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Strategic Information Acquisition and Transmission†

By Rossella Argenziano, Sergei Severinov, and Francesco Squintani*

This paper explores the implications of costly information acquisition 
in a strategic communication setting. We show that equilibrium 
decisions based on a biased expert’s advice may be more precise 
than when information is directly acquired by the decision maker, 
even if the expert is not more efficient than the decision maker at 
acquiring information. This result bears important implications for 
organization design. Communication by an expert to a decision maker 
may often outperform delegation of the decision-making authority to 
the expert, as well as centralization by the decision maker of both 
information acquisition and decision-making authority. (JEL C72, 
D23, D82, D83)

Strategic information transmission is one of the central topics in economics of 
information. Starting from the seminal work of Crawford and Sobel (1982), 

this literature highlights the limited scope of information transmission via cheap 
talk messages, which generically leads to inaccurate or imprecise decisions (see 
Austen-Smith 1993; Gilligan and Krehbiel 1987, 1989; Krishna and Morgan 2001b; 
Wolinsky 2002; Battaglini 2002 and 2004; Ambrus and Takahashi 2008). A com-
mon assumption in this literature is that perfect information is exogenously given to 
the sender for free. The exceptions include Austen-Smith (1994), Ottaviani (2000), 
and Ivanov (2010). In Austen-Smith (1994), the sender may either acquire complete 
information or remain ignorant. In Ottaviani (2000), the exogenous information 
available to the expert is noisy. In Ivanov (2010), informational structure can be 
selected costlessly by the decision maker.

However, in reality information is typically obtained through time-consuming 
and costly research effort.1 This being our point of departure, we study a model of 
strategic communication in which information is costly and the decision to acquire 

1 For example, this is the case for investment advice by financial analysts, for policy advice by experts reporting 
to Congress, for expert witnesses in trials, as well as for many other real world applications of strategic information 
transmission games. 
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it is taken endogenously. In this setting, we demonstrate that the decision maker 
can induce the expert to acquire more information than the decision maker would 
acquire directly, even when the expert and the decision maker have the same tech-
nology of information acquisition. This result provides a foundation for our main 
finding: the decision maker can take more precise actions when the latter are based 
on the advice of a biased expert, provided that the bias is sufficiently small, rather 
than on the decision maker’s direct information acquisition. This stands in contrast 
to the “common wisdom” of the extant literature that the decisions based on the 
advice of a biased expert suffer from a loss of precision.

To explain our results, let us first highlight the main features of our model. Initially, 
both players—the decision maker and the expert—are uninformed about the state 
of the world and share a common prior. Information about the state of the world can 
be acquired by performing “experiments” or “trials.” The cost and precision of the 
acquired information is measured by the number of the performed “trials.”2 This 
model of information acquisition is simple and tractable, and fits well as a descrip-
tion of a number of real world situations, such as aggregation of individual opinions 
from sincere voting, surveys, or experiments. Moreover, as we explain below, the 
main driving forces identified in our analysis are quite general and extend to other 
settings and different, discrete or continuous, models of information acquisition.

In our baseline model, the expert acquires the information and then conveys a 
cheap-talk message to the decision maker, who then takes an action. We consider 
two scenarios: overt information acquisition and covert information acquisition.3 
In the former, the decision maker observes the quantity of information acquired 
by the expert, but not its content. In the latter, the decision maker observes neither 
the quantity nor the content of the expert’s information. In both cases, we focus on 
the amount of information acquired and credibly transmitted by the expert, which 
translates into the precision of the final action taken by the decision maker. We then 
compare the outcomes of these two communication games against two alternatives: 
the first one is direct information acquisition by the decision maker, the second one 
is delegation to the expert of both information acquisition and the choice of action.

The expert’s overinvestment in information acquisition is driven by different 
forces in the overt and covert games. In the overt game, the expert overinvests in 
order to avoid the negative implications of the decision maker reacting to the expert’s 
deviation at the information acquisition stage. The worst credible punishment that 
the decision maker can inflict on the expert in case of such a deviation, which of 
course provides the strongest incentives for the information acquisition, is to ignore 
the expert’s message, unless the expert acquired the “right” amount of information. 
In technical terms, a babbling equilibrium is played off the equilibrium path.4

The focus on off path play of babbling equilibria is well-grounded and moti-
vated in reality. Specifically, in a number of situations, the decision makers only 
heed advice of experts whose qualifications or effort exceed the threshold set by the 

2 Our setup is related to the Bernoulli-Uniform model of cheap talk analyzed by Morgan and Stocken (2008). 
3 We refer to these two scenarios as “overt game” and “covert game” in the remainder of the paper. 
4 Ubiquitous in communication games, a babbling equilibrium involves the decision maker taking a decision 

unaffected by the expert’s message, and, thus, the expert is indifferent among sending any message and adopts a 
completely uninformative communication strategy. 
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former. Consider, for example, expert witnesses in legal trials. In the United States, 
the Federal Rules of Evidence specify that testimony by an expert witness is accept-
able only if it “...is the product of sufficient facts or data,” and “is the product of reli-
able principles and methods.”5 This rule is sufficiently broad and allows the judge to 
tailor her threshold of acceptability to the particular case under consideration.6 If the 
judge finds that an expert has not met this threshold, (s)he would typically disqual-
ify the expert rather than allow a limited testimony by the expert. Our results suggest 
that this legal procedure provides a powerful incentive for information acquisition.

Other examples of what essentially is a threshold knowledge rule for admissibil-
ity of an expert’s advice can be found in politics (parliamentary and congressional 
hearing making use of expert’s advice), financial and consumer markets (financial 
advisors and real estate agents have rating systems and certain customers will only 
deal with the agents and advisors who have the highest rating category7), and aca-
demia (short reference letters that do not describe in detail an academic’s research 
are usually disregarded by hiring and tenure committees).

Furthermore, we also identify a larger parameter region in which our strict over-
investment result holds in all but one Pareto efficient equilibria of the overt game. 
The only exception is the expert’s ex ante preferred equilibrium in which our result 
holds weakly: the expert acquires and reveals exactly as much information as the 
decision maker would acquire directly. This equilibrium outcome can be sustained 
by playing the most informative communication equilibrium both on and off path. 
In any other Pareto efficient equilibrium, the final decision is strictly more precise 
than the decision that would be made by the decision maker acquiring information 
directly. This result does not rely on the threat of babbling off path.

In the covert game, the information acquisition investment is unobservable, and 
hence the decision maker cannot punish the expert by tailoring her behavior to the 
actual amount of information acquired. In fact, we establish that when searching for 
the most informative and/or Pareto efficient equilibria and characterizing attain-
able levels of information acquisition, there is no loss of generality in focusing on 
equilibria in which the expert does not communicate how much information he 
has acquired, as the latter would be a nonverifiable “cheap-talk” message. So, the 
decision maker interprets any expert’s message under the belief that the latter has 
acquired the equilibrium amount of information even if that is not the case. We refer 

5 According to the Federal Rule of Evidence 702:
“A witness who is qualified as an expert by knowledge, skill, experience, training, or education may testify in 

the form of an opinion or otherwise if: (a) the expert’s scientific, technical, or other specialized knowledge will help 
the trier of fact to understand the evidence or to determine a fact in issue; (b) the testimony is based on sufficient 
facts or data; (c) the testimony is the product of reliable principles and methods; and (d) the expert has reliably 
applied the principles and methods to the facts of the case.” 

6 Berlin and Williams (2000) report a case in which: “...The Illinois Supreme Court then pointed out that it is 
the judge who must determine whether a potential expert witness is qualified to render opinions in a specific law-
suit.” They quote the opinion of said Court in the case Jones v. O’Young et al. as follows: “...The trial court has the 
discretion to determine whether a physician is qualified and competent to state his opinion as an expert regarding 
the standard of care. By hearing evidence on the expert’s qualifications and comparing the medical problem and the 
type of treatment in the case to the experience and background of the expert, the trial court can examine whether 
the witness has demonstrated a sufficient familiarity with the standard of care practiced in the case [If the expert 
witness does not satisfy these requirements], the trial court must disallow the expert’s testimony. The requirements 
are a threshold beneath which the plaintiff cannot fall without failing to sustain the allegations of his complaint.” 

7 J.D. Power and Associates system of rating for brokers provides one example. 
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to this property as inflexibility of the equilibrium language. Importantly, this inflex-
ibility is an equilibrium property in our model, not an assumption.

The inflexibility of the equilibrium language reduces the profitability of the 
expert’s deviations in information acquisition. Specifically, the equilibrium lan-
guage determines the set of final decisions which the expert can induce the decision 
maker to take. This set of actions is particularly well tailored to the equilibrium 
amount of information. On the other hand, by the inflexibility property, this set of 
feasible actions does not change with the amount of information actually acquired 
by the expert, and hence it is less suitable to the nonequilibrium quantity of infor-
mation. This results in a lower precision of the final action, hurting the expert when 
he deviates. This effect is less powerful than the off path punishment in the overt 
game. Therefore, stronger conditions on the parameters are required for the overin-
vestment to occur. As in the overt game, the strict overinvestment result extends to 
all Pareto efficient equilibria of the covert game, except the equilibrium preferred by 
the expert which is characterized by weak overinvestment.

Examples of fixed communication language are fairly common in economic 
environments. In particular, the language of financial advice is often standardized. 
Standard and Poor’s Capital IQ equity analysts rank assets on a qualitative five-
point scale (Strong Sell, Sell, Hold, Buy, Strong Buy). Similarly, consumer research 
firms, such as Consumer Report, J.D. Powers and Associates, and others, typically 
rate the quality of products on a grid with a fixed number of points. Standardized 
restricted communication protocols can be found in public administration and in the 
military. In these examples, the adopted languages/grids, although endogenous, are 
apparently not sensitive to the amount of information possessed by the sender and 
may not be suitable when too much or too little information is acquired.

Finally notice that in both the overt and covert games, the expert’s overinvestment 
in information acquisition is not beneficial to the decision maker by itself, but only 
when the loss of the acquired information in transmission is not too large. In turn, 
the small loss in transmission is possible only when the expert’s bias (the misalign-
ment of interests between the expert and the decision maker) is small. Hence, the 
expert’s bias must be sufficiently small for our results to hold.

Our analysis has significant implications for the theory of optimal organization. 
A number of authors have cast doubt on the optimality of communication-based 
organizations vis-á-vis the alternatives. In particular, Dessein (2002) and Ottaviani 
(2000) have shown that a communication-based organization, in which the princi-
pal’s decisions are based on the advice of a biased expert with access to perfect and 
free information, is dominated by delegation of the decision-making authority to 
the expert due to the loss of information in transmission. Similar results in some-
what different frameworks have been established by Aghion and Tirole (1997) and 
Gilligan and Krehbiel (1987).8

In contrast to these authors, our paper shows that, when information acquisi-
tion is added to the set of organizational tasks, communication-based organization 

8 Mitusch, and Strausz (2005) is an interesting contribution that studies how and when adding a mediator can 
facilitate communication between the decision maker and an informed party, and thus a three-level hierarchy can 
outperform a two-level one. 
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performs better than either delegation to the expert of both activities or direct infor-
mation acquisition by the decision maker. Thus, our results provide support for the 
prominent role of information transmission between experts and decision makers in 
organizations, which has been postulated theoretically and confirmed empirically 
(see, e.g., Bolton and Dewatripont 1994, and Garicano 2000).

Viewed from another perspective, our paper suggests that it is optimal to divide 
the tasks of information acquisition and decision making in an organization when 
the conflict of interest within the organization is small. Our strict overinvestment 
result implies that such division of labor makes the searching player exert more 
effort, while combining both information acquisition and decision-making tasks in 
the hands of a single party results in less search effort, and lower efficiency because 
of the positive externality on the other(s). This is particularly relevant to partner-
ships. Empirically, it is in line with the findings in Nelson (1988), who documented 
significant task differentiation among the lawyers within law firms. Some deal 
mostly with information acquisition tasks (taking depositions, research, gathering 
information from clients), while others focus on operational and decision-making 
roles such as developing case strategy, preparing and arguing motions, and nego-
tiating with the opposing parties. While this division of labor within large firms 
may reflect the distinction between partners and associates, this does not play a role 
within smaller law firms.9

I.  Literature on Information Acquisition

The study of information acquisition has largely been unexplored in the strategic 
communication literature, except for a few recent contributions. In particular, Esö 
and Szalay (2010) consider a game in which an expert has the same preferences as 
the decision maker and is initially uninformed but can learn the exact realization of 
the state by paying a fixed cost. The decision maker commits ex ante to a message set 
(equivalently, action set) that the expert can choose from. It is shown that restricting 
this message set can induce the sender to acquire information for a larger range of 
costs. Similarly, Szalay (2005) shows that restricting the set of actions available to 
the agent in the delegation game can increase the latter’s incentive to acquire infor-
mation. In both these papers, the restriction on the set of messages (or actions) avail-
able to the expert is chosen ex ante by the decision maker, and the focus is on the 
normative question of which exogenously fixed language maximizes information 
acquisition. Our model is different in a number of significant aspects. First, unlike in 
those papers, in our game the language is endogenous: it does not arise as a result of 
a commitment but rather emerges as a feature of the equilibrium interaction between 
the players. Our focus is also different: we study the positive question of how much 
information acquisition would occur in the communication game, as well as in other 
organizational forms. Other substantive differences between our model and those 
of Esö and Szalay (2010) and Szalay (2005) involve the expert’s preferences and 

9 Other studies of partnerships (e.g., Farrell and Scotchmer 1988, Garicano and Santos 2004, Levin and Tadelis 
2005) compare them to other organizational forms, but do not delve into the matter of labor division within them. 
One exception is Garicano and Hubbard (2009), who study the optimal distribution of lawyers across legal fields. 
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information acquisition technology. Our expert is biased, he can acquire any inter-
mediate amount of information about the true state of the world, and his information 
remains imprecise, except in the limit.

Another related contribution is Pei (2015) who considers covert costly informa-
tion acquisition and transmission. In his model, the expert first acquires an infor-
mation partition of the state space, and then observes the element of the acquired 
partition to which the true state belongs. His key assumption is that a sender can 
acquire any coarsening of a feasible partition at a lower cost. The implication of 
this powerful assumption is that all equilibria involve full revelation of the expert’s 
private information. Indeed, there is no reason for the expert to purchase an infor-
mation partition and then coarsen his information in transmission if, instead, he 
can directly purchase the corresponding coarser information partition at a lower 
cost and then transmit exactly what he has learned. Our information acquisition 
technology—via experiments that improve the precision of information—does not 
satisfy the assumption of Pei (2015).

Less closely related, Che and Kartik (2009) study acquisition and disclosure of 
verifiable information. In their model, the expert has the same preferences as the 
decision maker but a different prior. Because of verifiability, an informed expert can 
only disclose his signal or conceal it. These authors focus on the choice of the expert 
by the decision maker, and show that the latter would prefer an expert with a prior 
different from hers. The divergence in prior beliefs, while stifling communication, 
provides stronger incentives for the expert to put effort into information acquisition.

The rest of the paper is organized as follows. Section II introduces the model. 
Section III describes the main results for the overt and covert models. Section IV 
derives the implications for organization design. Section V concludes. All proofs are 
relegated to the Mathematical Appendix.

II.  The Model

Our model of cheap talk with endogenous acquisition of costly information by 
the expert-sender is a natural extension of the classic Crawford and Sobel (1982) 
model. There are two players: the expert and the decision maker. The decision mak-
er’s payoff is given by

(1)	​ ​U​​ R​​(y, θ)​  =  −​​(y − θ)​​​ 2​, ​

where ​θ​ is an unknown state of the world and ​y​ is the action taken by the decision 
maker. For simplicity, we assume that ​θ​ is distributed uniformly over ​[0, 1]​ , but the 
main forces driving our results are robust to different distributional assumptions.

The expert’s payoff is given by

(2)	​ ​U​​ S​​(y, θ, b)​ − c​(n)​  =  −​​(y − θ − b)​​​ 2​ − c ​(n)​,​

where the bias ​b ≥ 0​ measures the preference discrepancy between the expert and 
the decision maker, and ​c ​(n)​​ is the cost of information acquisition when the expert 
performs ​n​ trials as described below.



Vol. 8 No. 3� 125Argenziano et al.: Information Acquisition

The game unfolds as follows. Initially, both the expert and the decision maker 
have the same common knowledge prior beliefs that ​θ​ is distributed uniformly over ​
[0, 1]​. The expert then proceeds to acquire information by deciding on a number 
of binary trials to perform.10 Each trial results either in a success or a failure, with 
probability of success equal to the true ​θ​. Conditional on ​θ​ , the realization of each 
trial is independent of other trials. If the expert performs ​n​ trials, he incurs the cost ​
c ​(n)​  =  cn​ and simultaneously learns the realizations of all trials. Then he sends a 
message ​m ∈ ​ to the decision maker, where  is some message set. After receiv-
ing the message, the decision maker chooses an action ​y ∈ [0, 1]​.

For given ​n​ and ​θ​, the number of successes ​k​ is distributed according to the bino-
mial distribution:

	​ f ​(k | n, θ)​  = ​   n! ________ 
k!​(n − k)​! ​ ​θ​​ 

k ​​​(1 − θ)​​​ n−k​,  for 0 ≤ k ≤ n.​

When ​θ​ is uniformly distributed, the distribution of ​k​ is also uniform:

	​ ​Pr​ 
​
​
​
 ​ ​ (k | n)​  = ​ ∫ 

0
​ 
1 
​​​  n! _ 
k!​(n − k)​! ​ ​θ​​ 

k​​ ​(1 − θ)​​​ n−k​ dθ  = ​   1 _ 
n  +  1 ​.​

Finally, the posterior distribution of ​θ​ given ​k​ successes in ​n​ trials is a Beta distri-
bution with parameters ​k + 1​ and ​n − k + 1​. Its density is given by

	​ f ​(θ | k, n)​  = ​ 
​(n + 1)​!

 _ 
k!​(n − k)​! ​​ θ​​ 

k​ ​​(1 − θ)​​​ n−k​,  if 0 ≤ θ ≤ 1.​

The corresponding posterior expectation of ​θ​ is ​E​[θ | k, n]​  = ​  k + 1 ___ n + 2 ​​.
We will distinguish between two cases in the analysis. In the overt game, prior to 

choosing an action ​y​, the decision maker observes the number of trials ​n​ performed 
by the expert. In the covert game, ​n​ is private unverifiable information of the expert.

A. The Overt Game

A pure strategy Perfect Bayesian Equilibrium of the overt game is described by 
a tuple ​​(n,​ {​P​n′​​}​n′∈핅∪​{0}​​​, ​​{y​(​P​n′​​)​}​​

n′∈핅∪​{0}​
​​)​​, where ​n​ is the expert’s number of trials; ​​

P​n′​​ ≡ ​(​p​ 1​ n′​,  … , ​p​ #​P​n′​​​ 
n′ ​ )​​ is the partition of the set of the expert’s types ​​{0, 1,  … , n′}​​ 

describing the information communicated by the expert after ​​n ′ ​​ trials; and ​​{y​(​P​n′​​)​}​  
≡ ​(​y​ ​p​1​​​ 

n′​,  … , ​y​ ​p​#​P​n′​​​​​ 
n′ ​ )​​ is the decision maker’s action profile corresponding to partition ​​

P​​n ′ ​​​​.
According to this definition, if the expert performs n′ trials with k successes, then 

he sends a message to the decision maker that the element ​​p​i​​​ of the communication 

10 We envision a “batch” model in which the expert decides once and for all on the size of the batch (number of 
trials) to acquire. Changing the size of the batch along the road is too costly, e.g., requires a high fixed cost. 
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partition ​​P​n′​​​ has occurred,11 where k ∈ ​​p​i​​​, and the decision maker takes action  
​​y​ ​p​i​​​ 

n′​​ ∈ [0, 1] after receiving this message. A babbling partition contains a single ele-
ment. In a fully separating partition, each type is an element of the partition.

The following conditions must hold in an equilibrium: 

(i) Action profile ​y (​P​n′​​)​ is sequentially rational for all ​n​′, i.e., ​​y​ ​p​i​​​ 
n′​​ maximizes the 

decision maker’s expected payoff given that the expert’s type ​k​ is in ​​p​i​​​:

(3)	​​ y​ ​p​i​​​ 
n′​ ∈ arg ​max​ 

y
​ ​ ​​ ∫ 

0
​ 
1
​​ ​U​​ R​(y, θ)  f  (θ | k ∈ ​p​i​​, n′ ) dθ  for all ​p​i​​ ∈ ​P​n′​​  . ​

(ii) For every ​n′ ∈ 핅 ∪ ​{0}​​ , the partition ​​P​n′​​​ is incentive compatible, i.e., for any ​
k ∈ {0, 1,  … , n′ }​ and ​​p​i​​ ∈ ​P​n′​​​ such that ​k ∈ ​p​i​​​ , we have

(4)	​​∫ 
0
​ 
1
​​​ U​​ S​​(​y​ ​p​i​​​ 

​n ′ ​​, θ, b)​ f ​(θ | k, n′)​ dθ ≥ ​∫ 
0
​ 
1
​​​U​​ S​(​y​ q​ n′​, θ, b)  f ​(θ | k, n′)​ dθ, for all q ∈ ​P​n′​​.​

(iii) ​ n​ maximizes the expert’s expected payoff given ​​{​P​n′​​}​n′∈핅∪​{0}​​​​ and ​​​{y​(​P​n′​​)​}​​
n′∈핅∪​{0}​

​​​. 
That is, if ​k ∈ ​p​​ n′​(k)​, then we have

(5)	​ n ∈ ​arg max​ 
n′∈핅∪​{0}​

​   ​ ​  ∑ 
k=0

​ 
n′
  ​​​(​∫ 

0
​ 
1
​​​U​​ S​​(​y​ ​p​​ n′​(k)​ 

n′  ​, θ, b)​ f ​(θ | k, n′)​ dθ × ​Pr​ 
​
​
​
 ​​ (k | n′ )​)​ − c(n′ ).​

Our next step is to characterize the decision maker’s optimal action rule and the 
incentive compatible (IC) partitions.

Lemma 1: The decision maker’s sequentially rational action ​​y​ ​p​i​​​ 
n′​​ is equal to her 

posterior expectation of ​θ​ , given ​n′​ trials and the element ​​p​i​​​ of the partition ​​P​n′​​​ com-
municated by the expert:

(6)	​​ y​ ​p​i​​​ 
n′​  =  E​[θ | ​p​i​​, n′]​  = ​   1 _ 

​|​ p​i ​​|​
 ​ ​ ∑ 

k∈​p​i​​
​​​ ​ k + 1 ____ 
n′ + 2 ​, ​

where ​​|​ p​i ​​|​​ denotes the cardinality of ​​p​i​​​.

Lemma 2: A communication partition ​​P​n′​​​ is incentive compatible if and only if 
each element of it consists of consecutive types and the cardinalities ​​| ​p​i​​ |​​ and ​​| ​p​i+1 ​​|​​ 
of any two of its consecutive elements ​​p​i​​​ and ​​p​i+1​​​ satisfy the following:

(7)	​ 4b​(n′ + 2)​ − 2 ≤ ​|​ p​i+1 ​​|​ − ​|​ p​i​​ |​ ≤ 4b​(n′ + 2)​ + 2.​

Condition (7) is an incentive constraint for boundary types to truthfully announce 
the corresponding element of the partition. The first inequality guarantees that the 
action associated with ​​p​i+1​​​ is sufficiently large that the highest type in ​​p​i​​​ prefers 

11 We do not specify explicitly which message(s) m ∈  signals an element ​​p​i​​​ of the partition ​​P​n′​​​. Any arbitrary 
partition of the message space  into #​​P​n′​​​ sets ​​​1​​​, … , ​​​#​P​n′​​​​​ s.t. ​​∪​i​​​ ​​​i​​​ =  and ​​​i​​​ ∩ ​​​j​​​ = ∅ for i ≠ j will 
do. With any such convention, every message uniquely maps to an element of partition ​​P​n′​​​, for any n′.
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to announce ​​p​i​​​ rather than ​​p​i+1​​​. The second inequality guarantees that the action 
associated with ​​p​i​​​ is sufficiently small that the lowest type in ​​p​i+1​​​ prefers to 
announces ​​p​i+1​​​ rather than ​​p​i​​​.

Note that (7) is conceptually equivalent to the arbitrage condition in Crawford 
and Sobel (1982), which guarantees that boundary types in an IC partition are indif-
ferent between two consecutive elements of it. In fact, it is easy to show that as ​n′​ 
becomes large, any IC partition of our model converges to an equilibrium partition 
of Crawford and Sobel (1982). The main difference is that in our model the expert 
is not perfectly informed, and the type space is finite. Because of the latter, our 
boundary types are typically not exactly indifferent between adjacent elements of 
the partition and also, unlike in Crawford and Sobel (1982), fully separating com-
munication partitions can be incentive compatible. In fact, by Lemma 2, a fully sep-
arating partition is incentive compatible if and only if ​b​(n′ + 2)​ ≤ 1/2​. If ​b ≥ 1/4​ , 
then the only IC communication partition is a babbling one.

Because we will use Pareto efficiency as a refinement criterion, let us now high-
light the notions of Pareto ranking of IC communication partitions and Pareto effi-
ciency of the equilibria. For any ​n​′, IC partition ​{​P​n′​​}​ and sequentially rational action 
profile ​y (​P​n′​​)​, the expert’s and the decision maker’s ex ante expected payoffs are 
respectively given by

(8)	​ E​[−​​(y (​P​n′​​) − θ)​​​ 2​ | ​P​n′​​]​ − ​b​​ 2​ − cn′   and E​[−​​(y (​P​n′​​) − θ)​​​ 2​ |​ P​n′​​]​.​

At the interim stage (i.e., after the number of trials ​n​′ has been chosen but the 
number of successes has not yet been realized), ​cn​′ is a sunk cost for the expert. So 
(8) implies that at the interim stage the preferences of the players are aligned: they 

both prefer a lower ​E​[​​(​y​ ​p​i​​​ 
n′​ − θ)​​​ 

2
​ |​ P​n′​​]​​ , the residual variance of ​θ​ under ​{​P​n′​​}​. Hence, 

all IC communication partitions for ​n​′ trials can be Pareto ranked according to the 
residual variance of ​θ​ , or, equivalently, according to the precision of the decision, ​
1/E​[​​(y (​P​n′​​) − θ)​​​ 

2
​ |​P​n′​​]​​.12

Next, we say that equilibrium ​​(n′,​{​P​n​​}​n∈핅∪​{0}​​​, ​​{y​(​P​n​​)​}​​
n∈핅∪​{0}​

​​)​​ is ex ante Pareto 

efficient if there is no other equilibrium in which the expert’s and the decision mak-
er’s ex ante payoffs are greater, with at least one of them strictly greater. In contrast 
to the interim stage, at the ex ante stage the preferences of the players are not aligned 
because the investment cost ​cn′​ has not been incurred yet. This creates a tension 
between the common interest of the players to maximize the precision of the deci-
sion, and the fact that the cost of information acquisition is borne entirely by the 
expert.

Note that ex ante Pareto efficiency requires a Pareto efficient IC partition to be 
used in equilibrium. However, this does not preclude the players from coordinat-
ing on a less informative communication partition off the equilibrium path, after a 
nonequilibrium number of trials.

12 A complete characterization of Pareto efficient IC partitions is provided in the online Appendix available at 
www.severinov.com/iasupplement.pdf. 

www.severinov.com/iasupplement.pdf
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B. The Covert Game

In the covert game, unlike in the overt game, the decision maker does not observe 
the amount of information acquired by the expert. Formally, this implies that a 
Perfect Bayesian Equilibrium of the covert game must additionally specify the deci-
sion maker’s beliefs about the expert’s information acquisition choice. The other 
elements are the same in both games.

We will focus on the equilibria in which the expert plays a pure strategy at 
the information acquisition stage. In principle, the expert may try to signal to the 
decision maker how many trials he has actually performed, via his cheap talk 
message. However, the next lemma shows that restricting attention to equilib-
ria in which the expert does not signal how much information he has acquired 
is without loss of generality. More precisely, it does not affect the set of equilib-
rium outcomes and the scope of information acquisition, which is our primary 
interest.

Lemma 3: Any outcome supported in a Perfect Bayesian Equilibrium of the 
covert game in which the expert follows a pure strategy in the choice of the num-
ber of trials can be supported in a Perfect Bayesian Equilibrium in which the 
decision maker’s beliefs about the number of trials do not vary with the expert’s 
message.

The intuition behind the lemma is based on the following observation: if the 
expert could affect the decision maker’s beliefs about the number of performed 
trials, he would have a larger set of deviations available than if he could not. 
Specifically, he would have two classes of available deviations. The first one 
involves the expert misleading the decision maker by performing a nonequilibrium 
number of trials but still sending a message signalling that he has performed the 
equilibrium number of trials. The second class of deviations involves the expert 
performing a nonequilibrium number of trials and signalling to the decision 
maker that some (not necessarily true) nonequilibrium number of trials has been  
performed.

In contrast, if an expert cannot affect the decision maker’s beliefs about the num-
ber of trials, then an equilibrium has to be immune only to the deviations of the first 
class described above. So any equilibrium in which the expert can affect the decision 
maker’s beliefs about the number of trials remains an equilibrium when the expert 
cannot affect those beliefs.

Relying on Lemma 3, we will focus on equilibria in which, irrespectively of the 
expert’s message, the decision maker believes that the expert has performed the equi-
librium number of trials with probability 1. Then a pure-strategy Perfect Bayesian 
Equilibrium of the covert game is represented by a triple ​​(​n​​ ∗​, ​P​​n​​ ∗​​​, y​(​P​​n​​ ∗​​​)​)​​, where ​​n​​ ∗​​ 
is the number of trials, ​​P​​n​​ ∗​​​​ is a communication partition, and ​y​(​P​​n​​ ∗​​​)​  ≡ ​​{​y​ ​p​i​​​ 

​n​​ ∗​​}​​
​p​i​​∈​P​​n​​ ∗​​​

​​​  
is the decision maker’s action profile. As in the overt game, the equilibrium partition ​​
P​​n​​ ∗​​​​ must be incentive compatible, and the action profile ​y​(​P​​n​​ ∗​​​)​​ must be sequentially 
rational, i.e., ​​P​​n​​ ∗​​​​ and ​y​(​P​​n​​ ∗​​​)​​ have to satisfy (3) and (4), respectively.
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The equilibrium number of trials must maximize the expert’s expected payoff 
given ​​P​​n​​ ∗​​​​ and ​y​(​P​​n​​ ∗​​​)​​, i.e.,

(9)	​ ​n​​ ∗​ ∈ ​arg max​ 
n′∈핅∪​{0}​

​   ​ ​  ∑ 
k=0

​ 
​n ′ ​
 ​​​[​  max​ 

​y​p​​∈y​(​P​​n​​ ∗​​​)​
​ ​ ​ ​ ∫ 

0
​ 
1 
​​​U​​ S​​(​y​p​​, θ, b)​ f ​(θ; k, n′)​ dθ]​ ​Pr​ 

​
​
​
 ​ ​ (k; n′  )​ − c(n′   ).​

The latter condition reflects the specific structure of the covert game. To understand 
it, consider the expected payoff that the expert gets by deviating at the information 
acquisition stage to some ​n′​ , ​n′ ≠ ​n​​ ∗​​. In this case, the communication game will still 
proceed on the basis of the equilibrium partition ​​P​​n​​ ∗​​​​ and, so, whatever message the 
expert sends at the communication stage, he will only be able to induce one of the 
actions in the equilibrium action profile ​y​(​P​​n​​ ∗​​​)​​. Then, given some ​k​ successes in ​n′​ 
trials, the expert will choose to induce action ​y ∈ y​(​P​​n​​ ∗​​​)​​ that maximizes his payoff, 
as reflected in (9).

The nature of the optimality condition (9) has important implications for the 
covert game. In particular, the following trade-off emerges: a more informative 
communication partition leads to a more precise decision. However, a higher infor-
mativeness of the information partition makes it more profitable for the expert to 
deviate at the information acquisition stage.

The covert game, as the overt one, has multiple equilibria. We will focus on 
the set of Pareto efficient ones. The definition of Pareto efficiency of equilibria 
given in the previous subsection for the overt game applies to the covert game  
as well.

C. Direct Information Acquisition

One of the central results in the literature on cheap talk is that the decisions 
based on information communicated by a biased expert are less precise, and hence 
less efficient, than the decisions made by a decision maker with direct access to the 
information. We inquire below whether this result continues to hold when informa-
tion acquisition is costly and endogenous.

To address this question, we need to consider the benchmark problem of a deci-
sion maker acting without an expert and acquiring information by herself. Such a 
decision maker chooses a number of trials ​n​ incurring the cost ​c​(n)​  =  cn​. She then 
observes the number of successes ​k ∈ {0,  … , n}​ , and finally takes an action ​​y​ k, n​ ∗ ​ ​. 
By the same argument as in Lemma 1, the optimal action given the information 
acquired is ​​y​ k, n​ ∗ ​   =  E​[θ | k, n]​  =   (k + 1) /​(n + 2)​​. This implies:

Lemma 4: The expected utility of the decision maker who performs ​n​ trials is equal 
to

(10)	​ E​[−​​(​y​ k, n​ ∗ ​  − θ)​​​ 2​ | n]​ − cn  = − ​  1 _ 
6 (n + 2) ​ − cn.​
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The decision maker’s optimal number of trials ​​n​​ ∗​​(c)​​ is given by

​(11) ​ n​​ ∗​​(c)​  =  ​max​ 
​
​​ ​​

{
n :  − ​  1 _ 

6 (n  +  2) ​  −  cn  −  ​(− ​  1 _  
6 (n  −  1  +  2) ​  −  c (n  −  1))​  >  0

}
​ 

	 = ​ ⌊​ 1 _ 
2
 ​​(​√ 
_

 1 + ​ 2 _ 
3c

 ​ ​ − 3)​⌋​.​

Combining (10) and (11) yields a closed form expression for the decision mak-
er’s maximal attainable expected payoff:

(12)  ​  E​[−​​(​y​ k, ​n​​ ∗​​(c)​​ ∗ ​  − θ)​​​ 2 ​ | ​n​​ ∗​ (c)]​ − c​n​​ ∗​​(c)​  = − ​  1 ______________  
6​⌊​ 1 _ 2 ​​(​√ 
_

 1 + ​ 2 _ 3c  ​ ​ + 1)​⌋​
 ​ 

	 − c​⌊​ 1 _ 
2
 ​​(​√ 
_

 1 + ​ 2 _ 
3c

 ​ ​ − 3)​⌋​.​

Finally, we observe that if instead information acquisition and decision making 
were both delegated to a biased expert, he would maximize ​E​[−​​(​y​ k, n​ ∗ ​  − θ)​​​ 2 ​| n]​ − ​
b​​ 2​ − cn​. It is immediate that the expert would also choose ​​n​​ ∗​​(c)​​ trials.

III.  Overinvestment and Decision Precision

This section provides the main result of the paper that the decisions based on the 
advice of a biased expert can be more precise than the decisions based on informa-
tion directly acquired by the decision maker. This is driven by a combination of two 
factors: the expert’s overinvestment in information acquisition, and the smallness of 
the information loss in transmission.

To understand the intuition behind this result, note the following basic misalign-
ment between the players’ preferences. Since the cost of information acquisition 
is borne by the expert, ceteris paribus, the decision maker prefers that the expert 
acquires more information than under direct information acquisition. In con-
trast, the expert never wants to acquire more information than in the benchmark 
direct-acquisition case, and will want to acquire less information if some of it is 
lost in transmission.

We show that, despite the misalignment of the preferences, the principal is able to 
induce the expert to overinvest in information acquisition. The exact way in which 
this occurs is different in the overt and covert game. However, a common element 
in these two games is that the expert’s information remains fairly coarse even under 
overinvestment. This helps the expert’s incentives to transmit it fully, which, in turn, 
increases her incentives to acquire information.

It is worth noting that our overinvestment results do not rely on misalignment of 
preferences between the two players; they hold also when the expert is unbiased. 
This stands in contrast with the work of Che and Kartik (2009) on the acquisition 
and transmission of verifiable information.
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A. Decision Precision in the Overt Game

The observability of the number of trials in the overt game implies that the 
decision maker can and will react to the amount of information acquired by the 
expert. As we show below, this reaction can induce the expert to overinvest in infor-
mation acquisition. We will start by considering equilibria in which the decision 
maker uses the strongest credible punishment, playing a “babbling” communication 
equilibrium, if the expert deviates in information acquisition. We then demonstrate 
that such a strong threat is not necessary for overinvestment.

In a babbling equilibrium of the communication game, the decision maker ignores 
the expert’s message as uninformative. An intuitive interpretation of this reaction by 
the decision maker is that a deviation by the expert in the information acquisition 
stage may naturally cause the decision maker to lose any trust in the expert.13

To understand how the threat of babbling can lead to an overinvestment, consider 
the limit case of an unbiased expert. Suppose the decision maker wants to induce 
him to perform ​​n​​ ∗​(c) + 1​ trials. If the expert does so, a fully separating equilib-
rium is played in the continuation, and the decision maker uses the most precise 
action rule given ​​n​​ ∗​(c) + 1​ trials. This is incentive compatible under zero bias. If 
any other amount of information is acquired, a babbling equilibrium is played in the 
communication game: the decision maker ignores the expert’s message and takes an 
“uninformed” action ​y  = ​  1 _ 2 ​​ equal to the ex ante expectation of ​θ​. Thus, the expert 
faces a choice between two alternatives: do not perform any trials and save the cost 
of information acquisition, but face an “uninformed” action ​y  = ​  1 _ 2 ​​; alternatively, 
incur the cost ​(​n​​ ∗​(c) + 1)c​ followed by the most precise action rule. The second 
alternative is very close to the expert’s absolute payoff maximum attained by per-
forming ​​n​​ ∗​(c)​ trials and fully revealing their outcome: the difference is the cost of 
one additional trial, ​c​, which is partly compensated by higher decision precision. In 
contrast, the payoff difference between the first alternative and the expert’s absolute 
payoff maximum is significant when ​c​ is small and, hence, ​​n​​ ∗​(c)​ is sufficiently large. 
So the expert prefers to overinvest and perform ​​n​​ ∗​(c) + 1​ trials. By continuity, this 
result also holds when the expert has a sufficiently small bias.

The next proposition is based on this logic and identifies sufficient conditions for 
the existence of an equilibrium with overinvestment and a negligible loss of infor-
mation in transmission. 14

Proposition 1: If ​b ≤ ​​(​√ 
_

 1 + ​ 2 _ 3c ​ ​ + 3)​​​ 
−1

​​ and ​c ≤ ​ 5 − ​√ 
_

 17 ​ _ 48  ​​ , then the overt 

game has an equilibrium in which the final decision is strictly more precise than in 
the case of direct information acquisition by the decision maker.

13 Selection of a babbling equilibrium to improve the decision maker’s welfare is reminiscent of the construc-
tions in the sequential cheap talk models of Aumann and Hart (2003) and Krishna and Morgan (2004). But, unlike 
in those constructions, we do not invoke babbling equilibria on the equilibrium path. 

14 For expositional simplicity we have assumed that the information acquisition cost is the same for the expert 
and the decision maker. The result of Proposition 1 holds a fortiori if the expert is more efficient than the decision 
maker at acquiring information. 
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The sufficient conditions of this proposition guarantee full information transmis-
sion on equilibrium path. However, this is not necessary for the result of the proposi-
tion to hold. Rather what is required is that the loss of information in communication 
should not be too large.

To illustrate this, we have numerically computed the equilibrium of the overt 
game with the most precise decision rule, and compared its residual variance ​ 
E​[​​(​y​n​​ − θ)​​​ 2​ | n]​​ with the residual variance in the benchmark direct information 
acquisition case in (12). We have performed these computations for ​b ∈ ​[0, 0.25]​​ , ​
c ∈ ​[0, 0.027]​​, and ​n ≤ 100​.15 The results are presented in Figure 1, panel B. 
Figure 1, panel A depicts the region where the sufficient conditions of Proposition 1 
hold. Taken together, these figures show that for a broad range of parameter values 
the precision of the decision is higher in the communication game than under direct 
information acquisition, even if some information is lost in communication. The 
overinvestment in information acquisition more than compensates for this loss.

The next proposition extends the scope of Proposition 1 by establishing that its 
result holds in all Pareto efficient equilibria of the communication game, except for 
the equilibrium preferred by the expert. In the latter, the decision precision is the 
same as under direct information acquisition.16

Proposition 2: If ​b ≤ ​​(​√ 
_

 1 + ​ 2 _ 3c ​  ​+ 1)​​​ 
−1

​​, then in the Pareto efficient equilib-

rium of the overt game with the highest ex ante expected payoff for the expert, the 
final decision has the same precision as the decision based on direct information 
acquisition by the decision maker. This equilibrium can be supported when the 
most informative communication equilibrium is played off the path. In any other 
Pareto efficient equilibrium of the overt game, the decision is strictly more precise 
than under direct information acquisition.

To prove Proposition 2, we first show that full revelation of information is incen-
tive compatible when the expert performs ​​n​​ ∗​(c)​ trials. This implies that in the equi-
librium with the highest ex ante payoff for the expert, the latter performs exactly ​​
n​​ ∗​(c)​ trials followed by full revelation. Indeed, recall that at the ex ante stage the 
players’ preferences are aligned and they both would like to maximize the deci-
sion precision. So, after ​​n​​ ∗​(c)​ trials and full revelation, the expert obtains the same 
expected payoff as the decision maker optimally acquiring information herself, 
modulo a constant ​​b​​ 2​​. Suppose the expert deviates and chooses a different number ​n​″  
of trials. Then, in any continuation equilibrium his payoff decreases by at least the 
same amount as the payoff of the decision maker who switches from ​​n​​ ∗​(c)​ trials to ​
n″​ in direct information acquisition. Because ​​n​​ ∗​(c)​ is optimal for the decision maker 
in the latter scenario, it also constitutes an equilibrium choice for the expert.17 This 
equilibrium is Pareto efficient, because the expert attains his highest ex ante expected 

15 This is the relevant parameter range, since for ​b ≥ 0.25,​ the unique equilibrium of the communication game 
is uninformative, and for ​c > 0.02​

_
 7 ​​, the unique solution of the decision maker’s optimization problem is ​​n​​ ∗​  =  0​. 

16 Focusing on Pareto efficient equilibria is standard in the literature on signaling games. 
17 Notice that this equilibrium outcome can be achieved for different selections of the communication partition 

to be played off path. In particular, for the case in which the most informative communication partition is played 
for any number of trials acquired. 
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payoff. By definition, in any other Pareto efficient equilibrium the decision maker 
achieves a higher ex ante expected payoff, i.e., the decision is strictly more precise.

B. Decision Precision in the Covert Game

In this section, we show that equilibria with overinvestment and higher decision 
precision also exist in the covert game, albeit under more restrictive conditions than 
in the overt game, because in the covert game the decision maker does not observe 
the amount of information acquired by the expert and, hence, the latter can make 
unobservable deviations in the choice of the number of trials.

The logic behind this result is more subtle than in the overt game. Consider the 
simple case of an unbiased expert, so that full revelation is always possible on the 
equilibrium path. Relying on Lemma 3, we restrict consideration to equilibria in 
which the decision maker’s beliefs about the number of trials performed do not 
change with the expert’s message. This inflexibility ultimately implies that the set of 
actions which the expert can induce is not tailored well to the information acquired 
after a nonequilibrium number of trials, and, hence, the decision precision after a 
deviation in information acquisition is lower than on the equilibrium path. As we 
show below, this factor outweighs any potential expert’s cost savings from a devi-
ation to a lower number of trials, when the equilibrium number of trials does not 
exceed ​​n​​ ∗​​ by too much. This logic is robust to the presence of a small bias. The 
following simple example illustrates this.

Example 1: Suppose that ​c  =  1/35​ and ​b ≤ 17/210.​ By Lemma 4, ​​n​​ ∗​  =  0​ i.e., 
the decision maker would not acquire any information, receiving a payoff of ​−1/12​. 
However, the covert game has an equilibrium in which the expert performs one trial 
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Figure 1. Decision Precision in the Overt Game

Notes: Panel A: in the white region, the sufficient conditions in Proposition 1 are satisfied. Panel B: in the white 
region the decision in the most informative equilibrium of the overt game is strictly more precise than with direct 
information acquisition. In the grey region it is as precise. In the black region it is strictly less precise.
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and reveals its outcome, inducing action ​y  =  1/3​ after a failure and ​y  =  2/3​ after 
a success. The associated expected payoffs of the expert and of the decision maker 
are ​−1/18 − ​b​​ 2​ − c​ and ​−1/18​ , respectively. So, the decision precision is higher 
than under direct information acquisition, and the decision maker’s expected payoff 
increases by 50 percent. Let us check that the expert has no profitable deviations. 
After any deviation, he can only induce one of the equilibrium actions, ​y  =  1/3​ 
or ​y  =  2/3​. If he deviates to zero trials, then because of his upward bias ​b > 0​ , 
he would induce ​y  =  2/3​, obtaining expected utility of ​−1/9 + b/3 − ​b​​ 2​​. This is 
less than ​−1/18 − ​b​​ 2​ − c​ when ​b ≤ 17/210​ and ​c  =  1/35​ , so this deviation is 
unprofitable. Showing that a deviation to ​n > 1​ is unprofitable is straightforward 
and is omitted.

Example 1 deals with the simplest case in which the only downward deviation 
in information acquisition involves performing no trials. But our line of argument 
works more generally. Indeed, in Example 2, the decision maker acquiring informa-
tion directly performs one trial, but in an equilibrium of the covert game the expert 
performs two trials. In this case, a downward deviation by an expert to a single trial 
still generates a nontrivial, binary information partition, while the equilibrium action 
profile consists of three elements and, hence, offers a finer choice to the agent. Yet, 
this action profile is not well-suited to the off equilibrium information partition, and 
a deviation to one trial causes a loss of decision precision which is not compensated 
by an economy of information acquisition cost.

Example 2: Suppose that ​b ≤ 1/24​ and ​1/72 < c < 1/48​. By Lemma 4, the 
decision maker would acquire one trial and get a payoff ​−1/18 − c​. However, the 
covert game has an equilibrium in which the expert performs two trials and truth-
fully reveals the outcome, inducing actions ​1/4​, ​1/2​, and ​3/4​ after zero, one, and 
two successes, respectively. The expected payoffs of the expert and of the decision 
maker are ​−1/24 − ​b​​ 2​ − 2c​ and ​− 1/24,​ respectively, with the utility gain to the 
decision maker between 40 percent and 45 percent depending on the cost.

By Lemma 2 truthful revelation of the trial outcomes is incentive compatible for 
the expert. Let us check that there are no profitable deviations at the information 
acquisition stage. Any message after such deviation can only induce one of the equi-
librium actions, ​1/4​ , ​1/2​ , or ​3/4​. If the expert deviates to zero trials, then her 

payoffs from these actions are ​−1/12 − ​​(b + 1/4)​​​ 2​​ , ​− ​ 1 _ 12 ​ − ​b​​ 2​​ , and ​− ​ 1 _ 12 ​ − ​b​​ 2​​ , 
respectively. Since ​​b​​ 2​ ≤ ​ 1 _ 24 ​​ , action ​​ 1 _ 2 ​​ gives the highest payoff, which is nevertheless 

smaller than his putative equilibrium payoff ​−1/24 − ​b​​ 2​ − 2c​ because ​c < 1/48​.  
So this deviation is unprofitable. Next, consider a deviation to ​n  =  1​. In this case, 
the number of successes ​k​ could be either zero or one. The computations pro-
vided in the Mathematical Appendix show that the expert prefers action ​1/4​ when ​
k  =  0​ , and action ​3/4​ when ​k  =  1​. So, after ​n  =  1,​ the expert’s expected pay-

off equals ​Pr (k  =  0 | n  =  1)​(−2 ​∫ 0​ 1​​​​(​ 1 _ 4 ​ − θ − b)​​​ 
2
​(1 − θ) dθ)​ + Pr (k  =  1 | n  =  1) 

× ​(−2 ​∫ 0​ 1​​​​(​ 3 _ 4 ​ − θ − b)​​​ 
2
​θdθ)​ − c  =  ​​−3/48 − ​b​​ 2​ − c​, which is less than his 
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putative equilibrium payoff ​− 1/24 − ​b​​ 2​ − 2c.​ Finally, showing that the expert 

would not deviate to ​n > 2​ is straightforward and is therefore omitted.

The following proposition generalizes the above examples and identifies suffi-
cient conditions for strict overinvestment and higher decision precision in the com-
munication game.

Proposition 3: If ​​  1 _  
6 (n + 2)  (n + 3) ​ < c < ​  1 _  

6 (n + 1)  (n + 3) ​ − max​{0, ​(​ 1 _ 3 ​b)​ ​핀​n=0​​,  

​(​ 24b − 1 _ 96  ​)​ ​핀​n=1​​,​​ ​​​(​ 30b − 1 _ 
450

  ​)​  ​핀​n=2​​, ​(​ 30b − 1 _ 360  ​)​ ​핀​n=3​​, ​(​ 63b − 2 _ 
735

  ​)​ ​핀​n=4​​}​​ for some inte-

ger ​n​18, and ​b ≤ ​  1 _ 
4​(n + 3)​ ​​ , then the covert game has an equilibrium in which the 

final decision is strictly more precise than the decision based on direct information 
acquisition.

The conditions of Proposition 3 are represented graphically in Figure 2, panel 
A. Observe that an interval of costs for which these conditions hold, provided that 
the bias ​b​ is sufficiently small, is followed by an interval of slightly higher costs for 
which these conditions never hold, which in turn is followed by an interval of higher 
costs for which these conditions hold again under small bias, and so on. This pattern 
reflects the following regularity.

Let ​H (n)​ be an interval of cost values for which ​n​ is the opti-
mal number of trials under direct information acquisition. Note that  
​H (n) = ​(​  1 _  

6 (n + 2)  (n + 3) ​, ​ 
1 _  

6 (n + 1)  (n + 2) ​)​​ , and so the cost axis can be divided into 

adjacent intervals ​H (n)​ corresponding to different values of ​n​. For each ​n​ , the sec-
ond condition in Proposition 3 identifies a subinterval ​L​(n)​​ of ​H​(n)​​ where the result 
holds. ​L​(n)​​ constitutes the lower part of ​H​(n)​​ for every ​n​. Hence, the intervals ​L (n)​ 
are not adjacent.

When the unit cost ​c​ lies in ​L (n)​ and the bias is not too large, the covert commu-
nication game admits an equilibrium in which the expert runs ​n + 1​ trials and fully 
reveals their outcome. ​L​(n)​​ is a strict subset of ​H​(n)​​ because, if ​c​ is too close to the 
upper bound of ​H​(n)​​ , the expert prefers to save some cost and deviate to ​n​ trials. The 
condition on the bias, i.e., ​b ≤ 1/​[4​(n + 3)​]​​ , guarantees that, if the expert performs ​
n + 1​ trials, he then fully reveals their realization in the communication game.

Since the conditions of Proposition 3 are stronger than necessary, we have numer-
ically identified the whole region of the parameter space where the precision of the 
decision maker’s action in the most informative equilibrium of the covert game is 
strictly higher than under optimal direct information acquisition. The results are 
presented in Figure 2, panel B.

We conclude the analysis of the covert game with a result analogous to 
Proposition 2 for the overt game.

18 The symbol ​​I​n=k​​​ in the inequality denotes the indicator function taking value one if ​n = k​ , and zero otherwise. 
It is easy to check that this interval is nonempty for every ​n​. 
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Proposition 4: If ​b ≤ ​​(2​√ 
_

 1 + ​ 2 _ 3c  ​  ​+ 2)​​​ 
−1

​​ , then in the Pareto efficient equilib-
rium of the covert game with the highest ex ante expected payoff for the expert, the 
final decision has the same precision as the decision based on direct information 
acquisition. In every other Pareto efficient equilibrium of the covert game the deci-
sion is strictly more precise.

The proof of Proposition 4 establishes that in his preferred equilibrium the expert 
performs ​​n​​ ∗​​(c)​​ trials and fully reveals their outcome. The key step of the proof 
shows that the expert cannot benefit by deviating from ​​n​​ ∗​​ at the information acquisi-
tion stage, because any such deviation yields him a loss exceeding the loss incurred 
by the decision maker making the same deviation under direct information acquisi-
tion. The second part of the proposition follows because in any other Pareto efficient 
equilibrium the decision maker’s payoff and, hence, the precision of the decision, 
must be higher.

IV.  Organization Design

Our results have important implications for organization design. Specifically, con-
sider an organization that has to gather information and take a decision under uncer-
tainty. We will focus on two cases that differ in terms of organizational objectives, 
depending on whose interests are served by the organization. The first case deals 
with an organization that serves primarily the interests of its principal. Here, we 
consider three possible organizational structures. Under centralization, the principal 
acquires information directly and takes the decision. Formally, it corresponds to our 
benchmark case of direct information acquisition by the decision maker. Beyond 
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Figure 2. Decision Precision in the Covert Game

Notes: Panel A: in the white region, the sufficient conditions in Proposition 3 hold. Panel B: in the white region, the 
decision in the most informative equilibrium of the covert game is strictly more precise than under optimal direct 
information acquisition. In the grey region, the precision is the same in the most informative equilibrium of the 
covert game and under optimal direct information acquisition. In the black region, the decision under optimal direct 
information is more precise than in the most informative equilibrium of the covert game.
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a literal interpretation, we may consider this organizational structure to describe sit-
uations in which the principal hires, directs, and closely supervises her employees. 
Under delegation, the principal delegates both information acquisition and decision 
making to an agent. Finally, in a communication-based organization, the principal 
delegates the task of information acquisition to her agent but keeps the decision-mak-
ing authority.

Under centralization/direct information acquisition, the principal’s expected 
payoff is given by

(13)	​ E​[− ​​(​y​ k, ​n​​ ∗​​(c)​​ ∗  ​ − θ)​​​ 2​ | ​n​​ ∗​​(c)​]​ − c ​n​​ ∗​ (c) ,​

where ​​y​ k, ​n​​ ∗​​(c)​​ ∗  ​​ is the principal’s optimal decision rule given ​k​ successes in ​​n​​ ∗​​(c)​​  
trials.

The optimization problem solved by the agent under delegation is similar to the 
principal’s problem under centralization. In both cases, the party acquiring informa-
tion optimally conducts ​​n​​ ∗​(c)​ trials given by (11). But under delegation, the optimal 
decision rule for the agent is ​​y​ k, ​n​​ ∗​​(c)​​ ∗  ​ + b​. So, the principal’s expected payoff under 
delegation is

(14)	​ E​[− ​​(​y​ k, ​n​​ ∗​​(c)​​ ∗  ​ − θ)​​​ 2​ | ​n​​ ∗​​(c)​]​ − ​b​​ 2​ .​

The comparison between centralization and delegation is straightforward. By del-
egating the decision to the agent, the principal trades off saving the information 
acquisition cost ​c​n​​ ∗​(c)​  for a biased decision with loss ​​b​​ 2​​.

Communication can be modelled either via the overt or covert game analyzed 
above, depending on whether the principal observes the number of trials performed 
by the agent or not. In either game, the principal’s expected payoff is determined by 
the number ​n​ of trials and equilibrium communication partition ​​P​n​​​, and is equal to

(15)	​ E​[− ​​(y(​P​n​​) − θ)​​​ 2​ | ​P​n​​]​,​

where ​y(​P​n​​)​ is the optimal action by the decision maker, defined in Section A.
Inspection of expressions (13)–(15) shows that both centralization and del-

egation are dominated by a communication equilibrium with partition ​​P​n​​​ if 
​E​[−​​(​y –​ − θ)​​​ 2​ | ​P​n​​ ]​ ≥ E​[− ​​(​y​​ ∗​ − θ)​​​ 2​ | ​n​​ ∗​​(c)​]​,​ or, in our terminology, if the decision in 
the communication equilibrium is at least as precise as in the benchmark case of direct 
information acquisition. Hence, Propositions 2 and 4 imply the following corollary.

Corollary 1: 

	 (i)	 If ​b ≤ ​​(​√ 
_

 1 + ​ 2 _ 3c  ​ ​ + 1)​​​ 
−1

​​, then the principal strictly prefers any Pareto effi-
cient equilibrium of the overt game to centralization and delegation.

	 (ii)	 If ​b ≤ ​​(2​√ 
_

 1 + ​ 2 _ 3c ​ ​ + 2)​​​ 
−1

​​ , then the principal strictly prefers any Pareto 

efficient equilibrium of the covert game to centralization and delegation.



138	 American Economic Journal: microeconomics� August 2016

The comparison between communication and centralization in Corollary 1 is per-
formed under the assumption that the agent and the principal have the same cost ​c​ 
in information acquisition. However, the comparison between communication and 
delegation does not rely on it, since the expert bears the cost of information acqui-
sition in both organizations.

Next, to highlight the benefit that the principal gets from communication-based 
organization, we have computed and plotted in Figure 3 the change in the decision 
maker’s expected payoff obtained by switching from direct information acquisition 
to a communication-based organization, in an equilibrium with the minimal overin-
vestment. The former payoff is given by equation ​​(12)​​ , while the latter corresponds 
to the communication equilibrium in which the expert performs ​​n​​ ∗​​(c)​ + 1​ trials and 
reveals their outcomes (Sufficient conditions for the existence of this equilibrium in 
the overt and covert game are provided in Propositions 1 and 3). In other communi-
cation equilibria with larger overinvestment (which do exist), the decision-maker’s 
gain is larger than the one represented in Figure 3.19

The lower curve on the graph represents the gain from higher precision of the 
decision. The latter varies from a few percentage points for low values of the cost ​c​,  
to around 25 percent when ​c​ is close to the top of the admissible range. The higher 

19 We have plotted the two curves in Figure 3 for the same range of costs as in Figures 1 and 2. Propositions 1 
and 3 show that an equilibrium in which the expert performs ​​n​​ ∗​(c) + 1​ trials and reveals their outcomes exists in 
the overt and covert game, respectively, only for a subset of costs in this range. These cost subsets are depicted in 
white in Figure 1, panel A and Figure 2, panel A, respectively. 

0.00 0.01 0.02
0.0

0.2

0.4

c

Principal's proportional gain

Figure 3. Principal’s Gain

Notes: The lower line represents the proportional increase in the decision precision when switching from ​​​​n​​ ∗​​​(c)​​ tri-
als directly purchased by the principal to ​​​​n​​ ∗​​​​​​(c) + 1​ trials purchased by the expert and followed by full revelation 
of their outcome. The higher line represents the proportional increase in the principal’s payoff when taking into 
account both the increase in the decision precision and the cost savings.
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curve on the graph shows that the gain is much larger, and varies from 40 percent 
to 52 percent, when the beneficial effect of transferring the cost from the decision 
maker under direct information acquisition to the expert under communication is 
also accounted for.

As our second application, we consider an organization whose objective function 
is the sum of payoffs of both parties who are affected by the decision. While we 
continue to refer to them as principal and agent for ease of comparison, in the pres-
ent case it is more natural to think about the organization as a partnership. Thus, the 
total payoff of the partnership is given by 2 ​E​[− ​​(y(​P​n​​) − θ)​​​ 2​ | ​P​n​​]​ − ​b​​ 2​ − cn​ where  
​​P​n​​​ is an incentive compatible information partition, ​y(​P​n​​)​ is the action profile under 
​​P​n​​​, ​n​ is the number of trials performed, and ​b​ is bias, which in this case reflects the 
non-congruence of interests between the partners. Note that a noncongruence of 
interests between partners is a common phenomenon (multiple lawsuits between 
partners attest to that), so the bias ​b​ and the fact that the partner who chooses the 
action maximizes her own payoff rather than the total payoff above are a natural 
reflection of such misalignment.

Although a partnership can be organized in many different ways, our analysis will 
be limited to the organizational forms described above. Thus, under centralization 
one partner takes upon himself both information acquisition and decision making. 
Formally, under partnership’s objective function, centralization is payoff-equivalent, 
to both our benchmark case of direct information acquisition by the decision 
maker and to the delegation. Under specialization or division of labor, the tasks of 
information acquisition and decision making are split between the partners. This 
organizational form can be modelled either via the overt or the covert game, depend-
ing on whether the decision maker observes the information acquisition choice by 
the other partner or not.

Our next result shows that, under the sufficient conditions of Propositions 1 and 
3, the outcome of specialization/division of labor (i.e., at least one equilibrium out-
come of both the overt and covert game) dominates centralization.

Proposition 5: 

	 (i)	 If ​b ≤ ​​(​√ 
_

 1 + ​ 2 _ 3c ​ ​ + 3)​​​ 
−1

​​ and ​c ≤ ​ 5 − ​√ 
_

 17 ​ _ 48  ​​ , division of labor in the overt 
game yields a higher payoff to the partnership than centralization in at least 
one equilibrium. 

	 (ii)	 For any integer ​n​, if ​b ≤ ​  1 _ 
4​(n + 3)​ ​​ , and ​​  1 _  

6 (n + 2)  (n + 3) ​< c < ​  1 __________  
6 (n + 1)(n + 3) ​ − 

max​{0, ​(​ 1 _ 3 ​b)​ ​핀​n=0​​, ​(​ 24b − 1 _ 96  ​)​ ​핀​n=1​​, ​(​ 30b − 1 _ 
450

  ​)​ ​핀​n=2​​,​​ ​​​(​ 30b − 1 _ 360  ​)​ ​핀​n=3​​, 

​(​ 63b − 2 _ 
735

  ​)​ ​핀​n=4​​}​​ , division of labor in the covert game yields a higher payoff 

to the partnership than centralization in at least one equilibrium.

Since ours is not a complete study of partnership mechanisms, we do not claim 
to provide a characterization of the optimal organizational form for a partner-
ship. However, the last result suggests that a partnership involved in information 
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acquisition and decision making in an uncertain environment would benefit from 
specialization and division of labor between the partners. The equilibria identified 
in Propositions 1 and 3 not only yield a significant utility gain to the decision maker, 
but also generate a surplus that would be sufficient to compensate the acquirer of 
information for the cost and effort that he expends in this activity.

V.  Conclusions

We have developed a simple, yet intuitive model of costly endogenous infor-
mation acquisition with strategic communication of this information. In this con-
text, we have shown that decisions based on a biased expert’s advice may be more 
precise than optimal choices based on direct information acquisition, even if the 
expert is not more efficient than the decision maker at acquiring information. This 
result is important for organization design, as it implies that (i) under certain condi-
tions communication-based organizations outperform delegation and centralization, 
and (ii) under certain conditions partnerships are better off dividing the informa-
tion acquisition and decision making among the partners, rather than centralizing 
these tasks to a single partner. In this respect, our paper contributes to the literature 
that employs a strategic communication framework to study optimal allocation of 
authority in the presence of incomplete information.

We have derived our results for a specific information acquisition model, but the 
main forces behind our results are robust to more general statistical structures. In the 
overt game, the use of a credible threat of the worst off path punishment to induce 
overinvestment would also be effective in incentivizing the expert in different set-
tings with either continuous or discrete information. As for the covert game, consider 
any communication model in which the sender’s information is fixed. We know from 
Crawford and Sobel (1982) that unless the sender is unbiased, the set of messages 
used on the equilibrium path is discrete (up to outcome equivalence), and depends on 
the amount of information held by the expert. When considering covert information 
acquisition, an expert deviating from the equilibrium information acquisition choice 
would be penalized by the inflexibility of equilibrium language. However, to con-
clude that overinvestment is beneficial for the decision maker, it would need to be the 
case that (i) the fixed language effect is sufficiently strong relative to the information 
acquisition cost to deter deviation at the information acquisition stage and (ii) that the 
information transmission loss is sufficiently small not to offset the equilibrium overin-
vestment.20 We leave this issue for further research.

A number of other interesting questions can be addressed in the framework of 
our model. First, suppose that the decision maker was able to subsidize the expert’s 
information acquisition cost. How would that affect the amount of information 
acquired and the precision of the decision? Second, how would the outcome of the 
communication game be affected if the expert acquired the information covertly 
but had an option to verifiably disclose the amount of information that he acquired? 
Would a decision maker prefer knowing the amount of information acquired by an 

20 We would like to thank an anonymous referee for this observation. 
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expert, when she could not inspect its content? As shown by Austen-Smith (1994), 
this issue is far from being transparent. We leave these and other questions for future 
research.

Mathematical Appendix

Proof of Lemma 1: 
The decision maker chooses ​​y​ ​p​i​​​ 

n′​​ so as to maximize

	​ −​∫ 
0
​ 
1
​​​​(​y​ ​p​i​​​ 

n′​ − θ)​​​ 
2
​ f ​(θ | k ∈ ​p​i​​, n′)​ dθ.​

Taking the first-order condition, we obtain ​​y​ ​p​i​​​ 
n′​  = ​ ∫ 

0
​ 
1
​​ θ f ​(θ | k ∈ ​p​i​​, n′)​ dθ  

=  E​[θ |​ p​i​​, n′]​​. Simplifying:

	​ E​[θ |​ p​i​​, n′]​ = E​[E​[θ | k, n′]​|k ∈ ​p​i​​]​ = ​ ∑ 
k∈​p​i​​

​​​ E​[θ | k, n′]​ ​ 
f ​(k; n′)​

 ________ 
​∑ k∈​p​i​​​ 

 
 ​​  f ​(k; n′)​

 ​ = ​  1 _ 
​|​ p​i​​ |​

 ​ ​ ∑ 
k∈​p​i​​

​​​ ​ k + 1 ____ 
n′ + 2 ​​

because ​E​[θ |k, n′]​  =  ​ k + 1 ____ ​n ′ ​ + 2 ​,​ and ​f ​(k; n′)​ = ​∫ 
0
​ 
1
​​ f ​(k; n′, θ)​ dθ = ​  n′! ______ 

k!​(n′ − k)​!
 ​​∫ 

0
​ 
1
​​​θ​​ k​​​(1 − θ)​​​ n′−k​dθ 

= ​   n′!
 ______ 

k!​(n′ − k)​!
 ​ ​ k!​(n′ − k)​!

 ______ ​(n′ + 1)​!  ​  = ​   1
 ____ 

n′ + 1 ​.​

Proof of Lemma 2:
First, we show that the incentive compatibility constraint (4) can be rewritten as

​	 −​(​y​ ​p​i​​​ 
n′​ − ​y​ q​ n′​)​ ​[​(​y​ ​p​i​​​ 

n′​ + ​y​ q​ n′​)​ − 2E​[θ/k, n′]​ − 2b]​ ≥ 0 for all q ∈ ​P​n′​​.​

For this, note the following:

​​∫ 
0
​ 
1
​​​U​​ S​​(​y​ ​p​i​​​ 

n′​, θ, b)​ f ​(θ; k, n′)​ dθ ≥ ​∫ 
0
​ 
1
​​​U​​ S​(​y​ q​ n′​, θ, b)  f ​(θ; k, n′)​ dθ​

  ​  −​∫ 
0
​ 
1
​​​[​​(​y​ ​p​i​​​ 

n′​ − θ − b)​​​ 
2
​ − ​​(​y​ q​ n′​ − θ − b)​​​ 

2
​]​ f ​(θ; k, n′)​ dθ ≥ 0​

  ​  −​∫ 
0
​ 
1
​​​[​​(​y​ ​p​i​​​ 

n′​)​​​ 
2
​ + ​(θ + b)​​ 2​ − 2​y​ ​p​i​​​ 

n′​​(θ + b)​ − ​​(​y​ q​ n′​)​​​ 
2
​ − ​(θ + b)​​ 2​ + 2​y​ q​ n′​​(θ + b)​]​ 

    f ​(θ; k, n′)​ dθ ≥ 0​

​    −​∫ 
0
​ 
1
​​​[​​(​y​ ​p​i​​​ 

n′​)​​​ 
2
​ − ​​(​y​ q​ n′​)​​​ 

2
​ − 2​(​y​ ​p​i​​​ 

n′​ − ​y​ q​ n′​)​ ​(θ + b)​]​ f ​(θ; k, n′)​ dθ ≥ 0​

​    ​(​y​ ​p​i​​​ 
n′​ − ​y​ q​ n′​  )​ ​[​(​y​ ​p​i​​​ 

n′​ + ​y​ q​ n′​  )​ − 2E​[θ/k, n′]​ − 2b]​ ≥ 0​.

Next, we prove that in any pure strategy equilibrium of the communication 
subgame, each element of the equilibrium partition is connected. Suppose by 
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contradiction that there exists an equilibrium where at least one element of the parti-
tion is not connected. Then, there exists at least a triple of types ​​(k, k′, k″)​​ such that ​
k < k″ < k′​ ; ​k​ and ​k′​ belong to the same element of the partition, which we denote 
by ​​p​a​​​ ; and ​k″​ belongs to a different element, which we denote by ​​p​b​​​. Let ​​y​a​​​ and ​​y​b​​​ be 
the equilibrium actions associated to ​​p​a​​​ and ​​p​b​​​, respectively. By incentive compati-
bility, the following inequalities must hold:

	​​ (​y​b​​ − ​y​a​​)​ ​(​y​a​​ +​ y​b​​ − ​ 
2​(k + 1)​
 _______ 

n′ + 2 ​  − 2b)​ ≥ 0

	​ (​y​b​​ − ​y​a​​)​ ​(​y​a​​ + ​y​b​​ − ​ 
2​(k′ + 1)​

 _______ 
n′ + 2 ​  − 2b)​ ≥ 0

	​ (​y​a​​ − ​y​b​​)​ ​(​y​a​​ + ​y​b​​ − ​ 
2​(k″ + 1)​

 ________ 
n′ + 2 ​  − 2b)​ ≥ 0 ​.

Because the first two expressions are positive, then ​​y​a​​ + ​y​b​​ − ​ 2​(k + 1)​ _____ n + 2 ​  − 2b​ and ​​

y​a​​ + ​y​b​​ − ​ 
2​(k′ + 1)​

 ______ n + 2 ​  − 2b​ have the same sign. But then, also ​​y​a​​ +​ y​b​​ − ​ 
2​(k″ + 1)​

 ______ n + 2 ​  −  
2b​ has the same sign, because ​k < k″ < k′.​ And hence, the last expression is  
negative: A contradiction.

Next, we prove that incentive compatibility implies expression ​​(7)​​. Let ​k​ be the 
expert’s type. Denote by ​y​ the equilibrium action associated to ​k​ , and by ​​y ̃ ​​ any other 
equilibrium action. The incentive compatibility constraint is

(A1)	​​ (​y ̃ ​ − y)​ ​(​y ̃ ​ + y − ​ 
2​(k + 1)​
 _______ 

n′ + 2 ​  − 2b)​ ≥ 0.​

First, we rule out the possibility that a type ​k​ deviates by inducing an equilibrium 
action ​​y ̃ ​​ larger than ​y​. This deviation is unprofitable if and only if

(A2)	​​ y ̃ ​ + y − ​ 
2​(k + 1)​
 _ ​n ′ ​ + 2  ​ − 2b ≥ 0.​

Because the expression is increasing in ​​y ̃ ​​ and decreasing in ​k​ , it immediately follows 
that the tightest incentive compatibility constraints concern the highest type ​​ 

_
 k ​​ in 

any element ​​p​i​​​ of the equilibrium partition, entertaining the possibility of deviating 
and inducing the equilibrium action ​​y ̃ ​​ associated to ​​p​i+1​​​ , the element of the partition 
immediately to the right of ​p​.
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Hence, we now consider such constraints. The explicit expression for ​y​ and ​​y ̃ ​​ are

	​ y  = ​   1 _ 
​|​ p​i ​​|​

 ​​[​ ​ 
_
 k ​ + 1 _____ 

n′ + 2 ​ + ​ ​ 
_
 k ​ − 1 + 1 _ ​n ′ ​ + 2  ​ + ⋯ + ​ 

​ 
_
 k ​ − (​| ​p​i ​​|​ − 1)  + 1

  _____________  ​n ′ ​ + 2  ​]​ 

	 = ​ 
2​ 
_
 k ​ − ​|​ p​i ​​|​ + 3

  ___________  
2​(​n ′ ​ + 2)​ ​

	​ y ̃ ​  = ​   1 _ 
​|​ p​i+1 ​​|​

 ​​[​ ​ 
_
 k ​ + 1 + 1 ________ 
n′ + 2 ​  + ​ ​ 

_
 k ​ + 2 + 1 ________ 
n′ + 2 ​  + ⋯ + ​ 

​ 
_
 k ​ + ​|​ p​i+1​​ |​ + 1

  ____________ 
n′ + 2 ​ ]​ 

	 = ​ 
2​ 
_
 k ​ + ​|​ p​i+1​​ |​ + 3

  ____________  
2​(n′ + 2)​

 ​ ​.

Hence, condition (A2) simplifies as

	 ​​ 
2​ 
_
 k ​ + ​|​ p​i+1​​ |​ + 3

  ____________  
2​(n′ + 2)​

 ​  + ​ 
2​ 
_
 k ​ − ​|​ p​i ​​|​ + 3

  ___________  
2​(n′ + 2)​

 ​  − ​ 
2​(​ 

_
 k ​ + 1)​
 _______ 

n′ + 2 ​  − 2b ≥ 0,​

or

(A3)	​ ​|​ p​i+1 ​​|​ ≥ ​| ​p​i ​​|​ + 4b​(n + 2)​ − 2.​

Proceeding in the same fashion, we prove that when ​​y ̃ ​ < y,​ the tightest incentive 
compatibility constraints concern the lowest type ​​ k _ ​​ in any element ​​p​i​​​ of the equilib-
rium partition, entertaining the possibility of deviating and inducing the equilibrium 
action ​​y ̃ ​​ associated to ​​p​i−1​​​ , the element of the partition immediately to the left of ​​p​i​​​. 
Again, letting ​j​ be the cardinality of ​​p​i​​​ , and ​z​ be the cardinality of ​​p​i−1​​​ , we obtain

​	 y  = ​   1 _ 
​| ​p​i ​​|​

 ​​[​ ​ k _ ​ + 1
 _____ 

n′ + 2 ​ + ​ ​ k _ ​ + 1 + 1
 ________ 

n′ + 2 ​  + ⋯ + ​ 
​ k _ ​ + ​| ​p​i ​​|​ − 1 + 1

  _____________  
n′ + 2 ​ ]​  = ​ 

2​ k _ ​ + ​| ​p​i ​​|​ + 1
  ___________  

2​(n′ + 2)​
 ​​

​​	 y ̃ ​  = ​   1 _ 
​| ​p​i − 1 ​​|​

 ​​[​ ​ k _ ​ − 1 + 1
 ________ 

n′ + 2 ​  + ​ ​ k _ ​ − 2 + 1
 ________ 

n′ + 2 ​  + ⋯ + ​ 
​ k _ ​ − ​| ​p​i−1 ​​|​ + 1

  ___________ 
n′ + 2 ​ ]​ 

	 = ​ 
2​ k _ ​ − ​|​ p​i−1 ​​|​ + 1

  ____________  
2​(n′ + 2)​

 ​​ .

Hence, condition (A2) simplifies as

	​​ 
2​ k _ ​ − ​|​ p​i−1​​ |​ + 1

  ____________  
2​(n′ + 2)​

 ​  + ​ 
2​ k _ ​ + ​| ​p​i​​ |​ + 1

  ___________  
2​(n′ + 2)​

 ​  − ​ 
2​(​ k _ ​ + 1)​

 _______ 
n′ + 2 ​  − 2b ≤ 0​.
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which implies

(A4)	​ ​| ​p​i​​ |​ ≤ ​| ​p​i−1 ​​|​ + 4b​(n + 2)​ + 2.​

Derivation of Expression (8): 
For any ​n​′ , consider the expert’s and the decision maker’s expected payoffs asso-

ciated to IC partition ​{​P​n′​​}​ , assuming that the decision maker plays her sequentially 
rational strategy, as described by Lemma 1:

(A5)	​​  ∑ 
k=0

​ 
n′
  ​​​(​∫ 

0
​ 
1
​​​U​​ S​​(​y​ ​p​​ n′​(k)​ 

n′  ​, θ, b)​ f ​(θ; k, n′ )​ dθ ×​ Pr​ 
​
​
​
 ​​ (k; n′  )​)​ − c (n′  )

(A6)	​  ∑ 
k=0

​ 
n′
  ​​​(​∫ 

0
​ 
1
​​​U​​ R​​(​y​ ​p​​ n′​(k)​ 

n′  ​, θ, b)​ f ​(θ; k, n′)​ dθ × ​Pr​ 
​
​
​
 ​​ (k; n′ )​)​ ​.

Let the operator ​E​[ · | ​P​n′ ​​]​​ denote the expectation with respect to ​θ​ and ​k​ condi-
tional on the number of trials ​n′​  and the partition ​​P​n′​​​. Then, using the fact that, by 
(6), ​E​[  y (​P​n′​​) |​P​n′​​]​  =  E​[θ |​ P​n′​​]​​ , we can rewrite the expert’s expected payoff in (A5) 
as follows:

​E​[− ​​(y (​P​n′​​)  −  θ  −  b)​​​ 2​|​P​n′​​]​ − cn′ = E​[− ​​(y (​P​n′​​)  −  θ)​​​ 2​ + 2b​(y(​P​n′​​)  −  θ)​|​P​n′​​]​ − ​b​​ 2​ − cn′

	 =  E​[− ​​(y (​P​n′​​)  −  θ)​​​ 2​]​ ​P​n′​​]  − ​b​​ 2​ − cn′,​

Further, the decision maker’s expected payoff in (A6) can be rewritten as

	​ E​[− ​​(y (​P​n′​​) − θ)​​​ 2​ | ​P​n′​​]​​.

Proof of Lemma 3: 
Consider an equilibrium ​​​​ 1​​ = (​n​​ 1​, ​m​​ 1​(n, k) , ​B​​ 1​(·) , ​σ​​ 1​) in which the expert 

performs ​​n​​ 1​​ trials, and follows message strategy ​​m​​ 1​(n, k)​ , where ​n​ is the num-
ber of trials and ​k​ is the number of successes, the decision maker forms beliefs ​​ 
B​​ 1​(·) :   ↦ Δ  ​(​{ (n, k) | n, k ∈ , n ≥ k}​)​ ​ and follows action-choice strategy 
​​σ​​ 1​(·) :  ​B​​ 1​ ↦ Δ ​( [0, 1])​ ​.21 Note that the decision maker’s beliefs ​​B​​ 1​(·)​ is a mapping 
from the set of expert’s messages ​​ into the set of probability distributions ​Δ​
(​{(n, k)|n, k ∈ , n ≥ k}​)​,​ reflecting the fact that in the covert game the decision 
maker has to form beliefs not only about the number of successes but also about the 
number of experiments performed by the expert.

Let ​​​​ e​​ =  ​{​m​​ 1​(​n​​ 1​, k) | k  =  0, 1,  … , ​n​​ 1​}​ be the set of messages sent on the 
equilibrium path with a positive probability. Then ​​B​ |N​ 1 ​ (m)​ puts probability 1 on ​​n​​ 1​​  
for all m ∈ ​​​​ e​​. Next, fix some arbitrary ​​m ̆ ​​ ∈ ​​​​ e​​  and consider modified belief  
​​B ˆ ​(·)​ and modified strategy ​​σ ˆ ​(·)​ such that for any m ∈ ​​​​ e​​, ​​B ̂ ​(m)   = ​ B​​ 1​(m)​ and  

21 In this proof, we need to use a canonical definition of perfect Bayesian equilibrium, not relying on partitions. 
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​​σ ˆ ​(m)   = ​ σ​​ 1​(m)​ , while for any m ∈ \​​​​ e​​, ​​B ˆ ​(m)   = ​ B​​ 1​(​m ̆ ​)​ and ​​σ ˆ ​(m)   = ​ σ​​ 1​(​m ̆ ​)​. 
Hence, ​​B ˆ ​(·)​ puts probability 1 on ​​n​​ 1​​ for all ​m ∈ ​.

Now consider a putative equilibrium ​​  ˆ ​  =  (​n​​ 1​, ​m​​ 1​(n, k), ​B ˆ ​(·) , ​σ ˆ ​(·))​ in which the 
expert performs ​​n​​ 1​​ trials and follows message strategy ​​m​​ 1​(n, k)​, and the decision 
maker uses belief rule ​​B ˆ ​(·)​ and strategy profile ​​σ ˆ ​(·)​. With the decision maker’s 
belief rule ​​B ˆ ​(·)​ in ​​  ˆ ​​​​, no expert’s message can change the decision maker’s beliefs 
about the number of trials.

Furthermore, ​​  ˆ ​​ does constitute a perfect Bayesian equilibrium because ​​​​ 1​​ is a 
perfect Bayesian equilibrium, and both ​​​​  ˆ ​​ and ​​​​ 1​​ prescribe the same behavior and 
beliefs on the equilibrium path, with the only difference between them being in 
the beliefs off the equilibrium path i.e., after a message m ∈ \​​​​ e​​: after such 
message ​​​​  ˆ ​​ prescribes beliefs ​​B ˆ ​(m)  = ​ B​​ 1​(​m ̆ ​)​ , while ​​​​ 1​​ prescribes beliefs ​​B​​ 1​(m)​. 
However, since a message ​​m ̆ ​​ is also available to a deviating expert in ​​​​ 1​​ but does 
not lead to a profitable deviation, there is no profitable deviation for an expert in ​​  ˆ ​​. 
So, ​​ ​​  ˆ ​​  is a perfect Bayesian equilibrium.​​ ∎

Proof of Lemma 4: 
Using the definition of ​​y​ k,n​ ∗ ​​ we obtain

​E​[− ​​(​y​ k,n​ ∗ ​ − θ)​​​ 2​ | n]​ − cn  =  −​ ∑ 
k=0

​ 
n

  ​​​ Pr​ 
​
​
​
 ​​ (k; n)​ ​∫ 

0
​ 
1
​​​​(E​[θ | k]​ − θ)​​​ 

2​f ​(θ; k, n)​ − cn​

​	 =  − ​ ∑ 
k=0

​ 
n

  ​​  ​  1 _ 
n + 1 

 ​​∫ 
0
​ 
1
​​​​(​ k + 1 _ 

n + 2 ​ − θ)​​​ 
2

​​ 
​(n + 1)​!

 _ 
k!​(n − k)​! ​​ θ​​ 

k​​​(1 − θ)​​​ n−k​dθ − cn

	 =  − ​ ∑ 
k=0

​ 
n

  ​​ ​  1 _ 
n + 1 ​ ​∫ 

0
​ 
1
​​​[​​(​ k + 1 _ 

n + 2 ​)​​​ 
2

​+ ​θ​​ 2​ − 2θ​(​ k + 1 _ 
n + 2 ​)​]​ ​ 

​(n + 1)​!
 _ 

k!​(n − k)​! ​ ​θ​​ 
k​​​(1 − θ)​​​ n−k​dθ − cn

	 =  − ​ ∑ 
k=0

​ 
n

  ​​ ​  1 _ 
n + 1 ​​[​∫ 

0
​ 
1
​​​θ​​ 2​​ 

​(n + 1)​!
 _ 

k!​(n − k)​! ​​ θ​​ 
k​​​(1 − θ)​​​ n−k​dθ − ​​(​ k + 1 _ 

n + 2 ​)​​​ 
2

​]​ − cn

	 =  − ​ ∑ 
k=0

​ 
n

  ​​ ​  1 _ 
n + 1 ​​[​ 

​(k + 2)​(k + 1)
  ___________  

​(n + 3)​(n + 2)
 ​ − ​​(​ k + 1 _ 

n + 2 ​)​​​ 
2

​]​ − cn

	 =  − ​  1 _ 
6 (n + 2) ​ − cn. ∎​

Proof of Proposition 1: 
We prove that there exists an equilibrium of the overt information acquisition 

game in which the expert runs ​​n​​ ∗​​(c)​ + 1​ trials and fully reveals their realizations. 
Clearly, this equilibrium implies a decision precision higher than the benchmark 
of direct information acquisition by the decision maker. The result then follows 
because either this equilibrium is Pareto efficient, or there exists another equilibrium 
which Pareto-dominates it, in which the payoff of the decision maker, i.e., the deci-
sion precision, is even higher.
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The proof proceeds as follows. First, we find the maximal number of trials 
​​n ̃ ​​(c)​​ such that, under a given investment cost ​c​, the utility that the expert obtains by 
conducting ​​n ̃ ​​(c)​​ trials and fully revealing their realizations to the decision maker is 
higher than the utility from running any other number of trials and playing the bab-
bling equilibrium. Formally, ​​n ̃ ​​(c)​​ is the highest integer that satisfies

	​ − ​  1 _ 
6​(n + 2)​ ​ − ​b​​ 2​ − cn ≥ − ​ 1 _ 

12
 ​ − ​b​​ 2​.​

Further, from Lemma 2 it follows that ​​n ˆ ​​(b)​ ≡ ​⌊​ 1 _ 2b
 ​ − 2⌋​​ is the maximal number of 

trials for which full revelation in the communication game is incentive compatible. 
Hence, it is an equilibrium for the expert to run ​​n​​ ∗​(c)  + 1​ trials and to fully reveal 
the information to the decision maker whenever the following condition holds:

(A7)	​ ​n​​ ∗​(c) + 1 ≤ ​min​ 
​
​
​
 ​ ​{​n ˆ ​​(b)​, ​n ̃ ​​(c)​}​ .​

The condition ​​n​​ ∗​​(c)​ +1 ≤ ​n ̃ ​​(c)​​ is satisfied if ​​√ 
_

 ​ 2 + 3c _ 12c  ​ ​ − ​ 3 _ 2 ​ + 1 ≤ ​ 1 _ 12c ​ − 2,​ i.e., ​

c ≤ ​ 5 − ​√ 
_

 17 ​ _ 48  ​​ , whereas the condition ​​n​​ ∗​​(c)​ + 1 ≤ ​n ˆ ​​(b)​​ is satisfied if ​​√ 
_

 ​ 2 + 3c _ 12c  ​ ​ − ​ 3 _ 2 ​

+ 1 ≤ ​ 1 _ 2b
 ​ − 2,​ or ​b ≤ ​​(​√ 

_
 1 + ​ 2 _ 3c ​ ​ + 3)​​​ 

−1
​​.

Condition (A7) guarantees that there exists an equilibrium of the overt informa-
tion acquisition game in which the expert runs ​​n​​ ∗​​(c)​ + 1​ trials and fully reveals 
their realizations, while the babbling equilibrium is played in any subgame in which ​

n′ ≠ n​ trials are run. The decision maker’s utility ​E​[− ​​(​y​p​​ − θ − b)​​​ 2​ | ​P​n​​]​​ in this 
equilibrium is ​− 1/ [6 (​n​​ ∗​ + 1 + 2) ],​ which is strictly larger than the decision mak-
er’s utility ​− 1/ [6 (​n​​ ∗​ + 2)]​ if she directly acquired information. ∎

Proof of Proposition 2: 
We start by proving that under the condition of the theorem, there is an equi-

librium outcome in which ​​n​​ ∗​​(c)​​ trials are acquired and full revelation occurs. This 
must be the outcome with the highest possible ex ante expected utility for the expert, 
by definition of ​​n​​ ∗​​(c)​​. In this outcome, the decision precision is the same as in 
direct information acquisition by the decision maker. The result then follows from 
the observation that the expert’s preferred equilibrium is by construction Pareto 
efficient. Hence, in any other Pareto efficient equilibrium, the ex ante utility of the 
decision maker, which coincides with the precision of the decision, must be weakly 
larger than in this equilibrium.

First, notice that the condition ​b ≤ ​​(​√ 
_

 1 + ​ 2 _ 3c ​ ​ + 1)​​​ 
−1

​​ implies that ​​⌊​ 1 _ 2b
 ​ − 2⌋​ ≥ ​

⌊​√ 
_

 ​ 2 + 3c _ 12c  ​ ​ − 1.5⌋​​ , that is ​​n ˆ ​​(b)​ ≥​ ​​n​​ ∗​(c)​. This in turn implies that fully reveal-

ing the outcome of ​​n​​ ∗​​(c)​​ trials is incentive compatible. Next, consider deviations 
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at the information acquisition stage. In equilibrium, the expert’s expected utility  
is equal to ​E​[− ​​(​y​ k, ​n​​ ∗​​(c)​​ ∗  ​ − θ)​​​ 2​ | ​n​​ ∗​​(c)​]​ − c​(n)​ − ​b​​ 2​​, the expected payoff of a deci-
sion maker who directly conducts ​​n​​ ∗​(c)​ trials, minus ​​b​​ 2​​. Now, suppose the expert 
deviates and purchases ​​n ′ ​​ trials, and some communication equilibrium is played in 
the ensuing communication subgame. Given this communication partition ​​P​n′​​​ , the 

expert’s expected payoff is ​E​[− ​​(y​(​P​​n ′ ​​​)​ − θ)​​​ 2​ | ​P​​n ′ ​​​]​ − ​b​​ 2​​. If the partition played after 

the deviation is fully separating, then the difference between equilibrium payoff 
and deviation payoff is equal to the payoff difference that the decision maker would 
receive in the single agent decision problem if he purchased ​n′​ trials rather than 
​​n​​ ∗​​(c)​​. This payoff difference is negative, by definition of ​​n​​ ∗​​(c)​​. If some information 
loss occurs, the deviation gain is strictly smaller than the payoff difference that the 
decision maker would receive under centralization because ​E​[− ​​(y​(​P​​n ′ ​​​)​ − θ)​​​ 2​ | ​P​​n ′ ​​​]​ 
<  E​[− ​​(​y​ k, ​n​​ ∗​​(c)​​ ∗  ​ − θ)​​​ 2​ | ​n​​ ∗​​(c)​]​​ and again it is negative by the definition of ​​n​​ ∗​​(c)​​. ∎

Proof of Proposition 3: 
We start from the observation that for any integer ​l​, ​​n​​ ∗​​(c)​  =  l​ 

for ​​  1 _  
6​(l + 2)​ ​(l + 3)​ ​ < c < ​  1 _  

6​(l + 1)​ ​(l + 2)​ ​​ , hence, also for any ​c​ in the interval required 

by the proposition. The proof will show that if the conditions in the proposition hold, 
then in equilibrium the expert acquires ​​n​​ ∗​​(c)​ + 1  =  l + 1​ trials and fully reveals 
their outcome.

First, by Lemma 2, full revelation of the outcome of ​l + 1​ trials is incentive com-
patible for ​b ≤ ​  1 _ 

2​(l + 3)​ ​​ , hence, it is incentive compatible for ​b ≤ ​  1 _ 
4​(l + 3)​ ​​.

Next, we establish that the expert has no incentive to acquire a number of trials 
different from ​l + 1​. The expert’s expected payoff from performing ​l + 1​ trials and 
fully revealing the outcome is equal to ​W​(l + 1)​  =  − ​  1 _ 

6 (l + 3) ​ − ​b​​ 2​​.
Because ​​  1 _  

6​(l + 2)​ ​(l + 3)​ ​ < c < ​  1 _  
6​(l + 1)​ ​(l + 2)​ ​​ and ​b ≤ ​  1 _ 

4​(l + 3)​ ​​ , the proof of 

Proposition 4—interchanging ​​n​​ ∗​​ with ​l + 1​—implies that deviating from ​l + 1​ tri-

als to run ​n > l + 1​ trials is not profitable.

By concavity of ​W​, ​​ W​(l + 1)​ − W​(l − j)​  ____________ j + 1  ​ > ​ W​(l + 1)​ − W​(l − 1)​  ____________ 2  ​​. Hence, requiring 

that ​c < ​ W​(l + 1)​ − W​(l − 1)​  ____________ 2  ​  = ​   1 _  
6​(l + 1)​ ​(l + 3)​ ​​ deters all deviations from ​l + 1​ to ​

l − j,​  ​j  =  1,  … , l​.
Finally, a deviation to ​l​ trials is not profitable for the expert if ​c < W​(l + 1)​ − 

​W ˆ ​​(l)​​, where ​​W ˆ ​​(l)​​ is the payoff that the expert obtains if he deviates to l trials. The 
rest of the proof establishes that for ​l > 4​ , ​​  1 _  

6 (l + 1)  (l + 3) ​ < W​(l + 1)​ − ​W ˆ ​​(l)​​ , 
hence, requiring that ​c < ​  1 _  

6 (l + 1)  (l + 3) ​​ guarantees that the deviation to ​l​ trials 

is not profitable. Also, it establishes that for ​l < 4​ , the value of ​​  1 _  
6 (l + 1)  (l + 3) ​ − 

​[W​(l + 1)​ − ​W ˆ ​​(l)​]​​ is at most ​​ 1 _ 3 ​b​ if ​l  =  0​ , ​​ 24b − 1 _ 96  ​​ if ​l  =  1​, ​​ 30b − 1 _ 
450

  ​​ if 

​l  =  2​ , ​​ 30b − 1 _ 360  ​​ if ​l  =  3​ , and ​​ 63b − 2 _ 
735

  ​​ if ​l  =  4​ , hence, the condition in the proposi-

tion guarantees that ​c < min​{​  1 _  
6 (l + 1)  (l + 3) ​, ​[W​(l + 1)​ − ​W ˆ ​​(l)​]​}​​.
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To calculate ​W​(l + 1)​ − ​W ˆ ​​(l)​​ , we need to compute ​​W ˆ ​​(l)​​. Denoting by ​​y​j​​​ the 

action in the set ​​{0, ​  1 _ 
l + 3 ​,  … , ​ l + 1 _ 

l + 3 ​}​​ preferred by an expert who observed ​j​ suc-
cesses in ​l​ trials, we obtain

​   ​   W ˆ ​​(l)​  = ​   1 _ 
l + 1 ​ ​ ∑ 

j=0
​ 

l

  ​​ ​W ˆ ​ ​(j, l; ​y​j​​)​ 

	 = − ​ ∑ 
j=0 

​ 
l

  ​​ ​  1 _ 
l + 1 ​ ​(​y​j​​ − b)​​ 2​ + 2​ ∑ 

j=0
​ 

l

  ​​ ​  j + 1
 ___________  

​(l + 1)​ ​(l + 2)​ ​(​y​j​​ − b)  − ​ 1 _ 
3
 ​

	 = − ​ 1 _ 
3
 ​ − ​ ∑ 

j=0
​ 

l

  ​​ ​ 
​y​j​​ − b

 _ 
l + 1 ​​[​y​j​​ − b − 2 ​ j + 1

 _ 
l + 2 ​]​.​

Hence,

​	 W​(l + 1)​ − ​W ˆ ​​(l)​  = − ​  1 _ 
6 (l + 3) ​ − ​b​​ 2​ + ​ 1 _ 

3
 ​ + ​ ∑ 

j=0
​ 

l

  ​​ ​ 
​y​j​​ − b

 _ 
l + 1 ​​[​y​j​​ − b − 2 ​ j + 1

 _ 
l + 2 ​]​​

	​ = ​  2k + 5 _ 
6​(l + 3)​ ​ − ​b​​ 2 ​+ ​ ∑ 

j=0
​ 

l

  ​​ ​ 
​y​j​​ − b

 _ 
l + 1 ​​[​y​j​​ − b − 2 ​ j + 1

 _ 
l + 2 ​]​.​

Next, we characterize the expert’s preferred action ​​y​j​​​ , for ​j  =  0,  … , l​. First, 

we establish that ​​y​j​​ ∈ ​{​ j + 1
 _ 

l + 3 ​, ​ j + 2
 _ 

l + 3 ​}​​. The payoff of type ​j​ is maximized by action  

​​ j + 1
 _ 

l + 2 ​+ b > ​ j + 1
 _ 

l + 3 ​​ , hence, the action ​​ j + 1
 _ 

l + 3 ​​ is preferred to any smaller action. Also, 

 ​​ j + 1
 _ 

l + 2 ​ < ​ j + 2
 _ 

l + 3 ​​ , hence, the fact that in equilibrium the type whose payoff is maxi-

mized by ​​ j + 2
 _ 

l + 3 ​ + b​ is willing to truthfully reveal his type guarantees that after a 

deviation to ​l​ trials the action ​​ j + 2
 _ 

l + 3 ​​ is preferred to any larger action.
Second, we observe that a sender whose payoff is maximized by ​​ j + 1

 _ 
l + 2 ​ + b​ will 

choose to induce action ​​ j + 1
 _ 

l + 3 ​​ rather than ​​ j + 2
 _ 

l + 3 ​​ if and only if ​2b + ​  2j − l
 _  

​(l + 2)​ ​(l + 3)​ ​ > 0​ 

and this quantity is increasing in ​j​ , hence, for any bias such that ​b ≤ ​  1 _ 
4​(l + 3)​ ​​ , we can 

find a threshold ​J  = ​ ⌊−b​(n + 2)​​(n + 3)​ + ​ n _ 2 ​⌋​ ≤ ​ n _ 2 ​​ such that types ​j ≤ J​ prefer 

action ​​ j + 1
 _ n + 3 ​​ and types ​j > J​ prefer action ​​ j + 2

 _ n + 3 ​​. Notice that ​J  =  −1​ denotes the 

case where all types ​j​ prefer action ​​ j + 2
 _ n + 3 ​​.

Then, the difference ​W​(l + 1)​ − ​W ˆ ​​(l)​​ can be rewritten as 

​W​(l + 1)​ − ​W ˆ ​​(l)​

	 = ​  2k + 5 _ 
6​(l + 3)​ ​ − ​b​​ 2​ + 2​ ∑ 

j=0
​ 

J

  ​​ ​ 
​ j+1

 _ 
l+3 ​ − b

 _ 
l + 1  ​​(​ 

​ j+1
 _ 

l+3 ​ − b
 _ 

2
  ​ − ​ j + 1

 _ 
l + 2 ​)​ + 2​ ∑ 

j=J+1
​ 

l

  ​​​ 
​ j+2

 _ 
l+3 ​ − b

 _ 
l + 1  ​​(​ 

​ j+2
 _ 

l+3 ​ − b
 _ 

2
  ​ − ​ j + 1

 _ 
l + 2 ​)​

	 = ​ 
2​J​​ 2​ + 2J​(12b − l + 10bk + 2b​k​​ 2 ​+ 1)​ + 2 + 12b + l − 2bk + ​l​​ 2​ − 8b​k​​ 2​ − 2b​k​​ 3​

        ___________________________________________________     
2​(l + 1)​ ​(l + 2)​ ​​(l + 3)​​​ 2​

  ​​.
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It is easy to check that ​​  1 _ 
6 (l+2)  (l+3) ​​ is smaller than the above expression for any ​J​ , 

hence the range for ​c​ identified in the statement of the proposition is nonempty.
Next, we consider the following difference:

​W​(l + 1)​ − ​W ˆ ​​(l)​ − ​  1 ___________  
6​(l + 1)​ ​(l + 3)​ ​​

​  = ​ 
2​J​​ 2​+ 2J​(12b − l + 10bk + 2b​k​​ 2​ + 1)​ + 2 + 12b + l − 2bk +​ l​​ 2​ − 8b​k​​ 2​ − 2b​k​​ 3​

        ___________________________________________________     
2​(l + 1)​ ​(l + 2)​ ​​(l + 3)​​​ 2​

  ​

	 − ​  1 ___________  
6​(l + 1)​ ​(l + 3)​ ​

	 = ​ 
3​J​​ 2​ + J​(36b − 3k + 30bk + 6b​k​​ 2​ + 3)​ + 18b − l − 3bk +​ l​​ 2​ − 12b​k​​ 2​ − 3b​k​​ 3​

        ___________________________________________________     
3​​(l + 3)​​​ 2​​(l + 1)​ ​(l + 2)​

  ​ ​.

The denominator is positive. The numerator is a quadratic expres-
sion in ​J​. For ​l ≥ 8​ , this quadratic is positive for any ​l​ and any ​b​, hence, ​ 
min​{​  1 _  

6 (l + 1)  (l + 3) ​, ​[W​(l + 1)​ − ​W ˆ ​​(l)​]​}​  = ​   1 _  
6​(l + 1)​ ​(l + 3)​ ​​. Using the definition of ​

J​ , we have that:
For ​l  =  0​ , ​J  =  −1​ and ​W​(l  +  1)​  −  ​W ˆ ​​(l)​  =  ​ 1  −  6b _____ 

18
 ​​  , hence, ​​  1 _  

6 (l  +  1)  (l  +  3) ​  −   
​[W​(l  +  1)​  −  ​W ˆ ​  ​(l)​]​  =  ​ b _ 3 ​​.

For ​l  =  1​, if ​b  ≤  ​ 1 _ 24 ​​, ​J  =  0​ and   ​​  1 _________  
6(l  +  1)(l  +  3) ​  −  ​[W​(l  +  1)​  −  ​W ˆ ​  ​(l)​]​  =  0​. If instead  

​​ 1 _ 24 ​  <  b  <  ​ 1 _ 16 ​​ , then ​J  =  −1​ and  ​​  1 _________  
6 (l  +  1)(l  +  3) ​  −  ​[W​(l  +  1)​  −  ​W ˆ ​  ​(l)​]​  =  ​ 24b  −  1 _____ 48 ​ .​

For ​l  =  2​, if ​b  ≤  ​ 1 _ 30 ​​ ​J  =  0​ and ​​  1 _  
6(l  +  1)(l  +  3) ​  −  ​[W​(l  +  1)​  −  ​W ˆ ​  ​(l)​]​  <  0​. For  

​b  ∈  ( ​ 1 _ 30 ​  , ​ 1 __ 20 ​ ]​, ​J  =  0​ and ​​  1 _________  
6 (l  +  1)  (l  +  3) ​  −  ​[W​(l  +  1)​  −  ​W ˆ ​   ​(l)​]​  =  ​ 30b  −  1 _____ 

450
 ​ .​

For ​l  =  3​ , if ​b  ≤  ​ 1 __ 60 ​​ ​J  =  1​ and ​​  1 _________  
6 (l  +  1)(l  +  3) ​  −  ​[W​(l  +  1)​  −  ​W ˆ ​  ​(l)​]​  <  0​. For  

​b  ∈  ​[​ 
1 _ 60 ​  , ​ 1 _ 24 ​]​​ , ​J  =  0​ and ​​  1 _________  

6 (l  +  1)  (l  +  3) ​  −  ​[W​(l  +  1)​  −  ​W ˆ ​  ​(l)​]​  =  ​ 30b  −  1 _____ 320 ​​ .

For ​l  =  4​ , if ​b  ≤  ​ 1 __ 42 ​​ ​J  =  1​ and ​​  1 _________  
6 (l  +  1)  (l  +  3) ​  −  ​[W​(l  +  1)​  −  ​W ˆ ​  ​(l)​]​  <  0​. For  

​b  ∈  ​[​ 
1 _ 42 ​  , ​ 1 _ 28 ​]​​, ​J  =  0​ and ​​  1 _________  

6 (l  +  1)  (l  +  3) ​  −  ​[W​(l  +  1)​  −  ​W ˆ ​  ​(l)​]​  =  ​ 63b  −  2 _____ 
735

 ​ .​

For ​l  =  5​ , if b  ≤  ​​  1 ____ 112 ​​ , ​J  =  2​. If ​b  ∈  ​[​ 
1 ___ 112 ​  <  b  ≤  ​ 3 ___ 112 ​]​​, ​J  =  1.​ If  

​b  ∈  ​[​ 
3 ___ 112 ​  <  b  ≤  ​ 5 _ 112 ​]​​, ​J  =  0​. In each of these three cases, ​​  1 _________  

6 (l  +  1)  (l  +  3) ​  −   
​[W​(l  +  1)​  −  ​W ˆ ​  ​(l)​]​  <  0​.

For ​l  =  6​ , from the expression for ​J​ one can see that either ​J  =  1​ or ​J  =  2​. In 
both cases, ​​  1 _________  

6 (l + 1)  (l + 3) ​ − ​[W​(l + 1)​ − ​W ̂ ​​(l)​]​ < 0​.

For ​l  =  7​ , from the expression for ​J​ one can see that either ​J  =  1​ or ​J  =  2​ or ​
J  =  3​. In all these cases, ​​  1 _________  

6(l + 1)(l + 3) ​ − ​[W​(l + 1)​ − ​W ˆ ​​(l)​]​ < 0​.
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We can therefore conclude that for ​l > 4​ , ​​  1 _  
6 (l + 1)  (l + 3) ​ < W​(l + 1)​ − ​W ˆ ​​(l)​​, 

hence, requiring that ​c < ​  1 _  
6 (l + 1)  (l + 3) ​​ guarantees that the deviation to ​l​ trials is not 

profitable. Moreover, we have established that for ​l < 4​ , the value of ​​  1 _  
6 (l + 1)  (l + 3) ​ −  

​[W​(l + 1)​ − ​W ˆ ​​(l)​]​​ is at most ​​ 1 _ 3 ​  b​ if ​l  =  0​, ​​ 24b − 1 _ 96  ​​ if ​l  =  1​, ​​ 30b − 1 _ 
450

  ​​ if ​l  =  2​ , 

 ​​ 30b − 1 _ 360  ​​ if ​l  =  3​, and ​​ 63b − 2 _ 
735

  ​​ if ​l  =  4​ , hence, the condition in the proposition guar-

antees that ​c < min​{​  1 _  
6 (l + 1)  (l + 3) ​, ​[W​(l + 1)​ − ​W ˆ ​​(l)​]​}​​ , hence guarantees that the 

deviation to ​l​ trials is not profitable. ∎

Proof of Proposition 4: 
Consider ​​n​​ ∗​​(c)​​ , the optimal number of trials under direct information acquisition 

defined in (11). To prove the proposition it is sufficient to show that there exists an 
equilibrium in which the sender performs ​​n​​ ∗​​(c)​​ trials and fully reveals his infor-
mation in the communication stage. Such an equilibrium, if it exists, would be the 
expert-preferred equilibrium. So, in any Pareto efficient equilibrium the decision 
maker’s expected payoff has to be (at least weakly) greater than in this equilibrium.

To establish the existence of the desired equilibrium, in which the expert 
runs ​​n​​ ∗​​(c)​​ trials and fully reveals their realizations, first, note that the condition ​

b ≤ ​​(2​√ 
_

 1 + ​ 2 _ 3c ​ ​ + 2)​​​ 
−1

​​ and definition (11) together imply that ​b ≤ ​  1 _ 
2 (​n​​ ∗​(c)  + 2) ​​. 

So, by Lemma 2 full revelation is incentive compatible at the communication stage 
after the expert runs ​​n​​ ∗​​(c)​​ trials.

Further, the expert’s expected payoff after running ​​n​​ ∗​​(c)​​ trials and fully reveal-
ing their realizations is equal to ​− ​  1 _ 

6 (​n​​ ∗​ + 2) ​ − ​b​​ 2​ − c​n​​ ∗​​. By definition, ​​n​​ ∗​(c) ∈  
arg​ max​ n​ ​ ​ − ​  1 _ 

6 (n + 2) ​ − cn​. Hence, ​​n​​ ∗​(c) ∈ arg ​max​ n​ ​ ​W​(n)​ − cn ≡ − ​  1 _ 
6 (n + 2) ​ − ​

b​​ 2​ − cn​.
So, to complete the proof it is sufficient to establish that for any ​n ∈ {0, 1,  … , ∞}​ , ​

W​(n)​ ≥ ​W ˆ ​​(n)​​, where ​​W ˆ ​​(n)​​ is the expected payoff that the expert gets after deviating 
to ​n​ signals.

To establish this inequality, first, note that ​W​(n)​  = ​ ∑ j=0​ 
n
  ​​ ​ W​( j, n)​ _ n + 1 ​​, where

(A8) ​ W​( j, n)​  =  −​∫ 
0
​ 
1
​​​​(E​[ θ | j, n]​ − θ − b)​​​ 2​f ​(θ | j, n)​ dθ

	 =  −​∫ 
0
​ 
1
​​​​(E​[θ | j, n]​ − θ)​​​ 2​f ​(θ | j, n)​ dθ − ​b​​ 2​

	 =  −​[​​(E​[θ | j, n]​)​​​ 2​ − 2 ​(E​[θ | j, n]​)​ ​ j + 1
 _ 

n + 2 ​ + ​ 
​( j + 2)​(j + 1)

  ___________  
​(n + 3)​(n + 2)

 ​]​ − ​b​​ 2​

	 =  −​[​​(​ j + 1
 _ 

n + 2 ​)​​​ 
2

​ − 2​(​ j + 1
 _ 

n + 2 ​)​ ​ j + 1
 _ 

n + 2 ​ + ​ 
​( j + 2)​( j + 1)

  ___________  
​(n + 3)​(n + 2)

 ​]​ − ​b​​ 2​​

	​ =  −​[​ 
​( j + 2)​( j + 1)

  ___________  
​(n + 3)​(n + 2)

 ​ − ​​(​ j + 1
 _ 

n + 2 ​)​​​ 
2

​]​ − ​b​​ 2​​.
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Similarly, ​​W ˆ ​​(n)​  = ​ ∑ j=  0​ 
n
  ​​​ ​W ˆ ​​( j, n;)​ _____ n + 1 ​​  , where

(A9) ​​ W ˆ ​​( j, n)​  = − ​  max​  
​y​j​​∈​{​  1 _ ​n​​ ∗​+ 2 ​, ​  2 _ ​n​​ ∗​+ 2 ​,  … , ​ ​n​​ ∗​ + 1 _ ​n​​ ∗​ + 2 ​}​

​  ​ ​​ ∫ 
0
​ 
1
​​​​(​y​j​​ − θ − b)​​​ 2​f ​(θ | j, n)​ dθ

	 = −​∫ 
0
​ 
1
​​​[​(​y​j​​ − b)​​ 2​ + ​θ​​ 2​ − 2θ (​y​j​​ − b)]​ ​ 

​(n + 1)​!
 _ 

j!​(n − j)​! ​​ θ​​ 
 j​​​(1 − θ)​​​ n−j​dθ

	 = −​[​(​y​j​​ − b)​​ 2​ + ​∫ 
0
​ 
1
​​​ 
​(n + 1)​!

 _ 
j!​(n − j)​! ​​θ​​ 

 j+2​​​(1 − θ)​​​ n−j​dθ 

	 − 2 (​y​j​​ − b) ​∫ 
0
​ 
1
​​​ 
​(n + 1)​!

 _ 
j!​(n − j)​! ​​θ​​ 

 j+1​​​(1 − θ)​​​ n−j​dθ]​ 

	 = −​[​(​y​j​​ − b)​​ 2 ​+ ​ 
​(n + 1)​!

 _ 
j!​(n − j)​! ​ ​ 

​(2 + j)​!​(n − j)​!
  ___________  

​(n+3)​!  ​ − 2 (​y​j​​ − b)​ 
​(n + 1)​!

 _ 
j!​(n − j)​! ​ ​ 

​(1 + j)​!​(n − j)​!
  ___________  

​(n + 2)​!  ​]​ 

	 = −​[​​(​y​j​​ − b)​​​ 2​ − 2​(​y​j​​ − b)​ ​ j + 1
 _ 

n + 2 ​ + ​ 
​( j + 2)​( j + 1)

  ___________  
​(n + 3)​(n + 2)

 ​]​.​

Note that the message ​​y​j​​​ optimally chosen by type ​j​ (i.e., the expert who 
observed ​j​ successes in ​n​ trials) has to be compatible with the equilibrium 
beliefs that he has acquired ​​n​​ ∗​​ signals, even off the equilibrium path. Therefore,  

​​y​j​​ ∈ ​{​  1 _ ​n​​ ∗ ​+ 2 ​, ​  2 _ ​n​​ ∗ ​+ 2 ​,  … , ​ ​n​​ ∗ ​+ 1 _ ​n​​ ∗ ​+ 2 ​}​​.
The proof proceeds by showing that for any ​j ≤ n − j​,

(A10)	​ D​( j, n)​ ≡ ​[W​( j, n)​ − ​W ˆ ​​( j, n; ​y​j​​)​]​

	 + ​[W​(n − j, n)​ − ​W ˆ ​​(n − j, n; ​y​n−j​​)​]​ ≥ 0.​

Since types ​j​ and ​n − j​ are ex ante equally likely after ​n​ experiments, inequality 
(A10) implies that ​W​(n)​ ≥ ​W ˆ ​​(n)​​.22

Before computing ​D​( j, n)​​ let us establish the following useful property.

Claim A. Suppose that ​​y​j​​  = ​  k + 1 _ ​n​​ ∗ ​+ 2 ​​ for some ​k ∈ {0, 1,  … , ​n​​ ∗​}​. Then either ​​

y​n−j​​  = ​  ​n​​ ∗​ − k + 1 _ ​n​​ ∗ ​+ 2  ​​ or ​​y​n−j​​  = ​  ​n​​ ∗​ − k + 2 _ ​n​​ ∗ ​+ 2  ​​.

Proof of Claim A: 
For any ​j ∈ {0, 1,  … , n}​ , define

22 If ​n​ is odd, there is an even number of possible types ​{0, 1,  … , n + 1}​  and ​​ n + 1 _ 2  ​​ pairs of types ​​( j, n − j)​​ 
with ​j ≤ n − j​. If ​n​ is even, then there is an odd number of possible types, and so there are ​​ n _ 2 ​​ pairs ​​( j, n − j)​​ with ​

j < n − j​ , plus the type ​​ n _ 2 ​​. When ​j  = ​  n _ 2 ​​ , we have ​n − j  =  j​. In this case, ​D​(​ n _ 2 ​, n)​  =  2​[W​(​ n _ 2 ​, n)​ − ​W ˆ ​​(j, n; ​y​j​​)​]​​. 
The result then follows by showing that ​D​(​ n _ 2 ​, n)​ > 0​ and that ​D​( j, n)​ > 0​ for each pair ​​( j, n − j)​​ with ​j < ​ n _ 2 ​​. 
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(A11)	​ ​k​j​​ ∈ ​ arg min​ 
k′=0,  … , ​n​​ ∗​

​ 
 
 ​​ |​ k′ + 1 _____ ​n​​ ∗​ + 2 ​ − ​(​ j + 1

 _ 
n + 2 ​ + b)​|​.​

If for some ​j​ , the maximizer ​​k ′ ​​ of the above expression is not unique, then choose 

one of the (two) maximizers arbitrarily and set it equal to ​​k​j​​​. So, ​​y​j​​  = ​ 
​k​j​​ + 1

 _ ​n​​ ∗​ + 2 ​​.
We need to distinguish two cases: 

Case 1: ​​y​j​​  = ​ 
​k​j​​ + 1

 _ ​n​​ ∗​ + 2 ​ ≤ ​ j + 1
 _ n + 2 ​​, and Case 2: ​​y​j​​  = ​ 

​k​j​​ + 1
 _ ​n​​ ∗​ + 2 ​ > ​ j + 1

 _ n + 2 ​​.

Let us start with Case 1. We will show that in this case, ​​y​n−j​​  = ​ 
​n​​ ∗​ − ​k​j​​ + 1

 _ ​n​​ ∗​ + 2  ​​.

Since ​b ≥ 0​ , we have: ​0 ≤ ​ j + 1
 _ n + 2 ​ − ​ 

​k​j​​ + 1
 _ ​n​​ ∗​ + 2 ​ ≤ ​ 

​k​j​​ + 2
 _ ​n​​ ∗​ + 2 ​ − ​ j + 1

 _ n + 2 ​​. By (A11),  

​​|​ ​k​​ j​ + 1 _ ​n​​ ∗​ + 2 ​ − ​(​ j + 1
 _ n + 2 ​ + b)​|​ ≤ ​|​ ​k​​ j​ + 2 _ ​n​​ ∗​ + 2 ​ − ​(​ j + 1

 _ n + 2 ​ + b)​|​​. So we have

(A12) ​​ |​ ​n​​ ∗​ − ​k​​  j​ + 1 _ ​n​​ ∗​ + 2  ​ − ​(​ n − j + 1
 _ 

n + 2  ​ + b)​|​  = ​ |​ j + 1
 _ 

n + 2 ​ − ​ ​k ​​ j​ + 1 _ ​n​​ ∗​ + 2 ​ − b|​ ≤ b + ​|​ j + 1
 _ 

n + 2 ​ − ​ ​k​​ 
 j​ + 1 _ ​n​​ ∗​ + 2 ​|​

  ≤ b + ​|​ ​k​​ j ​+ 2 _ ​n​​ ∗ ​+ 2 ​ − ​ j + 1
 _ 

n + 2 ​|​  = ​ |b + ​ ​k​​ 
j ​+ 2 _ ​n​​ ∗​ + 2 ​ − ​ j + 1

 _ 
n + 2 ​|​  = ​ |​ ​n​​ ∗​ − ​k ​​ j​ _ ​n​​ ∗ ​+ 2 ​ − ​(​ n − j + 1

 _ 
n + 2  ​ + b)​|​.​

Inequality (A12) implies that type ​n − j​ prefers the action ​​ 
​n​​ ∗​ − ​k​j​​ + 1

 _ ​n​​ ∗​ + 2  ​​ associated 

with message ​​n​​ ∗​ − ​k​j​​​ to the action ​​ 
​n​​ ∗​ − ​k​j​​ _ ​n​​ ∗​ + 2 ​​ associated with message ​​n​​ ∗​ − ​k​j​​ − 1​. This, 

in combination with ​​ 
​n​​ ∗​ − ​k​j​​ + 1

 _ ​n​​ ∗ ​+ 2  ​ ≥ ​ n − j + 1
 _ n + 2  ​​ and the fact that the utility function of 

type ​n − j​ is single-peaked around the maximum ​​ n − j + 1
 _ n + 2  ​ + b​, ​b ≥ 0​ , implies that 

type ​n − j​ prefers message ​​n​​ ∗​ − ​k​j​​​ to any message lower than ​​n​​ ∗​ − ​k​j​​ − 1​.
Let us now show that type ​n − j​ also prefers to send message ​​n​​ ∗​ − ​k​j​​​ associ-

ated with action ​​ 
​n​​ ∗​ − ​k​j​​ + 1

 _ ​n​​ ∗​ + 2  ​​ rather than any higher message associated with a higher 

action. This is immediate if ​​ n − j + 1
 _ n + 2  ​ + b ≤ ​ 

​n​​ ∗​ − ​k​j​​ + 1
 _ ​n​​ ∗​ + 2  ​​. If, on the other hand, 

​​ n − j + 1
 _ n + 2  ​ + b > ​ 

​n​​ ∗​ − ​k​j​​ + 1
 _______ ​n​​ ∗​ + 2 ​​  , this follows from the following facts: 

(i) ​​ n − j + 1
 _ n + 2  ​ ≤ ​ 

​n​​ ∗​ − ​k​j​​ + 1
 _ ​n​​ ∗​ + 2  ​​ , so ​​ n − j + 1

 _ n + 2  ​ + b − ​ 
​n​​ ∗​ − ​k​j​​ + 1

 _ ​n​​ ∗​ + 2  ​ ≤ b ≤ ​  1 _ 
2 (​n​​ ∗​ + 2) ​​; 

(ii) ​​ 
​n​​ ∗​ − ​k​j​​ + 2

 _ ​n​​ ∗​ + 2  ​ − ​ n − j + 1
 _ n + 2  ​ − b ≥ ​  1 _ ​n​​ ∗​ + 2 ​ − b ≥ ​  1 _ 

2 (​n​​ ∗​ + 2) ​​; (iii) type (​n − j​)’s pay-

off function is symmetric and single-peaked at ​​ n − j + 1
 _ n + 2  ​ + b​.

Next, consider Case 2: ​​y​j​​  = ​ 
​k​j​​ + 1

 _ ​n​​ ∗​ + 2 ​ > ​ j + 1
 _ n + 2 ​​. Let us show that in this case  

​​y​n−j​​ ∈ ​{​ 
​n​​ ∗​ − ​k​j​​ + 1

 _ ​n​​ ∗​ + 2  ​, ​ 
​n​​ ∗​ − ​k​j​​ + 2

 _ ​n​​ ∗​ + 2  ​}​​.

Since ​​ 
​n​​ ∗​ − ​k​j​​ + 1

 _ ​n​​ ∗​ + 2  ​ < ​ n − j + 1
 _ n + 2  ​​ and ​b ≥ 0​ , the expert of type ​n − j​ gets a strictly 

higher payoff from action ​​ 
​n​​ ∗​ − ​k​j​​ + 1

 _ ​n​​ ∗​ + 2  ​​ than from any lower action. Thus, it remains 

to show that type (​n − j​)’s expected utility from action ​​ 
​n​​ ∗​ − ​k​j​​ + 2

 _______ ​n​​ ∗​ + 2 ​​  is higher than her 
expected utility from any higher action.
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Further, note that we must have ​​ j + 1
 _ n + 2 ​ ≥ ​ 

​k​j​​ _ ​n​​ ∗​ + 2 ​​. Otherwise, since ​b ≤ ​  1 _ 
2 (​n​​ ∗​ + 2) ​​, 

type ​j​ would get a higher utility from action ​​ 
​k​j​​ _ ​n​​ ∗​ + 2 ​​ than from action ​​ 

​k​j​​ + 1
 _ ​n​​ ∗​ + 2 ​​ , which 

would contradict ​​y​j​​  = ​ 
​k​j​​ + 1

 _ ​n​​ ∗​ + 2 ​​.

Thus, ​​ n − j + 1
 _ n + 2  ​ ≤ ​ 

​n​​ ∗​ − ​k​j​​ + 2
 _ ​n​​ ∗​ + 2  ​​, and since the expected utility function of 

the type ​n − j​ is symmetric around its maximum at ​y  = ​  n − j + 1
 _ n + 2  ​ + b​ and ​

b ≤ ​  1 _ 
2 (​n​​ ∗​ + 2) ​​ , we conclude that the type ​n − j​ gets a higher expected utility from  

action ​​ 
​n​​ ∗​ − ​k​j​​ + 2

 _ ​n​​ ∗ ​+ 2  ​​ than from any other actions. This completes the proof of Claim A.
Let us now turn back to the proof of the proposition and compute ​D​( j, n)​​. From 

(A8), (A9), (A10), we have

(A13)  ​D​( j, n)​  = ​  ​( j + 1)​​ 2​ _ 
​(n + 2)​​ 2​

 ​ + ​ ​(n − j + 1)​​ 2​  _ 
​(n + 2)​​ 2​

 ​  − 2​b​​ 2​ + ​​(​y​j​​ − b)​​​ 2​   +  ​​(​y​n−j​​  −  b)​​​ 2​ 

	 − 2​(​y​j​​ − b)​ ​ j + 1
 _ 

n + 2 ​  − 2​(​y​n−j​​ − b)​ ​ n − j + 1
 _ 

n + 2  ​​

	 =  ​​ ​( j + 1)​​ 2​ _ 
​(n + 2)​​ 2 ​

 ​ + ​ ​(n − j + 1)​​ 2​ _ 
​(n + 2)​​ 2​

 ​  + ​y​ j​ 2 ​+ ​y​ n−j​ 2  ​  −  2​y​j ​​​ 
j + 1

 _ 
n + 2 ​  

	 −  2​y​n−j​​ ​ 
n − j + 1

 _ 
n + 2  ​ 	− 2b (​y​j ​​+​ y​n−j​​ − 1)​

	​ = ​​ (​y​j​​ − ​ ( j + 1)
 _ (n + 2) ​)​​​ 

2

​ + ​​(​y​n−j​​ − ​ (n − j + 1)
 _ (n + 2)  ​)​​​ 

2

​ 

	 − 2b (​y​j​​ + ​y​n−j​​ − 1).​

If ​​y​n−j​​  = ​ 
​n​​ ∗​ − ​k​j ​​+ 1

 _ ​n​​ ∗ ​+ 2  ​​ , then ​​y​j​​ + ​y​n−j​​  =  1​, and, hence, by (A13) ​D​( j, n)​  

= ​​ (​y​j​​ − ​ ( j + 1)
 _ (n + 2) ​)​​​ 

2 

​+ ​​(​y​n−j​​ − ​ (n − j + 1)
 _ (n + 2)  ​)​​​ 

2

​​. The latter expression is nonnegative.

If instead ​​y​n−j​​  = ​ 
​n​​ ∗​ − ​k​j ​​+ 2

 _ ​n​​ ∗ ​+ 2  ​​ , then ​​y​j​​ + ​y​n−j​​  =  1 + ​  1 _ ​n​​ ∗​ + 2 ​​. So, by (A13),

​(A14)	 D​( j, n)​  = ​​ (​y​j​​ − ​ j + 1
 _ 

n + 2 ​)​​​ 
2

​ + ​​(​y​n−j​​ − ​ n − j + 1
 _ 

n + 2  ​)​​​ 
2

​ − ​  2b _ ​n​​ ∗ ​+ 2 ​

	 = ​​ (​ j + 1
 _ 

n + 2 ​ − ​ 
​k​j​​ _ ​n​​ ∗ ​+ 2 ​)​​​ 

2

​ + ​​(​ 
​k​j ​​+ 1

 _ ​n​​ ∗ ​+ 2 ​ − ​ j + 1
 _ 

n + 2 ​)​​​ 
2

​ − ​  2b _ ​n​​ ∗​ + 2 ​​ .

In the proof of Case 2 of Claim A, we have established that  

​​ 
​k​j​​ _ ​n​​ ∗​ + 2 ​ ≤ ​ j + 1

 _ n + 2 ​ ≤ ​ 
​k​j ​​+ 1

 _ ​n​​ ∗ ​+ 2 ​​. Observe that ​​ 
​k​j ​​+ 1

 _ ​n​​ ∗ ​+ 2 ​ − ​ 
​k​j​​ _ ​n​​ ∗ ​+ 2 ​  = ​   1 _ ​n​​ ∗ ​+ 2 ​​. So the value of 



154	 American Economic Journal: microeconomics� August 2016

the first two terms of ​D​( j, n)​​ , ​​​(​ j + 1
 _ n + 2 ​ − ​ 

​k​j​​ _ ​n​​ ∗ ​+ 2 ​)​​​ 
2 

​+ ​​(​ 
​k​j ​​+ 1

 _ ​n​​ ∗ ​+ 2 ​ − ​ j + 1
 _ n + 2 ​)​​​ 

2

​​  depends 

only on ​​ 
​k​j ​​+ 1

 _ ​n​​ ∗ ​+ 2 ​ − ​ j + 1
 _ n + 2 ​​ and reaches its minimum when ​​ j + 1

 _ n + 2   ​  = ​ 
​k​j ​​ + 1/2

 _ ​n​​ ∗ ​+ 2  ​​. In this 

case, ​​​(​ j + 1
 _ n + 2 ​ − ​ 

​k​j​​ _ ​n​​ ∗ ​+ 2 ​)​​​ 
2

​+ ​​(​ 
​k​j ​​+ 1

 _ ​n​​ ∗ ​+ 2 ​ − ​ j + 1
 _ n + 2 ​)​​​ 

2

​  = ​   1 _ 
2​(n + 2)​​ 2​

 ​​  and ​D​( j, n)​  = ​   1 _ 
2​(n + 2)​​ 2​

 ​  

− ​  2b _ ​n​​ ∗ ​+ 2 ​​. Hence, ​D​( j, n)​ ≥ 0​ when ​b ≤ ​  1 _ 
4 (​n​​ ∗​ + 2) ​​. This concludes the proof that 

under the given conditions on the parameters, ​D​( j, n)​ ≥ 0​ hence ​W​(n)​ ≥ ​W ˆ ​​(n)​​. ∎

Proof of Proposition 5: 
The proof of proposition 1 shows that if ​b ≤ ​​(​√ 

_
 1 + ​ 2 _ 3c ​ ​ + 3)​​​ 

−1
​​ and ​c ≤ ​ 5 − ​√ 

_
 17 ​ _ 48  ​​ , 

the overt game has an equilibrium in which the partner acquiring information per-
forms ​​n​​ ∗​(c) + 1​ trials and then reveals them to the decision-making partner, so that  
​E​[− ​​(​y –​ − θ)​​​ 2  ​|  ]​  =  E​[− ​​(​y​​ ∗​ − θ)​​​ 2 ​| ​n​​ ∗​(c) + 1]​.​ The stronger result that

	​ E​[− ​​(​y –​ − θ)​​​ 2 ​|  ]​ − E​[− ​​(​y​​ ∗​ − θ)​​​ 2 ​|​ n​​ ∗​(c)]​

	 =  E​[− ​​(​y​​ ∗​ − θ)​​​ 2​ | ​n​​ ∗​(c)  + 1]​ − E​[− ​​(​y​​ ∗​ − θ)​​​ 2 ​| ​n​​ ∗​(c)]​

	 ≥ ​[n − ​n​​ ∗​(c)]​ ​ c _ 
2
 ​  =  c/2​

is satisfied when the cost ​c​ is not too large, i.e., when

	​ − ​  1 _  
6 (​n​​ ∗​(c) + 3) ​ − ​ c _ 

2
 ​  (​n​​ ∗​(c) + 1) ≥ − ​  1 _  

6 (​n​​ ∗​(c) + 2) ​ − ​ c _ 
2
 ​​  n​​ ∗​(c).​

This inequality is satisfied when ​c ≤ ​  1 _____________  
3​(​n​​ ∗​(c)  + 3)​ ​(​n​​ ∗​(c)  + 2)​ ​,​ which always holds, 

as follows from the expression (11) for ​​n​​ ∗​​(c)​​ in the statement of Lemma (4).
Likewise, the proof of Proposition 3 shows that if ​b ≤ ​  1 _ 

4​(n + 3)​ ​​ , 

and ​​  1 __________  
6 (n + 2)(n + 3) ​ < c < ​  1 __________  

6 (n + 1)(n + 3) ​ − max​{0, ​(​ 1 _ 3 ​b)​ ​핀​n=0​​, ​(​ 24b − 1 _ 96  ​)​ ​핀​n=1​​,  

​(​ 30b − 1 _ 
450

  ​)​ ​핀​n=2​​,​​ ​​​(​ 30b − 1 _ 360  ​)​ ​핀​n=3​​, ​(​ 63b − 2 _ 
735

  ​)​ ​핀​n=4​​}​​, then the covert game has an 

equilibrium in which the partner acquiring information performs ​​n​​ ∗​(c) + 1​ trials 
and then reveals them to the decision-making partner. Because ​​  1 _  

6 (n + 1)(n + 3) ​ ≤  

​  1 _  
3​(n + 3)​​(n + 2)​ ​,​ the constraint that ​c ≤ ​  1 _____________  

3​(​n​​ ∗​(c) + 3)​​(​n​​ ∗​(c) + 2)​ ​​ does not impose any 

additional constraint on the sufficient conditions of 3. ∎​​
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