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Abstract

Predictive performance of a random forest ensemble is highly associated with

the strength of individual trees and their diversity. Ensemble of a small number

of accurate and diverse trees, if prediction accuracy is not compromised, will also

reduce computational burden. We investigate the idea of integrating trees that

are accurate and diverse. For this purpose, we utilize out-of-bag observation as

validation sample from the training bootstrap samples to choose the best trees

based on their individual performance and then assess these trees for diversity

using Brier score. Starting from the first best tree, a tree is selected for the final

ensemble if its addition to the forest reduces error of the trees that have already

been added. A total of 35 bench mark problems on classification and regression

are used to assess the performance of the proposed method and compare it

with kNN, tree, random forest, node harvest and support vector machine. We

compute unexplained variances and classification error rates for all the methods

on the corresponding data sets. Our experiments reveal that the size of the

ensemble is reduced significantly and better results are obtained in most of the

cases. For further verification, a simulation study is also given where four tree
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style scenarios are considered to generate data sets with several structures.

Keywords: classification and regression trees, random forest, ensemble

methods, accuracy and diversity.

1. Introduction

Many studies have suggested that combining weak models leads to efficient

ensembles [1, 2, 3, 4, 5, 6, 7] that are used frequently in many real world

problems[8, 9, 10, 11]. Combining the outputs of multiple classifiers also re-

duces generalization error [2, 3, 12, 4]. Ensemble methods are effective in that5

different types of models have different inductive biases where such diversity

reduces variance-error while not increasing the bias error [13, 14, 15].

Extending this notion, Breiman [16] suggested growing a large number, T

for instance, of classification and regression trees. Trees are grown on bootstrap

samples form a given training data L = (X,Y) = {(x1, y1), (x2, y2), ..., (xn, yn)}.10

The xi are observations on d features and y values are from real line and a set of

known classes (1, 2, 3, ...,K) in cases of regression and classification, respectively.

Breiman called this method as random forest.

As the number of trees in random forest is often very large, there has been

a significant work done on the problem of minimizing this number to reduce15

computational cost without decreasing prediction accuracy[17, 18, 19, 20].

Overall prediction error of a random forest is highly associated with the

strength of individual trees and their diversity in the forest. This idea is backed

by Breiman’s[16] upper bound for the overall prediction error of random forest

given by20

Êrr ≤ ρ̄ êrrj , (1)

where j = 1, 2, 3, ..., T , T denotes the number of all trees, Êrr is the overall

prediction error of the forest, ρ̄ represents weighted correlation between residuals

from two independent trees and êrrj is the prediction error of the jth tree in

the forest.
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Based on the above discussion, this article proposes to select the best trees,in25

terms individual accuracy and diversity, from a large ensemble grown by random

forest. Using 35 benchmark data sets, the results from the new method are

compared with those of kNN, tree classifier, random forest, node harvest and

support vector machine. For further verification, a simulation study is also given

where data sets with many tree structures are generated. The rest of the paper30

is organized as follows. The proposed method and the underlying algorithm are

given in section 2, experiments and results based on benchmark and simulated

data sets are given in section 3. Finally, section 4 gives the conclusion of the

paper.

2. OTE: Optimal Trees Ensemble35

Random forest refines bagging by introducing additional randomness in the

base models, trees, by drawing subsets of the predictor set for partitioning the

nodes of a tree[4] . This article investigates the possibility of further refine-

ment by proposing the method of trees selection on the basis of their individ-

ual accuracy and diversity using unexplained variance and Brier score [21] in40

cases of regression and classification respectively. To this end, we partition the

given training data L = (X,Y) randomly into two non overlapping portions,

LB = (XB,YB) and LV = (XV,YV). Grow T classification or regression trees

on T bootstrap samples from the first portion LB = (XB,YB). While doing

so, select a random sample of p < d features from the entire set of d predictors.45

This inculcates additional randomness in the trees. Due to bootstraping, there

will be some observations left out of the samples which are called out-of-bag

(OOB) observations. These observations take no part in the training of tree.

These observatons can be utilized in two ways:

1. In case of regression, out-of-bag observations are used to estimate unex-50

plained variances of each tree grown on a bootstrap sample. Trees are

then ranked in ascending order whith respect to their unexplained vari-

ances and the top ranked M trees are chosen.
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2. In case of classification, out-of-bag observations are used to estimate error

rates of the trees. Trees are then ranked in ascending order whith respect55

to their error rates and the top ranked M trees are chosen.

A diversity check is carried out as follows

1. Starting from the two top ranked trees, successive ranked trees are added

one by one to see how they perform on the independent validation data,

LV = (XV,YV). This is done until the last Mth tree is added.60

2. Select tree L̂k, k = 1, 2, 3, ...,M if its inclusion to the ensemble without

the kth tree satisfys the following two criteria given for regression and

classification respectively.

(a) In regression case, let U .EXP ⟨−k⟩ be the unexplained variance of the

ensemble not having the kth tree and U .EXP ⟨+k⟩ be the unexplained65

variance of the ensemble with kth tree included, then tree L̂k is chosen

if

U .EXP⟨+k⟩ < U .EXP ⟨−k⟩.

(b) In classification case, let B̂S
⟨−k⟩

be the Brier score of the ensemble

not having the kth tree and B̂S
⟨+k⟩

be the Brier score of the ensemble

with kth tree included, then tree L̂k is chosen if70

B̂S
⟨+k⟩

< B̂S
⟨−k⟩

,

where

B̂S =

∑# of test cases
i=1

(
yi − P̂ (yi|X)

)2

total # of test instances
,

yi is the state of yi for observation i in the (0, 1) form and P̂ (y|X) is

the binary response probability estimate given the features.

These trees, named as optimal trees, are then combined and are allowed to vote,

in case of classification, or average, in case of regression, for new/test data. The75

resultant ensemble is named as optimal trees ensemble, OTE.
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2.1. The Algorithm

Steps of the proposed algorithm both for regression and classification are

1. Take T bootstrap samples from the given portion of the training data

LB = (XB,YB).80

2. Grow regression/classification trees on all the bootstrap samples using

random forest technique.

3. Choose M trees with the smallest individual prediction error on the train-

ing data.

4. Add the M selected trees one by one and select a tree if it improves per-85

formance on validation data, LV = (XV,YV), using unexplained variance

and Brier score in cases of regression and classification as the respective

performance measures.

5. Combine and allow the trees to vote, in case of classification, or average,

in case of regression, for new/test data.90

An illustrative flow chart of the proposed algorithm can be seen in Figure 1.

An algorithm based on a similar idea has previously been proposed where

instead of classification and regression trees, probability estimation trees are

used [22]. The ensemble of probability estimation trees is used for estimating

class membership probabilities in binary class problems. Ensembles selection for95

kNN classifiers have also been proposed recently where in addition to individual

accuracy, the kNNmodels are grown on random subsets of the feature set instead

of considering the entire space [23, 24].

3. Experiments and Results

3.1. Simulation100

This section presents four simulation scenarios each consisting of various

tree structures. The aim is to make the recognition problem slightly difficult for

classifiers like kNN and CART, and to provide a challenging task for the most

complex method like SVMs and random forest. In each of the scenarios, four
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Figure 1: Flow chart of OTE for regression and classification
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different complexity levels are considered by changing the weights ηijk of the tree105

nodes. Consequently, four different values of the Bayes error are obtained where

the lowest Bayes error indicates a data set with meaningful patterns and the

highest Bayes error means a data set with no patterns. Table 1 gives various

values of ηijk used in Scenarios 1, 2, 3, and 4. Node weights for obtaining

the complexity levels are listed in four columns of the table for k = 1, 2, 3, 4,110

for each model. A generic equation for producing class probabilities of the

bernoulli response Y = Bernoulli(p) given the n× 3T dimensional vector X of

n iid observations from Uniform(0, 1) is.

p(y|X) =
exp

(
c2 ×

(
Zm

T
− c1

))

1 + exp
(
c2 ×

(
Zm

T
− c1

)) , where Zm =
T∑

t=1

p̂t. (2)

c1 and c2 are some arbitrary constants, m = 1, 2, 3, 4 is scenario number and

Zm’s are n × 1 probability vectors. T is the total number of trees used in a115

scenario and p̂t’s are class probabilities for a particular response in Y. These

probabilities are generated by the following tree structures

p̂1 = η11k × 1(x1≤0.5&x3≤0.5) + η12k × 1(x1≤0.5&x3>0.5) + η13k × 1(x1>0.5&x2≤0.5)

+η14k × 1(x1>0.5&x2>0.5),

p̂2 = η21k × 1(x4≤0.5&x6≤0.5) + η22k × 1(x4≤0.5&x6>0.5) + η23k × 1(x4>0.5&x5≤0.5)

+η24k × 1(x4>0.5&x5>0.5),

p̂3 = η31k × 1(x7≤0.5&x8≤0.5) + η32k × 1(x7≤0.5&x8>0.5) + η33k × 1(x7>0.5&x9≤0.5)

+η34k × 1(x7>0.5&x9>0.5),

p̂4 = η41k × 1(x10≤0.5&x11≤0.5) + η42k × 1(x10≤0.5&x11>0.5) + η43k × 1(x10>0.5&x12≤0.5)

+η44k × 1(x10>0.5&x12>0.5),

p̂5 = η51k × 1(x13≤0.5&x14≤0.5) + η52k × 1(x13≤0.5&x14>0.5) + η53k × 1(x13>0.5&x15≤0.5)

+η54k × 1(x13>0.5&x15>0.5),

p̂6 = η61k × 1(x16≤0.5&x17≤0.5) + η62k × 1(x16≤0.5&x17>0.5) + η63k × 1(x16>0.5&x18≤0.5)

+η64k × 1(x16>0.5&x18>0.5),
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where 0 < ηijk < 1 are weights given to to the nodes of the trees, k = 1, 2, 3, 4.

The four scenarios use the following specifications for using (2)

3.1.1. Scenario 1120

This scenario consists of 3 tree components each grown on 3 variables which

follows that, T = 3, Z1 =
∑3

t=1 p̂t and X becomes a n× 9 dimensional vector.

3.1.2. Scenario 2

In this scenario we take a total of T = 4 trees where Z2 =
∑4

t=1 p̂t such that

X becomes a n× 12 dimensional vector.125

3.1.3. Scenario 3

This scenario is based on T = 5 trees such that Z3 =
∑5

t=1 p̂t andX becomes

a n× 15 dimensional vector.

3.1.4. Scenario 4

This scenario consists of 6 tree components which follows that, T = 6, Z4 =130

∑6
t=1 p̂t and X becomes a n× 18 dimensional vector.

To understand how the trees are grown in the above simulation scenarios, a

tree used in simulation Scenario 1.1 is given in Figure 2.

Figure 2: One of the trees used in simulation Scenario 1.1

8



Table 1: Node weights, ηijk , used in simulation scenarios where i is tree number, j is node

number in each tree and k is denoting a variant of the weights for the four complexity levels

for all the scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

k k k k

i j 1 2 3 4 i j 1 2 3 4 i j 1 2 3 4 i j 1 2 3 4

1

1 0.9 0.8 0.7 0.6

1

1 0.9 0.8 0.7 0.6

1

1 0.9 0.9 0.9 0.8

1

1 0.9 0.9 0.9 0.8

2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.4 2 0.1 0.1 0.1 0.2 2 0.1 0.1 0.1 0.2

3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.4 3 0.1 0.1 0.1 0.2 3 0.1 0.1 0.1 0.2

4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.6 4 0.9 0.9 0.9 0.8 4 0.9 0.9 0.9 0.8

2

1 0.9 0.8 0.7 0.6

2

1 0.9 0.8 0.7 0.6

2

1 0.9 0.9 0.9 0.8

2

1 0.9 0.9 0.9 0.8

2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.4 2 0.1 0.1 0.1 0.2 2 0.1 0.1 0.1 0.2

3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.4 3 0.1 0.1 0.1 0.2 3 0.1 0.1 0.1 0.2

4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.6 4 0.9 0.9 0.9 0.8 4 0.9 0.9 0.9 0.8

3

1 0.9 0.8 0.7 0.6

3

1 0.9 0.8 0.7 0.6

3

1 0.9 0.8 0.7 0.7

3

1 0.9 0.9 0.9 0.8

2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.3 2 0.1 0.1 0.1 0.2

3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.3 3 0.1 0.1 0.1 0.2

4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.7 4 0.9 0.9 0.9 0.8

4

1 0.9 0.8 0.7 0.6

4

1 0.9 0.8 0.7 0.7

4

1 0.9 0.8 0.7 0.7

2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.3 2 0.1 0.2 0.3 0.3

3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.3 3 0.1 0.2 0.3 0.3

4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.7 4 0.9 0.8 0.7 0.7

5

1 0.9 0.8 0.7 0.7

5

1 0.9 0.8 0.7 0.6

2 0.1 0.2 0.3 0.3 2 0.1 0.2 0.3 0.4

3 0.1 0.2 0.3 0.3 3 0.1 0.2 0.3 0.4

4 0.9 0.8 0.7 0.7 4 0.9 0.8 0.7 0.6

6

1 0.9 0.8 0.7 0.6

2 0.1 0.2 0.3 0.4

3 0.1 0.2 0.3 0.4

4 0.9 0.8 0.7 0.6
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The values of c1 and c2 are fixed at 0.5 and 15, respectively, in all the sce-

narios for all variants. A total of n = 1000 observation are generated using the135

above setup. kNN, CART, random forest, node harvest, SVM and OTE are

trained by using 90% of the data as training data (of which 90% is for bootstring

and 10% for diversity check, in the case of OTE ) and then applying the remain-

ing 10% data as test data for testing purpose. A total of 1000 realizations are

made under each scenario. The results obtained in all the scenarios are given in140

Table 2. Node weights are changed in a manner that could make the patterns

in the data less meaningful and thus getting a higher Bayes error. This can be

observed in the fourth column of Table 2, where each scenario has four different

values of the Bayes error. As anticipated, kNN and tree classifiers have the

highest percentage errors in all the four scenarios. Random forest and OTE145

performed quite similarly with slight variations in few cases. In cases where the

models have the highest Bayes error, the results of random forest are better or

comparable with those of OTE. In all the remaing cases where the Bayes error is

the smallest, OTE is better or comparable with random forest. SVM performed

very similarly to kNN and tree. Percentage reduction in ensemble size of OTE150

is also shown in the last column of the table. This follows that OTE could be

very helpful in decreasing the size of the ensemble thus reducing storage costs.

The box plots given in Figure 3 reveal that the best results of OTE can

be observed in Figure (a) where a data set with meaningful tree structures is

generated. Figure (d) is the worst example of OTE where the Bayes error is155

the highest (i.e. 33%), and where the data have no meaningful tree structures.

3.2. Benchmark Problems

For assessing the performance of OTE on benchmark problems, we have

considered 35 data sets out of which 14 are regression and 21 classification

problems. A brief summary of the data sets is given in Table 3. The upper160

portion of table 3 is a summary of regression problems whereas the lower portion

is a summary of classification problems.
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Table 3: Data sets for classification and regression with total number of observations n,

number of features d and feature type; F: real, I: integer and N: nominal features in a data

set. Sources are also given.

Data Set n d Feature type Source

(R/I/N)

Regression

Bone 485 3 (1/1/1) [25, 26]

Galaxy 323 4 (4/0/0) [25, 27]

Friedman 1200 5 (5/0/0) [28]

CPU 209 7 (7/0/0) [29]

Concrete 103 7 (7/0/0) [29]

Abalone 4177 8 (7/0/1) [29]

MPG 398 8 (2/2/4) [29]

Stock 950 9 (9/0/0) http://funapp.cs.bilkent.edu.tr/DataSets/

Wine 1599 11 (11/0/0) [29]

Ozone 203 12 (9/0/3) [30]

Housing 506 13 (12/0/1) [31]

Pollution 60 15 (7/8/0) http://openml.org/

Treasury 1049 15 (15/0/0) http://sci2s.ugr.es/keel/dataset.php?cod=42

Baseball 337 16 (2/14/0) http://sci2s.ugr.es/keel/dataset.php?cod=76#sub2

Classification

Mammographic 830 5 (0/5/0) http://sci2s.ugr.es/keel/category.php?cat=clas

Dystrophy 209 5 (2/3/0) [32]

Monk3 122 6 (0/6/0) [29]

Appendicitis 106 7 (7/0/0) http://sci2s.ugr.es/keel/dataset.php?cod=183

SAHeart 462 9 (5/3/1) http://sci2s.ugr.es/keel/dataset.php?cod=184#sub1

Tic-Tac-Toe 958 9 (0/0/9) [29]

Heart 303 13 (1/12/0) [29]

House vote 232 16 (0/0/16) [29]

Bands 365 19 (13/6/0) http://sci2s.ugr.es/keel/dataset.php?cod=184#sub1

Hepatitis 80 20 (2/18/0) [29]

Parkinson 195 22 (22/0/0) [29]

Body 507 23 (22/1/0) [33]

Thyroid 9172 27 (3/2/22) [29]

WDBC 569 29 (29/0/0) [29]

WPBC 198 32 (30/2/0) [29]

Oil-Spill 937 49 (40/9/0) http://openml.org/

Spam base 4601 57 (55/2/0) [29]

Glaucoma 196 62 (62/0/0) [32]

Nki 70 144 76 (71/5/0) [34]

Musk 476 166 (0/166/0) [35]
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Figure 3: Box plots for kNN, tree, random forest (RF), node harvest (NH), SVM and (OTE)

on the data simulated in Scenario 1. (a): simulation with Bayes error 9%, (b): simulation

with Bayes error 14%, (c): simulation with Bayes error 17% and (d): simulation with Bayes

error 33%. The best results of OTE can be seen in fugure (a) where the model produces a

data with almost perfect tree structures. Figure (d) is the worst example of OTE

3.3. Experimental Setup for Benchmark Data Sets

Experiments carried out on the 35 data set are designed as follows. Each

data set is divided into two parts, a training part and testing part. The training165

part consists of 90% of the total data while the testing part consists of the

remaining 10% of the data. A total of T = 1500 independent classification

and regression trees are grown on bootstrap samples from the (90% of) training

data along with randomly selecting p features for splitting the nodes of the trees.

The remaining 10% of training data is used for diversity check. In the cases of170

13



both regression and classification, the number p of features is kept constant at

p =
√
(d) for all data sets. The best of the total T trees are selected by using

the method given in Section 2 and are used as the final ensemble (M is taken

as 20% of T ). Testing part of the data is applied on the final ensemble and a

total of 1000 runs are carried out for each data set. Final result is the average175

of all these 1000 runs.

For tuning various parameters of CART, we used the R-Function “tune.rpart”

available within the R-Package “e1071”. We tried various values, (5,10,15,20,25,30)

for finding the optimal number of splits and the minimal optimal depth of the

trees.180

For tuning the hyper parameters, nodesize, ntree and mtry of random for-

est, we used the function “tune.randomForest” available with in the R-Package

“e1071” as used by [36]. For tuning the node size we tried values (1,5,10,15,20,25,30),

for tuning ntree we tried values (500,1000,1500,2000) and for tuning mtry, we

tried (sqrt(d), d/5, d/4, d/3, d/2). We tried all the possible values of mrty185

where d < 12.

The only parameter in the node harvest estimator is the number of nodes

in the initial ensemble and for its large values the results are insensitive [18].

Meinshausen [18] showed for various data sets that initial ensemble size greater

than 1000 yields almost the same results. In our experiments we kept this value190

fixed at 1500. In case of SVM, automatic estimation of sigma was used available

with in the R package “kernlab”. The rest of the parameters are kept at default

values.

The same set of training and test data is used for tree, random forest, node

harvest, SVM and our proposed method. Average unexplained variances and195

classification errors, for regression and classification respectively, are noted down

for all the four methods on the data sets. All the experiments are done using R-

Program version 3.0.2 [37]. The results are given in tables 4 and 5 for regression

and classification respectively.
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3.4. Discussion200

The results given in tables 4 and 5 show that the proposed method is per-

forming better than the other methods on many of the data sets. In the case of

regression problems, our method is giving better results than the other methods

considered on 7 data sets out of a total of 14 data sets, whereas on 2 data sets,

Wine and Abalone, random forest gives the best performance. On 5 of the data205

sets, Bone, Galaxy, Freidman, and Ozone, SVM with radial kernel and Concrete

with Bessel kernel gave the best results. Tree and kNN are unsurprisingly the

worst performers in all the methods with the exception of Stock data set where

kNN is the best.

In the case of classification problems, the new method is giving better results210

than the other methods considered on 10 data sets out of a total of 21 data

sets and comparable to random forest on 1 data set. On 3 data sets, random

forest gives the best performance. On three of the data sets, Mammographic,

Appendicitis and SAHeart, node harvest classifier gives the best result among

all other methods. SVM is better than the others on 4 data sets.215

Overall, the proposed method gave better results on 15 data sets and com-

parable results on 2 data set.

We kept all our parameters in the ensemble fixed for the sake of simplicity.

Searching for the optimal total number T of trees grown before the selection

process, the percentage M of best trees selected at the first phase, node size220

and the number of features for splitting the nodes might further improve our

results. Large values are recommended for the size of the initial set under the

available computation resources and a value of T ≥ 1500 is expected to work

well in general. This can be seen in Figure 4 that show the effect of the number

of trees in the initial set on (a): unexplained variance and (b): misclassification225

error for the data sets given using OTE.

One important parameter of the our method is the number M of best

trees selected at the first phase for the final ensemble. Various values of M

reveal different behaviour of the method. We considered the effect of M =

(1%, 5%, 10%, 20%, ..., 70%) of the total T trees on the the method for both re-230

17
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Figure 4: The effect of the number of trees in the initial set on (a): unexplained variance and

(b): misclassification error for the data sets given using OTE. In both the cases, number of

trees larger than 1500 can be recommended
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Figure 5: Effect of M on the unexplained variances, (Fig. (a)), and error rate (Fig. (b)), of the

data sets shown using OTE. The value of M in percentage is on the x-axis and unexplained

variance on the y-axis.
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gression and classification as shown in Figure 5. It is clear from figure 5 that

the highest accuracy is obtained by using only a small portion, 1%−10%, of the

total trees that are individually strong which is further reduced in the second

phase. This may significantly decrease the storage costs of the ensemble while

increasing/without loosing accuracy. On the other hand, having a large number235

of trees may not only increase storage costs of the resulting ensemble but also

decrease the overall prediction accuracy of the ensemble. This can be seen in

Figure 5 in the cases of Concrete, WPBC and Ozone data sets where the best

results are obtained at about less than 5% best trees of the total trees at the

first phase. This might be due to the reason that in such cases the possibility240

of having poor trees is high if the size of ensemble is large and trees are simply

grown with out considering their individual and collective behaviours.

We also looked at the effect of various numbers p =
√
d, d

5 ,
d
4 ,

d
3 ,

d
2 of fea-

tures selected at random for splitting the nodes of the trees on the unexplained

variances and classification error in the cases of both regression and classifica-245

tion, respectively, for some data sets. The graph is shown in Figure 6. The

only reason that random forest is considered as an improvement over bagging

is the inclusion of additional randomness by randomly selecting a subset of fea-

tures for splitting the nodes of the tree. The effect of this randomness can be

seen in Figure 6 where different values of p results in different unexplained vari-250

ances/classification errors for the data sets. For example in the case of Ozone

data, selecting a higher value of p adversely affects the performance. For some

data sets, WPBC for example, selecting large p results in better performance.

4. Conclusion

The possibility of selecting best trees from an original ensemble of a large255

number of trees, and combining them together to vote/average for the response

is considered. The new method is applied on 35 data sets consisting of 14

regression problems and 21 classification problems. The ensemble performed

better than kNN, tree, random forest, node harvest and SVM on many of the

19



(a) (b)
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Number of Features

Un
ex

pl
ai

ne
d 

Va
ria

nc
e

Baseball
Treasury
Housing
Concrete
Ozone

sqrt(d) d/5 d/4 d/3 d/2

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Features

Er
ro

r R
at

e

Memographic
Sonar
Tic.Tac.Toe
Monk3
WPBC

sqrt(d) d/5 d/4 d/3 d/2

Figure 6: Effect of the number of features (on x-axis) selected at random for splitting the

nodes of the trees on the unexplained variance (Fig. (a)), and error rate (Fig. (b)) for the

data sets shown using OTE.

data sets. The intuition for the better performance of the new method is that260

if the base learners in the ensemble are individually accurate and diverse, then

their ensemble must give better or at least comparable results as compared to

the one consisting of weak learners. This might also be due to the reason that

there could be various different meaningful structures present in the data that

could not be captured by an ordinary algorithm. Our method tries to find these265

meaningful structures in the data and ignore those that only increase the error.

Our simulation reveals that the method can find meaningful patterns in the

data as effectively as other complex methods might do.

Even if one could get comparable results by using a few strong and diverse

base learners to those based upon thousands of weak base learners should be270

welcomed. This might be very helpful in in reducing the associated storage costs

of tree forests with little or no loss of prediction accuracy.

The method is implemented in an R-Package called “OTE” [38].

The fact that we use the out-of-bag sample for choosing the best learners at

20



the first place, there might be a chance of not properly assessing the individual275

learners and thus selecting weak learners for the final ensemble. One could

investigate the possibility of choosing the individual learners by using some

other criteria, cross validation for example. The use of some variable selection

methods, [39, 40, 41, 42, 43], might, in conjunction with our method, lead to

further improvements.280
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