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Abstract

In hepatitis C virus (HCV) epidemiological studies, the estimation of progres-

sion to cirrhosis and prognostic effects of associated risk factors is of particular

importance when projecting national disease burden. However, the progression

estimates obtained from conventional methods could be distorted due to a referral

bias [11]. In recent years, several approaches have been developed to handle this

epidemiological bias in analyzing time-to-event data. This paper proposes a new

estimation approach for this problem under a semiparametric proportional haz-

ards framework. The new method uses a martingale approach based on the mean

rate function, rather than the traditional hazard rate function, and develops an

iterative algorithm to estimate the Cox regression parameter and baseline hazard

rate simultaneously. The consistency and asymptotic properties of the proposed

estimators are derived theoretically and evaluated via simulation studies. The new
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method is also applied to a real HCV cohort study.

Keywords: Censoring; Martingale; Proportional hazards model; Referral bias;

Truncation.

1 Introduction

In hepatitis C virus (HCV) epidemiological studies, unbiased estimation of

progression from HCV infection to a particular outcome event of interest, such

as liver cirrhosis, is of considerable importance when projecting national HCV

disease burden [2, 7, 11, 17, 20]. However widely varying estimates of progression

rate have been reported, mainly due to the referral bias in hepatitis C epidemiology

[8, 9, 10, 11, 27, 29]. Clinically the patients with more rapid disease progression

are preferentially referred to specialist clinics at later stages of disease [11]. If

so, the conventional analysis based on liver clinic cohorts will lead to a biased

estimate of the progression rate among the HCV patient community [9, 11]. [10]

proposed a pseudo score weighting approach to correct the estimation biases and

recover the parameters. However, its performance depends on strong assumptions

about referral patterns and a sound estimate of the selection probability. It may

be difficult to justify the assumptions about referral patterns in practice.

To reduce the uncertainty involved in the assumptions, [6] modeled such re-

ferral bias under a survival analysis framework with truncation. Consider the

data set studied in [11], where 387 HCV-infected individuals were recruited from

Edinburgh Royal Infirmary’s liver clinic by the end of 1999. An individual’s in-

formation is only available if he or she was referred to the clinic cohort before

the end of study recruitment, that is, the observed data is subject to a univariate

truncation R ⩽ L [6]. Here R is the period from infection to referral to the liver

clinic and L is the time from infection to the end of recruitment. Our main interest
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is the incubation period (time T ) from HCV infection to development of cirrhosis,

which is subject to right censoring at C, the time from infection to last diagnosis

(such as an invasive biopsy test) follow-up. The event times (R, T ) are correlated,

because referral is increasingly likely the closer a patient is to developing cirrhosis

[11]. [6] proposed a new approach by transforming the epidemiological bias prob-

lem to a nonparametric bivariate survival analysis modelling with the presences

of both censoring and truncation and proposed new estimators for the bivariate

distribution function based on the idea of a polar coordinate transformation [5].

To further study how the progression risk (hazard rate) of the cirrhosis event is

affected by risk factors, [29] proposed an accelerated failure time model to obtain a

robust debiasing estimate for the effect of covariates by modelling the dependency

of outcome event time on referral time. The proposed method in [29], however,

cannot deal with time-dependent covariates, which may be a constraint for its ap-

plication since the incubation time from HCV infection to cirrhosis usually lasts

for a quite long period (more than 10 years) and time-dependent covariates are of-

ten available as potential predictors over follow-up. More recently, [27] developed

a maximum likelihood estimating approach for this referral bias problem using

parametric Weibull regression models.

In this paper, we will develop a new estimation approach under Cox pro-

portional hazards framework for modelling time-to-event data with referral bias,

where time-dependent covariates are also allowed. For the pair of time-to-event

variables (R, T ) discussed above, we consider the following survival model for the

hazard function of T , the cirrhosis time,

Λ(dt) = Λ0(dt) · exp
[
W⊤(t−)β

]
, (1)

where W (t) is a possibly time-dependent p-dimensional covariate vector, t− means

3



the left limit, β = (β0, . . . , βp)
⊤ and Λ0 is a completely unspecified continuous

baseline cumulative hazard rate function. Note that if one is interested in the

cross-ratio function estimation, the method proposed in [14] is applicable for such

censored and truncated data. We here focus on the estimation for the above hazard

rate function for T , which is the main interest in this application [29]. For model

(1), if the cirrhosis time T itself is subject to both censoring and truncation, we

can use the methods proposed in [12, 22, 23] and [25]. For the analysis of length-

biased data, which may appear in observational studies where the observed samples

are not randomly selected from the population of interest but with probability

proportional to their length [24], recent research includes [3, 15, 16, 18, 19, 28].

[4] considered nonparametric analysis of bivariate left-truncated competing risks

data. However, all these methods are not applicable in our study because of a

different censoring and truncation framework.

The main challenge in our study comes from the correlations between T and

R (referral is increasingly likely the closer a patient is to developing cirrhosis) and

between C and L (the last diagnosis time for cirrhosis is usually close to the end

of study recruitment). For analysing bivariate time-to-event data, some recent

works include the frailty models in [30] for censored data and the new copula

models under interval sampling in [32, 33]. In this paper, we model the correlation

between R and T and the correlation between C and L through a non-parametric

approach, instead of using parametric frailty or copula methods. We will propose

a new likelihood estimation approach, where the parameter β and Λ0 will be

estimated simultaneously via an iteration algorithm. We will show that such an

iterative algorithm will give a consistent estimate.

This paper is organized as follows. Section 2 introduces the notations and

the likelihood function and develops the estimation algorithm. The large sample
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properties of the estimates are also given in this section. Monte Carlo simulation

studies and a real data analysis are provided in Section 3 and Section 4, respec-

tively. Section 5 gives a discussion for further research work.

2 Methodology

2.1 Preliminaries

We follow the notations in the previous section. The cirrhosis time T with

hazard rate function (1) is of our main interest. Throughout this paper, we assume

that (L,C) is independent of the bivariate event times (R, T ) and assume that

W i(t) is independent of (L,C), similar to [29]. Such an assumption is reasonable

in this particular application, since the truncation time L (end of recruitment) is

determined independently before the study and the censoring time C (last follow-

up time) is usually a certain period after L. Therefore both L and C are not related

to the individual information R, T and W . Such an assumption is also necessary

in the theoretical aspects. This is because if (L,C) and W are correlated then

we would need to model their relations, say via a bivariate proportional hazard

models for (L,C) and W . However, this will be very challenging since (L,C) are

under both truncation and censoring (see the discussion in Section 5). We will

focus on model (1), the proportional hazard model for the univariate variable T ,

but use the information R to remove the selection bias (truncation bias).

We denote X = min{T,C} and δ = I(T ≤ C). Subjects for the whole HCV-

infected population are denoted by [R,L,X, δ,W (t)]. Since only patients with

R ≤ L can be observed, we denote the ith observed data as Xi = min{Ti, Ci}, δi =

I(Ti ≤ Ci), Ri, Li and W i(t). In our study, we also assume that Pr(R ≤ T ) = 1,

which means that a patient will be referred to hospital before he or she develops a
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severe cirrhosis event [29]. Note that throughout this paper, we use letters without

subscript i, such as X or L, representing an object in the whole population and

letters with a subscript label, such as Xi or Li, representing observations from the

study sample (subject to truncation).

Define F i
t = σ{W i(u), u ≤ t} and Ni(dt) = I(Xi ∈ dt, δi = 1), the counting

process of observed failures for the ith individual, and Hi(t) = I(Li ≥ t). We use

the short notation · ∈ dt for · ∈ [t, t+dt). Denote Ft as the filtration for a subject

in the (unbiased) population and G(t, s) = Pr(L > t, C > s) as the joint survival

function for (L,C). The truncation probability is denoted by γ = Pr(R ≤ L). We

assume that subjects with different covariates have the same truncation probability

γ. Although this is a strong assumption, it is reasonable in this hepatitis cohort

study. This is because HCV infected patients usually have no symptoms and

referral to hospital may be due to a health check by chance which implies no causal

relation between R and W . Note that the method proposed in this paper can be

easily extended to the more general framework, where the truncation probability

depends on the covariate information F∞, i.e., γF = Pr(R ≤ L|F∞), since the

truncation probabilities can be estimated via a simple univariate model.

Under model (1), we can show that (see Appendix A)

E{Hi(t)Ni(dt)|F i
t−}

G(t−, t−)
=

1

γ
Λi(dt)e

−Λi(t−), (2)

where Λi(t) =
∫ t

0
exp[W⊤

i (s−)β]Λ0(ds). Define

Ai(dt|β,Λ0) = γ−1G(t−, t−)Λi(dt)e
−Λi(t−), Ai(t|β,Λ0) =

∫ t

0
Ai(ds|β,Λ0),

Ñi(dt) = Hi(t)Ni(dt), Ñi(t) =
∫ t

0
Ñi(ds). (3)
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In the right-hand side of equation (2) the term Λi(dt)e
−Λi(t−) is actually the

probability that Ti occurs at the interval (t, t + dt]. We call it the mean rate

function here, rather than probability density function, to emphasize its link with

the hazard rate function.

Note that model (2) involves the observed data (Xi, δi, Li) (i.e., the process

Ñi(t)) and W i (i.e., F i
t ). If G and γ are given, model (2) does not involve Ri.

This is because our main interest is to study the marginal hazard rate of T and its

relation with covariate W . The referral time R is mainly treated as a confounding

factor (not having causal effects on T ) and it leads to the selection bias due to

truncation. Therefore the information of R is used only when we estimate G and

γ to remove the truncation bias in the analysis.

We view {dÑi(t), 0 ≤ t < ∞, i = 1, . . . , n} as the observed data. If the joint

survival functionG and the truncation probability γ are known, then the 0-1 valued

Bernoulli random variable dÑi(t) has probability of being 1 as E{Ñi(dt)|F i
t−} =

Ai(dt|β,Λ0). Following [1] we can write the likelihood for (β,Λ0) given (G, γ) as

Ln := Ln(β,Λ0;G, γ)

=
∏

0≤s<∞

∏
i

[Ai(ds|β,Λ0)]
Ñi(ds) ·

[
1−

∑
i

Ai(ds|β,Λ0)

]1−∑
i Ñi(ds)

 ,
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which can be further written as, using the product integration theory in [13],

Ln := Ln(β,Λ0;G, γ) (4)

=
∏

0≤s<∞

{∏
i

[Ai(ds|β,Λ0)]
Ñi(ds)

}
exp

[
−

n∑
i=1

∫ ∞

0

Ai(ds|β,Λ0)

]

=
∏

0≤s<∞

{[
G(s−, s−)

γ
Λ0(ds)

]∑
i Ñi(ds)

} ∏
0≤s<∞

{∏
i

[
exp(W⊤

i (s−)β − Λi(s−))
]Ñi(ds)

}

· exp

{
−
∫ ∞

0

[
n∑

i=1

exp(W⊤
i (s−)β − Λi(s−))

]
G(s−, s−)

γ
Λ0(ds)

}
.

Equation (4) is the full likelihood for β and Λ0, if G and γ are treated as known.

This likelihood function does not involve Ri, since the information of Ri is not

needed if G and γ are given. We will demonstrate in later sections that Ri will

only be used when we estimate G and γ.

2.2 A formula for Λ0

In this subsection, we provide a very important formula for Λ0, which will be

used to motivate the new estimation method. In practice, to estimate Λ0 we can

use a piece-wise right-continuous function, which only has positive jumps when∑
i Ñi(s) has jumps. This is reasonable and necessary since from (4) we know that

Λ0(ds) is only identifiable when
∑

i Ñi(ds) is not 0. Therefore we can treat Λ0

as a function with only a discrete number of parameters (the sizes of its jumps)

to be estimated. Given any fixed β, γ, G, the estimating equations for Λ0(ds) is

∂ lnLn

∂Λ0(ds)
= 0. Using the result, ∂Λi(u)

∂Λ0(ds)
= exp

[
W i(s−)

⊤β
]
for s ≤ u, and from the
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estimating equations ∂ lnLn

∂Λ0(ds)
= 0, we further have

Λ0(ds) =
n−1

∑
i Ñi(ds)

Q(β,Λ0, s) + S(0)(β,Λ0, s)
G(s−,s−)

γ

, (5)

Q(β,Λ0, s) = n−1

∫ ∞

s

n∑
i=1

exp
[
W⊤

i (s−)β
]
Ñi(du)−

∫ ∞

s
R(β,Λ0, s, u)

G(u−, u−)

γ
Λ0(du).

= n−1
n∑

i=1

∫ ∞

s
exp

[
W⊤

i (s−)β
] [

Ñi(du)−Ai(du|β,Λ0)
]
,

with

S(0)(β,Λ0, s) = n−1

n∑
i=1

exp
[
W⊤

i (s−)β − Λi(s−)
]
,

R(β,Λ0, s, u) = n−1

n∑
i=1

exp
[
W⊤

i (s−)β)
]
exp

[
W⊤

i (u−)β − Λi(u−)
]
.

Given β, γ, G, the above equation (5) for Λ0 can be solved numerically using

recursive algorithms. Such iterative algorithm, however, is not computationally ef-

ficient. Therefore, for simplicity, we consider the following approximation formula

for Λ0(ds),

Λ0(ds) ≈
n−1

∑
i Ñi(ds)

S(0)(β,Λ0, s)
G(s−,s−)

γ

, (6)

since E
{[

Ñi(du)− Ai(du|β,Λ0)
]
|F i

u−

}
= 0 and further Q(β,Λ0, s) converges to

0.
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2.3 Estimation for β and Λ0 and large sample properties.

Equation (6) motivates us to consider the following simple working-likelihood

function. Replace Λ0 in (4) with (6), the likelihood function Ln becomes

L̃n(β,Λ0) =
∏

0≤s<∞

∏
i

[
exp

(
W⊤

i (s−)β − Λi(s−)
)

S(0)(β,Λ0, s)

]Ñi(ds)
 .

This implies that we can consider the following log-likelihood function

ln L̃n(β,Λ0) = n−1
∑
i

∫ ∞

0

{[
W⊤

i (s−)β − Λi(s−)
]
− ln

[
S(0)(β,Λ0, s)

]}
Ñi(ds).

Then we have the following theorem. Proof is provided in Appendix B.

Theorem 2.1. The estimates β̃ and Λ̃0, which maximize log L̃n(β,Λ0), are con-

sistent, i.e., they converge to the true parameter values, β∗ and Λ∗
0, in probability.

In practice, it is computationally inefficient to calculate β̃ and Λ̃0 by directly

maximizing L̃n. Instead, we can find the estimates for β and Λ0 via iteration

algorithms. Given Λ0, the estimate for β can be found by solving the following

estimating equations (by taking partial derivatives for log L̃n over β),

Un(β,Λ0) = n−1

n∑
i=1

∫ ∞

0

[
W i(s−)−Λ

(1)
i (s−)− E(1)(β,Λ0, s)

]
Ñi(ds) = 0, (7)
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where Λ
(1)
i (s) = ∂Λi(s)

∂β
=
∫ s

0
W i(u−) exp

[
W⊤

i (u−)β
]
Λ0(du) and

E(1)(β,Λ0, s) =
S(1)(β,Λ0, s)

S(0)(β,Λ0, s)
,

S(1)(β,Λ0, s) =
∂S(0)(β,Λ0, s)

∂β

= n−1

n∑
i=1

[
W i(s−)−Λ

(1)
i (s−)

]
exp

[
W⊤

i (s−)β − Λi(s−)
]
.

Given β, for simplicity and motivated by equation (6) we can find an estimate Λ̂0

by solving the following recursive formula

Λ̂0(ds) =
n−1

∑
i Ñi(ds)

S(0)(β, Λ̂0, s)
Ĝ(s−,s−)

γ̂

. (8)

Here Ĝ and γ̂ are consistent estimates for the true parametersG∗ and γ∗. Therefore

we consider the following Algorithm 1 in practice.

Algorithm 1 Algorithm for estimating Λ0 and β.

Given consistent estimates Ĝ and γ̂, with starting point β̂
[0]
, Λ̂

[0]
0

repeat

Given β̂
[m]

, calculate Λ̂
[m+1]
0 by solving (8)

Given Λ̂
[m+1]
0 , solve equation (7) to get β̂

[m+1]

until Λ̂
[m]
0 and β̂

[m]
converge to some Λ̂0 and β̂

Output Λ̂0 and β̂ as the estimate

The estimates β̂ and Λ̂0, obtained from Algorithm 1, are asymptotically equiv-

alent to solve equations (7) and (8) simultaneously. Such estimates β̂ and Λ̂0 are

equivalent to β̃ and Λ̃0 (given in Theorem 2.1) for large enough n, since the pair

(β̃, Λ̃0) asymptotically satisfies equations (7) and (8) as well. Therefore we have

the following proposition.

Proposition 2.1. Suppose that Ĝ and γ̂ are consistent to the true parameters G∗

and γ∗. The estimates β̂ and Λ̂0, obtained from Algorithm 1, are consistent, i.e.,
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they converge to the true parameter values, β∗ and Λ∗
0, in probability.

Note that consistent estimates Ĝ and γ̂ can be obtained via the method in

[6].

Theorem 2.2. The asymptotic distribution for
√
n(β̂ − β∗) is given by

√
n(β̂ − β∗)

d→ N (0,Ψ(β∗,Λ∗
0, G

∗, γ∗)).

The formula for Ψ(β∗,Λ∗
0, G

∗, γ∗) = limn→∞ Ψn(β
∗,Λ∗

0, G
∗, γ∗) is given by equa-

tion (13).

The asymptotic distribution for
√
n
[
Λ̂0(t)− Λ∗

0(t)
]
is given by

√
n
[
Λ̂0(t)− Λ∗

0(t)
]

d→ N (0, σ2
Λ(t)),

for some function σ2
Λ(t).

An estimate for Ψ(β∗,Λ∗
0, G

∗, γ∗) is given by Ψn(β̂, Λ̂0, Ĝ, γ̂) and an estimate

for σ2
Λ(t) is given by (details in the supplementary file)

σ̂2
Λ(t) =

[∫ t

0

S(1)(β̂, Λ̂0, s)

S(0)(β̂, Λ̂0, s)
Λ̂0(ds)

]⊤
Ψn(β̂, Λ̂0, Ĝ, γ̂)

[∫ t

0

S(1)(β̂, Λ̂0, s)

S(0)(β̂, Λ̂0, s)
Λ̂0(ds)

]

+

∫ t

0

[
1

S(0)(β̂, Λ̂0, s)Ĝ(s−, s−)γ̂−1

]
Λ̂0(ds) (9)

+2

[∫ t

0

S(1)(β̂, Λ̂0, s)

S(0)(β̂, Λ̂0, s)
Λ̂0(ds)

]⊤
In(β̂, Λ̂0)

−1Φn(β̂, Λ̂0, Ĝ, γ̂),

where

Φn(β
∗,Λ∗

0, G
∗, γ∗)

= n−1

n∑
i=1

∫ ∞

0

[
n−1

∑
i

∫ ∞

s

J i(β
∗,Λ∗

0, s, u)Ñi(du)

]
1

S(0)(β∗,Λ∗
0, s)G

∗(s−, s−)γ∗−1
Λ∗

0(ds),
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with J i and In given by equations (11) and (12) respectively.

3 Monte Carlo simulations

In this section, we evaluate the finite sample performance of the proposed

methods via Monte Carlo simulations. We choose a small sample size n = 100 and

a larger sample size n = 300. All simulation results are based on 500 replicated

simulations. Truncation times L and censoring times C are generated respectively

from C = av1 + bv2 and L = cv1 + dv2 + h · U [0, 1], where v1 and v2 are stan-

dard exponentially random variables, and we can adjust the censoring/truncation

probabilities via changing the values of (a, b, c, d, h). We considered two simulation

scenarios, corresponding to different correlation levels of T and R.

3.1 Scenario 1

We consider a time varying covariate W1(t) = W1+0.1t and time-independent

covariate W2 and W3, where W1 ∼ U(0, 1) and W2 ∼ Bernoulli(0.5), W3 ∼

Bernoulli(0.5). The baseline hazard rate function is Λ∗
0(dt) = λ∗

0(t)dt = exp(αt)dt,

with α = 0.3. The survival times R and T are generated as follows: R = eξ and

T = 1
(α+β∗

1 )
log[(α+ β∗

1)ξ exp(−W⊤β∗) + 1], where ξ follows standard exponential

distribution. Note that such T and R are correlated and such T has hazard rate

function Λ∗(dt) = exp(αt)dt exp(W1(t)β
∗
1 + W2β

∗
2 + W3β

∗
3). The constant e, re-

flecting the correlation level between R and T , is chosen as e = 0.8. This gives

a 0.9-correlation between T and R and such a strong correlation is very similar

to the real data analysis provided in Section 4. We choose β∗ = (β∗
1 , β

∗
2 , β

∗
3)

⊤ =

(0.2, 0.4, 0.3)⊤.

The simulation results are presented in Table 1 (n = 300) and Table 2 (n =

100). In the tables, the empirical estimates, empirical standard deviation (ŝβ),
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and the average standard deviation estimates (σ̂β) for the proposed estimates of β̂

are reported. The tables also present the coverage probabilities of 95% confidence

intervals constructed based on the normal approximation. As shown in Table 1, the

estimate β̂ based on the new method are virtually unbiased and that the variance

estimates agree with the empirical variances quite well. The coverage probabilities

also show that the variance estimates for β̂ work well. Table 1 also provides the

results based on the simple Cox regression analysis without considering truncation,

which gives severely biased estimates. All the estimates in the rows (i), based on

the new method, have smaller bias than the results in the rows (ii), based on

standard Cox model analysis. The standard error estimates of the new method

are larger than the results based on the standard Cox models. This is because

the new method uses Ĝ, the joint survival function estimate for (L,C), to adjust

the truncation bias and this introduces extra variation to the estimates. When we

decrease from n = 300 to n = 100, the results (provided in Table 2) have similar

patterns, i.e., the estimates of the proposed method dominate the estimates based

on simple Cox model results.

Figure 1 displays the estimate of the baseline hazard rate function, along with

their 95 percent point-wise confidence bands. The light-colored (yellow) solid line

is the estimated hazard rate function, which match almost exactly the dark-colored

(red) solid line (the true hazard rate function), except for the part of the tail. The

green dotted line is the mean curve of the estimated 95% confidence interval for

the baseline hazard rate, which is very close to the Monte Carlo estimate of the

95% confidence interval for the baseline hazard rate. These results indicate good

performance of the proposed method with moderate sample size.

Note that, the coverage probability of the standard Cox’s regression model in

Table 1 (sample size n = 300) is much smaller than that in Table 2 (sample size
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n = 100). This is reasonable since the standard Cox’s regression analysis actually

uses the biased data set (without considering truncation) and therefore gives a

biased estimate. Therefore, the larger the sample size, the more significant bias of

the estimate (the smaller of the coverage probability).

Table 1: Summary of simulation results for Scenario 1, n = 300; (i) results based
on the new method; (ii) results based on standard Cox model without considering
truncation.

n = 300 Cens.%= 15 Cens.%= 40

β β̂ ŝβ σ̂β CP. β̂ ŝβ σ̂β CP.

γ = 0.4 0.2 (i) 0.228 0.152 0.169 0.96 0.223 0.155 0.161 0.96

(ii) 0.277 0.122 0.126 0.91 0.262 0.137 0.144 0.93

0.4 (i) 0.453 0.164 0.173 0.96 0.388 0.167 0.167 0.97

(ii) 0.571 0.126 0.129 0.75 0.554 0.144 0.145 0.82

0.3 (i) 0.318 0.162 0.175 0.96 0.288 0.164 0.178 0.96

(ii) 0.428 0.121 0.127 0.85 0.410 0.134 0.144 0.91

γ = 0.6 0.2 (i) 0.204 0.154 0.157 0.96 0.190 0.176 0.179 0.95

(ii) 0.270 0.121 0.126 0.93 0.240 0.160 0.153 0.94

0.4 (i) 0.433 0.171 0.168 0.95 0.388 0.185 0.188 0.93

(ii) 0.536 0.128 0.128 0.83 0.474 0.151 0.154 0.92

0.3 (i) 0.324 0.163 0.161 0.95 0.291 0.168 0.179 0.95

(ii) 0.394 0.123 0.127 0.90 0.347 0.151 0.153 0.94

3.2 Scenario 2

In the second simulation scenario, we consider the same time varying covari-

ate W1(t), time-independent covariate W2 and W3 and the same baseline hazard

rate function, as those in the previous section. The survival times R and T are

generated as follows, under a different correlation structure from that in Scenario

1: T = 1
(α+β∗)

ln[(α + β∗
1)ξ exp(−W⊤β∗) + 1], where ξ follows the standard expo-

nential distribution and R is drawn from a gamma(3ξ, 5). The correlation of R

and T is about 0.55, which represents a much weaker correlation between R and

T than that in Scenario 1. We choose the same true parameter values as that in
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Table 2: Summary of simulation results for Scenario 1, n = 100; (i) results based
on the new method; (ii) results based on standard Cox model without considering
truncation.

n = 100 Cens.%= 15 Cens.%= 40

β β̂ ŝβ σ̂β CP. β̂ ŝβ σ̂β CP.

γ = 0.4 0.2 (i) 0.233 0.275 0.289 0.96 0.218 0.282 0.289 0.97

(ii) 0.285 0.228 0.222 0.94 0.262 0.253 0.251 0.93

0.4 (i) 0.433 0.280 0.285 0.96 0.387 0.291 0.298 0.96

(ii) 0.559 0.237 0.228 0.89 0.548 0.270 0.258 0.90

0.3 (i) 0.320 0.293 0.308 0.96 0.291 0.284 0.281 0.96

(ii) 0.418 0.232 0.226 0.92 0.397 0.269 0.257 0.92

γ = 0.6 0.2 (i) 0.233 0.261 0.268 0.96 0.183 0.283 0.293 0.96

(ii) 0.274 0.228 0.221 0.93 0.248 0.269 0.266 0.95

0.4 (i) 0.450 0.272 0.285 0.96 0.389 0.302 0.312 0.95

(ii) 0.544 0.239 0.227 0.91 0.493 0.282 0.273 0.95

0.3 (i) 0.334 0.271 0.287 0.96 0.279 0.304 0.314 0.96

(ii) 0.399 0.234 0.226 0.91 0.347 0.285 0.272 0.93

Scenario 1. The simulation results are presented in Table 3 and Table 4.

As what we discovered in Scenario 1, all the estimates in the rows (i), based

on the new method, have smaller bias than the results in the rows (ii), based on

standard Cox model analysis. However, in Scenario 2, the bias of the estimates

based on the standard Cox model is not as severe as those in Scenario 1. For

example in Table 1, with 40% censoring and 40% truncation, the estimated values

for the standard Cox regression analysis β̂ = (0.262, 0.554, 0.410)⊤ are severely

biased comparing to the true value (0.2, 0.4, 0.3)⊤. On the other hand, in Table

3, with 40% censoring and 40% truncation, the standard Cox regression estimates

β̂ = (0.227, 0.464, 0.350)⊤ have much less bias although they are still not good

enough. The reason for this is that the selection bias of T comes from the trun-

cation of R. If R and T are highly correlated, the truncation on R will lead to

severely biased sample for T ; if the correlation of R and T is not high, the trunca-

tion on R will have less impact on T . On the contrary, the new method can deal
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Figure 1: Baseline hazard estimation. True baseline function: the dark (red color)
solid curve; the estimated baseline function: the light (yellow color) solid curve; the
mean of estimated 95% confidence intervals: the dotted curves; the 95% confidence
interval for the baseline hazard rate estimates: the dashed curves

with the truncation on R and it give more consistent results for both scenarios

with either small correlation or large correlation of R an T .

4 A real example

We apply the proposed method to the Edinburgh hepatitis C data previously

studied in [11]. The aim of our study was to determine how the progression risk

(hazard rate) of the cirrhosis event is affected by the three risk factors: age at

infection, HIV co-infection (yes:1 or no:0) and heavy alcohol consumption (yes:1

or no:0). The cirrhosis event T may be censored and the correlated referral event

is right-truncated.

In an earlier paper, we proposed an accelerated failure time model for cen-

sored survival data under referral bias for this application [29], where Schoenfeld

residual analysis [21] indicated that the proportional hazard assumption is likely to
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Table 3: Summary of simulation results for Scenario 2, n = 300; (i) results based
on the new method; (ii) results based on standard Cox model without considering
truncation.

n = 300 Cens.%= 15 Cens.%= 40

β β̂ ŝβ σ̂β CP. β̂ ŝβ σ̂β CP.

γ = 0.4 0.2 (i) 0.209 0.133 0.141 0.95 0.217 0.165 0.169 0.95

(ii) 0.233 0.121 0.125 0.93 0.227 0.148 0.144 0.95

0.4 (i) 0.398 0.160 0.167 0.96 0.397 0.167 0.173 0.95

(ii) 0.467 0.133 0.127 0.90 0.464 0.149 0.145 0.93

0.3 (i) 0.298 0.146 0.148 0.96 0.298 0.163 0.169 0.96

(ii) 0.356 0.131 0.126 0.93 0.350 0.149 0.145 0.93

γ = 0.6 0.2 (i) 0.211 0.164 0.161 0.95 0.214 0.165 0.172 0.95

(ii) 0.236 0.126 0.127 0.93 0.224 0.151 0.154 0.95

0.4 (i) 0.407 0.170 0.178 0.95 0.401 0.173 0.175 0.95

(ii) 0.462 0.122 0.129 0.94 0.449 0.148 0.155 0.94

0.3 (i) 0.314 0.179 0.181 0.95 0.306 0.176 0.188 0.96

(ii) 0.356 0.2129 0.128 0.92 0.348 0.160 0.154 0.93

Table 4: Summary of simulation results for Scenario 2, n = 100; (i) results based
on the new method; (ii) results based on standard Cox model without considering
truncation.

n = 100 Cens.%= 15 Cens.%= 40

β β̂ ŝβ σ̂β CP. β̂ ŝβ σ̂β CP.

γ = 0.4 0.2 (i) 0.204 0.234 0.246 0.96 0.187 0.275 0.279 0.95

(ii) 0.238 0.230 0.221 0.96 0.242 0.256 0.253 0.94

0.4 (i) 0.369 0.258 0.263 0.96 0.389 0.288 0.283 0.96

(ii) 0.465 0.244 0.225 0.93 0.467 0.275 0.258 0.94

0.3 (i) 0.278 0.249 0.241 0.96 0.284 0.285 0.279 0.96

(ii) 0.362 0.228 0.224 0.94 0.359 0.263 0.258 0.94

γ = 0.6 0.2 (i) 0.217 0.244 0.257 0.96 0.173 0.300 0.319 0.95

(ii) 0.247 0.240 0.224 0.94 0.246 0.283 0.269 0.95

0.4 (i) 0.410 0.250 0.256 0.95 0.370 0.312 0.316 0.94

(ii) 0.463 0.236 0.229 0.94 0.460 0.290 0.275 0.95

0.3 (i) 0.307 0.251 0.269 0.95 0.285 0.297 0.305 0.94

(ii) 0.336 0.237 0.228 0.93 0.326 0.284 0.275 0.95
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be violated for heavy alcohol consumption; also see Figure 2. We therefore fit the

proposed proportional hazards model (1) to the data with β = (β1, β2, β3, β4)
⊤,

corresponding to the covariates (age W1, HIV coinfection W2, heavy alcohol con-

sumption W3, and the interaction of W3 and time), in order to guarantee the

validation of the proportional hazards assumption for ‘heavy alcohol consump-

tion’. This proportional hazards model with a time-dependent covariate (interac-

tion term) allows that the effect that heavy alcohol consumption may change over

time. When the model includes the interaction term, the proportional hazards as-

sumption becomes reasonable. This can be seen from the Schoenfeld residual plots

presented in Figure 3, which implied that both β3 (for heavy alcohol consumption)

and β4 (for the interaction of alcohol with time) are almost constant over time.
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Figure 2: Schoenfeld residual plot for alcohol, based on analysis without interaction
term.
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Figure 3: Results based on the model with interaction term. Left plot: Schoenfeld
residual plot for alcohol; right plot: Schoenfeld residual plot for the interaction of
alcohol and time from infection.

Table 5 summarizes the estimates of regression parameters obtained from

our method. The results from the truncated model, where the referral bias is

considered, show that age at infection (β1), HIV co-infection (β2) and heavy alcohol

in-take (β3) are significantly identified as risk factors associated with more rapid

disease progression to cirrhosis. The interaction effect of heavy alcohol assumption

and time has a negative estimate −0.043, but it is not significant. It implied that

the effect of heavy alcohol consumption is slightly decreasing during the disease

progression although the change is not significant.

Table 5: Summary of Data analysis

β̂1 β̂2 β̂3 β̂4

Parameter β̂ 0.074 1.646 3.400 -0.043

se 0.014 0.839 1.609 0.072
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5 Discussion

Under the proportional hazards model framework, we presented a likelihood

procedure for the estimation of the coefficients for time-varying covariates and the

baseline hazard function under referral bias. The challenge in our study is the

referral bias, which is due to a random right-truncation on a time event R which is

highly correlated to the time event T of main interest. The proposed method deals

with the truncation bias via a nonparametric approach. The asymptotic results

are developed and our simulation studies indicate that the proposed method has

good statistical properties.

We applied the new methods to a real HCV cohort study where traditional

analysis without taking into account referral bias often gave biased estimate for

the effects of risk factors ( see [10, 11]). Such referral bias often happens in chronic

disease epidemiology cohort studies, where entry into the cohort is dependent on

a subject’s progression to an event of interest and patients are more likely to be

referred to specialist clinics at later stages of disease ( see [11]).

This paper only focused on dealing with the analysis for the main survival

events. In such long-term epidemiological studies, repeated outcome measurements

for each subject may also be available and of interest. It would be interesting to ex-

tend the method developed here to a joint modelling framework for survival events

and longitudinal measurements. In addition, because chronic disease epidemiolog-

ical studies usually last a long period of time, certain time-independent variables

may have time-varying effects. It is also of interest to develop new methods to deal

with time-varying coefficients [26]. These are left to future work. Another possible

future research work is to extend the proposed methodology to handle other types

of sampling bias, for example the length-biased data [24].
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Another possible future research work is to consider (R, T ) and (L,C) are

conditional independent given W , for appropriate application problems. Because

that (R, T ) and (L,C) are truncated or censored by each other, we need to model

the relation of (R, T ) and W and the relation of (L,C) and W simultaneously.

When using the inverse probability weighted method to remove the truncation

bias, the joint distribution G of (L,C) will depend on W . This will raise further

challenges in the iteration algorithms. In addition, the truncation probability

will depends on W , i.e., γ = Pr(R ≤ L|W ). This truncation probability will

depends on how (R, T ) and (L,C) are modelled with respect to W . New methods

need to be develop to estimate such truncation probabilities. However, if (L,C)

is independent of W , the truncation probability can be estimated based on the

formula, γ = Pr(R ≤ L|W ) =
∫∞
0

Pr(R ≤ s|W )FL(ds), where FL(s) = Pr(L ≤

s), and the proposed method in this paper can be easily extended to such cases.

A Proof of equation (2)

Proof. Because of the assumption Pr(R ≤ T ) = 1, we have that {T ∈ dt, L ≥ t}

implies R ≤ L. Then it follows that

E
{
Hi(t)Ni(dt)|F i

t−

}
G(t−, t−)

=
Pr(Ti ∈ dt, Ci ≥ Ti, Li ≥ t|F i

t−)

G(t−, t−)

=
Pr(T ∈ dt, C ≥ t, L ≥ t|R ≤ L,F i

t−)

G(t−, t−)

=
Pr(T ∈ dt, C ≥ t, L ≥ t|F i

t−)

Pr(R ≤ L)G(t−, t−)
.

Since we denote γ = Pr(R ≤ L), we have

E
{
Hi(t)Ni(dt)|F i

t−

}
G(t−, t−)

=
Pr(T ∈ dt, C ≥ t, L ≥ t|F i

t−)

γG(t−, t−)
.
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From the independency assumption of (R, T,W ) and (L,C), we have

E
{
Hi(t)Ni(dt)|F i

t−

}
G(t−, t−)

=
1

γ
Pr(T ∈ dt|F i

t−) =
1

γ
Λi(dt)e

−Λi(t−).

B Proof of Theorem 2.1

Before proceeding to the proof of Theorem 2.1, we introduce the following

lemma.

Lemma B.1. For any positive values x1, . . . , xn and y1, . . . , yn we have

n−1

n∑
i=1

ln

(
xi

yi

)
· yi ≤ ln

(
x̄

ȳ

)
ȳ.

Proof. It is straightforward to prove the lemma, if we view yi/
∑

j yj, i = 1, . . . , n

as a probability distribution for the values zi = xi/yi, i = 1, . . . , n. This is because

E {ln(z)} =
n∑

i=1

ln

(
xi

yi

)
· yi∑

i yi
≤ log [ E{z}] = ln

(∑
i

xi

yi

yi∑
i yi

)
= ln

(
x̄

ȳ

)
,

which implies that the lemma is true.

Now we prove Theorem 2.1. Following the notations in previous sections,

we denote Λ∗
0, β∗, G∗ and γ∗ as the true parameter values. Denote Λ∗

i (s) =
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∫ s

0
eW

⊤
i (u−)β∗

Λ∗
0(du). Define

Zn(β,Λ0, t) = n−1

n∑
i=1

∫ t

0

W⊤
i (s−)(β − β∗)Ai(ds|β∗,Λ∗

0)

−n−1

n∑
i=1

∫ t

0

[Λi(s−)− Λ∗
i (s−)]Ai(ds|β∗,Λ∗

0)

−n−1

∫ t

0

ln

[
S(0)(β,Λ0, s)

S(0)(β∗,Λ∗
0, s)

]∑
i

Ai(ds|β∗,Λ∗
0).

We can rewrite the above formula as

Zn(β,Λ0, t)

= n−1

n∑
i=1

∫ t

0

ln

{
exp

[
W⊤

i (s−)β − Λi(s−)
]

exp
[
W⊤

i (s−)β
∗ − Λ∗

i (s−)
]} exp

[
W⊤

i (s−)β
∗ − Λ∗

i (s−)
] G∗(s−, s−)

γ∗ Λ∗
0(ds)

−
∫ t

0

ln

[
n−1

∑n
i=1 e

W⊤
i (s−)β−Λi(s−)

n−1
∑n

i=1 e
W⊤

i (s−)β∗−Λ∗
i (s−)

][
n−1

n∑
i=1

eW
⊤
i (s−)β∗−Λ∗

i (s−)

]
G∗(s−, s−)

γ∗ Λ∗
0(ds).

Then with Lemma B.1, we have that Zn(β,Λ0, ds) ≤ 0 for any (β,Λ0). On the

other hand it is obvious that Zn(β,Λ0,∞) and Z(β,Λ0,∞) = limn Zn(β,Λ0,∞)

reach the maximum value 0, at β∗,Λ∗
0.

Define

Xn(β,Λ0, t)

= n−1

n∑
i=1

∫ t

0

W⊤
i (s−)(β − β∗)Ñi(ds)− n−1

n∑
i=1

∫ t

0

[Λi(s−)− Λ∗
i (s−)] Ñi(ds)

−n−1

∫ t

0

ln

[
S(0)(β,Λ0, s)

S(0)(β∗,Λ∗
0, s)

]∑
i

Ñi(ds),

which has the same maximum point as ln L̃n(β,Λ0), since they are only different

in a constant. Clearly lim(Xn−Zn) = 0 since Xn−Zn is a martingale, and further

limXn = Z.
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Therefore β̃, Λ̃0, the maximum point for log L̃n(β,Λ0) (or the maximum point

for Xn(β,Λ0,∞)), converges to the true parameter value β∗ and Λ∗
0, the maximum

point of Z, under the mild assumption that (β∗,Λ∗
0) is the unique maximum point

for Z.

C Proof of Theorem 2.2

First we define, for u ≥ s,

F (β,Λ0, s, u) :=
∂ E(1)(β,Λ0, u)

∂Λ0(ds)

=
n−1

∑
i

{
−W i(s−)e

W⊤
i (s−)β −

[
W ∗

i (u−)−Λ
(1)
i (u−)

]
eW

⊤
i (s−)β

}
eW

⊤
i (u−)β−Λi(u−)

S(0)(β,Λ0, u)

+
S(1)(β,Λ0, u)n

−1
∑n

i=1 e
W⊤

i (u−)β−Λi(u−)eW
⊤
i (s−)β

S(0)(β,Λ0, u)2
.

By the first-order Taylor expansion of the score function Un(β,Λ0) around the

true value β∗,Λ∗
0(ds), we have

√
nUn(β̂, Λ̂0)

d
≈

√
nUn(β

∗,Λ∗
0) +

√
nIn(β

∗,Λ∗
0)(β̂ − β∗) +

√
n

∫ ∞

0

∂Un(β
∗,Λ∗

0)

∂Λ∗
0(ds)

[
Λ̂0(ds)− Λ∗

0(ds)
]

=
√
nUn(β

∗,Λ∗
0) +

√
nIn(β

∗,Λ∗
0)(β̂ − β∗)

−n−1/2
∑
i

∫ ∞

0

∫ ∞

s

J i(β
∗,Λ∗

0, s, u)Ñi(du)
[
Λ̂0(ds)− Λ∗

0(ds)
]
, (10)

where

J i(β
∗,Λ∗

0, s, u) = W i(s−)e
W⊤

i (s−)β∗
+ F (β∗,Λ∗

0, s, u), (11)
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and

In(β
∗,Λ∗

0) = −n−1

n∑
i=1

∫ ∞

0

[
Λ

(2)∗
i (s) + E(2)(β∗,Λ∗

0, s)
]
Ñi(ds), (12)

Λ
(2)∗
i (s) =

∫ s

0

W i(u−)
⊗2eW

⊤
i (u−)β∗

Λ∗
0(du),

E(2)(β∗,Λ∗
0, s) =

S(2)(β∗,Λ∗
0, s)

S(0)(β∗,Λ∗
0, s)

− S(1)(β∗,Λ∗
0, s)

⊗2

S(0)(β∗,Λ∗
0, s)

2
,

S(2)(β∗,Λ∗
0, s) = n−1

n∑
i=1

{
−Λ

(2)∗
i (s) +

[
W i(s−)−Λ

(1)∗
i (s)

]⊗2
}
exp

[
W⊤

i (s−)β
∗ − Λ∗

i (s)
]
.

The notation a⊗ b denotes the outer product of the two column vectors a, b.

Then according to Un(β̂, Λ̂0) = 0 and (8), we have

√
n(β̂ − β∗)

d≈ In(β
∗,Λ∗

0)
−1

{
−
√
nUn(β

∗,Λ∗
0) + n−1/2

∑
i

∫ ∞

0

∫ ∞

s
J i(β

∗,Λ∗
0, s, u)Ñi(du)

[
Λ̂0(ds)− Λ∗

0(ds)
]}

= −n−1/2In(β
∗,Λ∗

0)
−1
∑
i

{∫ ∞

0

[
W i(s−)−Λ

(1)∗
i (s)− E(1)(β∗,Λ∗

0, s)
]
Mi(ds)

−
∫ ∞

0

[
n−1

∑
k

∫ ∞

s
Jk(β

∗,Λ∗
0, s, u)Ñk(du)

]
1

S(0)(β∗,Λ∗
0, s)G

∗/γ∗
Mi(ds)

}
+ op(1),

where Mi(ds) = Ñi(ds)− Ai(ds|β∗,Λ∗
0).

Following the martingale theory for counting processes, we similarly have that

√
n(β̂−β∗) is asymptotically normal with mean 0 and variance-covariance matrix
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Ψ(β∗,Λ∗
0, G

∗, γ∗) = limn→∞ Ψn(β
∗,Λ∗

0, G
∗, γ∗), where

In(β
∗,Λ∗

0)Ψn(β
∗,Λ∗

0, G
∗, γ∗)In(β

∗,Λ∗
0) (13)

= n−1

n∑
i=1

∫ ∞

0

[
W i(s−)−Λ

(1)∗
i (s)− E(1)(β∗,Λ∗

0, s)
]⊗2

Ai(ds|β∗,Λ∗
0)

+

∫ ∞

0

[
n−1

∑
k

∫ ∞

s

Jk(β
∗,Λ∗

0, s, u)Ñk(du)

]⊗2
Λ∗

0(ds)

S(0)(β∗,Λ∗
0, s)G

∗/γ∗

−

{∫ ∞

0

[
n−1

∑
k

∫ ∞

s

Jk(β
∗,Λ∗

0, s, u)Ñk(du)

]
Λ∗

0(ds)

}2

.

The asymptotic normality can be proved similarly for Λ̂0, based on the equa-

tion (10). □
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