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Abstract

In hepatitis C virus (HCV) epidemiological studies, the estimation of progres-
sion to cirrhosis and prognostic effects of associated risk factors is of particular
importance when projecting national disease burden. However, the progression
estimates obtained from conventional methods could be distorted due to a referral
bias [11]. In recent years, several approaches have been developed to handle this
epidemiological bias in analyzing time-to-event data. This paper proposes a new
estimation approach for this problem under a semiparametric proportional haz-
ards framework. The new method uses a martingale approach based on the mean
rate function, rather than the traditional hazard rate function, and develops an
iterative algorithm to estimate the Cox regression parameter and baseline hazard
rate simultaneously. The consistency and asymptotic properties of the proposed

estimators are derived theoretically and evaluated via simulation studies. The new
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method is also applied to a real HCV cohort study.

Keywords: Censoring; Martingale; Proportional hazards model; Referral bias;

Truncation.

1 Introduction

In hepatitis C virus (HCV) epidemiological studies, unbiased estimation of
progression from HCV infection to a particular outcome event of interest, such
as liver cirrhosis, is of considerable importance when projecting national HCV
disease burden [2, 7, 11, 17, 20]. However widely varying estimates of progression
rate have been reported, mainly due to the referral bias in hepatitis C epidemiology
8,9, 10, 11, 27, 29]. Clinically the patients with more rapid disease progression
are preferentially referred to specialist clinics at later stages of disease [11]. If
so, the conventional analysis based on liver clinic cohorts will lead to a biased
estimate of the progression rate among the HCV patient community [9, 11]. [10]
proposed a pseudo score weighting approach to correct the estimation biases and
recover the parameters. However, its performance depends on strong assumptions
about referral patterns and a sound estimate of the selection probability. It may

be difficult to justify the assumptions about referral patterns in practice.

To reduce the uncertainty involved in the assumptions, [6] modeled such re-
ferral bias under a survival analysis framework with truncation. Consider the
data set studied in [11], where 387 HCV-infected individuals were recruited from
Edinburgh Royal Infirmary’s liver clinic by the end of 1999. An individual’s in-
formation is only available if he or she was referred to the clinic cohort before
the end of study recruitment, that is, the observed data is subject to a univariate
truncation R < L [6]. Here R is the period from infection to referral to the liver

clinic and L is the time from infection to the end of recruitment. Our main interest



is the incubation period (time 7°) from HCV infection to development of cirrhosis,
which is subject to right censoring at C', the time from infection to last diagnosis
(such as an invasive biopsy test) follow-up. The event times (R, T') are correlated,
because referral is increasingly likely the closer a patient is to developing cirrhosis
[11]. [6] proposed a new approach by transforming the epidemiological bias prob-
lem to a nonparametric bivariate survival analysis modelling with the presences
of both censoring and truncation and proposed new estimators for the bivariate
distribution function based on the idea of a polar coordinate transformation [5].
To further study how the progression risk (hazard rate) of the cirrhosis event is
affected by risk factors, [29] proposed an accelerated failure time model to obtain a
robust debiasing estimate for the effect of covariates by modelling the dependency
of outcome event time on referral time. The proposed method in [29], however,
cannot deal with time-dependent covariates, which may be a constraint for its ap-
plication since the incubation time from HCV infection to cirrhosis usually lasts
for a quite long period (more than 10 years) and time-dependent covariates are of-
ten available as potential predictors over follow-up. More recently, [27] developed
a maximum likelihood estimating approach for this referral bias problem using

parametric Weibull regression models.

In this paper, we will develop a new estimation approach under Cox pro-
portional hazards framework for modelling time-to-event data with referral bias,
where time-dependent covariates are also allowed. For the pair of time-to-event
variables (R, T') discussed above, we consider the following survival model for the

hazard function of 7', the cirrhosis time,
A(dt) = Ao(dt) -exp [WT(t2)8], &

where W (t) is a possibly time-dependent p-dimensional covariate vector, ¢ means



the left limit, 3 = (Bo,...,0,)" and Ag is a completely unspecified continuous
baseline cumulative hazard rate function. Note that if one is interested in the
cross-ratio function estimation, the method proposed in [14] is applicable for such
censored and truncated data. We here focus on the estimation for the above hazard
rate function for 7', which is the main interest in this application [29]. For model
(1), if the cirrhosis time T itself is subject to both censoring and truncation, we
can use the methods proposed in [12, 22, 23] and [25]. For the analysis of length-
biased data, which may appear in observational studies where the observed samples
are not randomly selected from the population of interest but with probability
proportional to their length [24], recent research includes [3, 15, 16, 18, 19, 28].
[4] considered nonparametric analysis of bivariate left-truncated competing risks
data. However, all these methods are not applicable in our study because of a

different censoring and truncation framework.

The main challenge in our study comes from the correlations between 7" and
R (referral is increasingly likely the closer a patient is to developing cirrhosis) and
between C' and L (the last diagnosis time for cirrhosis is usually close to the end
of study recruitment). For analysing bivariate time-to-event data, some recent
works include the frailty models in [30] for censored data and the new copula
models under interval sampling in [32, 33]. In this paper, we model the correlation
between R and T and the correlation between C' and L through a non-parametric
approach, instead of using parametric frailty or copula methods. We will propose
a new likelihood estimation approach, where the parameter 3 and A, will be
estimated simultaneously via an iteration algorithm. We will show that such an

iterative algorithm will give a consistent estimate.

This paper is organized as follows. Section 2 introduces the notations and

the likelihood function and develops the estimation algorithm. The large sample



properties of the estimates are also given in this section. Monte Carlo simulation
studies and a real data analysis are provided in Section 3 and Section 4, respec-

tively. Section 5 gives a discussion for further research work.

2 Methodology

2.1 Preliminaries

We follow the notations in the previous section. The cirrhosis time 7' with
hazard rate function (1) is of our main interest. Throughout this paper, we assume
that (L,C) is independent of the bivariate event times (R,T") and assume that
W ,(t) is independent of (L, C), similar to [29]. Such an assumption is reasonable
in this particular application, since the truncation time L (end of recruitment) is
determined independently before the study and the censoring time C' (last follow-
up time) is usually a certain period after L. Therefore both L and C' are not related
to the individual information R, T and W. Such an assumption is also necessary
in the theoretical aspects. This is because if (L,C) and W are correlated then
we would need to model their relations, say via a bivariate proportional hazard
models for (L,C) and W. However, this will be very challenging since (L, C') are
under both truncation and censoring (see the discussion in Section 5). We will
focus on model (1), the proportional hazard model for the univariate variable T’

but use the information R to remove the selection bias (truncation bias).

We denote X = min{7,C} and § = I(T < C'). Subjects for the whole HCV-
infected population are denoted by [R, L, X,d§, W (t)]. Since only patients with
R < L can be observed, we denote the ith observed data as X; = min{T;, C;}, §; =
I(T; < C;), R;, Ly and W(t). In our study, we also assume that Pr(R <T) =1,

which means that a patient will be referred to hospital before he or she develops a



severe cirrhosis event [29]. Note that throughout this paper, we use letters without
subscript ¢, such as X or L, representing an object in the whole population and
letters with a subscript label, such as X; or L;, representing observations from the

study sample (subject to truncation).

Define F} = o{W(u),u < t} and N;(dt) = I(X; € dt,d; = 1), the counting
process of observed failures for the ith individual, and H,;(t) = I(L; > t). We use
the short notation - € dt for - € [t,t+dt). Denote F; as the filtration for a subject
in the (unbiased) population and G(t,s) = Pr(L > t,C > s) as the joint survival
function for (L, C). The truncation probability is denoted by v = Pr(R < L). We
assume that subjects with different covariates have the same truncation probability
~. Although this is a strong assumption, it is reasonable in this hepatitis cohort
study. This is because HCV infected patients usually have no symptoms and
referral to hospital may be due to a health check by chance which implies no causal
relation between R and W. Note that the method proposed in this paper can be
easily extended to the more general framework, where the truncation probability
depends on the covariate information F,, i.e., v = Pr(R < L|F,), since the

truncation probabilities can be estimated via a simple univariate model.

Under model (1), we can show that (see Appendix A)

E{H,(O)Ni(d)|F;_} 1 e
T = SAi(dt)e t), 2)

where A;(t) = [i exp[W] (s_)B]Ao(ds). Define

Az(dt‘ﬁa AO) = 7_1G(t—?t—)Ai<dt)6_Ai(t7)7 Al(t|/87 AO) - fot Ai(dS’B7A0)a

Ni(dt) = H;(t)Ny(dt), Ni(t) = [; Ni(ds). (3)



In the right-hand side of equation (2) the term A;(dt)e=%i(*-) is actually the
probability that T; occurs at the interval (¢,¢ + dt]. We call it the mean rate
function here, rather than probability density function, to emphasize its link with

the hazard rate function.

Note that model (2) involves the observed data (X;,d;, L;) (i.e., the process
N;(t)) and W; (i.e., Fi). If G and v are given, model (2) does not involve R;.
This is because our main interest is to study the marginal hazard rate of T" and its
relation with covariate W. The referral time R is mainly treated as a confounding
factor (not having causal effects on T') and it leads to the selection bias due to
truncation. Therefore the information of R is used only when we estimate G' and

v to remove the truncation bias in the analysis.

We view {dN;(t),0 <t < co,i =1,...,n} as the observed data. If the joint
survival function GG and the truncation probability v are known, then the 0-1 valued
Bernoulli random variable dN;(t) has probability of being 1 as E{N;(dt)|Fi } =
A;(dt|B, Ap). Following [1] we can write the likelihood for (8, Ay) given (G, ) as

[’ /67A07
1-33, Ni(ds)
Ay(ds|B, Ag) ™). ll—ZAi(dslﬂaAo)




which can be further written as, using the product integration theory in [13],

En = En(ﬁa AO; G7 7)

[T 1Au(ds|B. o)V }exp [—Z /0 ) Ai<dsrﬂ,Ao>]

7 1=1

0 <1;<[oo
II

g

7

G(s_,s-) .
— Ao(d )}

0<s<o0

- exp exp(W/ (s-)B — Ai(s_))
AR

Equation (4) is the full likelihood for 8 and Ay, if G and v are treated as known.
This likelihood function does not involve R;, since the information of R; is not
needed if G and v are given. We will demonstrate in later sections that R; will

only be used when we estimate G and .

2.2 A formula for A

In this subsection, we provide a very important formula for Ay, which will be
used to motivate the new estimation method. In practice, to estimate Ay we can
use a piece-wise right-continuous function, which only has positive jumps when
> N;(s) has jumps. This is reasonable and necessary since from (4) we know that
Ao(ds) is only identifiable when ), Nj(ds) is not 0. Therefore we can treat Ag
as a function with only a discrete number of parameters (the sizes of its jumps)

to be estimated. Given any fixed 3,7, G, the estimating equations for Ag(ds) is

8‘91:2(22) = 0. Using the result, 88/? u)) = exp [Wi(s_)T,B} for s < u, and from the

(4)

{ 7
s . s > Ni(ds) N;(ds
_ {[MAO(CJS)] } H {H[exp(W;r(S_)ﬂ—Ai(S—))} il )}



estimating equations gAln(ﬁn) = 0, we further have

n='"; Ni(ds)

Ao(ds) = 7
) QB A + S0(B Ag, 5 T 2
Q(B,Ny,s) = 1/ Zexp }N du) / R(B, Ao, s, U)MAo(du).
-y / exp | W (s2)8] | Ni(du) — Ai(dulB. Ao)]
=178
with

(8, Ay, s) = n! Zexp (W[ (s2)B — Ai(s-)],

i=1

R(/B, AU? 85 U) = n_l Zexp [W;I—(S_)/B)] exXp [W;r(u—)/@ - Az(u—)] :

Given 3,7, G, the above equation (5) for Ag can be solved numerically using
recursive algorithms. Such iterative algorithm, however, is not computationally ef-
ficient. Therefore, for simplicity, we consider the following approximation formula

for Ag(ds),

nt Kfl ds
No(ds) m — 2 Nilds) (©)
S( )(/67/\078)%

since E { [Ni(du) — A;(du|B, AO)] \.7:5_} = 0 and further Q(3, Ao, s) converges to
0.



2.3 Estimation for 3 and A; and large sample properties.

Equation (6) motivates us to consider the following simple working-likelihood

function. Replace Ag in (4) with (6), the likelihood function £,, becomes

Ny(ds)
) exp (W] (52)B — Ai(s_)
£n(ﬁ> AO) = 0<H H [ - ( S(O)<,87 AO? S) )]

This implies that we can consider the following log-likelihood function
L, (B, A) =n 'S / { (W] (s.)8— Ai(s_)] —In [s@) (8, Ao, s)} } Ni(ds).
— Jo

Then we have the following theorem. Proof is provided in Appendix B.
Theorem 2.1. The estimates B and Ao, which mazimize log ﬁn(ﬁ, Ag), are con-

sistent, i.e., they converge to the true parameter values, 8" and A§, in probability.

In practice, it is computationally inefficient to calculate 3 and Aq by directly
maximizing £,. Instead, we can find the estimates for 8 and Ay via iteration
algorithms. Given A, the estimate for 3 can be found by solving the following

estimating equations (by taking partial derivatives for log L, over 3),

UL(8, o) = —12 | Wit = A = BB )| Ritas) =0, (7

10



where Agl)(s) = a%iﬁgs) = [y Wi(u_)exp (W] (u_)B] Ao(du) and

SD(B, Ay, s)

SO(B, Ay, s)’

0S50 (B, Ao, s)
B

n

= 0> [ Wils ) = AP (s exp [W(s)8 - Auls )]

i=1

E(l)(/BaAO)S) =

S(l)(/gaA(]?S) -

Given (3, for simplicity and motivated by equation (6) we can find an estimate Ao
by solving the following recursive formula
; 3, Ni(ds)

Ao(ds) = - A : (8)
SO(B, Ag, 5) ¢l

Here G and 4 are consistent estimates for the true parameters G* and +*. Therefore

we consider the following Algorithm 1 in practice.

Algorithm 1 Algorithm for estimating Ay and 3.

R ~ 0] ~
Given consistent estimates G' and 4, with starting point ,3[ ], A([)O]

repeat

Given B[m}, calculate AI"™ by solving (8)

Given [\5’”*”, solve equation (7) to get B[erH

until /A\g:ﬂ and [i[m] converge to some Ay and 3
Output Ag and 3 as the estimate

The estimates B and f\o, obtained from Algorithm 1, are asymptotically equiv-
alent to solve equations (7) and (8) simultaneously. Such estimates 3 and A, are
equivalent to B and A, (given in Theorem 2.1) for large enough n, since the pair
(B, A) asymptotically satisfies equations (7) and (8) as well. Therefore we have
the following proposition.

Proposition 2.1. Suppose that G and 4 are consistent to the true parameters G*

and v*. The estimates ,B and Mo, obtained from Algorithm 1, are consistent, i.e.,

11



they converge to the true parameter values, 8% and Af, in probability.

Note that consistent estimates G and 4 can be obtained via the method in
[6].
Theorem 2.2. The asymptotic distribution for \/ﬁ(B — B%) is given by

A

V(B — BY) 5 N(0,® (8", A}, G*, 7).

The formula for W(8*, AS, G*,7*) = lim, o ¥, (8", A5, G*,7*) is given by equa-
tion (13).

The asymptotic distribution for \/n [Ao(t) — A§(t)]| is given by
Vit [Rolt) = A5(8)] 5 N0, 03(1),

for some function o3 (t).

An estimate for ¥(8%, A§, G*,v*) is given by ¥ (,8, Ao, G4 4) and an estimate

for o3 (t) is given by (details in the supplementary file)

o = | —S(O)Egﬁ;’:sim(w]T%(B,Ao,ém [ o e
o, SO Rec | o Y
w2 [ %A 9| 13 0800,

where

(8", A5, G"7)
1

nt Zz”;/ooo [n_l ;/:O Ji(ﬂ*,AS,s,u)Ni(du)

12

S(O)(,B*,AS,S)G*(S,,S,)W* 1

Ai(ds),



with J; and I,, given by equations (11) and (12) respectively.

3 Monte Carlo simulations

In this section, we evaluate the finite sample performance of the proposed
methods via Monte Carlo simulations. We choose a small sample size n = 100 and
a larger sample size n = 300. All simulation results are based on 500 replicated
simulations. Truncation times L and censoring times C' are generated respectively
from C' = avy + bvy and L = cv; + dvy + h - U[0, 1], where v; and vy are stan-
dard exponentially random variables, and we can adjust the censoring/truncation
probabilities via changing the values of (a, b, ¢, d, h). We considered two simulation

scenarios, corresponding to different correlation levels of T" and R.

3.1 Scenario 1

We consider a time varying covariate Wy (t) = W;+0.1¢ and time-independent
covariate Wy and W3, where Wy ~ U(0,1) and Wy ~ Bernoulli(0.5), W3 ~
Bernoulli(0.5). The baseline hazard rate function is Aj(dt) = A\j(t)dt = exp(at)dt,
with o = 0.3. The survival times R and T are generated as follows: R = e£ and
T = ﬁ log[(av + B7)€ exp(—W T 3%) + 1], where ¢ follows standard exponential
distribution. Note that such 7" and R are correlated and such 7" has hazard rate
function A*(dt) = exp(at)dt exp(Wi(t)B; + Wap5 + W3p5). The constant e, re-
flecting the correlation level between R and 7', is chosen as e = 0.8. This gives
a 0.9-correlation between 7' and R and such a strong correlation is very similar
to the real data analysis provided in Section 4. We choose 3* = (85,53, 55)" =

(0.2,0.4,0.3)7.

The simulation results are presented in Table 1 (n = 300) and Table 2 (n =

100). In the tables, the empirical estimates, empirical standard deviation ($3),

13



and the average standard deviation estimates (63) for the proposed estimates of B
are reported. The tables also present the coverage probabilities of 95% confidence
intervals constructed based on the normal approximation. As shown in Table 1, the
estimate B based on the new method are virtually unbiased and that the variance
estimates agree with the empirical variances quite well. The coverage probabilities
also show that the variance estimates for fi work well. Table 1 also provides the
results based on the simple Cox regression analysis without considering truncation,
which gives severely biased estimates. All the estimates in the rows (i), based on
the new method, have smaller bias than the results in the rows (ii), based on
standard Cox model analysis. The standard error estimates of the new method
are larger than the results based on the standard Cox models. This is because
the new method uses é, the joint survival function estimate for (L, C'), to adjust
the truncation bias and this introduces extra variation to the estimates. When we
decrease from n = 300 to n = 100, the results (provided in Table 2) have similar
patterns, i.e., the estimates of the proposed method dominate the estimates based

on simple Cox model results.

Figure 1 displays the estimate of the baseline hazard rate function, along with
their 95 percent point-wise confidence bands. The light-colored (yellow) solid line
is the estimated hazard rate function, which match almost exactly the dark-colored
(red) solid line (the true hazard rate function), except for the part of the tail. The
green dotted line is the mean curve of the estimated 95% confidence interval for
the baseline hazard rate, which is very close to the Monte Carlo estimate of the
95% confidence interval for the baseline hazard rate. These results indicate good

performance of the proposed method with moderate sample size.

Note that, the coverage probability of the standard Cox’s regression model in

Table 1 (sample size n = 300) is much smaller than that in Table 2 (sample size
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n = 100). This is reasonable since the standard Cox’s regression analysis actually
uses the biased data set (without considering truncation) and therefore gives a
biased estimate. Therefore, the larger the sample size, the more significant bias of

the estimate (the smaller of the coverage probability).

Table 1: Summary of simulation results for Scenario 1, n = 300; (i) results based
on the new method; (ii) results based on standard Cox model without considering
truncation.

n = 300 Cens.%= 15 Cens. %= 40
&, B s 65 CP.| B s &5 CP.
vy=04 02 (i) 0.228 0.152 0.169 0.96 | 0.223 0.155 0.161 0.96
(i) 0.277 0.122 0.126 0.91 | 0.262 0.137 0.144 0.93
0.4 (i) 0.453 0.164 0.173 0.96 | 0.388 0.167 0.167 0.97
(i) 0.571 0.126 0.129 0.75 | 0.554 0.144 0.145 0.82
0.3 (i) 0.318 0.162 0.175 0.96 | 0.288 0.164 0.178 0.96
(i) 0.428 0.121 0.127 0.85 | 0.410 0.134 0.144 0.91
v=0.6 0.2 (i) 0.204 0.154 0.157 0.96 | 0.190 0.176 0.179 0.95
(i) 0.270 0.121 0.126 0.93 | 0.240 0.160 0.153 0.94
0.4 (i) 0.433 0.171 0.168 0.95 | 0.388 0.185 0.188 0.93
(i) 0.536 0.128 0.128 0.83 | 0.474 0.151 0.154 0.92
0.3 (i) 0.324 0.163 0.161 0.95 | 0.291 0.168 0.179 0.95
(i) 0.394 0.123 0.127 0.90 | 0.347 0.151 0.153 0.94

3.2 Scenario 2

In the second simulation scenario, we consider the same time varying covari-
ate Wi (t), time-independent covariate Wy and W3 and the same baseline hazard
rate function, as those in the previous section. The survival times R and 7T are
generated as follows, under a different correlation structure from that in Scenario
1. T = m In[(a + BF)€ exp(—W T 3%) + 1], where ¢ follows the standard expo-
nential distribution and R is drawn from a gamma(3¢,5). The correlation of R

and 7' is about 0.55, which represents a much weaker correlation between R and

T than that in Scenario 1. We choose the same true parameter values as that in

15



Table 2: Summary of simulation results for Scenario 1, n = 100; (i) results based
on the new method; (ii) results based on standard Cox model without considering
truncation.

n = 100 Cens.%= 15 Cens.%= 40
3 B & 65 CP.| B s 45 CP.
v=04 02 (i) 0.233 0.275 0.289 0.96 | 0.218 0.282 0.289 0.97
(i) 0.285 0.228 0.222 0.94 | 0.262 0.253 0.251 0.93
0.4 (i) 0.433 0.280 0.285 0.96 | 0.387 0.291 0.298 0.96
(ii) 0.559 0.237 0.228 0.89 | 0.548 0.270 0.258 0.90
0.3 (i) 0.320 0.293 0.308 0.96 | 0.291 0.284 0.281 0.96
(i) 0.418 0.232 0.226 0.92 | 0.397 0.269 0.257 0.92
v=06 02 (i) 0.233 0.261 0.268 0.96 | 0.183 0.283 0.293 0.96
(ii) 0.274 0.228 0.221 0.93 | 0.248 0.269 0.266 0.95
0.4 (i) 0.450 0.272 0.285 0.96 | 0.389 0.302 0.312 0.95
(ii) 0.544 0.239 0.227 0.91 | 0.493 0.282 0.273 0.95
0.3 (i) 0.334 0.271 0.287 0.96 | 0.279 0.304 0.314 0.96
(i) 0.399 0.234 0.226 0.91 | 0.347 0.285 0.272 0.93

Scenario 1. The simulation results are presented in Table 3 and Table 4.

As what we discovered in Scenario 1, all the estimates in the rows (i), based
on the new method, have smaller bias than the results in the rows (ii), based on
standard Cox model analysis. However, in Scenario 2, the bias of the estimates
based on the standard Cox model is not as severe as those in Scenario 1. For
example in Table 1, with 40% censoring and 40% truncation, the estimated values
for the standard Cox regression analysis B = (0.262,0.554,0.410)" are severely
biased comparing to the true value (0.2,0.4,0.3)". On the other hand, in Table
3, with 40% censoring and 40% truncation, the standard Cox regression estimates
B8 = (0.227,0.464,0.350) T have much less bias although they are still not good
enough. The reason for this is that the selection bias of T" comes from the trun-
cation of R. If R and T are highly correlated, the truncation on R will lead to
severely biased sample for T'; if the correlation of R and T is not high, the trunca-

tion on R will have less impact on 7. On the contrary, the new method can deal
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Figure 1: Baseline hazard estimation. True baseline function: the dark (red color)
solid curve; the estimated baseline function: the light (yellow color) solid curve; the
mean of estimated 95% confidence intervals: the dotted curves; the 95% confidence
interval for the baseline hazard rate estimates: the dashed curves

with the truncation on R and it give more consistent results for both scenarios

with either small correlation or large correlation of R an 7.

4 A real example

We apply the proposed method to the Edinburgh hepatitis C data previously
studied in [11]. The aim of our study was to determine how the progression risk
(hazard rate) of the cirrhosis event is affected by the three risk factors: age at
infection, HIV co-infection (yes:1 or no:0) and heavy alcohol consumption (yes:1
or n0:0). The cirrhosis event 7' may be censored and the correlated referral event

is right-truncated.

In an earlier paper, we proposed an accelerated failure time model for cen-
sored survival data under referral bias for this application [29], where Schoenfeld

residual analysis [21] indicated that the proportional hazard assumption is likely to
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Table 3: Summary of simulation results for Scenario 2, n = 300; (i) results based
on the new method; (ii) results based on standard Cox model without considering

truncation.
n = 300 Cens.%= 15 Cens.%= 40
3 B i 65 P B 55 CP.
vy=04 02 (i) 0209 0.133 0.141 0.95 | 0.217 0.169 0.95
(i) 0.233 0.121 0.125 0.93 | 0.227 0.144 0.95
0.4 (i) 0.398 0.160 0.167 0.96 | 0.397 0.173 0.95
(ii) 0.467 0.133 0.127 0.90 | 0.464 0.145 0.93
0.3 (i) 0.298 0.146 0.148 0.96 | 0.298 0.169 0.96
(i) 0.356  0.131 0.126 0.93 | 0.350 0.145 0.93
v=06 02 (i) 0211 0.164 0.161 0.95 | 0.214 0.172 0.95
(i) 0.236  0.126  0.127 0.93 | 0.224 0.154 0.95
0.4 (i) 0.407 0.170 0.178 0.95 | 0.401 0.175 0.95
(ii) 0.462 0.122 0.129 0.94 | 0.449 0.155 0.94
0.3 (i) 0.314 0.179 0.181 0.95 | 0.306 0.188 0.96
(ii) 0.356 0.2129 0.128 0.92 | 0.348 0.154 0.93

Table 4: Summary of simulation results for Scenario 2, n = 100; (i) results based
on the new method; (ii) results based on standard Cox model without considering

truncation.
n = 100 Cens.%= 15 Cens.%= 40
3 3 s 65 CP.| B 55 CP.
vy=04 02 (i) 0204 0.234 0.246 0.96 | 0.187 0.279 0.95
(ii) 0.238 0.230 0.221 0.96 | 0.242 0.253 0.94
04 (i) 0.369 0.258 0.263 0.96 | 0.389 0.283 0.96
(ii) 0.465 0.244 0.225 0.93 | 0.467 0.258 0.94
0.3 (i) 0.278 0.249 0.241 0.96 | 0.284 0.279 0.96
(ii) 0.362 0.228 0.224 0.94 | 0.359 0.258 0.94
=06 02 (i) 0217 0.244 0.257 0.96 | 0.173 0.319 0.95
(ii) 0.247 0.240 0.224 0.94 | 0.246 0.269 0.95
0.4 (i) 0.410 0.250 0.256 0.95 | 0.370 0.316 0.94
(i) 0.463 0.236 0.229 0.94 | 0.460 0.275 0.95
0.3 (i) 0.307 0.251 0.269 0.95 | 0.285 0.305 0.94
(i) 0.336  0.237 0.228 0.93 | 0.326 0.275 0.95
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be violated for heavy alcohol consumption; also see Figure 2. We therefore fit the
proposed proportional hazards model (1) to the data with B8 = (51, B2, 83, 84) T,
corresponding to the covariates (age Wi, HIV coinfection W5, heavy alcohol con-
sumption Wj, and the interaction of W5 and time), in order to guarantee the
validation of the proportional hazards assumption for ‘heavy alcohol consump-
tion’. This proportional hazards model with a time-dependent covariate (interac-
tion term) allows that the effect that heavy alcohol consumption may change over
time. When the model includes the interaction term, the proportional hazards as-
sumption becomes reasonable. This can be seen from the Schoenfeld residual plots
presented in Figure 3, which implied that both 3 (for heavy alcohol consumption)

and [, (for the interaction of alcohol with time) are almost constant over time.

Heavy Alcohol Consumption

Oo o o
o~ | 0o o
1 () oo © OO
% o
o
T T T T T T T 1
16 22 26 27 30 35 40

Time

Figure 2: Schoenfeld residual plot for alcohol, based on analysis without interaction
term.
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1.0

0.5
1
o

Heavy Alcohol Consumption * Time
0.0
1

-0.5
1

Figure 3: Results based on the model with interaction term. Left plot: Schoenfeld
residual plot for alcohol; right plot: Schoenfeld residual plot for the interaction of

alcohol and time from infection.

Table 5 summarizes the estimates of regression parameters obtained from

our method. The results from the truncated model, where the referral bias is

considered, show that age at infection (1), HIV co-infection (f;) and heavy alcohol

in-take (f3) are significantly identified as risk factors associated with more rapid

disease progression to cirrhosis. The interaction effect of heavy alcohol assumption

and time has a negative estimate —0.043, but it is not significant. It implied that

the effect of heavy alcohol consumption is slightly decreasing during the disease

progression although the change is not significant.

Table 5: Summary of Data analysis

A Ba Bs By

Parameter

B 0.074 1.646 3.400 -0.043

0.014 0.839 1.609 0.072
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5 Discussion

Under the proportional hazards model framework, we presented a likelihood
procedure for the estimation of the coefficients for time-varying covariates and the
baseline hazard function under referral bias. The challenge in our study is the
referral bias, which is due to a random right-truncation on a time event R which is
highly correlated to the time event T' of main interest. The proposed method deals
with the truncation bias via a nonparametric approach. The asymptotic results
are developed and our simulation studies indicate that the proposed method has

good statistical properties.

We applied the new methods to a real HCV cohort study where traditional
analysis without taking into account referral bias often gave biased estimate for
the effects of risk factors ( see [10, 11]). Such referral bias often happens in chronic
disease epidemiology cohort studies, where entry into the cohort is dependent on
a subject’s progression to an event of interest and patients are more likely to be

referred to specialist clinics at later stages of disease ( see [11]).

This paper only focused on dealing with the analysis for the main survival
events. In such long-term epidemiological studies, repeated outcome measurements
for each subject may also be available and of interest. It would be interesting to ex-
tend the method developed here to a joint modelling framework for survival events
and longitudinal measurements. In addition, because chronic disease epidemiolog-
ical studies usually last a long period of time, certain time-independent variables
may have time-varying effects. It is also of interest to develop new methods to deal
with time-varying coefficients [26]. These are left to future work. Another possible
future research work is to extend the proposed methodology to handle other types

of sampling bias, for example the length-biased data [24].
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Another possible future research work is to consider (R,T) and (L,C) are
conditional independent given W', for appropriate application problems. Because
that (R,T") and (L, C) are truncated or censored by each other, we need to model
the relation of (R,T) and W and the relation of (L,C) and W simultaneously.
When using the inverse probability weighted method to remove the truncation
bias, the joint distribution G of (L, C') will depend on W. This will raise further
challenges in the iteration algorithms. In addition, the truncation probability
will depends on W ie., v = Pr(R < L|W). This truncation probability will
depends on how (R, T) and (L, C') are modelled with respect to W. New methods
need to be develop to estimate such truncation probabilities. However, if (L, C)
is independent of W the truncation probability can be estimated based on the
formula, v = Pr(R < LIW) = [° Pr(R < s|W)F(ds), where Fy(s) = Pr(L <

s), and the proposed method in this paper can be easily extended to such cases.

A Proof of equation (2)

Proof. Because of the assumption Pr(R < T) = 1, we have that {T" € dt,L > t}

implies R < L. Then it follows that

E {H;(t)N;(dt)|F}_} Pr(T; € dt,C; > Ty, L; > t|F} )
G(t_.t ) - G(t_,t )
Pr(T €dt,C>t,L>tR<L,F!)
- G(t_,t)

Pr(T € dt,C >t,L > t|F} )
Pr(R < L)G(t-,t-)

Since we denote v = Pr(R < L), we have

E{H;(t)N;(dt)|F;_} Pr(T €dt,C >t L>tlF )

G(t_,t.) B YG(t_,t_)
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From the independency assumption of (R, T, W) and (L, C), we have

E{H,(t)N;(dt)|F._} 1 . 1 N
— :—P T :_A - Z(t—).
G - (T € dt|Fi) S J(dt)e

B Proof of Theorem 2.1

Before proceeding to the proof of Theorem 2.1, we introduce the following

lemma.
Lemma B.1. For any positive values x4, ...,x, and yq,...,Yy, we have
-1 & Z; T\ _
n In{—) -y <ln (j> i.
() w=e(
Proof. 1t is straightforward to prove the lemma, if we view y;/ > jYpi=1....n
as a probability distribution for the values z; = z;/y;,7 = 1,...,n. This is because
- x; Yi T Yi x
E{ln(z)} =) In (—) . <log [E{z}] =1n — =In (j) ,

which implies that the lemma is true. ]

Now we prove Theorem 2.1. Following the notations in previous sections,

we denote Aj, 8%, G* and 7* as the true parameter values. Denote Aj(s) =

23



[ eV @B A (du). Define

2,08, Mo,t) = n*z / W (s)(8 - B)Ads|8", A})
— Z / (Ad(s) — Af(s)] A(ds] 8, AY)
[, [598,A,5) .
—n /Oln{s (3, A% o) }ZZ:A (ds|B*, A).

We can rewrite the above formula as

Zn(/gaA(J?t)
— ! ~ [ . exp [WRS—),B _Az'<5—)} ox T(s V3" — A*(s G*(s_,s_) ., s
S {exp [WT(s_)ﬂ*—A*(s_)]} P LW ()8 = Ao )] T A )
¢ n-l 1€WT(S )B—Ai(s_) B - ] Gl :
I o o S

Then with Lemma B.1, we have that Z,(8, A, ds) < 0 for any (3,A¢). On the
other hand it is obvious that Z,(3, Ay, 00) and Z(3, Ay, o0) = lim,, Z,,(3, Ay, 00)

reach the maximum value 0, at 8%, Aj,.

Define

X (B, Mo, 1)

t
- nlz/ W (s_)(8 — B°)Ni(ds) — nlz/o [A(s2) — A (s_)] Ni(ds)
i=1
LSO ﬁ A
-1 y 440, S
—n /Oln{s 3 A5 s) ];Nds
which has the same maximum point as In ﬁn(ﬁ, Ag), since they are only different

in a constant. Clearly lim(X,, — Z,) = 0 since X,, — Z,, is a martingale, and further

lim&, = Z.
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Therefore B, Ao, the maximum point for log L.(8,Ay) (or the maximum point
for X,,(8, Ap, 00)), converges to the true parameter value 8" and A, the maximum
point of Z, under the mild assumption that (3%, Af) is the unique maximum point

for Z.

C Proof of Theorem 2.2

First we define, for u > s,

OEM (3, Ay,
BB o) = 8A<oﬁ(ds;) .

P S W )08 — (W) — A ()] W08} W (8-

7

S(O) (ﬁ? AOa U/)
W(B, Ag, u)yn= S0 Wi ()B-Aiu) W (s-)B
(0)(,3,A0,u)2 .

+

By the first-order Taylor expansion of the score function U, (3, A¢) around the

true value 8%, Aj(ds), we have

\/ﬁUn(Bw/A\O)
. ) B, A7)
VU (B, Ag) + Vnl (8" A)(ﬁ B") +\/_/ 6A*—)
= VU, (8", A)) + VI8, A) (B — B7)
_n—l/zz / / B, A%, 5, 1) Ni(du) [Ao(ds)_A;(ds)}, (10)

Q=

|Ao(ds) — Ay(ds)

where

Ji(B* Ny s,u) = Wi(s )eWi 6P L BB, A, s,u), (11)
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and

LA = 'Y / AR (s) + BB, G, 9)] Nilds), (12)
i=1 70

AP G) = [ W) e O A,
0

E(2)(I@* A s) = 5(2)(6*7‘/\373) B S(l)(ﬁ*aA373)®2
Y B S(O)(B*,AS,S) S(O)(B*’AS’S)Z’

SO ALs) = nlz{—A?)*(sH Wz-<s_>—A§”*<s>}®2}exp [(Wi(s)8" = A7(5)]

The notation a ® b denotes the outer product of the two column vectors a, b.

Then according to U, (83, A¢) = 0 and (8), we have

V(B - B°)
L(8".45)"! {—ﬁvnm*,m w23 [ [T 3 a0 Nt [Rads) - Aé;(ds)]}

Q=

= VL8507 Y { /0 h (Wils) = AL (s) = (8", A5, 5)| Mi(ds)

7

_/Ooo [n—lzk:/:oJk(ﬂ*,AS,&U)Nk(du)

1

where M;(ds) = Ny(ds) — Ai(ds|B*, A).

Following the martingale theory for counting processes, we similarly have that

V(B — B*) is asymptotically normal with mean 0 and variance-covariance matrix
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(8% Ay, G*,v*) = lim, 00 ¥, (8%, A, G*,7), where

L,(87, A0)®n(B7, Ay, G*,7") (87, Ag) (13)

n

= 'y / ) (Wis) — A () — BO(8° 85.5)] Aulaslg”, A3)
i=1 70
—l—/ooo [n_lzk:/soo Jk(ﬁ*,AS,s,u)Nk(du)
! {/w [”_IZ/OO T8 g 5.) Nidu)
0 k s

2
? Az (ds)

SO(B*, A, 5)G* /v
2
Aé(ds)} :

The asymptotic normality can be proved similarly for Ag, based on the equa-

tion (10). O
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