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CHEBYSHEV ROOTFINDING VIA COMPUTING EIGENVALUES

OF COLLEAGUE MATRICES: WHEN IS IT STABLE?

VANNI NOFERINI AND JAVIER PÉREZ

Abstract. Computing the roots of a scalar polynomial, or the eigenvalues
of a matrix polynomial, expressed in the Chebyshev basis {Tk(x)} is a fun-
damental problem that arises in many applications. In this work, we analyze
the backward stability of the polynomial rootfinding problem solved with col-
league matrices. In other words, given a scalar polynomial p(x) or a matrix
polynomial P (x) expressed in the Chebyshev basis, the question is to deter-
mine whether the whole set of computed eigenvalues of the colleague matrix,
obtained with a backward stable algorithm, like the QR algorithm, are the
set of roots of a nearby polynomial or not. In order to do so, we derive a
first order backward error analysis of the polynomial rootfinding algorithm
using colleague matrices adapting the geometric arguments in [A. Edelman
and H. Murakami, Polynomial roots for companion matrix eigenvalues, Math.
Comp. 210, 763–776, 1995] to the Chebyshev basis. We show that, if the
absolute value of the coefficients of p(x) (respectively, the norm of the coeffi-
cients of P (x)) are bounded by a moderate number, computing the roots of
p(x) (respectively, the eigenvalues of P (x)) via the eigenvalues of its colleague
matrix using a backward stable eigenvalue algorithm is backward stable. This
backward error analysis also expands on the very recent work [Y. Nakatsukasa
and V. Noferini, On the stability of computing polynomial roots via confeder-

ate linearizations, To appear in Math. Comp.] that already showed that this
algorithm is not backward normwise stable if the coefficients of the polynomial
p(x) do not have moderate norms.

1. Introduction

A popular way to compute the roots of a monic polynomial expressed in the
monomial basis is via the eigenvalues of its companion matrix. This is, for in-
stance, the way followed by the MATLAB command roots, that, after balancing
the companion matrix, uses the QR algorithm to get its eigenvalues. The numerical
properties of this method for computing roots of polynomials have been extensively
studied [8, 9, 15, 25], in particular with respect to conditioning and backward errors.
It has been shown that, in practice, if the companion matrix is balanced [21], the
rootfinding method using companion matrices is numerically stable, in the sense
that the computed roots are the exact roots of a nearby polynomial. However,
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as it was made famous by Wilkinson [22, 26, 27], polynomial roots that lie on a
real interval can be highly sensitive to perturbations in the coefficients when the
monomial basis is used. So, even perturbations in the coefficients of order of the
machine precision may produce a catastrophically large forward error. In practice,
rootfinding on a real interval is a very frequent and important situation, and one
way to circumvent this problem is to use, instead, a polynomial basis such that the
roots of a polynomial expressed in that basis are better conditioned functions of its
coefficients, like the Chebyshev basis.

Chebyshev polynomials are a family of polynomials, orthogonal with respect to
the weight function w(x) = (1 − x2)−1/2 on the interval [−1, 1], which may be
computed using the following recurrence relation [1, Chapter 22]:

T0(x) = 1,

T1(x) = x, and,

Tk(x) = 2xTk−1(x)− Tk−2(x), for k ≥ 2.

(1.1)

Moreover, the Chebyshev polynomials T0(x), T1(x), . . . , Tn(x) form a basis for the
vector space of polynomials of degree at most n with real coefficients Rn[x]. Hence,
any real polynomial p(x) ∈ Rn[x] can be written uniquely as p(x) =

∑n
k=0 akTk(x).

Chebyshev polynomials are widely used in many areas of numerical analysis,
and in particular approximation theory [23]. In fact, a common approach, as done
in Chebfun [24], for computing the roots of a nonlinear smooth function f(x) on
an interval is to approximate first f(x) by a polynomial p(x) expressed in the
Chebyshev basis via Chebyshev interpolation and then compute the roots of p(x)
as the eigenvalues of its colleague matrix [11]. Also, computing the eigenvalues of
matrix polynomials in the Chebyshev basis is becoming an important problem [10].

In this paper, we are interested in the backward stability of the rootfinding
problem (or of the matrix polynomial eigenvalue problem) solved via colleague
matrices and a backward stable eigenvalue algorithm. Our work is motivated by
[18], which addresses related issues for confederate matrices (the colleague matrix is
a particular example of a confederate matrix [4, 17]). Also, similar backward error
analysis may be found in [8, 13, 14]. In [8], the authors study the backward stability
of rootfinding methods using Fiedler companion matrices of monic polynomials
expressed in the monomial basis; in [13], the authors study the backward stability
of rootfinding methods using a suitable companion matrix of polynomials expressed
in barycentric form; in [14], several bases are analyzed at once, for nonstandard
linearizations of larger size with respect to the colleague or the companion.

Given a p× p monic matrix polynomial in the Chebyshev basis of degree n

(1.2) P (x) = IpTn(x) +
n−1∑

k=0

AkTk(x), with Ak ∈ R
p×p, for k = 0, 1, . . . , n− 1,

where by monic in the Chebyshev basis we mean that the coefficient of Tn(x) is
equal to Ip (the p× p identity matrix), the polynomial eigenvalue problem consists
of finding the eigenvalues of P (x), that is, finding the roots of the scalar polynomial
det (P (x)) (note that the monicity of P (x) implies its regularity, that is, det (P (x))
is not identically zero). For the sake of simplicity of exposition, we focus on poly-
nomials with real coefficients, as they are most common in practice when dealing
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with the Chebyshev basis; however, the analysis of this paper can be extended to
the complex case.

A common approach to solve the polynomial eigenvalue problem for P (x) is to
use the block colleague matrix
(1.3)

CT =
1

2




−An−1 −An−2 + Ip −An−3 · · · −A2 −A1 −A0

Ip 0 Ip 0 · · · · · · 0

0 Ip 0 Ip
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 Ip 0 Ip
0 · · · · · · · · · 0 2Ip 0




∈ R
np×np,

since it is known (see [2]) that the eigenvalues of (1.3) coincide with the eigenvalues
of P (x).

The eigenvalues of P (x) may be computed as the eigenvalues of CT using, for
instance, the QR algorithm. The QR algorithm is a backward stable algorithm,
this means than the computed eigenvalues are the exact eigenvalues of a matrix
CT + E, where E is a (possibly dense) matrix such that

‖E‖ = O(u)‖CT ‖,
for some matrix norm, where u denotes the machine precision. However, the previ-
ous equation does not guarantee that the computed eigenvalues are the eigenvalues
of a nearby matrix polynomial of P (x) or, in other words, that this polynomial
eigensolver is backward stable. In order for the method to be backward stable (in
a normwise sense), the computed eigenvalues should be the exact eigenvalues of a

polynomial P̃ (x) = IpTn(x) +
∑n−1

k=0 ÃkTk(x), such that

‖P̃ − P‖
‖P‖ = O(u),

for some matrix polynomial norm.
In the scalar polynomial case (p = 1), the backward stability of the polynomial

rootfinding in degree-graded basis using confederate matrices is studied in [18]. In
particular (see [18, Theorem 4.2]), the authors prove that if CT is the colleague
matrix of a polynomial p(x) and E ∈ R

n×n is any matrix, then the eigenvalues of
CT + E are the exact roots of a polynomial p̃(x) such that

(1.4) p̃(x) − p(x) =

n−1∑

i=0

δi(p,E)Ti(x) +O(‖E‖22),

where, for i = 0, 1, . . . , n − 1, the quantity δi(p,E) is an affine function of the
coefficients of p(x), and, separately, of the entries of E.

Equation (1.4) implies that if the roots of p(x) are computed as the eigenvalues
of its colleague matrix CT using a backward stable eigenvalue algorithm, then, the
computed roots will be the exact roots of a polynomial p̃(x) such that

‖p̃− p‖
‖p‖ = κ(n)O(u)‖p‖,
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for some constant k(n). The previous equation shows, first, that this method is
not backward stable if ‖p‖ ≫ 1, and, second, that this method is backward stable
if the following two conditions are satisfied: (i) the quantity κ(n) is a low-degree
polynomial in n with moderate coefficients; and, (ii) the norm ‖p‖ is moderate. As
it is observed in [18], writing δi(p,E) =

∑
i,j,ℓ βijℓaℓEij , since it is not clear what

exactly are the constants βijℓ involved, in principle it could happen that |βijℓ| ≫ 1,
implying that κ(n) might not be a polynomial in n with moderate coefficients.
However, in this work we show that, in fact, |βijℓ| ≤ 4, and, so,

‖p̃− p‖
‖p‖ = O(u)‖p‖,

holds. The previous equation implies that computing the roots of p(x) via the
eigenvalues of its colleague matrix using a backward stable eigenvalue algorithm is
a backward stable rootfinding algorithm, provided that ‖p‖ . 1.

Moreover, using some arguments inspired by [3, 9, 15, 16] we will generalized
the previous result to the matrix polynomial case, that is, if the eigenvalues of a
matrix polynomial P (x) are computed as the eigenvalues of its colleague matrix
using a backward stable eigenvalue algorithm, then, we prove that the computed
eigenvalues are the exact eigenvalues of a monic matrix polynomial in the Chebyshev

basis P̃ (x) such that

‖P̃ − P‖
‖P‖ = O(u)‖P‖.

The previous equation implies that this method is backward stable if ‖P‖ is mod-
erate.

The paper is organized as follows. At the beginning of Section 2 we present
Arnold transversality theorem for colleague matrices, which will be the main tool to
study the polynomial backward stability of the rootfinding method using colleague
matrices. Then, in Section 2.2 we prove Arnold transversality theorem for colleague
matrices, and in Section 2.3 we use this theorem to study the backward stability of
the rootfinding method using colleague matrices.

Throughout this paper, for a p×pmatrix polynomial P (x) =
∑n

k=0 AkTk(x), non
necessarily monic, ‖P‖F is the norm on the vector space of p×pmatrix polynomials
of degree less than or equal to n defined as

‖P‖F =

√√√√
n∑

k=0

‖Ak‖2F .

Notice that, since we are going to deal with monic polynomials in the Chebyshev
basis, An = Ip. Also notice that for a scalar polynomial p(x) =

∑n
k=0 akTk(x), that

is, for p = 1, this norm reduces to the usual 2-norm:

‖p‖F = ‖p‖2 =

√√√√
n∑

k=0

|ak|2.
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2. Arnold transversality theorem for colleague matrices and

backward error analysis

Arnold transversality theorem will be the main tool in this section to study
what kind of polynomial backward stability is provided by matrix backward stabil-
ity when the roots of scalar polynomials or the eigenvalues of matrix polynomials
are computed as the eigenvalues of its colleague matrix with a backward stable
eigenvalue algorithm. This theorem was first stated in [3] for companion matrices,
and later generalized in [18] to confederate matrices of scalar polynomials.

Following [3, 8, 9, 15, 18], we consider the Euclidian matrix space Rn×n with the
usual Frobenius inner product

< A,B >:= tr (ABT ),

where MT denotes the transpose of M ∈ R
n×n. In this space, the set of matrices

similar to a given matrix A ∈ R
n×n is a differentiable manifold in R

n×n. This
manifold is called the orbit of A under the action of similarity:

O(A) := {SAS−1 : S ∈ R
n×n and det(S) 6= 0}.

A first-order expansion shows that the tangent space of O(A) at A is the set

TAO(A) := {AX −XA for some X ∈ R
n×n}.

We also consider the vector subspace of “first block row matrices”, denoted by
BFRn,p ⊂ R

np×np, which is defined as those n × n block matrices [Xij ], with
Xij ∈ R

p×p, whose block rows are all zero except (possibly) the first:

BFRn,p :=
{
X =

[
IP 0 · · · 0

]T [
X1 X2 · · · Xn

]
for some

X1, X2, . . . , Xn ∈ R
p×p

}
⊂ R

np×np.

Note that taking p = 1 the space BFRn,p reduces to the vector subspace FRn of
“first row matrices” introduced in [18].

Arnold transversality theorem for a block colleague matrix CT of a monic matrix
polynomial P (x) in the Chebyshev basis states that any matrix E ∈ R

np×np may
be decomposed as

E = F0 + T,

where F0 ∈ BFRn,p is a first block row matrix and T ∈ TCT
O(CT ). Notice that

taking p = 1 in the previous decomposition, this “block” version of Arnold transver-
sality theorem reduces to a special case of [18, Theorem 4.1].

In Section 2.3 we present a proof of Arnold transversality theorem, different to
the one in [18], extending (for the important case of the Chebyshev basis) [18, The-
orem 4.1] to the more complicated case of matrix polynomials. The new approach
allows us to compute explicitly the matrix F0. Then, using this explicit expres-
sion, we study the polynomial backward stability of the rootfinding method using
colleague matrices.

2.1. Clenshaw shifts and Clenshaw matrices. In this section we introduce
some matrix polynomials and some matrices, named here as Clenshaw shifts and
Clenshaw matrices, respectively, associated with a monic matrix polynomial in the
Chebyshev basis P (x), that will be used through Section 2.3 and will be key in the
following developments. Clenshaw shifts are the generalization of the Horner shifts
(see [7]) when the polynomial P (x) is expressed in the Chebyshev basis.
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Associated with the p×p monic matrix polynomial in the Chebyshev basis P (x)
in (1.2), we define the following p× p matrix polynomials:

H0(x) = 2Ip,

H1(x) = 2xH0(x) + 2An−1,

Hk(x) = 2xHk−1(x)−Hk−2(x) + 2An−k, for k = 2, 3, . . . , n− 2,

Hn−1(x) = xHn−2(x) −Hn−3(x)/2 +A1.

(2.1)

We will refer, for k = 1, 2, . . . , n, to the matrix polynomial Hk(x) as the degree k
Clenshaw shift of P (x), since for p = 1 they coincide with the well known Clen-
shaw shifts associated with a scalar polynomial expressed in the Chebyshev basis
[6]. Clenshaw shifts are related with the polynomial P (x) through the following
equation [6]:

(2.2) 2P (x) = 2xHn−1(x) −Hn−2(x) + 2A0.

In Theorem 2.1, given the Chebyshev polynomial Tn−i(x) and the Clenshaw shift
Hn−k(x), we show how to express Tn−i(x)Hn−k(x) uniquely as Qij(x)+rik(x)P (x),
where Qij(x) is a p× p matrix polynomial of degree less than or equal to n− 1 and
rik(x) is a scalar polynomial. The proof of Theorem 2.1 is elementary but rather
technical, so we leave it to the appendix. In order to write down a reasonably
simple formula for Tn−i(x)Hn−k(x), we define the following quantities

Γ2k+1 = Γ2k−1 + 2An−2k−1, for k = 1, 2, . . . ,
⌊n
2

⌋
− 1, with Γ0 = 2Ip, and

Γ2k = Γ2(k−1) + 2An−2k, for k = 1, 2, . . . ,
⌈n
2

⌉
− 1, with Γ1 = 2An−1.

(2.3)

Notice that in Γk only appear coefficients of P (x) with indices of the same parity.

Theorem 2.1. Let P (x) = IpTn(x)+
∑n−1

k=0 AkTk(x) be a p×p monic matrix poly-
nomial in the Chebyshev basis of degree n, let Tn−i(x) and Hn−k(x) be, respectively,
the degree n− i Chebyshev polynomial and the degree n− k Clenshaw shift of P (x),
with i, k ∈ {1, 2, . . . , n}. Then, there exist a unique p× p matrix polynomial Qik(x)
of degree less than or equal to n−1 and a unique scalar polynomial rik(x) such that

Tn−i(x)Hn−k(x) = Qik(x) + rik(x)P (x),

where,

• if i ≥ n− k + 1 and k ≥ 2,

(2.4) Qik(x) =

n−k−1∑

ℓ=0

Γℓ(T2n−i−k−ℓ(x) + T|k+ℓ−i|(x)) + Γn−kTn−i(x);

• if i = n and k = 1,

(2.5) Qik(x) =
n−2∑

ℓ=0

ΓℓTn−1−ℓ(x) +
Γn−1

2
T0(x);
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• if i ≤ n− k and n− 1 ≥ k ≥ 2,

Qik(x) =

i−2∑

ℓ=0

Γℓ(Ti+k−2−ℓ(x) + T|k+ℓ−i|(x)) + Γi−1Tk−1(x)

−
n−k+1−i∑

ℓ=1

k−1+ℓ∑

r=1

2Ak−1+ℓ−rT|n−i+1−ℓ−r|(x);

(2.6)

• if i ≤ n− k and k = 1

Qik(x) =
i−2∑

ℓ=0

ΓℓTi−1−ℓ(x) +
Γi−1

2
T0(x)−

n−i∑

ℓ=1

ℓ∑

r=1

Aℓ−rT|n−i+1−ℓ−r|(x);(2.7)

where Γℓ, for ℓ = 0, 1, 2, . . ., is defined in (2.3).

From Theorem 2.1, it is clear that there exists a unique n × n block matrix
Mk = [(Mk)ij ], with (Mk)ij ∈ R

p×p, such that, for k = 1, 2, . . . , n,

(2.8)




Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k(x) = Mk




Tn−1(x)
...

T1(x)
T0(x)


⊗ Ip +




r1k(x)
...

rn−1,k(x)
rnk(x)


⊗ P (x),

where⊗ denotes the Kronecker product, for some scalar polynomials r1k(x), . . . , rnk(x).
We will refer to the matrix Mk in (2.8) as the kth Clenshaw matrix of P (x).

By direct multiplication, it may be easily checked that the block colleague matrix
CT satisfies

(2.9) x




Tn−1(x)
...

T1(x)
T0(x)


⊗ Ip = CT




Tn−1(x)
...

T1(x)
T0(x)


⊗ Ip +

1

2
e1 ⊗ P (x).

Equations (2.8) and (2.9) shows that the Clenshaw matrices and the colleague
matrix can be interpreted, respectively, as the multiplication-by-Clenshaw shifts
and the multiplication-by-x operators in certain quotient modules (see also [19,
Sec. 5]).

Using (2.8) and (2.9), in Proposition 2.2 we show that the Clenshaw matrices
M1,M2, . . . ,Mn in (2.8) satisfy a simple recurrence relation.

Proposition 2.2. Let P (x) = IpTn(x) +
∑n−1

k=0 AkTk(x) be a p× p monic matrix
polynomial in the Chebyshev basis of degree n, let CT be the block colleague matrix
of P (x), and let M1,M2, . . . ,Mn be the Clenshaw matrices in (2.8). Then,

Mn = In ⊗ 2Ip,

Mn−1 = 2MnCT + In ⊗ 2An−1,

Mk = 2Mk+1CT −Mk+2 + In ⊗ 2Ak, for k = n− 2, . . . , 3, 2, and

M1 = M2CT −M3/2 + In ⊗A1.

(2.10)
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Proof. The proof proceeds backwards from k = n. First, we prove that the result
is true for k = n. From (2.1), we have




Tn−1(x)
...

T1(x)
T0(x)


⊗H0(x) =




Tn−1(x)
...

T1(x)
T0(x)


⊗ 2Ip =




2Ip
. . .

2Ip
2Ip







Tn−1(x)
...

T1(x)
T0(x)


⊗ Ip.

Comparing the previous equation with (2.8), we deduce that Mn = In ⊗ 2Ip.
Second, we prove that the result is true for k = n− 1. From (2.1), we have




Tn−1(x)
...

T1(x)
T0(x)


⊗H1(x) =




Tn−1(x)
...

T1(x)
T0(x)


⊗ (2xH0(x) + 2An−1) = 2x




Tn−1(x)
...

T1(x)
T0(x)


⊗H0(x)+




Tn−1(x)
...

T1(x)
T0(x)


⊗ 2An−1.

Using (2.8) with k = n, together with (2.9), we get




Tn−1(x)
...

T1(x)
T0(x)


⊗H1(x) = (2MnCT + In⊗ 2An−1)




Tn−1(x)
...

T1(x)
T0(x)


+




r1,n−1(x)
...

rn−1,n−1(x)
rn,n−1(x)


⊗P (x),

for some scalar polynomials r1,n−1(x), . . . , rn,n−1(x). Comparing the previous equa-
tion with (2.8), we deduce that Mn−1 = 2MnCT + In ⊗ 2An−1.

Third, we prove that the result is true for n− 2 ≥ k ≥ 2. From (2.1), we have




Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k(x) =




Tn−1(x)
...

T1(x)
T0(x)


⊗ (2xHn−k−1(x)−Hn−k−2(x) + 2Ak)

= 2x




Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k−1(x)−




Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k−2(x) +




Tn−1(x)
...

T1(x)
T0(x)


⊗ 2Ak.



CHEBYSHEV ROOTFINDING VIA EIGENVALUES OF COLLEAGUE MATRICES 9

Using (2.8) with k + 1 and k + 2, together with (2.9), we get



Tn−1(x)
...

T1(x)
T0(x)


⊗Hn−k(x) =(2CTMk+1 −Mk+2 + In ⊗ 2Ak)




Tn−1(x)
...

T1(x)
T0(x)


+




r1k(x)
...

rn−1,k(x)
rn,k(x)


⊗ P (x),

for some scalar polynomials r1k(x), . . . , rnk(x). Comparing the previous equation
with (2.8), we deduce that Mk = 2CTMk+1 −Mk+2 + In ⊗ 2Ak.

Finally, the proof of the last case (k = 1) is similar to the proof for the previous
cases (n − 2 ≥ k ≥ 2), but using Hn−1(x) = xHn−2(x) −Hn−3(x)/2 + A1, so we
omit it. �

Remark 2.3. Clenshaw matrices are closely related with the so called Leverrier’s
algorithm for orthogonal polynomial bases [5], which allows the simultaneous deter-
mination of the characteristic polynomial of a matrix A and the adjoint matrix of
xI −A. Indeed, if we consider a scalar polynomial p(x) = Tn(x) +

∑n−1
k=0 akTk(x),

it may be checked that the adjoint of zI − CT is given by

(2.11) adj (xI − CT ) =
1

2n−1

n−1∑

k=0

Mk+1Tk(x),

where M1,M2, . . . ,Mn are the Clenshaw matrices of p(x).

The Clenshaw matrices M1,M2, . . . ,Mn have a complicated structure. We illus-
trate this with an example of moderate size. For n = 6 and k = 3, it is easy to
check using (2.10) that the matrix Mk is equal to
















0 −2A2 −2A3 − 2A1 2Ip − 2A4 − 2A2 − 4A0 −2A3 − 4A1 −2A2 − 2A0

0 0 2Ip − 2A2 2A5 − 2A3 − 2A1 2Ip − 2A2 − 4A0 −2A1

0 2Ip 2A5 2Ip + 2A4 − 2A2 2A5 − 2A1 2Ip − 2A0

2Ip 2A5 2Ip + 2A4 2A5 + 2A3 4Ip + 2A4 2A5

0 2Ip 2A5 4Ip + 2A4 4A5 + 2A3 2A4 + 2Ip

0 0 4Ip 4A5 4Ip + 4A4 2A5 + 2A3

















.

Two observations about the block matrix above are: (i) its first block column
is equal to en−k+1 ⊗ 2Ip, where eℓ denotes the ℓth column of the n × n identity
matrix; and, (ii) if we set An := Ip, each block entry has the form

∑n
i=0 ciAi, where

|ci| ≤ 4. In Theorem 2.4, we show that the two previous observations are true for
any n and k. Property (i) will be key to prove Arnold transversality theorem, and
property (ii) will be key to study what kind of backward stability of a linearization-
based algorithm for the polynomial eigenvalue problem is provided by the backward
stability of an eigensolver for the linearized problem.

Theorem 2.4. Let P (x) = IpTn(x) +
∑n−1

k=0 AkTk(x) be a p × p monic matrix
polynomial in the Chebyshev basis of degree n, and let Mk, for k = 1, 2, . . . , n, be
the kth Clenshaw matrix in (2.8). Then, the following statements hold:
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(a) The first block column of Mk is equal to en−k+1⊗ 2Ip, where eℓ denotes the
ℓth column of the n× n identity matrix.

(b) For i, j = 1, 2, . . . , n, the (i, j)th block entry of Mk satisfies (Mk)ij =∑n
t=0 αt,ijkAt with |αt,ijk| ≤ 4, where we set An := Ip.

Proof. From Theorem 2.1 together with (2.8), we have Hn−k(x)Tn−i(x)
=
∑n

j=1(Mk)ijTn−j(x) + rik(x)P (x). Therefore, to prove part (a) it is enough
to show that

(2.12) Tn−i(x)Hn−k(x) = 2IpTn−1(x) + · · ·+ rik(x)P (x),

if i = n− k + 1, and that

(2.13) Tn−i(x)Hn−k(x) = (Mk)iνTν(x) + · · ·+ rik(x)P (x),

with ν < n−1, if i 6= n−k+1, where the dots correspond to Chebyshev polynomials
with lower indices.

First, suppose that i ≥ n− k + 1. We will prove that Tn−i(x)Hn−k(x) is of the
form (2.12) when i = n− k + 1 and it is of the form (2.13) otherwise. We need to
distinguish several cases. First, let k = n. From (2.4) we get that Tn−i(x)H0(x) =
Γ0Tn−i(x) = 2IpTn−i(x). Since the index n− i is equal to n− 1 if and only if i = 1,
the result is true in this case. Then, consider the case n−1 ≥ k ≥ 2. There are three
kinds of indices of Chebyshev polynomials in (2.4). The first is 2n− i−k− ℓ, which
is equal to n− 1 if and only if ℓ = 0 and i = n− k + 1. This gives a contribution
Γ0Tn−1(x) = 2IpTn−1(x) only when i = n − k + 1. The second one is |k + ℓ − i|.
Taking into account the possible values that k, ℓ, and i can take in (2.4), it may be
easily checked that this index is smaller than or equal to n− 2. The third index is
n− i which necessarily is smaller than or equal to n− 2, and, hence, the result is
true in this case. Finally, consider the case k = 1 and i = n. There are two kinds on
indices of Chebyshev polynomials in (2.5). The first one is n− 1− ℓ, which is equal
to n − 1 if and only if ℓ = 0. This gives a contribution Γ0Tn−1(x) = 2IpTn−1(x).
The second index is 0, which is smaller than n − 2. Therefore, the result is also
true in this case.

Now suppose that i ≤ n − k. We will we prove that Tn−i(x)Hn−k(x) is of the
form (2.13). Notice that there are four kinds of indices in (2.6) when k ≥ 2, namely,
i+ k− 2− ℓ, |k+ ℓ− i|, |n− i+ 1− ℓ− r| and k− 1, and three kinds on indices in
(2.7) when k = 1, namely, i−1− ℓ, i−1 and |n− i+1− ℓ− r|. Taking into account
the possible values that k, ℓ, r, and i can take in (2.13), in both cases (k ≥ 2 and
k = 2), it may be checked that these indices do not exceed n− 2.

Now, we proceed to prove part (b). Again, we need to distinguish several cases.
First, suppose that i ≥ n− k + 1 and also assume that k ≥ 2 (the argument when
k = 1 is similar and simpler, so we omit it), and consider the three kinds of indices
of Chebyshev polynomials that appear in (2.4), namely, 2n− i− k − ℓ, |k + ℓ− i|,
and n − i. For ℓ = 0, 1, . . . , n − k, a careful look at these indices reveals that if
k+ ℓ− i ≥ 0, then the three of them are different. Therefore, we can write (2.4) as

(2.14)

n−1∑

ℓ=0

BℓTℓ(x) +

−1∑

ℓ=−(1−n)

BℓT−ℓ(x),

where Bℓ is equal to either 0 or Γt for some t. It follows that (Mk)ij is equal to
either 0, Γt for some t, or Γt1 + Γt2 for some t1, t2. Finally, recall from (2.3) that



CHEBYSHEV ROOTFINDING VIA EIGENVALUES OF COLLEAGUE MATRICES 11

Γt is equal to 2Ip + 2An−2 +2An−4 + · · · if t is even, or to 2An−1 + 2An−3 + · · · if
t is odd. Therefore, (Mk)ij =

∑n
t=0 αt,ijkAt, with |αt,ijk| ≤ 4.

Then suppose that i ≤ n− k and also assume that k ≥ 2 (again, the argument
when k = 1 is similar and simpler, so we omit it). First, consider the three kinds
of indices of Chebyshev polynomials that appear in the first summand in (2.6),
namely, i + k − 2 − ℓ, |k + ℓ − i|, k − 1. For ℓ = 0, 1, . . . , i − 2, again, it may be
checked that if k + ℓ − i ≥ 0, then these three indices are different. Therefore,
the first summand in (2.6) is also of the form (2.14). Finally, consider the index
of the Chebyshev polynomials and the index of the coefficients Ai that appear in
the second summand in (2.6), namely, |n − i + 1 − ℓ − r|, and k + 1 + ℓ − r. If
n − i + 1 − ℓ − r ≥ 0, it may be checked that for any two allowed different pairs
(ℓ, r) that realize the same value of n − i + 1 − ℓ − r, then the associate indices
k+1+ ℓ− r must be different. Since the same occur when n− i+1− ℓ− r < 0, it
follows that (2.6) is of the form

n−2∑

ℓ=0

CℓTℓ(x) +

−1∑

ℓ=−(2−n)

CℓT−ℓ(x) − 2

n−2∑

ℓ=0

DℓTℓ(x) − 2

−1∑

ℓ=2−n

DℓT−ℓ(x) + rik(x)P (x)

where Cℓ is equal to either 0 or Γt for some t, and Dℓ is equal to
∑qℓ

t=1 Ait , where
it1 6= it2 whenever t1 6= t2. Then, it follows that

(Mk)ij =

n∑

ℓ=0

δℓAℓ −
n∑

ℓ=0

ρℓAℓ,

where δℓ and ρℓ are equal to either 4, or 2 or 0, therefore (Mk)ij =
∑n

t=0 αt,ijkAt

with |αt,ijk| ≤ 4. �

If necessary, explicit expressions of the entries of the Clenshaw matrices M1,M2,
. . . ,Mn may be obtained from Theorem 2.1. However, since Theorem 2.4 is the
only information that we will need about them to prove our main results in the
following section, we do not pursue that idea.

2.2. Proof of Arnold transversality theorem for colleague matrices. In
this section we prove Arnold transversality theorem for colleague matrices of monic
polynomials in the Chebyshev basis. That is, we show that any matrix E ∈ R

pn×pn

may be decomposed as

(2.15) E = F0 + T,

where F0 ∈ BFRn,p is a first block row matrix and T ∈ TCT
O(CT ), constructing

the matrix F0 explicitly.
As in the case of the monomial basis, generically, dim (TCT

O(CT ))+dim (BFRn,p)
= n2p2 − np + np2 ≥ n2p2 (see [9, 16]). In words, the tangent space TCT

O(CT )
and the vector space of first block row matrices BFRn,p may have a nontrivial
intersection when p > 1. For this reason, following [9, 16] we choose a particular
subspace of the tangent space that will give a unique decomposition (2.15). This
subspace is denoted by Sub TCT

O(CT ) and it is given by

Sub TCT
O(CT ) = {X ∈ TCT

O(CT ) such that X has 0 first block column}.
In order to get the decomposition (2.15) with T ∈ Sub TCT

O(CT ) we will make
use of the Clenshaw matrices M1,M2, . . . ,Mn ∈ R

np×np, defined in (2.8), of the
matrix polynomial P (x) in (1.2). Though the only information that we need about
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Clenshaw matrices are those stated in Theorem 2.4 together with the recurrence
relation (2.10).

Following [9], we also define the block trace of a np× np block matrix Z = [Zij ],
with Zij ∈ R

p×p, as the p× p matrix

trp (Z) :=

n∑

i=1

Zii.

The block trace is used in Theorem 2.5, which provides a characterization of the
subspace SubTCT

O(CT ), and is a generalization of [9, Theorem 4.1] when the
matrix polynomial P (x) is expressed in the Chebyshev basis.

Theorem 2.5. For any Z ∈ R
pn×pn,

(2.16) trp (Mk+1Z) = 0, for k = 0, 1, . . . , n− 1,

if and only if

(2.17) Z = CTX −XCT for some X ∈ R
np×np with 0 first block column.

Moreover, either condition determines the first block row of Z uniquely given the
remaining block rows.

Proof. From part (a) in Theorem 2.4, the (n − k, 1) block entry of Mk+1 is equal
to 2Ip, and the (i, 1) block entry of Mk+1, with i 6= n− k, is equal to 0. Therefore,
Z1,n−k, for k = 0, 1, . . . , n− 1, is uniquely determined from (2.16). Also, if X has 0
first block column, it may be easily checked that the map from X to the last n− 1
block rows of CTX −XCT has a trivial nullspace. Thus, Z is uniquely determined
by (2.17).

To finish the proof we need to prove that (2.17) implies (2.16). That is, we need
to show that trp (Mk+1(CTX − XCT )) = 0 for any block matrix X with 0 first
block column. In order to do this, first, we show that if X has 0 first block column,
then trp (Mk+1XCT ) = trp (CTMk+1X). The proof of the previous equation is not
completely immediate when p > 1 since, in this situation, trp (AB) = trp (BA) does
not hold in general. So, consider a block matrix Y that has 0 first block column.
Then,

trp (CTY ) =

p−2∑

i=1

(
Yi,i+1

2
+

Yi+2,i+1

2

)
+ Yp−1,p = trp (Y CT ).

Therefore, if X has 0 first block column, then trp (Mk+1XCT ) = trp (CTMk+1X).
Then, we show that trp (CTMk+1X) = trp (Mk+1CTX). To do this, note that the

Clenshaw matrixMk+1 is of the form 2n−kCn−k−1
T +

∑n−k−1
t=1 (In⊗Bk)C

n−k−1−t
T , for

some B1, B2, . . . , Bn−k−1 ∈ R
p×p (this can be verified by induction using (2.10)).

So, we only need to show that trp (CT (In ⊗ B)Cj
TX) = trp ((I ⊗ B)Cj

TCTX).
Indeed, since the matrix CT (In ⊗B)− (In ⊗B)CT is 0 except the first block row,

and since CTX has 0 first block column, it follows that trp (CT (In ⊗ B)Cj
TX −

(I ⊗ B)Cj
TCTX) = 0. Therefore, trp (CTMk+1X) = trp (Mk+1CTX). Thus, we

conclude that trp (Mk+1XCT ) = trp (CTMk+1X) = trp (Mk+1CTX). �

In Theorem 2.6 we present the proof of Arnold transversality theorem for block
colleague matrices. Part (a) in Theorem 2.4 will be key here.



CHEBYSHEV ROOTFINDING VIA EIGENVALUES OF COLLEAGUE MATRICES 13

Theorem 2.6. Let P (x) = IpTn(x) +
∑n−1

k=0 AkTk(x) be a p × p monic matrix
polynomial in the Chebyshev basis of degree n, and let CT be its block colleague
matrix. Then, any matrix E ∈ R

np×np can be expressed as

(2.18) E = F0 + T,

where F0 ∈ BFRn,p is a first block row matrix, and T ∈ Sub TCT
O(CT ). Moreover,

if the first block row of F0 is written as
[
F

(n−1)
0 · · · F

(1)
0 F

(0)
0

]
, then

(2.19) F
(k)
0 =

1

2
trp (EMk+1), for k = 0, 1, . . . , n− 1,

where the matrix Mk+1 is the (k + 1)th Clenshaw matrix defined in (2.8).

Proof. Define F
(k)
0 = 1

2 trp (EMk+1), for k = 0, 1, . . . , n−1, and let F0 ∈ BFRn,p be

a first block row matrix such that its first block row is
[
F

(n−1)
0 · · · F

(1)
0 F

(0)
0

]
.

We may write the matrix T := E − F0. Then, we have to check that T ∈
Sub TCT

O(CT ). From Theorem 2.5, we see that it is sufficient to show that
trp (TMk+1) = 0, for k = 0, 1, . . . , n− 1. Indeed, using part (a) in Theorem 2.4,

trp (TMk+1) =trp (EMk+1)− trp (F0Mk+1) = trp (EMk+1)− 2F
(k)
0 =

trp (EMk+1)− trp (EMk+1) = 0,

for k = 0, 1, . . . , n− 1. So, we conclude that T ∈ Sub TCT
O(CT ). �

The norm of the matrix X in T = CTX − XCT in (2.18) has the remarkable
property that it depends only on the matrix E and not on the coefficients of the
matrix polynomial P (x). We prove this fact in the following lemma.

Lemma 2.7. The matrix X in T = CTX − XCT in (2.18) can be bounded as
‖X‖F ≤ C‖E‖F , for some constant C which does not depend on the coefficients of
the matrix polynomial P (x).

Proof. Recall that the matrix X with 0 first block column is uniquely determined
by

(2.20) CTX −XCT =




? · · · ?
E21 · · · E2n

...
...

En1 · · · Enn


 ,

where the “?” blocks are not taken into account. Then, notice that the 0 first
block column of X implies that the block entries of the bottom n− 1 block rows of
CTX −XCT are just linear combinations of the block entries of X . For example,
if n = 5, these block rows are






−X22 X12 + X32 − X23 X13 + X33 − X22 − X24 X14 + X34 − X23 − 2X25 X15 + X35 − X24

−X32 X22 + X42 − X33 X23 + X43 − X32 − X34 X24 + X44 − X33 − 2X35 X25 + X45 − X34

−X42 X32 + X52 − X43 X33 + X53 − X42 − X44 X34 + X54 − X43 − 2x45 X35 + X55 − X44

−X52 2X42 − X53 2X43 − X52 − X54 2X44 − X53 − 2X55 2X45 − X54






.

Thus, (2.20) gives rise to a linear system of equations whose solution does not
depend on the coefficients of P (x). This system of equations can be easily solved.
For simplicity, we describe the procedure to obtain its solution for n = 5: it is
immediate to generalize the procedure to any n, and this claim correspond to the
fact that the matrix of the coefficients of the linear system is permutation equivalent
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to a lower triangular invertible matrix. In this case, the block entries of the matrix
X can be obtained in the following order




0 (X12)20 (X13)19 (X14)18 (X15)17
0 (X22)1 (X23)16 (X24)15 (X25)14
0 (X32)2 (X33)5 (X34)13 (X35)12
0 (X42)3 (X43)6 (X44)8 (X45)11
0 (X52)4 (X53)7 (X54)9 (X55)10



,

where the index outside the parenthesis indicates the order in which each block
is obtained while solving the linear system. Each block entry of X is a linear
combination of block entries of E, and therefore ‖X‖F ≤ C‖E‖F , for some constant
C independent of the coefficients of P (x). �

2.3. Backward error of the Chebyshev rootfinding method using col-

league matrices. An important consequence of the decomposition in Theorem
2.6 and Lemma 2.7, is that if E is a small perturbation of the block colleague
matrix CT , then

CT + E =CT + F0 + T = CT + F0 + (CTX −XCT ) =

(I +X)−1(CT + F0 + E1)(I +X),

with ‖E1‖F = O(‖E‖22), where we have used that T can be written as CTX−XCT ,
for some X ∈ R

np×np with 0 first block column and ‖X‖F ≤ C‖E‖F . Noticing
that CT + F0 is in turn a block colleague matrix of another matrix polynomial, we
deduce that a small perturbation of the block colleague matrix of P (x) is similar,
to first order in the norm of the perturbation, to a block colleague matrix of a

perturbed polynomial P̃ (x). This observation allows us to formulate the following
corollary.

Corollary 2.8. Let P (x) = IpTn(x) +
∑n−1

k=0 AkTk(x) be a p × p monic matrix
polynomial in the Chebyshev basis of degree n, and let CT be its block colleague
matrix. Assume that the eigenvalues of P (x) are computed as the eigenvalues of
CT with a backward stable algorithm, i.e., an algorithm that computes the exact
eigenvalues of some matrix CT + E, with ‖E‖F = O(u)‖CT ‖F , where u is the
machine precision. Then, to first order in u, the computed roots are the exact roots

of a polynomial P̃ (x) such that

‖P̃ − P‖F
‖P‖F

= O(u)‖P‖F .

Proof. If a backward stable eigensolver is given CT as an input, the computed
eigenvalues are the exact eigenvalues of a matrix CT +E, for some E with ‖E‖F =
ǫ‖CT‖F , where ǫ = uh(n), for some low degree polynomial h with moderate co-
efficients. In other words, the computed eigenvalues are the exact roots of the
polynomial det(xI − CT − E).

Using Theorem 2.6, we can write E = F0 + T , where T ∈ Sub TCT
O(CT ) and

F0 is a first block row matrix with first block row as in (2.19). Therefore, to first
order in u, we get

CT + E = CT + F0 + CTX −XCT = (I +X)−1(CT + F0 +O(u2))(I +X)

We now show that we can apply a similarity transformation so that S(CT +

F0 + O(u2))S−1 is a colleague matrix CT + F̂0, with ‖F̂0 − F0‖F = O(u2). The
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construction of this similarity transformation is constructive and algorithmic, along
the same lines as the proof of [18, Lemma 3.1]. For simplicity, we describe the
procedure to construct it in a moderate case (n = 5). The general case can be
treated similarly. In this situation, let us write CT + F0 +O(u2) as

1

2




−A4 + F̂
(4)
0 Ip −A3 + F̂

(3)
0 −A2 + F̂

(2)
0 −A1 + F̂

(1)
0 −A0 + F̂

(0)
0

Îp 0̂ Îp 0̂ 0̂

0̂ Îp 0̂ Îp 0̂

0̂ 0̂ Îp 0̂ Îp
0̂ 0̂ 0̂ 2Îp 0̂



,

where, following [18], we adopt the following notation. For any matrix A, the

matrix Â denotes a matrix such that ‖Â−A‖F = O(u2).
The zeros and identity blocks of the matrix above can be recovered via row scal-

ing, and column and row Gaussian operations. The order in which these operations
are performed is indicated in the following matrix

1

2




−A4 + F̂
(4)
0 Ip −A3 + F̂

(3)
0 −A2 + F̂

(2)
0 −A1 + F̂

(1)
0 −A0 + F̂

(0)
0

Ip (1,rs) 0 (11,c) Ip (11,c) 0 (11,c) 0 (11,c)

0 (2,r) Ip (3,rs) 0 (10,c) Ip (10,c) 0 (10,c)

0 (2,r) 0 (4,r) Ip (5,rs) 0 (9,c) Ip (9,c)

0 (2,r) 0 (4,r) 0 (6,r) 2Ip (7,rs) 0 (8,c)



,

where the first subscript denotes the order in which the O(u2) perturbations to the
zero and identity blocks are annihilate, and the second subscripts denotes whether
this is done via a row scaling (rs), or via a row (r) or a column (c) Gaussian opera-
tion. Notice that these row and column operations may be obtained, respectively,
pre and post multiplying by a matrix of the form I + Si. In order to preserve the
eigenvalues, after pre (resp. post) multiplying by I+Si we need to post (resp. pre)
multiply by (I + Si)

−1, but notice in addition, that this inverse operation never
destroys the already recovered zero and identity blocks.

Finally, writing E as a np × np block matrix E = [Eij ], with Eij ∈ R
p×p, and

noticing that CT + F̂0 is the colleague matrix of the matrix polynomial P̃ (x) =

IpTn(x) +
∑n−1

k=0 (Ak − F
(k)
0 + O(u2))Tk(x), we have that, to first order in u, the

computed eigenvalues are the exact eigenvalues of a matrix polynomial P̃ (x) =

IpTn(x) +
∑n−1

k=0 ÃkTk(x), with ‖Ãk − Ak‖F = ‖F (k)
0 ‖F = ‖trp (EMk+1)‖F =

‖∑n
i,j=1 Eij(Mk+1)ji‖F . Therefore, for k = 0, 1, . . . , n− 1, we have

‖Ãk −Ak‖F ≤
n∑

i,j=1

‖Eij‖F ‖(Mk+1)ji‖F ≤

√√√√
n∑

i,j=1

‖Eij‖2F

√√√√
n∑

i,j=1

‖(Mk+1)ij‖2F

=‖E‖F ‖Mk+1‖F ,
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Then, using part (b) of Theorem 2.4, we have

‖Mk+1‖F =

√√√√
n∑

i,j=1

‖(Mk+1)ij‖2F =

√√√√
n∑

i,j=1

‖
n∑

t=0

αt,ij,k+1At‖2F

≤

√√√√
n∑

i,j=1

(
n∑

t=0

‖αt,ij,k+1At‖F
)2

≤ 4

√√√√
n∑

i,j=1

(
n∑

t=0

‖At‖F
)2

≤ 4n(n+ 1)1/2‖P‖F ,
where we have used

∑n
t=0 ‖At‖F ≤ (n + 1)1/2‖P‖F . Finally, using that ‖E‖F =

ǫ‖CT‖F , we get that

‖E‖F ≤ ǫ

2

∥∥∥∥∥∥∥∥∥∥∥∥




−An−1 −An−1 · · · −A0

0 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0




∥∥∥∥∥∥∥∥∥∥∥∥
F

+
ǫ

2

∥∥∥∥∥∥∥∥∥∥∥




Ip
Ip Ip

. . .
. . .

Ip 0 Ip
2Ip




∥∥∥∥∥∥∥∥∥∥∥
F

≤ ǫ

2




√√√√
n−1∑

t=0

‖At‖2F +
√
2np


 ≤ ǫ

√
2n

2




√√√√
n−1∑

t=0

‖At‖2F +
√
p


 ≤ ǫ

√
2n‖P‖F .

Thus, the computed eigenvalues, to first order in u, are the exact eigenvalues of a

monic matrix polynomial in the Chebyshev basis P̃ (x) such that,

‖P̃ − P‖F =

√√√√
n−1∑

k=0

‖Ãk −Ak‖2F ≤
n−1∑

k=0

‖Ãk −Ak‖F ≤
n−1∑

k=0

‖Mk+1‖F‖E‖F

≤4n2(n+ 1)1/2‖P‖F‖E‖F ≤ ǫ̃‖P‖2F ,

where ǫ̃ = uĥ(n), for some low degree polynomial ĥ with moderate coefficients. �

Remark 2.9. When the polynomial is scalar (m = 1), Corollary 2.8 can be proved
without the use of Arnold transversality theorem, using a different argument that is
sketched in the following lines. Let us suppose that the roots of a scalar polynomial
p(x) = Tn(x) +

∑n
k=0 akTk(x) are computed as the eigenvalues of its colleague

matrix CT with a backward stable algorithm. Then, the computed roots are the
exact eigenvalues of small perturbation of the colleague matrix CT +E, that is, they
are the exact roots of p̃(x) = det(xI − CT − E). In the spirit of [8], combining
(2.11) with Jacobi’s formula for the derivative of a determinant, we get

p̃(x) =p(x)− tr (adj (xI −M)E) +O
(
‖E‖2F

)
=

Tn(x) +

n−1∑

k=0

(ak − tr(Mk+1E))Tk(x) +O
(
‖E‖2F

)
,

where M1,M2, . . . ,Mn are the Clenshaw matrices of p(x). Finally, using the equa-
tion above, the norm ‖p̃ − p‖2 may be bounded as we did in the final part of the
proof of Corollary 2.8.

In fact, a similar argument may be used when the roots of a nonmonic scalar
polynomial p(x) =

∑n
k=0 akTk(x) are computed as the generalized eigenvalues of its
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colleague pencil [18] using, for example, the QZ algorithm, allowing one to recover
the results in [18, Theorem 3.3]. Unfortunately, unless the leading coefficient is
invertible, this approach does not work in the matrix polynomial case, so we do not
pursue these ideas further.

3. Backward error growth with the norm and the degree of the

polynomial

In the previous section we have analyzed the backward stability of polynomial
eigenvalue algorithms based on the QR algorithm applied to the colleague matrix
(1.3), and we have derived the polynomial backward error upper bound (see Corol-
lary 2.8)

(3.1) ‖P̃ − P‖F ≤ 8ǫn2(n(n+ 1))1/2‖P‖2F ,

where ǫ = O(u) is any theoretical bound for the matrix backward error coming
from the QR algorithm. In this section, we provide numerical experiments to show
whether or not the upper bound (3.1) correctly predict the dependence of the
polynomial backward error on the norm and on the degree of the polynomial. For
simplicity we focus on scalar polynomials (m = 1).

Given a scalar polynomial p(x) = Tn(x) +
∑n−1

k=0 akTk−1(x), to examine the
tightness of the bound (3.1) we compute its roots by forming its colleague matrix
CT and computing the eigenvlalues of CT via the Matlab command eig(CT). If we
denote by {x̃1, x̃2, . . . , x̃n} the computed eigenvalues of CT , we then compute the
backward error by forming p̃(x) =

∏n
k=1(x− x̃k) and expanding it in the Chebyshev

basis with the help of the Chebfun software [24].
In the first set of numerical experiments we study the dependence of the polyno-

mial backward error ‖p̃− p‖2 on the norm ‖p‖2 (recall that according to Corollary
2.8 this dependence should be quadratic). To this end, we proceed as follows. For
each k = 2, 3, . . . , 10, we generate 100 random degree-10 polynomials with 2-norm
equal to 10k. The coefficients of these polynomials are generated via the Matlab
commands p=randn(10) and p=10^k*p/norm(p). Then, for each polynomial we
compute the backward error ‖p̃ − p‖2 when its roots are computed via the eigen-
values of its colleague matrix.

In Figure 1 we plot the maximum backward error obtained for each of the 9 sam-
ples of 100 random polynomials against the norm of the polynomials. In addition,
we also compare them with the O(‖p‖22) trend predicted by Corollary 2.8. A linear
fitting of the data gives, more precisely, a growth as ‖p‖1.952 , which is consistent
with the theory.

In the second set of numerical experiments we study the dependence of the
polynomial backward error ‖p̃ − p‖2 on the degree of p(x), when the norm of the
polynomial is fixed to 1. Writing ǫ = nτu, where u is the unit roundoff, notice that
(3.1) predicts an upper bound O(n3+τ ). To examine the tightness of this bound, for
each n = 10, 12, 14, . . . , 100, we generate 100 random degree-n polynomials with 2-
norm equal to 1. The coefficients of these polynomials are generated via the Matlab
commands p=randn(n) and p=p/norm(p). Then, for each polynomial we compute
the backward error ‖p̃− p‖2 when its roots are computed via the eigenvalues of its
colleague matrix.
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Maximum backward error
Trend O(‖p‖22)

Figure 1. Maximum backward errors obtained for each of the 9
samples of 100 random degree-10 polynomials with fixed 2-norm
equal to 10k, when their roots are computed as the eigenvalues of
their colleague matrices.

In Figure 2 we plot the maximum backward error obtained for each of the 46
samples of 100 random polynomials against the degree of the polynomials. In addi-
tion, we also compute a linear fitting for the logarithms of the maximum backward
errors to get the asymptotic dependence with n. As can be seen in Figure 2, these
backward errors behave like n1.81, which means that our bound (which accounts for
the worst case scenario) is overestimating the polynomial backward errors in these
cases.
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−
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Maximum backward error
Trend O(n1.81)

Figure 2. Maximum backward errors obtained for each of the 46
samples of 100 random degree-n polynomials with fixed 2-norm
equal to 1, when their roots are computed as the eigenvalues of
their colleague matrices.
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4. Conclusions

In this paper, we have analyzed the backward stability of a Chebyshev-basis
polynomial rootfinder (or matrix polynomial eigensolver) based on the solution of
the standard eigenvalue problem for the corresponding colleague matrix. More
precisely, given a monic scalar polynomial in the Chebyshev basis p(x), we have
proved that if the roots of p(x) are computed as the eigenvalues of a colleague
matrix using a backward stable eigenvalue algorithm, like the QR algorithm, then
the computed roots are the exact roots of a monic polynomial in the Chebyshev
basis p̃(x) such that

‖p̃− p‖2
‖p‖2

= O(u)‖p‖2,

Similarly, if the eigenvalues of a monic matrix polynomial in the Chebyshev basis
are computed as the eigenvalues of a block colleague matrix using a backward stable
eigenvalue algorithm, then the computed eigenvalues are the exact eigenvalues of a

monic matrix polynomial in the Chebyshev basis P̃ (x) such that

‖P̃ − P‖F
‖P‖F

= O(u)‖P‖F ,

These backward error analysis show that these methods are backward stable when
the norms ‖p‖2 and ‖P‖F are moderate.
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Appendix A. Proof of Theorem 2.1

In this section we present the proof of Theorem 2.1, that is, given the Clen-
shaw shift Hn−k(x) associated with the matrix polynomial P (x) in (1.2), and the
Chebyshev polynomial Tn−i(x), we show that

(A.1) Tn−i(x)Hn−k(x) = Qik(x) + rik(x)P (x),

for some scalar polynomial rik(x), where Qik(x) is the matrix polynomial of degree
less than or equal to n−1 in (2.4)–(2.7). Moreover, we show that the decomposition
(A.1) is unique.

Along the proof, quite often products of two of Chebyshev polynomials will occur.
For this reason, the following formula [1, Chapter 22] is of fundamental importance
here:

(A.2) 2Tm(x)Tn(x) = Tm+n(x) + T|m−n|(x).
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The first step is to expand the Clenshaw shifts Hk(x), for k = 0, 1, . . . , n− 1, in
the Chebyshev basis. We will prove

Hk(x) =

k−1∑

ℓ=0

2ΓℓTk−ℓ(x) + ΓkT0(x), for k = 0, 1, . . . , n− 2, and(A.3)

Hn−1(x) =

n−2∑

ℓ=0

ΓℓTn−1−ℓ(x) +
1

2
Γn−1T0(x),(A.4)

where Γℓ is defined in (2.3). The proof proceeds by induction on k. From (2.1) we
get H0(x) = 2Ip = Γ0T0(x) and H1(x) = 4Ipx + 2An−1 = 2Γ0T1(x) + Γ1T0(x), so
the result is true for k = 0 and k = 1. Then, assume that the result is true for
H0(x), H1(x), . . . , Hk−1(x), with 2 ≤ k ≤ n − 2. Using the induction hypothesis,
together with (2.1), we have

Hk(x) =2xHk−1(x)−Hk−2(x) + 2An−k

=2x

(
k−2∑

ℓ=0

2ΓlTk−1−ℓ(x) + Γk−1T0(x)

)
−

k−3∑

ℓ=0

2ΓℓTk−2−ℓ(x)− Γk−2T0(x)+

2An−k.

Using T0(x) = 1, T1(x) = x, and (A.2) with m = 1 and n = k, from the previous
equation we get

Hk(x) =

k−2∑

ℓ=0

2Γℓ (Tk−ℓ(x) + Tk−2−ℓ(x)) + 2Γk−1T1(x)

−
k−3∑

ℓ=0

2ΓℓTk−2−ℓ(x)− Γk−2T0(x) + 2An−kT0(x)

=

k−2∑

ℓ=0

2ΓℓTk−ℓ(x) + 2Γk−2T0(x) + 2Γk−1T1(x)− Γk−2T0(x) + 2An−kT0(x)

=

k−1∑

ℓ=0

2ΓℓTk−ℓ(x) + (Γk−2 + 2An−k)T0(x) =

k−1∑

ℓ=0

2ΓℓTk−ℓ(x) + ΓkT0(x),

where in the last equality we have used Γk−2 + 2An−k = Γk. Therefore, the result
is also true for Hk(x). Finally, the proof that (A.4) holds is similar to the previous
one, but starting with Hn−1(x) = xHn−2(x) − Hn−3(x)/2 + A1, so we omit the
details.

Now we proceed to show that (A.1) holds with Qik(x) as in (2.4)–(2.7). In order
to do that, we will proceed in certain order. To help the reader to follow the steps,
we depict all the possible products Tn−i(x)Hn−k(x) for n = 10 in the following
10× 10 grid.
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The vertices with triangular shape in the previous grid represent the cases in
which the degree of Tn−i(x)Hn−k(x) does not exceed n−1, that is, when i ≥ n−k+1.
In this case, the polynomial Qik(x) coincide with Tn−i(x)Hn−k(x), so we just need
to expand Tn−i(x)Hn−k(x) in the Chebyshev basis. Indeed, when i = n and k = 1,
from (A.4), we have

T0(x)Hn−1(x) = Hn−1(x) =

n−2∑

ℓ=0

ΓℓTn−1−ℓ(x) +
1

2
Γn−1T0(x),

and when n− 1 ≥ i ≥ n− k + 1, from (A.2) and (A.3), we have

Tn−i(x)Hn−k(x) =

n−k−1∑

ℓ=0

2ΓℓTn−i(x)Tn−k−ℓ(x) + Γn−kTn−i(x)T0(x)

=

n−k−1∑

ℓ=0

Γℓ(T2n−i−k−ℓ(x) + T|k+ℓ−i|(x)) + Γn−kTn−i(x).

As can be checked, the two previous equations correspond to (2.4) and (2.5), re-
spectively.

Next, we consider the products Tn−i(x)Hn−k(x) with i < n− k+1, represented
in the grid by vertices with circular shape. This case is much more involved, since
the degree of Tn−i(x)Hn−k(x) is larger than or equal to n. We will prove that (A.1)
holds, with Qik(x) as in (2.4)–(2.7), each diagonal in the grid at a time (from left
to right), showing that each product Tn−i(x)Hn−k(x) can be computed using, at
most, a product represented by a vertex in the same diagonal and two products
represented by vertices in the diagonal on its left.

The first step is to consider the products Tk(x)Hn−k(x), for k = 1, 2, . . . , n− 1,
that is, products represented by the diagonal with white circular vertices in the
grid. We show that Theorem 2.1 holds for those products from top to bottom. We
start with the white circular vertex labeled with 1 in the grid, that is, with the
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product T1(x)Hn−1(x). From (2.2) and (A.3), together with T1(x) = x, we have

T1(x)Hn−1(x) =xHn−1(x) =
1

2
Hn−2(x) −A0T0(x) + · · ·

=

n−3∑

ℓ=0

ΓℓTn−2−ℓ(x) +
1

2
Γn−2T0(x)−A0T0(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar
polynomial. As can be easily checked, the previous equation corresponds to (2.7)
with i = n− 1.

Then, we consider the white circular vertex labeled with 2 in the grid, that is,
the product T2(x)Hn−2(x). From (1.1) and (2.1), we have

Hn−2(x)T2(x) = Hn−2(x) (2xT1(x)− T0(x)) = 2xT1(x)Hn−2(x)− T0(x)Hn−2(x)

= T1(x) (2Hn−1(x) +Hn−3(x)− 2A1)− T0(x)Hn−2(x)

= 2T1(x)Hn−1(x) + T1(x)Hn−3(x) − T0(x)Hn−2(x)− 2A1T1(x).

As can be seen from the previous equation, the product Hn−2(x)T2(x) may be
computed from products represented by two triangular vertices: T1(x)Hn−3(x) and
T0(x)Hn−2(x), and the product T1(x)Hn−1(x). Then, using (A.3), (A.4), and the
result previously obtained for T1(x)Hn−1(x), we get

T2(x)Hn−2(x) =

n−4∑

ℓ=0

Γℓ(Tn−2−ℓ(x) + T|ℓ+4−n|(x))+

Γn−3T1(x) − 2A0T0(x)− 2A1T1(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar
polynomial. The previous equation corresponds to (2.6) with i = n− 2 and k = 2.

Finally, we consider the white circular vertices labeled with 3, that is, the prod-
ucts Tk(x)Hn−k(x), for k = 3, 4, . . . , n. From (1.1) and (2.1), we have

Tk(x)Hn−k(x) =(2xTk−1(x) − Tk−2(x))Hn−k(x)

=2xTk−1(x)Hn−k(x)− Tk−2(x)Hn−k(x)

=Tk−1(x)(Hn−k+1(x) +Hn−k−1(x) − 2Ak−1)− Tk−2(x)Hn−k(x)

=Tk−1(x)Hn−k+1(x) + Tk−1(x)Hn−k−1(x) − Tk−2(x)Hn−k(x)

− 2Ak−1Tk−1(x).

As can be seen from the previous equation, Tk(x)Hn−k(x) may be computed from
Tk−1(x)Hn−k−1(x) and Tk−2(x)Hn−k(x), represented in the grid by triangular ver-
tices, and Tk−1(x)Hn−k+1(x), represented in the grid by the white circular vertex
above the white circular vertex corresponding to Tk(x)Hn−k(x). Since we have
previously seen that Theorem 2.1 holds for T1(x)Hn−1(x) and T2(x)Hn−2(x), and
for products represented by triangular vertices, this shows how to prove induc-
tively (from top to bottom) that Theorem 2.1 holds for products represented by
white circular vertices labeled with 3. Indeed, assuming that the result holds for
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Tk−1(x)Hn−k+1(x) and using (2.4), we get

Tk(x)Hn−k(x) =Tk−1(x)Hn−k−1 +

k∑

r=2

(−2Ak−r)Tk−r(x)−

2Ak−1Tk−1(x) + · · · =
n−k−2∑

ℓ=0

Γℓ(Tn−2−ℓ(x) + T|ℓ+2k−n|(x))+

Γn−k−1Tk−1(x) +

k∑

r=1

(−2Ak−r)Tk−r(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar
polynomial. It is immediate to check that the previous equation corresponds to
(2.6) when i = n− k.

The second step is to consider the products Tk+1(x)Hn−k(x), for k = 2, 3, . . . , n−
2, that is, the diagonal with black circular vertices in the grid. This step is very
similar to the previous one, so we will only sketch the main ideas. We have to
distinguish the cases k = 2, k = 3 and k > 3. When k = 2, using (1.1), (2.1) and
(2.2), it may be proved

T2(x)Hn−1(x) = T1(x)Hn−2(x) − T0(x)Hn−1(x)− 2A0T1(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar
polynomial. The previous equation shows that T2(x)Hn−1(x) may be computed
from two products represented by triangular vertices in the grid: T1(x)Hn−2(x) and
T0(x)Hn−1(x). Since we have seen that Theorem 2.1 holds for products represented
by triangular vertices, it may be proved that (2.7) holds for T2(x)Hn−1(x).

Then, from (1.1) and (2.1), it may be proved that, when k = 2,

T3(x)Hn−2(x) = 2T2(x)Hn−1(x) + T2(x)Hn−3(x)− 2A1T2(x),

and, when k > 3,

Tk+1(x)Hn−k(x) =Tk(x)Hn−k+1(x) + Tk(x)Hn−k−1(x)−
Tk−1(x)Hn−k(x) − 2Ak−1Tk(x).

These two equations show that Tk+1(x)Hn−k(x) may be computed from two prod-
ucts represented by triangular vertices, and the product represented by the black
circular vertex above the black circular vertex corresponding to Tk+1(x)Hn−k(x).
Assuming that Theorem 2.1 holds for T2(x)Hn−1(x), the previous observation shows
how to prove inductively (from top to bottom) that Theorem 2.1 holds for products
corresponding to black circular vertices labeled with 2 and 3.

Now, we address the products represented by circular vertices colored with differ-
ent shades of grey, that is, the products Tk+r−1(x)Hn−k(x), for r = 3, 4, . . . , n− 2
and k = 1, 2, . . . , n − 1 − r. We will show that Theorem 2.1 holds for products
represented by vertices in the same diagonal (same shade of grey) assuming that it
holds for products represented by (non-triangular) vertices in the diagonal on its
left. Since we have previously proved that Theorem 2.1 holds for products repre-
sented by the white and black diagonals, this will imply that Theorem 2.1 holds
for all products represented by grey vertices. For each grey diagonal, we have to
distinguish the products represented by vertices labeled with 1, 2, and 3.
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First, we consider the product Tr(x)Hn−1(x), with r ≥ 3, represented by a grey
vertex labeled with 1. From (1.1) and (2.2), we get

Tr(x)Hn−1(x) =(2xTr−1(x) − Tr−2(x))Hn−1(x) = 2xTr−1(x)Hn−1(x)−
Tr−2(x)Hn−1(x)

=Tr−1(x)Hn−2(x) − Tr−2(x)Hn−1(x) − 2A0Tr−1(x) + · · · ,
where the dots correspond to something of the form r(x)P (x), with r(x) a scalar
polynomial. The previous equation shows that Tr(x)Hn−1(x) may be computed
from two products represented by vertices in the diagonal on its left: Tr−1(x)Hn−2(x)
and Tr−2(x)Hn−1(x). Assuming that (2.6) and (2.7) hold for those products, we
have

Tr−1(x)Hn−2(x) =

n−r−1∑

ℓ=0

Γℓ

(
Tn−r+1−ℓ(x) + T|ℓ−n+r+1|(x)

)
+ Γn−rT1(x)

−
r−2∑

ℓ=1

ℓ+1∑

s=1

2Aℓ+1−sT|r−ℓ−s|(x) + · · · ,

and

Tr−2(x)Hn−1(x) =

n−r∑

ℓ=0

ΓℓTn−r+1−ℓ(x) +
1

2
Γn−r+1T0(x)−

r−2∑

ℓ=1

ℓ∑

s=1

Aℓ−sT|r−ℓ−s−1|(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar
polynomial. Using

n−r−1∑

ℓ=0

Γℓ

(
Tn−r+1−ℓ(x) + T|ℓ−n+r+1|(x)

)
+ Γn−rT1(x)−

n−r∑

ℓ=0

ΓℓTn−r+1−ℓ(x)

− 1

2
Γn−r+1T0(x) =

n−r−2∑

ℓ=0

ΓℓTn−r−1−ℓ(x) +
1

2
Γn−r−1T0(x)−Ar−1T0(x),

where we have used (Γn−r+1 − Γn−r−1)/2 = Ar−1, and

−
r−2∑

ℓ=1

ℓ+1∑

s=1

2Aℓ+1−sT|r−ℓ−s|(x) +

r−2∑

ℓ=1

ℓ∑

s=1

Aℓ−sT|r−ℓ−s−1|(x)

=−
r−2∑

ℓ=1

ℓ+1∑

s=1

Aℓ+1−sT|r−ℓ−s|(x) −
r−2∑

ℓ=1

AℓT|r−ℓ−1|(x)

=−
r−2∑

ℓ=1

ℓ+1∑

s=1

Aℓ+1−sT|r−ℓ−s|(x) −
r∑

s=1

Ar−sT|s−1|(x) + Ar−1T0(x) +A0Tr−1(x)

=−
r−1∑

ℓ=0

ℓ+1∑

s=1

Aℓ+1−sT|r−ℓ−s|(x) +Ar−1T0(x) + 2A0Tr−1(x)

=−
r∑

ℓ=1

ℓ∑

s=1

Aℓ−sT|r+1−ℓ−s|(x) +Ar−1T0(x) + 2A0Tr−1(x),
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we get

Tr−1(x)Hn−2(x) =

n−r−2∑

ℓ=0

ΓℓTn−r−1−ℓ(x) +
1

2
Γn−r−1T0(x)−

r∑

ℓ=1

ℓ∑

s=1

2Aℓ−sT|r+1−ℓ−s|(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar
polynomial. As can be checked, the previous equation corresponds to (2.7) with
k = 1 and i = n− r.

The proof that Theorem 2.1 holds for products represented by grey vertices
labeled with 2 is very similar to the previous one, so we omit it.

Finally, consider a product Tn−i(x)Hn−k(x) represented by a grey vertex labeled
with 3. From (1.1) and (2.1), we have

Tn−i(x)Hn−k(x) =(2xTn−i−1(x) − Tn−i−2(x))Hn−k(x) = Tn−i−1(x)Hn−k+1(x)

+ Tn−i−1(x)Hn−k−1(x) − Tn−i−2(x)Hn−k(x)− 2Ak−1Tn−i−1(x)

The previous equation shows that Tn−i(x)Hn−k(x) may be computed from two
products represented by (non-triangular) vertices in the diagonal on its left:
Tn−i−1(x)Hn−k−1(x) and Tn−i−2(x)Hn−k(x), and a product represented by a ver-
tex in the same diagonal, above the vertex corresponding to Tn−i(x)Hn−k(x), that
is, the product Tn−i−1(x)Hn−k+1(x). This observation shows how to prove induc-
tively (from top to bottom) that Theorem 2.1 holds for the grey vertices labeled
with 3 in the same diagonal. Assuming that (2.6) holds for Tn−i−1(x)Hn−k−1(x),
Tn−i−2(x)Hn−k(x) and Tn−i−2(x)Hn−k(x), and using Γi+1 − Γi−1 = 2An−i−1,

i−1∑

ℓ=0

Γℓ(Ti+k−2−ℓ(x) + T|k+ℓ−i−2|(x)) + ΓiTk−2(x)+

i−1∑

ℓ=0

Γℓ(Ti+k−ℓ(x) + T|k+ℓ−i|(x))

+ ΓiTk(x)−
i∑

ℓ=0

Γℓ(Ti+k−ℓ(x) + T|k+ℓ−i−2|(x)) − Γi+1Tk−1(x)

=

i−2∑

ℓ=0

Γℓ(Ti+k−2−ℓ(x) + T|k+ℓ−i|(x)) + Γi−1Tk−1(x)− 2An−i−1Tk−1,

and

−
n−k+1−i∑

ℓ=1

k−2+ℓ∑

r=1

2Ak−2+ℓ−rT|n−i−ℓ−r|(x) −
n−k−1−i∑

ℓ=1

k+ℓ∑

r=1

2Ak+ℓ−rT|n−i−ℓ−r|(x)

+

n−k−1−i∑

ℓ=1

k−1+ℓ∑

r=1

2Ak−1+ℓ−rT|n−i−1−ℓ−r|(x)

=−
n−k+1−i∑

ℓ=1

k−1+ℓ∑

r=1

2Ak−1+ℓ−rT|n−i+1−ℓ−r|(x) + 2Ak−1Tn−i−1(x) + 2An−i−1Tk−1(x).
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we get

Tn−i(x)Hn−k(x) = Tn−i−1(x)Hn−k+1(x) + Tn−i−1(x)Hn−k−1(x)−
Tn−i−2(x)Hn−k(x) − 2Ak−1Tn−i−1(x)

=

i−2∑

ℓ=0

Γℓ(Ti+k−2−ℓ(x) + T|k+ℓ−i|(x)) + Γi−1Tk−1(x)−

n−k+1−i∑

ℓ=1

k−1+ℓ∑

r=1

2Ak−1+ℓ−rT|n−i+1−ℓ−r|(x) + · · · ,

where the dots correspond to something of the form r(x)P (x), with r(x) a scalar
polynomial, which shows that (2.6) holds also for Tn−i(x)Hn−k(x).

The final step of the proof consists in proving the uniqueness of rik(x) and Qik(x)
in (A.1). For this purpose, assume that there exist two scalar polynomials rik(x)

and r̃ik(x), and two matrix polynomials Qik(x) and Q̃ik(x) of degree at most n− 1

such that Tn−i(x)Hn−k(x) = Qik(x) + rik(x)P (x) = Q̃ik(x) + r̃ik(x)P (x). Then,

Qik(x) − Q̃ik(x) = (r̃ik(x) − rik(x))P (x) is a matrix polynomial of degree at most
n − 1, but, if rik(x) 6= r̃ik(x), the matrix polynomial (r̃ik(x) − rik(x))P (x) has

degree larger than or equal to n, hence rik(x) = r̃ik(x) and Qik(x) = Q̃ik(x).
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