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Summary

Multidimensional deprivation and persistent poverty are important research areas within
the poverty measurement literature. Still, both encompass measurement issues for which
methodological solutions are yet to be analysed. The thesis that I present here analyses
three specific measurement issues, identified as relevant within these research areas, and
proposes methodological approaches to tackle each of them.

First, it evaluates the effect of different demographic population structures on soci-
etal multidimensional deprivation incidence comparisons. The results of this evaluation
demonstrate that societal multidimensional comparisons reflect not only differences in
relative deprivation but also differences in the demographic composition of the societies
to be compared. These differences in the demographic structure of the population, thus,
confound societal multidimensional deprivation comparisons. To tackle this comparabil-
ity problem, the application of direct and indirect standardisation methods is proposed
and analysed in this context.

Second, it studies the effect of differences in need, exhibited across individuals from
different demographic population subgroups or households of different sizes and compo-
sitions, on multidimensional deprivation incidence profiles. To address differences in
needs and enhance individual or household comparability, I propose a family of multidi-
mensional deprivation indices that describes how much deprivation two demographically
heterogeneous units with different needs must exhibit to be catalogued as equivalently
deprived. The obtained empirical results demonstrate that neglecting differences in needs
yields biased multidimensional deprivation incidence profiles. The results also shed light
on the ability of my proposed family of measures to capture these differences in need
effectively.

Third, this thesis analyses the reliability of persistent poverty measures in the
presence of survey non-response. The obtained empirical results indicate that persistent
poverty measures based on balanced panel estimates that do not account for the rela-
tionship between survey non-response and the socioeconomic status of the household
provide a significantly biased picture of the intertemporal phenomenon.

The methodologies that I present in this thesis are meant foremost to be easy to im-

plement and understand by policymakers. As such, they are proposed as methodological

tools to improve the measurement and analysis of poverty in the policy context.
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Chapter 1

Introduction

Multidimensional and persistent poverty are examples of distinct poverty mea-

surement methods. They have a different conceptual basis and identify different

populations as the most deprived. While multidimensional poverty assesses multi-

ple dimensions of well-being and identifies as the most deprived those who exhibit

the larger number of these dimensions in deprivation, persistent poverty assesses

the ability to consume a market commodity basket across time and defines as the

most deprived those who lack the resources to access such a basket, repeatedly

over time.

They are both of special interest in the current policy arena. On one hand,

the usage of multidimensional indices of poverty has been gaining interest in the

international context as well as in country-specific settings. Two examples of this

are: the global Multidimensional Poverty Index, launched by the United Nations

Development Program in 2010, and published annually since then (Alkire et al.

2014); and the Colombian Multidimensional Poverty Index, proposed by Angulo

et al. (2016) and in use by the Colombian government to track multidimensional

deprivation in the national territory yearly since 2010.

Although the terms ‘multidimensional poverty’ and ‘multidimensional depri-

vation’ are used interchangeably in the literature, henceforth in this thesis, I opt

using the term ‘multidimensional deprivation’ to refer to indices that count the

multiple deprivations jointly observed across a selected unit of analysis and, based

on this counting procedure, identify the poor as the most deprived population.

Examples of this long-standing literature are studies such as Townsend (1979),
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Atkinson & Bourguignon (1982), Mack et al. (1985), Callan et al. (1993), Feres &

Mancero (2001), Atkinson (2002), Alkire & Foster (2011), and Aaberge & Bran-

dolini (2014).

On the other hand, in terms of persistent poverty, households that suffer

poverty persistently over time are understood by this type of poverty measurement

method to be in worse off conditions than households where this phenomenon

occurs on a transient basis. As such, recent research has focused its interest on

operationalizing chronic poverty as a persistent pattern of poverty state over time.

Examples of this growing literature in persistent poverty measurement are Baulch

& Hoddinott (2000), Jalan & Ravallion (2000), Yaqub (2003), Hulme & Shepherd

(2003), Foster (2009), Calvo & Dercon (2009), Bossert & Chakravarty (2012),

Gradin et al. (2012) and Mendola et al. (2012).1

Despite the policy relevance of multidimensional deprivation and persistent

poverty as methods to measure poverty, they still embed measurement issues where

methodological solutions are to be analysed.

The selection of the methodological approaches to tackle measurement issues

is crucial as it may dramatically determine the results of the exercise. In general,

there is agreement that the measurement of poverty corresponds to an objective

evaluation of the standard of living of a particular society(ies) at a moment of

time(s). But, it is also well known that such an evaluation involves various different

steps and decisions, which can be approached by alternative methodologies that

shape the result (Sen 1979).

The thesis that I present here investigates three specific measurement issues,

identified as relevant when measuring multidimensional deprivation and persis-

tent poverty. This is the first effort in the poverty measurement literature that

analyses and proposes methodological solutions for each of them. The following

paragraphs summarise the three identified measurement issues and the proposed

methodological approaches to tackle them.

In terms of multidimensional deprivation measurement, the most commonly

used analytical technique is to compare societies’ performance across time and

1The terms ‘chronic poverty’ and ‘persistent poverty’ are used interchangeably in the litera-
ture, both referring to repeated poverty states over time.
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geographical areas. Nonetheless, societies have a different size and distribution of

the population by demographic factors such as age, gender and household size.

Multidimensional measurement methodologies, as the ones proposed by Tsui

(2002), Bourguignon & Chakravarty (2003), Seth (2009, 2013), Alkire & Foster

(2011), and Rippin (2010) among others, are meant to allow meaningful societal

multidimensional comparisons. This is accomplished by making societal measures

non-sensitive to the scale of the population and expressing them on a per capita

bases. Still, they do not address the challenges that different structures of the

population might be placing on these comparisons. Individuals from different

population subgroups are assumed to have no other relevant differences than the

characteristics included within the measurement process.

As a result, current societal multidimensional deprivation incidence compar-

isons might not only resemble relative deprivation differences but also differences

in the demographic structure of the populations to be compared.

These differences in the demographic structure of the population are under-

stood in the context of Chapter 2 to be a confounding factor. Chapter 2 analyses,

therefore, the comparability problem that these demographic confounding factors

pose over societal multidimensional deprivation incidence comparisons.

To tackle this comparability problem, I propose the application of direct and

indirect standardisation methods. The behaviour of non-standardised versus stan-

dardised multidimensional measures is empirically assessed in the chapter, while

using demographic household surveys from the Maldives, Ukraine, Jordan, Domini-

can Republic and Armenia. The advantages and disadvantages of standardisation

methods in this context are also discussed.

The empirical results of this chapter indicate that the use of non-standardised

comparisons of multidimensional deprivation incidences across societies with dif-

ferent distributions of the population could be producing inaccurate rankings. To

perform more meaningful societal comparisons, I propose conducting them under

standardised bases.

Subsequently, in Chapter 3, I continue investigating multidimensional depri-

vation incidence comparisons but in this instance, at either the individual or the

3



household level. Chapter 3 analyses, then, the challenges embedded in comparing

either individuals from different demographic population subgroups or households

of different size and composition, without accounting for the fact that these de-

mographically heterogeneous units have differences in needs. Multidimensional

deprivation comparisons in the presence of these differences in needs have yet to

be analysed by the multidimensional measurement literature.

This chapter proposes a family of multidimensional deprivation indices that

explicitly takes into account observed differences in needs across demographically

heterogeneous units (i.e., either households of different size and composition or

individuals of different population subgroups). The proposed counting family of

multidimensional indices of this chapter builds upon the Alkire and Foster method-

ology of poverty measurement (Alkire & Foster 2011) and draws from the one-

dimensional parametric equivalence scale literature. It aims to describe how much

deprivation two demographically heterogeneous units with different needs must

exhibit to be catalogued as equivalently deprived.

Furthermore, my proposed family of measures describes, under equivalent

normative considerations, the burden that multidimensional deprivation places on

each unit of analysis. For instance, under an absolute normative perspective where

each deprivation has an equal absolute value, multidimensional deprivation is de-

scribed through count-based approaches to measurement. Conversely, under a

relative normative perspective that conceives each unit of analysis as equivalently

valuable, multidimensional deprivation is described in terms of share-based ap-

proaches to measurement. Intermediate normative perspectives, in contrast, lead

to the expression of multidimensional deprivation as a mixture of count-based and

share-based approaches to measurement.

To evaluate the effect of these different approaches to measurement (count-

based, share-based and intermediate) on multidimensional deprivation incidence

profiles, I construct counterfactuals using the 2013 Paraguayan household to dis-

entangle how much of the differences in multidimensional deprivation incidence

profiles are observed because unaddressed differences in needs.

The obtained empirical results of this evaluation demonstrate that unad-

dressed differences in needs yield multidimensional deprivation incidence profiles

4



to reflect not only illegitimate differences in deprivation but also differences in

needs that should be tackled by the measurement process. Failure to take differ-

ences in needs into account was found to cause biased multidimensional incidence

profiles. These results also shed light on the ability of the proposed measures of

this chapter to effectively capture these differences in need.

On the other hand, persistent poverty measures are based upon panel data

sets that naturally suffer from survey non-response. Traditional approaches to

tackle survey non-response use weighting systems to correct for such a survey

non-response. However, they generally assume the survey non-response pattern is

unrelated to the outcome of interest, which in this case is persistent poverty.

Assuming survey non-response not related with the household socio-economic

characteristics seems, nonetheless, unrealistic. As a result, Chapter 4 focuses on

analysing the reliability of expenditure-based inter-temporal poverty measures in

the presence of survey non-response. In particular, the behaviour of two of the

members of the Foster (2009) family of persistent poverty measures are assessed:

the persistent poverty headcount ratio and the duration adjusted persistent poverty

headcount. Both measures are analysed in the presence of survey non-response and

for the particular case of the 2007-2010 Peruvian household national panel survey

(named in Spanish as the ENAHO).

Here, the survey non-response effect over persistent poverty is understood

as a problem of partial observability. As such, we have complete observability of

households observed in each of the waves of the panel and partial observability

of the households that have at least one wave with survey non-response. Then,

the probability distribution of the observed poverty spell counts and non-poverty

spell counts revealed by the survey is used to obtain upper and lower bounds of

the behaviour of persistent poverty measures.

These derived limits look to identify how persistent poverty measures would

have behaved in absence of survey non-response. They make no-assumption of

the behaviour of persistent poverty in the absence of survey non-response. Not

surprisingly, in the context of the ENAHO, these no-assumption bounds result in

being wide.
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Following Nicoletti et al. (2011)s methodological approach to analysing poverty

rates in the presence of missing data, in this chapter, two visible and credible as-

sumptions are proposed to narrow the no-assumption identification region: an in-

strumental variable (IV) restriction, and a monotone instrumental variable (MIV)

restriction.

While the IV restriction assumes a set of field-work variables statistically

independent of the households poverty status but strongly related to survey non-

response, the MIV restriction assumes a set of geographical data to be a mono-

tonic descriptor of the population socio-economic status and the population socio-

economic status to increase along as persistent poverty decreases. These two as-

sumptions seem credible and plausible when analysing persistent poverty.

The obtained identification regions, once these two restrictions are placed,

result in considerably narrower regions than the no-assumption regions. When

comparing the identification power of the MIV and the IV restriction, although an

MIV restriction places a conceptually weaker assumption than the IV restriction,

the region obtained upon placing this MIV restriction results in being narrower

than the obtained one upon placing the IV restriction. This result indicates that,

in the context of the ENAHO panel, the use of 2 IV plausible covariates had not as

good of identification power as the rich set of 36 MIV covariates that was available

for this context.

The final results of this chapter demonstrate that the width of the bounds

varies across measures and cut-off points, appearing as the most reliable measure

the duration adjusted persistent poverty headcount that uses higher cut-off points.

The results of the improved bounds also indicate that standard non-response

weighted estimations of Peruvian persistent poverty represent a considerable un-

derestimated picture of the inter-temporal phenomenon.
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Chapter 2

Societal multidimensional
comparisons: How much does
demography matter?
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Abstract

Current societal multidimensional deprivation incidence comparisons can reveal

not only relative deprivation differences but also differences in the demographic

structure of the populations to be compared. These differences in the demographic

structure of the population, thus, confound multidimensional deprivation incidence

rates comparisons. This chapter analyses the comparability problem that demo-

graphic confounding factors, such as age, gender, or household size, pose over

societal multidimensional deprivation comparisons. To address this comparabil-

ity problem, direct and indirect standardisation procedures are proposed. This

chapter assesses the behaviour of non-standardised versus standardised multidi-

mensional deprivation headcount rates using demographic household surveys from

the Maldives, Ukraine, Jordan, the Dominican Republic, and Armenia. The advan-

tages and disadvantages of standardisation methods are discussed in this context.

Our empirical results indicate that the use of non-standardised multidimensional

comparisons could produce inaccurate rankings. Meaningful comparisons must be

conducted on a standardised basis.

Keywords: Direct standardisation, Indirect standardisation, Multidimensional

deprivation
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2.1 Introduction

Interest in measuring development by assessing multiple well-being dimensions

has been growing. Examples of this interest in the international arena include

the Human Development Index (HDI) and the global Multidimensional Poverty

Index (MPI), launched by the United Nations Development Program (UNDP)

in 1990 and 2010, respectively, and published annually since then (Malik 2013,

Alkire et al. 2014). In addition to cross-country indices, a plethora of country-

specific multidimensional indices of deprivation also exists. Two examples are the

Colombian Multidimensional Poverty Index (CMPI), proposed by Angulo et al.

(2016), and the Mexican Multidimensional Poverty Initiative (Coneval 2010).1

In the context of these policy-oriented multidimensional indices of deprivation,

the most commonly used analytical technique is to compare societies’ performance

across time and geographical areas. For instance, the 2014 global MPI compares

108 countries in terms of the joint distribution of household multiple deprivations

using data from 2002 until 2013. Similarly, the CMPI has been used since 2010

by the Colombian government to annually assess multidimensional deprivation for

urban and rural areas.

Societies, however, have different sizes and population distributions by demo-

graphic factors such as age, gender, and household size. Although theoretically

developed families of multidimensional deprivation and multidimensional welfare

indices, such as those proposed by Alkire & Foster (2011) and Bourguignon &

Chakravarty (2003), are meant to allow meaningful comparisons of differently sized

populations, they still do not address the challenges that different structures of the

population might pose for these comparisons.

Current multidimensional deprivation methodologies address societal com-

parisons by, on one hand, making societal measures non-sensitive to the scale of

1Throughout this chapter, we use the term ‘multidimensional deprivation to refer to multi-
dimensional measures that aggregate several deprivation indicators into a single index that is
used to identify the most deprived population. In the literature, this concept is also termed
‘multidimensional poverty (Alkire & Foster 2011, Aaberge & Brandolini 2014). We opt for the
former expression to differentiate multidimensional deprivation indices from other types of mul-
tidimensional indices where the indicators are not necessarily expressed as deprivations and the
aggregation and identification of the poor are also done in a different manner. For a complete
discussion of different approaches available in the literature for multidimensional poverty mea-
surement, see Aaberge & Brandolini (2014).
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the population and expressing them on a per capita basis. Also on the other

hand, they consider individuals within each society as having no other relevant

differences than the characteristics included within the measurement process, i.e.,

anonymous in the measurement process. This is the case of family of indices as

the proposed by Seth (2013), Bourguignon & Chakravarty (2003), Tsui (2002) and

Alkire & Foster (2011), among others.

Unfortunately, in practice, using an anonymity axiom, which considers no

other individuals’ characteristic as relevant for the measurement process can be

problematic in the context of policy-oriented applications of multidimensional mea-

surement. Two factors make this anonymity axiom problematic. We describe the

two of them below for the case of multidimensional indices of deprivation.2

First, some of the indicators included within multidimensional measures vary

systematically across demographic population subgroups. Child mortality, school

attendance, or labour market indicators, among others, are good examples of one-

dimensional indicators that are traditionally included within multidimensional in-

dices and are strongly dependent on demographic characteristics, such as age or

gender. For instance, mortality depends systematically on age: according to World

Health Organization figures, in 2013, 74% of the global probability of dying by the

age of five was concentrated between birth and age 1. As such, the burden that

mortality places cannot be considered as equivalent across children of different age

and gender. This issue has been also discussed by Duclos & Tiberti (2016).

Second, most of the multidimensional policy-oriented indices are built upon

several indicators that are recorded for specific demographic population subgroups,

and thus the number of total deprivations that an individual can possibly score,

and the subsequent deprivation evaluation, both structurally vary across those

population subgroups. For instance, four out of the 10 indicators that constitute

the global MPI are recorded for specific age and gender population subgroups.

Likewise, 10 out of the 15 indicators that make up the CMPI are recorded for

specific age groups.

2Henceforth, we focus our analysis on multidimensional indices of deprivation because they
are more commonly used across policy applications than multidimensional indices of welfare.
They allow the straightforward use of intrinsic ordinal policy-oriented indicators such as the
presence or absence of unemployment and school attendance, among others.
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These two types of variations in the deprivation rate across demographic

subgroups cause any randomly chosen individual to exhibit a probability of be-

ing multidimensionally deprived that is not identically distributed across different

population subgroups. Therefore, a measure non-sensitivity to re-arrangements

of multidimensionally deprived individuals across demographic subgroups is not

necessarily desirable because it does not take into account unavoidable and fair

differences in the risk to be multidimensionally deprived.

While some of the sources of the variation of the probability of a given indi-

vidual to be deprived can be considered legitimate/fair, others can be considered

illegitimate/unfair. We would like societal multidimensional deprivation incidence

comparisons, nonetheless, to reflect exclusively the differences that refer to unfair

sources, not differences that can be considered legitimate. In this context, differ-

ences in the structure of two populations at a moment in time are catalogued as a

legitimate source of differences in multidimensional deprivation incidence because

they reflect an unavoidable difference among societies and reflect differences in

needs and preferences rather than unfair disadvantages.3

As such, if we compare two societies that do not have differences in relative

multidimensional deprivation incidence across demographic population subgroups

but only differences in their population structure, multidimensional deprivation

indices that portray differences in multidimensional societal rates among these two

societies, despite no observation of a difference in relative deprivation between the

two, are said to be confounded by demographic group differences in composition.

Specifically, consider two societies with no difference in relative deprivation

by age range population groups across them. If we compare these two societies

in terms of the proportion of multidimensionally deprived population with a mul-

tidimensional index that provides greater deprivation recording possibility among

young cohorts, although the relative deprivation by age range population groups

3Following Fleurbaey & Schokkaert (2009), to catalogue differences in health outcomes as
legitimate and illegitimate, differences in achievement levels (such as health or educational at-
tainment) are seen as caused by myriad factors, some of which can be catalogued as producing
fair differences and others as producing unfair differences. In particular, for the case of health
and healthcare inequalities, Fleurbaey & Schokkaert (2009) defined as legitimate or fair those
differences attributed to causes that fall under individuals’ responsibility. Legitimate differences
in this context therefore correspond to those derived from preferences.
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in the two societies is equivalent, the societal evaluation will reveal a greater inci-

dence of multidimensional deprivation in the society that has a greater proportion

of young people.

Because the ultimate goal of multidimensional deprivation measurement is

to capture unfair disadvantages, we can assert that multidimensional deprivation

incidence comparisons that reflect not only relative deprivation differences but also

differences in the demographic structure of the populations to be compared are

confounded by these demographic group differences in composition.

In light of this, the natural approach to providing meaningful comparisons

could be either to compare specific rates for demographic homogeneous subgroups

or to make the comparison under either the same population demographic struc-

ture or the same subgroup-specific incidence rates. These two latter approaches

correspond to direct and indirect standardisation procedures, respectively, and are

the methodological approach proposed in this chapter to enhance societal multi-

dimensional comparisons.

Even though standardisation procedures have been developed and continu-

ously applied by health and demographic scholars since 1844 (Neison 1844, Wolfenden

1923, Yerushalmy 1951, Anderson et al. 1998, Feinleib 1992, Naing 2000, Ahmad

et al. 2001, Schokkaert & Van de Voorde 2009, O’Connell et al. 2011), current

cross-country comparisons of multidimensional indices in the literature do not use

standardisation procedures to produce accurate comparisons across contexts with

dissimilar population distributions by demographic factors such as age or house-

hold size. This is the case for the aforementioned global MPI and CMPI or the

proposal for a Latin American MPI that aims to cover 30 countries in total (Santos

2014).

To assess the presence of standardisation techniques in the multidimensional

literature, we conducted a systematic search. Indeed, we used the specific key-

words ‘multidimensional’ and ‘standardisation’ to look for standardisation efforts

in English-written, peer-reviewed articles, books, and reports from governmen-

tal and international organisations. Our search covered articles published since

2000 that addressed social well-being in low and middle income countries. Our

15



search spanned the full-text sources across several electronic databases (EconBase-

Elsevier, Ingenta, Social Science Research Network, ProQuest, Encore, Jstor, Sci-

ence Direct, Springerlink) as well as the Web page of the United Nations De-

velopment Program and the Oxford Poverty and Human Initiative. We found

that standardisation efforts have been suggested only by Mazumdar (2003) to en-

able consistent cross-country comparisons across time for the HDI. In particular,

Mazumdar (2003) studied the effect of the specification of the Human Develop-

ment Index on the relative position of each country within the rank of all studied

countries and proposed a variation on its measurement methodology.4

In contrast with Mazumdar (2003), we propose the application of standardisa-

tion procedures for multidimensional deprivation indices that do not alter their ini-

tial configuration. In other words, our proposed methods enable meaningful com-

parisons of societies with dissimilar demographic population distributions across

policy multidimensional indices that use the up-to-date measurement technologies

available in the literature.

Within the multidimensional literature, we are the first to point out this

comparability problem and to propose the use of standardised indices to address

it. Our standardised figures are not yet meant to replace crude rates but rather

to provide a useful technique for application in cases where societal comparisons

are required. The use of our methods will produce demographically standardised

comparable indicators that are easily interpretable and applicable in the policy

context.

4The first version of the HDI evaluated the mean of each of the four indicators taken into
account for each country (life expectancy at birth, mean years of schooling, expected years of
schooling, and gross national per capita income) and used the minimum values and maximum
values found across countries to describe the position of each country within the distribution of all
evaluated countries by year. The second version of the HDI used yearly minimums and maximums
for each assessed indicator. Mazumdar (2003) demonstrated that using yearly minimums and
maximums for each indicator produced inconsistent results for comparisons across time. The
scholar also showed that the changing behaviour of living standards across time yields inconsistent
results when using fixed minimums and maximums across time and countries. Mazumdar (2003)
proposed a bridging approach between the moving and the fixed minimums and maximums
method.
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2.2 Multidimensional poverty: Background

Multidimensional indices incorporate several dimensions into a single indicator to

assess well-being across societies. This section provides background information

on multidimensional indices of poverty. Later, we discuss the application of our

proposed methodology to the multidimensional indices described in this section.

Within the multidimensional literature, there are two alternative procedures

for aggregating dimensions and identifying the deprived population: the welfare

approach and the counting approach. The welfare approach combines several di-

mensions into a single index through an additive process. Under this approach, a

threshold to be applied over the index is created to differentiate between poor and

non-poor populations. A particular welfare multidimensional index can be under-

stood as a weighted mean of achievements. This approach has been developed

by Bourguignon & Chakravarty (2002), Bourguignon & Chakravarty (2003), Seth

(2009) and Seth (2013), among others.

By contrast, the counting approach, as its name suggests, counts the num-

ber of dimensions in which people suffer deprivation. The identification of the

multidimensionally deprived population is achieved by defining how many dimen-

sions of deprivation a person should exhibit to be categorised as multidimensionally

deprived. The most well-known counting methodology corresponds to the one pro-

posed by Alkire & Foster (2011). Henceforth, we abbreviate the Alkire & Foster

(2011) methodology to AF methodology or simply AF.

Efforts have been made, within literature, to analyse both approaches (welfare

and counting) under a common framework as Atkinson (2003) attempts. However,

as pointed out by Aaberge & Brandolini (2014), this discussion is still inconclu-

sive. We use counting-based multidimensional measures for our analysis, as this

approach is the most straightforward applicable when it comes to distributions of

ordinal indicators. This type of measures provides informative figures in the policy

context. Still, our proposed standardisation procedures could be similarly applied

to welfare multidimensional indices that are expressed as population rates.

Table 2.1, below, contains an example of a counting multidimensional index.

We use this particular example throughout this chapter to illustrate our argument.
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The first column of Table 2.1 lists each considered well-being dimension. The

second column lists the indicators used to capture each dimension. Column 3

indicates the population subgroup where the indicator in column 2 is relevant /

applicable. Lastly, the fourth column describes the criteria used to identify as

deprived or not deprived a person from the applicable population in terms of

the column 2 indicator. For instance, school attendance is used to capture the

education dimension. This indicator is applicable for the population aged between

5 and 19 years old. Using this indicator, a person is identified as deprived in this

dimension if she or he is not attending school.

Applying the AF methodology to our example, we firstly identify the popula-

tion suffering deprivation in each indicator and configure, therefore, four depriva-

tion indicators. Following this, we calculate a weighted sum of the four considered

deprivation indicators to produce a single metric, C. As such, C, hence, denotes

the weighted sum of experienced deprivations. The relative importance within C

of each deprivation is set by the weights included within brackets in the Table 2.1;

the sum of them is equal to 1. Lastly, we identify as multidimensionally deprived

anyone whose C exceeds a k-threshold. The k-threshold corresponds, consequently,

to the weighted sum of total possible deprivations that are considered as sufficient

to identify a person as multidimensionally deprived.

The selection of the k-threshold and the weights, in general, is devised by each

of the multidimensional indices. For instance, the global CMPI uses as multidi-

mensional threshold k = 33% of its total weighted sum of deprivations (Alkire et al.

2014), where the weights correspond to a nested structure of equal dimensional

weights and within dimension equal weight per indicator. Like the global MPI,

the Colombian MPI uses a nested structure of equal weights and a k-threshold of

33%, while also implementing robustness checks thought k-dominance analysis for

a broader set of k-thresholds (Angulo et al. 2016). For a discussion of different

alternative procedures to set weights in a multidimensional index see Decancq &

Lugo (2013).

If we define, as the AF suggests, a multidimensionally deprived any per-

son that has at least a k weighted sum of deprivations; where k is a threshold

that allows to identify multidimensional deprivation; then, the multidimensional

deprivation status of any given person i can be characterized by a dichotomous
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Table 2.1: Example of multidimensional index: Dimensions, indicators, weights,
applicable population and deprivation criteria

Well-being
dimension

(1)

Indicator

(2)

Population subgroup
where the indicator

is applicable
(3)

A person from the applicable
population subgroup

is deprived if:
(4)

Health Antenatal care
[0.33]

Under 5 years old
children

Her/his mother did not
get access to at least four
antenatal care
appointments when she
was pregnant with
her/him.

Education
School attendance
[0.17]

5 - 19 years old
population

Is not attending school.

Educational
achievement
[0.17]

15 - 24 years old
population

Has not completed at least
9 years of education.

Dwelling
conditions

Material of floor,
type of toilet and
access to water
[0.33]

Any person

Lacks from flooring
different from earth or
sand or has no adequate
toilet** or lacks access to
adequate water supply***

Notes: Numbers within square brackets below the label of each indicator denote the relative importance
(weight) assigned to this particular indicator within the overall indicator; the sum of them equals 1. **Adequate
toilet: Toilet different from: pit latrine without slab/open lit, composting toilet, bucket toilet, hanging toi-
let/latrine, no facility/bush/field or other. Or a shared improved sanitation (flush toilet or improved/ventilated
latrine). ***Adequate water: Water different from unprotected well or spring, tanker truck, cart with small tank,
surface water or other. If the source is improved it must be within 30 minutes walking distance. If the source is
bottled water, it is considered deprived only if this is also the source of non-drinking water.

indicator, pi, that takes values of one when the individual is multidimensionally

deprived and zero otherwise. As an example, in our multidimensional index, a

16 year-old child can be possibly accounted as dimensionally deprived in school

attendance, educational achievement and dwelling conditions. In case this child is

not attending school or has not completed at least 9 years of education, and is liv-

ing in housing that lacks flooring different from earth or sand, or has no adequate

toilet, or lacks access to an adequate water supply, then this child is deprived in

the three dimensions where he or she can possibly score. Now, using the proposed

system of weights, this child scores a C-weighted sum of deprivations of 0.67. If

we use the AF identification procedure and set the k threshold of multidimen-

sional deprivation at 40%, this means that this child result in be categorized as

multidimensionally deprived and his/her pi indicator takes the value of one.
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As a result, for a society made of N individuals the headcount ratio or mul-

tidimensional deprivation incidence rate is expressed as: H = Q/N , where Q is

the total number of multidimensionally deprived people and can be expressed as

Q =
∑N

1 pi.

Here in this chapter, for illustrative purposes, we apply our proposed stan-

dardisation method specifically over this H-headcount ratio, using a k-threshold

of 40%. However, our methods can also be applied to any multidimensional index

expressed as a population ratio, and able to produce the same societal rate re-

gardless of whether they are based on either individual or sub-population grouped

data i.e., a decomposable index5. Absence of decomposability do not enable soci-

etal rates to be derived from group specific sub-population figures. In those cases,

our proposed direct or indirect standardisation method cannot be applied.

2.3 The comparability problem

In this section, we analyse the comparability problem that demographic confound-

ing factors, such as age, gender or household size, pose over multidimensional

indices of deprivation. We first discuss this comparability problem in relation

to measures of multidimensional deprivation that use individuals as their unit of

analysis. Then, we extend the analysis to household-based measures.

2.3.1 Individual-based measures

When it comes to literature, multidimensional deprivation is traditionally mea-

sured considering the individuals as anonymous in the measurement process. Anonymity,

in this case, implies that no single individual or group of individuals has greater

emphasis over the measure. This axiom warrant societal metrics being not al-

tered by any rearrangement of the population. Thus, the measures are not meant

5A index is said to be decomposable if it can be expressed as a weighted average of subgroups
estimates, where weights are subgroup population shares. The poverty measurement literature
refers to this property as ‘decomposability’ (Foster et al. 1984, Tsui 1999, Alkire & Foster 2011)
or ‘subgroup decomposability’ (Bourguignon & Chakravarty 2003)
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to be sensitive to re-shuffles of the population. This is the case of multidimen-

sional indices families such as the ones proposed by Tsui (2002), Bourguignon &

Chakravarty (2003), Alkire & Foster (2011) and Seth (2013).

However, considering the individuals as anonymous is seen as problematic

in the case of multidimensional indices of deprivation that do not account for

differences in needs across demographic sub-population groups.

In particular, different needs of demographic sub-population groups imply

that while, for instance, a child can be defined as deprived of education because

she or he does not attend basic education, a person older than 20 years can be

defined as deprived in such a dimension not because she or he does not attend

school, but rather because she or he does not know how to read and write for

example. In terms of the occupation dimension, while a person older than 18

years can be defined as deprived if she or he is seeking a job but does not have

access to one, in contrast, a child younger than 11 years can be defined as deprived

if she or he is forced to work. These are two examples of the heterogeneous needs

across different demographic sub-population groups.

Multidimensional indices of deprivation portray these heterogeneous needs

by defining each indicator of interest as relevant to be measured in a particular

applicable population subgroup. For instance, take our example of the multidi-

mensional measurement of deprivation. Indeed, we can see that each of the four

considered indicators is relevant to a specific sub-population group (see Table 2.1,

column 3). School attendance is relevant for those in the population who are 5

to 19 years old, while antenatal care is relevant for children born during the last

five years. Hence, the applicable population for each indicator varies by age, while

there are population subgroups that are accounted as deprived within it and those

that are not.

The fact that each of the used indicators is informative when it is evaluated

over a specific sub-population groups is admittedly a feature of most of the public

policy indicators. For instance, one of the targets of the millennium development

goals, launched by the United Nations Development Program, is the reduction

of the under-five years old mortality rate by two thirds, between 1990 and 2015.

Another target is to achieve universal access to reproductive health for all pregnant
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women, by 2015. This illustrates that most of the policy indicators are tracked

over specific sub-population groups, the first over children under-five years old and

the second over pregnant women.

In consequence, since a multidimensional measure combines together indica-

tors, applicable in different sub-population groups, by design the multidimensional

index allows different scoring possibilities according to sub-population groups. The

combination of indicators that a multidimensional measure takes into account, to-

gether with their applicable populations, yields a total number of deprivations that

an individual is accounted for. This total number of deprivations (i.e., the scoring

possibility of individuals) varies by demographic sub-population group. As such,

the populations that exhibit the larger scoring possibility within the multidimen-

sional index can be said that the measure considers them as more important than

others that have lower scoring possibility. Figure 2.1 displays the total number of

deprivations that each population subgroup, by age range, is accounted for in our

example of a multidimensional index. While the 25 years old and older population

can score a maximum of one deprivation, out of the four considered indicators, the

population from 15 to 19 years old can score up to three deprivations. In general,

our measure produces a greater scoring possibility among populations younger

than 25 years.

Different scoring possibilities by sub-population groups is a characteristic of

most of the multidimensional measures currently in use. Example of this are the

Colombian Multidimensional Poverty Index (Angulo et al. 2016) or the Interna-

tional MPI (Alkire et al. 2014). In the case of the CMPI, while an adult person

can score up to 11 possible deprivations, a 15- years old youth is able to score up

to 14 possible deprivations and a 5- years old child or younger can score up to 7

possible deprivations.

Although current multidimensional methodologies characterize individuals as

anonymous in the measurement process, the design features of the currently used

applications of them create structural differences of the possibility of a given in-

dividual of being multidimensionally deprived across age ranges. As such, if you

switch one person from one demographic sub-population group to another, the

societal measure will not remain unchanged. As an example, if in our Table 2.1

indicator we switch a 14-year old child to the 15 to 19-year old population, since
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Figure 2.1: Count of possible scoring deprivations across age ranges in our
example of multidimensional index

this latter group has the possibility of scoring a greater number of deprivations,

then the societal measure does not remain unaltered.

This feature resembles that societal multidimensional metrics are sensitive

to demographic re-arrangements in the population. It implies that some sub-

population groups have greater importance than others in the multidimensional

measurement process. We term this empirical regularity as ‘demographic sensitiv-

ity’. Indeed, below we formalise this concept for the decomposable multidimen-

sional deprivation societal H measure introduced in Section 3.2.

Demographic sensitivity. Consider a society made of i = 1, 2, . . . , N individu-

als and j = 1, 2, . . . , J different demographic sub-population groups. For example,

take two gender groups (female and male), and two age groups (population younger

than 25 years old and population 25 years old and older). Then, we obviously have

that J = 4. Each i-individual belongs to one subgroup exclusively. The proportion

of individuals belonging to each j-demographic sub-population group is denoted

by sj, where the sum of them across society adds to one, which for our example

is: s1 + s2 + s3 + s4 = 1. The population size of each subgroup is denoted by

nj and the sum of nj across each groups satisfies N =
∑J

j=1 nj. Because H is a
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decomposable measure, it can be expressed as: H =
∑J

j=1 sjhj, where hj is the

subgroup specific headcount ratio (hj =
∑

i pi/nj). In case of a rearrangement of

the population distribution such that s′j > sj, as for example ageing of the popula-

tion, the share of the elderly population increases and the share of young cohorts

decreases. Whenever this rearrangement of the population distribution produces a

change in the societal measurement, i.e. H ′ 6= H, we then say that the H societal

measure is demographically sensitive. This change in H can occur even though the

subgroup specific headcount ratios remained unaltered: h′j = hj, ∀j = 1, 2, . . . , J .

Intuitively, demographic sensitivity is observed when the person’s scoring pos-

sibility varies structurally across sub-population groups and therefore the evaluated

deprivation headcount differ across these specific population subgroups. Then, de-

mographic sensitivity relies on the fact that for any hj and hl-subgroup specific

headcount ratio, we have hj 6= hl for any j, l ∈ J and l 6= j.

As a result of this empirical regularity, the anonymity axiom becomes undesir-

able. On the contrary, we would like comparisons of multidimensional deprivation

across societies to not reflect these differences in the distribution of the population

but only differences in multidimensional deprivation incidence across homogeneous

population subgroups.

We follow by discussing the case of household-based measures below.

2.3.2 Household-based measures

If we change the unit of analysis for the index in Table 2.1 from individuals to

households, then we identify as deprived in each indicator any household with at

least one deprived household member in such a condition. Under this situation,

the smaller the household’s size, the lower the number of possible deprivations to

score within the multidimensional metric. Then, similar to the individual-based

case, the headcount ratio varies structurally across sub-population groups, in this

case across household size.

Moreover, take two groups of differing household sizes: households with less

than five persons and households with five or more persons. Next, compare a
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particular society at two different moments in time. In between these time peri-

ods, a rearrangement in the population by household size occurs. For instance,

a demographic transition lowers the average household size. As a consequence of

this change, the proportion of households with five or more persons decreases and

the proportion of households with less than five persons increases. Even though

the mean deprivation headcount of each of these two groups of households could

have remained unaltered, this demographic change results in a decrease of the so-

cietal headcount evaluation of our example of index. Then, we can assert that H

in this case result in being sensitive to rearrangements in the distribution of the

population by household size, and therefore demographically sensitive.

Furthermore, the possibility of a household in household-based multidimen-

sional measures being multidimensionally deprived varies not only through house-

hold size but also by household composition. For instance, take our multidimen-

sional index across two households, both made up of three persons: household

A consists of one child under 15 years old and two adults older than 25 years,

while household B is composed of three persons between 20 and 24 years old. The

structure of our multidimensional index example produces that the household A

can possibly score up to three deprived dimensions and household B only up to

two deprived dimensions; this even both households have the same size.

We follow describing possible sources of demographic sensitivity, either for

individual-based or household-based measures.

2.3.3 Sources of demographic sensitivity

Whenever societal measures aggregate units (either individuals or households) with

heterogeneous needs, then these diverse needs lead to differences, by demographic

sub-population group, in the incidence of the considered deprivation and in the

multidimensional assessment. Societal measures that may not hold demographic

sensitivity are multidimensional measures, whereby any person, irrespective of his

or her demographic characteristics can always possibly score the total number of

possible deprivations. In other words, multidimensional indices designed to evalu-

ate deprivation on specific needs homogeneous demographic sub-populations, such

as children or women, could register the same possible scoring possibilities across
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demographic groups. This is the case, for instance of, the child multidimensional

deprivation index used by Roche (2013) or the women multidimensional index

implemented by Alkire et al. (2013). Hence, they might not be demographically

sensitive. This is because all of the considered indicators within those indices re-

fer to the same demographic population group, and therefore, all the considered

children or women have the same deprivation scoring possibility.

However, worth bear in mind that demographic sensitivity might be also

present even in the one-dimensional space and within the sub-population where

the indicator is defined as relevant. For instance, school attendance, similar to the

mortality rate example from the introduction, varies by age, even within school

aged children (children between 5 and 18 years old). As older cohorts are more

prone to enter the labour market rather than remain within the formal education

system, school attendance decreases with age. This trend is present in both de-

veloping and developed countries (Barro & Lee 2001). Another example is labour

market indicators, which have demonstrated important differences by sex and age

within the working age population. Hence, it is not necessarily true that all multi-

dimensional indices that focus on evaluating deprivation on specific homogeneous

sub-population groups are non-demographically sensitive. Typically, most of the

indicators included in a multidimensional measure could be said are demograph-

ically sensitive, even within the sub-population where the measuring of them is

relevant.

As a result of the inclusion of demographically sensitive indicators, most

of the multidimensional indices might be considered demographically sensitive.

Whenever at least one of the indicators considered within the multidimensional

metric can be catalogued as such, demographic sensitivity might also be present in

the joint distribution of the multiple dimensions considered in the multidimensional

metric.

In presence of demographic sensitivity and given that decomposable mul-

tidimensional indices evaluated at the society level add units across demographic

sub-population groups, where each sub-population group is weighted by its relative

size within the society, comparisons between societies on a given multidimensional

index indicate not only their different relative deprivation, but also their dissimilar
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distribution of the population by demographic factors. If the purpose of the anal-

ysis is to compare relative deprivation across societies, demography in these cases

confounds the deprivation comparison. We observe, therefore, a comparability

problem.

One possible way to address this comparability problem is to assess several

group specific rates. However, when there is more than two sub-population groups

and several societies, such assessment could become cumbersome. A solution to

this is found in the statistical, demographical and epidemiological literature. Ex-

amples of them can be found in the following studies: Wolfenden (1923), Feinleib

(1992); Neison (1844), Yerushalmy (1951), Anderson et al. (1998), Naing (2000),

O’Connell et al. (2011), Schokkaert & Van de Voorde (2009). These scholars use

direct and indirect standardisation methods to tackle a similar comparability prob-

lems for the case of death rates. Likewise, the approach that we propose in this

chapter is to apply direct or indirect standardisation techniques to address this

comparability problem. We now describe this proposed approach in Section 2.4

below, following which we empirically illustrate, in Section 2.5, the effect that

demographic factors, such as household size and age, have when comparing mul-

tidimensional deprivation across societies with different population distributions.

2.4 Multidimensional standardised comparisons

Standardisation procedures date back to the nineteenth century. In 1984, Nei-

son proposed the use of direct and indirect standardisation to accurately compare

death rates across Great Britain’s districts. Neison advocated this method in

response to a previously proposed method that urged for these rates to be calcu-

lated as population average age at death. Neison (1844) observed the problem of

age-driven indicators and their use in comparisons across societies with marked dif-

ference in the distribution of their populations. To resolve the issue, he employed

opposite and alternative methods. The first method, later called direct standardis-

ation, involves calculating each district’s death rate by using the age-specific death

rates but assuming the population distribution of another different district. The

second alternative proposed by Neison was to apply to each community the age
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specific death rates of the standard population, while using the specific popula-

tion distribution of the communities to assist comparison across districts. This

procedure was later termed indirect standardisation.

The first method, direct standardisation, provides the rate that would have

been observed if the societies to be compared had the same standardising factor

structure or weighting system as discussed on page 27. Age-direct-standardised

death rates depict the death rate that would have been observed if the societies

under comparison had had the standard population age distribution.

While direct methods require the use of the specific sub-populations rates,

which are not known in every case, indirect standardisation provides the rate

that would be observed if each society had its own age distribution but the same

incidence as the standard population.

These two methods allow for comparisons of societal rates without confound-

ing the provided ranking with the different weighting systems imposed by the

structures of the population. Direct and indirect standardization methods, as a

matter of fact, are still widely used by the epidemiological literature. Examples

include studies such as: Doak et al. (2012), Fellman & Eriksson (2013), Chen et al.

(2012), Jones-Smith et al. (2011), and Yang et al. (2011). All of these studies use

standardisation techniques to perform more accurate comparisons across demo-

graphically differently structured population groups. We propose the use of these

two standardisation procedures to produce meaningful societal multidimensional

deprivation incidence comparisons.

In fact, when the purpose of the analysis is to compare two different societies

in terms of deprivation, two necessary conditions enforce the use of standardisation

procedures. First, the indicator to be compared across societies is demographically

sensitive to confounding factors, such as age, sex or households size. Second, the

societies to be compared have different distributions of population by those con-

founding factors. Only when both conditions are true at the same time do we

advocate the use of standardisation procedures. Still, since most of the indica-

tors used for policy purposes are demographically sensitive, absence of the first

condition is highly unrealistic. On the other hand, for the second condition, if
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the demographic distributions across societies are not significantly different, de-

mographic standardisation loses its purpose.

Worth noting, however, that multidimensional metrics, as any other socioe-

conomic indicator, can be associated with socio demographic characteristics not

necessarily related with the multidimensional measurement process, but indeed,

the societal measure results in being sensitive to them. For instance, consider the

hj headcount ratio of multidimensional deprivation for a j sub-population group

using the index example, as significantly higher than the hl for a sub-population

group l. In this case j and l are income poor and non-poor households, respectively.

We also know that hj > hl. Take now society A and B, such that society A has

greater proportion of income poor population than society B, and the distribution

of the population across both societies differ.

If we compare the distribution of the population of Society A and Society

B by income groups, these two distributions of the population differ. Also, the

proportion of multidimensionally deprived households by income poor and non-

poor group differ. These are the two necessary conditions that make meaningful

the use of the type of standardization methods that we propose in this chapter.

However, income groups shall not be understood as a demographic confounding

factor to which for standardize multidimensional deprivation incidence rates. This

is due to the fact that the multidimensional index example is not meant to be, by

design, non-sensitive to changes across the distribution of the population by income

groups. The application of other types of analytical methods, such as selection of

observable techniques, could produce more plausible results from which to infer

conclusions in this example.

In consequence, we highlight that only when multidimensional indices re-

sult to be sensitive to demographic characteristics involved in the measurement

process, or characteristics that depict heterogeneous needs across sub-population

groups with regards to the indicators included within the index, our proposed stan-

dardisation techniques are meant to enhance societal comparability. Whenever the

measurement process fails to produce societal figures non-sensitive to changes in

the structure of the population across these demographic confounding factors, the

proposed methodology of this chapter is suitable to be implemented.
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On the other hand, and as discussed by O’Donnell et al. (2007), standardis-

ation methods are either not meant to provide causal inference, they still remain

within the descriptive analysis. Regardless, they definitely furnish more accurate

societal rankings.

We continue, in this section, first describing the direct standardisation proce-

dure that we propose, following which we present the proposed analogous indirect

standardization method.

2.4.1 Direct multidimensional standardisation

In this section we describe how a direct standardisation procedure applies to the

H-headcount ratio of the AF family of counting multidimensional measures. As

previously mentioned, we opt to exemplify our proposed procedures for the H-

headcount ratio, although this can be applied to all members of the family of

measures.

For the purpose of the direct standardisation procedure, we use the fact that

H is decomposable and hj is the headcount ratio of the j specific demographic

population subgroup, such that hj = qj/nj, where qj is the number of multidimen-

sional deprived population in the subgroup j and nj the population size of each

subgroup such that N =
∑J

j=1 nj.

There is necessary as many J as subgroups made according to the standar-

dising factor(s) deemed to be important. For instance, considering age as our

standardising factor, we can define the J groups from the standard population as

five years cohorts where the first group comprises 5- year olds, and the second

group comprises 5-10-year olds, and so forth. Moreover, in the case of our multi-

dimensional index example, one could use the applicable population of each of the

indicators and build the relevant group ages: 0-5 years old, 5-14 years old, 15-19,

20-24 and 25 years old and older.

Using the selected J sub-population groups, the direct standardised head-

count ratio (DSH) is expressed as:

DSH =
J∑
j=1

s∗j
qj
nj
, (2.1)
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where s∗j corresponds to the share of the j sub-population group in the standard

population. DSH provides information about the multidimensional incidence that

a society would have experienced had it had its own hj subgroup specific headcount

ratios but the population distribution of the standard population. We say that

DSH is the demographically standardised comparable version of the H headcount

ratio.

There are two important characteristics of this technique that are worth men-

tioning. First, the subgroup specific rates before and after standardisation reflect

the same relative incidence to which the sub-population group is exposed. Sec-

ondly, using a procedure like this to compare two societies means that the pre-

existing relations across societies for the sub-population group rates are held by

the standardised rates. According to Wolfenden (1923) and Yerushalmy (1951),

it is found, by way of a direct standardisation procedure, that these two charac-

teristics must be held because they ensure that the relative incidence of arguably

homogeneous and comparable groups remains unaltered and comparable.

Our proposed direct multidimensional standardisation procedure does ensure

that the relative incidence across sub-population groups and across societies is

identical before and after standardisation. Indeed, to obtain direct standardised

figures, we only propose to evaluate the societal incidence by altering the set of

subgroup population shares sj∀J . We keep unadjusted both the pre-existent re-

lation within sub-population groups incidence and the pre-existent relation across

societies in terms of the incidence of each sub-population group. In consequence, a

direct multidimensional standardisation method produces consistent results across

sub-population groups and societies.

Nonetheless, standardised indices values do not have inherent meaning alone,

they do not replace the actual rate value, nor report the state of each society.

Standardised indices provide the relative deprivation state across societies in de-

mographically comparative bases. Wolfenden (1923) is among the first scholars

to have pointed out the absence of inherent meaning among standardised rates.

More recently, Anderson et al. (1998) also discusses this issue while evaluating the

implementation of new global age direct standardised death rates.
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The second possible course of action is to use, rather than a direct multidi-

mensional standardisation method, an indirect multidimensional standardisation

method. This second proposed standardisation technique is described below.

2.4.2 Indirect multidimensional standardisation

Indirect standardisation, in the absence of these subgroup specific rates, uses the

factor specific incidence of the standard population, which must be known. This

form of standardisation is more rarely used than direct standardisation.

Following the notation of Anderson et al. (1998), for indirect standardised

mortality rates, we express our Indirect Standardised Multidimensional Headcount

Ratio (ISH) as follows:

ISH =
Q∑J

j=1 h
∗
jnj

. (2.2)

The numerator in Equation (2.2) indicates simply how spread multidimen-

sional deprivation is in the observed society. The denominator, on the other hand,

corresponds to the expected multidimensional count of persons if the subgroup

specific incidence rates of the standard population prevail over the observed soci-

ety. This standardisation method requires from the observed society, in addition

to its population distribution, either the Q count of multidimensional deprived

people or alternatively its H headcount ratio and N population size (Q = HN).

In the next section, we assess the empirical effects of the proposed direct

standardisation technique on societal multidimensional deprivation incidence com-

parisons. In the interest of brevity, we restrict the empirical analysis of the next

section to the assessment of the proposed direct standardisation method. Nonethe-

less, the indirect standardisation tool can be similarly analysed. Section 2.6 in this

chapter discusses the implications of selecting either the direct or the indirect stan-

dardisation tool. In this same section 2.6, straightforward criteria to apply when

choosing the standard population are discussed as well.
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2.5 Assessing the empirical effects of direct stan-

dardisation

To assess the effect of the proposed direct standardisation technique of this chap-

ter, this section compares the results of unstandardised multidimensional com-

parisons with regards to their standardised results. In particular, we analyse the

ranking and relative size differences obtained when comparing multidimensional

deprivation incidence across societies with different structure of the population.

This analysis is performed through unstandardised and standardized comparisons.

This section provides four standardisation analytical examples. First, we use a

household-based measure to compare the unstandardised rates with the household

size standardised version of them. Second, using an individual-based multidimen-

sional measure we compare results standardising by ranges of age. Third, we use

a household-based measure to illustrate a standardisation procedure that uses two

standardising characteristics: household-size and age. Fourth, this section finalizes

by providing an age-standardization example for time comparisons.

2.5.1 Data

The empirical analysis of this chapter uses a cross-country micro data setting based

on the Demographic Household Surveys (DHS), developed by Measure DHS (DHS

2014). The DHS are repeated cross sectional household-based surveys, run since

1986 and usually carried out every five years. These international comparable

surveys include more than 260 surveys of 90 countries from the developing world.

Since its creation, the data sets have been available for public use.

These surveys include household and individual data for several socioeconomic

topics such as child health, education, family planning, fertility, gender/ domestic

violence, HIV prevalence and maternal health, among others. The majority of the

topics included in the DHS questionnaires are comparable across countries, still,

country-specific data are also included in the DHS.

We use DHS data from the Maldives 2009, Ukraine 2007, Jordan 2007, Do-

minican Republic 2007, Armenia 2005 and Armenia 2010. We selected these coun-

tries because they have comparable levels of development, but possess dissimilar
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distribution of the population by ranges of age and household size. According to

the 2014 UNDP global Multidimensional Poverty Index, all of the countries in our

analysis have multidimensional deprivation incidence lower than 10%. Also, across

the five countries, the proportion of population aged 25 years or older ranges from

40.0% to 73.2%, with Jordan representing the smallest proportion and Ukraine

the largest proportion of this population.

These six cross-sectional DHS surveys use a probabilistic sample design. The

sampling frame used by each survey was the population and housing census of

the correspondent country. The Armenia 2010 and Armenia 2005 DHS surveys

use a census master sample as a sample frame for enumeration areas. In terms of

sample size, all six DHS surveys have large sample sizes (between 7,500 and 35,700

households) and survey designs that enable nationally representative estimates for

a variety of indicators. In addition, the surveys also allow estimations across

urban and rural areas and other different geographical aggregations depending

on the country. Specifically, among the six surveys, that with the lowest sample

size is the Maldives 2009 DHS, which was collected over 7,515 households. The

Maldives 2009 DHS’ sample produces representative results for urban and rural

areas, six geographical areas and each of the 21 subsequent country geographical

regions, known as atoll. On the other hand, the largest among the six surveys

is the Dominican Republic 2007 DHS with 35,700 total selected households; this

sample allows for the disaggregation of country figures into 32 geographical areas

(known as provincias).

2.5.2 Example: direct standardisation on household-size

As a first example, in this section, we demonstrate the utility of our proposed direct

standardisation procedure to compare household-based multidimensional indices

of deprivation across societies with different population structures by household

size.

For such an endeavour, we compare the Maldives in 2009 and Ukraine in

2007. These two countries have similar multidimensional deprivation incidence, as
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measured by the 2014 UNDP global MPI.6 The two countries exhibit dissimilar

population distributions by household size.7

Using the DHS micro-data from the two countries, we first compare their pop-

ulation distribution by groups of household size. Figure 2.2.a plots these results.

As expected, a dissimilar population distribution by household size is observed be-

tween the two countries. While 60.7% of Ukraine’s population lives in a household

comprising three or less persons, less than 7% of the Maldives population lives

in a household of one to three persons. In the Maldives, a higher percentage of

the population lives in larger households, 61.1% of the Maldives population be-

longs to households with seven or more persons, whereas in Ukraine, this subgroup

represents less than 3.0% of the total population.

Subsequently, we compare the proportion of the multidimensionally deprived

population for both countries across household size group using the household-

based example of the multidimensional index introduced in Section 3.2 and Ta-

ble 2.1. Figure 2.2.b displays these results. For the sake of simplicity, we use

a k-threshold of 40%. However, similar results can be observed using other k-

thresholds. The light bars in the figure correspond to the Maldives, while the dark

bars correspond to Ukraine.

The figure shows that the mean proportion of the multidimensionally deprived

population is larger among larger households and smaller among smaller house-

holds in both countries. The multidimensional deprivation incidence increases as

household size increases. For instance, 25.4% of the population that belongs to

households with seven or more persons in Ukraine is living under multidimen-

sional deprivation conditions. In the Ukraine, however, when the household size

decreases to one to three persons, this proportion is only 1.4%.

In addition, we observe that the only subgroup-specific h-headcount ratio

that is greater in the Maldives than in Ukraine is exhibited among the population

that lives in households with three or fewer persons (Figure 2.2.b). While this

6According to the 2014 UNDP global Multidimensional Poverty Index, in 2009, 5.2% of
the Maldives population lived under multidimensional poor conditions, while in 2007, 2.2% of
Ukraine’s population lived under the same conditions.

7According to DHS micro-data, while 45% of the Maldives population is 25 years old or older,
in Ukraine, this proportion is 73%.
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Figure 2.2: H-headcount ratio across groups of household size: Maldives and
Ukraine Example

(a) Population distribution by group of
household size

(b) H-headcount ratio by group of
household size

Source: Author’s calculations based on DHS micro-data. Note: Point estimates developed using the weighting
system provided by Measure DHS. H-headcount ratio estimates developed using a k-threshold of 40%.

population subgroup represents in the Maldives only 5.9% of the population, in

Ukraine, it represents about 60% of the population.

When it comes to societal incidence of multidimensional deprivation, 5.6% of

the population in Ukraine is catalogued as multidimensionally deprived and 7.5%

in the Maldives. Although Ukraine exhibits a greater incidence of multidimensional

deprivation in two out of the three analysed sub-population groups, Maldives is

the country with a larger societal H headcount. This result is driven by the fact

that the greatest subgroup-specific deprivation incidence rate is found in both

countries across larger households. But, the country with the largest proportion of

the population living in households consisting of seven or more persons dominates

the results. Household size arises, therefore, as a demographic confounding factor.

Worth remarking here that household size arises as a confounding factor be-

cause the subgroup specific h-headcount ratio varies structurally across household

size and the structure of both populations also vary systematically by household
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size. Practitioners might find context-specific situations where multidimensional

deprivation incidence does not necessarily increases as household size increases, but

in contrast other not necessarily linear shapes are observed. For instance, an U

shape which reflects higher multidimensional deprivation incidence among small

and large households and lower multidimensional deprivation incidence among

households with an average size. Another example can be tick shapes. In any

of these alternative contexts, still the method proposed in this chapter results of

relevance because there exists a systematic variation of multidimensional depriva-

tion incidence across household size and also the population of the societies to be

compared have different structures by household size.

To tackle this comparability problem, we continue illustrating our proposed

direct standardisation technique. Figure 2.3 illustrates the societal proportion of

multidimensionally deprived population in the Maldives and Ukraine. It includes

both unstandardised and standardised H-headcount ratios. For the standardised

figures we use three different and alternative standard populations. From top to

bottom, the first horizontal line plots the non-standardised headcount ratio for

both countries. The subsequent horizontal lines in the figure plot the direct house-

hold size standardised H across the three different distributions of the population

used as standard. The distributions of population used as standard in this exam-

ple are: i) The mean distribution of the population across both countries (second

horizontal line of the plot); ii) The population distribution of the Maldives (third

horizontal line of the plot); and iii) the population distribution of Ukraine (fourth

horizontal line of the plot). Squared markers in the plot indicate the results ob-

tained for the Maldives, while circle markers correspond to results obtained from

Ukraine.

Unstandardised figures indicate that the Maldives has two percentage points

greater H incidence than Ukraine. Once we account for comparing both countries’

group specific relative deprivation under the same structure of the population, the

standardised figures show that Ukraine is relatively worse off than the Maldives.

This observation is consistent across the three different standard populations used

in the analysis.

Indeed, the three different distributions of the population used as standard

rank in the same order both countries. With this said however, the size of the
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resulting difference in H among both countries varies depending on the population

distribution utilised as standard. It is observed in Figure 2.3 that the use of the

Maldives as a standard population to standardise H, indicates that the difference

in multidimensional incidence across both countries is 11.5 percentage points. In

contrast, the use of Ukraine as standard population signifies that this difference

corresponds to only 2.0 percentage points.

The use of a standard population with greater numbers in households con-

taining seven or more persons (as with the Maldives) assigns greater weight to de-

privation concentrated in this sub-population group. In contrast, using Ukraine’s

distribution as the standard population, and one which is more concentrated on

households with three or less persons, assigns greater weight to this population

subgroup. Indeed, the index that we use as example results in observing greater

evaluated deprivation across households with greater household size. In light of

Figure 2.3: Effects of direct household size standardisation

Source: Author’s calculations based on DHS micro-data. Note: Point estimates developed using the weighting
system provided by Measure DHS. H-headcount ratio estimates developed using a k-threshold of 40%.
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this, the use of the Maldives as the standard population produces greater H stan-

dardised figures than the use of Ukraine.

Nonetheless, while standardised methods produce demographically standard-

ised comparable figures, the evaluated ranking and point estimations are still sen-

sitive to the population used as standard. This is the main drawback of this type

of method. It poses an undoubtedly relevant question in terms of which population

distribution should be used as standard to perform the comparisons. The selection

of the standard population requires careful analysis. In the Section 2.6.2 ahead

on this chapter, we discuss the implications of such selection and the proposed

criteria to use as a guide in making this selection.

2.5.3 Example: direct standardisation on age

As a second example, we now present the application of our proposed direct stan-

dardisation procedure for an individual-based measure, standardising by ranges

of age. For this analysis we construct the index example introduced in Section

3.2, here at the individual level and using the DHS micro-data surveys of Ukraine

2007, Jordan 2007, Dominican Republic 2007 and Armenia 2005.

The purpose of the analysis is to compare individual-based multidimensional

deprivation across these four countries that, although sharing comparable levels of

development, have dissimilar population distributions. In this case we use three

different standard population distributions. We selected the first two standard

population distributions to analyse results as those that could register the possible

most extreme opposite cases, among the four countries. This enables to analyse

the possible range of variation for the standardised figures. We first use as stan-

dard the society among the four countries that has the highest concentration of

younger persons, namely Jordan. The second standard used is the population

with the highest number of older persons, which is Ukraine. Both distributions

are extreme but still credible, as they are not unrealistic. They correspond to

the real distribution of the population of these two countries. Finally, we use as

third possible standard population, an intermediate approach, which is the mean

distribution of the population across the five countries.
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Figure 2.4 below reports the results obtained without any standardisation,

and results from the three different standardisation applications. The horizontal

axis in the figure refers to the H resulting metric of multidimensional deprivation,

while the vertical axis includes the results obtained for each country across differ-

ent standardisation procedures. Circle filled markers denote the unstandardised H

figures, hollow circular markers correspond to standardised figures using the aver-

age population of the five countries, triangle markers to standardised figures using

Ukraine as the standard population and square markers refer to standardisation

using Jordan as the standard.

By pairs of countries, unstandardised figures indicate that multidimensional

deprivation is greater in Jordan than in Ukraine, while the three proven standard-

ised figures signify that Ukraine exhibits greater multidimensional deprivation than

Jordan. This is similar to the case of Armenia and Dominican Republic, where

unstandardised results indicate the opposite order to that obtained by the proven

standardised results: Armenia exhibits greater multidimensional deprivation inci-

dence than Dominican Republic.

Results indicate that the ranking using unstandardised metrics does not cor-

respond to the ranking produced by standardised figures. Unstandardised figures

signify that amongst the four countries, Dominican Republic is the most deprived

and Ukraine the least. However, standardised figures using either Jordan as stan-

dard population, or the mean across the four countries, produce a ranking where

Armenia is the most deprived and Jordan the least. On the other hand, when

using Ukraine as the standard population, the least deprived country is Jordan; a

result that is consistent with the previous two observations.

The use of a standard population with a higher concentration of younger

population produces more consistent results than using as standard a population

with a higher concentration of older persons. The standardised ranking is robust

to the use of a standard population that concentrates a greater proportion of the

population where the indicator places greater emphasis.

On the other hand, in terms of size, we observe in Figure 2.4 that the sen-

sitivity of the age which DSH point estimates to the standard population is con-

siderable. A direct standardisation that uses Ukraine as standard produces a
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demographically standardised comparable H rate for Armenia of 4.1%, while the

use of Jordan as standard produces a demographically standardised comparable

H rate of 8.8% for the same country. Thus, the size of the rate using Jordan as

standard is more than twice the value of that seen when using Ukraine as standard.

In light of these results and given that the multidimensional index that we

use as example enables the population of persons younger than 25 years have a

higher number of deprivations (as discussed on page 22 and displayed in Figure

2.1), while the population of persons 25 years and older to have a lower number

of deprivations. A standard population concentrated on young persons, such as

Jordan, produces greater multidimensional deprivation rates.

In contrast, given that Ukraine is among the four countries, the one that ex-

hibits lower proportion of young population, when we use Ukraine as the standard

population, lower deprivation rates are produced than any of the other standard-

Figure 2.4: Direct age standardisation effects based on three different standard
populations

Source: Author’s calculations based on DHS micro-data. Note: Point estimates developed using the weighting
system provided by Measure DHS. H-headcount ratio estimates developed using a k-threshold of 40%.
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ised rates. Notice that, while the use of Ukraine as standard (diamond markers

in Figure 2.4) produces the lowest DSH within each country, the use of Jordan as

standard (square markers in Figure 2.4) produces, instead, the highest DSH.

As a result, measures that use different standard populations are not com-

parable with each other. A standard population concentrated in younger cohorts

produces a metric driven by the deprivation experienced by these ages. Conversely,

the use of a standard population concentrated in older cohorts allows the metric

to be driven by the deprivation observed in older ages.

When we use the mean distribution of the five countries as standard, we

obtain results which fall between the two previously mentioned situations. This

latter approach is therefore an intermediate one. This type of standard avoids

demographic overweighting of deprivation among either tail of the age distribution

and still portrays a credible distribution of the population.

2.5.4 Example: direct standardisation on household size
and age

Since most of the policy multidimensional index currently in use have selected

households as their unit of analysis and the indicators included within them vary

across different population subgroups by age ranges, we present here an example

of direct standardisation on two combined characteristics: age and household size.

Figure 2.5 includes the results of this example. It uses DHS 2007 information

to evaluate our household-based multidimensional measure in Jordan, Ukraine

and the Maldives. We present the resulting H headcount at a k-threshold of 40%,

before and after standardising by household size and age. The standardisation was

performed through three different standard populations: i) The mean distribution

of the population across the three countries (circle hollow markers in the plot); ii)

The population distribution of Ukraine (triangle markers); and iii) The population

distribution of the Maldives (square markers in the plot).

The ranking shown by the three countries is robust across the three proven

standard populations in use. By pair of countries, while unstandardised figures

indicate that Jordan faces seven percentage points greater incidence than Ukraine,
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the three standardised comparisons suggest that Ukraine is facing greater relative

multidimensional deprivation incidence than Jordan. Likewise, when comparing

Ukraine and the Maldives, the three standardised figures produce a consistent

ranking among each other, thus signifying that Ukraine is facing greater relative

deprivation than the Maldives. Conversely, unstandardised evaluations indicate

the opposite: the Maldives has greater incidence multidimensional deprivation

than Ukraine.

The use of a standardisation procedure does provide more accurate com-

parisons. The standardised results are, in fact, demographically comparable.

Nonetheless, standardisation procedures that use more than one standardising

characteristics or many categories within the same standardising factor require

careful analysis of the precision of the results. More specifically, the proposed

standardisation techniques to be applied with multidimensional indices rely on

the development of contingency tables, where each cell contains the mean inci-

dence by population subgroup. Then, the smaller the number of sample cases that

Figure 2.5: Example of multidimensional deprivation incidence (H),
unstandardised and directly standardised by household size and age

Source: Author’s calculations based on DHS micro-data. Note: Point estimates developed using the weighting
system provided by Measure DHS. H-headcount ratio estimates developed using a k-threshold of 40%.
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each cell contains, the larger the standard errors associated with those means will

be.

Still, another advantage of direct standardisation, in comparison with analysing

homogeneous sub-population groups separately, could be that standardised soci-

etal results might have lower standard errors than those observed in each cell.

However, the greater the number of standardising categories is, the greater the

standard errors of the overall societal measure will be. The standard errors for

each particular indicator included in the multidimensional index, as with the whole

societal index vary, nonetheless, from context to context. Sample variability should

therefore be studied under case-based circumstances.

2.5.5 Example: time comparisons using age-standardised
results

In this section, we analyse the implications of implementing a direct standardisa-

tion method for time comparisons. We illustrate this case by using the Armenia

2005 DHS and comparing it with Armenia 2010 DHS. The results of this exercise

are presented in Table 2.2. The first column of Table 2.2 reports the propor-

tion of the population under 25 years old, while the second column presents the

unstandardised results using a k threshold of 20%.

As reported in column 1, Armenia experienced a reduction in the proportion of

the population under 25 years old between 2005 and 2010. Between 2005 and 2010,

the proportion of the population younger than 25 years old fell 5.23 percentage

points. In 2005, 39.27% of the Armenian population was younger than 25 years

old. This proportion corresponded to 34.04% in 2010. This is an example of a

society with two different population distributions across time. We select a time

difference of only five years, first because the DHS data are available regularly

every five years and second to assess how much standardisation techniques are

worth utilising under not necessarily considerable demographic changes.

We observe in 2010 a structure of the population by age ranges in Armenia

different from that observed in 2005. In addition, we have seen that the multidi-

mensional index example in use produces a multidimensional deprivation incidence

that varies across age ranges. Hence, the standardisation technique proposed in
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the chapter appears worth utilising to furnish time comparisons which are not

confounded by changes in the structure of the population.

In this case, demographically standardised comparable results are accom-

plished by standardising H on age. Here, we standardise Armenia’s H multi-

dimensional incidence using three alternative standard populations: i) the mean

population distribution across evaluated periods of time; ii) the population distri-

bution observed in 2005; and iii) the population distribution population observed

in 2010. Columns 4 through 6 in Table 2.2 include the standardised version of

these results.

The Armenian unstandardised multidimensional incidence rate, as indicated

by column 2 in Table 2.2, displays a reduction of 4.15 percentage points between

2005 and 2010. The trend observed in the same period across the three differ-

ent standardised comparisons is unchanged, regardless of the standard population

used. Each of these four results indicates that Armenia registered a reduction in

the multidimensional deprivation incidence across time.

The unstandardised results indicate that the reduction in the multidimen-

sional deprivation incidence observed between 2010 and 2005 in the country cor-

respond to 4.15 percentage points (p.p.). However, the three age-standardised

results indicate that this reduction is not as large as the unstandardised result

suggests. Such an empirical result demonstrates that the unstandardised reported

reduction accounts not only for the reduction in relative multidimensional depri-

vation but also for the demographic change, i.e., the reduction in the proportion

of the population younger than 25 years old.

Armenia’s greater concentration of the population under 25 years of age in

2005 in comparison to 2010 produces a larger 2005 multidimensional deprivation

incidence than that which would have been observed if it had a population distri-

bution similar to the one experienced in 2010. This is the counter-factual question

answered by the direct standardised results reported by columns 3 and 5 of Table

2.2. Conversely, the lower proportion of Armenia’s under-25 population in 2010

produces a lower multidimensional deprivation incidence than the one the country

would have observed if it had had a population distribution more similar to that

of 2005 (see columns 3 and 4 in Table 2.2).
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Table 2.2: Age direct standardised results for H across time, Armenia

Proportion
of population

under 25
years old

Unstandardised
results

Standardised results

Standard:
Mean

2005, 2010

Standard:
2005

Standard:
2010

(1) (2) (3) (4) (5)

2005 39.27 6.20 5.73 6.20 5.24

2010 34.04 2.05 2.29 2.52 2.05

Difference (p.p) -5.23 -4.15 -3.44 -3.67 -3.19

Difference (%) -13.33 -66.90 -60.00 -59.28 -60.89

Source: Author’s calculations based on DHS micro-data. Note: Point estimates developed using the weighting
system provided by Measure DHS. H-headcount ratio estimates developed using a k-threshold of 40%.

As a result, when comparing time, the more sensible approach is to select

an intermediate distribution of the standard population, e.g. the mean of the

populations to be compared across a wide range of years. National projections

of population divided by age group are an important source of information for

this purpose. This procedure enables accurate comparisons without the need to

frequently change the standard population. This approach is employed by Ahmad

et al. (2001) and Anderson et al. (1998) in their analysis of worldwide death rates.

2.5.6 Sample variability

Multidimensional deprivation is traditionally measured using samples of house-

holds or individuals which allow to assess the multiple deprivations that a par-

ticular household / individual suffers at the same time. In use of these surveys,

point estimates of unstandardised rates of multidimensional deprivation incidence

are subject to sample variability that must be taken into account when assessing

societal rankings of multidimensional deprivation incidence.

The rigorous assessment of the sample variability that point estimates exhibit

requires to take into account the sample design of each survey because different

units might have had different selection probabilities.

On one hand, for the case of unstandardised rates most of the statistical

software provide computational tools that allow estimating the standard errors
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that H societal rates and the hj subgroup specific headcount ratios exhibit, while

taking into account the design of the survey. The estimation of such standard

errors allow us statistical inference.

On the other hand, given that the DSH -direct standardized headcount pro-

vides information about the multidimensional incidence that a society would have

experienced had it had its own hj subgroup specific headcount ratios but the pop-

ulation distribution of the standard population, the variance of the DSH can be

defined as the weighted average of the variances that each hj subgroup specific

headcount ratios exhibit. In this weighted average, the weights are the popula-

tion shares of the standard population, which are assumed as invariant; also, the

hj subgroup specific headcount ratios are assumed independent across population

subgroups. This is as well the approach used by Anderson et al. (1998) and Curtin

& Klein (1995) to estimate the variance of age-adjusted death rates.

Table 2.3 presents the obtained confidence intervals for the household size

direct standardised results developed in Section 2.5.2. We observe that the con-

fidence interval of the unstandardised H-rate of Maldives does not overlap the

confidence interval of the unstandardised H-rate of Ukraine. Then, the 2.21 p.p

difference between these two countries is statistically significant, being Maldives

the most deprived.

On the contrary, when H is standardized using three different standard pop-

ulations we observe that the DSH rate of Ukraine is always above the DSH rate of

Maldives, being this difference statistically significant in the case of using Maldives

as the standard population or the mean distribution of both countries.

We observe that the variance of the DSH is higher than the variance of un-

standardised rates because the usage of the shares of the standard population as

weights in the estimation of the variance. For instance, while the unstandardised

and the standardized H point estimate of Maldives is equivalent when using Mal-

dives as the standard population, the confidence intervals of the standardized rate

are wider than the obtained for the unstandardised variant.

In general, to avoid striking increments in the estimated variance of stan-

dardized rates, it is recommended to base estimations on large enough population

subgroups.
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Table 2.3: Household size direct standardised results for the H-Proportion of
multidimensionally deprived population, Maldives and Ukraine

Standard population

Maldives Ukraine

Mean Ll Ul Mean Ll Ul

(1) (2) (3) (4) (5) (6)

Maldives 7.50 6.23 8.76 18.98 13.77 24.18

Ukraine 3.53 2.59 4.46 5.29 3.96 6.61

Mean population
distribution of
Maldives and Ukraine

5.73 4.60 6.86 12.89 8.91 16.86

Unstandardised 7.50 6.45 8.54 5.29 4.67 5.90

Source: Author’s calculations based on DHS micro-data. Note: Point estimates developed using the weighting
system provided by Measure DHS. H-headcount ratio estimates developed using a k-threshold of 40%. LI and
Ul refer to the lower and upper 95% confidence limits developed using the standard errors derived from the
Taylor-linearised variance estimation that takes into account the clustered probabilistic sample design of each
survey.

Still, the use of an standard population that emphasizes the population sub-

groups that register lower hj-incidence rates and lower variance reduces the overall

estimate of the variance. This is observed when applying the distribution of the

population of Ukraine (which emphasizes households consisting of 1-3 persons) as

standard over the hj-incidence rates of Maldives.

2.6 Context-specific definitions

This section first discusses the natural concern that arises while implementing a

direct or indirect standardisation procedure to compare societal figures of multidi-

mensional indices, which especially relates to the selection of the standard popula-

tion to be used by these methods. Secondly, it discusses the normative definitions

embedded when selecting either a direct or an indirect standardisation technique

in the context of multidimensional deprivation indices. These two discussions aim

to guide the use of the proposed methods of this chapter in context-specific appli-

cations.
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2.6.1 Choosing the standard population

Our proposed standardisation techniques enable more accurate comparisons of

current policy developed indices across societies or across time. In the case of

direct standardisation, this is possible by fixing as constant the distribution of the

population to use for the comparisons. The selection of this standard population

is therefore crucial, although there is no conceptual justification for this choice.

This lack of theory can lead to arbitrariness.

In fact, for mortality rates, following Kleinman (1992) and Anderson et al.

(1998), the main drawback of an age-direct standardisation procedure is found

when the subgroup specific rates show divergent trends or different relative mag-

nitudes, thus leading to a different overall trend of societal figures that is strictly

dependent on the chosen standard population. In particular, standard populations

with greater emphasis on specific cohorts stress the rates experienced on such ages

or population specific subgroups.

Following Rosenberg et al. (1992), statistical and non-statistical considera-

tions arise when it comes to the factors that should be taken into account when

selecting a standard population for standardised indicators. In particular, based

on the normative criteria and developments done by the mortality rates standard-

isation literature (Wolfenden 1923, Kleinman 1992, Ahmad et al. 2001, Anderson

et al. 1998), we discuss six guidelines that we found as criteria to be taken into ac-

count when choosing a standard population to compare multidimensional indices

of deprivation across societies.

1. The standard population to be chosen varies depending on the purpose of

the analysis. Each analysis seeks to compare different societies and thus different

standard populations may have to be used. For instance, the standard population

to enable comparisons across time within the same country will intuitively not be

the same chosen standard as that used for a cross country setting. While in the

first case the most advisable procedure is the use of a standard population that

resembles the mean structure of the population of the country across time, in a

cross country setting the best practice is the use of a cross country mean structure

of the population as standard. In general, the standard population to be used
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must be chosen based on the requirements of each of the analyses to be performed.

There is no single standard population to be used in any case.

2. The standard distribution should reflect a credible structure of the popula-

tion of the societies to be compared. If the purpose of the analysis is to compare

multidimensional deprivation across low-income countries using a standard pop-

ulation that resembles high-income countries, then population distribution will

underweight events that are relevant to stress across the former cases. As an ex-

ample, according to World Health Organization data (WHO 2014) and the World

Bank income groups classification used by WHO, while in 2012 13.12% of Japan’s

population is younger than 15 years old, 49.99% of the population in Niger is

concentrated in this age cohort. A direct standardisation exercise to compare low-

income countries, using as standard the distribution of the population exhibited

by 2012 Japan will provide relatively higher weight to events observed among the

older population, while also weighting lower events observed across the young pop-

ulation. As such, a credible standard population to compare developing countries

corresponds to a structure that resembles the mean distribution of the countries

to be compared, for instance.

In fact, the examples provided by Sections 2.5.3 and 2.5.4, have shown that a

standard population that uses the mean of the countries to compare shows more

consistent results than standard populations that can be considered as extreme

structures of the population. Our finding is consistent with previous studies that

have analysed the sensitivity of standardised metrics to different standard pop-

ulations. An example are the results obtained by both Rosenberg et al. (1992)

and Curtin et al. (1980), whom indeed, after analysing the sensitivity of age-

standardised death rates to compare states within the United States, found that

the ranking provided by standardised figures that use as standard the more com-

mon structure of the population shows the most robust rankings across different

standards. They also found that the use of unusual structures changes the ranking

considerably.

3. When very different population structured societies need to be compared, an

intermediate or mean approach is desirable. Following from the previous example

of Japan and Niger, for worldwide comparisons, the use of Japan as the standard

population will focus the attention of the indicator on events that occur amongst
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the older population, although the use of Niger, for instance, produces the greatest

attention on events observed on persons younger than 15 years old. Worldwide

exercises that imply the comparison of several dissimilar societies in terms of their

population structure can be more consistently performed by the use of an average

world population. In fact, this is the approach proposed by the World Health

Organization to compare worldwide age-standardised mortality rates (Ahmad et al.

2001).

4. The use of the average structure across time might be a good practice when

time comparisons are expected to be performed. The World Health Organization,

for instance, proposed the use of world average structure of the population between

2000 and 2025 as the standard population for the future comparative worldwide

death rates (Ahmad et al. 2001). According to Ahmad et al. (2001), the use of an

average world population, as well as a time series of observations, removes the effect

of historical events on population’s age composition. As the example provided in

Section 2.5.5 reveals, when comparing Armenia 2005 and 2010 for multidimensional

incidence, either comparing the society using the structure of the first year, i.e.

2005, or the last year of the comparison (2010) maintains the overall trend. Yet,

a sensible approach in this case might be to select the intermediate structure, i.e.

the mean distribution of the population across both years as it does not provide

the greater emphasis given by one or the other distribution.

5. A fix year’s population structure to standardize multidimensional depriva-

tion incidence rates can be useful to shed light on specific counter-factual questions

of the behaviour of multidimensional deprivation incidence. For instance, in the

example of age standardized time comparisons analysed in Section 2.5.5, the use

of Armenia’s 2010 structure as standard shows that the 2005 unstandardised mul-

tidimensional deprivation incidence results are larger than that which the country

would have observed if it had a population distribution similar to the one experi-

enced in 2010.

6. A chosen standard with a population concentrated among the groups in

which the multidimensional measure has lower emphasis provides unsatisfactory

results. For instance, as we have shown in Sections 2.5.3 and 2.5.4, using a standard

population concentrated in older citizens to compare a multidimensional index that

emphasizes deprivation on young ages, reduces the variation spectrum of societal

51



figures. This, in turn, provides a ranking based on the deprivations that the

indicator had defined as having relatively lower importance.

7. Easy to use and interpret. As pointed out by Rosenberg et al. (1992),

standardised indicators are used as policy analytical tools to compare relative

deprivation across societies. They must, therefore, be easy to explain and easily

usable by a broad audience. Standard populations based on methods of common

knowledge of policy audience and public are found to be an advantage.

2.6.2 Selecting a standardisation technique

While the direct standardised multidimensional estimate reveals the incidence rate

that a society would have observed if it had the population distribution of the stan-

dard, an indirect standardised multidimensional estimate reveals the incidence rate

that a society would have observed if it had the sub-population group deprivation

incidences of the standard population. Both correspond to different normative

approaches.

To analyse which standardisation technique, either direct or indirect, could be

more suitable for each context, the framework set up by Fleurbaey & Schokkaert

(2009) to analyse unfair inequalities in health and health care is of special interest.

In the framework, the scholars catalogued differences in health outcomes caused

by myriad factors, some of which can be catalogued as producing fair/legitimate

differences and others as producing unfair/illegitimate differences. They defined as

legitimate or fair those differences attributed to causes that fall under individuals’

responsibility. Legitimate differences in this context therefore correspond to those

derived from preferences.

Following the analysis of Fleurbaey & Schokkaert (2009), the two standardisa-

tion techniques reflect different ethical conditions. While a direct standardisation

enables us to observe standardised figures that do not reflect variations among

them because of legitimate causes, an indirect procedure enables us to observe

standardised figures that reflect the same outcome if two societies have the same

level of illegitimate differences. As the scholars indicated, both ethical conditions

are desirable. Indirect standardisation rules out illegitimate differences in depri-

vation, so standardised figures indicate any remaining ‘fairness gap (a term used
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by Fleurbaey & Schokkaert (2009) to describe this procedure). Direct standardis-

ation, in contrast, rules out legitimate differences.

However, as the scholars discussed, it is not possible to achieve both situations

at the same time using either technique. In particular, in a direct standardisa-

tion context, it is possible that no difference in multidimensional deprivation inci-

dence between two societies will be observed because they have identical legitimate

sources of deprivation (i.e., an identical population distribution), so no legitimate

difference in deprivation remains. However, the two societies may still have illegit-

imate differences in deprivation, and the standardised results would depict them

as equivalently deprived. Scholars might find this situation ethically undesirable,

so they might opt to use an indirect standardisation technique. Nonetheless, this

decision is context specific, and it is advised to be taken in light of the particular

analysis to be done.

2.7 Concluding remarks

The current paper studies the effect of dissimilar population structures on societal

multidimensional comparisons. Through this paper, we show that comparisons

of multidimensional deprivation incidence rates across societies with dissimilar

population structures produce misleading rankings of relative deprivation. We

discuss reasons for standardisation, providing examples of circumstances that merit

the use of standardisation techniques. Last, we provide guidelines for the selection

of the standardisation technique and the standard population to choose when

standardised multidimensional indices will be in use.

We argue that current multidimensional deprivation incidence rates fail to re-

veal relative deprivation exclusively when comparing societies with different pop-

ulation distributions. These comparisons can be misleading. Direct and indirect

standardisation techniques are presented as plausible and desirable methods to

produce demographically comparable rates. This is achieved through the use of

a standard population distribution, which enables meaningful comparisons across

societies with different population distributions.
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Unstandardised H rates, in comparison to either household size-standardised

rates or age-standardised rates, show a different multidimensional deprivation so-

cietal ranking. For instance, while the household-based crude H ratio indicates

greater relative deprivation in Maldives in comparison to Ukraine, all three proven

household size-standardised H rates signify the greater relative deprivation of

Ukraine in comparison to Maldives. The results are also consistent with the mul-

tidimensional deprivation rate observed across groups of household size. These

results demonstrate the advantages of our proposed standardisation procedures

over the use of unstandardised rates when comparisons of societies with dissimilar

population distributions are to be analysed.

Although direct or indirect standardisation is useful for comparisons across

societies, their main limitation is based on the sensitivity of the results to the stan-

dard population used. We compare a multidimensional index across four countries:

Jordan, Ukraine, Dominican Republic, and Armenia. The countries have similar

levels of development but dissimilar population distributions. We find that the

size of the estimates, along with the ranking produced by standardised measures,

is sensitive to the standard population in use. Standardised multidimensional met-

rics based on different standard populations are found not to be comparable at

all.

Multidimensional comparisons across time were also assessed. The results

show that multidimensional deprivation incidence comparisons across time must

be addressed on a standardised basis whenever important demographic changes

have taken place. Demographic changes may alter the magnitude of the evaluated

reductions in multidimensional deprivation. Moreover, comparisons both across

time and across societies might be even more sensitive to differentials across the

distribution of the populations by confounding factors such as age or household

size. Our results demonstrate that accurate conclusions can be derived through

standardised analysis.

Any chosen standard with a higher proportion of its population concentrated

among age groups in which a greater number of dimensions are relevant weights

events in these groups in a similarly higher proportion. As a result, a chosen

standard with a population concentrated among these groups would be appropriate

for events that more concentrated there. In addition, while the use of an unusual
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population structure as the standard changes the societal ranking considerably,

standardised figures based upon a common structure of the population show robust

rankings across different standards. Along with these two guidelines, we provide

in Section 2.6.2 five other criteria to follow in choosing the standard population.

Standardised multidimensional figures do not reflect the magnitude of mul-

tidimensional deprivation for each specific society. Standardised figures are not

meant to replace crude rates. Indeed, it is only when making comparisons that

they are necessary and meaningful.

As such, the methodology proposed in this paper can be seen as useful to

enhance societal multidimensional comparisons of already designed indices that

do not take into account neither differences in needs across population subgroups

nor differences in the demographic structure of the populations to be compared.

Still, other possible methodological approach could be via the use of weighting

strategies that take into account differences in the structures of the populations to

be compared. An example of this later approach can be seen in Hildebrand et al.

(2015), whom control for differences in demographic structure and employment

of two populations using a non-parametric sample reweighting technique. Or, a

third possible course of action could be to take into account observed differences

in needs across individuals or household whilst constructing the index to be used.

This is the approach that the next chapter of this thesis follows.
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Abstract

Individuals from different demographic population subgroups and households of

different size and composition exhibit different needs. Multidimensional depri-

vation comparisons in the presence of these differences in needs have yet to be

analysed. This chapter proposes a family of multidimensional deprivation indices

that explicitly takes into account observed differences in needs across demograph-

ically heterogeneous units (i.e., either households of different size and composition

or individuals of different population subgroups). The proposed counting fam-

ily of multidimensional indices builds upon the Alkire and Foster methodology of

poverty measurement (J. Public Econ. 95:476−487, 2011) and draws from the

one-dimensional parametric equivalence scale literature. It aims to describe how

much deprivation two demographically heterogeneous units with different needs

must exhibit to be catalogued as equivalently deprived. Through microsimulation

techniques, applied over the 2013 Paraguayan household survey, the measurement

approaches contained in the proposed family of measures of this chapter are evalu-

ated. The obtained results demonstrate that neglecting differences in needs yields

biased multidimensional deprivation incidence profiles. Results also shed light on

the ability of the proposed measures of this chapter to effectively capture these

differences in needs.

Keywords: Multidimensional deprivation, poverty measurement, equivalence scales,

heterogeneous households, individual heterogeneity.
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3.1 Introduction

There is increasing interest in measuring poverty by assessing deprivation in mul-

tiple dimensions of well-being rather than by exclusively evaluating the ability to

consume market commodities. Within this growing literature, most of the applica-

tions of multidimensional deprivation measurement use the Alkire & Foster (2011)

method and either individuals or households as the unit of analysis.1

However, differences in needs are present when measuring multidimensional

deprivation across either individuals from different demographic sub-population

groups or households of different sizes and compositions. While pregnant women,

for instance, need access to antenatal health services, school-age children need

access to basic education services. Deprivation of antenatal health services is thus

relevant only to pregnant women, and access to basic education services is only

relevant to school-age children. Similarly, households without children are not

necessarily deprived in the absence of educational services and vaccinations, just

as households without pregnant women are not necessarily deprived because of a

lack of antenatal health services. Differences in needs therefore pose comparability

challenges when measuring multidimensional deprivation across demographically

heterogeneous units, such as households of different sizes and compositions or

individuals of different age ranges and genders.

In the previous chapter, I investigated the effect of these differences in needs

when comparing multidimensional deprivation across societies of different demo-

graphic composition and proposed standardisation methods to enhance societal

multidimensional comparisons. In this chapter, I focus on studying the effect of

differences in needs when comparing multidimensional deprivation across house-

holds of different sizes and compositions or individuals of different age ranges and

gender.

1Although the terms ‘multidimensional deprivation’ and ‘multidimensional poverty’ are used
interchangeably in literature, throughout this chapter, the term ‘multidimensional deprivation’
is used to refer to indices that count the multiple deprivations jointly observed across a selected
unit of analysis and, based on this counting procedure, identify the poor as the most deprived
population. Examples of this long-standing literature are studies such as Townsend (1979),
Atkinson & Bourguignon (1982), Mack et al. (1985), Callan et al. (1993), Feres & Mancero
(2001), Atkinson (2002), Alkire & Foster (2011), and Aaberge & Brandolini (2014b).
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A plethora of methods and techniques that account for differences in needs

can be found in the one-dimensional welfare literature. Examples of this litera-

ture include Kapteyn & Van Praag (1978), Pollak & Wales (1979), Blundell &

Lewbel (1991), Coulter et al. (1992b), Cowell & Mercader-Prats (1999), Duclos &

Mercader-Prats (1999), and Ebert & Moyes (2003). They aim to provide societal

profiles based on comparable household-based aggregates of income or expenditure

obtained through the use of equivalence scales.

In contrast to the one-dimensional welfare literature, comparisons of multi-

dimensional deprivation between demographically dissimilar units have yet to be

described. In fact, theoretically developed families of multidimensional indices such

as those proposed by Tsui (2002), Bourguignon & Chakravarty (2003), Alkire &

Foster (2011), and Seth (2013) have been developed exclusively using the individ-

ual as the unit of analysis, and do not discuss the arising comparability problems

that heterogeneity in needs across units might pose.

This chapter proposes a family of indices that measures multidimensional de-

privation across demographically heterogeneous units while explicitly taking into

account differences in needs across them. The proposed approach extends the

Alkire & Foster (2011) counting family of multidimensional poverty indices, pro-

viding a wider set of indices that aims to adjust for observable differences in needs

across demographically heterogeneous units. This is the methodological contribu-

tion of this chapter to the multidimensional measurement literature.

The choice of the individual or the household as the unit of analysis is not

arbitrary. It involves a normative decision to be made during the multidimen-

sional measurement process. Household-based measures conceive households as

cooperative units that jointly face the deprivation suffered by the household mem-

bers, as, for instance, Angulo et al. (2016) discussed regarding the selection of

the household as the unit of analysis for the Colombian Multidimensional Poverty

Index. Individual-based measures, in contrast, allow the unmasking of differences

in multidimensional deprivation across demographic sub-population groups, such

as the case of gender differences analysed by Vijaya et al. (2014) for Karnataka,

India or by Agbodji et al. (2013) for Burkina Faso and Togo.2

2For a broad discussion of the different normative decisions embedded in multidimensional
measurement, see Alkire, Foster, Seth, Santos, Roche & Ballon (2015).
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The family of indices that I propose in this chapter allows multidimensional

deprivation to be measured using either individuals or households as the unit of

analysis. The choice of individual or household is therefore open to be made

according to the context of each application.

In the case of household-based multidimensional measures, the purpose of ac-

counting for differences in needs is to enable pairs of households and thus different

populations of households to be compared on a more equivalent basis. Similarly, in

the individual-based case, the indices proposed in this paper aim to enable multi-

dimensional deprivation comparisons of any two individuals and hence of different

populations of individuals.

Furthermore, my proposed family of measures allows describing, under equiva-

lent normative considerations, the burden that multidimensional deprivation places

on each unit of analysis (either households or individuals). For instance, under an

absolute normative perspective where each deprivation has an equivalent absolute

value, the burden that multidimensional deprivation places is described through a

deprivations count-based approach to measurement. Conversely, under a relative

normative perspective that conceives each household / individual as equivalently

valuable, the burden that multidimensional deprivation places is described in terms

of a share-based approach to measurement. Intermediate normative perspectives,

in contrast, lead to the expression of multidimensional deprivation as a mixture of

count-based and share-based approaches to measurement.

To evaluate the effect of these different approaches to measurement (count-

based, share-based and intermediate) on multidimensional deprivation incidence

profiles, I construct counterfactuals using the 2013 Paraguayan household to dis-

entangle how much of the differences in multidimensional deprivation incidence

profiles are observed because unaddressed differences in needs. The results of this

evaluation demonstrate that unaddressed differences in needs yield multidimen-

sional deprivation incidence profiles to reflect not only differences in deprivation

but also differences in needs that for the purposes of this paper are considered as a

legitimate source of variation and should be therefore tackled by the measurement

process. Failure to take differences in needs into account was found to cause biased

multidimensional incidence profiles. Results also shed light on the ability of my

proposed measures to effectively capture these differences in need.
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3.2 Background

The starting point of this chapter is the background literature that analyses wel-

fare comparisons in the presence of heterogeneous needs. This section presents an

overview of this literature and the equivalence scale notion that seeds the fam-

ily of indices proposed in this chapter, along with a description of the relevant

multidimensional measurement background literature.

3.2.1 Welfare comparisons in the presence of heteroge-
neous needs

A plethora of methods and techniques from the one-dimensional literature at-

tempts to assess welfare and inequality rankings while taking into account differ-

ences in needs between households. Examples of this in the literature are Kapteyn

& Van Praag (1978), Pollak & Wales (1979), Blundell & Lewbel (1991), Coulter

et al. (1992b), Cowell & Mercader-Prats (1999), Duclos & Mercader-Prats (1999),

and Ebert & Moyes (2003). Within this literature, these technologies are known

as equivalence scales. Their relevance, as pointed out by Cowell & Mercader-Prats

(1999), is crucial for inequality and social welfare comparisons: “equivalence scales,

by providing an interpersonally comparable measure of living standards, play a

central role in the assessment of social welfare and income inequality. Failure to

take account of the relationship between nominal and equivalized income can give

a biased picture of both inequality and social welfare” (Cowell & Mercader-Prats

1999, p. 409).

In particular, equivalence scales have been used to allow the construction

of societal measures of welfare and inequality based on comparable household

measurements of income or expenditure (Fisher 1987, Muellbauer 1974). These

scales intend to reflect the amount of income required for households of different

sizes and compositions to have the same welfare level (Pollak & Wales 1979, Nelson

1993). An important emerging fact from reading this literature is that there is no

universally correct equivalence scale. Different procedures are justified according

to different circumstances.
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From the empirical perspective, two main approaches to construct equiva-

lence scales can be recognised: equivalence scales drawn from econometric tech-

niques and equivalence scales that use parametric approaches. For a review of

both branches of the empirical literature, see Cowell & Mercader-Prats (1999) and

Flückiger (1999). Both econometric and parametric approaches are based on dif-

ferent normative values that determine the results. While econometric approaches

vary across different functional forms used to model household preferences, para-

metric approaches are based on the selection of a set of parameters to typify the

size and composition of the household. The following will briefly describe both

approaches.

The most common econometric techniques implemented to derive equivalence

scales consist of modelling demand functions using household budget data and

then estimating the effect that non-income characteristics have over such demand

(Coulter et al. 1992a). However, as Pollak & Wales (1979) pointed out, these

type of scales are based on a household’s demand preferences already constrained

on the household demographic composition. Moreover, according to Blundell &

Lewbel (1991, pp.50), scales revealed from demand data are based on conditional

preferences, regardless of whether households choose demands and demographic

attributes simultaneously, sequentially or independently. These types of equiv-

alence scales are referred by Pollak & Wales (1979) as ‘conditional’ equivalence

scales.

Conversely, ‘unconditional’ equivalence scales refer to the variation in income

that households of different sizes and compositions require to achieve the same

welfare level. However, this variation should be derived independently from the

observed demographic profile of the household. According to Pollak & Wales

(1979, pp.217), to derive unconditional scales, “welfare analysis must compare

the well-being of a family in alternative situations which differ with respect to its

demographic profile as well as its consumption pattern”. In this vein, unconditional

equivalence scales are not directly observable. For this particular type of scale,

studies such as Blundell & Lewbel (1991), or, more recently, Hausman & Newey

(2013), focus on estimating those unobserved parameters by using counterfactual

techniques and applying sensible identifying assumptions.
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The parametric approaches, on the other hand, have focused on providing

a measurement approach that first takes into account the elasticity of the needs

with respect to household size and then the different household compositions. Ex-

amples of these parametric technologies can be found in Atkinson & Bourguignon

(1987), Buhmann et al. (1988), Coulter et al. (1992b), and Cowell & Mercader-

Prats (1999). A general approach of this type of equivalence scale is analysed by

Buhmann et al. (1988) and Coulter et al. (1992b), in which they express household

adjusted income (yh) as a function of the observed household income (xh), the size

of the household (qh) and a scale relativity parameter (θ):

yh =
xh

(qh)θ
. (3.1)

In this approach, needs are expressed in terms of the size of the household, and

the scale relativity parameter varies from no adjustment of the household income

by needs (θ = 0) to a complete adjustment portrayed by the per capita household

income (θ = 1).

The family of measures proposed in this chapter draws from this paramet-

ric equivalence scale literature. Similar to the one-dimensional equivalence scale of

Eq.(3.1), we use a parametric approach to measurement and emphasise needs under

a scale relativity parameter θ. The proposed family of measures enhances multidi-

mensional deprivation comparisons across either households of different sizes and

compositions or individuals from different demographic sub-population groups.

The approach aims to describe how much deprivation demographically hetero-

geneous units must exhibit to be catalogued as equivalently deprived. It allows

societal multidimensional indices based on more comparable profiles than those

available in multidimensional measurement literature.

3.2.2 Multidimensional deprivation measurement

Several conceptual approaches exist to measure well-being, and each chooses its

specific conceptual focus: resources (income or others), basic needs, Sen’s func-

tionings or capabilities (Sen 1993), rights, happiness and so on. In particular, the

family of multidimensional measures proposed in this chapter can be applied by

different conceptual approaches.
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However, the conceptual focus of any index and the selection of dimensions

and indicators correspond to a normative selection to be taken for each specific

context. For instance, the index currently in use by the Colombian government to

track multidimensional poverty (the Colombian Multidimensional Poverty Index -

CMPI) chose as focus a standard of living concept within which dimensions and

indicators were selected (Angulo et al. 2016). The CMPI considered household de-

privations as constitutive elements that describe the lack of a minimum standard

of living. In particular, dimensions and indicators were selected by Angulo et al.

(2016) using various criteria that range from literature-review-revealed relevant

living standards for the Colombian context, to identified governmental priorities,

and availability and reliability assessment of the data to be used. Another ex-

ample is the Grenadian Living Conditions Index (GLCI) currently in use by the

Grenadian government to target the most deprived population as eligible for so-

cial programs (Dı́az et al. 2015). The GLCI also uses a living standard concept

from which selected dimensions and indicators. But in contrast to the CMPI, the

GLCI defined dimensions and indicators under a set of criteria correspondent to

the targeting purpose of the measure. For example, the GLCI explicitly excluded

from the set of indicators, variables that could be object of misreporting or that

refer to a narrow time frame window to avoid capturing transient household living

conditions. For a detailed discussion of the conceptual space, dimensions and indi-

cators, to be chosen in the context of multidimensional deprivation measurement,

see Alkire, Foster, Seth, Santos, Roche & Ballon (2015).

Within the multidimensional literature, two alternative procedures identify

the poor population and aggregating dimensions: the ‘welfare approach’ and the

‘counting approach’. The first combines several dimensions into a single variable

and sets a threshold to differentiate between poor and non-poor populations. The

welfare approach has been studied by Bourguignon & Chakravarty (2003), Seth

(2009), and Seth (2013), among others.

By contrast, the counting approach, as its name indicates, counts the number

of dimensions in which persons suffers deprivation, and the identification of the

poor person relies on defining how many dimensions must be deprived for some-

one to be categorized as multidimensionally deprived. Examples of these types of

measures and analysis are proposed by Townsend (1979), Atkinson & Bourguignon
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(1982), Mack et al. (1985), Callan et al. (1993), Feres & Mancero (2001), Atkinson

(2002), Aaberge & Brandolini (2014b), and Alkire & Foster (2011). Efforts have

been made within the literature, such as Atkinson (2003), to analyse both ap-

proaches (welfare and counting) under a common framework. However, as pointed

out by Aaberge & Brandolini (2014a), this discussion is still inconclusive.

The family of measures proposed in this chapter stands, specifically, within

the counting multidimensional deprivation literature and builds upon Alkire & Fos-

ter (2011)’s methodology. For brevity, I henceforth refer to the multidimensional

poverty measurement method proposed by Alkire & Foster (2011) using the abbre-

viation ‘AF’ or ‘AF methodology’. I now continue describing this multidimensional

deprivation measurement methodology, using a slightly modified notation.

3.2.3 The AF methodology

Consider a population consisting of I ≥ 1 individuals evaluated across J ≥ 2 indi-

cators or dimensions. The AF method begins by defining an I×J matrix A = [aij],

where each row corresponds to an individual and each column to the indicators

quantifying the individuals’ achievements such as education level, nutrition, health

status, etcetera.3 More precisely, the cell aij of the matrix A quantifies for the

i-individual the j achievement. Each column is either a cardinal or an ordinal

achievement indicator.4

The AF methodology defines the i individual as deprived in the j dimension

by placing a threshold zj over aij. Then, whenever aij < zj the i individual is said

3In general, greater values of an achievement indicator refer to better-off conditions, and lower
values of it refer to worse-off conditions.

4A cardinal indicator is such that any of its values measures the size of the achievement.
This means that the comparison between any two given observed points of a cardinal indicator
can be commensurate with the difference between their respective sizes. For instance, years
of education is a cardinal achievement indicator because having two years of education can be
considered double the number of one year of education. In contrast, an ordinal indicator does
not allow measuring the size of the achievement, but rather only indicates a particular ordering
between situations. An example of an ordinal achievement indicator is the self-assessment of
health status, which takes the categories of “very poor”, “poor”, “good”, and “very good”.
Note that in this case, we are unable to evaluate the ‘size’ of the situation. If we compare two
observations, for instance, one person having very good health and another person having very
poor health, we do not observe the size of the difference between the two situations. In this
latter case, we only know that the first person has better off self-assessed health status than the
second one, but we do not know the size of the difference in self-assessed health status between
the two persons.
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to be j-deprived and the breadth of the suffered deprivation is described by:

gαij =


(
zj − aij
zj

)α
if aij < zj

0 otherwise,

(3.2)

where α ≥ 0 is the poverty aversion parameter. The α parameter, first introduced

in the poverty measurement literature by Foster et al. (1984) and used by Alkire

& Foster (2011), assigns greater emphasis to the most deprived or lowest achieving

individuals. The greater the value of α, the larger the accentuation of gαij on the

most deprived.

However, if the achievement variable is ordinal, the gαij indicator is valid only

for α = 0, and g0
ij takes the value of either 1 or 0, indicating the presence or

absence of deprivation. Hence, as Alkire & Foster (2011) also discussed, any gαij

with α > 0 can be defined only for cardinal indicators.

Given that most of the public policy indicators in current use are ordinal, our

proposed methodology restricts gαij strictly to the case of α = 0. Henceforth, we

denote it as simply gij.

The application of the zj thresholds over the A matrix results in an I × J
deprivation matrix G = [gij]. Each row of the G matrix corresponds to an i indi-

vidual and each column to a binary indicator of presence or absence of deprivation

in each dimension.

The AF methodology continues by aggregating deprivations across dimensions

for each i person with a ci metric:

ci =
∑
j∈J

gij. (3.3)

Then, a threshold k to identify the multidimensionally deprived is placed over

the ci metric. As a result, any i individual satisfying ci ≥ k is identified as

multidimensionally deprived.

Subsequently, the gij element from the G matrix is censored to zero in case the

i individual is identified as not multidimensionally deprived, namely gij(k) = 0 for

any i individual that satisfies ci < k. Thus, gij(k) denotes the i row and j column

element of the G matrix after the identification of the multidimensionally deprived.
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To obtain societal metrics, the simplest measure that AF proposes is the

H-multidimensional deprivation incidence. This first metric corresponds to the

proportion of people identified as multidimensionally deprived using the k thresh-

old.

The second most important societal metric that AF proposes and that is

currently in use by most of the applications of the method is the M0-adjusted

headcount ratio. AF defines the adjusted headcount ratio as M0 = µ(gij(k)), where

µ(gij(k)) corresponds to the average gij(k) for i = 1, 2, . . . , I and j = 1, 2, . . . , J .

3.3 The proposed family of multidimensional de-

privation indices

This section motivates and presents the proposed family of multidimensional de-

privation indices, as an extension of the AF methodology, which explicitly takes

into account differences in needs among demographically heterogeneous units. The

AF methodology and multidimensional methodologies available in the literature,

such as Tsui (2002), Bourguignon & Chakravarty (2003), Seth (2009, 2013), and

Rippin (2010) have all been developed using individuals as the unit of analysis and

do not analyse the comparability problems that differences in needs might bring

to multidimensional deprivation measurement.

In particular, when measuring deprivation, demographic heterogeneity plays

a central role in the definition of what can be considered a lack of a minimum

achievement. Children, for instance, can be considered deprived when they are

not accessing basic education services, unlike adults, who can be considered de-

prived in the same education dimension when they do not know how to read and

write. As another example, while adult populations that do not have access to

job opportunities despite seeking them can be defined as deprived in employment,

children cannot be defined as deprived in the absence of employment.

A long-standing tradition of policy indicators evaluates deprivation for each

particular achievement over a specific sub-population of interest. For instance,

one of the Millennium Development Goals launched by the United Nations De-

velopment Programme and adopted by several countries to be achieved by 2015
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is universal primary education. Another MDG is universal access to reproduc-

tive health. Both access to primary education and access to reproductive health

services are relevant for measurement only among their particular applicable pop-

ulations, which are children 6 to 15 years of age and pregnant women, respectively.

When it comes to measuring multidimensional deprivation, these differences

in needs, reflected by the different populations where each indicator is applicable to

be measured, bring comparability challenges to measuring how many dimensions

in deprivation a particular individual or household might exhibit to be catalogued

as multidimensionally deprived.

The applied multidimensional deprivation literature addresses these differ-

ences in needs by restricting individual-based measures of multidimensional de-

privation to the analysis of demographically homogeneous individuals or, in the

case of household-based measures, by either assuming the same set of needs across

households or ignoring the fact that demographically dissimilar households have

significantly different needs.

For instance, in terms of the individual-based applied multidimensional liter-

ature, a majority of these studies focus on measuring multidimensional deprivation

among either children or adult populations. Examples of child multidimensional

deprivation include studies such as Roelen et al. (2010), Roche (2013), Trani &

Cannings (2013), Trani et al. (2013), and Qi & Wu (2014). Examples of studies

that focus on multidimensional deprivation among an adult population include

Oshio & Kan (2014) and Solaymani & Kari (2014).

In contrast, household-based applications of multidimensional deprivation

measurement identify as most deprived those households that exhibit the largest

number of dimensions in deprivation. Examples of such an empirical approach

are the global MPI launched by the United Nations Development Program (Alkire

et al. 2014), the Mexican official methodology of poverty measurement (Coneval

2010), the Colombian Multidimensional Poverty Index (Angulo et al. 2016), and

the Chilean National Multidimensional Poverty Index (MDS 2014). Along with

these policy-oriented indices, there is an applied academic literature in which mul-

tidimensional deprivation is analysed using the household as the unit of analysis

and assuming the same set of needs across households. Examples include Alkire

73



& Seth (2015), Alkire & Santos (2014), Ayuya et al. (2015), Bader et al. (2016),

Cavapozzi et al. (2015), Mitra (2016), Alkire, Roche, Seth & Summer (2015), and

Yu (2013).

However, the larger and more demographically heterogeneous a household is,

the greater its needs might be. Thus, small and demographically homogeneous

households might register a systematically lower number of dimensions in depri-

vation, and conversely, larger and demographically heterogeneous households can

exhibit a systematically larger number of dimensions in deprivation.

The proposed method of this chapter enables the measurement of multidimen-

sional deprivation across heterogeneous units (i.e., households of different sizes and

compositions or individuals from different demographic sub-population groups)

while taking into account observable differences in need. The following sections

describe these methods. Specifically, Section 3.3.1 below presents some basic defi-

nitions, subsequently Section 3.3.2 continues describing the proposed method when

selecting household as the unit of analysis and then, as an extension of household-

based measures, the individual-based method is presented.

3.3.1 Basic definitions

The proposed methodology of this chapter begins by defining for each j achieve-

ment the sub-population group for which it is relevant to be measured. We call

this the applicable population for achievement j, and we will measure the presence

or absence of the j deprivation only within this set of sample units. This feature

of our methodology captures individual differences in needs, corresponding to the

traditional approach in the policy context to tracking indicators. With this fea-

ture, we bridge the gap between theoretically developed multidimensional indices

and policy-oriented single indicators design.

This feature is formalized with an I × J matrix of applicable populations

that we call S. There are as many as J applicable sub-population groups, and

any two applicable populations are not necessarily mutually exclusive. The cell

sij of the matrix S is an indicator variable that takes a value of 1 if and only if

the i-individual belongs to the applicable population of the j-achievement, and

0 if and only if the i-individual does not belong to the applicable population of

74



the j-achievement. For instance, according to the Millennium Development Goals

access to primary education is relevant to be measured among school-age children,

then, cell sij takes a value of 1 whenever the i-individual is aged 6 to 15 years old

and zero in case the individual is outside this age range.

Any observed j achievement for the i person that does not belong to the

applicable population of such achievement is, therefore, defined as unimportant

for the measurement process. Thus, the gij individual dimensional deprivation

indicator evaluated on its applicable population is denoted by gij(sj) and takes

the form of:

gij(sj) =

{
1 if aij < zj and sij > 0

0 otherwise,
(3.4)

where sj denotes the applicable population of the j achievement.

3.3.2 Household-based metrics

Considering household as the unit of multidimensional deprivation analysis im-

plies understanding the burden that deprivation places as shared among household

members. For instance, while child mortality refers to a particular episode that is

suffered by children, using the household as the unit of deprivation analysis implies

that this episode is understood as a phenomenon that not only affects children but

also the household as a whole. The living conditions and behaviours of household

members contribute into reducing or increasing the frequency of such situation,

and the burden of the episode is faced collectively by the household.

In fact, there is a growing literature on the measurement of deprivation, which

takes into account the intrahousehold externalities that arise from the presence

of a deprived household member. This is the case of the proposed approach of

Basu & Foster (1998) to measure literacy by taking into account not only indi-

viduals ability to read and write but also the additional advantage that illiterate

households members have from the presence of literate members in the household.

Extensions have been developed by Subramanian (2004), Subramanian (2008) and

Chakravarty & Majumder (2005), and a similar approach but for the case of the

unemployment rate has been proposed by Basu & Nolen (2008).
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In this vein, also household-based decision making, and in general collective-

based decision making has being broadly studied by the economic literature. Ex-

amples are the studies of Chiappori (1992) and Corfman & Lehmann (1987), who

model and analyse this type of decision making process.

Yet, there is no consensual empirical evidence of whether or not households

behave as a collective unit. A classic example in the literature of risk pooling

evidence among household members to protect the collective unit from adverse

shocks is the Townsend (1994) study of three poor high-risk Indian villages. In

that particular setting, Townsend (1994) found that contemporaneous household

consumption is not dramatically influenced by transitory shocks, such as unem-

ployment or sickness. Conversely, there is also evidence that individual risk is

only partially pooled among household members because competitive objectives

among them might arise. Examples of this evidence are studies such as Hayashi

et al. (1996), Doss (2001), and Dercon & Krishnan (2000). This latter literature

suggests absence of full risk pooling among members but partial and heteroge-

neous risk pooling depending on characteristics such as age, gender, and cultural

traditions, in each of those analysed contexts.

As such, the proposed methodology of this chapter enables using either the

household or the individual as the unit of analysis. It recognizes that selecting

individuals or households have embedded different normative criteria that need

to be analysed and defined according to the purposes of each particular applica-

tion. In the particular case of household-based measures, my methodology follows

the intuition of the economic literature on the measurement of deprivation as a

household-based phenomenon, and are developed under the premise that household

members jointly face deprivation, whenever it occurs to a particular member. As a

matter of fact, my household-based measures represent the burden that individual

deprivation places over the household as a collective unit, and they are approached

through combining the deprivation profiles of household members. The following

paragraphs formalize this proposed methodology.

Consider then that each individual belongs to a particular h household, and

each household contains qh household members. The dβhj-dimensional deprivation
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indicator for the h household and the j dimension is, thus, defined as:

dβhj =


(∑
i∈qh

gij(sj)

)β
if
∑
i∈qh

gij(sj) > 0

0 otherwise,

(3.5)

where β ∈ {0, 1} is the parameter of aversion to deprivation. Larger values of β

assign increasing value to the most deprived dimensions (i.e, those with greatest

number of j deprived household-members). Whenever β = 0, then household

dimensional deprivation is expressed by a {0, 1} indicator of absence or presence

of at least one j deprived household-member. On the other hand, if β = 1, then

dimensional deprivation is expressed by the count of deprived household members

in the j dimension.

The β parameter of aversion to deprivation is analogous to the α parameter

of poverty aversion introduced by Foster et al. (1984) and used by Alkire & Foster

(2011) to assign increasing value to those dimensions with biggest shortfall gap

ratio ((zj − aij)/zj). Similar to the α parameter of the AF method, whenever

β = 0, dimensional deprivation is expressed as an indicator of presence or absence

of deprivation in the j dimension. However, while in the AF method α > 0 can be

used only in case the j dimension is captured by a cardinal achievement indicator,

here β = 1 commensurates the household deprivation breadth in the j dimension,

without necessarily enforcing the use of cardinal achievement indicators and in

terms of the number of j deprived household-members.

As a result of the ordinal nature of most of policy indicators, current household-

based applications of the AF method have been restricted to measure the burden

that dimensional deprivation places on the household by indicating the presence

or absence of at least one household member under deprivation in this dimen-

sion. This particular approach corresponds to using d0
hj to express dimensional

deprivation, which is setting β = 0.

The use of β = 0, however, does not allow household metrics to be sensitive

to increments in the number of deprived persons in an already deprived dimen-

sion. For instance, when evaluating access to primary education, a household with

two school-aged children, one child attending school and the other not attending,
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registers d0
hj = 1. Now, if this same household, as a result of a deprivation incre-

ment, increases its number of children who are not attending school to two, its d0
hj

indicator remains invariant.

In contrast, our proposed methodology enables expressing household dimen-

sional deprivation with any β = 1, which produces a measure of dimensional depri-

vation that is sensitive to increments in the number of deprived persons in already

deprived dimensions. For instance, in the example of the previous paragraph, if we

evaluate school attendance in the household with one deprived school-age child,

then d1
hj = 1. But if the household has two children deprived of school attendance,

then d1
hj = 2, a value that is twice as large that of the initial case. I further

discuss and illustrate this advantage of the proposed method when discussing the

properties of our societal metrics in Section 3.6 ahead on.

Still, not every household has the same set of dimensional needs. In fact, the

number of j applicable household members generally varies across households. To

account for this, we define nβhj to be the size of the h household needs on the j

dimension:

nβhj =


(∑
i∈qh

sij

)β
if
∑
i∈qh

sij > 0

0 otherwise.

(3.6)

Two important cases are obtained by setting β = 0 or β = 1: n0
hj indicates whether

the household has need in the j dimension or not (i.e., has at least one household

member that could suffer deprivation in such dimension); and n1
hj informs the

number of household members that exhibit need in the j dimension. For instance,

in our same example of school attendance, since the h household has two school-age

children, then we know that n0
hj = 1 and n1

hj = 2.

Using this nβhj-dimensional size of household needs from Eq. (3.6) we can

express the size of household multidimensional needs as:

Nβ
h =

∑
j∈J

nβhj, (3.7)

where N0
h counts the number of dimensions that the h-household exhibit as need

and N1
h counts the number of achievements that the h-household exhibit as need.
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The second stage of our proposed methodology consists of aggregating house-

hold deprivations across dimensions, discounted by needs, to obtain multidimen-

sional profiles. In particular, we propose measuring the burden that multidimen-

sional deprivation places on the household with a functional form that enables

capturing either count-based, shared-based or a mixture of these two types of

measures. In this vein and following Cowell & Mercader-Prats (1999) and Buh-

mann et al. (1988) one-dimensional equivalence scale presented in Eq. (3.1) from

page 68, we express the burden of multidimensional deprivation as:

mβ,θ
h =



∑
j∈J d

β
hj(∑

j∈J n
β
hj

)θ if
∑
j∈J

nβhj > 0

0 otherwise,

(3.8)

where θ ∈ [0, 1] is a deprivation response scale parameter that reflects the relativ-

ity of the response of the burden of deprivation to the scale of household needs.

In the case that θ = 0, we are in the presence of a count-based approach, and

no discounting in needs is applied at all. Thus, the household is assumed as not

receiving any advantage from the cooperative unit, and therefore, the burden that

deprivation places on the household is not lightened to any degree from the scale of

the needs. On the other hand, when θ = 1, we are using a share-based approach.

While the count-based structure places greater emphasis on larger households with-

out accounting for any possible scale economy that might arise at this level, the

share-based approach places greater emphasis on small households because they

are more prone to registering the maximum possible burden of deprivation. Values

of θ different than 0 or 1, aim to describe mβ,θ through an intermediate approach

that lie in between of count-based and share-based perspectives. Henceforth, the

expression mβ,θ is used to refer to the different values of the measure defined in

Eq. (3.8) for the whole population of households as β or θ varies.

Current household-based policy-oriented indices that use the AF method mea-

sure the burden of multidimensional deprivation through the m0,0 metric, which

corresponds to counting the number of dimensions in deprivation. However, the

m0,0 metric does not discount by household needs at all. It does not differ-

entiate the deprivation burden of non-deprived and non-applicable dimensions.
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This induces observing a systematically lower burden of multidimensional depri-

vation across small and demographically homogeneous households, as I empirically

demonstrate in Section 3.4.

In contrast, my proposed mβ,θ
h family of measures allows not only a count-

based approach to measurement, which corresponds to setting θ = 0; but also

takes into account heterogeneous household needs within and across dimensions

through using any 0 < θ ≤ 1. In fact, whenever θ is set in such interval, the

burden of household multidimensional deprivation is discounted by the household

needs and takes into account the scale advantages that the household receives to

lighten the burden that deprivation places on it.

3.3.3 More on the mβ,θ
h proposed family of measures

At this point, the mβ,θ family of measures has been obtained upon first aggregat-

ing individuals’ deprivation at the household level for each dimension and then

aggregating deprivations across dimensions. This particular strategy is termed as

a first-individuals-then-dimensions aggregating order. Nonetheless, a second pos-

sible course of action can consist of first aggregating dimensions in deprivation at

the individual level to obtain individual multidimensional profiles and then aggre-

gating across individuals to obtain household metrics. This second approach is

referred as a first-dimensions-then-individuals aggregating order.

Each particular order leads to a different set of measures. My proposed

household-based methodology is restricted to the use of a first-individuals-then-

dimensions aggregating order. Table 3.1 describes the idea behind the four key

most intuitive metrics that mβ,θ captures on the basis of this selected aggregating

order. Only the members of the proposed family of household measures that use

β = 1 are non-sensitive to the order in which they are constructed.

Though both aggregating orders enable household dimensional deprivation

metrics to be cardinal rather than providing merely ordinal profiles, the first-

individuals-then-dimensions selected order prevents invisibility of the multiple di-

mensions of deprivation. In other words, the opposite order would conduce the

expression of m0,θ
h in terms of the number of household members with at least

one j deprived dimension, disregarding the number of dimensions of deprivation
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Table 3.1: Resulting measure of the mβ,θ
h -burden of multidimensional deprivation

across a selected combination of parameters and using a
first-individuals-then-dimensions aggregating order

Combination of
parameters

Resulting mβ,θ
h measure

β = 0, θ = 0

Count of dimensions with at least one household member
under deprivation. Measure comparable with the c metric
of the AF method and termed the dimensions-count-based
approach to measurement.

β = 0, θ = 1
Share of possibly deprived dimensions. Measure termed the
dimensions-share-based approach to measurement.

β = 1, θ = 0
Count of household deprivations. Measure termed the
deprivations-count-based approach to measurement.

β = 1, θ = 1
Share of household possible deprivations. Measure termed
the deprivations-share-based approach to measurement.

that the household may be exhibiting. Thus, it would not evidence the many

different j dimensions of deprivation suffered by households at the same time. In

addition, using a first-individuals-then-dimensions as the selected order enables

my proposed family of measures to encompass the AF approach to measurement.

Then, it allows comparability with regard to current household-based applications.

In the selected first-individuals-then-dimensions aggregating order (Table 3.1),

the use of β = {0, 1} switches mβ,θ
h between being a count of household dimensions

of deprivation (i.e., whether someone in the household is deprived, β = 0) and be-

ing a count of those members who are deprived (β = 1). Deprivation aversion

captured by β > 0 assigns greater value to the most deprived dimensions.

In contrast, θ = {0, 1} switches mβ,θ
h between being a count-based measure of

household deprivation (i.e., one in which the denominator is switched off, θ = 0)

and being a share-based measure (θ = 1). Values of θ different from 0 and 1 aim to

describe mβ,θ as an intermediate approach between share-based and count-based

measures.

In general, count-based and share-based measures can be considered to cap-

ture two different conceptions of inequality. While count-based measures depict
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an ‘absolute’ conception of inequality, share-based measures a ‘relative’ conception

of inequality. According to Kolm (1976a,b) and Shorrocks (1983), in the context

of income inequality, a relative measure of inequality is one that remains invariant

under a variation of income in the same proportion for all incomes in society. In

addition, according to scholars, an absolute measure of inequality does not change

under an equal absolute variation of income for all incomes in society. Absolute

and relative measures of inequality have been analysed by the inequality literature

under a common framework as alternative approaches to measurement; examples

include the studies of Kolm (1976a,b), and Shorrocks (1983). Intermediate indices

of inequality have also been analysed by literature. Examples include Bossert &

Pfingsten (1990) and Chakravarty & Tyagarupananda (2009), which express in-

termediate inequality indices as a mixture of relative and absolute measures of

inequality.

In the specific case of the mβ,θ family of indices proposed in this chapter, I

follow the embodied intuition of the inequality literature and express the mβ,θ-

burden of multidimensional deprivation in terms of a θ parameter that allows us

to capture different conceptions of inequality. The use of a count-based approach

to measurement assigns an equal absolute value to each dimension or each depri-

vation. Whereas, under a share-based approach to measurement, the household

burden of multidimensional deprivation is expressed in relation to the potential

number of dimensions or deprivations that the household could possibly suffer.

Although the discussion about the pertinence of absolute, relative, or inter-

mediate indices to analysis of the distribution of the population within a particular

achievement might date from the 1970s, there remains little agreement about which

approach is more pertinent for any society, mostly because they are based on value

judgements about what can be considered just or unjust, so any decision must be

context specific.

We now proceed to describe the method proposed in this chapter to identify

the most deprived households.
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3.3.4 Identification of the multidimensionally deprived

For a given combination of β and θ, households exhibiting at least a k burden

of multidimensional deprivation are identified as the multidimensionally deprived.

Parameter k represents the multidimensional deprivation threshold above of which

the most deprived household are observed. The k threshold takes values between

zero and the maximum possible observable mβ,θ
h . For instance, applications as the

Colombian index of multidimensional poverty have set k, under a combination of

statistical methods and empirical findings, as the 33% of the maximum weighted

sum of dimensions on deprivation (Angulo et al. 2016). A similar 33% cut-off point

over the weighted sum of deprivations have been used by Alkire et al. (2014) for

the global MPI and by Battiston et al. (2013) for a proposed index in the context

of six Latin American countries. The plausible k is to be defined according to the

context of each application.

Having set the k threshold, it naturally arises a binary indicator of presence

or absence of multidimensional deprivation, ph, as follows:

ph =

{
1 if mβ,θ

h ≥ k

0 otherwise.
(3.9)

While applications of the AF method sort households under the basis of m0,0 and

households satisfying m0,0
h > k get identified as the multidimensionally deprived,

the proposed methodology of this chapter enables the identification of the most

deprived to be done under the basis of any mβ,θ. The implications that different

mβ,θ measures have on identifying the multidimensionally deprived are investigated

and discussed in Section 3.4. We continue presenting the proposed methodology

for aggregating household multidimensional deprivation at the society level.

3.3.5 The family of societal measures

Suppose that R is the total number of households. Then, as proposed by Alkire &

Foster (2011), the simplest metric to represent the overall society multidimensional

deprivation incidence is:

H = µ(ph), (3.10)
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where µ(ph) corresponds to the average value of ph for h = 1, 2, . . . , R. In line

with the AF methodology, H corresponds to the rate of societal multidimensional

deprivation incidence.

Since the proposed methodology of this chapter allows identifying the mul-

tidimensionally deprived population under the basis of any mβ,θ, we denote the

proportion of multidimensionally deprived population identified on the basis of a

particular mβ,θ
h metric as H(mβ,θ). One case, worth highlighting, is the H propor-

tion of multidimensionally deprived population identified on the basis of the AF’

m0,0 sorting metric, which is henceforth denoted as H(m0,0).

On the other hand, to construct societal metrics of the average burden that

multidimensional deprivation places across households, and as the AF method pro-

poses, we censor to zero any mβ,θ
h for non-multidimensionally deprived households,

namely, mβ,θ
h = 0 ∀ h s.t. ph = 0. We denote, therefore, the household burden

of multidimensional deprivation after the identification of the multidimensionally

deprived with the k threshold as mβ,θ(k). As a result, the societal mean burden

of multidimensional deprivation is defined as:

MDβ,θ = µ(mβ,θ(k)), (3.11)

where µ(mβ,θ(k)) corresponds to the average value of mβ,θ(k) for h = 1, 2, . . . , R.

In this case, our MD0,0 metric corresponds to the M0 metric of the Alkire & Foster

(2011) method. In comparison to the Mα family of measures of the AF method,

our proposed MDβ,θ constitutes a broader set of measures that takes into account

count-based, share-based and intermediate approaches to measure the burden that

multidimensional deprivation places on the household.

In general, given the ordinal nature of policy indicators, most current appli-

cations on the Alkire & Foster (2011) method are able to describe societal mul-

tidimensional deprivation through H(m0,0) and MD0,0. Our proposed approach,

in contrast, allows describing the multidimensional deprivation in terms of any

H(mβ,θ) and MDβ,θ with β ∈ {0, 1} and θ ∈ [0, 1].

The range of variability and the characterization that make the proposed

family of societal measures satisfactory for the purposes of multidimensional de-

privation measurement are investigated and discussed in Section 3.6 ahead on.
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3.3.6 Weights

For completeness purposes and to guide applications where dimensions have differ-

ent relative importance across each-other, in this section we introduce and describe

a weighting system to differentiate these relative importances. We therefore, intro-

duce the w = (w1, w2, . . . , wJ) vector of non-negative importance weights, where

wj ≥ 0 denotes the relative importance weight for the j achievement in the overall

deprivation evaluation, and satisfies
∑J

j=1wj = 1. This weighting system can be

used to aggregate deprivations across the J dimensions and obtain the burden of

multidimensional deprivation as:

m
β,θ
h

=



∑
j∈J wjd

β
hj(∑

j∈J wjn
β
hj

)θ if
∑
j∈J

wjn
β
hj > 0

0 otherwise.

(3.12)

This mβ,θ
h

-burden of multidimensional deprivation represents the w scaled variant

of Eq.(3.8). The application of the w dimensional weights produces, subsequently,

societal measures H and MDβ,θ to be updated using this w scaled variant of mβ,θ
h .

The selection of these dimensional weights can be devised according to the

purpose of the measure and by different alternative procedures such as normative

selection or data-driven techniques. For a discussion of alternatives to setting

weights in a multidimensional index, see Decancq & Lugo (2013).

3.3.7 The individual-based scenario

Whenever individuals, rather than households, are selected as the unit of multidi-

mensional deprivation analysis, differences in needs are observed across different

demographic sub-population groups, as for instance across population from differ-

ent ranges of age or gender. While pregnant women, for instance, need to access

to antenatal health services, school aged children need to access to basic educative

services. Deprivation in antenatal health services is, therefore, relevant to be mea-

sured exclusively across pregnant women, as it is access to basic educative services

across school aged children.
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Given that individuals from different demographic sub-population groups ex-

hibit differences in needs, current applications of the Alkire & Foster (2011) mul-

tidimensional deprivation method, that use the individual as the unit of analysis,

tackle these differences in needs by restricting the analysis to arguably homo-

geneous demographic sub-population groups and a set of comparable indicators.

For instance, Oshio & Kan (2014) studied the association between multidimen-

sional poverty and health among individuals aged 20 to 59 years old, using for

the multidimensional poverty index indicators such as: low education attainment,

non-coverage to public pension and household income. Batana (2013), on the

other hand, studied multidimensional poverty in fourteen Sub-Saharan African

countries by restricting the analysis to women between 15 and 49 years old and

using indicators of assets, access to health services, schooling and empowerment.

Also, examples of multidimensional poverty focused on children are Trani & Can-

nings (2013), Qi & Wu (2014), Roelen et al. (2010), and Trani et al. (2013) for

Western Darfur (Sudan), China, Vietnam and Afghanistan, respectively. To date

in my knowledge, no application of individual-based multidimensional deprivation

taking into account the whole age range of the population has been carried out.

The methodology introduced here can be used to enable individual-based mul-

tidimensional deprivation measurement in presence of different needs across demo-

graphically heterogeneous sub-population groups. In the context of this chapter,

this approach is named as the individual-based scenario, as it is derived as a special

case of the previously described household-based measures.

Particularly, in this proposed individual-based scenario each household in

the society is assumed as consisting of one member, which simply implies each

person is in its own household. The afore-presented household-based measures

are consequently derived. Hence, the dimensional deprivation indicator and the

burden of multidimensional deprivation, both are obtained without aggregating at

the household level.

Specifically, given that the dβhj-dimensional deprivation indicator for the h

household in the j dimension, was developed as an aggregation of the household

members’ gij(sj) individual deprivation indicators to the power of β (Eq.(3.5));
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then, this aggregation and the β parameter have no relevance in an individual-

based scenario because in this case the resulting measure is always a binary vari-

able of presence or absence of deprivation, which is simply gij(sj). Consequently,

the mβ,θ
h -burden of multidimensional deprivation for the h household (Eq.(3.8)),

becomes also non-sensitive to different values of β and expressed independently

for each i individual. We denote this variant of Eq.(3.8) as mθ
i .

Still, the use of the θ parameter in the individual-based scenario expresses the

responsiveness of deprivation to the size of the individual’s needs. Similar to the

household-based case, in the individual-based scenario, the use of the θ parameter

allows expression of the multidimensional deprivation burden that the i individual

suffers, either as a count of dimensions on deprivation, a proportion of dimensions

of deprivations or any mixture of these two types of measures.

The use of this individual-based scenario naturally produces an identification

of the most deprived to be done sorting individuals with any mθ
i measure and

defining as multidimensionally deprived those satisfyingmθ
i > k. Societal measures

H and MD, are therefore, developed using the individual-based variants of the

measures.

The individual-based proposed approach with θ = 0, worth noting, corre-

sponds to the individual-based AF methodology. In this case the proportion of

multidimensionally deprived individuals is expressed by H(m0
i ) and the MD0 met-

ric results equivalent to the AF metric M0.

Another approach to measure individual-based multidimensional deprivation

might be, for instance, setting a weighting system to account for the observed

heterogeneous needs. This means using a dimensional weighting system (w =

(w1, w2, . . . , wJ)) differentiated by sub-population groups. With such an approach,

it is possible to ensure that each sub-population group exclusively weights their

relevant indicators, such that the sum across wj adds to 1, for each sub-population

group. It is worth noting, however, that in this case each dimension results in not

having the same normative value across individuals in society and mθ is always

restricted to the share-based approach.
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We now proceed to evaluate throughout different methods the implications

of using different possible measures to identify the multidimensionally deprived

population.

3.4 Evaluating measures

Examples of applications of the Alkire & Foster (2011) method that select house-

hold as the unit of analysis are Alkire et al. (2014), Alkire, Roche, Seth & Summer

(2015), Angulo et al. (2016), Alkire & Seth (2015), Alkire & Santos (2014), Ayuya

et al. (2015), Bader et al. (2016), Cavapozzi et al. (2015), Mitra (2016), Alkire,

Roche, Seth & Summer (2015), and Yu (2013). The above literature measures the

burden of multidimensional deprivation through the household count of deprived

dimensions, strategy termed in Table 3.1 the dimensions-count-based approach to

measurement. In this section, I evaluate the effects on multidimensional depriva-

tion profiles of using such an approach and compare it to those obtained using

other members of the family of measures proposed in this chapter. The analysis

is carried out making use of the data that is presented in the next section.

3.4.1 Data

For the empirical analysis in this chapter, a household-based multidimensional de-

privation index is built using the 2013 Paraguayan Household Survey (PHS). The

PHS is a cross-sectional living conditions survey that has been collected yearly

since 1984 by the Paraguayan National Statistical Department. Referred to as the

Encuesta Permanente de Hogares, it captures a broad range of living condition

indicators. The survey provides national estimates for income poverty, inequal-

ity, and some key quality of life descriptors. The questionnaire of the PHS 2013

includes information regarding education, health, the labour market, individual

income, dwelling conditions, and international migration and a special module for

agriculture and forestry activities.

The PHS 2013 used a two-stage, clustered probabilistic sample design that was

stratified in the first stage by 31 geographical domains. The strata corresponded to
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Table 3.2: Example of multidimensional indicator: Dimensions, indicators,
weights, applicable population and deprivation criteria

Well-being
dimension

Deprivation
indicator

Applicable population
where the indicator

is relevant to
be measured

A person from the applicable
population is
deprived if:

Health

Health insurance
non-coverage Any person

Does not have access to
health insurance coverage.

Non-access to
health services

Any person that
was sick or had an
accident during the
90 days previous to
the interview

Did not receive
institutional care*.

Education

Non-school
attendance

5 - 17 years old
population

Is not attending school.

Low educational
achievement

Population 18
years old and over

Has less than 9 years of
completed education.

Dwelling
conditions

Sub-standard
housing Any person

Lacks at least 2 of the
following 3 dwelling
conditions: flooring
different from earth or
sand; adequate material of
ceilings**; and adequate
material of walls***.

Notes: *Institutional care corresponds to attention received by a professional health worker (physicist,
nurse, dentist or professional midwife) in private or public health institution (It is not a health care institution:
pharmacy, empirical medicine man store, own house, other’s house). **Inadequate ceiling material refers to the
following: Straw, eternit, clapboard, palm trunk, cardboard, rubber, packaging timber, other. ***Inadequate
wall materials refer to the following: wattle, mud, wood, palm trunk, cardboard, rubber, wood, another material,
or no wall at all.

rural and urban areas of 15 out of the total 17 Paraguayan counties (departamen-

tos) and the national capital of Asunción. The sample allows for total national,

urban, and rural area estimates, as well as for disaggregation throughout seven

geographic domains. The first geographic domain corresponds to Asunción, the

Paraguayan capital city. The next five domains correspond to the national coun-

ties of San Pedro, Caaguazú, Itapúa, Alto de Paraná, and Central. The seventh

and last domain corresponds to the aggregation of the 12 remaining Paraguayan

countries. In 2013, the PHS was collected from a sample of 21,207 persons across

5,424 households.
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Table 3.2 describes the items included within the multidimensional depriva-

tion index constructed for the analysis purposes of this chapter. In particular,

this index example captures information on health, education, and dwelling condi-

tions across five deprivation indicators: health insurance non-coverage, non-access

to health services, non-school attendance, low educational achievement, and sub-

standard housing.

Note that here, for illustrative purposes, a deprivation indicator of sub-

standard housing was included. In such a case, the applicable population of this

indicator corresponds to any household member and is defined as deprived when-

ever the housing lacks from at least 2 of the 3 considered dwelling conditions

(flooring different from earth or sand, adequate material of ceilings, and adequate

material of walls).

Of the 21,207 interviewed individuals for PHS 2013, we excluded from the

analysis 264 observations that do not belong to the household unit (i.e., domestic

personnel), and 34 observations were also excluded because of non-response to at

least one of the five considered indicators. Thus, our effective sample comprises

20,909 interviewed persons across 5,423 households.

3.4.2 Observed multidimensional deprivation incidence pro-
files

As described on Section 3.3.2, a dimensions-count-based approach implies mea-

suring household dimensional deprivation in terms of whether or not there is at

least one household member facing deprivation, and subsequently, households are

compared in terms of the number of deprived dimensions. Multidimensionally

deprived households are those exhibiting a majority of these deprived dimensions.

Table 3.3 presents the proportion of households with at least one deprived

household member in each of the five dimensions considered in this application.

This corresponds to the mean d0
hj-dimensional deprivation indicator across the

5,423 observed Paraguayan households by household size. Reading the table by
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lines, it can be seen that larger households exhibit a larger proportion of dimen-

sional deprivation than smaller households. The dimensions more prone to this ef-

fect are health insurance non-coverage, non-access to health services, non-school at-

tendance, and low educational achievement. The positive relation between house-

hold size and dimensional deprivation is observed because the number of persons

in the applicable population increases as the household size increases. Take, for

instance, the non-school attendance indicator in Table 3.3, which is applicable for

children 5 to 17 years of age. One-person households are rarely composed by this

population subgroup because school-age children cannot form a household. There-

fore, the proportion of households consisting of one person that are dimensionally

deprived in school attendance is 0%. Conversely, 21.4% of households consisting

of seven or more persons are deprived of school attendance because they contain

in average 4 children.

If, subsequently, household dimensions of deprivation are counted and the

Table 3.3: Proportion of households with at least one deprived person from the
applicable population (%)

Persons per household
Total

1 2 3 4 5 6 7
or more

(1) Health insurance
non-coverage

70.3 75.2 79.9 81.0 84.3 91.4 93.8 81.3

(2) No access to
health services

12.5 17.7 15.1 19.7 20.1 23.6 29.6 19.0

(3) Non-school
attendance

0.0 1.9 2.9 4.4 5.8 9.7 21.4 5.5

(4) Low educational
achievement

61.4 64.8 57.8 65.4 68.6 78.3 88.3 67.0

(5) Sub-standard
housing

25.5 25.0 18.5 19.9 23.5 24.9 34.2 23.3

Sample number

Number of
households

593 836 1,135 1,108 771 466 514 5,423

% of individuals 2.8 8.0 16.3 21.2 18.4 13.4 19.9 100

Source: Author’s calculations based on 2013 PHS.
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multidimensionally deprived households are those with the largest count of these

dimensions on deprivation, larger and more heterogeneous households tend to be

identified as the most deprived. The following paragraphs elaborate further on

this.

With the purpose of comparing the multidimensionally deprived population

of households identified using different mβ,θ measures, households are sorted on the

basis of each mβ,θ score and the first 40% most deprived (2,168 households) are

identified as multidimensionally deprived. The population of households identified

as the most deprived using the dimensions-count-based approach (m0,0) is com-

pared with regard to those obtained using the other three mβ,θ measures described

in Table 3.1: the dimension-share-based approach (m0,1), the deprivations-count-

based approach (m1,0), and the deprivations-share-based approach (m1,1).

Note that identifying a fixed share of the population (40% in this case) as the

most deprived is different from placing a particular k multidimensional threshold

over the mβ,θ score. Given that the range of variability of mβ,θ varies along the

β and θ parameters, the use of a fixed share of households enables us to compare

the different deprived populations on an equal basis. The particular 40% share

of households arose as a plausible natural breaking point in the distribution of

deprivations observed by the multidimensional index in the analysis. Nonetheless,

in Section ?? I test the robustness of the obtained results under other different

possible shares of the population.

Figure 3.1 plots the obtained H-multidimensional deprivation incidence by

household size for the four mβ,θ. No adjustment by differences in needs corresponds

to measures that use θ = 0: the dimensions-count-based and the deprivations-

count-based approaches. In the figure, the results obtained upon sorting house-

holds under a dimensions-count-based approach (m0,0) are plotted by square mark-

ers. The profile obtained on the basis of a deprivations-count-based approach

(m1,0) is plotted by circle markers in the figure. The vertical axis corresponds to

the proportion of households of each size identified as multidimensionally deprived.

For instance, out of the total observed 514 households consisting of seven or more

persons, in about 80% of them are identified as multidimensionally deprived when

a deprivation-count-based approach is used.
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As expected, the results indicate that the H-multidimensional deprivation

incidence varies across household size and measures. The profiles obtained upon

mβ,θ measures that do not account for needs (m0,0 and m1,0) show the greatest

proportion of multidimensionally deprived among large households, as well as,

the lowest proportion among small households. In particular, when using the

AF-proposed m0,0, households consisting of seven or more persons register 29.2

percentage points more multidimensional deprivation incidence than households

consisting of one person.

Any θ > 0 enables the burden of household multidimensional deprivation to

be adjusted by household needs, increasing the amount of the adjustment as θ

increases. Then, contrary to count-based approaches, a deprivations-share-based

approach (triangle markers in the figure) produces 57.8% of households consisting

of one person being catalogued as multidimensionally deprived and 43.6% of house-

holds consisting of seven or more persons being catalogued as multidimensionally

Figure 3.1: Proportion of multidimensionally deprived households, H(mβ,θ),
across household size

Source: Author’s calculations based on 2013 PHS.
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deprived. Thus, in this case, a 14.2 p.p. higher incidence of multidimensional

deprivation is observed among smaller households than across larger households.

These descriptive statistics suggest that identifying the most deprived on

the basis of a household burden of multidimensional deprivation not adjusted by

household needs results in greater H-deprivation incidence among larger house-

holds. Multidimensional deprivation incidence among larger households reduces

as the adjustment by the size of the needs increases. The use of different mβ,θ mea-

sures to sort households produces different profiles of multidimensional deprivation

incidence, and these results are driven by the size of the household needs.

What should we make of these differences? On one hand—as particular stud-

ies from the one-dimensional equivalence scale literature suggest—one could argue

that there is no correct or incorrect equivalence scale and that different measures

are justified according to different circumstances (Cowell & Mercader-Prats 1999,

pg.409). In this vein, the selection of the measure to describe household multidi-

mensional deprivation constitutes a context-specific normative definition. While

count-based approaches (θ = 0) give either to each dimension (using β = 0) or to

each deprivation (β = 1) an equal absolute value in the measurement of the burden

of multidimensional deprivation, deprivation share-based approaches (θ = 1) give

an equal absolute value to each household, disregarding its demographic composi-

tion and taking into account the scale economies that arise at this level.

An intermediate normative perspective corresponds to setting the θ parameter

between these two solutions. The value of θ reflects the responsiveness of the

burden of deprivation to the scale of needs; values of θ close to zero convey a lower

response of the burden of multidimensional deprivation to the size of the needs.

Conversely, values of θ close to one convey a greater response of the burden of

deprivation to the size of the needs.

On the other hand, researchers can consider—as I do in this chapter—differences

in need as a ‘legitimate’ source of variation in the observed multidimensional depri-

vation profiles that should be tackled by the measurement process. Following the

framework set up by Fleurbaey (2008) in social choice on equity, responsibility, and

fairness, and in particular the proposed approach of Fleurbaey & Schokkaert (2009)
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to analyse fair and unfair health and healthcare inequalities, differences in achieve-

ment levels (such as health or educational attainment) are considered as caused

by myriad factors, some of which can be catalogued as producing fair/legitimate

differences and others as producing unfair/illegitimate differences. In particular,

for the case of health and healthcare inequalities, Fleurbaey & Schokkaert (2009)

defined as legitimate or fair those differences attributed to causes that fall un-

der individuals’ responsibility. Legitimate differences in this context correspond,

therefore, to those derived from preferences.

In light of this framework, one can argue differences in multidimensional de-

privation measurements should not arise from legitimate causes and we should

therefore in our methodologies account for the differences that needs bring, as well

as for any of other legitimate causes, such as differences in preferences. In this

chapter, for the sake of simplicity and as a first effort in the literature to account

for differences in needs, we focus on accounting strictly for them. The effect that

other sources of fair/legitimate differences, such as preferences, could have over

multidimensional deprivation incidence profiles is left for further research. Analy-

sis of the relation between multidimensional poverty and preferences can be found

in Decancq et al. (2014).

Therefore, we evaluate how effectively each of the mβ,θ measures accounts for

differences in needs. The methodology for approaching such evaluation and the

results are presented in the following sections.

3.4.3 Method

To determine the ability of any multidimensional deprivation measure to account

for differences in needs, we contemplate direct and indirect standardization tech-

niques. As proposed by Fleurbaey & Schokkaert (2009), we consider both stan-

dardization techniques in light of their embedded ethical conditions and implica-

tions. As such, a desirability condition that resembles an indirect standardization

technique is set out here to be attained by a multidimensional deprivation incidence

profile. Based on this condition, we determine how much of the observed profile

results from differences in needs and this regard its performance is evaluated. The

next paragraph describes this condition.
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Desirability condition. An unbiased multidimensional deprivation inci-

dence profile is such that it is unable to distinguish between two population groups

that have no systematic differences in deprivation between each other but only dif-

ferent sets of needs. As such, any two households in a household-based scenario or

any two individuals in an individual-based scenario with no systematic difference

in deprivation between the two of them must be classified equivalently as either

multidimensionally deprived or non-multidimensionally deprived, regardless of the

size of their needs.

Multidimensional deprivation incidence profiles that are unable to equiv-

alently classify (as multidimensionally deprived or non-multidimensionally de-

prived) two households with differences in mβ,θ, strictly caused by differences in

needs, are said to provide a biased picture of societal multidimensional deprivation

incidence.

If we can confirm that a particular mβ,θ measure is able to provide an equiva-

lent measurement for any two households with no systematic differences in depri-

vation but only differences in needs, we also know that a multidimensional profile

based on such an mβ,θ measure portrays differences in incidence that are not driven

by differences in needs.5

Now, given that differences in deprivation originating strictly from differences

in needs, cannot be straightforwardly differentiated from factual observed multidi-

mensional deprivation incidence profiles because we do not know from the observed

profile how much of the observed differences are due to differences in needs and

how much of them are due to the measurement approach. We use a static mi-

crosimulation technique to generate a counterfactual deprivation profile in which

5Another possible course of action could be using an alternative condition. This alternative
condition can be set out in light of a direct standardization procedure. It would define as unbiased
multidimensional deprivation incidence profile such that is unable to distinguish two population
groups with no systematic differences in needs. However, as Fleurbaey & Schokkaert (2009)
discussed, if this alternative condition is satisfied, it is possible that no difference in multidimen-
sional deprivation incidence between two population groups will be observed because they have
identical size of needs. This, despite these two populations still might have significant differences
in deprivation. If such condition is attained the measure would depict these differently deprived
populations under an equivalent multidimensional deprivation incidence. For the purposes of this
chapter, this situation is considered ethically undesirable, so we deliberately focus on evaluating
our measures only in terms of the selected desirability condition.
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the observed differences are strictly due to differences in needs. In such counter-

factual scenario, no systematic difference in deprivation exists but only differences

in needs.

Then, the evaluation of of our mβ,θ measures is approached as a ‘controlled

experiment’ (a term used by Figari et al. (2014) to describe microsimulation tech-

niques) with the data to determine the ability of each measure to observe such

counterfactual state of things and therefore to portrait an unbiased incidence pro-

file.

The counterfactual scenario of no systematic difference in deprivation is cre-

ated, in use of the 2013 Paraguayan Household Survey, by setting as invariant the

characteristics of the household that describe differences in need and distributing

deprivation completely at random across individuals and households. In other

words, we fix the characteristics of the sample members (including whether or

not they are members of applicable population subgroups) and then, for each j-

dimension, we randomly allocate whether or not they are in deprivation. The

random allocation is performed by sampling without replacement from the ob-

served deprivation so that the total number of deprived people is the same in the

counterfactual and factual samples.

The random distribution of deprivation emulates no systematic difference be-

cause is not related to any individual or household characteristics and thus is not

a result of an underlying behaviour or characteristic. By building a (counterfac-

tual) population in which there is no difference in deprivation resulting from these

causes, we can determine whether a multidimensional incidence profile based on a

particular mβ,θ measure is able to make an unbiased comparison.

Any multidimensional deprivation incidence profile satisfying the desirability

condition, must exhibit no relation between multidimensional deprivation inci-

dence and the size of household needs in this counterfactual scenario. Thus, we

approach the evaluation of each profile in the counterfactual state of no systematic

difference via a comparison of multidimensional deprivation incidence and the size

of households needs. For this purpose, we use the linear regression ph = ρ+ δN0
h ,

where ph is the binary indicator of the presence or absence of multidimensional
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deprivation in the h-household, ρ is the intercept term, N0
h the count number of di-

mensions that the h-household needs, and δ is the regression coefficient of interest.

This δ regression coefficient captures the difference in ph-multidimensional depriva-

tion incidence that can be attributed to the size of household needs. A profile that

satisfies the desirability condition must reflect no difference in multidimensional

deprivation incidence given by households’ different needs.6

One could argue, nonetheless, that because of the randomness of the alloca-

tion of deprivation, a particular population subgroup might have a larger incidence

of deprivation than another, simply as a result of this randomness. To overcome

these possible random differences among population subgroups, the counterfactual

scenario with no illegitimate difference in deprivation among households was simu-

lated 1,000 times; each simulation or trial being independent from the other. The

resulting collection of estimates approximates the distribution of the index over

the counterfactual scenario’s outcomes. The results that we describe below corre-

spond to the distribution of these 1,000 independent simulations. For completeness

and replicability purposes, Appendix A includes the implemented pseudo-code for

these simulations.

3.4.4 Results

In this section, I present the microsimulation results of multidimensional profiles

developed under mβ,θ measures that do not adjust the burden of multidimensional

deprivation by differences in needs (using θ = 0). I compare these results with

those obtained from measures that adjust by differences in need (measures with

θ > 0). At this stage, it should be recalled that θ reflects the response of the burden

of deprivation to the scale of household needs. Values of θ close to zero reflect a low

6Different approaches can nonetheless be used to measure the size of household needs, as for
example household size. Still, the N0

h-count number of dimensions that the h-household needs
is our preferred measure of the size of household needs to be used for this evaluation because
with such an approach the number of persons in the household and its composition is taken
into account with respect to the dimensions captured by the multidimensional index. For a
simple example consider households A and B, both consisting of two persons each. Household
A, consisting of one adult person and one toddler. In the index example, this household may
be scored as deprived in four out of the five considered dimensions. In contrast, household B,
consisting of one adult and a 10-year-old child, may be scored as deprived in all five considered
dimensions. In this case, household size does not capture the difference in possible deprivations
that these two households of the same size have.
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response of the burden of deprivation to the scale of household needs and values of

θ close to one reflect a greater adjustment of the burden of deprivation by the size

of household needs. This θ parameter was included to account for differences in

needs when comparing household’s multiple deprivations, as the applied literature

on income and expenditure household-based measures does to compare household’s

welfare.7

Figure 3.2 on page 102 plots the results of this evaluation. The horizontal

axis in the figure corresponds to the range of θ parameters used to calculate the

mβ,θ measure. The first value of this range corresponds to θ = 0 (no adjustment

for the size of household needs), the adjustment by the size of household needs

increases as θ increases. The last value on the right-hand side of the horizontal

axis corresponds to θ = 1. The vertical axis in the figure represents the magnitude

in percentage points of the estimated δ regression coefficient of the effect that the

N0
h-size of household needs has on ph.

One estimated δ regression coefficient is obtained in each of the 1,000 simu-

lations, thus, each δ coefficient measures the strength of the relationship between

ph-multidimensional deprivation incidence and the size of household needs in the

counterfactual scenario of no ilegitimate difference in deprivation. The 1,000 ob-

tained δ coefficients describe the distribution of this relation in the (counterfac-

tual) population in which there is no difference in deprivation resulting from unfair

causes. The mean of this obtained regression coefficient across the 1,000 simula-

tions is used as measure of central tendency of the behaviour of δ.

In Figure 3.2, each marker represent this central tendency measure of the δ

regression coefficient obtained from using a particular mβ,θ measure. The shaded

zone around the markers represents the range of variability of 95% of these 1,000

obtained estimates of δ. Any measure that properly accounts for legitimate differ-

ences in needs is, ideally, expected to have a distribution with a mean of zero and

a narrow spread (such as 95% of the values within that narrow interval).

As observed, the mean of the obtained δ regression coefficient across the 1000

simulations, when using m0,0 to sort and identify households is 17.8 percentage

points (p.p.), with a range of variability of 95% of its values between 16.3 and 19.4

7Two examples of this literature are Buhmann et al. (1988) and Coulter et al. (1992b)
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p.p. This result indicates, that comparing households on the basis of the widely

used AF dimensions-count-based approach (m0,0) does not permit an unbiased

incidence profile. The simulation results of using this metric show a distribution

of estimates far above the desirable zero mean, and their values are concentrated

around this positive mean.

Similarly, the mean across the 1,000 simulations of the δ regression coefficient

between ph and the size of the needs, obtained when measuring the burden of mul-

tidimensional deprivation on the basis of the deprivations-count-based approach

to measurement (m1,0), results to be 21.9 p.p, with 95% of its values between 20.7

and 23.2 p.p.

A positive δ regression coefficient observed across all the 1,000 counterfactual

scenarios when measuring the burden of multidimensional deprivation by any of

these two metrics (the dimensions-count-based approach and the deprivations-

count-based approach) indicates that these both metrics produce multidimensional

deprivation incidence ph to be correlated with the size of the household needs. This

occurs even when households do not have any illegitimate difference in deprivation

among them.

When the m0,0 metric is used to sort and identify multidimensionally deprived

households, an additional dimension that households exhibit as need increases by

an average of 17.8 p.p. the ability of the household to be classified as multidimen-

sionally deprived. Similarly, when m1,0 is used to sort households, an additional

possible household scoring dimension increases multidimensional deprivation inci-

dence by an average of 21.9 p.p.

These results demonstrate that count-based measures cause any two house-

holds with different sizes of household needs to show different multidimensional

deprivation incidence even if there is no illegitimate difference in deprivation be-

tween the two of them. Thus, these two metrics proved unable to properly capture

a state in which there are no unfair differences in deprivation between households.

On the other hand, sorting households using a share-based approach to mea-

surement, either an m0,1 or an m1,1 metric, does not permit unbiased multidimen-

sional deprivation incidence profiles. The distribution of the obtained δ regression

coefficient in these two cases is concentrated far below zero, and the interval of
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95% of their values is narrow around the negative mean of the 1,000 obtained δ

regression coefficients. An negative mean across the simulations of the δ regression

coefficient, indicates that the metric used to sort and identify households does not

effectively addressed differences in need. It produces multidimensional deprivation

incidence to decrease systematically as the size of household needs increases.

For instance, the use of a deprivations-share-based approach to measurement

(m1,1) to sort households produces a distribution of the 1,000 obtained δ regres-

sion coefficient concentrated around -10.9 p.p., and the distribution of 95% of the

estimates varies between -12.6 and -9.1 p.p. This means that, even when there

is no difference in illegitimate deprivation between households, the use of an m1,1

measure to sort and identify multidimensionally deprived households produces an

additional dimension that the household exhibits as a need to reduce the ability

of this household to be classified as multidimensionally deprived at 10.9 p.p.

Whereas count-based approaches cause a biased picture of household-based

multidimensional deprivation profiles, larger and more heterogeneous households

are more likely to be identified as the most deprived. Share-based approaches invert

these results, producing also a biased picture of household-based multidimensional

deprivation profiles. In the latter case, in contrast to count-based approaches,

small and homogeneous households tend to be more likely to be identified as the

most deprived, but only about half as often as in count-based approaches.

Nonetheless, sorting households in these counterfactual states based on any

mβ,θ measures that use β = 1 and a value θ between 0.69 and 0.77 satisfies the

desirability condition for the particular case of 2013 Paraguayan index example.

Any of these metrics produces a distribution of the obtained 1,000 δ regression

coefficients between ph(m
β,θ
h ) and N0

h with values very close to zero and a narrow

spread of the distribution around this value. These results suggest that, in the

case of the 2013 Paraguayan example, those metrics enable us to depict as equiv-

alently deprived households with no illegitimate difference in deprivation but only

differences in needs among them.

Measuring the household multidimensional deprivation based on a burden

with a larger aversion to deprivation parameter, such as β = 1, in comparison

to measuring it with a smaller aversion to deprivation parameter, such as β = 0,
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Figure 3.2: Simulation results: distribution of the obtained δ regression
coefficient in percentage points (p.p.) when using mβ,θ to sort and identify the

most deprived households

Source: Author’s calculations based on 2013 PHS. Notes: Estimated population means based on a sample of
5,423 households. Results obtained by simulating 1,000 independent times a random allocation of deprivation
across the observed households, keeping constant the demographic configuration of the households and the societal
amount of deprivation in each indicator. Shaded areas denote 95% of the obtained δ estimates. The lower limit
corresponds to the δ value at the 0.025 percentile and the upper limit to the δ value at the 0.975 percentile.

shows the distribution of the estimated δ coefficient increasing the adjustment

by the size of the needs as long as we increase the θ deprivation response scale

parameter.

In summary, the results shown in this section indicate that neglecting dif-

ferences in needs and in particular the use of a dimensions count-based approach

to measurement yields biased household-based multidimensional deprivation inci-

dence profiles. Other different combinations of β and θ to describe the burden

of household multidimensional deprivation in the context of the 2013 Paraguayan

application have proved to reveal unbiased multidimensional deprivation incidence

profiles. The degree to which we must account for these differences in need there-

fore stands out as relevant.

Still, the afore-discussed results correspond to the Paraguayan index example

without applying any w dimensional weighting system and identifying the 40%
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most deprived households as the multidimensionally deprived population. The

next section analyses the robustness of these ‘baseline’ obtained results under

alternative considerations.

3.4.5 Alternative specifications

The first set of alternative specifications analysed in this section aims to build the

index through a combination of indicators that ‘balance’ the applicable population

subgroups within each dimension. This type of balancing procedure was proposed

by Alkire (2015) as an alternative methodological approach to account for dif-

ferences in need. It implies each well-being dimension to account all population

subgroups with one applicable deprivation indicator. Note that, when introducing

the five considered indicators for the Paraguayan illustration (Table 3.2 above),

only the dwelling conditions dimension includes a set of indicators that balance

the applicable populations subgroups. In contrast, the access to health services

and education dimensions both include a set of indicators that together do not

cover all population subgroups.

As such, to illustrate the effect and implications of implementing balancing

procedures of the type proposed by Alkire (2015), the first alternative specification

analysed here consists of balancing the access to health services dimension. Specif-

ically, the access to health services dimension can be considered as ‘unbalanced’

in the baseline configuration of the index because the indicator of non-access to

health services when needed applies exclusively to persons that were sick or had

an accident during the 90 days before the interview, and such a dimension does

not include any additional indicator for persons that were not sick or did not have

an accident during the 90 days before the interview. Implementing a balancing

procedure in this dimension, thus implies either excluding the non-access to health

services indicator from the index, or including an indicator applicable exclusively

to the population that were not sick and had not had an accident during the 90

days before the interview. Here, the first approach is implemented because the lat-

ter would be conducive to including an indicator that is neither straightforwardly

intuitive nor relevant for the purposes of policy.
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The results of the δ relation coefficient between ph and the size of household

needs obtained using the Paraguayan index under this first alternative specification

(i.e. excluding the non-access to health services when needed indicator) and across

1,000 counterfactual scenarios of no systematic difference in deprivation but only

differences in need are shown in the second row of Table 3.4 (Specification A). The

magnitude of δ results decrease while the number of indicators applicable to specific

population subgroups decrease in the index. Whereas the baseline specification

consists of aggregating five indicators, of which three describe differences in needs

across demographic population subgroups, this alternative Specification A includes

only two out of these three indicators. This reduction in indicators, in the case

of the dimensions count-based approach to measurement, results in a mean δ 7.6

p.p. smaller than that observed in the baseline specification.

It is worth noting that this first alternative specification of the index bal-

ances the access to health services and the dwelling conditions dimensions, but

the education dimension remains unbalanced.

To balance this remaining dimension, an additional indicator applicable ex-

clusively to children under five years of age is included. The additional deprivation

indicator included corresponds to whether or not a 04 years old child has been reg-

istered into the national identification system. The results of this specification are

shown in the third row of Table 3.4 (Specification B).

The results of this specification of the index show a larger mean δ relation

than that obtained by Specification A. We observe, therefore, the strength of the

relation between multidimensional deprivation incidence and the size of household

needs increasing/decreasing as the number of indicators that depict differences in

need across population subgroups increases/decreases.

The results of Specification B also indicate, interestingly, that despite popu-

lation subgroups per each dimension being completely balanced across indicators,

the obtained distribution of the δ-relation between multidimensional deprivation

incidence and the size of household needs is located far above zero with its values

concentrated around 16.9 p.p. This result proves that a dimensions count-based

approach to measurement (m0,0) is unable to classify equivalently any two house-

holds with no systematic difference in deprivation but only different needs. This
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is even though balancing procedures across dimensions and indicators have taken

place.

However, one might argue that a weighting structure to avoid giving more

importance to some dimensions over others could enhance this type of balancing

procedure outcome. Hence, the third alternative specification tested here imposes

on top of Specification B a nested weighting structure, which means each dimension

and each indicator within each dimension has an equal relative importance in the

index. The results of this fourth specification are shown in the fourth row of Table

3.4 (Specification C). It is seen in the table that this weighting structure rather

worsens the results, it increases in about 70% the size of the δ-relation with regard

to the unweighted specification (Specification B).8 This result is observed because

the implemented weighting system of Specification C reduces the importance in

the index of the indicators that apply to any person (health insurance non-coverage

and substandard dwelling conditions) and increases the importance of indicators

that capture differences in needs across population subgroups.

Another possible course of action to implement a balancing procedure could

consist of applying a set of weights that vary across population subgroups that

exhibit different sets of needs. In the Paraguayan example, this procedure implies

imposing over the balanced specification of the index (Specification B) a set of

weights such that the sum of relative importances across indicators is one in each

population group that is accounted through a different set of indicators. Note that

here weights are applied over individuals’ deprivations rather than over household’s

dimensions. The results of this D-alternative balancing specification are shown in

the fifth row of Table 3.4. The δ relation between multidimensional deprivation

incidence and the size of household needs in the implemented counterfactual sce-

narios results in this D-case being equivalent to using the unweighted balanced

specification of the index (Specification B).

Now, in terms of different shares of the population to identify the multidimen-

sionally deprived population, while the baseline results are based on identifying

the first 40% most deprived households, here as alternative specifications 20% and

30% of the total population of households are identified as the multidimensionally

8An unweighted specification across five indicators implies in practice that each indicator has
one fifth of relative importance in the whole index.
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Table 3.4: Simulation results: distribution of the obtained δ regression coefficient
in p.p. when using mβ,θ to sort and identify the most deprived households

Specification

Dimensions count-based
(m0,0)

Deprivations share-based

(m1,1)

Mean δ Ll Ul Mean δ Ll Ul

(1) (2) (3) (4) (5) (6)

Baseline

Two unbalanced
dimensions & 40% of share

17.9 16.5 19.5 -10.9 -12.7 -9.2

Alternative specifications

A One unbalanced dimension 10.3 7.8 12.8 -16.9 -19.5 -14.2

B
Balanced specification: All
dimensions are balanced

16.9 15.2 18.7 -9.6 -11.3 -7.6

C
Weighted balanced
specification

29.0 25.7 32.2 -14.4 -17.9 -10.7

D
Using an individual
weighting system

17.0 15.2 18.6 -9.5 -11.3 -7.5

E 20% of share 12.0 10.9 13.3 -8.0 -9.6 -6.5

F 30% of share 16.3 14.9 17.6 -8.9 -10.5 -7.3

Source: Author’s calculations based on 2013 PHS. Notes: Estimated population means based on a sample of
5,423 households. Results obtained by simulating 1,000 independent times a random allocation of deprivation
across the observed households, keeping constant the demographic configuration of the households and the
societal amount of deprivation in each indicator. Columns (1) and (4) correspond to the mean δ regression
coefficient across these 1,000 simulations. Columns (2) and (5) correspond to the δ value at the 2.5 percentile of
the distribution of δ coefficients across the 1,000 performed simulations. Columns (3) and (6) correspond to the
δ value at the 97.5 percentile.

deprived. Results are shown in the last two rows of Table 3.4. As expected, the size

of the δ relation coefficient is sensitive to the share of population identified as mul-

tidimensionally deprived, it decreases as the share of identified multidimensionally

deprived population decreases.

In summary, these alternative specifications, consistently with Section 3.4.4’s

findings, demonstrate that measuring the burden of multidimensional depriva-

tion without accounting for differences in need, as the dimensions count-based

approach to measurement does, produces a biased multidimensional deprivation

incidence profile. It captures not only relevant differences in deprivation but also

unaddressed differences in needs. Though a deprivations share-based approach ad-

dresses differences in needs, this approach to measurement overshoots the results.

The obtained δ estimates that use this relative approach to measurement result
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concentrated not around the desired zero mean, but around negative values. It

conduces multidimensional deprivation incidence to decrease systematically as the

size of the household needs increases. Still, these negative mean δ values are about

half the size of those obtained by the dimensions count-based metric.

We continue in the next section briefly discussing the case when multidi-

mensional deprivation is evaluated rather than at the household at the individual

level; the methodology presented in Section 3.3.7 is named ‘the individual-based

scenario’.

3.4.6 The individual-based scenario

This section illustrates the empirical behaviour of the multidimensional depriva-

tion measurement methodology proposed in this chapter in an individual-based

scenario and evaluates its proposed measures. For this purpose, the same 2013

PHS indicators used for analysis in previous sections are used here. However, as

described when outlining the methodology for individual-based multidimensional

deprivation measurement in the presence of differences in needs (Section 3.3.7),

household-based aggregates are not pursued here. In contrast, in the individual-

based scenario, each individual is considered its own household and the burden of

multidimensional deprivation is measured by an mθ metric. Measuring the burden

of multidimensional deprivation without accounting for differences in need imply

setting θ = 0, which is simply the number of dimensions of deprivation that each

individual exhibits. This corresponds to the AF method.

Table 3.5 presents for each 2013 PHS considered deprivation indicator the

number of observed persons in its applicable population and the proportion of

deprived persons within it. These five deprivation indicators are subsequently

combined to depict the burden that multidimensional deprivation places on each

individual. As a result, we obtain the mθ index that takes values according to

the used θ parameter of responsiveness of deprivation with regard to the level of

needs.

A burden of multidimensional deprivation that does not account for the size of

individual needs counts the number of deprivations that each individual exhibits.

However, given that the accounted needs vary across three population subgroups
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Table 3.5: Observed individual dimensional deprivation

Deprivation indicator
Applicable
population where the
indicator is relevant

Number of
observed

persons in the
applicable
population

Proportion (%)
of deprived

persons in the
applicable
population

Health insurance
non-coverage

Any person 20,909 71.9

No access to health
services

Any person that was
sick or had an
accident during the
90 days previous to
the interview

7,199 23.8

Non-school
attendance

5 - 17 years old
population

5,706 6.7

Low educational
achievement

18 years old
population and over

13,406 47.9

Sub-standard housing Any person 20,909 24.6

Source: Author’s calculations based on 2013 PHS.

(children under five years of age, 5- to 17-year-old children, and those 18 years of

age and over), the use of m0 leads to a smaller mean burden of multidimensional

deprivation among the population groups with a smaller number of accounted

dimensions. This is the case for children under five years of age. This population

subgroup is recorded as having need with respect to three out of the five considered

indicators, whereas children from 5 to 17 years of age and the population 18 years

of age and older may be recorded as exhibiting a in four out of the five considered

indicators.

The proposed methodology of this chapter seeks to enable multidimensional

deprivation measurement in the presence of differences in need. The same method-

ological approach used for the household-based scenario is followed here. Observed

differences in the unadjusted burden of multidimensional deprivation across de-

mographic heterogeneous groups capture, in addition to illegitimate differences in

deprivation, differences in deprivation caused by legitimate and unavoidable dif-

ferences in needs. Thus, to evaluate measures, we use the desirability condition

outlined on page 96, which states that any two individuals with no illegitimate

difference in deprivation between them must have the same multidimensional de-

privation incidence.
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Figure 3.3: Simulation results: distribution of the obtained δ regression
coefficient in percentage points (p.p.) using two different mθ measures

(a) m0 (b) m1

Source: Author’s calculations based on 2013 PHS. Notes: Estimated population means based on a sample of
20,909 individuals. Results obtained by simulating 1,000 independent times a random allocation of deprivation
across the observed individuals, keeping constant the demographic configuration of the population and the
societal amount of deprivation in each indicator.

In a counterfactual scenario with no illegitimate difference in deprivation

among individuals but only differences in need across them, we analyse the re-

lationship between the multidimensional deprivation incidence (pi) and the size of

individual needs. Similar to the household-based analysis, here I approach this

analysis via the linear regression pi = ρ+δNi, where Ni represents the size of indi-

viduals multidimensional needs and is measured by the number of achievements,

i.e., indicators, the individual exhibits as needs.

Figure 3.3 plots the evaluation results of m0 and m1. The distribution of

obtained δ estimate coefficient, when using m0 to rank individuals, register posi-

tive values across all the 1,000 simulated scenarios and ranges between 11.0 and

15.2 p.p. In these counterfactual scenarios of randomly allocated deprivation, one

additional dimension increases the multidimensional deprivation incidence by an

average of 13.5 p.p. These results indicate that the m0 metric leads to a biased

multidimensional deprivation incidence profile.

A multidimensional profile based on a share-based measure does not satisfy

the desirability condition. As observed from Figure 3.3.b, the estimates of the δ
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regression coefficient across the 1,000 simulations range between -5.8 and -0.5 p.p.,

and the mean of these estimates is concentrated at 2.9 p.p. below zero.

The evaluation results of these two metrics (m0 and m1) were obtained upon

identifying as multidimensionally deprived the 40% most deprived population.

Other alternative population shares were also used to identify the multidimen-

sionally deprived population (30% and 20%), and the results proved robust under

these other two population shares.

3.5 Context-specific definitions

Multidimensional deprivation measurement embeds, as does any poverty measure-

ment process, several assumptions and normative definitions that vary from con-

text to context. In fact, Sen (1979) indicates the following as a good practice for

the general poverty measurement exercise: ‘There is very little alternative to ac-

cepting the element of arbitrariness in the description of poverty, and making that

element as explicit as possible.’ (Sen 1979, p.288). In light of this, in this section

I discuss the most relevant context-specific definitions embedded in the proposed

multidimensional deprivation family of indices.

3.5.1 Unit of multidimensional deprivation analysis

The first normative selection required when measuring multidimensional depriva-

tion is the unit of analysis where multidimensional deprivation is evaluated. The

two most common approaches are selecting either households or individuals as the

unit of analysis. The proposed methodology of this article allows selecting either

of these two different units. While individual-based measures allow the unmasking

of differences in multidimensional deprivation across demographic subpopulation

groups, household-based measures conceive households as co-operative units that

jointly face the deprivation suffered by the household members.

Considering household as the unit of multidimensional deprivation analysis

implies understanding the burden that deprivation places as shared among house-

hold members. For example while child mortality refers to a particular episode
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that is suffered by children, using the household as the unit of deprivation analy-

sis implies that this episode is understood as a phenomenon that not only affects

children but also the household as a whole. The living conditions and behaviours

of household members contribute to reducing or increasing the frequency of such

situations, and the burden of the episode is faced collectively by the household.

An example of a household-based approach to measurement where possible

intrahousehold externalities arising from the presence of non-deprived household

members is the proposed approach of Basu & Foster (1998) for the case of literacy.

In this case, the scholars proposed taking into account in the literacy measurement

not only individuals’ ability to read and write but also the additional advantage

that literate households members bring to illiterate members in the household.

Extensions have been developed by Subramanian (2004), Subramanian (2008),

and Chakravarty & Majumder (2005), and a similar approach but for the case of

the unemployment rate has been proposed by Basu & Nolen (2008).

As such, the proposed methodology of this chapter enables using either the

household or the individual as the unit of analysis. It recognizes that selecting

individuals or households have embedded different normative criteria that need to

be analysed and defined according to the purposes of each particular application.

3.5.2 Defining needs

Implicit in my approach is that an individual can be regarded as deprived by

a particular indicator only if it measures an achievement that can be viewed as

something that this individual legitimately needs. Needs differ across dimensions

of multidimensional deprivation by population subgroup. For example while adults

who do not have work opportunities despite looking for them can be catalogued

as employment deprived, children cannot be catalogued as deprived in the absence

of employment. Conversely, children under 11 years old who are forced to work

would be catalogued as deprived. Children are accountable on other deprivations

that are relevant to them, such as access to education services. As such, adults and

children have different sets of needs. While adults need access to job opportunities

and are considered employment deprived whenever they do not have access to
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them, children need access to basic school services and are considered educationally

deprived if they lack such access.

Needs are, thus, incorporated into my multidimensional deprivation family of

indices by excluding from the calculations all dimensions that do not correspond

to needs for a particular individual. As such, by setting the applicable population

subgroups where relevant to measure presence or absence of deprivation in each

well-being indicator, the practitioner formalizes whom is defined as legitimately

needing each of these dimensions. These differences in need make visible the nor-

mative definition of legitimate and illegitimate differences in achievement levels.

Whereas differences in achievement level within the applicable population sub-

group of each indicator are set as illegitimate, differences within the non-applicable

population subgroup are catalogued as fair and are therefore tackled by the mea-

surement process.

In consequence, setting the applicable populations results in being a key nor-

mative decision in my proposed approach. It is suggested that they be made

using context-specific norms of what is considered desirable and undesirable in

each of the dimensions included within the multidimensional index, or available

international indicator definitions.

For example in the education dimension, deprivation indicators may be de-

fined using the ranges of ages suitable to measure enrolment and school lag ac-

cording to each country. Another example is child labour. The International

Labour Organization describes in its regulations the age ranges defined as suitable

to measure this kind of deprivation and the activities and time duration that are

considered as acceptable for this matter. Still, these definitions are context specific

and should be tailored with special care.

3.5.3 Choosing the combination of parameters to describe
the burden of multidimensional deprivation

The selection of parameters to be used to measure the burden that multidimen-

sional deprivation places over the household also constitutes an important context-

specific definition. There is no correct or incorrect selection of parameters. How-
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ever, each combination produces different household rankings and therefore it can

be utilized according to the circumstances.

To select the most appropriate combination of parameters, two different ap-

proaches can be employed. First, the combination of parameters can be selected

from a normative perspective. While count-based approaches (θ = 0) give either

to each dimension (using β = 0) or to each deprivation (β = 1) an equal ab-

solute value in the measurement of the burden of multidimensional deprivation,

share-based approaches (θ = 1) give an equal absolute value to each household,

regardless of their demographic composition and size, and taking into account the

possible scale economies that arise at this level. An intermediate normative per-

spective approach corresponds to a θ parameter in between these two solutions.

The value of θ reflects the responsiveness of the burden of deprivation to the scale

of need, and values of θ close to zero convey a lower response of the burden of

multidimensional deprivation to the size of need. Conversely, values of θ close to

one convey a greater response of the burden of deprivation to the size of need.

On the other hand, the second possible course of action corresponds to de-

termining the combination of parameters that enables non-biased societal multidi-

mensional deprivation incidence profiles. This combination of parameters can be

obtained, as discussed in Section 3.4, by simulating a counterfactual scenario of

no illegitimate difference in deprivation. The evaluation of the measures in such

a scenario enables determination of whether or not a particular combination of

β and θ to describe the burden of multidimensional deprivation enables any two

households with different sets of needs but no systematic difference in deprivation

to be classified as equivalently deprived.

The selection of parametric values of β and θ to describe the burden of multi-

dimensional deprivation under the proposed methodology of this chapter is advised

in light of robustness checks using different multidimensional deprivation thresh-

olds and specifications.
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3.6 Concluding remarks

This chapter proposed a family of multidimensional deprivation indices that takes

into account differences in need that demographically heterogeneous units (i.e. ei-

ther households of different size and composition or individuals of different popula-

tion subgroups) exhibit. The proposed family of indices is meant to be applicable

for the purposes of policy and suitable for contexts where multidimensional depri-

vation is aimed to be measured through a wide range of indicators that describe

differences in needs.

To measure the burden of multidimensional deprivation, different approaches

to measurement that range from count-based (absolute) to share-based (relative)

and intermediate approaches are used in this chapter. These different approaches

to measurement to sort and identify the multidimensional deprived population pro-

duce significantly different multidimensional deprivation profiles. As such, they

were evaluated using the 2013 PHS and counterfactual scenarios of no system-

atic differences in deprivation across households/individuals but only differences

in needs. Measures able to catalogue households/individuals as equivalently de-

prived in these scenarios are said to be portraying an unbiased multidimensional

deprivation profile.

Multidimensional deprivation measures, which do not address differences in

needs, as for example the dimensions AF’s count-based approach, were found to

yield biased multidimensional deprivation incidence profiles. In general, count-

based approaches produced larger multidimensional deprivation incidence among

households with larger sizes of needs, despite having no systematic difference in de-

privation. Share-based approaches, in contrast, produced larger multidimensional

deprivation incidence among households with smaller sizes of needs. The degree

to which we must account for these differences in need, therefore, stands out as

relevant.

To evaluate the robustness of these results, the behaviour of the measures

was analysed using different alternative specifications of the index to address dif-

ferences in needs. Balancing procedures as proposed by Alkire (2015), which imply

in each well-being dimension accounting for all population subgroups with one ap-

plicable deprivation indicator, were also discussed and evaluated as alternative
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methodological approaches. The results of this chapter proved to be robust under

all of these alternative considerations.

In the context of the Paraguayan implemented index example, particular

members of our proposed family of measures of the burden of multidimensional

deprivation demonstrated the ability to depict as equivalently deprived households

with no systematic difference in deprivation but only different sets of needs. They,

therefore, confirmed providing an unbiased multidimensional deprivation incidence

profile in this specific context.

This chapter also evaluates the proposed family of measures in terms of their

properties. The results of this evaluation demonstrate the proper orientation of

the family of measures and the desirable non-sensitivities, so we can conclude our

proposed technology is adequate for the purposes of poverty measurement.

However, within this used framework the limitations that a parametric equiv-

alence scale of this type can be recognized. First, considering that the ultimate

purpose of a multidimensional measure of deprivation is to capture unfair disad-

vantage, differences in deprivation due to other fair sources are not accounted.

Further research is required to disentangle the effect that other sources of legiti-

mate differences might have over multidimensional deprivation incidence profiles,

such as preferences or needs not necessarily based on the still limited number of

observable attributes (i.e. household size, composition, or age and gender) that are

addressed in this chapter. In addition, differences in need are due to be analysed

in the context of multidimensional deprivation technologies that take into account

the complementarity and substitutability that might arise among dimensions.

Second, as analysed by Pollak & Wales (1979), Fisher (1987), and Blundell &

Lewbel (1991), for the one-dimensional equivalence scale case, a household’s cur-

rent demographic composition that leads to differences in need might be driven by

previous deprivation status as well. For example a particular household consisting

of two adults and five children might be this size not only because both adults have

a preference for many children, but also because they did not have access to preg-

nancy prevention education or could not afford to use some form of birth control.

Then, household composition not only reflects needs or preferences, catalogued in

this chapter as producing fair differences in deprivation among households, but
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also current household compositions might be a reflection of avoidable and un-

fair previous states of deprivation. This is a complex issue that is left for further

research.

Furthermore, the proposed methodology of this chapter measures multidi-

mensional deprivation either at the individual or at the household level without

addressing the intrahousehold bargaining power and allocation of resources that

might be conducive to ameliorating or intensifying each individual’s burden of de-

privation. In particular, the one-dimensional welfare comparisons literature has

shown that households do not behave as a single unit but rather under collective

instances where household’s behaviour is the outcome of the joint decisions of its

members (Chiappori 1992, Browning et al. 2013, Mazzocco 2005). As such, further

research is required to provide a multidimensional measurement technology able

to account for these intrahousehold differences and their effect on the burden that

multidimensional deprivation places on each individual.

Nonetheless, following Elster & Roemer (1991, pp.1), who exhorts any notion

of well-being to be based on appropriately operationalized interpersonal compar-

isons, and also to be adequate for the purposes of distributive justice. The family

of measures presented in this chapter contributes to the multidimensional depriva-

tion measurement literature by enhancing the comparability across households or

individuals that exhibit different needs, as well as being adequate for the purposes

of multidimensional deprivation measurement.9
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Appendix A. Pseudocode simulations

Pseudocode_sim
**********************************************************************
* Terminology
**********************************************************************
Dimensions : noseguro saluate noasiste noedu dwelling
Variables

 I_*    : Individual deprivation indicators (g_ij)
 pr_*    : Applicable population subgroups per indicator (s_ij)

 hhid    : Household identification
Scalars

 A_*    : Societal observed amount of deprivation
 C_*    : Size of the applicable population subgroup

p03        : Household head identificator (one per household) 

***********************************************************************
* Counterfactual scenario of no ilegitimate difference in deprivation
***********************************************************************
* The replications of each counterfactual scenario
local repe = 1000
local sim=0
while `sim'<=`repe'-1 {
 * Data at the individual level
 use database, clear

 foreach X in noseguro saluate noasiste noedu {
  * Assigning a random number to individuals within the j-applicable population
  gen random = runiform() if I_`X'!=. & pr_`X'>0 & pr_`X'!=.
  sort random
  gen temp=_n
  * The simulated deprivation distribution
  gen R_`X'=0 if temp<=C_`X' & I_`X'!=. & pr_`X'==1
  replace R_`X'=1 if temp<=A_`X' & I_`X'!=. & pr_`X'==1
  drop temp random
 }
 gen random = runiform() if I_dwelling!=. & pr_dwelling==1 & p03==1
 sort random
 gen temp=_n
 gen temp_dwelling=0 if temp<=C_dwelling & I_dwelling!=. & pr_dwelling==1 & p03==1
 replace temp_dwelling=1 if temp<=A_dwelling & I_dwelling!=. & pr_dwelling==1 & p03==1
 bysort hhid: egen R_dwelling=mean(temp_dwelling)
 drop temp random
 

 * Calculating measures in the counterfactual scenario
 foreach X in noseguro saluate noasiste noedu dwelling {
  * The beta parameter of deprivation aversion
  foreach b of numlist 0 1 {
   * Household dimensional deprivation indicator
   capture drop temp
   bysort hhid: egen temp=total(R_`X')
   gen dh_B`b'_j`X'=(temp)^`b'
   replace dh_B`b'_j`X'=0 if temp<=0
   * Size of household dimensional needs
   capture drop temp
   bysort hhid: egen temp=total(pr_`X')
   gen nh_B`b'_j`X'=(temp)^`b'
   replace nh_B`b'_j`X'=0 if temp<=0
   }
 }

 * Data at the household level
 keep if p03==1
 

 * Size of household multidimensional needs
 egen needs_B1=rowtotal(nh_B1_j*)
 egen needs_B0=rowtotal(nh_B0_j*)

 foreach b of numlist 0 1 {
  * The theta parameter of scale response of deprivation to needs
  foreach Theta of numlist 0(0.01)1 {
   local t=round(`Theta'*100 ,1)
   * Household multidimensional deprivation
   egen m_B`b'T`t'=rowtotal(dh_B`b'_j*)
   replace m_B`b'T`t'=m_B`b'T`t'/(needs_B`b'^`Theta')
   replace m_B`b'T`t'=0 if needs_B`b'<=0
   * Identification of the multidimensionally deprived
   egen orderB`b'T`t'=rank(m_B`b'T`t'), unique
    gen p_s40_B`b'T`t'=(orderB`b'T`t'>=3254)
   * The delta regression coefficient
   regress p_s40_B`b'T`t' needs_B0
   sca delta_B`b'T`t'=(_b[needs_B0])
  }
 }
 local sim=`sim'+1
}

Page 1
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Appendix B. On the properties

This Appendix describes the proposed family of measures of the chapter in terms

of the characteristics that make it subject to evaluation as suitable for the purpose

of multidimensional deprivation measurement.

Following the classification of properties for income or expenditure-based

poverty measures proposed by Foster (2006) and generalising this classification

for multidimensional poverty measures, in this section I first investigate the prop-

erties that make the societal measures proposed in this chapter non-sensitive to

some aspects of the distribution, namely Scale invariance, Anonymity, Replication

invariance, and Focus. Subsequently, the features that reflect a proper orientation

of these societal measures, namely the Dominance properties, are analysed. This

section completes the discussion, examining how Transfers, Decomposability, and

Continuity behave in this context.

Scale invariance

The income or expenditure poverty measurement literature has traditionally

used a scale invariance or normalization property to ensure societal measures

are expressed in relation to the poverty line. In particular, this is the approach

used by Foster et al. (1984) and described in detail by Foster (2006). Along

with the replication invariance and anonymity property, which I discuss ahead on

this section, this scale invariance property has been used in literature to enable

comparisons of the incidence, depth and severity of poverty across societies of

different sizes.

For the particular case of the H and MDβ,θ measures of multidimensional

deprivation proposed in this chapter, the range of variability vary along β and θ

vary. As such, excursively H and MDβ,1 measures, which in fact correspond to

a relative approach to measurement, are invariant to the size of the population

to be compared. They, therefore, take values from the interval [0, 1]. While H

expresses the incidence of multidimensional deprivation in relation to the size of

the population of households, MDβ,1 expresses multidimensional deprivation in

relation to the size of household needs.10

10Exception are then the MDβ,θ metrics that use θ ∈ [0, 1). They do not lead societies with

different sizes to reach the same MDβ,θ value whenever all i household members are j deprived.
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In particular, in an individual-based scenario (i.e., any i individual is its own

household), if all individuals in society are identified as multidimensionally non-

deprived, then H = 0. Similarly, in the household-based scenario, if all households

in the society are non-multidimensionally deprived, then H = 0. However, in

such household-based scenario, multidimensional deprivation is not evaluated at

the individual level. Therefore, in such a case, H = 0 does not mean that all

individuals in the society are non-multidimensionally deprived; it reflects that all

individuals in society belong to a non-multidimensionally deprived household.

On the other hand, in an individual-based scenario if all individuals in the

society are identified as multidimensionally deprived, then H = 1; whereas in the

household-based scenario H = 1 implies that all individuals in the society belong

to a multidimensionally deprived household.

To illustrate the range of scale of the most important societal measures of the

proposed methodology of this chapter, the Paraguayan index example is used. In

particular, the first row within Table 3.6 below in page 140 shows the observed

H and MDβ,θ, where β = {0, 1} and θ = {0, 1} in the 2013 PHS. To develop

this observed case, any h household satisfying m1,0.87
h > 0.65 is identified as mul-

tidimensionally deprived. Then, 40% of the 2013 Paraguayan households in the

sample is identified as multidimensionally deprived.11 The results on only these

five metrics are analysed as they are the most important societal measures of the

methodology proposed in this chapter. Henceforth in this section I focus on the

analysis of these five societal measures.

Subsequently, two scenarios worth analysing are simulated: first, the scenario

where all household members are assumed as non-deprived in all their relevant

indicators. Second, the scenario where all household-members are assumed as de-

prived in all their relevant deprivations. In each of the simulations, any h household

satisfying m1,0.87
h > 0.65 is identified as multidimensionally deprived. The second

This result is consistent with the absolute or intermediate measurement approach used in these
latter metrics.

11Although this particular measure of the household burden of multidimensional deprivation
(m1,0.87

h ) was selected in light of the findings of Section 3.4 above, here in this section is used
only for illustrative purposes. As such, the examples presented in this section can be equivalently
derived from different mβ,θ measures and different k-thresholds.
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and third rows in Table 3.6 include the results of the fully non-deprived scenario

and fully deprived scenario, respectively.

As expected, the fully non-deprived scenario results in all measures having a

value of zero (Row (2) in the table). In contrast, in the fully deprived scenario,

as is seen from Row (3) in the table, the MDβ,θ measures that use a shared based

approach to measurement, namely the MD0,1 and MD1,1, exhibit a value of 1.0, as

well as the H metric. The value H = 1 indicates that 100% of households result

in being identified as multidimensionally deprived, and MD0,1 = 1 indicates that

households in society have an average of 100% of their applicable dimensions in

deprivation. Similarly, MD1,1 = 1 indicates that households in society have on

average 100% of their applicable achievements in deprivation.

Both MD0,0 and MD1,0 measures, in the fully deprived scenario take the

value of the societal mean of household needs. For instance, in the table this fully

deprived scenario shows MD0,0 = 4.2 and MD1,0 = 12.6, meaning that, house-

holds in society have in average 4.2 dimensions in deprivation and 12.6 deprived

achievements; values that in turn represent the average societal size of household

needs.

Population replication invariance

This property makes societal measures comparable across differently sized

populations. In terms of the family of measures proposed in this chapter, this char-

acteristic implies that, for a particular society made of R households, if we replicate

t ≥ 2 times these R households, the society level multidimensional measures, H

and MDβ,θ, will remain unaltered for any combination of β and θ parameters.

To illustrate this proposed characteristic for the H and MDβ,θ societal mea-

sures, in the context of the Paraguayan index example, I replicate t times the

5,423 PHS 2013 observed households. In this case t was defined as a random in-

teger number that takes values from the set of integer numbers {2, 1000}. After

such replication of the Paraguayan households in sample, I evaluate H and MDβ,θ.

This replication was repeated 1,000 independent times. The mean H and MDβ,θ

obtained across these 1,000 independent replications is shown in Row (4) of Table

3.6. Any measure sensitive to replications of the population would show a non-

zero difference between Row (4) and Row (1) of the table. As expected, any of the

128



five analysed measures result in being sensitive to replications of the population

of households. This result illustrates Population replication invariance in the five

analysed measures.

Anonymity

The poverty measurement literature and, in particular, the multidimensional

literature characterise some families of societal measures under a symmetry or

anonymity property. For instance, according to Alkire & Foster (2011), the sym-

metry property that their family of measures uses ensures that societal metrics

are not being constructed under the basis of greater emphasis on some population

subgroups over others. This property is also used by multidimensional measures,

such as the ones proposed by Tsui (2002), Bourguignon & Chakravarty (2003),

and Seth (2013), among others. Bourguignon & Chakravarty (2003) defined their

measures as symmetric since any person’s characteristics, other than the multiple

well-being dimensions considered for the measure, are set as not relevant in the

measurement process of their measures. Similarly, Seth (2013) suggested that the

identities of the individuals are not ethically significant in the measurement pro-

cess. As such, individuals within society are considered anonymous. I henceforth

refer to this measurement property as anonymity.

In practice, however, assuming anonymity of individuals that exhibit different

needs, without accounting for these differences in need, results in biased multidi-

mensional incidence profiles. The text that follows elaborates further on this.

As discussed in previous sections, needs differ across dimensions of multi-

dimensional deprivation by population subgroup. While a particular population

subgroup can be catalogued as deprived in a certain j dimension because it lacks

an achievement level that is considered as needed, this does not necessarily mean

that all demographic sub-population groups that lack such an achievement level

can be catalogued as deprived. Therefore, an individual can only be regarded as

deprived by a particular indicator if it measures an achievement which can be

viewed as something this individual legitimately needs.

In the methodological approach of this chapter, differences in needs are tack-

led throughout the measurement process. Neglecting heterogeneity in needs, as the
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empirical findings of Section 3.4.4 above have demonstrated, does not enable unbi-

ased multidimensional deprivation incidence profiles. Then, assuming anonymity

across individuals without taking into account their heterogeneity in needs led to

a biased picture of the incidence of societal multidimensional deprivation.

In the one-dimensional welfare measurement literature, as pointed out by

Coulter et al. (1992a), heterogeneity in needs has been tackled by either measuring

each persons well-being through a common metric that incorporates the informa-

tion on heterogeneity and then aggregating across persons using the anonymity

property or, alternatively, by dropping the anonymity property and accounting

for the heterogeneity with, for instance, a weighting system that reflects those

heterogeneous needs. The approach that I present in this chapter follows the first

methodological strategy. Heterogeneity in needs across units is tackled by the

measurement process and then the anonymity property is used.

Therefore, societal measures H and MDβ,θ, for any combination of β and

θ parameters, are meant to be non-sensitive to permutations of the units where

the identification of the multidimensionally deprived population occurs. In the

individual-based scenario, this means that societal measures are non-sensitive to

rearrangements of individuals across the population. Similarly, in the household-

based case, societal measures are meant to be non-sensitive to permutations of

households within society and implicitly are also non-sensitive to permutations

of individuals within households. These two characteristics of societal measures

are termed, for the purposes of this chapter, as Household anonymity and Within

household anonymity, respectively.

To illustrate these two characteristics of H and MDβ,θ, I simulate in the con-

text of the 2013 Paraguayan household-based index example these two types of

permutations of the population. First, 1,000 independent and random permuta-

tions of the population of households are simulated; second, 1,000 independent and

random permutations of individuals within each household are simulated. The ob-

served deprivation in each household and its demographic configuration is kept as

constant. Then, H and MDβ,θ are evaluated in the observed case and after each

simulation.
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The observed mean of these five societal metrics before any permutation cor-

respond to the observed case, Row (6) from Table 3.6 shows the mean of each

of the five analysed metrics across the 1,000 simulated permutations of house-

holds, and Row (6) shows the obtained mean across 1,000 simulations of random

rearrangements of individuals within each household.

Any measure sensitive to permutations of households would show a non-zero

difference between Row (6) and Row (1). Similarly, any measure sensitive to

permutations of individuals within the household would show a non-zero difference

between Row (8) and Row (1). The results shown in the table illustrate that,

as expected, any of the five analysed measures is sensitive to permutations of

households across society or to permutations of individuals within households.

Worth noting that permutations of individuals across households, in the

household-based scenario, resemble either demographic changes or transfers across

units, to which the proposed household-based measures of this chapter are sensi-

tive. I further elaborate on these sensitivities on page 134 and page 139, when

discussing the proposed dominance properties and how transfers behave in this

context.

Focus

An individual-based family of measures, such as the one proposed by Alkire

& Foster (2011), considers as non-relevant the sensitivity of societal measures to

two types of increments in achievement levels: first, increments of achievement

levels in the non-multidimensionally deprived population, and second, increments

of achievement levels in non-deprived dimensions. The authors termed the ability

of their measures to be non-sensitive to these two types of increments as poverty

focus and deprivation focus, respectively.

In light of these two properties, the MDβ,θ proposed family of measures of this

chapter consider non-relevant the sensitivity of societal measures to the following

types of increments in achievement levels: i) increments in the j achievement level

among individuals that belong to a non-multidimensionally deprived household;

ii) increments in the j achievement level among j non-deprived individuals; and

iii) increments in the j achievement level among individuals that do not belong to

the j applicable population subgroup. Societal measures H and MDβ,θ, for any
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combination of β and θ parameters, are meant to be non-sensitive to these type of

increments in achievement levels.

The non-sensitivity of the measures to increments in achievement levels among

individuals that belong to non-multidimensionally deprived households, in the con-

text of this chapter, is termed Multidimensional deprivation focus. In comparison

to the AF method, this characteristic is analogous to the poverty focus property

proposed by the AF method.

It is worth noting, however, that in a household-based scenario, this mul-

tidimensional deprivation focus property enforces societal measures to be non-

sensitive to increments in achievements of both deprived and non-deprived indi-

viduals that belong to multidimensionally non-deprived households. Identifying

the multidimensionally deprived population at the household level is based on

considering the household as a single unit. As such, it prevents observing mul-

tidimensionally deprived and multidimensionally non-deprived individuals within

the same household. It produces measures to be non-sensitive to improvements

or declines in achievement levels of deprived individuals that might have a large

number of dimensions in deprivation but that do not belong to multidimension-

ally deprived households. This is in fact the case of any societal measures based

on household-based metrics, either H(m0,0) and M0 from the AF method or the

proposed H(mβ,θ) and MDβ,θ measures of this chapter.

On the other hand, as discussed when introducing the proposed methodology

of this chapter, every achievement is not necessarily relevant to be measured across

any i person. Then, the MDβ,θ proposed measures uncover this consideration.

This means that the MDβ,θ family of measures considers non-relevant achievement

increments, not only among j non-deprived individuals but also among individuals

that do not belong to the j applicable population. In the context of this chapter,

this property is termed applicable deprivation focus.

To illustrate multidimensional deprivation focus and applicable deprivation

focus, I simulate particular increments in achievement levels in the context of the

2013 PHS index example. Each simulation is repeated 1,000 independent times.

Societal measures, H and MDβ,θ are evaluated before and after each simulated

increment. The following describes these simulations and the obtained results.
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Multidimensional deprivation focus. An increment in the educational achieve-

ment indicator is simulated among individuals that belong to a non-multidimensionally

deprived household. As such, 50% of the 18 years old and over individuals that

belong to non-multidimensionally deprived households are sampled without re-

placement. Among them, one additional year of education is simulated. This

population corresponds to 4,050 individuals out of the 20,909 individuals in the

sample of the PHS 2013. Societal measures are evaluated after each of the 1,000

independent simulations. Row (10) in Table 3.6 shows the mean of the obtained

measures after the simulations.12

Any measure not satisfying the Multidimensional deprivation focus property

would show a non-zero difference between Row (10) and Row (1) of the table. It is

observed in Row (11) of the table that the five analysed measures result in being

non-sensitive to increments in achievement levels of individuals belonging to mul-

tidimensionally non-deprived households. This result illustrates Multidimensional

deprivation focus for the five analysed measures.

Applicable deprivation focus. In this case, we illustrate the sensitivity of so-

cietal H and MDβ,θ to increments in the j achievement level among individuals

that do not belong to the j applicable population subgroup. In particular, an

increment in one year of education among 50% of the under 18 years old indi-

viduals belonging to a multidimensionally deprived household, is simulated 1,000

independent times. This population corresponds to 1,695 individuals in the PHS

2013 sample. The mean H and MDβ,θ obtained across the simulations is shown in

Row (12) from Table 3.6.

Any measure not satisfying the Applicable deprivation focus property would

show a non-zero difference between Row (12) and Row (1) in the table. It is ob-

served in Row (13) of the table that the five analysed societal measures result being

non-sensitive to increments in achievement levels among individuals that do not

belong to the applicable population subgroup. This result illustrates Applicable

deprivation focus for the five analysed measures.

12For the purposes of this illustration, the 50% share of this population subgroup was selected
to ensure observing a big enough change in the measure displayed with two decimals of precision
in Table 3.6. However, the example presented in this section can be analogously derived using
different shares of the population or indicators.
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We now discuss the set of properties that depict the orientation and desirable

sensitivities of our measures, which are termed by Foster (2006) as dominance

properties.

Dominance properties

According to Foster (2006), dominance properties are the characteristics of

a poverty measurement that describe the ability of the metric to reflect improve-

ments or declines among the poor population. They aim to resemble the proper

orientation of societal metrics. In this regard, the characterization of the fam-

ily of measures of this chapter, which is described below, draws and extends the

dominance properties proposed by Alkire & Foster (2011) for multidimensional

measures of poverty.

Here, I define three relevant types of improvements in achievement levels:

i) applicable achievement increment, ii) deprivation reduction among the multidi-

mensionally deprived, and iii) dimensional deprivation reduction among the mul-

tidimensionally deprived.

First, an applicable achievement increment occurs whenever the i individual

that belongs to the sj applicable population subgroup increases its aij achievement

level by a constant γ > 0. This means that the a′ij achievement for the i household-

member and the j dimension is obtained by an increment of a constant γ > 0,

such that a′ij = aij + γ for any person i satisfying i ∈ sj.

Now, let assume that this i individual is deprived in the j dimension and

belongs to a multidimensionally deprived household. Then, a deprivation reduction

among the multidimensionally deprived occurs whenever this i individual increases

his/her welfare in the j achievement, and this improvement changes his/her status

from deprived to non-deprived.

Hence, in addition to be an applicable achievement increment, a deprivation

reduction among the multidimensionally deprived makes this individual, no longer

j-deprived due to this welfare improvement. This means that the a′ij achievement

for the i individual in the j dimension, obtained by an increment of a constant

γ > 0 such that a′ij = aij + γ, for any person i satisfying i ∈ sj, aij < zj,
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i ∈ h s.t. ph = 1, is a deprivation reduction among the multidimensionally deprived

whenever a′ij ≥ zj > aij.

Nonetheless, the household to which this i individual belongs might be still

having any other household member j-deprived, therefore continuing to be de-

prived in such dimension. Then, a dimensional deprivation reduction among the

multidimensionally deprived is an improvement such that it involves an applicable

achievement increment that produces a deprivation reduction among the multidi-

mensionally deprived and also a change in the household status from deprived to

non-deprived in such a dimension.

This means that the a′ij achievement for the i individual and the j dimension,

obtained by an increment of a constant γ > 0 such that a′ij = aij + γ for any

person i satisfying i ∈ sj, aij < zj, i ∈ h s.t. ph = 1, produces a′ij ≥ zj > aij

and dβ
′

hj = 0, where the dβhj-dimensional deprivation indicator for the h household

and the j dimension before this achievement increment is dβhj > 0 and after the

achievement increment corresponds to dβ
′

hj = 0.

Having defined these three different types of increases in welfare as relevant,

the following three properties to characterise the MDβ,θ family of measures arise:

Weak Achievement Monotonicity (WAM). Multidimensional deprivationMDβ,θ

satisfies weak achievement monotonicity if MDβ,θ does not increase due to an ap-

plicable achievement increment.

Deprivation Monotonicity (DM). Multidimensional deprivation MDβ,θ satis-

fies deprivation monotonicity if MDβ,θ decreases due to a deprivation reduction

among the multidimensionally deprived.

Dimensional Deprivation Monotonicity (DDM). Multidimensional deprivation

MDβ,θ satisfies dimensional deprivation monotonicity if MDβ,θ decreases due to a

dimensional deprivation reduction among the multidimensionally deprived.

Although not every measure satisfies the three proposed dominance proper-

ties, each combination of β and θ parameters enforces different properties. In

particular, any MDβ,θ is proposed to satisfy WAM and DDM, and MDβ,θ, where

β > 0 to satisfy DM.
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These three properties are illustrated simulating each of the three different

types of improvements in welfare in the 2013 Paraguayan example. Each of the

three different types of improvements in welfare are simulated 1,000 independent

times. After each simulation, the resulting societal H and MDβ,θ metrics are

evaluated and Table 3.6 presents the obtained average across 1,000 independent

simulations performed. The next paragraphs describe these simulations and the

obtained results.

According to the definition used in the 2013 PHS multidimensional index ex-

ample, individuals 18 years of age or older that have less than 9 years of completed

education are considered as deprived in educational achievement i.e., having low

educational achievement. The 2013 PHS has a sample of 13,389 interviewees that

are 18 years of age or older. Before any achievement increment was simulated, this

population exhibited an average of 8.9 years of education.

Then, an achievement increment in the educational achievement indicator

is simulated by sampling without replacement, out of the total 13,389 observed

individuals, 50% of those having less than 8 completed years of education and

belonging to a multidimensionally deprived household. This sample corresponds

to 1,972 individuals. The number of years of education for each of the sampled

individuals is incremented by one. Although this sample experienced this one-year

increment, the additional year does not change their deprivation status. After the

achievement increment, the 18 years of age and older population had an average

of 9.1 years of completed education.

The mean results of societal measures obtained after these 1,000 independent

simulations are presented in Row (14) from Table 3.6. Any measure satisfying the

WAM property would show a zero or negative difference between the simulated

scenario and the observed case. Row (15) from the table, shows this obtained

difference. It is observed that any of the five different societal analysed measures

increased as a result of an achievement increment. These results indicate that

these measures satisfy the proposed WAM property.

After simulating an achievement increment that, although constitutes an im-

provement in welfare for some individuals but does not alter their deprivation

status because is not large enough to remove individual deprivation, I simulate
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an achievement increment such that deprivation no longer is observed, namely a

deprivation reduction among the multidimensionally deprived. In particular, out

of the 13,389 PHS 2013 individuals 18 years of age or older, 4,150 are deprived in

educational achievement and belong to a multidimensionally deprived household.

Out of those 4,150 individuals, 3,533 belong to households that along to be multi-

dimensionally deprived also exhibit more than one deprived person in educational

achievement.

To simulate a deprivation reduction among the multidimensionally deprived,

a random sample without replacement of 50% of these 3,533 individuals is drawn.

Only one person per household belongs to this randomly selected sample. In total,

the sample is made up of 719 individuals. Each of the sampled individual change

his/her deprivation status from deprived to non-deprived. It is worth noting that

although these sampled individuals experience an improvement in welfare that

removes their deprivation status in educational achievement, this improvement

does not change the household deprivation status because they were not the only

household members facing low educational achievement.

Before the simulated deprivation reduction, 47.9% of the 18 years old and

older population had low educational achievement; after the simulated deprivation

reduction, this rate became 42.5%. The mean result of the 1,000 simulations is

displayed in Row (16) of Table 3.6. The results suggest that, keeping constant

the households identified as multidimensionally deprived, societal values of MDβ,θ

with β > 0 decrease after a deprivation reduction among the multidimensionally

deprived. This result illustrates the DM behaviour in my proposed family of

indices.

The third type of simulated welfare increment is a dimensional deprivation

reduction among the multidimensionally deprived. In the first two types of sim-

ulated welfare increments, although the i individual increases her/his welfare due

to no longer being deprived in educational achievement, other household members

might be still deprived in the same dimension. Therefore, an achievement incre-

ment or a deprivation reduction among the multidimensionally deprived does not

necessarily change the household status from deprived to non-deprived.
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In fact, when analysing the PHS 2013, from the 40.2% of households iden-

tified as multidimensionally deprived, 4,150 adults are deprived in educational

achievement but only 617 of them belong to a household where they are the only

person having low educational achievement. Accordingly, household dimensional

deprivation is only removed in virtue of an improvement in welfare when any of

those 617 individuals suffer a deprivation reduction among the multidimensionally

deprived. To simulate the welfare increment being a dimensional deprivation re-

duction among the multidimensionally deprived, a random sample of 50% of those

617 individuals is drawn. The sample is made up of 380 individuals.

Before the simulation of dimensional deprivation reduction among the mul-

tidimensionally deprived, 67.0% of interviewed households were deprived in edu-

cational achievement. After the simulated deprivation reduction, the rate of low

educational achievement among household decreased to 60.0%. Row (18) from

Table 3.6 shows the mean result of the 1,000 simulations. The results suggest

that societal MDβ,θ falls due to a dimensional deprivation reduction among the

multidimensionally deprived, result consistent with the proposed DDM property.

The results of these simulations, in summary, confirm the proper orientation

of the proposed MDβ,θ family of indices. While WAM enforces the MDβ,θ multi-

dimensional deprivation measures to not increase as a result of any increment in

welfare, DDM makes MDβ,θ decrease if any multidimensionally deprived household

reduces its number of deprived dimensions. DM ensures that MDβ,θ decreases if

any j-deprived i individual belonging to a multidimensionally deprived household

reduces his/her number of suffered deprivations.

One the one hand, in terms of an individual-based scenario and in comparison

to the AF set of properties, the proposed WAM and DDM properties of this chap-

ter result equivalently to the AF’s proposed weak monotonicity and dimensional

monotonicity properties, respectively.

Worth noting that a desirable dominance characteristic of a multidimensional

deprivation measure is the ability of the measure to fall unambiguously under any

applicable achievement increment, even if such achievement increment does not

remove deprivation. The AF method termed this property as monotonicity. Any

measure satisfying monotonicity would produce a decrease in the societal value

138



of MDβ,θ because an applicable achievement increment. In practical terms, if for

instance MDβ,θ would satisfy monotonicity, we would observed in the simulation

results presented in Row (14) from Table 3.6 a non-zero difference with regards

to the observed scenario (Row (1)). However, since my measures are built on the

basis of counting deprivations, they are not able to document this type of welfare

improvement. In the case of the AF method, any Mα with α > 0 is meant to

satisfy monotonicity. However, Mα with α > 0 are metrics not commonly used in

the applied literature because they require all considered achievement indicators

to be cardinal. Given the ordinal nature of the majority of policy indicators, the

AF’s monotonicity property is therefore hardly exhibited.

Another dominance property widely analysed by the income-based poverty

measurement literature is the sensitivity of the measures to progressive transfers,

which are transfers of income from a poor person to any other person that is

poorer. In such a case, poverty measures are desired to decrease as a result of this

type of change in the income distribution. This measurement sensitivity has been

analysed by Sen (1976) and Kakwani (1980), among others.

For multidimensional measures, on the other hand, Bourguignon & Chakravarty

(2002), Foster et al. (2005), Alkire & Foster (2011), and Chakravarty & Silber

(2008) have proposed their societal measures to be sensitive to progressive trans-

fers. Nonetheless, in the case of multidimensional deprivation indices, this type

of transfer principle is not necessarily compelling for all the dimensions included

within a particular index. For instance, it is not a compelling argument to de-

sire sensitivity of the measures to transfers of good health from one individual to

another or to desire sensitivity of the measures to transfers of educational achieve-

ment from one person to another.

Sensitivity to transfers is relevant when describing multidimensional depri-

vation through indicators circumscribed to resources, such as monetary or educa-

tional resources. In these cases, sensitivity of the societal measures to transfers

from one individual with a larger amount of those resources to an individual with

smaller amount of them are seen to be desirable for the purposes of distributive

analysis, as pointed out by the poverty measurement literature. However, when

the deprivation indicators describe a lack of outcomes, such as the absence of good
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Table 3.6: Simulation results: Mean H incidence of multidimensional deprivation
and mean MDβ,θ burden of multidimensional deprivation

H

MDβ,θ

β = 0 β = 1

θ = 0 θ = 1 θ = 0 θ = 1

(1) Observed 0.40 1.18 0.28 3.53 0.28

Scale invariance

(2) Fully non-deprived scenario 0.0 0.0 0.0 0.0 0.0

(3) Fully deprived scenario 1.0 4.2 1.0 12.6 1.0

Population replication invariance

(4) Simulated 0.40 1.18 0.28 3.53 0.28

(5) Difference (4)-(1) 0.00 0.00 0.00 0.00 0.00

Household anonymity

(6) Simulated 0.40 1.18 0.28 3.53 0.28

(7) Difference (6)-(1) 0.00 0.00 0.00 0.00 0.00

Within household anonymity

(8) Simulated 0.40 1.18 0.28 3.53 0.28

(9) Difference (8)-(1) 0.00 0.00 0.00 0.00 0.00

Multidimensional deprivation focus

(10) Simulated 0.40 1.18 0.28 3.53 0.28

(11) Difference (10)-(1) 0.00 0.00 0.00 0.00 0.00

Applicable deprivation focus

(12) Simulated 0.40 1.18 0.28 3.53 0.28

(13) Difference (12)-(1) 0.00 0.00 0.00 0.00 0.00

Weak achievement monotonicity

(14) Simulated 0.40 1.18 0.28 3.53 0.28

(15) Difference (14)-(1) 0.00 0.00 0.00 0.00 0.00

Deprivation monotonicity

(16) Simulated 0.40 1.18 0.28 3.39 0.27

(17) Difference (16)-(1) 0.00 0.00 0.00 -0.13 -0.01

Dimensional deprivation monotonicity

(18) Simulated 0.40 1.11 0.27 3.46 0.26

(19) Difference (18)-(1) 0.00 -0.07 -0.01 -0.07 -0.02

Source: Author’s calculations based on 2013 PHS. Note: population means developed under the basis of a sample
of 5,423 Households. Households satisfying m1,0.87 > 0.65 are identified as the multidimensionally deprived.
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health or nutritional status for example, this desired sensitivity might be losing its

purpose.

As Aaberge & Brandolini (2014a) pointed out, the analysis of the sensitivity

of multidimensional measures to changes in the distribution of deprivations is an

area that requires further research. In particular, for the proposed MDβ,θ family

of indices of this chapter, two types of sensitivities arise as being relevant to anal-

yse with regards to transfers: the sensitivity of societal measures to demographic

re-arrangements resembled by permutations of individuals across households and

transfers of resources from better off to worse off individuals (within the multidi-

mensionally deprived population). We would like to ensure that societal measures

are based on a progressive transfer of resources or individuals across households.

However, the complexity involved in the possible compensation dynamics between

attributes and the analysis of the mechanisms throughout demographic reconfig-

urations require more detailed research that is out of the scope of this chapter.

For the time being, the dominance outlined properties in this section (WAM, DM

and DDM) assure that the proposed MDβ,θ measures have the proper orientation

if any of these transfers result in either an achievement increment, a deprivation

reduction, or a dimensional deprivation reduction.

Decomposability

The poverty measurement literature defines as decomposable any metric that

can be expressed as a weighted average of subgroup estimates, where weights are

population subgroup shares. The references Foster et al. (1984), Tsui (1999), and

Alkire & Foster (2011) refer to this property as decomposability, and Bourguignon

& Chakravarty (2003) refers to it as subgroup decomposability.

Subgroup decomposability allows consistent decompositions of the societal

measure into population subgroups. In particular, my H and MDβ,θ societal mea-

sures are able to be expressed as a weighted average of the multidimensional de-

privation level observed across subgroups of households, where the weight of each

is the share of households that each subgroup represents.

As an example, if I sort Paraguayan households under the basis of m1,0.87

and identify as multidimensionally deprived those satisfying m1,0.87 > 0.65, this

leads to 40.3% of the total 5,423 households being identified as multidimensionally
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deprived. This result can be decomposed further by sub-population groups such

as household sizes or counties. For illustrative purposes, the decompositions by

county is shown in Table 3.7 below. The last row in the table corresponds to the

overall societal estimate, and all seven previous rows correspond to each subgroup

of households by county. If I obtain the share of households by county based on

the figures included in Column 1 and use those shares as weights to calculate the

weighted sum of each of the measures across household sizes, the results correspond

to the overall societal figures. As Alkire & Foster (2011) pointed out for their

family of measures, this measurement feature becomes an important technology

for policy purposes. It allows the design and evaluation policy interventions for

specific population subgroups.

However, two caveats are worth noting. First, an identification of the multi-

dimensionally deprived at the household level produces societal measures to not be

decomposable by individual population subgroups (ranges of age, gender, or ethnic-

ity) disregarding the household where they belong. Including current household-

based applications of multidimensional deprivation measurement, H and MDβ,θ

are not the exception in this case.

Table 3.7: County specific Paraguayan results

Number
of

households
H

MDβ,θ

β = 0 β = 1

θ = 0 θ = 1 θ = 0 θ = 1

(1) (2) (3) (4) (5) (6)

Asunción 691 0.1 0.3 0.1 0.8 0.1

San Pedro 469 0.6 1.8 0.4 5.8 0.4

Caaguazú 758 0.6 1.8 0.4 5.5 0.4

Itapúa 456 0.5 1.5 0.3 4.3 0.3

Alto de Paraná 826 0.5 1.5 0.4 4.7 0.4

Central 1,141 0.2 0.5 0.1 1.4 0.1

12 remaining counties 1,082 0.5 1.4 0.3 3.9 0.3

Total Paraguay 5,423 0.4 1.2 0.3 3.5 0.3

Source: Author’s calculations based on 2013 PHS. Note: Multidimensionally deprived households are identified
as those satisfying m1,0.87 > 0.65.
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Second, following the Alkire & Foster (2011) proposed notion of dimensional

decomposability for any of their Mα metrics, the MDβ,θ measures with θ = 0 can

be decomposed to estimate the contribution of each j dimension in the overall

societal measure. Then, MDβ,0 can be, alternatively to Eq. (3.11), expressed as

the following:

MDβ,0 =
∑
j∈J

µ(dβhj(k)) / J, (3.13)

where dβhj(k) is the household dimensional deprivation indicator censored to zero

for any non-multidimensionally deprived household, and µ(dβhj(k)) corresponds to

the average value of dβhj(k) for h = 1, 2, . . . , R. Hence, the contribution of the j

dimension in the MDβ,0 societal measure corresponds to
(
µ(dβhj(k)) / J

)
/MDβ,0.

Continuity

Continuity in the multidimensional measurement literature has been used, for

instance, by Bourguignon & Chakravarty (2003) to characterise welfare multidi-

mensional measures. According to the scholars, it ensures a well-behaved func-

tional form that would produce no abrupt jumps given changes in achievements.

My proposed approach may have more than one possible source of discontinu-

ity. First, it counts dimensions on deprivation and household deprivations, thus,

household metrics are counting indicators that belong to the set of natural num-

bers. Second, given that two identification procedures are used (the first one

identifies individuals in deprivation and the second identifies multidimensionally

deprived households). Therefore, continuity is not expected to be achieved.

Despite the lack of continuity of the proposed metrics of this chapter, they are

still cardinal. The proposed methodology of this chapter exploits the ordinal nature

of most of the policy indicators currently in use. Using either count-based, share-

based, or a mixture of both approaches, leads to cardinal metrics of the household

burden of multidimensional deprivation being developed. The cardinal nature of

the proposed mβ,θ metrics allow the comparison of the size of this observed burden

of multidimensional deprivation across any two given households, which provides

policy makers a technology that allows ranking households from most deprived to

least deprived. This characteristic reveals an important technique for targeting

the most deprived households in developing countries.
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Chapter 4

Persistent poverty in the presence
of survey non-response: The case
of Peru
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Abstract

Despite their policy relevance, intertemporal poverty measures could be question-

able, as they are based upon panel data sets that naturally suffer from not-at-

random survey non-response. This chapter examines the reliability of expenditure-

based intertemporal poverty measures in the presence of survey non-response.

Two persistent poverty measures are analysed: the persistent-poverty-headcount

ratio and the duration-adjusted persistent-poverty-headcount. Using the 2013

Paraguayan panel household survey, we implement a partial identification ap-

proach to derive upper and lower bounds for the persistent poverty estimates.

The first set of bounds uses the evidence revealed by the survey, so the bounds

are wide. We obtained narrower bounds by imposing an instrument and a mono-

tone instrument restriction. The results demonstrate that the width of the bounds

varies across measures and cut-off points, with the duration-adjusted persistent-

poverty headcount that uses higher cut-off points being more reliable. The results

of the improved bounds indicate that standard non-response-weighted estimations

of Peruvian persistent poverty represent a considerable underestimated picture of

the intertemporal phenomenon.

Keywords: Poverty persistence, Chronic poverty, Survey non-response, Partial

identification.
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4.1 Introduction

There is general agreement that households that suffer poverty persistently over

time are in worse condition than households where poverty occurs on a transient

basis. In recent years, given its policy relevance, special efforts have been carried

out to operationalise the concept of chronic poverty as a persistent pattern of

poverty states over time. For the purposes of this chapter, we use interchangeably

the term ‘persistent poverty’ and ‘chronic poverty’, both referring to repeated

expenditure-based poverty states over time.

Persistent poverty measures have been proposed by Baulch & Hoddinott

(2000), Jalan & Ravallion (2000), Yaqub (2003), Hulme & Shepherd (2003), Fos-

ter (2009), Calvo & Dercon (2009), Bossert & Chakravarty (2012), Gradin et al.

(2012), and Mendola et al. (2012), among others. All these metrics are meant to be

constructed as household balanced panel estimates. Household panel surveys are

longitudinal studies that observe a set of variables across households over time.

They constitute a rich source of information for intertemporal analysis. While

households exclusively observed in each wave of the longitudinal survey constitute

a balanced panel, households observed in at least one of the waves constitute an

unbalanced version of the panel. As such, persistent poverty measures available

in literature require households to be observed in each wave of the longitudinal

survey; in other words, they are based on the balanced version of the panel survey.

However, panel surveys suffer from survey non-response that tends to increase

and accumulate as further waves of interviewing are conducted (Watson & Wooden

2009). This is the case for most household panel surveys. The longest-running

longitudinal studies, such as the Panel Study of Income Dynamics from the United

States (PSID), the British Household Panel Survey (BHPS), and the German

Socio-Economic Panel (GSOEP), lost at least 25% of the original sample after

their eighth wave (Watson & Wooden 2009).

Panel surveys in developing countries are no exception. While rare and often

based on small sample sizes or a few waves of available data (Jenkins & Siedler

2007), panel surveys in developing countries can suffer from much more dramatic

cumulative survey non-response than long-ago developed surveys as the PSID,

BHPS, and GSOEP.
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In particular, in some developing countries, panel household surveys have

been designed using a household follow-up procedure exclusively based on resi-

dence. This means that only households that do not leave their residence are

interviewed by the consecutive waves of the panel survey. The Peruvian National

Panel Household Survey (ENAHO), for instance, follows households on the basis of

their housing, but if a household moves out, the ENAHO does not use any follow-

up criteria for them or for demographic reconfigurations of them, i.e., household

splits. As a result, in 2011, after five waves of implementation of the ENAHO

panel, only 14.5% of the initially sampled ENAHO panel households were still

observed by the panel.

Other examples of household panel surveys in developing countries that track

households based on residence are the Bolivian Pre-School Program Evaluation

Household Survey, the Kenyan Ideational Change Survey, the Ethiopian Rural

Household Survey, the Indian Rural Economic Development Survey, the Continu-

ous Sub-sample of the Argentinian Permanent Household Survey, and the Brazilian

Longitudinal Survey Data of Households in Ouro Preto do Oeste, Rondonia (Al-

derman et al. 2000, Dercon & Hoddinott 2009, NCAER 1997, Baulch 2011, Hall

& Caviglia-Harris 2013).

While studies such as Rosenzweig (2003) have analysed the effect that a

follow-up procedure exclusively based on residence has on inferences of economic

mobility, little is known with regard to the effect of cumulative survey non-response

on persistent poverty estimates. This chapter, as the first in literature, examines

the reliability of expenditure-based intertemporal poverty measures in the pres-

ence of survey non-response. In the context of the Peruvian household panel data

set, ENAHO, we assess the behaviour of two members of the Foster (2009) fam-

ily of intertemporal poverty measures: the persistent-poverty headcount and the

duration-adjusted persistent-poverty headcount, both in the presence of survey

non-response.

The traditional approach to tackle survey non-response in longitudinal sur-

veys is through weighting systems that aim to correct for such non-response. This

approach assumes the survey non-response process related to observables and un-

related to unobservable characteristics. In the case of persistent poverty measures,

balanced panel estimates are constructed using sample non-response weights that
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correct for observable characteristics that drive the survey non-response. This

means that, after controlling for survey non-response caused by observable char-

acteristics, the estimates are assumed to be unrelated with unobservable charac-

teristics of the household that could have determined the survey non-response.

This assumption nonetheless seems unrealistic. Survey non-response in house-

hold panels might be driven not only by observable characteristics but also by un-

observable characteristics that influence the survey non-response process and are

related to household poverty conditions. If this is the case, persistent poverty esti-

mates might occur in the presence of ‘missing-not-at-random’ processes. According

to Little & Rubin (1987)’s taxonomy of missing data patterns, the probability for

a household to be missing in a particular wave is most likely related to unob-

servables that in turn are related to the outcome variables of interest are referred

by the authors as missing-not-at-random (MNAR) patterns. As such, persistent

poverty estimates developed on the basis of weighting systems that account strictly

by observables but not unobservable characteristics can provide biased persistent

poverty estimates.

A specific branch of the biostatistics literature tackles the potential bias that

this type of missing data patterns might bring to biological outcomes. Examples

of this literature are studies such as Kenward (1998), Jansen et al. (2006), Albert

& Follmann (2009) and Little (2009). The methods implemented by this type of

literature, however, rely on specific assumptions about the pattern and shape of

the missingness distribution that cannot be tested. If these assumptions do not

hold, the use of such methods might introduce additional bias to the estimates

(Enders 2011). For a review of the literature on approaches to address MNAR

processes and their implementation on longitudinal surveys, see Enders (2011).

Along with those methods, as pointed out by Horowitz & Manski (1998), this

type of data problem can be also catalogued as an identification problem. Ac-

cording to Koopmans (1949), identification and statistical inference correspond to

two different concepts. While statistical inference refers to the determination of a

parameter based on a large-enough sample of observations so that the conclusions

of such a parameter rely on the variability of the sample, identification explores the

limits of inference in drawing conclusions about the parameter under the hypothe-

sis of full knowledge of the probability distribution of the observations (Koopmans
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1949). Using this approach the missing data problem can be understood as a

problem of partial observability. As such, the identification regions where the true

estimates belong can be determined. The formal characterisation of identification

regions was first introduced by Horowitz & Manski (1995) and Manski (2003).

Examples of this type of studies on poverty measures include Chavez-Martin del

Campo (2004) and Nicoletti et al. (2011).

Using a partial identification approach, there is no need for assumptions over

the distribution of the unobservables; instead, conclusions are drawn using the

information that the sample reveals. This is the selected framework of the current

chapter. The understanding of the survey non-response problem and its effect on

persistent poverty estimates as a partial identification setup allows to develop lower

and upper bounds based on the probability distribution that the sample reveals

and on visible and plausible assumptions rather than non-response corrected point

estimates that could be based on unstable assumptions. This is the contribution

of the current chapter to the methodological poverty measurement literature.

The chapter is organised as follows. After this introduction, it describes the

Peruvian household panel data set and its survey non-response pattern. Then, the

selected chronic poverty measures to be analysed are described. We describe the

anatomy of the problem that survey non-response poses over persistent poverty

estimates in the ENAHO context. Subsequently, throughout Section 4.4, we de-

termine the effect that survey non-response has on persistent poverty estimates in

this context. In particular, we first derive the lower and upper bounds that could

be learnt from the sample-revealed information and then derive additional sets of

bounds after imposing an instrumental variable assumption and a monotone in-

strumental variable assumption. We finish by discussing the empirical results and

presenting conclusions and further research paths.

4.2 Data

The empirical analysis of this chapter uses the Peruvian National Household Sur-

vey, which is a survey run yearly by the Peruvian National Institute of Statistics

since 1995. It aims to monitor Peruvian households living conditions, and it is
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known as the ENAHO, Encuesta Nacional de Hogares. This section briefly de-

scribes the ENAHO and its survey non-response problem.

4.2.1 The ENAHO

The ENAHO household survey covers the Peruvian national territory, including

urban and rural areas, 24 counties (departmentos), and the constitutional province

of Callao. The national official figures of expenditure-based poverty are produced

by the Peruvian National Institute of Statistics (whose acronym in Spanish is

INEI) on the basis of the information collected by the ENAHO and the technical

advice and supervision of an independent poverty committee.

The ENAHO’s sample is selected from the national population and hous-

ing census frame that the statistical department maintains and is based on the

2007 census-collected data. Independently within counties, the ENAHO’s sample

is drawn using a multi-stage probabilistic area selection procedure. Specifically,

the sample design uses three stages that differ by urban and rural areas.1 Each

ENAHO sampling unit, in the first two stages, is selected with a probability pro-

portional to the sample frame. For the last stage, the number of selected housing

units is driven by a selection interval provided to the field team.

Each year, the survey uses 12 sub-samples, each one randomly assigned to each

month of the year. Then, the sample is evenly distributed across time and space.

On average, from 2007 to 2011, this cross-sectional survey has interviewed 22,353

households per year. To measure changes in the behaviour of some socioeconomic

characteristics of the population, the ENAHO maintains a sub-sample of housing

units as a panel. At the time the current chapter was written, the ENAHO has

available for use two different panels, the first run from 2004 until 2006 and the

second run from 2007 until 2011. To perform the empirical analysis described in

1In urban areas, the primary sampling units (PSUs) are municipalities inhabited by two
thousand or more inhabitants. The secondary sampling unit is the conglomerate, which has, on
average, 120 housing units. The tertiary sampling unit is the housing. In rural areas, in contrast,
the primary sampling unit is either a municipality inhabited by a population consisting on 500
to less than two thousand persons or a less populated area termed an Área de empadronamiento
rural (AER). An AER, on average, consists of 100 housing units. The secondary sampling units,
in the case of rural areas, are conglomerates comprised 120 housing units or single housing units
in particular rural PSUs. Similarly to the urban areas, in the rural areas, the tertiary sampling
units correspond to single housing units.
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the current chapter, we use the 2007-2011 panel sub-sample of the ENAHO. We

continue in the next section by describing this panel sub-sample and the survey

non-response that it suffers.

4.2.2 The ENAHO panel survey

The 2007-2011 ENAHO panel began in 2008 with a sub-sample of 7,560 housing

units. This sub-sample of housing units was drawn from the 2007 cross-sectional

ENAHO by the INEI using 12 probabilistic sub-samples that had an approximate

number of conglomerates per department. The 2007 cross-sectional ENAHO sam-

ple consists of 25,947 attempts to conduct housing unit interviews.

The 7,560 selected housing units for the ENAHO panel were inhabited in

2007 by 7,769 households. The ENAHO panel yearly follows up with households

based strictly on the criterion of residence. This means that there are no follow-

up procedures for households that relocate from the housing where they were

interviewed for first time by the panel. There is also no follow-up procedure for

demographic reconfigurations of households that move out of the initial housing.

Only very rare cases of households are followed, and those are households that

move to a location within the same geographical area. As a result, the households

that remain within the panel are those where at least one household member

remains in the housing were she/he was interviewed in the first wave. Each panel

household is followed for up to five years.

To refresh and compensate for the households that leave the panel, since

2008, the INEI has included a yearly boost in the number of housing units within

the panel. For the purposes of the current chapter, we confine our analysis to

the initial drawn panel sample which comprises the attempted to interview 7,769

households in 2007. This set of households is defined in the current chapter as the

panel member households.

In 2007, out of these 7,769 attempted to interview households, 193 refused an

interview and 148 were absent at the time of the interview. Thus, 7,428 households

in the sample provided either complete or incomplete interviews. In 2008, 84.7%

of the panel households interviewed in 2007 remained within the same residence.

After that, in 2009, the share of households that remained in the panel from
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2008 was 67.5%. Across the five years of the panel, the share of households that

remained in the sample declined year over year. In 2011, only 44.0% of the 2010

observed households were interviewed. As a result, after five waves of implementing

the panel, out of the 2007 7,769 attempted to interview households, only 14.5% of

them remained within the panel.

As such, an increasing and cumulative pattern of survey non-response is ob-

served through the five years of the 2007-2011 ENAHO panel implementation.

Figure 4.1 shows the yearly total number of household interviews attempts from

2007 until 2011 in the ENAHO panel. The darker zone within columns represents

the share of balanced panel households, and the lighter zones represent first the

unbalanced panel households and then the non-response households. While, in

2008, the balanced panel (households observed in both 2007 and 2008) consisted

of 6,293 households, in 2011, the balanced panel (households observed in each of

the five years) included 1,129 households.

A cumulative behaviour of survey non-response, such as the one observed in

the ENAHO panel, can be also observed in other longitudinal surveys. However,

Figure 4.1: Survey non-response pattern

Source: author’s calculations developed on the basis of the 2007-2011 ENAHO panel.
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in the ENAHO, this pattern is more accelerated than in other panels because

of the conception of the survey as a panel with a household follow-up procedure

exclusively based on residence. For instance, while the ENAHO panel lost 85.5%

of its original sample of households after five years of implementation, the United

Kingdom’s BHPS registered a cumulative non-response of 33% (Taylor et al. 2010)

after its fifth collected wave. Similar is the case of the GSOEP survey, which, after

the fifth year of implementation, registered 22% of the sample lost. After 18

waves of application of the BHPS, the cumulative sample lost was 40%. For the

GSOEP, it took 24 waves to reach a cumulative non-response rate of 44% (Watson

& Wooden 2009).

The cumulative and increasing survey non-response observed in the ENAHO

panel has measurement implications for any indicator or analysis carried out on

the basis of balanced panel estimates. In particular, in the current chapter, we

are interested in analysing the reliability of persistent poverty measures developed

under these circumstances. In the next section, we continue by first defining

persistent poverty and then describing the particular measures for which we analyse

the effect of survey non-response in the context of the ENAHO panel.

4.3 Measuring persistent poverty in the Peru-

vian context

Defining chronic poverty is an open debate and implies several value judgements.

In the literature, there have been several efforts to operationalise the concept of

chronic poverty as a persistent pattern of poverty states over time. Examples

include the measures proposed by Baulch & Hoddinott (2000), Jalan & Ravallion

(2000), Yaqub (2003), Hulme & Shepherd (2003), Foster (2009), Calvo & Dercon

(2009), Bossert & Chakravarty (2012), Gradin et al. (2012), and Mendola et al.

(2012). All these measures rely on balanced panel data sets and are income or

expenditure based.

As a result and for the purposes of this chapter, we adopt the definition of

chronic poverty as a persistent pattern of household intertemporal expenditure-

based poverty. This definition implies that the household is selected as the unit of
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analysis and expenditure as the welfare indicator to track across households and

time.

We continue describing this selected welfare indicator and then move on to

present the persistent poverty measures that will be used throughout this chapter

to characterise chronic poverty.

4.3.1 The welfare indicator

The ENAHO survey provides a comprehensive set of variables that allow the con-

struction of annual household aggregates of either income or expenditure. We opt

to use expenditure as welfare indicator rather than income for three reasons.

First, expenditure is seen as an indicator that captures more accurately long-

term trends of living standards than income. As such, an expenditure indicator

might smooth long-term patterns of welfare more accurately than income. In-

deed, when analysing both the income and expenditure Peruvian household-based

indicators, we found in the ENAHO cross-sectional survey from 2007-2011 two

times larger variability in the annual mean household income than in the annual

household expenditure.

Second, from the theoretical point of view, according to Deaton & Zaidi

(2002), the ultimate goal of both income and expenditure aggregates is to describe

the consumption of the households. However, income is an indicator of the amount

of transient resources that households can account for, whereas expenditure is

considered an indicator that approximates better the consumption level of the

household.2

The third and last reason to select expenditure as a welfare indicator rather

than income refers to the particular rich source of expenditure items that the

ENAHO survey constitutes. The main drawback of using household expendi-

ture drawn from household surveys is that these surveys usually do not capture

own-account and non-monetary transactions; which for developing countries might

represent a significant share of the economy. For the case of Peru and, in fact, for

the ENAHO survey, the expenditure questionnaire captures, along with monetary

2For a discussion of the theoretical basis of consumption-based measures of welfare, see Deaton
& Zaidi (2002).
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expenditure, own-account transactions (self-supplied), non-monetary expenditure,

and monetary and non-monetary transfers received from institutions and other

households. The capture of all these items in the survey enhances the observed

share of household non-monetary expenditure.

As a result of these three considerations and for the purposes of this chapter,

we use the total annual household expenditure derived by the INEI for the ENAHO

survey. This household welfare indicator, as collected by the ENAHO survey, takes

into account food consumed outside the household; food to be consumed within the

household; clothing and shoes; housing rent, fuel, electricity, and housing repairs;

furniture and housing maintenance; health services and self-health care; transport

and communications; leisure, amenities, and education and cultural services; and

other goods and services.3

Although the Peruvian official poverty figures provided by the INEI are cal-

culated using as a household aggregate the monthly household per-capita expen-

diture, we opt instead to express the ENAHO household expenditure in terms of

equivalent adults. To obtain expenditure estimates that are comparable across

households of different sizes and compositions, we use the equivalence scale pro-

posed by Deaton & Zaidi (2002). To this aim, we use the monthly total expenditure

of the i-household divided by an ei-equivalence factor. This equivalence factor is

defined for each i-household as follows: ei = (Ai + ϕCi)
θ, where Ai is the num-

ber of adults who belong to the i-household, Ci is the number of children in the

i-household, ϕ is a parametric value that expresses the cost of a child relative to

an adult and takes values from zero to one, and θ is the parameter that accounts

for the scale economies within households.

To set the values of the ϕ and θ parameters we follow Deaton & Zaidi (2002)’s

recommendations with regard to this selection in the case of developing countries.

According to the authors, ϕ values close to one are devoted to industrialised coun-

tries, where the cost of having a child could be arguably high, while values close

3The ENAHO expenditure aggregate, however, does not include expenditure on public health
or public education, the imputed value of the consumption of durable goods, or the imputed
value of the consumption of water taken from the river.
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to zero but as low as 0.3 are devoted to the poorest economies. Because Peru is

considered an upper middle income country4, we set ϕ = 0.65.

In terms of θ, according to Deaton & Zaidi (2002), values of θ close to one

reflect a high share of private goods at home (such as food) and are devoted to the

poorest economies, which according to the authors spend as much as three-quarters

of their budget on food. In Peru, according to the cross-sectional ENAHO, the

share of food expenditure was on average 13.7% of the total 2011 expenditure.

Then, we follow the Deaton & Zaidi (2002) recommended approach for richer

economies and set θ = 0.75.

Finally, in terms of the poverty threshold to identify poor households, the

INEI has available for public use the official expenditure-based poor thresholds

that vary across years and geographical areas of the Peruvian national territory.

These expenditure-based poor thresholds aim to value the expenditure level that

enables household members to access the basic food energy required to carry out

moderate activities to survive, in addition to the value of goods and services re-

quired by household members to satisfy their needs, such as clothing, footwear,

housing rent, fuel use, furniture, appliances, health care, transportation, commu-

nications, entertainment, education, culture, and others. These official thresholds

indicate the minimum per-capita expenditure level that a household, according

to its location and the year of the evaluation, must exhibit to be catalogued as

non-poor.

To identify poor households, in this chapter, these official expenditure thresh-

olds are used. However, we re-expressed them as adult-equivalent poverty lines as

follows. Since the average official poverty line of each year and each of the 25 Peru-

vian counties for which the cross-sectional ENAHO allows inferences corresponds

to afore-discussed minimum average expenditure expected by a household to be

considered out of poverty divided by the average household size of each of these

geographical domains. We obtained the average expected expenditure for each of

the 25 Peruvian counties and years by multiplying the official poverty line per the

mean household size of each of these domains. Then, the adult-equivalent poverty

4According to the World Bank’s classification of countries, Peru is an upper middle income
country that in 2014 registered a per capita gross national income of USD 6,360 (WB 2015).
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line corresponds to such expenditure value divided by the mean ei equivalent factor

obtained across the i-households that belong to each domain.

We now continue in the next section presenting the selected measures used in

this Chapter to describe persistent poverty.

4.3.2 The selected persistent poverty measures

A variety of persistent poverty measures are available in the literature. Examples

include Baulch & Hoddinott (2000), Jalan & Ravallion (2000), Yaqub (2003),

Hulme & Shepherd (2003), Foster (2009), Calvo & Dercon (2009), Bossert &

Chakravarty (2012), Gradin et al. (2012), and Mendola et al. (2012). They aim to

describe intertemporal poverty in a public policy context. An application example

that uses these types of measures is the Dercon & Porter (2012)’s study. In the

context of rural Ethiopia, Dercon & Porter build and analyse several persistent

poverty measures, including the Foster (2009) family of measures. Another appli-

cation example is the study presented by Dickerson & Popli (2012), which analyses

the impact of persistent poverty among children in the UK and considers three

different sets of measures: the Bossert & Chakravarty (2012), the Dutta et al.

(2011), and the Foster (2009) family of measures.

For the purposes of this chapter, we opt to use the widely known and cited

persistent poverty metrics proposed by Foster (2009). In particular, this family of

measures incorporates the time dimension into the poverty measurement approach

proposed by Foster et al. (1984), which is known as the FGT family of poverty

measures.

Consider an i-household and a t-period of time, where i = 1, 2, . . . , R and

t = 1, 2, . . . , T . Further, define yit as the expenditure of the i-household at t-time.

Whenever yit lies below a certain z poverty line, the household is considered poor

during the period. Thus, the i-household poverty status at t-time is defined as a

pt-binary indicator of the presence or absence of poverty as follows:

pt =

{
1 if yit < z

0 otherwise.
(4.1)
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For a setting of T periods of time, the P -poverty-spell-count observed for the

i-household is defined as follows:

P =
T∑
t=1

pt. (4.2)

According to Foster (2009), any i-household satisfying P ≥ C, where C rep-

resents the persistent threshold, is considered persistently poor. Then, the h-

persistent poverty indicator for the i household is defined as follows:

h =

{
1 if P ≥ C

0 otherwise,
(4.3)

where a value of h = 1 indicates that the i-household is identified as persistently

poor and a value of h = 0 indicates that the i-household is identified as persistently

non-poor.

However, persistent poverty can be characterised not merely by this binary

measure, as the number of periods under poverty indicates the breadth of intertem-

poral deprivation. A greater number of periods in poverty depicts greater overall

deprivation. Consequently, for households defined as persistently poor, Foster

(2009) proposes adjusting the h-persistent poverty indicator with the share of pe-

riods under poverty to obtain a k0-duration-adjusted persistent poverty indicator,

which is defined as follows:

k0 =


P

T
if P ≥ C

0 otherwise.

(4.4)

Therefore, for a society consisting of R households, the H-persistent-poverty

headcount ratio and the K0-duration-adjusted persistent-poverty headcount are

expressed, respectively, as follows:

H =µ(h) (4.5)

K0 =µ(k0), (4.6)

where µ(h) denotes the average value of the h-persistent poverty indicator and

µ(k0) denotes the average of the k0-duration-adjusted persistent poverty indicator,

both for i = 1, 2, . . . , R households.
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Although Foster (2009) proposes as members of his chronic poverty family of

measures H and any Kα, where α = {0, 1, 2} is the poverty aversion parameter,

we expressly focus on the analysis of H and K0 because both measures, H and

K0, describe chronic poverty in terms of the pt-binary indicator of the presence

or absence of poverty in the i household at time t. Conversely, the K1 chronic

poverty gap and the K2 average severity, both express chronic poverty in terms of

the yit-expenditure indicator and the z-poverty line. As such, we leave for future

research the analysis of Kα members where α = {1, 2}.

The metrics of interest of this chapter, the H-persistent-poverty headcount

and the K0-duration-adjusted persistent-poverty headcount, like a majority of

other persistent poverty measures available in the literature, require households to

be observed over T periods of time.

4.3.3 The weighting system approach used to correct for
survey non-response

Out of the initial sample of households selected to integrate the ENAHO panel,

1,129 of them have either ‘complete’ or ‘incomplete’ results in each of the five years

of the panel survey. Households with complete survey results are those who replied

to all the questions applicable to them in the questionnaire. Households with

incomplete results are those who replied only to some of their applicable questions

in the questionnaire. For any household with either complete or incomplete results

in the survey, the INEI computed their annual household expenditure. Then, we

observe for each of these 1,129 households the pt-binary indicator of the presence

or absence of poverty for any year t = 2007, 2008, 2009, 2010 or 2011.

However, this sample of 1,129 households corresponds to only 14.5% of the

total panel sample of households attempted to interview in 2007. The natural

question that arises and which is the focus of this chapter is, therefore, how chronic

poverty estimates are affected by such survey non-response.

The traditional approach to tackle this problem in longitudinal surveys is

through a weighting system that aims to correct the possible bias that survey non-

response induces in the estimates and to ensure that the results reflect the structure

of the population that the survey frame portrays. In the case of the ENAHO panel,

159



the INEI follows this traditional approach and develops a weighting system that

corrects for both the structure of the population and survey non-response. This

INEI’s official weighting system is available for public use.

The INEI developed this weighting system throughout two stages. The first

stage consists of deriving the non-response rate that each secondary sampling

unit independently registers, which in the context of the ENAHO corresponds to

geographical conglomerates. Each of these conglomerates consists of a specific

quarter of the year, county, region, urban or rural area, and a socioeconomic

strata.5 In the second stage, the INEI adjusts the obtained weighting system of the

first stage by the population structure. This adjustment is carried out to reflect the

population structure and in accordance with the population distribution derived

from the census data for the mid-point of each year by county, region, urban and

rural area, and socioeconomic strata.

For the purposes of the current chapter, we have available the final and official

INEI’s weighting system that corrects for survey non-response and the structure

of the population. Additional to this set of weights we built a set of weights, that

aims to adjust results exclusively for the differences reflected by the structure of

the population shown in the official predicted population for the 2007-2011 period

(according to census data).

As such, in this paper our analysis are carried out for societal measures of

persistent poverty, first in use of the unadjusted estimates. Then, using our own

estimated design weights that correct exclusively for the structure of the popu-

lation, and lastly using the INEI’s official weighting system. Figure 4.2 on page

162 presents these results. Sub-figures a. and b. present the results for the

H-persistent-poverty headcount and the K0-duration-adjusted persistent-poverty

headcount, both across the five possible persistent thresholds C.

Dotted lines in Figure 4.2 plot the obtained persistent poverty measures on

the basis of the 1,129 balanced panel households and without any adjustment

5The socioeconomic strata is a categorical variable that classifies geographical conglomerates
into five ordered socioeconomic groups. It was developed by the INEI on the basis of a housing
index that uses information on the housing itself, households and household members present
in each 2007 national population and housing census-observed housing unit. The final strata
assigned to characterise each conglomerate was defined by the INEI as the predominant strata
observed across the housing units of the conglomerate.
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(Unadjusted). These unadjusted results indicate that 61.4% of households in the

sample have at least one period out of the five analysed in expenditure-based

poverty and 19.0% of households in the sample have five out of five periods in

poverty. This corresponds to the H-persistent-poverty-headcount when setting

C = 1 and C = 5, respectively.

If the estimates are adjusted exclusively by the structure of the population,

which are the dashed lines in Figure 4.2 and correspond to using the weighting

system that corrects exclusively for the structure of the population (Adj. Struc.),

we observe that the adjusted version of the persistent poverty estimates lie below

the unadjusted version of the estimates for each different C threshold.

Now, if the chronic poverty estimates are adjusted using INEI’s official weight-

ing system available for public use, which correct for survey non-response and the

structure of the population (Adj. Offic.), results show that the INEI’s correction

produces mean estimates of H and K0 smaller than the unadjusted results by

about 7.0 percentage points (p.p.). We see that the solid line in the Figure 4.2

lie below the unadjustead version of the estimates for each C persistent poverty

threshold.

In consequence, the two adjusted versions of the chronic poverty estimates,

either the version that adjusts exclusively by structure of the population or the

one that uses the official INEI’s weighting system, both lie below their unadjusted

estimate. This result suggests that households that exhibit survey non-response

might be systematically better off than those remaining in the sample. As such,

household unobservable socioeconomic characteristics that influence the household

poverty status might be as well influencing the survey non-response process.

The traditional approach to correct for survey non-response through weight-

ing systems assumes, nonetheless, survey non-response related exclusively to the

observable characteristics taken into account in the correction. Thus, if survey

non-response is related not only to observable characteristics taken into account

for the weighting system that corrects for survey non-response but also to un-

observables related to the household poverty status, persistent poverty estimates

could provide a biased picture of the intertemporal poverty phenomenon.
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Figure 4.2: Persistent poverty balanced panel estimates

Persistent poverty headcount, H
Duration-adjusted poverty headcount,

K0

Source: Author’s calculations developed on the basis of the 2007-2011 ENAHO panel. Notes: Population means
developed on the basis of 1,129 households in sample. Lower and upper limit of the population means use a 90%
confidence level and were developed under the basis of the weighted bootstrap procedure described in detail in
Appendix A.

In the next section, we further investigate whether or not is plausible to

assume survey non-response unrelated to unobservables that might influence the

household poverty status.

4.3.4 Is plausible to assume absence of confounding unob-
servables?

The ENAHO panel has in the 2007 sample 7,428 households with either complete

or incomplete survey results. Then, we observe for each of these households the pt-

binary indicator of the presence or absence of poverty in t = 2007. The unadjusted

mean of p2007 among these 7,428 interviewed households is 0.444. We henceforth

denote the mean poverty rate by µ(pt), where t = 2007, 2008, 2009, 2010, or2011.

Thus, µ(p2007) = 0.444 and indicates that 44.4% of the panel households inter-

viewed in 2007 were identified as poor in that year.
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Out of the households interviewed in 2007, 1,135 left the panel in 2008. There-

fore, we only observe one period of time for these 1,135 households, which is 2007.

Thus, we observe only p2007 for them and not their pt-poverty status across further

years. In contrast, for the group of 1,129 balanced panel households, we observe

pt for each year t = 2007, 2008, 2009, 2010, and 2011.

If we calculate and compare the µ(p2007)-mean poverty rate for these two

different groups of households, we can determine whether they are similar in

terms of the incidence of poverty or not. In particular, the µ(p2007)-mean poverty

rate among the 1,135 households observed exclusively in 2007 is 0.346, while the

µ(p2007)-mean poverty rate among the 1,129 households that remained in the panel

for five years is 0.469. Thus, households that remain in the panel have a larger

poverty incidence than those leaving the panel. In particular, households observed

in the panel during all five years had a 12.3 p.p. larger poverty rate than those that

were observed only in the first wave. This result suggests that better-off house-

holds might indeed be systematically leaving the panel, while worse-off households

might tend to remain in the sample.

Nonetheless, one could argue that observable characteristics could capture

the missing pattern and that controlling for them might restore randomness to

the process. According to Little & Rubin (1987)’s taxonomy of missing data

patterns, when the probability that a household will be missing, after controlling

for observables, is random, it is termed a missing-at-random pattern. As such,

estimates developed on the basis of weighting systems that account for observable

characteristics assume this particular type of missing pattern.

To investigate whether or not, when accounting for observable covariates,

we could still have significant differences in poverty rates as the number of ob-

served periods increases, we calculate the annual mean poverty rate among panel

households by the number of observed periods within the panel. We account for

possible differences in the missing pattern given by the geographical location of the

household using the weighting system that corrects for the population structure

described in Section 4.3.3. Table 4.1 below reports these results. Each row in the

table shows the µ(pt)-mean poverty rate calculated for the households available in

each year of analysis and across the number of observed periods of time. Integers
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Table 4.1: Mean poverty rate µ(pt) in any year t between 2007 and 2011 across
the number of observed periods

Number of observed periods
Total

1 2 3 4 5

µ(p2007) 0.255 0.318 0.363 0.368 0.358 0.332

[1,135] [2,016] [1,685] [1,463] [1,129] [7,428]

µ(p2008) n.d 0.272 0.310 0.336 0.323 0.305

[0] [2,016] [1,685] [1,463] [1,129] [6,293]

µ(p2009) n.d n.d 0.285 0.313 0.299 0.298

[0] [0] [1,668] [1,450] [1,129] [4,247]

µ(p2010) n.d n.d 0.236 0.318 0.271 0.297

[0] [0] [14] [1,449] [1,129] [2,592]

µ(p2011) n.d n.d 0.420 0.078 0.257 0.253

[0] [0] [3] [27] [1,129] [1,159]

Source: Author’s calculations developed on the basis of the 2007-2011 ENAHO panel. Notes: Figures were
calculated using a weighting system that corrects for the population structure. Integers in square brackets refer to
the number of observations used for the mean reported above the bracket. Households with no observed periods
were omitted from the table because no poverty figure is observed for them ([341] households).

in square brackets in the table refer to the number of observed households used to

calculate the mean reported above the brackets.

Reading Table 4.1 line-to-line from left to right, it is observed that, on aver-

age, poverty incidence in larger among households observed three or more periods

than households observed only one and two periods. For instance, the 2007 mean

poverty rate is smaller among households observed exclusively in 2007 than among

those observed during all five years of the panel. This is, households observed in

only one period of time have µ(p2007) = 0.255, and households observed in five

periods of time have µ(p2007) = 0.358. In 2007, the mean poverty rate among

panel households is 10.3 percentage points larger than the rate observed among

households that were in the sample only in 2007. Similarly, if we analyse the

mean poverty rate in 2008, while households observed in the sample for only two

years have µ(p2008) = 0.272, households observed for five years in the sample have

µ(p2008) = 0.323.

This result suggests that, after controlling for the structure of the population
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given by the population’s forecast drawn from the census, households leaving the

panel sample are still better off than households remaining in the sample. If

observability were distributed randomly across poverty status, one would expect

a similar mean of poverty incidence across households with a different number of

observed periods. However, the mean poverty rate across households is lower in

households observed fewer periods of time.

As a result, so far, assuming survey non-response not related to unobservable

characteristics that could influence household poverty status seems unrealistic for

the ENAHO panel sample. Neglecting these unobservables might produce biased

persistent poverty estimates. In the next section, we assess the reliability of the

ENAHO persistent poverty estimates under these circumstances.

4.4 Partial identification of persistent poverty

measures

Persistent poverty measures are constructed upon balanced panel samples. As

such, this type of balanced panel estimates neither consider neither the observable

information remaining in the unbalanced panel sub-sample nor the non-observed

information that would have helped to describe this phenomenon in households

with survey non-response. This section formalises this data problem as a problem

of partial observability, and then it derives identification regions that aim to de-

termine how persistent poverty estimates would have behaved in the absence of

survey non-response.

4.4.1 Anatomy of the problem of partial observability

Consider the observed P -poverty spell count that the i-household experiences dur-

ing T periods of time introduced in Eq. (4.2). Then, an analogous useful definition

for the subsequent analysis is the number of observed periods of non-poverty, the

N -non-poverty spell count:

N =
T∑
t=1

(1− pt) . (4.7)
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Any i-household such that the sum of its observed poverty and non-poverty

spell counts add up to T is a household with complete observability. Thus, any

i-household satisfying P +N = T is observed during all T periods of time and, as

such, integrates the balanced version of the panel.

However, there are also households that belong to the portion of the panel

that is unbalanced. For any unbalanced panel household, we know that P +N <

T . This means that we have partial observability of the poverty status of these

households across time.

As a result, we encounter a problem of partial observability, where one set

of households has complete observability and the other has partial observability.

In the context of the ENAHO panel, this problem of partial observability can be

visualised as shown in Figure 4.3, where T corresponds to five periods of time:

2007, 2008, 2009, 2010, and 2011. Any household selected for the panel exhibits

P ∈ {0, 1, 2 . . . 5} and N ∈ {0, 1, 2 . . . 5}. The vertical axis represents the observed

Figure 4.3: Anatomy of the problem: number of households by observed poverty
and non-poverty spell count

Source: Author’s calculations developed on the basis of the 2007-2011 ENAHO panel. Note: total number of
panel households: 7,769.
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P -poverty spell count for any i-household over T . The horizontal axis in the fig-

ure indicates the observed N -non-poverty spell count. Each cell of the matrix in

the figure indicates the number of households that register a combination of P -

poverty spells and N -non-poverty spells across the T periods of time. While the

cells located on the diagonal refer to any possible combination of P and N that

households with complete observability have, cells located in the left lower quad-

rant of the matrix refer to any possible combination of P and N that households

with partial observability exhibit.

Analysing inter-temporal poverty across T periods of time for any i household

in terms of the observed values of P and N enables us to express T as:

T = P +N + P ∗ +N∗, (4.8)

where P ∗ and N∗ denote the count number of non-observed periods of poverty

and non-poverty, respectively. For any household with complete observability, we

know that P ∗+N∗ = 0, whereas any household with partial observability satisfies

P ∗ +N∗ > 0.

The goal is to make inferences with regard to societal measures H and K0,

introduced in Eq. (4.5) and Eq. (4.6), and constructed upon the household indica-

tors h and k0, respectively. Nonetheless, while the h-persistent poverty indicator

and the k0-duration-adjusted persistent poverty indicator can be straightforwardly

calculated for any household with complete observability, for households with par-

tial observability, it is uncertain how they could have been classified (either as

persistently poor or non-poor) if they had remained in the panel.

To address this problem, we use the direct misclassification approach proposed

by Molinari (2008) to study error-ridden discrete variables. The following section

describes Molinari (2008)’s proposed approach in the context of the persistent

poverty analysis described in this chapter.

4.4.2 The direct misclassification approach

According to Molinari (2008, p.81), the problem of error-ridden discrete variables

can be analysed through specifying the relationship between the distribution of the

‘true’ but unobserved variable and the misclassified representation of it as a linear

167



system of equations, where the coefficient matrix is the matrix of misclassification

probabilities.

Following Molinari (2008), we exploit the relation between P and N (which

are revealed by the sample) and P ∗ and N∗ (which are unobserved) given by the

law of total probabilities and express the problem of partial observability for per-

sistent poverty estimates in terms of its misclassification probabilities. Then, the

classification of any given i panel household as persistently poor can be expressed

as the sum of conditional probabilities across P , N , P ∗, and N∗ as follows:

Pr(h = 1) =
T∑

P=0

T∑
N=0

T∑
P ∗=0

T∑
N∗=0

H(P,N, P ∗, N∗)Pr(P,N, P ∗, N∗), (4.9)

where H(P,N, P ∗, N∗) represents the H-persistent poverty headcount introduced

in Eq. (4.5) and evaluated on the population subgroup that take the P,N, P ∗, N∗

values. In other words, H(P,N, P ∗, N∗) is the deterministic function H evaluated

on each P,N, P ∗, N∗ population subgroup. Here, in use of Eq. (4.8), we can

simplify Eq. (4.9) as follows:

Pr(h = 1) =
T∑

P=0

T−P∑
N=0

T−P−N∑
P ∗=0

H(P,N, P ∗)Pr(P,N, P ∗). (4.10)

Nonetheless, as expected, not every term in Eq. (4.10) is observed. Then, fol-

lowing the proposed approach of Molinari (2008) to incorporate prior information

into the analysis and based on the definition of the h-persistent poverty indicator,

we look into classifying households as persistently poor, as persistently non-poor,

or with an unknown outcome (i.e., it is uncertain whether they are persistently

poor or non-poor). In addition, persistently poor households are further charac-

terised as households with complete or partial observability.

As a result, any i panel household is classified in exactly one out of four

possible subsets of households, which we use for subsequent analysis. These four

relevant subsets of households are as follows: i) households unambiguously classi-

fied as persistently poor and have complete observability, ii) households that can

be classified as persistently poor but exhibit partial observability, iii) households

that can be classified as persistently non-poor, and iv) households with an uncer-

tain outcome. These subsets are characterised for any panel survey run over T

periods of time as follows.
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Consider any i-panel household that can be described in terms of the observed

combination of P -poverty spells and N -non-poverty spells across T periods of time.

We define S as the set of integers P ∈ 0, 1, . . . , T and N ∈ 0, 1, . . . , T , such that

0 ≤ P + N ≤ T . The set S can be partitioned into four subsets of interest, S1,

S2, S3, and S4, such that S = S1 ∪ S2 ∪ S3 ∪ S4. Each subset is defined in terms

of the P,N combination that contains the following:

S1 = {P,N : P ≥ C,P +N = T}, i.e. persistently poor & complete observability ;

S2 = {P,N : P ≥ C,P +N < T}, i.e. persistently poor & partial observability ;

S3 = {P,N : P < C,N > T − C}, i.e. persistently non-poor ;

S4 = {P,N : P < C,N ≤ T − C}, i.e. uncertain outcome.

For instance, if in the ENAHO panel we set the persistent poverty threshold

at C = 3, the four subsets of panel households can be visualised as shown in

Figure 4.4. Reading the figure from the darkest zones to the lightest, the darkest

zone corresponds to households classified as persistently poor that have complete

observability. These are households such that P ≥ 3 and P = 5 + N . Then,

households that can be classified as persistently poor and have partial observability

are those satisfying P ≥ 3 and P = 5 + N . Following is the set of households

that, because of the information that we have in terms of N , we can classify as

persistently non-poor. These are households satisfying N ≥ 3. Finally, households

with an uncertain outcome are represented in the figure by the lightest area and

are those such that P < 3 and N ≤ 2.

The classification of households into these four sets is subsequently used to

express the probability that a household will be identified as persistently poor

introduced in Eq. (4.10). Further, simplifying to zero any persistently non-poor

household (as we know with certainty that h = 0 for them), we obtain the following:

Pr(h = 1) =
∑

P,N∈S1

Pr(P,N |S1)Pr(S1)

+
∑

P,N∈S2

Pr(P,N |S2)Pr(S2)

+
∑

P,N∈S4

Pr(P,N |S4)Pr(S4), (4.11)

where households exhibiting a combination P,N ∈ S1, always have P ∗ = 0. In

addition, households exhibiting a combination P,N ∈ S2 or P,N ∈ S4, may have

integer values of P ∗ ∈ 0, 1, . . . T − P −N .
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Figure 4.4: Subsets of households of interest in the ENAHO 2007-2011 panel if
C = 3 by poverty and non-poverty spell count

We use Eq. (4.11) to subsequently derive upper and lower bounds for the

persistent poverty measures of interest, H and K0. In the next section, we present

these bounds inferred from the probability distribution of P and N revealed by

the survey.

4.4.3 Survey-revealed bounds

This section focuses on presenting the derived upper and lower bounds that charac-

terise the limits of the identification region for the H-persistent-poverty headcount

and the K0-duration-adjusted persistent-poverty headcount. We also present in

this section the results obtained upon applying these derived bounds to the spe-

cific case of the ENAHO 2007-2011 panel.
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The persistent-poverty headcount

Recall that H was defined in Section 4.3.2 as the average value across households

in society of the h-persistent poverty indicator for each i-household. In turn, h was

defined as the binary indicator of the presence or absence of persistent poverty,

where any i household such that P ≥ C is classified as persistently poor.

Then, in the case of the h-persistent poverty indicator, any household that

registers at least C poverty spells, regardless of whether it has complete or partial

observability, can be classified as persistently poor. This means that households

that exhibit a combination of P and N that belongs to either the S1 subset or the

S2 subset exhibit an equivalent value of h = 1.

As such, the probability that any i household will be classified as persistently

poor introduced in Eq. (4.11) can now be expressed as follows:

Pr(h = 1) =
∑

P,N∈S1∪S2

Pr(P,N |S1 ∪ S2)Pr(S1 ∪ S2)

+
∑

P,N∈S4

Pr(P,N |S4)Pr(S4), (4.12)

where the first term on the right-hand side of the equation can be always identified

and corresponds to Pr(P ≥ C) and the second term on the right-hand side of the

equation is unidentified and corresponds to households with an uncertain outcome.

Nonetheless, with regard to households with an uncertain outcome, at this

stage of the analysis we only know that their probability of being classified as

persistently poor ranges from zero to one. Thus, the lower and upper bounds for

the H-persistent-poverty headcount are as follows:

LH = Pr(P ≥ C) (4.13)

UH = Pr(P ≥ C) + Pr(P < C,N ≤ T − C)

= Pr(N ≤ T − C). (4.14)

Next, we present the analogous survey-revealed bounds for the K0-duration-

adjusted persistent-poverty headcount.
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The duration-adjusted persistent-poverty headcount:

In this case, recall that K0 was defined as the average value across households in

the society of the k0-duration-adjusted persistent poverty indicator. In turn, for

any i household classified as persistently non-poor, k0 = 0, and for any i household

classified as persistently poor, k0 = (P + P ∗)/T .

Then, we use the probability of being classified as persistently poor, Pr(h =

1), given by Eq.(4.11), and the definition of k0 to express the societal K0 as follows:

K0 × T =
∑

P,N∈S1

P × Pr(P,N |S1)Pr(S1)

+
∑

P,N∈S2

T−P−N∑
P ∗=0

(P + P ∗)× Pr(P,N |S2)Pr(S2)

+
∑

P,N∈S4

T−P−N∑
P ∗=0

(P + P ∗)× Pr(P,N |S4)Pr(S4), (4.15)

where the first term on the right-hand side of the equation refers to households

with complete observability, which can be always identified. The second and third

terms, in contrast, refer to households with partial observability. Households with

partial observability are unidentified.

To obtain the lower and upper bound for the identification area of K0, we

minimise the terms of Eq.(4.15) that refer to partially observed households for the

lower bound, and for the upper bound, we maximise the same terms. As such, we

obtain the following:

LK0 =
∑

P,N∈S1∪S2∪S4

P

T
× Pr(P,N |S1 ∪ S2 ∪ S4)Pr(S1 ∪ S2 ∪ S4) (4.16)

UK0 =
∑

P,N∈S1

P

T
× Pr(P,N |S1)Pr(S1)

+
∑

P,N∈S2∪S4

T −N
T

× Pr(P,N |S2 ∪ S4)Pr(S2 ∪ S4) (4.17)

Having derived and presented lower and upper bounds to characterise the

identification region for the H-persistent-poverty headcount and the K0-duration-

adjusted persistent-poverty headcount, we now apply these obtained bounds to

the ENAHO panel and analyse the obtained results. These results are presented

in the next section.
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Bounding ENAHO panel estimates

Figure 4.5 plots the balanced panel point estimates of the chronic poverty fig-

ures, their obtained identification region and the 90% confidence interval area of

the identification region. These results are displayed separately for for the H-

persistent-poverty headcount ratio (Subfigure a.) and the K0-duration-adjusted

persistent-poverty headcount (Subfgure b). The horizontal axis in both figures

corresponds to the threshold C used to identify persistent poverty households.

To provide estimates of the identification area consistent with the survey de-

sign and therefore with the Peruvian structure of the population, the lower and

upper bound of the chronic poverty measures are estimated using the weighting

system that adjusts exclusively for the structure of the population, weighting sys-

tem described in Section 4.3.3.

In terms of sample variability, the lower limit of the confidence interval area

corresponds to the lower limit of the 90% confidence interval obtained from the

lower bound estimate. Conversely, the upper limit of the confidence interval area

corresponds to the upper limit of the 90% confidence interval registered by the

upper bound estimate.

The results of the identification areas across different C persistent poverty

thresholds for both H and K0 show a width that decreases along the persis-

tent poverty threshold increases. The larger the persistent poverty threshold, the

smaller the width of the identification regions. These results indicate that per-

sistent poverty measures that identify as persistently poor households those that

experience a greater number of periods in poverty produce more reliable results

than those measures that identify as persistently poor those households with fewer

periods in poverty.

In particular, among the five C thresholds used to define persistent poverty,

the smallest width of the identification region is exhibited when C = 5 for both the

H and K0 metrics. The identification region of the persistent-poverty headcount

ratio, when C = 5, comprises values of H that range between 0.017 and 0.239
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points. Similarly, the identification region of the duration-adjusted persistent-

poverty headcount, when using C = 5, comprises values of K0 between 0.096 and

0.239 points. However, these two regions are still wide for the purposes of policy.

Nonetheless, the bounds obtained for the K0 metric, in comparison to the

resulting bounds of H, are tighter. Thus, persistent poverty estimates based on

a K0 metric provide a more reliable picture of intertemporal poverty than the H

estimates.

Results show that the balanced panel point estimates, which use the official

weighting system that adjusts for survey non-response and the structure of the

population, lie within the obtained identification region. In case the point es-

timates would have lain outside of the identification region we would have had

evidence to assert that these point estimates are providing a biased picture of

Figure 4.5: Survey-revealed bounds

Persistent poverty headcount, H
Duration-adjusted poverty headcount,

K0

Source: Author’s calculations developed on the basis of the 2007-2011 ENAHO panel. Notes: point estimates of
H and K0 developed on the basis of 1,129 balanced panel households and using the official weighting systems that
the INEI provides. The lower and upper bounds of the identification region were developed on the basis of 7,769
panel households and using the weighting system that adjusts exclusively for the structure of the population. The
90% confidence interval of the identification region is delimited by the 90% confidence lower limit of the lower
bound and the 90% confidence upper limit of the upper bound. The confidence limits of the lower and upper
bounds were obtained using the weighted bootstrap procedure described in detail in Appendix A.
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chronic poverty. But, this is not the case of any of the H and K0 estimates.

However, given that the identification region obtained upon this survey re-

vealed bounds is still wide, at this stage of the analysis, we cannot determine

whether or not the obtained point estimates of H and K0 provide a reliable pic-

ture of the intertemporal phenomenon. We now address tightening these bounds

using further visible and plausible restrictions.

4.5 Tighter bounds

The identification region of H and K0 aims to determine how persistent poverty

estimates would have behaved in the absence of survey non-response. The bounds

presented above in Section 4.4 correspond to survey-revealed bounds. They were

derived upon the probability distribution of the poverty and non-poverty spell

counts that we observe in the survey and the possible limit values that non-

observed spell counts could have taken if they had been observed.

As such, these survey-revealed bounds make no assumption about the be-

haviour of either persistent poverty or its relation with survey non-response. Hence-

forth, we refer to them as the ‘no-assumption bounds’.6 The no-assumption bounds

are, however, wide and could become uninformative for policy purposes.

Nonetheless, there is still prior information that can be used to narrow these

no-assumption bounds. In particular, two restrictions were found plausible to im-

plement when analysing persistent poverty in the presence of survey non-response:

i) an instrumental variable restriction and ii) a monotone instrumental variable

restriction. We place these restrictions on the obtained survey-revealed bounds.

The next subsections below discuss each of them, along with the results obtained

upon applying them in the context of the ENAHO panel.

6‘No-assumption bounds is the term used by Manski & Pepper (2009) to refer to the known
possible limits given by the law of total probabilities of the outcome of interest in the analysis.
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4.5.1 Instrumental variable restriction

Consider a random variable Z. If Z is believed unrelated to household poverty

status but strongly related to survey non-response, then Z is said to be a valid in-

strumental variable (IV). Following the Nicoletti et al. (2011) approach to partially

identify poverty rates in the presence of missing data, fieldwork information can

be used as Z valid instrument for survey non-response. In this context, fieldwork

information is considered a valid instrument because there is no credible evidence

to indicate that the interviewer’s characteristics, such as age, gender, or marital

status, could have been influenced by the interviewed households. In addition,

these same characteristics serve as good predictors of survey non-response.

Considering that Z is a valid IV implies: assuming Z is statistically indepen-

dent from persistent poverty and related to survey non-response. This assumption

is referred to Nicoletti et al. (2011) as an IV assumption.7

If this IV assumption holds, Manski (2003) shows that, for each value of

z ∈ Z, we can characterise the identification region of the H-persistent-poverty

headcount as follows:

max
z∈Z

L(z) ≤ H ≤ min
z∈Z

U(z), (4.18)

where L(z) refers to the survey-revealed lower bound of the persistent-poverty

measure introduced in Eq. (4.13) and Eq. (4.16) for the H-persistent poverty

headcount and the duration adjusted persistent poverty headcount. The z value

within parenthesis indicates that the bound is evaluated in the observations where

the IV takes the value z ∈ Z. The maxz∈Z operator indicates that the IV lower

bound corresponds to the maximum value of L(z) across all observed z ∈ Z.

Similarly, U(z) refers to the survey-revealed upper bound introduced in Eq.

(4.14) and Eq. (4.17) for our two chronic poverty measures of interest. The

7Different types of distributional assumptions exist in the literature; Manski (2003) analyses
these different assumptions and their use under a partial identification methodological approach.
While the relation of Z with regard to survey non-response can be easily confirmed empirically,
the statistical independence of Z from persistent poverty remains an assumption. The statistical
independence assumption defined by Manski (2003, p.28) and applied in the context of our
application can be formalised as follows: Z is an IV if, for any value z ∈ Z, it satisfies Pr(h =
1|Z = z) = Pr(h = 1).
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minz∈Z operator in Eq. (4.18) indicates that the IV upper bound corresponds to

the minimum value of U(z) across all observed z ∈ Z.

Regarding the instruments, we have available information about the collec-

tion process of the ENAHO 2007 cross-sectional survey. In particular, we use a

categorical variable of the position that the interviewer holds in the survey (super-

visor, coordinator, or interviewer) and an indicator of the load of work conducted

by each of the interviewers measured as the proportion of interview attempts i.e.,

visits that the interviewer made in relation to the total number of visits carried

out by the 2007 cross-sectional ENAHO.

To judge the plausibility of the statistical independence assumption of the

instruments and persistent poverty, we analysed whether or not the number of

P poverty spells was balanced over each IV. The mean of each IV was found

not statistically significantly different among households with different numbers of

poverty spells.

In addition, to confirm that the instruments are good predictors of survey non-

response, in an order probit model of the household response rate8 that uses as

predictors the instrumental variables, the two dummies of the interviewer’s position

in the survey and the workload variable had a coefficient that was statistically

significantly different from zero.

This regression analysis and the balanced behaviour of P across the selected

IV gave grounds to confirm the plausibility of the IV assumption. Thus, the IV

assumption appears credible in this context, so we opt to apply it to restrict the

no-assumption bounds.

The use of more than one instrumental variable to apply the IV restriction

over the identification region of the persistent poverty estimates requires us to

reduce the two selected instruments to a single Z covariate that can be partitioned

further to obtain subsets of Z such that z ∈ Z. Given that the interviewer’s

position in the survey is a categorical variable and the workload is a ratio, we

combined the two variables into a single expression by using the workload ratio

as a base, which was squared for the cases where the person who carried out the

8The response rate of the household is defined as the proportion of years that the household
has been observed by the ENAHO panel survey (P + n/T ).
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survey was a supervisor and cubed for the cases where the person who carried out

the survey was an interviewer.

Having defined this Z variable, a trade-off is faced between the number of

z ∈ Z partitions to use and the bias that a large number of partitions might induce

because of finite sample bias (Manski & Pepper 2009). In particular, Manski &

Pepper (2009) analyse the limits of identification regions based on the application

of these types of restrictions through a Monte Carlo experiment. The scholars

compared the results given by a sample size of 100, 500, and 1, 000 observations

in each partition and found that greater variability along with a greater number

of z partitions would produce a considerable increase in the bias of the results.

In the context of the ENAHO, we performed a sensitivity analysis between the

results obtained upon using 4, 5, . . . 14 partitions of Z. We opt to use 14 partitions

because this particular number of partitions allows each partition to comprise at

least 500 households in the sample. A sample size of 500 observations per cell

is considered large enough to avoid severe finite sample bias. Still, a thorough

analysis of the sample variability is required to determine the bias given by the

size of the sample.

On the other hand, different approaches can be considered to reduce the

two selected instrumental variables to a single Z score or categorical variable. In

particular, we consider a k-means procedure to avoid any transformation of the

selected IV that allowed us to determine the z partitions of Z. However, the

randomness involved in the selection of the partitions in the k-means algorithm

and the dissimilar produced size among the z partitions was found inconvenient

for the purposes of applying the IV restriction. In addition, a principal component

analysis (PCA) was considered to obtain a Z score. However, this dimensionality

reduction strategy was found inconvenient because it reduces the variability of the

selected instrumental variables, which is in fact what the IV restriction aims to

exploit in the context of our persistent poverty analysis. In other words, the PCA

analysis might reduce the identification power of our Z variables.

Figure 4.6 plots the results of imposing the IV restriction on the no-assumption

identification region. The shaded areas in the figure represent the obtained iden-

tification regions. The darkest zone corresponds to the area that implements the
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IV restriction, and the lightest zone corresponds to the identification region that

remains outside the implemented IV restriction. In the figure we also included the

90% confidence area obtained in use of the lower and upper bound. The lower limit

corresponds to the 90% lower limit confidence interval of the the obtained lower

bound. Similarly, the upper limit corresponds to the 90% upper limit confidence

interval of the upper bound.

The results indicate that the selected Z covariate has identification power,

as the identification region is considerably narrower after imposing the restriction.

Specifically, the lower bound of both H and K0 increased by at least 50% of its

original value. For the upper bound, the IV restriction produces a reduction of at

least 10% of its original value.

The figure also shows that the application of this restriction causes balanced

Figure 4.6: No-assumption and IV bounds

Persistent poverty headcount, H
Duration-adjusted poverty headcount,

K0

Source: Author’s calculations developed on the basis of the 2007-2011 ENAHO panel. Notes: point estimates of
H and K0 developed on the basis of 1,129 balanced panel households and using the official weighting systems
that the INEI provides. The lower and upper bounds of the identification region were developed on the basis
of 7,769 panel households and using the weighting system that adjusts exclusively for the structure of the
population. The 90% confidence interval of the identification region is delimited by the 90% confidence lower
limit of the lower bound and the 90% confidence upper limit of the upper bound. The confidence limits of the
lower and upper bounds were obtained using the weighted bootstrap procedure described in detail in Appendix
A.
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panel estimates to lie not necessarily within the identification area with an observed

downward bias in both H and K0. This result suggests that the ENAHO balanced

panel estimates of persistent poverty result in an underestimation of the size of

the phenomenon.

We now describe the second restriction placed on the identification region of

H and K0, a monotone instrumental variable restriction.

4.5.2 Monotone instrumental variable restriction

Consider a random variable X. If X is believed represents an ordered measure

of household socioeconomic status that decreases/increases monotonically along

it, then the X variable is said to be a monotone instrumental variable (MIV).

Following Manski & Pepper (2009, p.S207), using an MIV assumption, as this

assumption is referred to by the scholars, results in the following context-specific

assumptions for the analysis of persistent poverty in the presence of survey non-

response. First, it implies assuming that persistent poverty decreases with the

socioeconomic status of the household; second, it assumes that X is a monotonic

predictor of household socioeconomic status; and third, it also implies assuming

that the descriptors of the survey non-response process, which we do not observe,

are statistically independent of household socioeconomic status and X.

As such, we require the MIV variables to be socioeconomic descriptors avail-

able for any panel household, regardless of whether the household has complete

or partial observability. Given that households with partial observability have no

available information in the ENAHO survey, our MIV candidates are thus con-

strained to socioeconomic descriptors of geographical areas.

Assuming that socioeconomic descriptors of geographical areas are monotonic

descriptors of household socioeconomic status appears plausible, as does assuming

that persistent poverty decreases along these observed descriptors. Therefore, we

opt to use such an MIV assumption to restrict the obtained persistent poverty

identification regions.9

9The MIV assumption formalised by Manski & Pepper (2000) and applied in the context of
our analysis can be expressed as follows: X represents an ordered measure and is an MIV if, for
any x1, x2 and x values of X such that x2 ≥ x ≥ x1, it satisfies Pr(h = 1|X = x2) ≥ Pr(h =
1|X = x1),∀(x1, x2) ∈ X.
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If the MIV assumption holds, Manski & Pepper (2000) shows that, for any

x1, x2 and x values of X such that x2 ≥ x ≥ x1, we can characterise the identifi-

cation region of the H-persistent-poverty headcount as follows:

E

[
max
x1≤x

L(x1)

]
≤ H ≤ E

[
min
x2≥x

U(x2)

]
, (4.19)

where the maxx1≤x operator indicates that the x1 value of X corresponds to the

maximum value that x takes in X and the minx2≥x operator indicates that the x2

value of X corresponds to the minimum value that x takes in X. The expectation

applies with regards to the distribution of the X random variable.

The available set of MIV candidates comprised 36 variables, 28 of which cor-

respond to socioeconomic indicators of the municipalities where panel households

reside. This municipality information was drawn from a rich national administra-

tive register of socioeconomic indicators at the municipality level that the INEI

have made available for public use.10 The remaining eight MIV covariates are

dummy indicators that differentiate the national territory among urban and rural

areas and regions.

To reduce the 36 MIV variables to a single one, a linear transformation was

made over 12 out of the 36 indicators to ensure that all 36 had the same [0, 1]

range of scale and the same orientation. This means that all 36 indicators, after

the linear transformation, take values from the interval [0, 1] and jointly increase

with the household equivalent adult expenditure, as measured in the 2007 ENAHO

cross-sectional survey. Subsequently, we add the 36 variables without applying any

weighting system to obtain a single X covariate.

In practice, we use as the X variable a simple score, where the minimum

value of X corresponds to the lowest observed ‘proxy’ value of socioeconomic

status. Similarly, the maximum observed value of X corresponds to the maximum

observed ‘proxy’ value of socioeconomic status.

10Examples of these variables include the number of social organisations per 100 inhabitants,
number of librarian personnel (by position in the library) per 1,000 inhabitants, number of
library computers connected to the Internet per 1,000 inhabitants, number of library users per
100 inhabitants, number of social program beneficiaries, number of divorces per 1,000 inhabitants,
number of Internet kiosks per 100 inhabitants, number of micro and small businesses per 1,000
inhabitants, number of post offices per 1,000 inhabitants, electricity coverage rate, and tons of
solid trash collected per 1,000 inhabitants.
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To ensure that the MIV restriction is applied to the identification area using

a large enough sample size for each x ∈ X, we implement 14 partitions of the X

ordered score, where each partition contains at least 500 households. It is worth

remarking that each partition contains x values such that x1 > x2 > . . . > x14,

where x1 refers to the values that x takes in the first partition of the score, x2

to the values of x in the second partition, and x14 to the values of x in the 14th

partition.

Different approaches can be used, nonetheless, to construct the X covariate.

For instance, a principal component analysis or a k-means procedure could have

been used. We opt for using the score approach to exploit the variability we find

across the 36 MIV variables and to ensure the monotonic behaviour of the resulting

X, which both are key in the context of applying an MIV restriction.

Figure 4.7 plots the results of imposing the MIV restriction, along with the

previously identified no-assumptions region and the corresponding confidence in-

tervals obatined for these identification regions. Reading the graph from the dark-

est to the lightest shaded areas, the darkest area corresponds to the identification

region obtained upon imposing the MIV restriction. Subsequently, we plotted the

no-assumption identification region. The lightest shaded area corresponds to the

90% confidence area obtained from the confidence intervals of the lower and upper

bound of each region.

Although an MIV assumption is conceptually weaker than an IV assumption,

the figure shows that the MIV identification region is considerably more narrow

than the obtained upon applying an IV restriction. This result indicates that,

in the context of the ENAHO panel, the identification power of the two used IV

variable indicators is lower than the identification power of the 36 MIV indicators.

As a sensitivity analysis, we estimate the results using a lower number of

MIVs with subsets of the 36 indicators; the results of this analysis indicate that

the identification power of the MIV was the largest when using the complete set

of these 36 indicators. However, the results of this analysis also pointed out that

the identification power of the MIV restriction does not necessarily increase as the

number of MIV indicators in use increases.
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Figure 4.7: No-assumption and MIV bounds

Persistent poverty headcount, H
Duration-adjusted poverty headcount,

K0

Source: Author’s calculations developed on the basis of the 2007-2011 ENAHO panel. Notes: point estimates of
H and K0 developed on the basis of 1,129 balanced panel households and using the official weighting systems
that the INEI provides. The lower and upper bounds of the identification region were developed on the basis
of 7,769 panel households and using the weighting system that adjusts exclusively for the structure of the
population. The 90% confidence interval of the identification region is delimited by the 90% confidence lower
limit of the lower bound and the 90% confidence upper limit of the upper bound. The confidence limits of the
lower and upper bounds were obtained using the weighted bootstrap procedure described in detail in Appendix
A.

The MIV results also show that the MIV identification region for both H

and K0 metrics, across most of the C persistent poverty thresholds, results in a

subset of the IV-restricted identification region. This is, however, not exactly the

case for all the C used persistent poverty thresholds. We therefore provide final

estimates of the identification region obtained as the intersection of the MIV and

IV restrictions. This analysis and results are presented in the next section.

4.5.3 Improved identification region

Improved lower and upper bounds are constructed in this section to describe the

narrowest identification area that is revealed upon imposing both: an IV restriction

and a MIV restriction. With such an approach, we aim to determine the tightest
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possible identification region from where is possible to draw credible and reliable

persistent poverty estimates.

The improved identification region was obtained selecting the maximal lower

bound and minimal upper bound found upon the no assumption region and the IV

and MIV restrictions. Other possible course of action could consist of condition-

ing the no-assumption bounds to both Z and X. This approach was considered

nonetheless inconvenient because it requires a decrease in the sample size for each

partition used to select lower and upper bounds, which can increase the sample

variability and the finite sample bias of the estimates. Because of this considera-

tion, we prefer the selected approach.

Figure 4.8 presents the obtained final improved identification region for H

and K0. These results indicate that the obtained improved identification region is

considerably narrower than the initial no-assumption region. For instance, once

restrictions imposed, persistently poor households –identified as these exhibiting

at least one poverty spell count– are found to represent in between 84% to 94%

of the population of households. The 90% confidence interval lower limit of the

lower bound of the identification region lie above the balanced panel estimate

31.0 percentage points. In general, the improved identification region consists of

persistent poverty values that do not contain the balanced panel estimates for both

H and K0 metrics. This is the case for any C threshold used to define persistent

poverty households, with the exception of the use of C = 5 and C = 4 for the

H-persistent-poverty headcount and C = 5 for the K0-duration adjusted poverty

headcount. This result indicates that balanced panel estimates based on weighting

systems that correct for survey non-response, in the case of the ENAHO panel,

provide a considerable downwards biased picture of the intertemporal phenomenon.

The obtained improved identification region lies largely above the H and K0

balanced panel estimates, indicating that, if both persistent poverty measures had

been measured in the absence of survey non-response, they would have portrayed

a considerably larger size for the phenomenon.

If we compare the difference in percentage points between the lower bound

of the improved identification region and the balanced panel estimates for both

H and K0, we observe that this difference decreases as the C persistent poverty
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Figure 4.8: Improved bounds

Persistent poverty headcount, H
Duration adjusted poverty headcount,

K0

Source: Author’s calculations developed on the basis of the 2007-2011 ENAHO panel. Notes: point estimates of
H and K0 developed on the basis of 1,129 balanced panel households and using the official weighting systems
that the INEI provides. The lower and upper bounds of the identification region were developed on the basis
of 7,769 panel households and using the weighting system that adjusts exclusively for the structure of the
population. The 90% confidence interval of the identification region is delimited by the 90% confidence lower
limit of the lower bound and the 90% confidence upper limit of the upper bound. The confidence limits of the
lower and upper bounds were obtained using the weighted bootstrap procedure described in detail in Appendix
A.

threshold increases. This result indicates that persistent poverty measures that

identify persistently poor households in terms of a larger number of poverty spells

are more reliable than measures that use fewer spells to identify the most deprived

on this basis.

In the next section, we analyse the bias that the bounds might suffer because

of the finite feature of the sample.

4.5.4 Finite sample bias

Not only point estimates but also bounds estimates could suffer from finite sample

bias. In particular, bounds estimates of the type that we develop in this chap-
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ter and apply to the ENAHO panel survey calculate maximums and minimums

over samples of relative small sizes. As pointed out by Kreider & Pepper (2007),

these procedures can lead to systematically biased estimations, with lower bounds

tending to be upward biased and upper bounds tending to be downward biased

because of the finite nature of samples.

To correct for this possible bias, Kreider & Pepper (2007) proposes a non-

parametric bootstrapped correction to be applied over the obtained lower and

upper bound. This section focuses on applying this finite sample bias correction

proposed by Kreider & Pepper (2007) to our Section 4.5.3 obtained improved lower

and upper bounds.

Specifically, the non-parametric bootstrapped correction proposed by Kreider

& Pepper (2007) and discussed as well in Manski & Pepper (2009) consists on

bootstrapping the point estimate of the lower and upper bounds, which we do

1,000 independent times as per described in Appendix A. The bias of the bound

corresponds to E∗(B) − B, where B refers to the estimated bound, E∗(·) is the

expectation operator with respect to the bootstrap distribution, and E∗(B) is the

mean of the estimated bound using the bootstrap distribution. Then, the biased

corrected estimator is expressed as the B-original estimated after subtracting from

it the bias, which is: 2B − E∗(B).

Table 4.2 presents the point estimates of the improved lower and upper bounds

of H and K0, as well as their corresponding finite-sample bias-corrected estimates

and their 90% confidence intervals, which have been obtained using the weighted

bootstrap procedure described in detail in Appendix A.

The results indicate that the finite-sample bias-corrected estimates produce

a small improvement with regards to the analogous point estimates. This result is

consistent with the results obtained by Kreider & Pepper (2007) when implement-

ing this type of finite sample bias correction on employment estimates. Nonethe-

less, the sample variability shown by the bootstrapped standard errors result to

widen the identification area mostly when using the bound obtained upon the IV

restriction.

Despite, both restrictions (IV and MIV) were imposed on the basis on cells

consisting of minimum 500 households in the sample, we observe larger sample
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variability from the point estimates obtained from applying an IV restriction than

those obtained upon imposing an MIV restriction. This result is driven by the fact

that the MIV variables that we use to narrow the identification region consist of

indicators that characterise geographical areas, which produce lower finite-sample

bias and lower sample variability.

Still, once accounting for the finite sample bias and the sample variability, if

we compare the balanced panel estimates of the H-persistent-poverty headcount

with the bootstrapped confidence intervals, it is observed that the only estimate

that lie within the confidence intervals corresponds to the case when a household is

defined as persistently poor because it has at least five or four poverty spells. The

remaining H balanced panel estimates result in a considerably downwards-biased

Table 4.2: Improved bounds and 90% confidence intervals

H K0

Balanced
panel

estimate
Bounds

Balanced
panel

estimate
Bounds

C = 1

0.532 a [ 0.893 , 0.935 ] b 0.331 [ 0.482 , 0.584 ]

[ 0.892 , 0.934 ] c [ 0.480 , 0.583 ]

[ 0.839 , 0.944 ] d [ 0.437 , 0.614 ]

C = 2

0.408 a [ 0.726 , 0.744 ] b 0.306 [ 0.482 , 0.562 ]

[ 0.724 , 0.741 ] c [ 0.480 , 0.561 ]

[ 0.665 , 0.825 ] d [ 0.437 , 0.596 ]

C = 3

0.322 a [ 0.481 , 0.632 ] b 0.271 [ 0.476 , 0.487 ]

[ 0.476 , 0.631 ] c [ 0.473 , 0.487 ]

[ 0.401 , 0.686 ] d [ 0.430 , 0.530 ]

C = 4

0.243 a [ 0.249 , 0.389 ] b 0.224 [ 0.332 , 0.341 ]

[ 0.247 , 0.389 ] c [ 0.331 , 0.341 ]

[ 0.181 , 0.434 ] d [ 0.268 , 0.380 ]

C = 5

0.148 a [ 0.071 , 0.151 ] b 0.148 [ 0.132 , 0.151 ]

[ 0.070 , 0.150 ] c [ 0.127 , 0.150 ]

[ 0.033 , 0.189 ] d [ 0.091 , 0.189 ]

Source: Author’s calculations developed on the basis of the 2007-2011 ENAHO panel. Notes: a. Point estimates
of the population mean developed on the basis of 1,129 balanced panel households and using the official weighting
systems that the INEI provides. b. Point estimates of the lower and upper bound developed on the basis of 7,769
panel households and using the weighting system that adjusts exclusively for the structure of the population.
c. Finite-sample bias-corrected estimates d. Bootstrapped 90% confidence intervals of the identification region,
where the lower limit corresponds to the 90% confidence lower limit of the lower bound and the upper limit to
the 90% confidence upper limit of the upper bound. The confidence limits of the lower and upper bounds were
obtained using the weighted bootstrap procedure described in detail in Appendix A.
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picture of persistent poverty. Similar is the case of balanced panel estimates of

the K0-duration-adjusted persistent-poverty headcount. Only the estimate that

considers persistently poor households that exhibit five poverty spells lie within

the bootstrapped confidence intervals.

These results confirm the orientation and considerable size of the bias that bal-

anced panel estimates exhibit when providing persistent poverty measures without

accounting for the relationship that survey non-response and the socioeconomic

status of the household.

4.6 Conclusions

This chapter derived identification regions for two persistent poverty measures: the

persistent-poverty headcount and the duration-adjusted persistent-poverty head-

count. We analyse the results of these two measures in the context of the 2007-2011

ENAHO panel. First, a set of survey-revealed bounds was derived. These bounds

do not impose any assumptions regarding the behaviour of persistent poverty in

the presence of survey non-response. The result is wide.

To narrow the no-assumption identification area, we propose using two vis-

ible and credible assumptions. The first restriction imposed, an IV restriction,

assumes a set of fieldwork variables statistically independent of household poverty

status but strongly related to survey non-response. The second, an MIV restric-

tion, assumes that a set of geographical data is a monotonic descriptor of the

population’s socioeconomic status and that the population’s socioeconomic status

will increase as persistent poverty decreases. These two assumptions seem credible

and plausible when analysing persistent poverty.

The obtained identification regions, once the restrictions are imposed, are con-

siderably narrower than the no-assumption regions. Although an MIV assumption

is conceptually weaker than an IV assumption, the region obtained upon imposing

an MIV restriction is narrower than that obtained upon imposing the IV restric-

tion. This result indicates that, in the context of the ENAHO panel, the IV

variable indicators used have poorer identification power than the rich set of MIV

covariates.
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The obtained improved identification regions lie largely above the persistent

poverty balanced panel estimates. This result indicates that, if persistent poverty

had been measured in the absence of survey non-response, it would have portrayed

a considerably larger size for the phenomenon. As such, current balanced panel

estimates of persistent poverty are said to portray a considerably downwards-

biased picture of the intertemporal phenomenon.

It was also found that persistent poverty measures that identify persistently

poor households in terms of a larger number of poverty spells are more reliable

than measures that use fewer spells to identify the most deprived on this basis.

The width of the identification region of the duration-adjusted headcount is tighter

than the identification region of the persistent-poverty headcount. This result leads

to the conclusion that the use of such a measure provides a more reliable picture

of persistent poverty.
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Appendix A. Sample variability

Sample variability has been analysed for all the point estimates that we provide

in this Chapter. This analysis comprised the development of the standard errors

for each chronic poverty point estimate and for the lower and upper bound point

estimates. We developed a non-parametric estimate of the sample variability using

a bootstrap procedure. In this Appendix we describe how this procedure has been

carried out.

Let recall that the ENAHO 2007-2011 panel used in this paper is based on

a complex sample design and that panel households have been defined in this

paper as those attempted to interview as panel households in the first wave of

the panel (2007). The 2007 survey uses a stratified and clustered sample design,

where households that belong to different clusters and strata had different selection

probability.

While chronic poverty point estimates are based on the balanced panel, which

is made of 1,129 households observed across the five years of the panel, the lower
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and upper bounds point estimates are based on the sample of all panel households

that comprises 7,769 households.

To obtain estimates from each of these two samples, sampling weights are

necessary to ensure the different selection probability across households is taken

into account and to allow population figures match the population totals that the

Peruvian census registers. As such each sample has available a set of weights that

adjusts figures to resemble the structure of the population. These weights were

described in Section 4.3.3.

Rao & Wu (1988) demonstrated that bootstrap procedures which do not

take into account the sample design underestimated the population variance and

produce inconsistent results. Then, to obtain estimates of the sample variability

that take into account these different selection probabilities across households, we

use the weighted bootstrap methodology proposed by Rao & Wu (1988) and Rao

et al. (1992).

Specifically, we follow the procedure described by Rao et al. (1992), which

consists on re-scaling weights rather than estimates. To apply this procedure,

first, we construct 1,000 independent sets of replicate weights. This ensures that

we are re-sampling primary sampling units (PSU) within each correspondent strata

and households within each correspondent primary sampling units. Each replicate

weighting system resembles a possible re-sampling of the data that maintains the

original sampling scheme. In each replicate, all the households belonging to a

specific PSU may be removed and other PSU’s are retained.

Once the set of 1,000 alternative bootstrapped weights is available, then the

population mean of each point estimate is obtained 1,000 independent times and

each one uses each of the alternative bootstrapped weights. This methodology was

carried out using the STATA software and the commands bsweights and bs4rw.

We set as confidence level 90%. The lower and upper limit of each population

mean presented in this chapter corresponds to the 5th and 95th percentile of the

bootstrapped distribution of estimates. In terms of the identification region, the

lower limit corresponds to the 90% confidence lower limit of the lower bound and

the upper limit to the 90% confidence upper limit of the upper bound.
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Chapter 5

Discussion

This thesis has analysed and proposed two different methodologies to address dif-

ferences in needs in multidimensional deprivation indices. In Chapter 2, I investi-

gated the effect of these differences when comparing multidimensional deprivation

across societies of different demographic composition and proposed standardisation

methods to enhance societal multidimensional comparisons. In Chapter 3, I stud-

ied the effect of differences when comparing multidimensional deprivation across

households of different sizes and compositions or individuals of different age ranges

and gender. This latter chapter proposed a counting family of multidimensional

deprivation indices that describes how much deprivation two demographically het-

erogeneous units with different needs must exhibit to be catalogued as equivalently

deprived.

The proposed methodologies of Chapter 2 and Chapter 3 are the first to

analyse the comparability problems that differences in need might bring to cur-

rent indices of multidimensional deprivation measurement. The empirical results

of these two chapters demonstrate that neglecting differences in needs produces

biased multidimensional deprivation incidence estimates. The failure of current

multidimensional measures to take into account differences in needs might produce

inaccurate rankings of either societies with different distribution of the population,

households of different sizes and compositions or individuals of different age ranges

and gender.

These two proposed methodologies are meant to be easy for policy-makers

to implement and understand. While the societal standardization method anal-
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ysed in Chapter 2 is proposed to be used in contexts in which multidimensional

deprivation measures have been designed and are currently in use, the family of

equivalized indices of multidimensional deprivation proposed in Chapter 3 is suit-

able for contexts in which either multidimensional deprivation is measured at the

individual level across a wide range of indicators with different applicable popula-

tion groups, public policies target the household, or risk or resources are arguably

pooled across household members.

On the other hand, in Chapter 4, this thesis has analysed the reliability of

persistent poverty measures in the presence of survey non-response. Traditional

approaches to tackle survey non-response in longitudinal data use non-response

weighting systems that either do not account for the relationship that survey non-

response has with the socio-economic status of the household or impose assump-

tions that might be shaping the results. This chapter is the first to analyse per-

sistent poverty estimates, first without imposing any assumption of the behaviour

of survey non-response and then imposing two visible and plausible restrictions.

Specifically, two assumptions were found to be credible and plausible when

analysing persistent poverty in the presence of survey non-response: an instrumen-

tal variable (IV) restriction and a monotone instrumental variable (MIV) restric-

tion. While the IV restriction assumes a set of field-work variables statistically

independent of the household’s poverty status but strongly related to survey non-

response, the MIV restriction assumes a set of geographical data to be a monotonic

descriptor of the population’s socio-economic status to increase along persistent

poverty decreases. The obtained identification regions, once placed within these

two restrictions, are considerably narrower than the no-assumption regions.

The empirical results of this chapter indicate that persistent poverty measures

based on balanced panel estimates that do not account for the relationship that

survey non-response has with the socio-economic status of the household can be

considerably biased. In the context of the 2007-2011 Peruvian national household

survey panel, I found that estimates that use traditional non-response weighting

systems are systematically downwards biased with regard to the identification

region that contains the most plausible estimates.

196



The methodological approach developed in this chapter is proposed for policy

contexts to analyse the reliability of persistent poverty measures and to base design

policy interventions on more accurate estimates.

In general, these methodological approaches tackle the measurement issues

identified by the chapters of this thesis and thus open a broad spectrum of further

extensions and research paths. The next paragraphs briefly discuss the research

agenda that arises in this regard.

First, in terms of multidimensional deprivation measurement, the family of

measures proposed in Chapter 2 has taken into account differences in need while

considering them a fair source of differences in multidimensional deprivation inci-

dence. Further research is required to incorporate other sources of fair differences

in multidimensional deprivation incidence such as preferences.

Current policy oriented multidimensional measures of deprivation define a ba-

sic set of needs to measure deprivation across the population. However, they still

do not take into account that each household or individual might assign greater

value to some dimensions than to others and might prefer to be deprived of those

to which they assign lower value. Current policy-oriented indices capture possi-

ble differences in preferences by identifying as the most deprived the population

that exhibits the largest number of the dimensions in deprivation at the same

time. However, thorough research is required to analyse the effect that preferences

might have on multidimensional deprivation incidence profiles and to take these

preferences into account.

In addition, the proposed methodologies of Chapter 2 and Chapter 3 do not

address the complexities that arise when complementarity and substitutability

among dimensions are observed. Examples of multidimensional deprivation mea-

sures that take into account these complexities are Aaberge & Brandolini (2014),

Bourguignon & Chakravarty (2003) and Seth (2013). Still, these proposed method-

ologies do not account for differences in needs. Research efforts are required to

analyse multidimensional deprivation in the presence of differences and needs, tak-

ing into account the complementaries and substitutability among dimensions.
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Moreover, as pointed out by Pollak & Wales (1979), Fisher (1987), and Blun-

dell & Lewbel (1991) and discussed in Chapter 3, the current household demo-

graphic composition that leads to differences in need might be driven by a previous

deprivation status. For instance, a particular household consisting of two adults

and five children might be this size not only because both adults have a prefer-

ence for many children, but also because they did not have access to pregnancy

prevention education or could not afford to use birth control. Thus, household

composition not only reflects needs or preferences, catalogued in this thesis as

producing fair differences in deprivation among households, but also might be a

reflection of avoidable and unfair previous states of deprivation. Further research

is required to provide an equivalence scale tool to enhance household or individ-

ual comparability for multidimensional deprivation measurement that takes into

account the relationship between the observed distribution of the population and

previous states of deprivation.

Second, in terms of persistent poverty, the analysis of Chapter 4 results in

a narrow identification area, which is policy relevant for the case of the dura-

tion adjusted persistent poverty headcount measure. However, in the case of the

persistent poverty headcount, the resulting identification area is still wide for the

purposes of policy. Nonetheless, within the partial identification literature, other

two plausible restrictions commonly used referred to by Manski (2003) as a Mono-

tonic Treatment Selection (MTS) and a Monotonic Treatment Response (MTR)

could be valuable to study further persistent poverty measures in the presence of

survey non-response. Using any of these two restrictions implies assuming per-

sistent poverty to monotonically decrease as survey non-response increases, which

the empirical results of Chapter VI suggest might be a realistic assumption.

Also, in terms of policy applications, the analysis performed in Chapter 4

encourages further study of the behaviour of the probability of a household to be

poor given that was poor in a previous moment in time. This probability is known

in literature as the transition probability. The analysis of the effect that survey

non-response or item non-response have on the transitions probabilities might be

valuable for the policy arena. In particular, longitudinal data and repeated cross-

section data could result useful for such an analysis.
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Finally, in the intersection between the topics analysed by the chapters, there

is no study in the literature that has compared thoroughly multidimensional de-

privation and income poverty rates in the presence of missing data. This analysis

could be valuable in guiding policy-makers when using both types of measures in

the design and evaluation of policy interventions.
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