataset

A game data is a complete game generated with one pacman entry versus one

ghosts team entry. Therefore, a game data consists of a list of game states from

initial game state to the last game state. The game data collection contains 51,000

unique game data generated from 15 pacman entries and 17 ghosts entries. That

is 200 unique game data for each possible match of a pacman entry versus a

ghosts team entry.

The experiment extracts RRF 3.5.5 dataset from the game data collection for

87

the next process.

5.2 Predictability of the dataset

This section describes the process to find out how predictable each pacman entry

is. The experiment trains the selected classifier on two thirds of the dataset. The

remaining one third of the dataset is used to evaluate the model.

5.2.1 Data preparation

The dataset is labelled with the corresponding ID of the pacman entry. There

are 3,400 RRF data for each label from 200 game data for each ghost entry. The

training dataset draws 150 RRF data randomly from the 200 RRF game data for

each pacman-ghosts match. This leaves 50 RRF data from the 200 RRF data as

the testing dataset. Overall, the training dataset contains 38,250 RRF data and

the testing dataset contains 12,750 RRF data.

SVM classifier is selected for this experiment as the result of the classifier

study in section 3.5.

5.2.2 Predictability Result

Table 5.2 shows the classifier report. This shows that most pacman entries are

highly predictable in a one-vs-all scheme.

88

ID Pacman Entries Precision Recall F1 Score

27 xsl11 0.94 0.92 0.93

28 PhantomMenace 0.88 0.90 0.89

60 brucetong 0.44 0.45 0.45

64 mcharles 0.90 0.95 0.93

67 Ant Bot 0.68 0.70 0.69

76 Zekna 0.82 0.97 0.89

78 hacklash 0.81 0.90 0.85

80 Spooks 0.94 0.96 0.95

82 ICEpAmbush CIG11 0.80 0.67 0.73

83 rcpinto 0.87 0.94 0.90

88 schrum2 0.95 0.97 0.96

89 CERRLA 0.84 0.92 0.88

90 emgallar 0.66 0.48 0.56

91 RandomNonRev 0.72 0.54 0.62

92 garner 0.48 0.51 0.50

0.78 0.79 0.78

Table 5.2: Pacman Predictability Table

Using the RRF data, the classifier can identify the corresponding pacman

entry with overall accuracy of 78%. Moreover, if the game data belongs to five of

the 15 pacman entries it can be identified with more than 90% certainty. However,

the opposite is true for the game data from brucetong, emgallar, and garner where

the prediction is equal to random. It is important to note that high accuracy

89

does not automatically imply a rule-based pacman entry or vice versa. Ant Bot

and RandomNonRev are good example of this as Ant Bot employs evolutionary

strategy and RandomNonRev makes random actions. Intuitively, the game data

from these two entries should have predictability around 50%. In the case of

RandomNonRev, it can be indirectly conclude that RRF 3.5.5 extracts more

information than just the pacman actions.

5.3 Reference Ghosts Team Selection

The finalise player skill ranker will be used to rank an unknown pacman entry.

In return, the ranker will give the skill level of the pacman entry. It is intuitive

to use one reference ghosts team to train the ranker. If new pacman entry needs

evaluation, the ranker will rank the game data from this pacman and the reference

ghosts team.

This section provides the detail on how select the reference ghosts team. The

reference ghosts team is the ghosts team which will boost the performance of the

ranker. Therefore, It is the ghosts team entry whose game data gives the highest

predictability.

5.3.1 Data Preparation

The RRF dataset is labelled with the IDs of the ghosts team entries. Each label

has 3,000 samples. There are 17 labels in the dataset. Altogether, there are

38,250 training data and 12,750 testing data.

90

5.3.2 Classification Result

Table 5.3 shows the accuracy score report for all the labels. There are ghosts team

entries with prediction score more than 80%. While most ghosts team entries has

more than 60% chance of correctness, there are two ghosts team entries which

has worse prediction than guessing. They are Scintillants and kveykva. The

surprisingly high prediction score of Random ghosts team demonstrates again

that RRF data contains more information than just the response actions.

91

ID Ghosts Entries Precision Recall F1 Score

24 Legacy 0.63 0.79 0.70

25 Legacy2TheReckoning 0.68 0.75 0.71

27 xsl11 0.60 0.69 0.64

28 PhantomMenace 0.54 0.52 0.53

60 brucetong 0.58 0.49 0.53

66 GLaDOS 0.66 0.50 0.57

71 num01 0.79 0.66 0.72

73 Nostalgia 0.67 0.68 0.67

74 kveykva 0.52 0.33 0.40

78 hacklash 0.56 0.60 0.58

79 jackhftang 0.65 0.59 0.62

80 Spooks 0.63 0.58 0.60

81 ICEgUCT CIG11 0.83 0.75 0.79

83 rcpinto 0.49 0.77 0.60

86 KaiserKyle 0.63 0.59 0.61

87 Scintillants 0.45 0.53 0.48

91 Random 0.68 0.63 0.65

0.62 0.61 0.61

Table 5.3: Reference Ghosts Teams Classification Result

Comparing to table 5.3 to table 5.2, the predictability of the ghosts team

entries is much lower than that of the pacman entries. In other word, it is easier

to identify the pacman entry than to identify the ghosts team entry from a given

game data. This mainly dues to the fact that there are far fewer action space

for a pacman entry than that of the ghosts team entry. Pacman has at most

4 possible actions in a particular game state where ghosts team has at most

92

44 = 256 possible actions.

The most reliable ghosts team is ICEgUCT CIG11 with predictability of 79%.

Therefore, it is used as the reference ghosts team in the next section.

5.4 Player Skill Ranking

The player skill levels are presumably a small number. This experiment assumes

that there are 5 skill levels. The next section gives the detail of the group division

as well as the dataset preparation.

5.4.1 Data Preparation

The experiment divides the pacman entries into 5 groups according to their av-

erage score. Each group contains three pacman entries. Group label 1 consists

of the top three pacman entries. All game data by the member of the group will

be labelled with the group or the rank number. Group with lower number has

higher average score, i.e., stronger pacman entries.

Table 5.4 shows all the groups and theirs corresponding pacman entries mem-

bers.

93

Group Number (Skill Level) ID Pacman Name Rank Avg. Score

1

80 Spooks 1 41,447

28 PhantomMenace 2 32,108

82 ICEpAmbush CIG11 3 20,009

2

67 Ant Bot 4 17,301

60 brucetong 5 15,316

76 Zekna 6 13,386

3

78 hacklash 7 12,825

90 emgallar 8 12,148

27 xsl11 9 8265

4

92 garner 10 7762

83 rcpinto 11 6504

64 mcharles 12 5755

5

89 CERRLA 13 4277

88 schrum2 14 3796

22 RandomNonRevPacMan 15 1197

Table 5.4: Pacman Groups Table

The final dataset consists of 5 labels. Each label has 10,200 RRF data. All

51,000 samples are used in the ranking and evaluation in the next section.

5.4.2 Ranking

The ranker uses SVM classifier with weighted rank method described in Algorithm

11. To assert that the ranker will be able to classify game data of an unknown

pacman entry, all game data from 5 selected pacman entries must be omitted in

the training process. These omitted game data are later used in the evaluation

94

process to verify the ranker. The list of the 5 omitted pacman entries is called

the testing list. This simulates ranking game data from unseen pacman entry.

Figure 5.1 illustrates the omitting process. The numbers in the stacks are the

identification numbers of the pacman entries. The numbers below the stacks are

the group labels where each xi is the IDs of the testing pacman entries. There

are 35 possible ways to train and test the ranker each of which will give different

accuracy score.

Figure 5.1: Selection of Pacman Entries for Evaluation

String label of the IDs in the testing list is used to differentiate the ranker.

For example, ranker with label 80− 67− 78− 92− 89 will be created using the

following steps.

• The dataset for the ranker is collection of all the game data from the refer-

ence ghosts team.

• The number of samples for training is 2,000. Each group provides 400

training samples from the remaining pacman entries, e.g., 200 samples from

95

each of its’ member. For instance, group 1 randomly selects 200 samples

from the game data of the reference ghosts team and pacman entry ID 82.

It also does the same for pacman entry ID 28.

• For each of the pacman entries in the testing list:

randomly sample 50 game data

rank - how many of these game classified as group 1, 2, 3, 4, and 5

calculate the weighted rank - no recalibration is required because no

rank is skipped.

• Find the correlation between the group rank and the weighted rank.

Table 5.5 show the result of ranker 80− 67− 78− 92− 89. The p value shows

that no conclusion can be drawn with confidential about the relation between

the group rank and the weighted rank. Despite the high value of rho, the ranker

80− 67− 70− 92− 89 is not usable.

96

Group 1 2 3 4 5 Rank Weighted Max

1 50 0 0 0 0 1 1.00 1

2 2 44 3 0 1 2 2.08 2

3 22 2 16 4 6 3 2.40 1

4 0 49 1 0 0 4 2.02 2

5 0 14 10 1 25 5 3.74 5

ρ 1.00 0.70 0.74

p value 0.00 0.19 0.15

τ 1.00 0.60 0.67

p value 0.01 0.14 0.10

Table 5.5: Result of Ranker 80− 67− 78− 92− 89

5.5 Optimal Player Skill Ranker

As mentioned in previous section, there are 35 = 243 ways to build the player skill

rankers for a reference ghosts team entry. All 243 rankers are investigated in this

experiment. Every ranker are generated and tested using the procedure describe

in section 5.4.2. Some of the rankers are inconclusive with no correlation at all.

A number of the rankers are highly usable with high correlation and minimal

p-value. Table 5.6 shows one example of the 26 optimal player skill rankers.

97

Group 1 2 3 4 5 Rank Weighted Max

1 27 23 0 0 0 1 1 1

2 1 47 1 0 1 2 2 2

3 1 33 8 3 5 3 2 2

4 3 4 15 27 1 4 3 4

5 0 10 0 0 40 5 4 5

ρ 1.00 0.97 0.97

p value 0.00e+00 0.00 0.00

τ 1.00 0.95 0.95

p value 0.01 0.02 0.02

Table 5.6: An Optimal Player Skill Ranker 80− 67− 90− 83− 89

Figure 5.2 shows the count of rankers across the range of the Spearman’s ρ

value [−1, 1]. The figure shows that there are 38 rankers whose ρ values are 0.83

or more. There are 26 optimal player skill rankers with maximum ρ value of

1.0. Unfortunately, majority of these rankers can not be used to reliably rank an

unknown pacman entry.

98

Figure 5.2: Histogram of 243 Player Skill Rankers With Spearman’s ρ Values

5.6 Blending PacMan

In this experiment, a new pacman entry is implemented using the testing list

from an optimal ranker from previous section. The experiment will show that

it is possible to adjust the pacman entry to any skill levels. The new pacman

entry is called BlendingPacMan. BlendingPacMan is adjustable through a double

variable weight with the range from 0.0 to 1.0. Varying weight from 0.0 to 1.0

should gradually increase the skill level from 1 to 5. The action selection algorithm

is the same as that of BlendingGhosts described in algorithm 13.

99

5.6.1 Data generation

The weight is set to vary from 0.0 to 1.0 with the step size of 5. For every value

of weight, BlendingPacMan plays 100 games against the reference ghosts team,

ICEgUCT CIG11 whose ID is 81. The experiment carries out extra step to ensure

that the 100 games for each weight value are unique.

There are 2,100 game data from all 21 weight values. The experiment uses

RRF to extract these game data and uses as the testing dataset.

5.6.2 Ranking

The ranker 80− 67− 90− 83− 89 from table 5.6 is selected to rank the testing

dataset. For each weight value, the ranker classify the corresponding 100 RRF

data and report the weighted rank. The weighted result for all of the weight

values are in table 5.7 along with the ρ correlation to the weight values.

100

Weight% 1 2 3 4 5 Weight Weighted Max

0 89 0 0 1 10 0.00 1.43 1

5 8 88 0 0 4 0.05 2.04 2

10 7 89 2 0 2 0.10 2.01 2

15 6 83 10 0 1 0.15 2.07 2

20 4 79 16 0 1 0.20 2.15 2

25 10 85 1 0 4 0.25 2.03 2

30 3 93 3 0 1 0.30 2.03 2

35 7 83 4 0 6 0.35 2.15 2

40 6 81 1 0 12 0.40 2.31 2

45 11 79 1 2 7 0.45 2.15 2

50 8 70 12 2 8 0.50 2.32 2

55 12 64 15 5 4 0.55 2.25 2

60 11 59 14 7 9 0.60 2.44 2

65 6 60 16 10 8 0.65 2.54 2

70 7 27 43 17 6 0.70 2.88 3

75 38 0 9 53 0 0.75 2.77 4

80 18 17 35 18 12 0.80 2.89 3

85 6 24 25 28 17 0.85 3.26 4

90 6 28 13 19 34 0.90 3.47 5

95 8 27 2 14 49 0.95 3.69 5

100 1 18 0 2 79 1.00 4.40 5

ρ 1.00 0.96 0.87

p value 0.00 0.00 0.00

τ 1.00 0.88 0.77

p value 0.00 0.00 0.00

Table 5.7: Result of Tuning BlendingPacMan To Different Skill Levels

Figure 5.3 shows the gradual upward slope of the skill level as the weight in-

101

crease when calculated using the weighted rank 11. Even though the Spearman’s

ρ correlation is very high for the curve using max rank, the method might not

be suitable for actual skill level ranking. This is mainly because of the abrupt

decrement of skill level from 4 to 3 when the weight value is around 0.8.

Figure 5.3: Plotting of Weight Variation and Skill Level

5.7 Conclusion

This chapter shows that the RRF 3.5.5 technique is a suitable feature extraction

technique for generating player skill ranker in Ms PacMan. Player skill ranker

can be created with the straight forward procedure 5.4.2. The resulting optimised

player skill ranker can reliably rank an unknown pacman entry based on their

102

average scores. Once an optimal ranker is found, it is possible to create new pac-

man entry which can be tuned to any possible skill levels. Some of the experiment

in this chapter also strongly suggest that the extracted data encapsulates more

information than the pacman actions.

103

Chapter 6

Optimisation

This chapter presents the result of applying various optimisation techniques to the

problems related to designing NPCs in this thesis. The first problem is the search

for global optimal rankers for ranking user experience. Section 6.1 states the

problems, methodology, and the result. The second optimising problem concerns

with the optimal rankers for ranking player skills.

6.1 Optimising User Experience Rankers

The user experience rankers is described in section 4.7. Section 4.8 presents

an optimal experience rankers with a specific reference pacman entry, namely,

SpooksPacMan. These optimal experience rankers are local optimal in the search

space of size 486 samples. They are constrained to smaller pool of rankers. The

experiment conducted in this section, however, aims to find overall optimal expe-

rience rankers across 16 pools of search spaces. These overall optimal experience

rankers will later be called global optimal experience rankers.

104

The global optimal experience rankers will have the highest ranking score

from the original game dataset of 54,400 samples. The search space size for the

global optimal experience rankers is 7,776. The search space is small enough

for the brute-force method to successfully find the solution within a limited re-

sources. The brute-force method will provide a good reference comparison for

other optimisation techniques.

Figure 6.1 show the search space for global user experience rankers.

Figure 6.1: Search Space of 7,776 User Experience Rankers

The rankers ρ values range from -0.94 to 1.0. The average ρ value is 0.37 with

standard deviation of 0.38. There are 32 global optimal rankers with ρ equals to

1.0 while there are 9 rankers with the minimum value.

105

6.1.1 Individual Encoding

A ranking solution is commonly called individual in evolutionary computing. In

this case, the individual is an array where the value of the variables on each index

are drawn from different sets. The individual is denoted by x and is defined in

equation 6.1.

x = (p, g1, g2, g3, g4, g5, g6) (6.1)

where

p ∈ {20, 27, 28, 60, 64, 67, 76, 78, 80, 82, 83, 88, 89, 90, 91, 92} all possible values of

for the Pac-Man agent.

g1 ∈ {24, 73, 87} all possible ghost team values that belong to preference level 1.

g2 ∈ {86, 81, 87} all possible ghost team values that belong to preference level 2.

g3 ∈ {78, 27, 80} all possible ghost team values that belong to preference level 3.

g4 ∈ {74, 83, 71} all possible ghost team values that belong to preference level 4.

g5 ∈ {28, 60, 66} all possible ghost team values that belong to preference level 5.

g6 ∈ {25, 91} all possible ghost team values that belong to preference level 6.

6.1.2 Algorithms

The testing algorithms are implemented using Distribution Evolutionary Algo-

rithms in Python: DEAP [Fortin et al., 2012], module. These are the algorithms

being tested: simple genetic algorithm (GA), simple evolutionary algorithm (sEA)

[Baeck et al., 2000], µ+λ evolutionary strategy (µ+λES), µ, λ evolutionary strat-

egy (µ+λES), evolutionary algorithm using ask-tell model (ask-tell-ES) [Collette

et al., 2010], covariance matrix adaptation evolutionary strategy 2.7 (CMA-ES)

[Ostermeier et al., 1994], and a variation of particle swarm optimisation (RDPSO)

106

in the next section 6.1.2.1.

6.1.2.1 Rolling Discrete PSO: RDPSO

All of the optimisers conform to the originals except for the PSO and CMA-ES.

Both algorithms require modification in order to work with discrete variables with

sets of possible values. It is worth noting that each corresponding set of values

for the variables are in the rank order.

A modified version of PSO is presented here to solve the issue. The algorithm

uses the logistic function of the particle velocity as the probability to change the

value of the variables. Because, it uses the probability to roll the values to a better

rank or down the rank, the algorithm is called Rolling Discete PSO or RDPSO.

The variable rolls to the better rank by lowering its value. It does the opposite

otherwise. RDPSO follows the conventional binary PSO algorithm [Kennedy and

Eberhart, 1995] with variation on the updating function. The detail of RDPSO

is given in the algorithm 14. The formulae for updating each particle’s velocity

(p.v) and p.x are in equation 6.2.

p.vj = ωp.vj + φpu(0, 1)(p.bj − p.xj) + φgu(0, 1)(gj − p.xj)

p.xj =

 roll(p.xj,−1) if u(0, 1) < 1

1+e−p.vj

roll(p.xj,+1) otherwise

(6.2)

The same idea applies to CMA-ES in the updating step. The statistics influ-

encing the population’s movement uses real number. However, when interpolating

between two discrete values, the result has to be converted to integer and wrap

around.

107

6.1.3 Evaluation Method

Random sampling is used the reference benchmark for performance evaluation.

Each optimiser run 5,000 times. Each run records the number of evaluations

and statistics of the final population. The run completes when a global optimal

solution is found or the maximum generation of 1000 is reached. The expected

mean of random sampling 32 solutions from 7,776 should be 243. The experiment

compares the percentage of runs with lower evaluations calls. These runs are

referred to as better runs. The result of random sampling on the problem is in

figure 6.2. The random sampling reports 3,177 better runs with the mean of

243.45, and standard deviation of 243.07. This experiment uses line plot of the

histogram to visualise the result of the optimisers.

108

Figure 6.2: Number of Evaluations Calls by Random Sampling)

6.1.4 Results

Most optimisers have successes on most of the runs. Majority of the runs used

less number of evaluation calls than the expected mean. One of such example is

shown in figure 6.3.

109

Figure 6.3: An Optimising Result with (µ+ λ) ES

The run used 6 generations with 180 evaluation calls. In the final generation,

the optimiser found the global optimal user experience ranker 27−87−79−27−

71− 60− 91.

However, some runs took much more generations than expected. In turn, it

explored most of the search space area. Figure 6.4 illustrated those runs as it

explore the terrain.

110

Figure 6.4: A Exploring Run with GA

Figure 6.5 show the histogram plots of some of the optimisers.

111

Figure 6.5: Optimisers Result On User Experience Ranking Problem

Table 6.1 summarises the experiment result of the optimisers. The statistics

are not directly comparable as 4 of the optimisers contains some unsuccessful

runs. Those contains the number of unsuccessful runs as followed; 148, 161, 218,

and 430 respectively.

112

Optimisers Better Runs (243.00) Minimum Mean Maximum Standard Deviation

Random 63.98% 0 237.70 1,000 228.22

GA 41.76% 30 544.91 4,830 599.88

sEA 42.40% 30 540.28 5,580 606.14

µ+ λ 56.32% 30 3,224.36 30,030 6,850.49

µ, λ 53.36% 30 3,502.39 30,030 7,145.70

CMA-ES 47.28% 30 4,371.68 30,030 7,817.17

RSPSO 43.28% 30 2,873.53 30,030 8,333.21

Table 6.1: Optimisers Performance Comparison on User Experience Ranker

6.2 Optimising Player Skill Rankers

The player skill rankers is described in section 5.4 where optimal rankers found

in section 5.5 are local. The problem space is illustrated in figure 6.6. It consists

of 4,131 unique individuals with 67 global optima. The value for these optima is

1.0. The ρ values of the population ranges from -1 to 1 with the mean of 0.33

and the standard deviation of 0.45.

113

Figure 6.6: Search Space of 4,131 Player Skill Rankers

The random sampling should have the expected of 61.66 as show in figure

6.7.

114

Figure 6.7: Reference Random Sampling for Player Skill Optimisation

6.2.1 Individual Encoding

The encoding of individual consists of 6 numbers. the first number identify the

reference ghosts team id. The remaining refers to pacman id corresponding to

the group number as shown in equation 6.3.

x = (g, p1, p2, p3, p4, p5) (6.3)

where

g ∈ {24, 25, 27, 28, 60, 66, 71, 73, 74, 78, 79, 80, 81, 83, 86, 87, 91}

p1 ∈ {80, 28, 82}

115

p2 ∈ {67, 60, 76}

p3 ∈ {78, 90, 27}

p4 ∈ {92, 83, 64}

p5 ∈ {89, 88, 91}

6.2.2 Result

The search space for this problem is much smaller. Random sampling seems

to work better than the optimisers. Random sampling with the mean of 60.48

outperforms all testing optimiser except for RDPSO. All runs in RDPSO are

successful with less than 10 generations. Most of the runs are similar to figure

6.8.

116

Figure 6.8: A Success Run with RDPSO

After 5,000 runs, the random sampling method results in 30.1% for the better

runs with the average of 535 evaluations.

The comparison The reference random sampling result is shown in figure 6.9.

117

Figure 6.9: Performance Comparison on Player Skill Optimisation

Table 6.2 shows the comparison of the optimisers on player skill rankers.

Optimisers Better Runs (61.66) Minimum Mean Maximum Standard Deviation

Random 64.18% 0 60.48 517 62.67

GA 53.86% 30 124.18 1,590 148.72

sEA 53.18% 30 125.27 1,470 148.91

µ+ λ 53.24% 30 151.11 30,030 843.62

µ, λ 54.56% 30 153.26 29,460 871.83

CMA-ES 61.34% 30 89.84 2,700 137.00

RDPSO 79.04% 30 57.64 270 29.65

Table 6.2: Optimisers Performance Comparison on Player Skill Rankers

118

6.3 Adaptive Tic-Tac-Toe NPCs using MCTS

Even though the accuracy of the NPC from previous two chapter show high

correlation score, it has one drawback. It requires ghosts team entries to make

response action.

This section provides alternative way to create adaptive NPC without relying

on other ghosts team entries. When responding action is required, this NPC

will select best responding action using MCTS. MCTS relies on the accuracy of

the rollout result. If rollouts fully explore the game tree, the best responding

action is guaranteed. The following experiment demonstrates the MCTS NPCs

on Tic-Tac-Toe game.

6.3.1 Statistics

An experiment has been done to confirm statistical data on Tic-tac-toe game. The

entire game tree has been explored to starting from an empty game state. The

statistics results on Table 6.3 and Table 6.4 has confirmed Tic-tac-toe statistics

from the reading resource.

Status Non-unique Games Unique Games

x wins 131,184 91

o wins 77,904 44

draw 46,080 3

Total 255,168 138

Table 6.3: Tic-tac-toe Winning Statistics

119

Tree Level Nodes Terminals Unique

level0 1 0 0

level1 9 0 0

level2 72 0 0

level3 504 0 0

level4 3,024 0 0

level5 15,120 1,440 21

level6 54,720 5,328 21

level7 148,176 47,952 58

level8 200,448 72,576 23

Total 549,946 255,168 138

Table 6.4: Tic-tac-toe Game Tree Statistics

6.3.2 NPC Objectives

To make distinctive preference other than winning, the following types of winning

position preferences are tested. Preference:

1. player type R: prefer to win with 3 in a row - w0

2. player type C: prefer to win with 3 in a column - w1

3. player type D: prefer to win with 3 diagonally - w2

6.3.3 Implementation

The agent uses the MCTS search function as described in algorithm 15. The

heuristic function is in equation 6.4 where w0, w1, w2, w3 ∈ [0.0, 1.0].

120

h(s) = w0rowWin(s) + w1columnWin(s) + w2diagonalWin(s) + w3win(s) (6.4)

rowWin(s) =

 1.0 if ’X’ wins in state s by 3 in a row

0.0 otherwise

columnWin(s) =

 1.0 if ’X’ wins in state s by 3 in a column

0.0 otherwise

diagonalWin(s) =

 1.0 if ’X’ wins in state s by having 3 diagonally

0.0 otherwise

6.3.4 Results

For this experiment, the maximum simulation, Sx, is 1,000 without limitation on

maximum rollouts; Rx = ∞. The MCTS NPC plays as ’X’ against the random

player ’O’. The experiments test w0, w1, w2 independently where w3 is fixed to

1. For each configuration values, MCTS NPC plays 1,000 with random player.

6.3.4.1 R - prefers to win by row

w0 varies from 0 to 1 in 0.001 intervals while keeping w1 = 0, w2 = 0, w3 = 1. For

each value of w0 the following statistics is recorded:

121

• number of games end with draw - draws

• number of games won by ’X’ - xwins

• number of games won by ’O’ - owins

• number of games ’X’ wins with row - rowwins

• number of games ’X’ wins with column - columnwins

• number of games ’X’ wins diagonally - diagonalwins

The result of MCTS NPC adapting to preference R is shown in figure 6.10. When

w0 = 0, the percentage of wins by row is about 35% about 5% percentage less

than wins by diagonal. Number of wins by row increases as weight rises from 0 to

0.2 and stays 75% after that. The number of games ends in draw has the mean

of 1.12% overall with standard deviation of 0.34 while there is no game won by

the random player from 1,000,000 games.

122

Figure 6.10: Result when vary row-win weight w0

6.3.4.2 C - prefers to win by column

When adapting for wins by column, w0 and w2 are fixed at 0 and w3 = 1.0 The

result of varying w1 from 0 to 1.0 with interval of 0.001 is shown in figure 6.11.

Number of games won by MCTS NPC is 98.88% with 1.12% draws.

123

Figure 6.11: Result when vary column-win weight w1

6.3.4.3 D - prefers to win by diagonal

The result of adapting to preference D is shown in figure 6.12. w0andw1 are fixed

at 0.0 and w3 is 1.0. The statistics of wins and draws are the same as above but

the adapting speed seems to be slower than the other two.

124

Figure 6.12: Result when vary diagonal-win weight w2

6.4 Adapting MCTS NPC for Ms PacMan

This section applies the methodology in previous section to create adaptive NPC

for Ms PacMan. The new NPC will be compared to the BlendingGhosts from

chapter which relies on existing NPC models to give responding action.

Both ghosts teams uses a selected optimal user experience ranker 20-87-86-80-

83-66-25. This means that the reference PacMan controller is NearestPillPacMan

with entry ID 20. The remaining numbers represent ghosts team entry ID from

each user experience level sequentially.

125

The NPCs are modified to accept the target level as an attribute. There are

6 possible user experience levels from 1 to 6. For each number of the levels,

the number is assigned to the NPC’s target level and the NPC runs against the

reference PacMan controller to generate 20 distinct games.

Each NPC has 120 game data; 20 game data per level. RRF data are extracted

from these games and evaluated using the selected ranker. The result of the

BlendingGhosts is shown in table 6.5.

Group 1 2 3 4 5 6 Rank Weighted Max

1 0 14 0 2 3 1 1 2.85 2

2 0 15 1 0 3 1 2 2.70 2

3 0 3 1 9 6 1 3 4.05 4

4 0 8 1 7 2 2 4 3.45 2

5 0 4 3 1 8 4 5 4.25 5

6 0 2 1 4 1 12 6 5.00 6

ρ 1.00 0.89 0.82

p value 0.00 0.02 0.05

τ 1.00 0.73 0.75

p value 0.00 0.04 0.04

Table 6.5: User Experience Ranking Performance using BlendingGhosts

6.4.1 State Evaluation

The MCTS NPC for Ms PacMan uses algorithm 15 to search for best response

action. RRF vector, x, is calculated during the simulation process. At the end of

each simulation, the algorithm uses user experience ranker to calculate the rank

for the vector before assigning the game state value. The formula is equation 6.5.

126

v = 1− |t− te|
6

(6.5)

t is the target rank and te is the rank evaluated by the ranker. The selected ranker

is the improved [Keerthi et al., 2001] sequential minimal optimization (SMO)

[Platt, 1998] algorithm for training a support vector classifier. The algorithm

uses pairwise coupling classification [Hastie and Tibshirani, 1998] internally on

multi-class problems.

6.4.2 Decision Time Constraint

The pacman-vs-ghosts competition allows 40 milliseconds for entries to response

with an action on each frame. However, the ghosts team entry does not have to

search for the action every frame as there are often more frames with only one

possible action to choose from. The game only expects response from the ghost

team if any of the ghosts is at cross-section or a random threshold is reached.

Therefore, the ghost team can reserve the time slot to plan ahead of time.

Statistics on the game dataset are shown in table 6.6. This shows that appro-

priate decision time is 284 milliseconds if the ghosts team would utilize the time

slot efficiently. The game dataset is the same one from chapter 4 where there are

54,400 games from 16 pacman entries and 17 ghosts team entries.

127

PacMan Entries ID Score FPG R-FPG Time

NearestPill 20 1,779.45 548.82 53.97 406.74

xsl11 27 5,135.57 1,619.79 207.30 312.55

PhantomMenace 28 14,865.58 4,602.89 717.30 256.68

brucetong 60 789.35 587.22 67.61 347.40

mcharles 64 3,080.09 780.32 89.90 347.20

Ant Bot 67 490.19 305.33 38.25 319.31

Zekna 76 4,963.05 4,076.73 510.28 319.57

hacklash 78 373.11 244.80 25.16 389.14

Spooks 80 16,477.57 7,857.15 1,299.02 241.94

ICEpAmbush CIG11 82 597.61 557.00 65.96 337.76

rcpinto 83 3,769.83 1,393.61 171.30 325.42

schrum2 88 460.36 255.08 27.12 376.28

CERRLA 89 2,298.24 724.70 76.67 378.09

emgallar 90 511.74 281.04 35.01 321.11

RandomNonRev 91 694.50 381.68 39.31 388.42

garner 92 630.68 530.03 58.64 361.54

3,557.31 1,546.64 217.68 284.21

Table 6.6: Statistics of game dataset; FPG (frames per game), R-FGP (require

response frames per game), Time (planning time in milliseconds)

The decision time constraint pushes maximum simulations Sx and maximum

rollouts Rx down to minimal. The possible combination is Sx = 50 and Rx = 7

with average planning time 273.32 ms. The value of maximum rollout gives about

50 frames look-ahead.

128

6.5 Result

The performance result of the MCTS NPC is in table 6.7. The correlation is

weaker when compare to the result of BlendingGhosts from table 6.5. This mainly

due to the limitation of the decision time which severely reduces the exploration

and exploitation of the game tree. With low number of simulations and low

number of rollouts, the MCTS algorithms performance should be close to random.

However, the result in table 6.7 shows some correlation to the target ranking

with reasonable number of true positives. The main cause of this problem is the

game implementation for this thesis. While the game on the competition provides

pre-calculated path distances for fast lookup, the game version used in this thesis

is not. The path distance is calculated every time it is required. The reference

pacman entry in MCTS, NearestPillPacMan, calls multiple times on one game

frame.

Group 1 2 3 4 5 6 Rank Weighted Max

1 3 4 4 0 7 2 1 3.50 5

2 3 1 0 4 10 2 2 4.15 5

3 1 3 7 4 2 3 3 3.60 3

4 5 0 4 4 1 6 4 3.70 6

5 0 2 3 6 5 4 5 4.30 4

6 4 5 1 0 1 9 6 3.80 6

ρ 1.00 0.54 0.29

p value 0.00 0.26 0.57

τ 1.00 0.46 0.21

p value 0.00 0.18 0.54

Table 6.7: User Experience Ranking Performance using BlendingGhosts

129

6.6 Conclusion

The first two optimising problems in the first two sections have small search space.

They post challenges to optimising algorithms as random search usually performs

well and the problems have multiple local optima. However, most optimisers are

found to perform reasonably well on both problems.

It should be interesting to see the result in other games with much bigger

search space. Video games with many players and a number of NPCs implemen-

tation should also provide a great testing platform.

Finally, the study in this chapter shows that evolutionary strategy optimis-

ers can help in the process of creating NPCs even when no reference NPCs are

available. Alternately, the optimisation can assists in finding optimal condition

for NPCs.

130

Data: s, ri, ω, φp, φg, f(), MAXGEN
Result: best particle g
swarm = { g, pi };
for i = 1, .., s do

pi.x = U(ri);
pi.v = U(−ri, ri);
pi.b = pi.x;

end
g = best pi;
record generation z = 1;
if g = global optimum then

return g;
end
while g not optimal and not MAXGEN do

updateParticle(pi.v, pi.x);
evaluate(pi.x);
for i = 1, .., s do

if f(pi.x) > f(pi.b) then
pi.b = pi.x;
if f(pi.b) > f(g) then

g = pi.b
end

end

end
record generation + + z;
if g = global optimum then

return g;
end

end

Algorithm 14: Rolling Discrete PSO: RDPSO

131

Data: s - game state, Sx - maximum simulation, Rx - maximum rollouts
Result: best action
root = Node(s);
while i < Sx do

node = select(root, ’UCT’);
expan(node);
value = simulate(node.s, Rx);
backpropagate(node, value);

end
return selectBestChild(root).action

Algorithm 15: Adapted MCTS Algorithm - search()

132

Chapter 7

Conclusion

The thesis focuses on creating adaptive NPCs to partially automate the task

in responsibility of the AI developer team. The research assumes clear NPC

objective and reference resources obtained from testers or on-line players. These

are part of the game production cycle.

This thesis discusses the methodology for creating adaptive NPC using avail-

able NPC entries. The primary game for the study is Ms PacMan with public

resources from the pacmans versus ghosts competition. The study requires reli-

able source of information to draw practical conclusion. This chapter summarises

the contribution of the thesis as well as discussing the limitation and the appli-

cations.

The contribution of this thesis expands from the study of relative region data

on CIG11. The data is found to be reliable for agent identification. The thesis

further analyses how this technique could be used to identify the NPC agents as

well as the agent for the player. Thorough investigation on the technique is done

by first generating extensive amount of game data from the testing agents. The

133

research contributes the extraction technique along with the developments and

analyse techniques for the specific data type.

7.1 RRF

RRF is an acronym for Relative Region Feature. It is an information extraction

technique mentioned previously. The thesis uses RRF to refer to both the tech-

nique and RRF data to refers to the extracted data using RRF. The detail of

RRF is in 3.5.5.

The extracted data abstracts a game state using only the locations of the

game NPCs relative to the location of the player. For Ms PacMan, the technique

reduces the size of the game data by 98.18%.

This technique applies directly to predator-prey games where proximity of

the agents play important role in the game. Because RRF acts as game data

compression, it should be attractive to complex games with multiple NPCs. The

RRF dataset extract from those complex games should be at a magnitude smaller

and easier to analyse.

It is important to note that the technique required pre-validate when applying

to new games. Another drawback for the technique is that size determination to

create RRF data. Games with huge arena are required to determine appropriate

size of region. Region size determination could limit the resources available for

further process.

134

7.2 Ranking

Chapter 3 shows that the RRF data can be used to create accurate classifier. The

formal procedure for creating the classifier is given in chapter 4. The chapter gives

analysis of the player experience as well as the development process to create the

automatic ranker from the RRF data. The ranker consists of a classifier and a

ranking scoring system. The evaluation of suitable classifiers are given in chapter

3. This chapter also analyse the effect of size of the relative regions. It has found

that the small size produces more accurate classifiers overall. The most accurate

classifier is SVM classifier. On RRF dataset, SVM classifiers outperforms ridge,

k-nearest neighbours, stochastic gradient, and naive Bayes classifiers.

7.3 Evaluation

In addition to formalise the ranker generation, chapter 4 also formalises the pro-

cedure of creating adaptable NPCs using the result of optimal rankers. This form

the basis for analysing player skill levels on chapter 5. The chapter employs both

leave-one-out max and weighted ranking as the scoring system. It has found the

drawback when scoring rankers with leave-one-out. The thesis proposes two so-

lution to the problem; the re-calibration scoring system and the grouping skip

scoring system. The re-calibration scoring system provides better scoring system

for the ranker when using leave-one-out technique. However, re-calibration is not

requires with the grouping skip scoring system. The grouping skip scoring system

reserves one member of each group for evaluation. Unfortunately, the grouping

has to be done manually and it requires a known ranking order. Each group must

135

contain two or more members. If there is a group with only one member, the

scoring system should fall back to the re-calibration.

As shown in chapter 4 and chapter 5, the methodology should provide a way

to systematically create efficient rankers to user experience and player skill. The

methodology will work with any ranking list, however efficiency depends entirely

on the extracted data. RRF dataset, which encapsulate the game data well,

should also provide reliable rankers.

7.4 Optimisation

Chapter 6 presents the study of evolutionary algorithm’s efficiency on finding

global optimal ranker. Modified version of PSO and CMA-ES are also developed

for this chapter for the rank variable. The discretised algorithms are RD-PSO

and RD-CMA-ES. It involves rolling variable value up or down the ranking order.

Therefore, the names are prepended with rolling discrete (RD).

RDPSO outperforms other testing algorithms including CMA-ES, sEA, µ+λ

ES, µ, λ ES, and GA. RDPSO shows the promising result on finding optimal

player skill rankers where it found the solution in every run with minimal amount

of evaluation function calls. Conventional optimisers works on real number which

are not directly applicable to discrete variables nor ranking orders. This thesis

proposes the discretised version of the well-known optimisers to directly deal with

such problem.

136

7.5 Future Work

The study of this thesis provides a good foundation for promising future work.

Regarding how effective RRF data is in creating user experience rankers and cre-

ating reliable adaptive NPCs. The focus was to create effective data extraction

method that can reliably identify both off-line and on-line optimisation. Cur-

rently, RRF data only contains the number of relative region numbers. However,

it should generally to be more intuitive if RRF data contains more information.

For example, physics-based simulation game might also consider enclose the vec-

tors from player to NPCs. This includes other prey-predator games which can be

viewed top-down.

RRF technique is also extensible to 3D game by using enclosing cube in place

of the rectangular regions to cube regions. Each surrounding cube is assigned a

number and RRF is a sequence of the cube numbers.

It should be interesting to see RRF technique performance on other prey-

predator games. Furthermore, commercial games with high count of NPCs should

benefit from RRF effectiveness in NPCs identification with minimal memory

trace.

RDPSO is a promising optimiser specialised for problem whose variables’ val-

ues are in preference-ordered set. Mathematical proof of convergence should be

provided. More performance comparison should prove to popularise the tech-

nique.

Adaptive MCTS NPC performed really well when given enough resources.

On limited resources, variation of MCTS to enhance to performance should be

applicable including macro-action and history-lookup.

137

7.6 Summary

This thesis has presented an efficient methodology for creating adaptive NPCs in

Ms PacMan game. The contribution includes the game data extraction technique,

ranker creation from referencing ranking order, ranker scoring system, evaluation

methodology, ordered-set discretised optimisers. Two type of objective-oriented

adaptive NPCs are also proposed; agent-blending NPC and MCTS NPC.

138

Bibliography

Thomas Back, Hans paul Schwefel, and Fachbereich Informatik. Evolutionary

computation: An overview. In Proceedings of IEEE International Conference

on Evolutionary Computation, pages 20–29. IEEE Press, 1996. 13

T. Baeck, D.B. Fogel, and Z. Michalewicz. Evolutionary Computation 1: Basic

Algorithms and Operators. Basic algorithms and operators. Taylor & Francis,

2000. ISBN 9780750306645. URL http://books.google.co.uk/books?id=

4HMYCq9US78C. 106

E. Bethke. Game Development and Production. Wordware game developer’s

library. Wordware Pub., 2003. ISBN 9781556229510. URL http://books.

google.co.uk/books?id=G7IknwEACAAJ. 10

Yngvi Bjrnsson and Hilmar Finnsson. Cadiaplayer: A simulation-based gen-

eral game player. IEEE Trans. Comput. Intellig. and AI in Games, 1(1):4–

15, 2009. URL http://dblp.uni-trier.de/db/journals/tciaig/tciaig1.

html#BjornssonF09. 30

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, New York, NY, USA, 2004. ISBN 0521833787. 11, 12

139

http://books.google.co.uk/books?id=4HMYCq9US78C
http://books.google.co.uk/books?id=4HMYCq9US78C
http://books.google.co.uk/books?id=G7IknwEACAAJ
http://books.google.co.uk/books?id=G7IknwEACAAJ
http://dblp.uni-trier.de/db/journals/tciaig/tciaig1.html##BjornssonF09
http://dblp.uni-trier.de/db/journals/tciaig/tciaig1.html##BjornssonF09

BIBLIOGRAPHY

C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P. Rohlf-

shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey

of monte carlo tree search methods. Computational Intelligence and AI in

Games, IEEE Transactions on, 4(1):1–43, march 2012. ISSN 1943-068X. doi:

10.1109/TCIAIG.2012.2186810. 30

Chi Wan Sung Bruce Kwong-Bun Tong, Chun Man Ma. A monte-carlo approach

for the endgame of ms. pac-man. In CIG, pages 9–15, 2011. 22

Daniel Whitehouse et al. Cameron Browne, Edward J. Powley. A survey of monte

carlo tree search methods. IEEE Trans. Comput. Intellig. and AI in Games, 4

(1):1–43, 2012. 16, 18, 19, 20, 21

H.M. Chandler. The Game Production Handbook. Computer science series. Infin-

ity Science Press, 2009. ISBN 9781934015407. URL http://books.google.

co.uk/books?id=laiOw5WkdEcC. 10

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo

tree search: A new framework for game ai. In AIIDE, 2008. x, 17

Y. Collette, N. Hansen, G. Pujol, D. Salazar Aponte, and R. Le Riche. On object-

oriented programming of optimizers – examples in scilab. In P. Breitkopf and

R. F. Coelho, editors, Multidisciplinary Design Optimization in Computational

Mechanics, chapter 14, pages 527–565. Wiley, 2010. in print. 106

M. Csikszentmihalyi. Flow: The psychology of optimal experience. Harper Peren-

nial, 1991. 31

140

http://books.google.co.uk/books?id=laiOw5WkdEcC
http://books.google.co.uk/books?id=laiOw5WkdEcC

BIBLIOGRAPHY

Belur V. Dasarathy. Nearest neighbor (nn) norms: Nn pattern classification

techniques. Mc Graw-Hill Computer Science Series, pages 217–224, 1991. 47

Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko, and Markus Püschel.

Bandit-based optimization on graphs with application to library performance

tuning. In Proceedings of the 26th Annual International Conference on Machine

Learning, ICML ’09, pages 729–736, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-516-1. URL http://doi.acm.org/10.1145/1553374.1553468.

20

Yamille Del Valle, Ganesh K Venayagamoorthy, Salman Mohagheghi, J-C Her-

nandez, and Ronald G Harley. Particle swarm optimization: basic concepts,

variants and applications in power systems. Evolutionary Computation, IEEE

Transactions on, 12(2):171–195, 2008. 25

RC Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers, 2001. 25

Russ C Eberhart and James Kennedy. A new optimizer using particle swarm

theory. In Proc. 6th Int. Symp. Micro Machine and Human Science (MHS).

Proc. 6th Int. Symp. Micro Machine and Human Science (MHS), October 1995.

25

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen

Lin. LIBLINEAR: A library for large linear classification. Journal of Machine

Learning Research, 9:1871–1874, 2008. 47

Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc

Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy.

Journal of Machine Learning Research, 13:2171–2175, jul 2012. 106

141

http://doi.acm.org/10.1145/1553374.1553468

BIBLIOGRAPHY

J. FÜRNKRANZ and E. HÜLLERMEIER. Pairwise preference learning and

ranking. Lecture notes in computer science, pages 145–156, 2003. 14

J. Fürnkranz and E. Hüllermeier. Preference learning: An introduction. Prefer-

ence Learning, 1, 2010. 14

Matthew L. Ginsberg. Gib: imperfect information in a computationally chal-

lenging game. J. Artif. Int. Res., 14(1):303–358, 2001. ISSN 1076-9757. URL

http://dl.acm.org/citation.cfm?id=1622394.1622405. 16

N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions

in evolution strategies: the covariance matrix adaptation. In Evolutionary

Computation, 1996., Proceedings of IEEE International Conference on, pages

312–317, 1996. doi: 10.1109/ICEC.1996.542381. 13, 22

Nikolaus Hansen. The cma evolution strategy: A tutorial. 2011. 24

Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk. On the adap-

tation of arbitrary normal mutation distributions in evolution strategies: The

generating set adaptation. In Proceedings of the 6th International Conference

on Genetic Algorithms, pages 57–64, San Francisco, CA, USA, 1995. Morgan

Kaufmann Publishers Inc. ISBN 1-55860-370-0. URL http://dl.acm.org/

citation.cfm?id=645514.657936. 23

Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. In

Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in

Neural Information Processing Systems, volume 10. MIT Press, 1998. 127

Robin Hunicke, Marc LeBlanc, and Robert Zubek. Mda: A formal approach to

142

http://dl.acm.org/citation.cfm?id=1622394.1622405
http://dl.acm.org/citation.cfm?id=645514.657936
http://dl.acm.org/citation.cfm?id=645514.657936

BIBLIOGRAPHY

game design and game research. In Proceedings of the AAAI Workshop on

Challenges in Game AI, pages 04–04, 2004. 8

Alexander Jaffe, Alex Miller, Erik Andersen, Yun-En Liu, Anna Karlin, and Zoran

Popovic. Evaluating competitive game balance with restricted play. 2012. 2

Thorsten Joachims. Text categorization with support vector machines: Learning

with many relevant features. Springer, 1998. 47

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Improvements

to platt’s smo algorithm for svm classifier design. Neural Computation, 13(3):

637–649, 2001. 127

J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks,

1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–

1948 vol.4, Nov 1995. doi: 10.1109/ICNN.1995.488968. 25, 107

J. Kennedy and R.C. Eberhart. A discrete binary version of the particle swarm

algorithm. In Systems, Man, and Cybernetics, 1997. Computational Cybernet-

ics and Simulation., 1997 IEEE International Conference on, volume 5, pages

4104–4108 vol.5, Oct 1997. doi: 10.1109/ICSMC.1997.637339. 27

Raph Koster and Will Wright. A Theory of Fun for Game Design. Paraglyph

Press, 2004. ISBN 1932111972. 9

J. E. Laird and Lent M. V. Human-level ai’s killer application. In Interactive

computer games, pages 1171–1178, 2000. 30

David Landau and Kurt Binder. A Guide to Monte Carlo Simulations in Statis-

143

BIBLIOGRAPHY

tical Physics. Cambridge University Press, New York, NY, USA, 2005. ISBN

0521842387. 16

Joost Langeveld and Andries P Engelbrecht. A generic set-based particle swarm

optimization algorithm. 27

Elena C Laskari, Konstantinos E Parsopoulos, and Michael N Vrahatis. Particle

swarm optimization for integer programming. In Computational Intelligence,

Proceedings of the World on Congress on, volume 2, pages 1582–1587. IEEE,

2002. 27

Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. Towards a generic

method of evaluating game levels. 2013. 2

S Lucas and T Runarsson. Preference learning for move prediction and evaluation

function approximation in othello. 16

Simon M. Lucas. Ms pac-man competition. SIGEVOlution, 2(4):37–38, Decem-

ber 2007. ISSN 1931-8499. URL http://doi.acm.org/10.1145/1399962.

1399969. 28, 34

S.M. Lucas, P. Rohlfshagen, and D. Perez. Towards more intelligent adaptive

video game agents: A computational intelligence perspective. In A Computa-

tional Intelligence Perspective, Cagliari, Italy, 5 2012. 31

Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013. 12

Francis Maes, David Lupien St-Pierre, and Damien Ernst. Monte carlo

search algorithm discovery for one player games. CoRR, abs/1208.4692,

144

http://doi.acm.org/10.1145/1399962.1399969
http://doi.acm.org/10.1145/1399962.1399969

BIBLIOGRAPHY

2012. URL http://dblp.uni-trier.de/db/journals/corr/corr1208.

html#abs-1208-4692. 30

T. W. Malone. What makes computer games fun. Byte, 6:258–277, 1981. 31

M. McPartland and M. Gallagher. Reinforcement learning in first person shooter

games. Computational Intelligence and AI in Games, IEEE Transactions on, 3

(1):43–56, March 2011. ISSN 1943-068X. doi: 10.1109/TCIAIG.2010.2100395.

30

Jean Mhat and Tristan Cazenave. Combining uct and nested monte carlo search

for single-player general game playing. IEEE Trans. Comput. Intellig. and AI in

Games, 2(4):271–277, 2010. URL http://dblp.uni-trier.de/db/journals/

tciaig/tciaig2.html#MehatC10. 30

Yannakakis G. N. Game ai revisited. In Game AI Revisited, Cagliari, Italy, 5

2012. 31

Yannakakis G. N., Lun H. H., and Hallam J. Modeling children’s entertainment

in the playwre playground. In Proceedings of the IEEE Symposium on Com-

putational Intelligence and Games, pages 134–141, Reno, USA, May 2006. 31

Kien Quang Nguyen and Ruck Thawonmas. Applying monte-carlo tree search

to collaboratively controlling of a ghost team in ms pac-man. International

Games Innovation Conference, 0:8–11, 2011. 22

Kien Quang Nguyen and Ruck Thawonmas. Monte carlo tree search for col-

laboration control of ghosts in ms. pac-man. IEEE Trans. Comput. Intellig.

145

http://dblp.uni-trier.de/db/journals/corr/corr1208.html##abs-1208-4692
http://dblp.uni-trier.de/db/journals/corr/corr1208.html##abs-1208-4692
http://dblp.uni-trier.de/db/journals/tciaig/tciaig2.html##MehatC10
http://dblp.uni-trier.de/db/journals/tciaig/tciaig2.html##MehatC10

BIBLIOGRAPHY

and AI in Games, 5(1):57–68, 2013. URL http://dblp.uni-trier.de/db/

journals/tciaig/tciaig5.html#NguyenT13. 30

Andreas Ostermeier, Andreas Gawelczyk, and Nikolaus Hansen. A derandomized

approach to self-adaptation of evolution strategies. Evolutionary Computation,

2(4):369–380, 1994. 106

P. Sweetser and P. Wyeth. GameFlow: a model for evaluating player enjoyment

in games. ACM Computers in Entertainment, 3(3), July 2005. 31

Quan-Ke Pan, M Fatih Tasgetiren, and Yun-Chia Liang. A discrete particle

swarm optimization algorithm for the no-wait flowshop scheduling problem.

Computers & Operations Research, 35(9):2807–2839, 2008. 27

Matt Parker and Bobby D. Bryant. Neurovisual control in the quake ii

environment. IEEE Trans. Comput. Intellig. and AI in Games, 4(1):44–

54, 2012. URL http://dblp.uni-trier.de/db/journals/tciaig/tciaig4.

html#ParkerB12. 30

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine Learning in Python . Journal of Machine Learning Research, 12:

2825–2830, 2011. 47

Tom Pepels and Mark HM Winands. Enhancements for monte-carlo tree search

in ms pac-man. In Computational Intelligence and Games (CIG), 2012 IEEE

Conference on, pages 265–272. IEEE, 2012. 22

146

http://dblp.uni-trier.de/db/journals/tciaig/tciaig5.html##NguyenT13
http://dblp.uni-trier.de/db/journals/tciaig/tciaig5.html##NguyenT13
http://dblp.uni-trier.de/db/journals/tciaig/tciaig4.html##ParkerB12
http://dblp.uni-trier.de/db/journals/tciaig/tciaig4.html##ParkerB12

BIBLIOGRAPHY

J. Platt. Fast training of support vector machines using sequential minimal

optimization. In B. Schoelkopf, C. Burges, and A. Smola, editors, Ad-

vances in Kernel Methods - Support Vector Learning. MIT Press, 1998. URL

http://research.microsoft.com/~jplatt/smo.html. 127

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field

guide to genetic programming. Published via http://lulu.com and freely

available at http://www.gp-field-guide.org.uk, 2008. URL http://www.

gp-field-guide.org.uk. (With contributions by J. R. Koza). 13

Gustavo Recio, Emilio Martn, Csar Estbanez, and Yago Sez. Antbot: Ant

colonies for video games. IEEE Trans. Comput. Intellig. and AI in Games, 4

(4):295–308, 2012. URL http://dblp.uni-trier.de/db/journals/tciaig/

tciaig4.html#RecioMES12. 30

Irina Rish. An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, volume 3, pages 41–

46, 2001. 47

David Robles and Simon M. Lucas. A simple tree search method for playing ms.

pac-man. In Proceedings of the 5th international conference on Computational

Intelligence and Games, CIG’09, pages 249–255, Piscataway, NJ, USA, 2009.

IEEE Press. ISBN 978-1-4244-4814-2. URL http://dl.acm.org/citation.

cfm?id=1719293.1719338. 22

Spyridon Samothrakis, David Robles, and Simon M. Lucas. Fast approximate

max-n monte carlo tree search for ms pac-man. IEEE Trans. Comput. Intellig.

and AI in Games, 3(2):142–154, 2011. 22, 30

147

http://research.microsoft.com/~jplatt/smo.html
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://dblp.uni-trier.de/db/journals/tciaig/tciaig4.html##RecioMES12
http://dblp.uni-trier.de/db/journals/tciaig/tciaig4.html##RecioMES12
http://dl.acm.org/citation.cfm?id=1719293.1719338
http://dl.acm.org/citation.cfm?id=1719293.1719338

BIBLIOGRAPHY

Jesse Schell. The Art of Game Design: A Book of Lenses. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2008. ISBN 0-12-369496-5. 7

N. Shaker, G. N Yannakakis, and J. Togelius. Towards automatic personalized

content generation for platform games. In Proceedings of the AAAI Conference

on Artificial Intelligence and Interactive Digital Entertainment (AIIDE). AAAI

Press, 2010. 30

Brian Sheppard. World-championship-caliber scrabble. Artif. Intell., 134(1-

2):241–275, 2002. ISSN 0004-3702. URL http://dx.doi.org/10.1016/

S0004-3702(01)00166-7. 16

W. Sombat, P. Rohlfshagen, and S.M. Lucas. Evaluating the enjoyability of

the ghosts in ms pac-man. In Computational Intelligence and Games (CIG),

2012 IEEE Conference on, pages 379–387, Sept 2012a. doi: 10.1109/CIG.2012.

6374180. 15

Wichit Sombat, Philipp Rohlfshagen, and Simon M Lucas. Evaluating the enjoy-

ability of the ghosts in ms pac-man. In Computational Intelligence and Games

(CIG), 2012 IEEE Conference on, pages 379–387. IEEE, 2012b. 2, 44

W. M. Spears, K.a De Jong, T. Back, D. B. Fogel, and H. de Garis. An overview of

evolutionary computation. In P. B. Brazdil, editor, Machine Learning: ECML-

93 - Proc. of the European Conference on Machine Learning, pages 442–459.

Springer, Berlin, Heidelberg, 1993. 13

Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N Yannakakis. What

is procedural content generation?: Mario on the borderline. In Proceedings of

148

http://dx.doi.org/10.1016/S0004-3702(01)00166-7
http://dx.doi.org/10.1016/S0004-3702(01)00166-7

BIBLIOGRAPHY

the 2nd International Workshop on Procedural Content Generation in Games,

page 3. ACM, 2011a. 10

Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron

Browne. Search-based procedural content generation: A taxonomy and sur-

vey. Computational Intelligence and AI in Games, IEEE Transactions on, 3

(3):172–186, 2011b. 2

Julian Togelius, Noor Shaker, and Mark J. Nelson. Introduction. In Noor Shaker,

Julian Togelius, and Mark J. Nelson, editors, Procedural Content Generation

in Games: A Textbook and an Overview of Current Research. Springer, 2015.

10

Frans Van den Bergh and Andries Petrus Engelbrecht. A study of particle swarm

optimization particle trajectories. Information sciences, 176(8):937–971, 2006.

25

P. Vorderer, T. Hartmann, and C Klimmt. Explaining the enjoyment of playing

video games: the role of competition. In D. Marinelli, editor, ICEC conference

proceedings, Pittsburgh, 2003. Carnegie Mellon University Press. 31

Hao Wang, Yang Gao 0001, and Xingguo Chen. Rl-dot: A reinforcement learning

npc team for playing domination games. IEEE Trans. Comput. Intellig. and AI

in Games, 2(1):17–26, 2010. URL http://dblp.uni-trier.de/db/journals/

tciaig/tciaig2.html#WangGC10. 30

Thomas Weise. Global optimization algorithms theory and application , 2008.

12

149

http://dblp.uni-trier.de/db/journals/tciaig/tciaig2.html##WangGC10
http://dblp.uni-trier.de/db/journals/tciaig/tciaig2.html##WangGC10

BIBLIOGRAPHY

M. Wistuba, L. Schaefers, and M. Platzner. Comparison of bayesian move pre-

diction systems for computer go. In Computational Intelligence and Games

(CIG), 2012 IEEE Conference on, pages 91–99, Sept 2012. doi: 10.1109/CIG.

2012.6374143. 16

G. N Yannakakis. AI in computer games: generating interesting interactive op-

ponents by the use of evolutionary computation. PhD thesis, University of

Edinburgh, 2005. 2, 31, 56

George G Yin and HJ Kushner. Stochastic approximation and recursive algo-

rithms and applications. Springer, 2003. 47

150

	Contents
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Thesis Statement
	1.2 Motivation
	1.3 Goals and Scope
	1.4 Structure of The Thesis
	1.5 Contribution

	2 Background and Related Work
	2.1 Game Design
	2.2 Game Development
	2.3 Optimisation
	2.3.1 Convex Optimisation
	2.3.2 Non-convex Optimisation

	2.4 Evolutionary Optimisation
	2.5 Preference Learning
	2.5.1 Related Research on Preference Learning

	2.6 MCTS
	2.6.1 General MCTS Algorithm
	2.6.2 Upper Confidence Bounds for Tree (UCT)
	2.6.3 MCTS for Ms Pac-Man

	2.7 CMA-ES
	2.7.1 Principles
	2.7.1.1 Maximum-likelihood
	2.7.1.2 Search/Evolution Path

	2.7.2 Algorithm
	2.7.2.1 pseudo-code

	2.8 PSO
	2.8.1 Standard PSO
	2.8.2 Discrete PSO

	3 Characterising NPC Behaviour
	3.1 Ms Pac-Man
	3.2 Related Work
	3.3 Game Entertainment Evaluation
	3.3.1 Level of Challenge (C)
	3.3.2 Level of Behaviour Diversity (B)
	3.3.3 Level of Spatial Diversity (S)
	3.3.4 Interest Function

	3.4 The Ms Pac-Man vs Ghosts Competition
	3.4.1 Ms Pac-Man
	3.4.2 Ms Pac-Man vs Ghosts

	3.5 Classification of Ghost Teams
	3.5.1 Measuring Decision Overlap
	3.5.2 Analysis of Ghost Decision
	3.5.3 Experimental Setup For Ranking and Classification
	3.5.4 Ghost Teams Ranking with Interest Function
	3.5.5 Relative Region Feature: RRF
	3.5.6 Ghost Team Classification

	3.6 Ghost Team Ranking With Classifier
	3.6.1 Classifiers Evaluation
	3.6.2 PacMan Selection
	3.6.3 Ghosts Team Evaluation

	3.7 Conclusions

	4 Player Experience Levels
	4.1 Experiment setting
	4.2 PacMan entry selection
	4.3 Classifier result
	4.4 Update result for selecting pacman entry
	4.5 Using the classifier as ranker
	4.6 Ranking Result With Leave-One-Out
	4.6.1 Ranking by grouping
	4.6.2 Remarks on using weighted ranking score
	4.6.3 Fixing the weighted ranking score

	4.7 User Experience Ranking
	4.7.1 Ranked Groups as User Experience Levels
	4.7.2 Ranker for User Experience Levels

	4.8 Optimal User Experience Ranker
	4.9 Blending Ghosts Team
	4.9.1 Implementation
	4.9.2 Weight Variation and Result

	4.10 Conclusions

	5 Player Skill Levels
	5.1 Experiment data
	5.1.1 Generating dataset

	5.2 Predictability of the dataset
	5.2.1 Data preparation
	5.2.2 Predictability Result

	5.3 Reference Ghosts Team Selection
	5.3.1 Data Preparation
	5.3.2 Classification Result

	5.4 Player Skill Ranking
	5.4.1 Data Preparation
	5.4.2 Ranking

	5.5 Optimal Player Skill Ranker
	5.6 Blending PacMan
	5.6.1 Data generation
	5.6.2 Ranking

	5.7 Conclusion

	6 Optimisation
	6.1 Optimising User Experience Rankers
	6.1.1 Individual Encoding
	6.1.2 Algorithms
	6.1.2.1 Rolling Discrete PSO: RDPSO

	6.1.3 Evaluation Method
	6.1.4 Results

	6.2 Optimising Player Skill Rankers
	6.2.1 Individual Encoding
	6.2.2 Result

	6.3 Adaptive Tic-Tac-Toe NPCs using MCTS
	6.3.1 Statistics
	6.3.2 NPC Objectives
	6.3.3 Implementation
	6.3.4 Results
	6.3.4.1 R - prefers to win by row
	6.3.4.2 C - prefers to win by column
	6.3.4.3 D - prefers to win by diagonal

	6.4 Adapting MCTS NPC for Ms PacMan
	6.4.1 State Evaluation
	6.4.2 Decision Time Constraint

	6.5 Result
	6.6 Conclusion

	7 Conclusion
	7.1 RRF
	7.2 Ranking
	7.3 Evaluation
	7.4 Optimisation
	7.5 Future Work
	7.6 Summary

	Bibliography

