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Abstract

In recent years, such vast archives of video information have become available that

human annotation of content is no longer feasible; automation of video content analysis

is therefore highly desirable. The recognition of semantic content in images is a prob-

lem that relies on prior knowledge and learnt information and that, to date, has only

been partially solved. Salient analysis, on the other hand, is statistically based and high-

lights regions that are distinct from their surroundings, while also being scalable and

repeatable. The arrangement of salient information into hierarchical tree structures in

the spatial and temporal domains forms an important step to bridge the semantic salient

gap. Salient regions are identified using region analysis, rank ordered and documented

in a tree for further analysis. A structure of this kind contains all the information in the

original video and forms an intermediary between video processing and video under-

standing, transforming video analysis to a syntactic database analysis problem.

This contribution demonstrates the formulation of spatio-temporal salient trees the

syntax to index them, and provides an interface for higher level cognition in machine

vision.
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Chapter 1

Introduction

1.1 Motivation

The development of electronic imaging devices that are now embedded in most hand-

held devices has led to an explosion in the amount of video and image data in the last

couple of years. The visual data are archived either in personal or online digital storage.

For example, the well-known video sharing website YouTube (www.youtube.com) reports

that 300 hours of video are uploaded every minute and that the site has more than 1

billion users all over the globe. Even more video is produced individually by the new

habit of recording pictures and videos in everyday life as a private collection.

Currently, video content description is usually produced by human effort with a small

proportion such as the time stamp, location (geographic-tagging) and device being pro-

duced automatically by the capturing devices. Due to the fast growth in video data,

human annotation is no longer feasible, however, many people leave their video col-

1



2 CHAPTER 1. Introduction

lection without any description at all. This lack of annotation will make searching for

information increasingly difficult. Automated video description is therefore required in

order to minimize the user task.

Fully automated description is difficult to achieve due to machine limitations. Human

visual systems have an effective mechanism to filter and understand the scene. In this

regard, saliency detection has been extensively explored as a way to filter the important

information and suppress the rest. Understanding the scene is a cognitive process, and

prior knowledge plays a significant role in this task. On the other hand, machine records

colour every point (pixel) on the visual space in a certain density. The other information

such as texture, edge and motion is derived from pictorial information. Empowering the

computer with an ability to mimic the human tasks of understanding video and providing

a description automatically has become a challenge in video research in the past decade.

A general-purpose solution to describe video content remains unavailable.

There are a number of domain-specific solutions such as pedestrian, sport, cooking,

news and learning video where the sets of semantic objects and activities are limited.

Domain specific solutions are usually implemented for particular purpose analysis when

there is prior knowledge of the target objects. In circumstances where the video inputs

vary widely across domains, limitation of the target objects cannot be implemented. A

possible option for dealing with that issue provides an intermediate-level description

of the scene that can bridge the human-machine gap. The description is not directly

meaningful for the human subject; however, a semantic description can be derived from

it.

A video signal is generated as an output of a camera, by scanning in two-dimensions
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of the scene over time. A moving scene is a collection of individual images (frames),

in time series with a particular number of frames for every single second [1]. The key

characteristic of video is associated with spatial and temporal information that delivers

a semantically coherent narrative. Temporally consecutive frames have explicit spatial

constraints with region inheritance, spatial correlation and motion information. A spa-

tial and temporal coherency represents a regional evolution during a video sequence.

Although every single frame delivers different sets of data, the content is redundant be-

cause most of the region in the current frame is inherited from the previous frame with

gradual changes. In other words, some part of the frame stays consistent without any sig-

nificant change, while another part of the frame experiences considerable changes. The

changes can happen due to movement, rotation and region growth, or a combination of

these.

In order to prepare an intermediate-level description of video signal, a hierarchical

segmentation is considered to be the reliable way to represent video content. A tree

structure allows the recording of the detail of the coarse abstraction of the information.

Naturally, visual information contains multi-scale information. For example, a face image

is supposed to record eyes and nose as part of the face as the part of a human body.

The hierarchical structure offers the capability of recording in that way, even though in

practical implementation not all the information stored at every level is meaningful for

human. Metadata records the node features of the hierarchical tree.
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1.2 Objective

The objective of this research is to provide intermediate level metadata of the video

content which allows the user to search the visual content, and which keeps the metadata

creation process automatically with minimum human intervention. In order to achieve

that goal, through the course of this thesis, segmentation, hierarchical binary partition

tree (BPT) creation, tree simplification, metadata creation and retrieval are demon-

strated.

The problem is defined in section 1.3, and the solution overviews are discussed in

section 1.4.

1.3 Problem Statement

Generating video metadata manually with human intervention is no longer feasible

because of the huge amount of video data. There are a number of domain-specific auto-

matic video descriptions that have been provided with a limited set of semantic objects.

Limitations to the semantic objects cannot, however, be implemented in the circum-

stances where the video inputs vary widely across domains. Therefore, an intermediate-

level description is a possible option to generate metadata automatically. Available unsu-

pervised segmentation algorithms are fast, but they suffer from over-segmentation issues.

In order to reduce the over-segmentation rate, a merging task needs to be performed.

A merging rule and similarity measures need to be formulated to dictate the merging

process. In a complete merging system, merging task will be carried out as long as a pair
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of partitions are available. The merging history can be recorded in a binary partition tree

(BPT) structure. The BPT archives all partitions and their merging results. Therefore,

the BPT becomes very complex and consists of thousands of nodes, where a number

of salient nodes are formed during the evolution. The salient partitions are expected

to be correlated to the meaningful object to human subject (semantically meaningful).

The tree can be simplified by identifying the salient nodes and cutting the tree under

these nodes. BPT structures that record the object candidates have to be translated into

metadata. Attributes of the nodes need to be translated into human recognized termin-

ology in order to provide intermediate level metadata. Finally, a mechanism has to be

formulated in order to allow the users to express their requests to the visual content

archived in the metadata.

1.4 Solution Overview

In order to provide metadata, a number of tasks need to be carried out, namely: seg-

mentation, partitions merging, evolution analysis, tree simplification, metadata creation,

and visual content retrieval. Segmentation is one of the early important processes in

defining of visual content descriptions. According to [2] and [3], complete segmenta-

tion aims at dividing image/video into some semantically meaningful objects. On one

hand, it usually needs prior knowledge to drive the segmentation process. On the other

hand, partial segmentation aims at getting a number of partitions that satisfy a particular

homogeneity criterion. These techniques are fast and do not need prior knowledge (un-
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Figure 1.1: Building block of the work (Yellow blocks indicates the contribution of this

thesis)

supervised), but the results are usually over-segmented. So, post-processing is needed.

Partial segmentation, hereinafter refers to as pre-segmentation, produces non over-

lapping partitions. In a single frame/image, it prepares as regions/‘superpixel’ and

volume/‘supervoxel’ in a multi-frame video. Initial segmentations are produced by Wa-

tershed, mean shift and SLIC.

The merging task is carried out to get greater partitions and are expected to be more

meaningful. A merging rule is responsible for selecting the merging pairs of neighbouring

partitions. Similarity is the inverse of a distance measure formulation that determines

the merging order. Formulations of absolute, Euclidean and histogram distance measures

are evaluated against the segment quality and computational speed. The merging task

is recorded in a binary partition tree (BPT) structure adopted from [4] and extended
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in the spatio temporal by [5]. BPT is adopted to record both the superpixel merging

history of a single frame in the spatial approach and the supervoxel merging history in

the volumetric approach. On one hand, the spatial approach puts a video in a number

of frames and segments individually. On the other hand, the volumetric approach puts

a stack of frames in three-dimensional matrices, and segmentation is carried out directly

to these matrices.

The evolution of each initial small partition towards the global partition that contains

the entire image/video is well documented in BPT structure. The evolution analysis is

carried out over all branches of the tree to determine important nodes where the tree can

be pruned to get a simpler BPT. The saliency rate of every node on the tree is determined

by its distance to its parent and rank ordered to get a salient node list. It is arguable that

salient partitions are formed during the evolution. The salient partitions are expected

to be correlated to the meaningful object to human subject. If the tree is pruned in the

salient nodes, it is expected that the final segmentation consists of salient partitions only,

and a simpler tree with fewer nodes is obtained. A rule is applied to decide pruning nodes

so that the simpler tree can be obtained without losing too much detailed information.

The simplification is proposed at the multi levels based on how far it is the child-parent

distance across the branches of the trees. Three levels of simplification are prepared

according to the saliency rank on each branch of the tree. The three-level simplification

offers flexibility and avoids losing detailed information by assuming a single answer for

the partition set. The simplification result is evaluated against the available ground truths

in [6] data set.

Pre-segmentation, merging and simplification operations yield some attributes to the
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nodes on the tree. All nodes on the tree correspond to particular partitions on the original

video. The complete process above gives some attributes to every node that is recorded in

the metadata. Some extra attributes are calculated in order to make the metadata closer

to human requirements. The node and its neighbourhood relationship are recorded in

the metadata. Some extended keywords are defined to work with the designed metadata

in order to deal with a spatio-temporal information request. The building blocks of the

work can be seen in Figure 1.1.

1.5 Contributions

• Provide metadata as an intermediate abstraction level in order to separate low level

video processing and high level content analysis. The metadata on spatio-temporal

binary partition trees, based on 3D SLIC, archives supervoxels and spatio-temporal

neighbourhood properties.

• Provide unsupervised segmentations and tree simplification, thereby avoiding user

intervention and the domain limitation for a video sequence.

• Comparison between three pre-segmentation algorithms for individual frames, namely

mean shift, modified K-Means called SLIC, and Watershed in terms of providing

initial segments for generating BPT. It is identified that SLIC gives the most stable

performance and number of segments.

• Provide a mechanism to identify salient nodes in the tree, which is extended from

[7]. Tree simplification is carried out by pruning the tree at the salient nodes. The

top rank of salient nodes from the entire tree are identified and demonstrated to
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be close to the available ground truth objects.

• Comparison between tree simplification techniques in terms of different initial seg-

mentation and distance measures on a single frame BPT. It is identified that the

most reliable output is produced by the SLIC with Euclidean distance measure,

considering speed and final segmentation quality compared to the available ground

truth.

• Comparison between two pre-segmentation algorithms for the entire video in 3D

matrix representation, namely 3D SLIC and 3D Watershed in terms of providing

initial supervoxel for generating spatio-temporal BPT and tree simplification. It is

identified that 3D SLIC performs better than Watershed both in execution time and

final partition quality compared to the available ground truth.

• Develop a query language extension to retrieve video content based on designed

metadata. An evaluation of the retrieval operation is carried out on colour, motion,

and the top-most saliency. It is identified that some colour-related queries get better

answers from initial partition set. The motion-related query gets better results from

the simplification set. The salient-related query shows that the the top-most salient

partitions in the tree are strongly correlated to the objects in the ground truth on

the video test.

1.6 Thesis Organization

This section briefly details the organization of the document. The remaining thesis is

divided into seven chapters:
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Chapter 2, presents a comprehensive literature review, the state of the art in segment-

ation algorithms in image and its extension in video are discussed, as well as the current

trends in video database and evaluation methods.

Chapter 3, discusses the general framework for reference throughout the rest of the

thesis including Binary Partition Tree (BPT) construction, general formula for merging

and simplification, as well as the evaluation method. BPT construction was derived from

previous work [4], evolutionary analysis for tree simplification was adopted from [7] and

its extension in matching and volumetric approaches. The general metadata structure

was designed in order to set the main destination of data obtained in all segmentation

and simplification tasks.

Chapter 4, is a discussion about segmentation of a single frame, a comparison of

three well-known pre-segmentation algorithms, namely the Watershed Algorithm (WS),

Mean Shift Algorithm (MS) and modification of K-means called Simple Linear Iterative

Clustering (SLIC), is carried out. In term of the merging process, various merging order

formula are tested in order to identify the most reasonable formula. The evolutionary

analysis proposed in [7] is carried out in three pre-segmentation algorithms and three

merging order formulae. The spatial Region Adjacency Graph (RAG), binary partition

tree for a single frame, is obtained from this chapter. It is recorded in region metadata

for the designated database tables.

Chapter 5 is dedicated to discussing the identification of inter-frame region/superpixel

correlation. This needs to be identified in order to record matching region in the current,

previous and future frames. The temporal relationship is recorded in the metadata.

Chapter 6 is dedicated to discussing a different approach to segmenting video data. In-
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stead of segmenting individual frames in time, a three-dimensional matrices is prepared

to accommodate the entire video, and segmentation is carried out to that volumetric

data. The segmentation result has three axes: namely spatial (x,y) and temporal (t);

it is called supervoxels/volume. By performing this operation, the matching task dis-

cussed in Chapter 5 is no longer needed, but it requires that the video data is available

entirely at the beginning of the segmentation task. The merging task is performed on the

supervoxel with an additional parameter of merging order to take into account the dir-

ection of the supervoxel. Merging history is recorded in binary partition tree structure,

however each node no longer represents a single region in a particular frame. Every

node represent regions in a subsequent frame with consistent labels. The results of pre-

segmentation, merging and simplification are recorded in the supervoxel and svEdge

table for the Volume Adjacency Graph (VAG).

Chapter 7, discusses utilization of recorded metadata obtained in a series of operations

presented in Chapters 4, 5 and 6. A list of extended keywords, query execution strategy

and a set of functions in order to decode particular extension Structured Query Language

(SQL) keywords of spatio temporal operations are discussed. The results of the spatial,

temporal and spatio temporal operations are presented.

Finally, Chapter 6 presents the conclusion, and possible future works.

The list of publications related to this thesis is presented in Appendix A.



Chapter 2

Literature Review

2.1 Introduction

This chapter discusses work related to this research. In the course of this thesis,

segmentation, simplification, visual content metadata creation and retrieval will be dis-

cussed and an extensive exploration of segmentation techniques, visual content metadata

archiving and retrieval will be carried out.

Multimedia content indexing and retrieval has received substantial attention from

the research community. For instance, an initiative from National Institute of Standards

and technology has been sponsoring annual text retrieval conference video evaluation

(TRECVid) to promote research in video analysis and retrieval since 2003 [8]. They

provide a large dataset of test video and lots of researchers participate in implementing

their algorithms on video retrieval.

Video object segmentation is an important task to enable more complex video analysis.

12
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The demand for object segmentation of visual content has emerged since the object video

coding standard was proposed. Moving Picture Experts Group (MPEG)-7 enables an

object annotation in a video. MPEG-7 does not, however, have standardized (automatic)

extraction of audio visual (AV) descriptions/features, and a standard search mechanism

[9]. Since then, much work has been done and a lot of progress made in video object

segmentation, classification, description and searching.

Content based video modelling needs a preliminary task to divide content into smaller

units of visual content. Small unit visual content is obtained from the segmentation task

and highly desired to be semantically meaningful. However, It is hardly possible for

an algorithm to produce a consistently meaningful partition for general purposes (this

will be demonstrated in Chapter 4). Metadata modelling for video content, however,

benefits greatly from a ‘good’ segmentation. There have been numerous attempts to

define the metadata content of video, with some of the proposals employing automatic

segmentation results as input, while others employ a human annotation task.

Some video segmentation techniques are extended from image segmentation meth-

ods. For example, [10] builds on the efficient graph-based image segmentation intro-

duced by[11], extending it in three-dimensional space in video. Some techniques utilize

the output of image segmentation carried out to every frame within the video. For in-

stance, [12] introduce a video segmentation by acquiring ranked foreground object pro-

posals using [13]. The top ranks of objects proposal are considered as the foreground. It

is followed by searching the objects proposal in subsequent frames throughout the video.

Video and image segmentation are discussed here as interconnected topics.

There are some review papers on segmentation such as [14, 3, 15] and [16]. [14]
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focuses on classifying temporal video segmentation. This class of segmentation aims to

identify a group of frames belonging to one shot, which is determined by the transition

from one shot to another, called a ‘cut’. Even though temporal segmentation has a differ-

ent goal, in practice, object video segmentation often needs to process a group of frames

between two cuts, or in one temporal segment as the result of temporal segmentation

work.

A comprehensive review of moving object segmentation in video was written by [3].

They divided the moving object segmentation into two major classifications: motion

based and spatio-temporal. Motion based is divided into two sub-categories, which are

two and three dimensional motion. According to their work, the drawback of motion

based segmentation is overcoming the problem of noise-sensitivity and inaccuracy. In

order to deal with these issues, a number of works have proposed a combination of

spatial and motion based methods called spatio temporal.

The recent work in object video segmentation review was published in 2013 [15]. The

review focuses on dynamic/moving object segmentation in video. Inference based and

feature based classification are the two main proposed classifications. Inference based is

broken down into background subtraction and energy minimization, while feature based

is broken down into depth information, motion and histogram.

[16] in Chapter 1 classify image/video segmentation into seven categories. These

consist of data based, interaction based, feature based, inference based, space based,

class based and semantic specific. The data-based mode considers the data types used

in the segmentation tasks, such as nature, human or medical videos. The interaction-

based mode is divided into two main categories: supervised and unsupervised. The
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feature-based mode relies on a selection of features, such as colour, texture, intensity,

shape or motion. The inference-based mode is divided into bottom-up (based on low

level features such as colour, texture etc.) and top-down (based on high level concepts

as a result of human annotation). The space-based mode is carried out according to

motion or spatial and motion information. The class-based mode extracts a specific class

of objects from video such as face, cars, buildings, etc. The last category is a semantic

specific mode that aims to divide an image/video into meaningful segments associated

with some semantics.

The purpose of this literature review is to provide an overview of the work related to

every task in this thesis. Firstly, some classes of segmentation techniques in respect to

spatial, temporal (motion) and spatio-temporal are explored. Secondly, the applications

of binary partition trees as hierarchical segmentation of image and video are explored.

Thirdly, the role of prior knowledge in segmentation is discussed in supervised and un-

supervised segmentation techniques. The state of the art of video content indexing and

retrieval are explored in later sections. Finally, there is a discussion of the existing tech-

nique compared to the solution proposed in this thesis.

2.2 Formal Definition

According to [2] partial segmentation is splitting a scene into non-overlapping parti-

tions with respect to certain homogeneity criteria. A single frame of video is equal to a

still image. A video is a sequence of images in a certain order. In two-dimensional space,

a greyscale image can be defined as f(x, y) when x and y are coordinates in horizontal
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and vertical directions. It can be extended for colour images F (x, y) = ~c, with ~c as colour

components, for instance, in Red Green Blue (RGB) colour model vector ~c consist of R,

G or B elements. In video data, the definition can be extended to f(x, y, t) for greyscale

video and F (x, y, t)=~c for colour video, where t denotes the temporal variable.

Segmentation of an image Img, is a finite set of regions R1, ..., Rn

Img =
n⋃
i=1

Ri , Ri ∩Rj = ∅, for i 6= j (2.1)

where Img denotes entire images, n is the number of partitions, Ri denotes region ith

as a segmentation result, and every pixel belongs to specific regions. This formulation

can be extended to three dimensional spatio temporal data:

V id =
n⋃
i=1

Vi , Vi ∩ Vj = ∅, for i 6= j (2.2)

where V id denotes the entire video, n is the number of partitions, Vi denotes volumes/su-

pervoxel ith as the segmentation result, and every voxel (pixel in three-dimensional

space) belongs to a unique partition. The main extension from regions to volumes is

the temporal axis in three-dimensional data.
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2.3 Spatial Segmentation Technique

2.3.1 Thresholding

Thresholding technique is a simple but effective way to divide data into some categor-

ies [2]. The main concept of thresholding is to select a threshold, where all pixels with

the value greater or equal to the threshold belonging to a certain partition, while the

rest are assigned to a different partition. The basic concept of the thresholding technique

follows the formula 2.3.

g(x, y) =


1 if f(x, y) ≥ T

0 if f(x, y) < T

(2.3)

g is the output of thresholding of the original image f . Threshold T is applied to every

pixel in f(x, y) and assigns g(x, y) to 1 or 0. Where (x, y) are horizontal and vertical

axis on an image plane respectively. If f(x, y) is above the threshold (T ), g(x, y) is set

to 1, otherwise 0. It can be extended to multiple thresholds by defining n number of

thresholds.

The correct selection of the threshold is critical for successful segmentation. Distribu-

tion of the grayscale value in a histogram can be utilized to guide a reasonable threshold.

In ideal conditions, when the histogram is bimodal, the population of the foreground and

the background forms separated peaks, and a minima exists in the valley between them.

It is reasonable to select the minima as a threshold. The distribution may not be suffi-

ciently uniform, however, in such cases applying a single threshold for the entire image is

often unsuccessful [2]. A dynamic threshold needs to be implemented where the image

is divided into a set of sub-images and local threshold is calculated for each sub-image.
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In Otsu’s thresholding method, introduced by [17], an analysis of the histogram is

carried out to determine all possible thresholds, followed by calculating the variance of

the foreground and background separated by the threshold. The calculation is carried out

for each threshold in order to select the best value. [18] works on defining a threshold on

an image with uni-modal distribution where the histogram may only contain one obvious

peak. Threshold is determined by finding a corner in the histogram plot.

Dynamic threshold introduced in [19]. In this approach, the image is divided into

a regular array of overlapping sub-images, and histograms are computed for each sub-

images. It is possible in some sub-images for the histogram to be uni-modal; meaning

that thresholds cannot be determined. The threshold for those sub-images is interpolated

from neighbouring sub-images. In order to arrive at an effective way to select thresholds,

a hierarchical technique is applied such as in [20, 21]. [21] proposes an iterative cluster

merging using a dendogram in order to identify multiple thresholds in an image.

In video, thresholding has been applied in many ways. It can be applied for motion

data as well as colour and the texture of the voxel in a video sequence. f(x, y) is defined

as a motion vector in the coordinate x, y and the threshold is applied as the certain value

to distinguish between moving and stationary parts of the pixel in the current frame. For

instance, [22] proposed an optimal threshold for frame difference, in order to determine

segmentation of moving objects, while [23] proposed an adaptive thresholding in video

segmentation in order to detect moving objects.
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2.3.2 Edge Based

Edge segmentation is an early technique that remains important. It relies on and edge

detection operator such as Robert, Laplace, Prewits, Sobel [2] operators etc. All operat-

ors aim to find the border between adjacent regions by detecting the discontinuities in

the image. These can be in the greyscale, colour, texture, etc. The outcome of these oper-

ators cannot directly produce segmentation results due to the open boundary. Therefore,

an additional task is needed to produce border construction of a region. Common prob-

lems in this technique are the existence of an edge where there is no real border, or a real

border exists but no edge is detected. Both problems cause poor segmentation quality.

Some proposed techniques devote significant effort to overcoming this drawback.

In video segmentation, detection of edges in the reference frame is usually followed

by tracking the boundary in the subsequent frames. A trajectory of the boundaries is

drawn along the temporal domain by tracking them using motion information. In [24]

a binary model for the object of interest is derived from its edges, followed by tracking

in the subsequent frames. [25] proposed a structured random forest to detect edges in a

real time frame rate.

2.3.3 Graph-Based

This class of algorithm is derived from popular mathematical graph theory. A graph

G contain two components which are vertices V and edges E . The graph is defined as

following formula:
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G = (V , E) (2.4)

Some researches aim to obtain a single final set of partitions using some concepts from

graph theory. Some examples of methods in this class are graph cut [26, 27], normalized

cut [28, 29], and recursive shortest spanning tree (RSST)[30].

Graph cut is proposed to separate the foreground and background. In [26] using

graph cut to segment the optimal separation of the foreground from its background,

an interactive scenario is proposed, with a human giving a seed of the foreground and

the algorithm. In a normalized graph [29], for example, proposed natural image seg-

mentation by performing mean shift to get the initial over-segmentation, before then

representing all regions in a graph and perform normalized cut algorithm to get glob-

ally optimized clustering. [28], meanwhile, proposed an algorithm to segment the most

prominent moving group of pixels over frames. A graph of connected pixel in a spatio

temporal neighbourhood is thereby formed. A segmentation problem is thus transformed

to a graph partitioning problem. A normalized graph cut is proposed to eliminate the un-

desired bias of the minimum cut algorithm.

[10] proposed an extension of the efficient graph-based segmentation [11] in three-

dimensional space. [31] proposed another extension of graph-based image segmenta-

tion, enhancing processing speed and minimizing memory consumption. They work in

streaming mode, which only considers the previous frame to decide the segmentation of

the current frame segmentation. They claimed a better performance of between one and

four frames per second compared to one frame per second [10].
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2.4 Motion Based Segmentation

The goal of motion-based segmentation is to segment a video sequence into multiple

coherently moving objects. Motion information gives a lot of information about moving

parts on the scene. If the goal of segmentation is to divide a scene into moving and

static parts, motion is a prominent cue. In some computers vision, the moving part is

assumed as the foreground and the static part as the background. There are three main

issues: region support, motion modelling and segmentation criteria [3]. Region sup-

port could be individual point/pixel, corner, line or regions. Motion modelling could be

two-dimensional or three-dimensional. Segmentation criteria can be Hough transform,

expectation and maximization (EM) or maximum of posteriori (MAP).

There are some works on motion based segmentation such as [32, 33]. [32] propose a

new motion modelling methods called motons, which builds motion models and gathers

the motion in the video according to its motion model. [33] proposes a motion similarity

criteria and uses the similarity to guide region merging.

2.5 Spatio Temporal Segmentation

The main idea of spatio-temporal segmentation is combining spatial and temporal

information to obtain good segmentation quality. By combining both motion and spa-

tial information, these techniques intend to overcome the over-segmentation problem

in image segmentation, and to overcome the noise-sensitive and inaccuracy problems in

motion-based segmentation [3]. There are four different groups of methods: background
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modelling, projection, matching and volumetric approaches. The last three groups of

methods are also discussed in [34, 35].

2.5.1 Background Modelling

In the scene that was acquired by a fixed camera, a popular method to distinguish

the motion part and the static part is performed by subtracting each individual frame

from the background. The method is called background subtraction. The background is

modelled, and the moving object is detected by subtracting the current frame and the

background model. A result greater than a specific threshold will be determined as a

moving object. The variation in this class is how to model the background and how to

update the background model.

[36] models each pixel as a mixture of Gaussians and uses an online approximation

to update the model. The Gaussian distributions of the adaptive mixture model are then

evaluated to determine which are most likely to result from a background process. Each

pixel is classified based on which Gaussian distribution represents it.

[37] models the background using codebooks in order to represent structural back-

ground variation in an efficient way and consume less memory. Each pixel is quantized

into codebooks which represent a compressed form of background model for a long se-

quence. [38] proposed a background model according to accumulated frame difference

information. A background registration technique is used to construct a reliable back-

ground image.
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2.5.2 Projecting approach

In this approach, each frame is represented as two-dimensional matrices. The refer-

ence frame is segmented individually, and each region is tracked in the remaining frames.

The algorithms in this method vary in terms of how to segment the reference frame, and

how to make a projection to the upcoming frames. The region trajectory is often used in

this approach.

[39] used the two-dimensional (2D) watershed in a series of frames, and projects the

initial partition into upcoming frames considering motion information. The label estim-

ation is conducted using Markov random field (MRF). [40] proposed iteratively merging

over-segmented regions to form meaningful objects based on a mutual spatio-temporal

similarities measure, which is a combination of temporal and spatial information in a

statistical framework as a hypothesis test.

[5] proposed a trajectory tree as an object-oriented representation of a video. A binary

partition tree of the first frame of a video is used as a reference to estimate the segment-

ation of the upcoming frames. It is followed by enforcing consistent labels for similar

regions. A new node label is issued for unprecedented regions in the current frame. A

single BPT makes it hard to represent a video with dynamic motions, however.

2.5.3 Matching Approach

In matching approaches, spatial segmentations for each frame are performed inde-

pendently. Region features such as colour, shape, location, texture, or their combinations

are used to match regions across frames. A temporal correlation between regions across
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frames is obtained by linking regions in the subsequent frame according to some criteria.

Generally this approach uses individual spatial segmentation for every frame through-

out the entire video. A matching task is carried out to solve inter-frame region correl-

ation. Inter-frame regional similarity plays an important role in this stage. The re-

lationship between regions may be one to one, but there can also be many-to-many.

This procedure can avoid the motion estimation task in the projection approach but,

the lack of motion information may cause difficulty in determining moving objects, and

may also need user intervention. This approach needs robust spatial segmentation to

produce stable regions and may simplify partitions. An over-segmented and unstable

spatial segmentation can cause many-to-many inter-frame regional correlation, which is

computationally very costly.

There are some approaches to the processing of spatio temporal video sequences.

Some researchers employed frame-by-frame processing, followed by region matching

[41, 42]. In our work [43], we use the identification of salient regions in each frame to

solve many-to-many relationship matching across frames. [44] extracts the visual object

plane by matching 2D binary model.

[45] uses a graph-based matching procedure to establish temporal correlation between

regions across frames. A hierarchy of nested partitions is used to resolve topology con-

flicts in graph matching. Their graphs are also endowed with a memory component

to account for completely occluded regions which may reappear in the scene. Shape

matching through the parametrization of region contours is explored in [46] for tracking

applications.

[12] proposed a forms of video segmentation by making an assumption that a re-
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gion that moves differently from its surroundings and appears frequently throughout the

video will probably be salient or the main interest. They work in binary segmentation

which divides a video into two regions: foreground regions and background region. The

drawback of this approach can be seen when it is applied to a video containing many

moving objects.

[47] proposed a tracking method, according to accurately segmented object boundar-

ies. The first step of the proposed method is to model the object and background using

a Gaussian mixture model (GMM), and extract a rough contour according to the object

edge features. An elastic shape (modelled according to [48]) matching method is then

applied to extract the exact contour.

[49] attempt to solve the problem of partial shape matching. They transform shapes

into sequences and utilize an algorithm that determines a subsequence of a target se-

quence that best matches a query. They map the problem of the best matching sub-

sequence to the problem of a cheapest path in a directed acyclic graph (DAG).

[50] represent the object to be tracked using a hierarchy of regions, each of which

is described with a combined feature set of popular SIFT descriptors [51] and colour

histograms. They formulate the tracking process as a graph matching problem using an

energy minimization function. They use a graph updating mechanism to adapt the object

evolution over time.

[52] introduces a region trajectory generation model based on graph clustering. They

use Watershed to cluster each frame and employ a spectral embedding framework to

cluster region trajectory and obtain meaningful objects. Affinities are computed based

on motion similarities between point trajectories associated with the region trajectories.
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The previous works [53] discuss the application of a genetic algorithm to establish

matching nodes between selected partitions in a BPT of the current frame to regions in

the next frame, while the [43] discuss selective top-most salient nodes in the current

frames to the top salient nodes in the upcoming frame.

2.5.4 Volumetric Approach

A multiple frames video segmentation problem is considered as a spatio-temporal

volume and solves a three-dimensional (3D) segmentation problem, in order to avoid

frame-to-frame region matching. Every voxel (a pixel in 3D space) in the matrix have

neighbours in the spatial and temporal direction. This can be achieved with an assump-

tion that a complete video is available at the beginning of processing. The benefit of

avoiding tracking regions, however comes with higher memory requirements due to the

large data size. In [10], for example, 2.2 GB of memory is required to process 193,000

edges for one second of video of 25 frames.

[54] uses a 3D watershed segmentation by processing the pre-segmentation of indi-

vidual frames using 2D segmentation. In order to avoid over-segmented initial partition,

a topological simplification is achieved by removing particular local minima. Final seg-

mentation is obtained by merging 3D watersheds in the spatio-temporal domain using

a Markov random field (MRF) framework. [55] proposed a hierarchical mean-shift on

a space time dimension. Every pixel is put in 3D space f(x, y, t), with each pixel con-

taining seven feature dimensions: three colour component (RGB), two motion angles,

and two motion distances. The edge vector for each voxel is computed by the colour

feature on the spatio-temporal volume proposed by [35]. It is followed by performing
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spatio-temporal watershed over the topological surface defined by the edge vectors. Act-

ive surfaces have been implemented with a level set methodology for 3D segmentation

[56]. In their work, segmentation accuracy is improved by combining occluded volumes

and motion models for the object and the background.

[10], proposed a spatio temporal video segmentation on a graph-based image seg-

mentation algorithm adapted from [11]. They extended two-dimensional region space

segmentation of 9 neighbourhoods into three-dimensional space time on 26 neighbour-

hood.

[57] discuss volumetric hierarchical segmentation. This starts with an initial super-

voxel prepared by the pre-segmentation algorithm. It is followed by an iterative merging

task and recorded in a binary partition tree structure. All nodes represent a correspond-

ing supervoxel in subsequent frames of the original video. A simplification algorithm

considering spatial properties and motion speed and direction is also discussed.

2.6 Hierarchical Segmentation

2.6.1 Binary Partition Tree on Image

A binary partition tree (BPT) was used for image segmentation representation. There

are other forms of tree such as max-tree, min-tree and quad-tree. Quad-tree is a tree

structure in which every node has four leaf nodes, and in image processing is usually

implemented to partition an image from within the entire image, whereby, in every itera-

tion, the partition is divided into four partitions until a homogeneity criterion is achieved.
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Max-tree, meanwhile, is a tree where the leaf nodes are at a maximum distance to the

parent nodes. The inverse is true in the min-tree algorithm. Max-tree, min-tree and

quad-tree have been demonstrated to represent image segmentation, as in [58]. Com-

pared to these alternatives, however, BPT has a simpler structure and is therefore simpler

to implement with a consequent lack of location information in the tree structure. Binary

partition trees have been implemented in many areas of still image processing.

Since it was proposed in [4] as a framework for video and image segmentation, some

work has used BPT for efficient representation. BPT creation consists of three main

steps: pre-segmentation, merging and binary tree construction. An implementation of

colour based segmentation, region merging and a user interface was developed in [7]. A

framework of semantically meaningful image segmentation was proposed using an evol-

utionary analysis. They also provide a user interface for efficient browsing to determine

a semantically meaningful object in the tree. Although this work successfully presents

a good segmentation and, sometimes, a complete object that is semantically meaning-

ful identified on one of the node, some objects are represented by some disconnected

nodes on the separate branches of the tree. An object with salient colour dissimilar to

the background is usually well segmented, but an object with a low colour distance to its

background leads to a miss-merge. Close colour distance between semantic objects and

the background leads to an object becoming fragmented into nodes on a number of parts

of the tree.

The BPT was extended into the multi-dimensional Binary Partition Tree (MBPT) in

[59] to convey not only colour but also texture edge and motion in order to produce

more robust segmentation results. The algorithm significantly improves the segmenta-
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tion result for images with good colour distribution compared to the previous approach

which only uses colour feature. MBPT, however, cannot achieve better results in an im-

age with poor colour distribution. Texture and edges can improve the final segmentation

when the initial segmentation is good, but for poor initial segmentation, texture and

edge cannot help that much. This could be because MBPT was developed using ini-

tial pre-segmentation based on colour distribution, while another feature is used in the

region merging step.

[60] introduced object detection in a binary partition tree. In this work, shape inform-

ation of the target object is needed. The additional shape information leads to intensive

user participation, which can improve human subjectivity and labour cost. An extension

of this work in [61] introduced descriptor to represent an object. Although their work

is well presented, it is limited to finding objects that have been predefined such as sky,

text signs or a face. Another approach proposed a contour detection in binary partition

tree representation [62], using the difference between two regions as the boundary of a

region. If the difference is high enough, the probability of it being the contour boundary

is higher than for low differences.

[63] used a recursive spanning tree algorithm to split and merge a region in an image.

This work use BPT to record the history of region merging. In order to identify an

object, they define a stopping criterion, which is compared to a definition of an object.

[64] proposed an algorithm to segment an object in a video sequence, using a modified

recursive spanning tree algorithm (MRSST) and then binary partition tree representation

as the result of MRSST for each frame. In the first frame, the user is allowed to identify
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the foreground object, then, in the next step, the algorithm will track the foreground in

the node of the BPT of the next frame .

2.6.2 Binary Partition Tree on Spatio Temporal Domain

Binary partition trees can be used either with spatial or spatio-temporal data. [65]

proposed a motion based binary partition tree for video object segmentation. [5] seg-

ments the initial frame and then projects the region to the subsequent frame according

to motion vectors. [66] examines the problem of the segmentation and tracking of video

objects for a content-based information retrieval context. Initially, they use an active

contour model that progressively refines the selection by fitting the natural edges of the

object followed by object refinement using a BPT with a marker and propagation ap-

proach. The video object is tracked by using a hybrid structure alternately combining a

hierarchical mesh for the motion estimation between two frames and a multi-resolution

active contour mode.

2.7 Simplification

Simplification of partitions needs to be performed in order to achieve larger area

segment in the visual space. This process is essentially needed when the primitive regions

are too small. For example, table 2.1 shows a comparison of the number of primitive

regions compared to the number of expected objects in the ground truth. It can be seen

that, on average, a region in ground truth will be formed by around two hundred initial

watershed regions [67]. Mean shift [68] and SLIC [69] shows smaller over-segmentation



2.7. SIMPLIFICATION 31

Table 2.1: Pre-segmentation and comparison to the ground truth

Video Resolution Method Partitions Ground Truth (GT) Over Seg

Soccer 288 x 352

watershed 4179

21

199

SLIC 166 7.9

mean shift 326 15.5

Stefan 240 X 352

watershed 4707

18

258

SLIC 319 17.7

mean shift 1043 57.9

rates.

The merging task commences with the initial partitions prepared by pre-segmentation

algorithms. In doing so, stopping criteria and selection issues have to be considered.

Stopping criteria dictate the decision of when the merging iteration should be termin-

ated. Selection rule is responsible for deciding the pairwise partitions that have to be

merged in a particular iteration.

In a complete tree, iteration is terminated whenever a root node is achieved. The root

node represents the entire image/video; therefore, no significant information is carried

by the root. This is because the purpose of segmentation is to break down the content

into multiple objects. The important partitions are expected to be located in between the

initial partitions (the lowest level child nodes) and the root.

A number of studies have been carried out in order to identify the important regions

between the smallest unit (initial partitions) and the greatest root nodes. Researchers

have made a significant effort to define merging and stopping criteria [70, 71]. [7],
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and [63] define a formulation of stopping criteria in order to avoid excessive merging

between different objects into a single partition. They proposed summing up the cumu-

lative merging cost during region evolution, stopping when the value reached a threshold

based on a uni-modal threshold calculation [18]. [72] proposed a merging based on

maximal similarity, they used LAB histogram distance as the merging criteria with help

of user input of the background and foreground part of the image.

Many formulations of selection techniques have been explored and formulated as

similarity measures. [4] initially proposed iteratively merging pairwise primitive regions

using a colour similarity criterion. [58] introduced a proportional colour and partition

size to eliminate small regions in around big regions. [59] modify the similarity criteria

by including texture in order to get a better merging result. In order to improve the

outcome, [73] propose an adjacency degree and area to be considered as a similarity

criterion.

The task of merging aims to achieve the object candidate. For instance [74] proposed

a bottom-up segmentation. In this approach, the initial segmentation is obtained by

recursive shortest spanning tree(RSST), followed by a merging task using a combination

of spatial configuration properties called syntacticfeatures. Demster-shafer’s theory is

an alternative of generalization. Bayesian probability is used to decide pairwise region

merging. [7] proposed a method to identify where the excessive merging occurs. It

is performed by identifying any discontinuity of region evolution from the child nodes

upwards to the root. [71] proposed an identification of salient regions by surrounding

saliency measures of every nodes against global colour.
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2.8 Availability of Prior Knowledge

2.8.1 Supervised

Semantic segmentation, or complete segmentation [2], is unlikely to be achieved

without the availability of prior knowledge. Supervision can come from user interven-

tion or a particular scenario. The presence of humans in the loop can give a guidance

to the segmentation algorithm where the human interest is located in the scene. In

video segmentation, a user intervention scenario was proposed, such as in [75, 76, 60],

while in image segmentation user supervision was proposed, for instance in [26, 77, 78].

Some segmentation methods are proposed to extract specific objects such as humans,

cars, roads or vegetations from input images/videos [79, 80]. For instance, in vehicle

segmentation in traffic video surveillance scenarios, the shape can be observed from

samples, therefore the algorithm can decide efficiently where the vehicle region is. One

may argue that this is classified as a different category rather than supervised. In [16],

this scenario is classified as a class-based mode. Some researchers also claim their ap-

proach as semi-supervised due to the limited amount of supervision [81, 82]. They

proposed a segmentation seed at the beginning of video, followed by posterior inference

of unlabelled pixels from the tree-structured model in the remaining of frames.

Some work that involves humans in the loop in order to supervise the segmentation

varies in terms of intervention intensity. [78] proposed a supervised video segmentation

by minimizing user interaction. The first frame is segmented using the mean shift al-

gorithm and by letting the user spot meaningful partitions. The algorithm then tracks

the partition in the rest of the frame. [83] uses the same scenario, with an improvement
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in inter-frame region matching. [76] proposed user intervention to identify the edge of

the region in the first frame and then to track this over time in the entire video. [84] pro-

posed a user-assisted split and merge segmentation based on long term motion affinity.

They proposed an affinity measure on a temporally disjointed track.

Generally, supervised segmentation produces accurate, or even semantically meaning-

ful, results. Post processing is not needed and the speed of computation can be improved.

On the other hand, it requires human intervention which causes extensive labour work.

Much effort has been devoted to minimizing the level of intervention. Another super-

vised segmentation scenario is to limit the target objects, giving the system knowledge

about the features of the target. While this works in certain scenarios, it cannot be ap-

plied for general use since the algorithm will probably fail to cope with a different set of

the target objects whenever the input video is changed.

2.8.2 Unsupervised

The absence of prior knowledge can broaden application possibilities. Fully auto-

matic processing and a general scope without any limitation of specific scenarios can be

achieved in an unsupervised scheme. Due to the lack of prior knowledge, the outcomes

are likely to be fragmented into small semantically meaningless partitions, and therefore,

the result may need post-processing to make a strong correlation with a semantic object

in the real world. In some applications, where semantic partition is not the main goal,

such as video compression, post-processing does not need to be performed.

A segmentation can be without any specific purposes. In this class of segmentation,



2.8. AVAILABILITY OF PRIOR KNOWLEDGE 35

the input is arbitrary video and the algorithm works solely based on the information

inside the video. [85] proposed an analysis of point trajectories in this context, while

[86] proposed fast unsupervised video segmentation according to motion feature.

[12] introduced an unsupervised video segmentation by assuming a region that moves

differently from its surroundings and appears frequently throughout the video will prob-

ably be main interest. This work identify the object proposal as foreground regions and a

background region on the first frame. Object proposal is obtained by rank the regions in

intra-frame appearances. The main drawback of this approach is when the video contains

many moving objects.

Some works in graph-based segmentation such as [10, 11], are work based on un-

supervised scenario. The vertices in the graph iteratively merge based on internal and

external variations. They keep the segmentation to be unsupervised, which lets the al-

gorithm decide the regions without prior knowledge. The segmentation results rely on

colour, texture only, moreover optical flow is added to get a better result. They imple-

mented a hierarchical segmentation rather than tuning the parameters in order to keep

the small homogeneous regions in the result.

In general, unsupervised segmentation can work without human intervention, and

therefore fully automated. It can also work in an unlimited class of the object so it does

not need a training phase. As a consequence, the accuracy of the result cannot directly

conform with the semantic concept in the real world. In case the application needs a

semantic object, post-processing often needs to be carried out. Some applications for

semantic content such as summarization, recognition and other content based multime-

dia services, need post-processing tasks before the segmentation result can be effectively



36 CHAPTER 2. Literature Review

used. Some applications do not really need an accurate semantic object such as video

coding and compression, and in these circumstances post-processing may not be needed.

2.9 Visual Content Indexing and Retrieval

Video content extraction, indexing and retrieval has attracted significant attention in

the research community. Video carries rich information, entailing massive raw data with

high redundancy. In general, the effort categories in dealing with video content retrieval

are structure analysis, feature extraction, data modelling and retrieval.

2.9.1 Video Structure Analysis

Video can be temporally structured into a scene, shot and frame. A shot consists of

consecutive frames captured in a single camera event. It begins and terminates with

a shot boundary or ‘cut’. There are various ways to detect shot boundaries, such as

utilizing colour histograms [87], block colour histograms, edge change ratios, motion

vectors [88], or graph distance [89]. In order to discover shot boundaries, a threshold

[90, 91] or statistical learning methods are utilized [92].

Within a shot, frames are highly redundant: i.e most of the content in the current

frame is inherited from the previous frame. A key frame is particularly selected to reflect

the rest of the members in a single shot. Many methods have been introduced to extract

such key frames [93].

The scene is a higher level of structure that consists of many consecutive shots, and
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contains a single semantic story. In much of the research, different criteria are proposed

for scenes. For example, in [94] a scene is defined as shots with similar key frames,

whereas [95] determine a group of shots as a scene if their backgrounds have some

degree of uniformity.

2.9.2 Visual Feature Extraction

Feature extraction can be carried out to the key frame, the object in the video and

the temporal information. Key frame feature extraction can be performed with static

features such as colour distribution [96], texture, shape or edge histograms [97]. Once

the feature is extracted, it can be stored in the database, and retrieval can be performed

according to the feature.

Object feature extraction is performed to detect particular objects appearing in the

video. For example, [98] detect a face in the video and index the face in order to serve

a searching mechanism. [12] extract an object proposal and operate this across frames

throughout the video.

Motion is an essential characteristic of video that differs from the image. Statistical

features of motions can be extracted such as in [99]. Trajectory based motion features

are extracted by modelling object trajectories such as in [100].

2.9.3 Query and Retrieval

Following feature extraction, the feature can be stored in a database and content re-

trieval can be carried out. [101] proposed an object video database system (OVID) that
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is based on an object oriented database management system (OODBMS). In their model,

a video consists of objects and every object can have varied attributes. They focus on

defining the video data object model, while the content description is produced by hu-

man. [102] shows a spacial query in order to cope with Geographic Information Systems

(GIS) data in a spacial database. [103] proposed a spatio temporal data modelling and

query. Although it was not intended to deal with the object in the video, it was designed

to manage moving data in the database management system(DBMS).

The Informedia projects use speech recognition, image processing, and natural lan-

guage understanding automatically to produce metadata for video libraries [104]. Ac-

cording to their report, although the speech, vision and language processing are imper-

fect, metadata with some degree of inaccuracy still can be very useful for information

retrieval.

[105] discusses spatio temporal queries and introduces some specific spatial keywords

such as AREA, INSIDE and temporal keywords such as DURATION, CONTAIN, and MOV-

ING DISTANCE. [106] develops a video database management system called "Billvideo"

equipped with rule based queries to deal with spatio temporal video databases [107].

An extension of Billvideo proposed in [108] supports the MPEG-7 XML standard. In

Billvideo, human interaction is needed to define the content.

[109] introduces spatio temporal region graph query languages (STRGQL) for a video

database. This is based on their concept of spatio temporal region graph indexing [110]

Their work builds on the frame based segmentation that is performed in Mean shift

[68]. Every frame has a particular spatial region adjacency graph (RAG) and a rela-

tion between nodes in the graph is identified as a temporal graph. They use Standard
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Query Language with some extra keywords in order to perform graph functions: graph

similarity measure (GDM), graph edits distance (GED) and summary.

Recently, [111] introduced a database management system based on postgreSQL to

manage multimedia data called ADAM. They empower the SQL with an additional dis-

tance measure in order to deal with similarity searching in a multimedia database. Fea-

ture extraction is carried out using SIFT [51]. They focus on image collection in their

database.

2.10 Discussion

Visual content indexing and retrieval has received a lot of attention from the research

community. A good partition is a key success factor for object-based video indexing.

A number of segmentation algorithms have been introduced, but no general purpose al-

gorithm can produce human quality segmentation. Given the rapid growth in the amount

of video data, there is significant demand from the perspective of video management to

store, annotate and retrieve data efficiently. Human made annotations are no longer

practical, and therefore an automatic annotation tool is highly desired.

To develop automatic annotation tools, a minimum user intervention algorithm is

needed. To provide a general purpose tool, a domain limitation has to be alleviated. This

requirement can only be fulfilled by an unsupervised approach. The lack of prior know-

ledge, however, leads to poor quality of segmentation that is far from the semantically

meaningful partitions, which are desired in an annotations tool.

Semantic is not a single concept, there is always multi-scale information contained in
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it. For example, a human consists of a head, a body and feet, moreover a head can be

divided into eyes, mouth, nose and so on. Therefore, partitioning a visual space into a

single concept is unreliable, this highlighting the need for a hierarchical representation.

Reliance on unsupervised segmentation techniques to provide content metadata is un-

realistic, however, in general, the segmentation algorithms produce too many segments

compared to what is needed, and simplification tasks have to be undertake to resolve

this issue. When simplification is carried out, for example by setting the number of seg-

ments that are expected [4, 10], this leads to a loss of some detailed content. Another

approach to simplification is to identify the important parts of the visual space, such as in

[12, 13, 112]. This opens up the possibility of loss of information from the background

or non-salient parts of the scene; therefore, there is a necessity to identify the essential

parts whilst at the same time keeping the detailed information in a single representa-

tion. A binary tree representation and simplification offers both properties. The lowest

level of the tree enables a detailed boundary to be stored, while the upper level of the

tree saves the more general content. Although the BPT cannot store real object trees as

demanded by the semantic concept, it does offer the possibility to store the detail and

the global information in multiple levels in a single structure. Moreover, the important

object candidates can be detected and recorded in the hierarchical structure. A multiple

level of saliency will be recorded as a property of the node of the tree.

This research aims to extract objects candidate from the video. Current research

provides feature extraction from key frame [96, 97] or limited object from the video

[98]. This research offer a general solution to store all objects candidate and keep tem-

poral information in a hierarchical representation.
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Finally, the set of nodes of the hierarchical structure will be recorded in metadata. A

necessary conversion, such as RGB code to colour conversion, polar coordinate direction

can be provided. The metadata is expected to provide an intermediate visual content

representation. Compared to available video databases, such as Billvideo [106, 108],

where human intervention is needed to provide semantic descriptions, this works totally

independent from user intervention. It is also free from semantic limitation, but it is not

designed to answer exact semantic requests.



Chapter 3

General Framework

3.1 Introduction

In order to allow users to request the video content through metadata, there are

several tasks that need to be carried out. This chapter discusses the methods and

formulations explored in the remaining chapters. Firstly, a detailed discussion of pre-

segmentation and partition merging is provided. Secondly, the benefits of salient node

detection over Binary Partition Tree, tree pruning and simplification is outlined. Finally,

a metadata and content query language are defined. The detailed implementation and

the potential variations are discussed later in Chapters 4, 5, 6, and 7.

There are several tasks to be carried out in the thesis as a whole. These are:

• Pre-segmentation

• Set up Partition Adjacency Graph

42



3.1. INTRODUCTION 43

• Partition Merging and recording in a binary partition tree

• Salient Partition Identification

• Tree Simplification

• metadata modelling

• SQL-like formulation and execution strategy

The expected final result is a partition database which can be accessed using an SQL-

like query language for spatio temporal data. The database is expected to serve as further

research in region space processing for video. A schematic diagram of all the tasks re-

quired can be seen in the Figure 3.1.

Figure 3.1: Proposed Framework
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3.2 Hierarchical Segmentation

This work is based on general split and merge segmentation theory [2]. The first

task is to split the visual space into homogeneous partitions. This task is followed by

a merging process in order to obtain greater partitions that are expected to be closer

to semantically meaningful partitions. Producing a semantic partition is difficult task,

particularly when there is a lack of prior knowledge. Instead of making an effort to

provide perfect segmentation, a multi-scale segmentation is considered to be a better

option. It is arguable that in multi scale segmentation, detail level segmentation still

being kept while at the same time less detail can be provided. Figure 3.2 illustrates the

idea of multi level segmentation.

(a) Multi-scale Segmentation (b) Multi-scale segmentation pyramid

Figure 3.2: Illustration of Multi-scale Segmentation

In the implementation, the lowest level of the segmentation is produced by a pre-
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segmentation algorithm. The higher level of segmentation is obtained by merging the

selected pairwise partitions at every step of the iteration. At every step of the iteration,

therefore, a pair of partitions is allowed to merge, then the merging history is recorded

to form a BPT. Based on the BPT structure, a metadata of the video is generated.

3.2.1 Pre-Segmentation

The purpose of the pre-segmentation is to provide the initial partitions for the merging

task. Closed boundary and non-overlapping partitions are expected. Over-segmentation

is acceptable to some extent, because further merging processes will combine them

to form a larger partition. Low boundary recall in the initial partitions is, however,

highly undesirable. These methods are expected to work in two-dimensional and three-

dimensional spaces for image and video data.

Segmentation is a well-researched area, and numerous methods have already been

proposed by researchers. These can be classified into categories such as edge-based,

region-based, and graph-based thresholding.

Thresholding classifies pixels within an image based on their values compared to a

specified threshold. The threshold approach is simple, so it has low computing com-

plexity. There are many ways to identify the threshold, although the optimal threshold

is usually obtained by histogram analysis. Generally, thresholding works well for the

simple images, in which objects can be clearly separated by their features. Thresholding

fails to work in the noisy conditions that are normally present at natural images. Otsu

[17] method is one example of this class. The computation complexity of Otsu method is
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O(Lm−1) where L is number of gray levels and m is number of applied thresholds [113].

Edge-based segmentation utilizes the edge detection algorithms. The image region

is defined by its border in this method, but the closed boundary partitions cannot be

defined straightforwardly since the segmentation result is produced in the disconnected

boundary. Hence, post-processing is needed to join the edges to form a closed boundary

region. The advantage of this type of algorithm is that it works in a way that is similar

to the human process in responding to visual signals. In general, this method works

successfully in segmenting high-contrast images, but it suffers from noise. Hence, such a

method fails to produce good results on images with smooth transitions and low contrast.

Graph-based algorithms use vertices to represent the pixels with the similarity between

pixels being defined as the edges. Partitions are created by minimizing a cost function

defined over the graph. Normalized cut (N-CUT) [114] recursively divides the graph to

minimize the global cost function using contour and texture cues. The number of ver-

tices is initially equal to that of pixels, causing a significant memory and computational

requirements, and making the performance of the algorithms to be slow. The complexity

of this algorithm is O(N3/2), in which N is the number of pixels [115]. It is designed to

work with images to produce regions/superpixels.

Then, an efficient, graph-based (EGB) approach is proposed by [11]. This run in

O(N logN) time for N pixels image. The algorithm selects the merging edges to be

exactly those that would be selected by Kruskal’s algorithm for constructing the minimum

spanning tree (MST) of each component. The algorithm works for images and produces

superpixels.

An extension of [11] in three-dimension data is proposed by [10]. The algorithm is
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called efficient, hierarchical, graph-based video segmentation (EGBHV). This algorithm

is working on video data with complexity O(N logN). Since video data comprises a huge

number of pixels, the memory requirement of this algorithm is very high.

The region growing method class begins with specific seeds in the image and iter-

atively includes the pixels near to the seed. The iteration will be stopped whenever a

convergence criterion is achieved. This class has a lot of variations in defining the seed

and the technique to include the neighbouring pixels to a certain segment. Mean shift,

SLIC and watershed are categorized in this class.

The Watershed algorithm [67] is a fast region growing algorithm. The seeds are

defined as local minima in the image, whereas the regions are formed by joining the

neighbouring pixels inside the catchment basin until neighbouring catchment basins

started to merge. Watershed is fast with complexity O(NlogN). It works on an im-

age in two-dimensional space and video in three-dimensional space time. Despite its

over-segmentation issue, it is a good initial segmentation to start merging process due to

high speed, and boundary recalls rate.

The mean shift is a clustering algorithm based on a seed randomly chosen centroid

of the cluster. This is gradually moved (shifted) to the new value until the value attains

stability. Like the Watershed, it works independently without the need to set the num-

ber of expected segment. The classic mean shift suffers from over-segmentation issues,

however. [68] proposed edges as an additional control of the shift in order to generate

more reasonable segments. According to [69], the complexity is O(N2), and therefore,

it is slow.

K-Means is classified as a clustering method, in which k number of data points (pixels)
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are selected as the cluster means. The pixels around the proposed cluster means are

evaluated and assigned to the closest ones. When all pixels are assigned to some clusters,

the means of each cluster are calculated, and the assigning process is repeated. The

iteration will be stopped when the means achieve a stable value. The problem with classic

K-Means is complexity because of the evaluation of all pixels against means candidates.

Computational complexity is O(KNI), where K is expected number of the partitions

and I is the number of iterations. SLIC [69] is an extension of the K-Means algorithm

with a limited searching window. As a result, the complexity can be reduced to O(N),

and it is invariant to image complexity. This algorithm is fast, and it works on both image

and video. Although the need for K as an input can be considered to be a disadvantage,

it can be eliminated by setting the value which is high enough for an over-segmented

result to be expected in process of the initial merging.

Pre-segmentation is theoretically a segmentation, but in this thesis, the term pre-

segmentation is used to distinguish it from the hierarchical segmentation that will be

discussed later. The term pre-segmentation is used because the result needs further

processes in order to obtain better partition. The goal of pre-segmentation is to cluster

pixels into homogeneous partitions. The pre-segmentation algorithms are most likely

to produce over segmented partitions because of the absence of prior knowledge. The

absence of prior knowledge is necessary to keep the algorithm working independently

without human intervention or limitation on account of any assumption.

The comparisons of some segmentation algorithms are presented in Table 3.1. Some

algorithms work on 2D data only and the other work on both spatial and volumetric

data. Thresholding, in general is very fast, for example, Otsu method depends on the
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Table 3.1: Pre-Segmentation Algorithm Comparison

No Category Algorithm Complexity Spatial Volumetric

1 Thresholding Otsu O(Lm−1) yes -

2 Graph based NCUT O(N3/2) yes -

3 Graph based EGB O(N logN) yes -

4 Graph based EGBHV O(N logN) - yes

5 Region Growing Watershed O(N logN) yes yes

6 Region Growing SLIC O(N) yes yes

7 Region Growing mean shift O(N2) yes yes*

* Mean shift for 2D and 3D data provided in different implementations

N = number of pixels

L = number of grey levels

m = number of applied threshold

number of gray levels and thresholds. EGB and EGBHV provide a hierarchical seg-

mentation where a number of levels are prepared with different granularity. In the

pre-segmentation task, however, the expected result is a single final partition. Closed

boundary is needed as initial partitions to start merging process, therefore, edge based

segmentation is not considered. Watershed, mean shift and SLIC algorithms are selected

mainly because they are operated on spatial and volumetric data, and provide closed

boundary final partitions. Watershed and SLIC are operated on spatial and volumetric

video data in single implementation, while mean shift on spatial [68], and volumetric in

[116].
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Video is considered in two different ways, framed-based and volume-based. Firstly, a

frame-based approach considers video as a stack of frames. A frame is equal to an image

in the horizontal (x) and vertical (y) axis. Segmentation is carried out on each frame,

followed by identification of temporal links across frames. In the second approach, a

video is considered as data in three-dimension matrices in the horizontal (x), vertical

(y) and temporal (t) axis. Segmentation is performed directly to the three-dimension

matrices. This approach avoids temporal link calculation across the frame.

3.2.1.1 Watershed

The watershed concept was first applied by [117] to segment bubbles on scanning

electron microscopy (SEM) metallography pictures. It is brought to image processing in

the field of mathematical morphology. The immersion model was proposed by [67], and

the topographical distance approach was proposed in [118]. The Watershed algorithm

works fast enough, but it yields a vast number of small regions. The illustration of this

algorithm for one-dimensional data can be seen in Figure 3.3. The concept is also expan-

ded into two-dimensional (2D) and three-dimensional (3D) data. Watershed produces

superpixel forms in 2D spaces, and supervoxels in 3D space for video.

A 2D watershed for a gradient image of 288 x 352 pixels can be seen in Figure 3.4,

and they consist of 4471 superpixels. This work will not focus on what is going in

the watershed transformation, but we use the result for further processing. Further

explanation refers to [67], [118].

Although the concept of watershed is quite simple, the algorithm is complex. [117]

introduce an algorithmic description of watershed. Let us consider Ig to be a grayscale
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Figure 3.3: Ilustration of The Watershed of one-dimensional data

image whose definition of domain is denoted as DIg ⊂ Z2. The value of Ig is discrete in

a certain range [0, N ] and N is a positive integer, for example, 255.

Ig(p) = DIg ⊂ Z2 7→ {0, 1, ..., N} (3.1)

Let Gr denote a particular digital grid, Gr is a subset of Z2 × Z2. A path Pa of length

l between two pixels r and q in image Ig is a (l + 1) number of pixels (p0, p1, ..., pl−1, pl)

such that p0 = r and p− l = q and ∀i ∈ [1, l], (pi−1, pi) ∈ G.

Let l(Pa) be the length of path Pa and Ng(p) are the neighbours of pixels p. Consider

M is minimum value of Ig at altitude h and to be a connected plateau of pixels with

value h in which it is impossible to reach a point of lower altitude without having to

climb.



52 CHAPTER 3. General Framework

Figure 3.4: Example Result of The Watershed Algorithm of Frame 1 of the ‘Soccer’ Video

∀p ∈ ∀r /∈M, such that Igr ≤ Igp (3.2)

∀Pa = (p0, p1, .., pl)such that p0 = rand pl = q (3.3)

∃i ∈ [1, l]such that Ig(pi) > Ig(p0) (3.4)

The immersion process can be formulated as:

Th(Ig) = {p ∈ DIg, Ig(p) ≤ h} (3.5)
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Where Th(Ig) denote threshold of Ig in level h. The Catchment basin is defined in

3.6.

Ch(M) = {p ∈ C(M), Ig(p) ≤ h} = C(M) ∩ Th(Ig) (3.6)

Where C(M) denotes a catchment basin with minimum M , Ch(M) is the subset

of C(M) which is less than or equal to h. The immersion process starts from Thmin

as the smallest minima. The threshold is gradually increased and, as a result, a set of

catchment basins are formed. The watershed lines are a set of pixels that do not belong

to any catchment basin at the end of iteration.

3.2.1.2 Mean Shift

The third algorithm tested is the mean shift. No parameter input is needed to execute

the algorithm. [68] introduced an implementation of the mean shift algorithm with

considers edges to improve the output, called ‘EDISON’. This is publicly available, and

demonstrates good performance in speed and quality of the output. The example of

first frame ‘Soccer’ video can be seen in Figure 3.5. It is still slightly over segmented,

especially in parts of image with high variation such as the player. That part consists of

a combination of red, black and grey regions.

Consider an image formulated as feature vectors, an image Img( ~(x)) has a feature
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Figure 3.5: Example Result of Mean Shift Algorithm of Frame 1 of ‘Soccer’ Video

vector ~F (~x) which is formulated in 3.7.

~F (~x) =


~x

Img(~x)

L(~x)

 (3.7)

~x is a pixel inside the image, L(~x) is local image features, such as bandpass filter

response. The segmentation algorithm is operated to cluster the image features into

reasonable homogeneous partitions.

The mean shift segmentation algorithm considers the probability density function
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(PDF) of feature vector ~F (~x) from formulation 3.8 computed from the image. Kernel-

density estimates are used with respect to the following equation:

pK(~F ) ≡ 1

|X|
∑
~x∈X

K( ~Fg − ~F (~x)), with ~F ∈ RD (3.8)

where ~x is the pixel in the image and |X| is the number of pixels, while K(~e) is a kernel.

The mean shift alone produces highly over-segmented regions, and in order to combat

this problem, in EDISON implements the salient edges to control the weighting paramet-

ers. The example in Figure 3.5 is a result of mean shift implementation considering

salient edges.

3.2.1.3 Simple linear iterative clustering (SLIC)

The K-means algorithm is successful in many clustering applications, but at high com-

putational cost. In order to reduce this, a modification is proposed by [69] reducing the

size of the search window. The modified algorithm is known as simple linear interactive

clustering (SLIC). It produces a controlled size of partition and keeps the boundary. The

example segmentation result for the first frame of the ‘Soccer’ video can be seen in the

Figure 3.6, it consists of 500 regions in almost equal sizes.

Besides working in 2D data, SLIC can also work in 3D data and produces supervoxels.

It will be implemented in 3D video segmentation to complement 3D watershed.

3.2.2 Adjacency Graph

The pre-segmentation step produces a vast number of partitions. Every partition has

its neighbours; in graph G theory, each partition can be considered as vertex V, the re-
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Figure 3.6: Example Result of SLIC Algorithm of Frame 1 of ‘Soccer’ Video K = 500, Window 10 x 10

lationship between a pairwise neighbouring partition can be drawn as an edge E . The

relationship can be colour similarity, area difference, common boundary, histogram sim-

ilarity, texture similarity, moving direction and velocity and many others.

Graph representation is adopted to draw the relationship among partitions either in

image or video. There are three adjacency graphs which are:

• Region adjacency graph (RAG) for 2D segmentation of a single frame.

• Volume adjacency graph (VAG) for 3D segmentation of a sequence of frames.
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• Spatio Temporal Region Adjacency Graph (STRAG) for recording spatial neighbour-

hoods among regions in a frame and temporal correlation across frames.

The general formulation of a graph is given in the equation below:

G = (V , E , ψ) (3.9)

Where ψ is a function to produce the attributes of the edge such as colour distance,

neighbour orientation, histogram difference and other required attributes.

3.2.2.1 Region Adjacency Graph

(a) Segmented Image (b) Corresponding RAG

Figure 3.7: Illustration of Image Segmentation and Corresponding Region Adjacency

Graph

A region adjacency graph for a single frame records the spatial relationships between

regions. Pairwise similarity is recorded as edges in this graph in order to guide the

merging task in BPT creation of an individual frame. Figure 3.7 illustrates the region
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adjacency graph. As can be seen in Figure 3.7(b) there are five vertices that represent

regions in Figure 3.7(a). Every edge has a unique identity and value, that calculated

depends on a particular similarity measure.

The illustration of the data referred to in Figure 3.7 is described in Tables 3.2 and 3.3.

Every region is recorded, and is assigned a unique node number. Every neighbouring

relationship is illustrated in Figure 3.7 and is recorded as a unique edge. Table 3.2

not only record the initial regions as the result of pre-segmentation tasks, but also new

regions obtained in the merging task. As can be seen in Table 3.2, a new issued region

number is 6 (yellow highlighted), which is not exist in Figure 3.7(a). This is the merging

result between regions 1 and 2, because the edge between them (e12) has the smallest

distance. As can be seen in table 3.3, there are two edges e12 and e25 have the smallest

distance at 180.03, but because in every iteration only one pair is allowed to merge, e12

is selected to merge to produce region 6. The features of region 6 are a combination of

those of 1 and 2, therefore the area of region 6 is an accumulation of regions 1 and 2.

When region merging occurs, the original region parent are assigned, therefore, regions

1 and 2 share a similar parent which is region 6 (yellow highlighted in parent column).

3.2.2.2 Volume adjacency graph (VAG) for 3D segmentation

There are two scenarios that could occurs in terms of video availability. In the first

the entire video is available at the beginning. The second possible condition is that only

a frame is available at one time. This condition is applied to a video streaming scenario

where the user receives a single bit of data as part of a frame on a regular basis at a

particular bit rate.
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Table 3.2: Region Table

No colour R G B area left leaf right leaf parent

1 Red 255 0 0 3947.5 0 0 6

2 Purple 128 0 128 2447.5 0 0 6

3 yellow 255 255 0 3947.5 0 0

4 green 0 255 0 2447.5 0 0

5 blue 0 0 255 2209.8 0 0

6 mixed Red and Purple 191.5 0 64 6395.1 2 1

Table 3.3: Region Adjacency Table

No node1 node2 RGB distance Valid

e12 1 2 180.3 yes

e14 1 4 360.6 yes

e15 1 5 360.6 yes

e25 2 5 180.3 yes

e23 2 3 312.3 yes

e35 3 5 441.7 yes

e34 3 4 255.0 yes

e45 4 5 360.6 yes
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(a) Segmented Video in Volumetric plot (b) Corresponding VAG

Figure 3.8: Illustration of Video Segmentation and the Corresponding Volume Adjacency

Graph

An illustration of the first condition can be seen in Figure 3.8. The input of the seg-

mentation algorithm is considered go be the three-dimensional matrix with vertical(y),

horizontal (x) and temporal (t) axis. Each piece of pictorial information lies in three-

dimensional space, and is called a voxel. The segmentation produces a number of super

voxels which have members across frames. The vertex represents a number of coherence

regions across frames, while the edge represents the relationship between supervoxels.

3.2.2.3 Spatio Temporal Region Adjacency Graph

In the streaming situation, representing the entire video as a three-dimensional mat-

rix is no longer possible. Every single frame needs to be segmented individually and the

relationship among regions across frames has to be calculated. The regional neighbour-
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Figure 3.9: Spatio Temporal Edge in Streaming Scenario

hood for every individual frame is recorded in a spatial adjacency graph as illustrated

in Table 3.3. Instead of spatial edges, a temporal edge is defined in order to record the

region coherency across frames. An illustration of that condition can be seen in Figure

3.9

As can be seen in Figure 3.9, there is a new data structure-temporal edge (abbreviated

by Te). Temporal edges connect a region in the previous frame to its pair in the current

frame; with the relation potentially being be many-to-many. The data structure of a

temporal edge is defined below.

c l a s s temporalEdge {

i n t TemporalEdgeId ;

i n t CurrentFrameNo ;

i n t nodeOriginId ;

i n t nodeCurrentId ;

double S i m i l a r i t y ;

double areaDis tance ; } ;
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Figure 3.10: Ilustration of Binary Partition Tree and Definition

3.2.3 Binary Partition Tree (BPT)

A BPT is a tree structure where each node other than the lowest child has left child

and right child. The root of the tree represents the entire original data. The original

data can be an image or a video sequence. BPT represents the evolution from the small

to large partitions as can be seen in figure 3.2. The evolution begins from an initial

partition as a result of the pre-segmentation task. The merging task is then performed

sequentially with respect to a particular merging order rule.

Figure 3.10 illustrates a binary partition tree. The red nodes are denoted as a set of

lowest child/leaf nodes, representing the initial partitions. The illustration of relationship

between a parent and the left and right child nodes is depicted by RC, LC, and P nodes.

All nodes on the tree have a right and left child except the lowest child nodes. A parent
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node is a result of a merging process between a left child and right child. The green nodes

illustrate salient nodes, which are identified in evolution analysis. These green nodes are

utilized to cut the tree under them in order to get to a simpler BPT. The blue node at

the top of the BPT is a root node. It represents the entire image/video as it is a result of

merging all the nodes in the whole tree. Path is defined as all possible tracks to achieve

the root node from every lowest child node. Child-parent distance is denoted by the line

connecting the parent to the child node. This distance is utilized in evolution analysis to

identify the salient node (i.e green nodes). A node represents a region/superpixel in a

BPT for a single frame/image. In a BPT for video, a node represents a volume/supervoxel

which exists in a number of frames.

The merging order is designed to control which pairwise neighbouring partition needs

to be merged to allow the most similar pair of neighbouring nodes to get higher priority.

The most similar is represented by the lowest value of edge in the adjacency graph.

3.2.3.1 Similarity Measure and Merging Order

Similarity measure is a value that quantifies the similarity between a pair of neigh-

bouring partitions. In data grouping theory, similarity measure is the opposite to dis-

tance; therefore, the greater the distance; the smaller the similarity value [119]. Let us

consider a pair of points a in coordinates (ua1, ua2, ..., uan) and b in (ub1, ub2, ..., ubn). The

distance between them can be calculated using Euclidean or absolute distance.

δe(a, b) =
√

(ub1 − ua1)2 + (ub2 − ua2)2 + ...+ (ubn − uan)2 (3.10)
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A shorter formula of Euclidean distance can be seen in 3.11.

δe(a, b) =

√√√√ n∑
k=1

(ubk − uak)2 =
∥∥∥~ua − ~ub∥∥∥

2
(3.11)

Where δe(a, b) is the Euclidean distance between a and b.

In absolute distance δe(a, b) , the square and square root is replaced by an absolute

operation 3.12.

δa(a, b) =
n∑
k=1

∣∣(ubk − uak)∣∣ (3.12)

δa(a, b) =
∣∣(~ub − ~ua)∣∣ (3.13)

There are many possible parameters to define distance measures, such as colour mean,

histogram, combination colour mean and area. As reported previously, colour model

also has a great impact on the result. LAB colour space is reported to be close to human

visual perception and produces the best result [120]. In three-dimensional video signals,

temporal features, which are motion direction and speed, are considered in the similarity

measure.

Merging strategy plays an important role in achieving a good segmentation result. The

main aim of the merging strategy is to allow the most similar pairs of partitions to get the

highest merging priority in every iteration. Merging order is controlled by the similarity

measure. For example, the similarity in Table 3.3 is dynamically updated in every single

iteration. Merging between two regions affects the entire region adjacency table because
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the edges of all regions connected to the selected regions have to be updated. The

processed edge has to be deleted from the list of edges. The smallest distance for the

next iteration has to be calculated among all the remaining edges.

An illustration of the original image and region adjacency graph after the first merging

can be seen in Figure 3.11. The region adjacency graph in Table 3.3 is updated as a

consequence of updating, deleting and the new minimum distance after merging. The

region adjacency table after merging is updated and can be seen in Table 3.4. After

the first merging iterations, where e12 is selected as a processed edge, regions 1 and 2

are merged and a new region number (6) is generated. Every edge between any nodes

connected to 1 or 2 therefore has to be set as invalid because regions 1 and 2 no longer

exist. Instead of being connected to 1 and 2, they are now connected to the region 6;

therefore, new edges have to be issued between 4,5 and 3 to 6, meaning the new distance

between them must be calculated. The remaining valid edge, highlighted in green, is also

shown in Table 3.4.

3.3 Simplification

Generally, the pre-segmentation algorithm produces an over-segmented result. In fact,

all evaluated segmentation algorithms give more than expected partitions in the available

ground truth. The pre-segmentation task produces too small partitions compared to

objects in the real world, meaning that need to be merged in order to get closer to

the real-world objects. Excessive merging, however, result in under-segmentation. This

occurs when partitions belonging to different objects join in one segment.
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(a) Segmented Image (b) Corresponding RAG

Figure 3.11: Illustration of Image Segmentation and Corresponding Region Adjacency

Graph after the first merging iteration

Binary partition Trees (BPT) created from the initial segmentation are cluttered with

thousands of nodes. Every node corresponds to a partition in the image or video. Among

those nodes, although some are meaningful and closely related to the real-world object

or ground truth, the majority of them are not. A simplification of the BPT is therefore

important if a simpler tree need to be achieved.

Simplification of BPT is an activity to prune the branches from the tree in order to

cut out unnecessary small partitions. This result in a simpler tree composed of nodes

representing greater partitions and expected to be closer to the ground truth. Identifying

the node on the tree where the branch should be cut is a critical decision.

The merging event between a pair of partitions can be categorized as ‘normal’ and

‘critical’ merging. Normal merging is defined as merging between pairwise partitions

with small feature distances. This usually happens between two different partitions be-

longing to a single object. Critical merging, meanwhile, is defined as merging between
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Table 3.4: Region adjacency table after first iteration merging, corresponding to figure

3.11

No node1 node2 RGB distance valid

e12 1 2 180.3 not

e14 1 4 360.6 not

e15 1 5 360.6 not

e25 2 5 180.3 not

e23 2 3 312.3 not

e35 3 5 441.7 yes

e34 3 4 255.0 yes

e45 4 5 360.6 not

e64 6 4 325.3 YES

e65 6 5 270.5 YES

e63 6 3 270.5 YES

two neighbouring partitions with high feature distance. This occurs when two partitions

belonging to different object start to merge. Critical merging has to be avoided in order

to minimize the under-segmentation error.

An evolution analysis is carried out along the branch of the tree in order to observe the

merging history from the small initial partitions to the root of the tree. Critical merging is

expected to be identified during the partition’s evolution. The identified critical merging

is classified as a pruning node candidate where the branch of the tree would be cut. An

evaluation of this technique is demonstrated in Chapters 4 and 6.
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The initial segmentation produces vast numbers (around thousands) of small parti-

tions. If the number of initial partitions is n there will be n number of possible paths

from the leaf to the root. Paths can be defined as P = {P1, P2, ..., Pn}, and each path

has a collection of nodes from the lowest leaf towards the root. Every individual path is

defined as Pi = {nd1, nd2, ..., ndl} where l is the number of nodes along the path from the

lowest leaf to the root, l can vary for each path. Evolution of a particular Pi is defined

as:

γ(k) =M(ndk) k ∈ {1...l} (3.14)

Where M(ndk) is a model of node ndk that has a number of feature vectors. For

example, in single frame implementation it will only consider the colour and size of the

partition, while in the supervoxel BPT, it will consider colour, size, centroid direction and

speed. In order to identify the critical merges, a mathematical tool has been proposed in

[7]. A modified first and second derivative is employed.

γ′(k) =| γ(k)− γ(k − 1) | k ∈ {2...l} (3.15)

γ′′(k) = γ(k − 1) + γ(k + 1)− 2γ(k) k ∈ {2..l − 1} (3.16)

A modified second derivative is employed to identify the peak. Many peaks may be

small enough, however, to indicate that a critical merging has occurred and, therefore,

a selection rule has to be imposed: for example, by identifying only the highest peak, or

identifying the peak above a specific threshold. The simplification algorithm is applied

in Chapters 4 and 6 with different features and peak selection rules.
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3.4 Video Content Metadata

3.4.1 Metadata Structure

Metadata is designed to be stored in an integrated database structure. The structure

is illustrated in Figure 3.12.

Figure 3.12: Main Database Structure
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A video table is designed to record the video identity, address where the video is stored

and the initial label map. The superV oxel table accommodates the super voxel in three-

dimensional approaches. This will be discussed in Chapter 6. The supervoxel neigh-

bourhood is recorded in the svEdge table. The frames-based approaches that will be

discussed in Chapter 4 are recorded in superP ixel and spatialEdge tables. The temporal

neighbourhood will be extracted in Chapter 5 and will be recorded in the temporalEdge

table. In order to allow the system to provide human-like textual data, reference tables

for direction (refDirection) and colour (refColour)are prepared as supporting tables.

3.4.2 Descriptor

The region is the smallest unit that will be managed in the metadata. In order to allow

information querying of the content, the descriptor should represent the region while at

the same time being understandable to the user. For example, instead of recording the

colour as (255, 255, 255), it is more understandable to represent it with the word ‘black’,

since people prefer the colour name rather than an RGB code.

As mentioned before, we use partition as a generic term for region/superpixel and

volume/supervoxel. The actual meaningful term for the user in visual space, however, is

a region. The recorded descriptor in this thesis is in the region format. Even though in

some implementation, a three-dimensional (volume) is obtained, the translation to the

region would be projected to the two-dimensional space in a particular frame.

Partition attributes such as size, mean colour and centroid are recorded as main fea-

tures, while the relationship with its neighbour such as relative position, distance to bor-
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der, neighbouring colour distance are prepared. In regard to the inter-frame relationship,

motion information consists of direction and speed for every region. In addition, region

size variation across frames can be prepared to indicate whether a region is growing or

shrinking.

3.5 Evaluation

3.5.1 Testing Video and Available Ground Truth

Segmentation results are evaluated by their capability to get near to the human-made

ground truth. Even though the quality of ground truth significantly affects the evaluation,

the reliable methods still rely on that. The main issues in measuring the segmentation

quality are twofold, the evaluation method and the quality of the ground truth. There

are some available ground truths such as PASCAL, BSD data set for image segmentation

and the ‘xiph.org’ data set for video multiple objects; the SEGTRACK data set for video

single object ground truths. In this thesis, the ‘xiph.org’ multiple objects ground truth

is selected in order to measure the quality of segmentation. It is selected because the

objective of this algorithm is to segment the video into composed objects, no matter how

many they are.

The details of the eights tested video clips can be seen in Table 3.5. Throughout the

thesis, the name of the video test refers to the list of in the Table 3.5. Due to the public

availability of the video tests, a number of researchers in this area, such as [6], [121],

have also used the same video test.
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Table 3.5: The Description of Testing Sequence

No Sequence size no

fra

me

Description Camera motion Object Motion

1 Bus 352

x

288

84 The camera moves to

the left with the bus.

The cars and fences

between the camera

and the bus appears

to be moving right

due to their slower

(relative to the bus)

movement.

Nearly

linear

motion.

The bus, car

are moving

2 Container 352

x

288

85 The camera remains

static while the con-

tainer and the small

boat moves to the

right of the scene.

No

camera

motion

The near lin-

ear motion of

the container

and the small

boat from left

to right.

Continued on next page
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Table 3.5 – Continued from previous page

No Sequence size no

fra

me

Description Camera motion Object Motion

3 Garden 352

x

240

80 The camera move

from right to left

while the objects

remain static. As a

result of the different

distance to the cam-

era, the foreground

(tree) moves faster

than the background

(flowers and houses).

Nearly

linear

camera

motion.

No object

motion

4 Ice 352

x

288

79 The camera remains

static, while the near

dozen people in the

scene performs ar-

ticulated motion and

complex occlusion.

No

camera

motion

The skiers

perform

articulated

motion in the

scene.

Continued on next page
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Table 3.5 – Continued from previous page

No Sequence size no

fra

me

Description Camera motion Object Motion

5 Paris 352

x

288

79 The camera Remain

Static, while the ob-

ject move in different

direction and speed

No

Camera

Motion

The man and

woman per-

form motion,

while the ball

move in dif-

ferent speed

6 Salesman 176

x

144

80 The camera remain

static, while the ob-

ject moves

No

Camera

Motion

The man per-

form motion

Continued on next page
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Table 3.5 – Continued from previous page

No Sequence size no

fra

me

Description Camera motion Object Motion

7 Soccer 352

x

288

69 The camera moves

right with the man

kicking the soccer

ball.

Nearly

linear

camera

motion.

The three

soccer play-

ers move

with the

camera to

the right,

while the

woman and

the dog move

slowly to the

right in the

background.

8 Stefan 352

x

240

75 The camera moves to

the right with the ten-

nis player, than to the

left.

Articulated

camera

motion

Yes, the ten-

nis player

moves to the

right, hits

the ball, then

moves to the

left.
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There are eight video sequences, and in total 631 frames. The ground truth for each

frame is available. Examples of frames and their ground truth can be seen in figure 3.13.

The evaluation refers to the test video clips except when stated otherwise.

Original Frame Ground Truth

B
u

s
C

on
ta

in
er

G
ar

de
n

Figure 3.13: Example Frame and Its Corresponding Ground Truth
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Original Frame Ground Truth
Ic

e
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s
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er
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an

Figure 3.14: Example Frame and Its Corresponding Ground Truth - Continued
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3.5.2 Evaluation Method

There are some concerns in evaluating the outcome of segmentation as to the prelim-

inary step of video metadata. In much of the literature, the most common parameters

are boundary recall, precision [122] and under-segmentation error [123]. This thesis

adopted a simple over-segmentation rate as an additional measurement. This measure-

ment is important in respect to the simplification task. Boundary recall measures how

precisely the boundary of the super pixel is directly consistent with the boundary of the

ground truth. Under-segmentation, on the other hand, measures how many different

objects in the ground truth are melted into one partition. Under-segmentation error is

indicated by the portion of boundary that exists in the ground truth, but is unavailable in

the segmentation result. The over-segmentation rate, meanwhile, measures how many

partitions are needed to form an object in the ground truth. The over-segmentation rate

is expected to be one, if one ground truth object is exactly paired with one partition.

Smaller over-segmentation rates mean that every partition occupies a small part of the

ground truth.

Assuming that there are multiple objects of ground truth G = {g1, g2, ..., gn} and the

results of segmentation of the particular frames are S = {s1, s2, ..., sm} where m 6= n. Let

pi be a member of P as all boundary pixels of the ground truth and qi be a member of P

as all boundary pixels of the segmentation results.

The boundary recall is calculated by comparing the boundary of the ground truth

against the boundary of partitions. A true positive is when all pixels in a partition border

meet the expected ground truth periphery. According to [124] the confusion matrix can

be seen in Table 3.6.



3.5. EVALUATION 79

Table 3.6: Confusion Matrix

actual prositive actual negative

predicted positive TP FP

predicted negative FN TN

Let us define Sb = s1, s2, ...sp as a set of boundaries in the segmentation result, while

Gb = g1, g2...gq is a set of boundaries in the ground truth. A true positive is a number of

Sb that meets one of the members of Gb. Most of the time, the machine-segmented data

has more partitions compared to the expected ground truth. Therefore, p is greater than

q. False Negative (FN) is a quantity of the boundary in the ground truth Gb that does not

exist in the segmentation boundary Sb. The precision measure is the amount of accurate

boundaries compared to all boundaries in the segmentation result. The precise boundary

is a member of true positive, while the remaining segment boundaries are false negative

(FN). Recall and precision are calculated from the equations 3.17 and 3.18 respectively:

recall =
TP

TP + FN
(3.17)

precision =
TP

TP + FP
(3.18)

The ideal value of recall is one, which can be achieved if all the ground truth boundar-

ies are discovered in the segmentation boundaries. Precision aims to quantify the amount

of noise in the segmentation result. It is indicated by the portion of the boundaries that

exists in the segmentation result that would not be expected from the ground truth.
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Under-segmentation error aims to measure the amount of partition floods in the

ground truth boundaries. Following the formulation in [123] under-segmentation er-

ror is defined in equation 3.19.

undersegmentation =
1

N

∑
S∈Gt

 ∑
P :P∩S 6=∅

min(Pin, Pout)


 (3.19)

Where Gt is ground truth regions, S = regions as a segmentation result, N is the

total number of pixels in the entire image, Pin and Pout are the parts of segment S inside

and outside of the ground truth respectively. Over-segmentation rate is simply calculated

by comparing the quantity of the expected ground truth and the available segmentation

result as in equation 3.20.

oversegmentation =
n

m
(3.20)

Where n and m are quantity of ground truth and segment respectively.

The evaluation is performed in order to assess the reliability of the segmentation

and simplification result for the subsequent task. In Chapter 4 where segmentation is

performed for a single frame, the evaluation is conducted by comparing the frame ground

truth and the label map. While in Chapter 6, the evaluation is performed iteratively

across frames and the recall, precision, under-segmentation error and over-segmentation

rates are averaged.

The query answer is also evaluated using those four parameters. Since the answer to

the query can vary for each request depending on the query condition, the ground truth

cannot directly be a measure of the quality of the query results. Therefore, it would set
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a number of typical queries in which the result is known from the ground truth in order

to perform the test.



Chapter 4

Single Frame Segmentation

4.1 Introduction

This chapter is dedicated to discussing various methods of creating hierarchical par-

tition trees for a single image. Firstly, three different pre-segmentation methods will be

performed, which are watershed, mean shift and SLIC. Secondly, similarity measures will

be implemented in various ways, namely colour, histograms, combined with area.

The input into the algorithm that will be discussed throughout this chapter is a single

frame/image in two-dimensional space, meaning that the discussion is confined to the

pre-segmentation and the merging tasks in respect to the image. The partition result

from the image is defined as a superpixel or region.

A comparison of all the methods will be presented in order to justify the choice of the

most suitable option to provide reasonable video metadata. The result at the end of this

chapter will be able to drive the choice of method in the next stage of our work.

82
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4.2 Similarity Measure

A single variable will be implemented to control the merging order and decision.

In case there is more than one feature, a computation will be carried out to yield a

scalar value. Based on its similarity value, the most homogeneous pair of partitions get

the highest merging priority. Similarity is considered to be the inverse of the distance

between a pair of regions.

Colour images are composed of a number of pixels and are comprised of three colours

components. For example, in RGB colour space, every pixel comprises of R, G and B

elements while in CIE l*a*b space, it comprises of L (luminance), and a,b colour com-

ponents. In order to keep neutral to colour space, let us define a colour model c with c1,

c2 and c3 as colour components of each pixel ~c = {c1, c2, c3}. There are two options to

calculate the difference, either quadratic (equation 4.1) or absolute distance (equation

4.2).

4.2.1 Mean Colour Euclidean Distance

Consider that Ri and Rj are a pair of neighbouring regions. The feature in a re-

gion consists of three mean colour elements, and region size can be expressed as Ri =

(~cRi1, aRi) and Rj = (~cRj1, aRj). Euclidean colour distances between Ri and Rj is calcu-

lated referring to equation of 3.11, yield equation 4.1.

δe~c(Ri, Rj) =
∥∥∥(~cRi

− ~cRj
)
∥∥∥
2

(4.1)
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Where δe~c(Ri, Rj) is the colour Euclidean distance between the region i and j. ~cRi1

denotes the average of colour components, ~c denotes the colour vector consisting of

three components c1, c2 and c3 of region i, ‖‖2 denotes Euclidean distance. Considering

the mean colour distance without taking into account the area will result in small regions

around a big region. In order to minimize that issue, according to [58], the impact of

region size aRi
, aRj

on the final similarity is calculated using 4.3. Consider Rl is the new

region formed when Ri and Rj are merged.

~cRl
=
aRi
∗ ~cRi

+ aRj
∗ ~cRj

aRi
+ aRj

(4.2)

a denotes region size. ~cRl
is the accumulation colour mean of regions i and j. By

using ~cRl
from equation 4.2, the colour distance between the original regions i and j to

new region l can be calculated using equation 4.1. The distance between Ri and Rj,

considering colour and area can be calculated using 4.3.

δes~c(Ri, Rj) =

(
aRi
∗ δe~c(Ri, Rl)

)
+

(
aRj
∗ δe~c(Rj, Rl)

)
(aRi

+ aRj
)

(4.3)

δes~c(Ri, Rj) is proportional Euclidean distance measure considering colour and size.

4.2.2 Mean Colour Absolute Distance

Mean colour absolute distance is an alternative similarity measure if square and square-

root operations need to be avoided. δa~c(Ri, Rj) can be calculated by 4.4.
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δa~c(Ri, Rj) =
∣∣∣~cRi − ~cRj∣∣∣ (4.4)

Proportional distance measure δas~c(Ri, Rj) considering colour and size can be calcu-

lated using equation 4.2 and 4.3 by substituting δa~c(Ri, Rj) from equation 4.4

δas~c(Ri, Rj) =
aRi
∗ δa~c(Ri, Rl) + aRj

∗ δa~c(Rj, Rl)

aRi
+ aRj

(4.5)

Where Ri and Rj are neighbouring regions, and Rl is a new region formed if Ri and Rj

are merged, ~cRl
is calculated using 4.2.

4.2.3 Histogram Distance

Histogram distance is obtained from a colour quantified of the input image. The same

method has been implemented in [72], in interactive image segmentation using maximal

similarity. The histogram is computed using quantized colour components. Every colour

component is quantified into 16 levels (bins), meaning that the total quantified colour is

equal to 16 x 16 x 16 = 4096 levels. After the levels are determined, natural images in

tricolour image (which can be any colour space such as RGB, cie L*A*B) are transformed

into a quantized colour image. A histogram is calculated according to the transformed

image.

The Bhattacharyya coefficient is calculated to measure the similarity between two

regions. The coefficient value is normalized between zero to one. Zero indicates that the

regions are totally dissimilar, while one indicates that they are for identical.
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δh(Ri, Rj) =
l∑

u=1

√
HistuRi

.HistuRj
(4.6)

Where, δh(Ri, Rj) is the histogram distance between region i and j, l is the number of

levels (bins), HistuRi
, HistuRj

is the value of the histogram for level (bin) u of region Ri

and Rj respectively.

4.2.4 Merging

The merging decision can be taken according to particular criteria as previously dis-

cussed in subsections 4.2.1, 4.2.2, and 4.2.3. The iteration is controlled by the similarity

measures. In preparing BPT, merging iterations will be performed until the root node is

achieved (i.e when no more valid edges remain in the adjacency table). The root node

represents the entire image/frame. The number of iterations to achieve the root is equal

to 2n− 1 where n is the quantity of initial superpixels as a result of the pre-segmentation

task. When BPT is available, an evolution analysis can be performed by following the

transition of a region’s attributes from the lowest leaf node to the root.

4.3 Simplification

Salient regions are defined as regions that stand out compared to their surrounding

regions. In this work, saliency is identified in the BPT framework. The BPT structure

records a region’s evolution from the initial small node to the entire root node. It is
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therefore possible to track the node transformation in every iteration. The simplification

is carried out in accordance with the formulation set out in section 3.3.

Evolutionary analysis tracks the region’s transformation in every possible path from

the lowest child nodes to the root of the BPT. This means that the number of paths is

equal to the initial regions. The evolution function aims to seek the peak of child-parent

distance, which may possible exist many times during the region’s evolution. Equations

3.14, 3.8 and 3.14 are employed to carry out the evolution analysis. The model of nodes

in the evolution consists of the colour and size of the regions. Child-parent distance is

calculated using proportional Euclidean 4.3 and absolute 4.5 distance formulation.

Due to the structure of BPT, there is a possibility that a node becomes a member of

more than one paths, meaning that a number of nodes are probably selected many times

during evolution, and a list of non-unique nodes is created. Further analysis has to be

performed in order to ensure that the pruning node candidates meet the requirements.

The first task is removing the duplicated nodes. The second task is to ensure that no

candidate nodes have direct or indirect child-parent relationships each other. If the rela-

tionship exists, the lower level (smaller region) is selected. Finally, the size accumulation

of all candidates nodes, have to be equal to the original image size. The simplification

algorithm uses the pruning candidate list to cut the branch of the tree under the nodes.

The simplification result is demonstrated and assessed against the available ground truth

in the evaluation section.
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4.4 Evaluation

The evaluation is carried out in regard to the general framework set out in Chapter

3, evaluation section. The evaluation is performed on the original pre-segmentation and

the simplification result. Pre-segmentation is performed using three different algorithms.

The partitions obtained by the pre-segmentation are employed as initial conditions of the

region merging task. The iteration needed to achieve the final root node depends on the

quantity of original regions. Table 4.1 shows the boundary recall, over-segmentation rate

and under-segmentation error among those three algorithms and is tested using the first

frame of the testing videos.

4.4.1 Pre-Segmentation

The initial regions obtained from pre-segmentation task is evaluated against the ground

truth. Table 4.1 presents the pre-segmentation results. The boundary recall shows the

extent to which the number of boundary pixels in the pre-segmentation result corres-

ponds to the boundary of the ground truth. All algorithms show good results, between

0.88 to 0.92 on average. The result of watershed produces the highest boundary recall,

at 0.92 on average, followed by SLIC and mean shift at 0.91 and 0.88 respectively.

The second parameter is under-segmentation error. This error occurs when a partition

occupies more than one ground truth area. The values of under-segmentation error are

expected to be low (close to zero). According to the experiments, the values of under-

segmentation at this stage are around 0.08 to 0.13 whilst still good enough. Watershed

produces the best under-segmentation error at 0.08 while the two other algorithms re-
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Table 4.1: Pre-Segmentation Boundary Recall, Under-Segmentation Error and Over-

Segmentation Rate

No
Test

Sequence

Boundary Recall UnderSeg Error Over-Segmentation Rate

WS MS SLIC WS MS SLIC WS MS SLIC

1 bus 0.91 0.98 0.81 0.16 0.20 0.31 0.0082 0.0383 0.0775

2 container 0.89 0.85 0.90 0.09 0.08 0.12 0.0062 0.0790 0.0587

3 garden 0.93 0.78 0.88 0.09 0.15 0.15 0.0044 0.0206 0.0393

4 ice 0.96 0.92 0.97 0.07 0.09 0.09 0.0061 0.1912 0.0526

5 paris 0.88 0.81 0.81 0.05 0.08 0.11 0.0022 0.0116 0.0194

6 salesman 0.93 0.87 0.98 0.08 0.11 0.09 0.0057 0.0290 0.0139

7 soccer 0.94 0.89 0.95 0.06 0.07 0.08 0.0044 0.0830 0.0417

8 stefan 0.93 0.96 0.97 0.06 0.05 0.08 0.0041 0.0197 0.0313

Average 0.92 0.88 0.91 0.08 0.11 0.13 0.0052 0.0591 0.0418

turn an error of 0.11 to 0.13.

The next parameter is over-segmentation rate, which shows a comparison between

the expected and the actual number of partitions. In the Bus sequence, for example, the

ground truth consists of 39 areas and the number of partition obtained by watershed

is 4742. Initially, therefore, every ground truth area is fragmented into 122 partitions.

The over-segmentation rate is calculated by dividing the expected ground truth by the

actual of the segmentation results. As a result, the value of over-segmentation rate for

watershed on bus sequence is very low at 0.0082. In contrast, SLIC only has 503 and

mean shift 1019 partitions for the same frame. In terms of over-segmentation rate, mean
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shift gives best performance with an average of 0.059, followed by SLIC at 0.042.

SLIC produces an almost stable number of partitions around 500 in every test frame.

This is independent of the number of pixels and the complexity of the frame. This is due

to K setting in this algorithm. SLIC is an extension of K-means, and K is set to 500. The

Watershed and mean shift, meanwhile, work without any parameter settings, but purely

based on the image input. The number of partitions in those algorithms relies on the

complexity of the frame.

Figure 4.1: Running time comparison of the Watershed, Meanshift and SLIC

Figure 4.1 describes the running time of pre-segmentation algorithms. In pre-segmentation

task, watershed gives the worst performance in terms of running time. SLIC consistently

outperforms to compare to the other two mean shift and watershed. The watershed take



4.4. EVALUATION 91

longer because it is including a process to reduce the over-segmentation rate by deleting

small regions.

4.4.2 Merging and Simplification

A merging task was carried out based on the pre-segmentation result. The number of

partitions affects the BPT creation and the simplification of the multi-scale segmentation.

There are nine models, which will be evaluated based on the pre-segmentation algorithm

and the similarity criteria. The models are:

• Euclidean Mean Colour

Watershed

Mean shift

SLIC

• Absolute Mean Colour

Watershed

Mean shift

SLIC

• Histogram Distance

Watershed

Mean shift

SLIC



92 CHAPTER 4. Frame Segmentation

The next sub section describes the evaluation results of the simplification against the

available ground truth for all the test video clips.

4.4.2.1 Euclidean Colour Mean

Euclidean colour mean is computed with equation 4.3, The boundary recall of the

simplified tree is presented in Figure 4.2(a). This gives an indication that the simplified

BPT of watershed slightly outperforms those of SLIC and mean shift. In some video with

complex motions such as, the Soccer and the Ice videos, SLIC produces better results.

The comparison of over-segmentation rate in Figure 4.2(c) shows that the simplified

tree produced by mean shift pre-segmentation gives a better result than the other two.

Running time is compared in Table 4.2, and it can be seen that generally BPT preparation

and simplification on the tree produced by watershed take much longer compared to

mean shift and SLIC. An interesting fact is that SLIC consistently takes almost a uniform

time to perform the task in every sample test frame. This can be explained by the fact

that SLIC produces a stable number of partitions corresponding to the K value.

In order to get a simpler version of the partition, a simplification task is carried out.

Simplification is performed by observing the merging history and look for a critical mer-

ging. After simplification, some of the information might be lost because of excessive

merging. This occurs because of low contrast neighbouring regions are already mer-

ging and critical merging is not identified, even though they belong to different semantic

objects. The graph in Figure 4.2(a) shows the boundary recall after simplification. Fol-

lowing simplification the boundary recall was slightly less than in the pre-segmentation

results. After simplification, the average watershed gives 0.83, while mean shift and SLIC
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(a) Boundary Recall comparison

(b) Under-Segmentation Error comparison

(c) Over-Segmentation Rate comparison

Figure 4.2: Evaluation of Simplification Results on a Euclidean Distance Measure
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Table 4.2: The Running Time of BPT Preparation, Simplification of All Algorithms Using

Euclidean Similarity

No
Video

Test

WS MEAN SHIFT SLIC

BPT SIMPLIF BPT SIMPLIF BPT SIMPLIF

1 bus 506.00 3.36 26.33 0.39 6.95 0.26

2 container 497.18 3.32 3.91 0.13 6.52 0.13

3 garden 381.82 2.78 20.12 0.30 5.69 0.12

4 ice 404.34 2.82 0.74 0.03 6.70 0.14

5 paris 454.41 3.46 24.37 0.40 8.15 0.19

6 salesman 30.06 0.43 2.14 0.09 7.43 0.19

7 soccer 524.55 3.60 2.75 0.09 9.06 0.18

8 stefan 344.23 2.59 21.80 0.39 8.79 0.18

average 392.82 2.79 12.77 0.23 7.41 0.17

are 0.78 and 0.82, respectively. Compared to the pre-segmentation stage, the values are

0.92, 0.88 and 0.91 for watershed, mean shift and SLIC respectively.

The under-segmentation error for all types shows a slight increase from 0.08-0.13 to

around 0.12 - 0.18. Under-segmentation increases as a consequence of the merging task,

where some of the regions are merged even though they may belong to different ground

truth object.

Figure 4.2(c) presents the over-segmentation rate. The best over-segmentation rate

is achieved by the simplification result for mean shift; SLIC produces slightly less than

mean shift, while watershed produces far lower over-segmentation rate. For the ‘ice’
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sequence, for example, mean shift produces 66 segments compared to 36 expected. This

means that every ground truth region is only fragmented into two partitions.

4.4.2.2 Absolute Colour Mean

Table 4.3: Running Time of BPT Preparation and Simplification for All Algorithms Using

Absolute Colour Mean Similarity

No
Video

Test

WS MEAN SHIFT SLIC

BPT SIMPLIF BPT SIMPLIF BPT SIMPLIF

1 bus 506.02 3.86 35.67 0.54 8.85 0.23

2 container 497.92 3.68 5.69 0.14 8.23 0.17

3 garden 380.81 3.08 28.15 0.43 7.25 0.16

4 ice 404.44 3.07 0.97 0.05 8.53 0.19

5 paris 454.53 3.94 24.72 0.43 9.04 0.19

6 salesman 30.14 0.43 2.17 0.11 7.60 0.18

7 soccer 525.21 3.88 2.94 0.10 9.02 0.18

8 stefan 343.79 2.92 22.26 0.39 8.97 0.19

average 392.86 3.11 15.32 0.28 8.44 0.19

The evaluation results of the simplified tree using the absolute colour mean can be

seen in Figure 4.3. It can be seen that the trend is exactly the same as the previous ex-

periment using Euclidean distance. Although on average, the simplification of watershed

is slightly better than SLIC, SLIC outperforms in video with complex motion.
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(a) Boundary Recall Comparison

(b) Under-Segmentation Error Comparison

(c) Over-Segmentation Rate comparison

Figure 4.3: Evaluation of Simplification Result on Absolute Distance Measure
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The best over-segmentation rate is achieved by a simplified tree of BPT with the mean

shift algorithm. This parameter indicates how far the ground truth fragmented after

simplification. On average, mean shift gives 0.14, meaning that every ground truth

object fragmented into seven regions. SLIC gives slightly lower at 0.1 (10 regions per

ground truth). In contrast, watershed gives an extremely over-segmented at 0.013 or 76

superpixels per ground truth.

The smallest under-segmentation is achieved by the simplification of BPT on water-

shed at 0.12 on average. Mean shift and SLIC achieved slightly lower at 0.16 and 0.18

respectivelly.

Running time comparison between evaluated algorithm shows that the BPT creation

and simplification of watershed algorithm much slower compare to the remaining two

algorithms. In total, it is almost 30 times slower that mean shift, and 60 times slower

than SLIC.

4.4.2.3 Histogram Distance

Histogram distance is computed using equation 4.5. The evaluation result of the sim-

plified tree using the histogram colour distance can be seen in Figure 4.4. It can be seen

that the trends for under-segmentation error, and over-segmentation rates are similar as

those the two previous experiments using Euclidean and absolute distances. Compare to

Euclidean and absolute similarity, generally using histogram similarity measure is slower,

almost doubled in running time.
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Table 4.4: Running Time for BPT Preparation and Simplification of All Algorithms Using

Histogram Distance

No
Video

Test

WS MEAN SHIFT SLIC

BPT SIMPLIF BPT SIMPLIF BPT SIMPLIF

1 bus 649.46 43.17 41.96 2.47 9.06 0.26

2 container 881.34 118.70 8.66 0.85 9.80 0.31

3 garden 502.02 92.97 30.55 2.02 7.75 0.21

4 ice 629.46 81.86 2.95 0.10 9.78 0.26

5 paris 587.68 125.24 42.68 4.88 9.48 0.25

6 salesman 39.80 4.04 2.91 0.24 8.32 0.23

7 soccer 1,119.31 134.03 5.45 0.35 12.43 0.43

8 stefan 432.12 88.44 24.99 2.23 9.63 0.25

average 605.15 86.06 20.02 1.64 9.53 0.27

A visual comparison of the simplification result can be seen in the figure 4.5

4.5 Discussion

The outputs of the pre-segmentation and simplification are assessed according to

some parameters: boundary recall, under-segmentation error, over-segmentation rate.

The time required to execute pre-segmentation, merging and simplification are recorded

and compared. The effect of three different similarity formula are evaluated. At the

pre-segmentation phase, the algorithm produces a nearly similar quality as indicated by
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(a) Boundary Recall comparison

(b) Under-Segmentation Error Comparison

(c) Over-Segmentation Rate Comparison

Figure 4.4: Evaluation of Simplification Result by The Histogram Distance Measure



100 CHAPTER 4. Frame Segmentation

(a) Watershed Euclidean (b) Watershed Histogram

(c) Mean-shift Euclidean (d) Mean-shift Histogram

(e) SLIC Euclidean (f) SLIC Histogram

Figure 4.5: Simplification Result for The First Frame of The ‘Soccer’ Video Using Euc-

lidean and Histogram Similarity Measure
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boundary recall and under-segmentation error. In terms of over-segmentation rate, wa-

tershed produces significant over-segmentation, where on average a single ground truth

area corresponds to around 200 partitions. SLIC and mean shift, meanwhile, perform far

better than watershed, with a single ground truth corresponding to around 20 partitions.

Table 4.5: Total Running Time Comparison

EUCLIDEAN ABSOLUTE HISTOGRAM
No

Video

Test WS MS SLIC WS MS SLIC WS MS SLIC

1 bus 529.4 28.1 7.7 529.9 37.4 9.6 712.7 45.6 9.8

2 container 522.1 5.0 7.1 523.2 7.2 8.9 1,021.6 10.8 10.6

3 garden 399.7 21.0 6.2 399.0 29.5 7.8 610.1 33.4 8.4

4 ice 421.8 1.6 7.3 422.2 2.3 9.2 726.0 4.2 10.5

5 paris 474.7 25.5 8.8 475.5 26.1 9.7 729.8 48.5 10.2

6 salesman 33.0 2.5 7.7 33.0 2.5 7.9 46.3 3.4 8.7

7 soccer 547.8 4.0 9.7 548.8 4.2 9.7 1,273.0 6.9 13.3

8 stefan 361.2 23.1 9.4 361.1 23.5 9.6 535.0 28.1 10.3

Average 411.2 13.8 8.0 411.6 16.6 9.0 706.8 22.6 10.2

According to Tables 4.2 and 4.3 the largest portion of the running time is consumed

in BPT preparations. The running time required by the histogram similarity measure is

identified as the highest the among other similarity measures. According to Table 4.5,

the best running time is achieved by SLIC in any similarity measure performed, while

watershed shows the worst running time, consistently in all similarity measures.

An average performance of all combination techniques is presented in table 4.6 that
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refers to graph in figures 4.3, 4.3 and 4.4 and table 4.5. The analysis is based on BPT

created over original segmentation produced by watershed using gradient image, means

shift and SLIC in the CIElab colour image.

An average performance of all combination techniques is presented in table 4.6, that

which is averaged from the graphs in Figures 4.3, 4.3 and 4.4 and table 4.5. The analysis

is based on a BPT created over an original segmentation produced by watershed using a

gradient image, means shift and SLIC in the CIElab colour image.

Table 4.6: Average Boundary Recall, Under-Segmentation Error, Over-Segmentation Rate

and Total Running Time

Average

No
Pre-segment

methods
Similarity Boundary

Recall

Under-

segment

over-

segment

running

time (ms)

1 Watershed

Euclidean 0.8313 0.1190 0.0132 411.21

Absolute 0.8314 0.1181 0.0130 411.59

Histogram 0.9054 0.1057 0.0055 706.81

2 Mean shift

Euclidean 0.7775 0.1564 0.1391 13.85

Absolute 0.7817 0.1592 0.1378 16.60

Histogram 0.8237 0.1601 0.0720 22.60

3 SLIC

Euclidean 0.8205 0.1842 0.1018 8.00

Absolute 0.8205 0.1897 0.1038 9.04

Histogram 0.8020 0.3511 0.0705 10.22

The tree simplification result evaluation shows that the boundary recall has slightly
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declined compared to the pre-segmentation result. The best boundary recall is achieved

by the histogram distance measure, while the Euclidean and absolute give slightly worse

outcomes. If we look at the required running time, however, the histogram similarity

measure needs almost twice as much compared to other distance measures. The most

stable boundary recall is shown by a simplified tree of SLIC at around 0.8 to 0.82.

According to the evaluation, watershed pre-segmentation produces more partitions

than other algorithms. The BPT preparation and simplification, therefore, needs heavy

computational power. The histogram distance measure doubles the running time, due

to the iteration needed to calculate the similarity coefficient. Although it affects the

achievement of boundary recall, which shows a slightly better value compared to the

result of Euclidean and absolute distances, the small benefit is not comparable to the

heavy computing power required.

Due to the relatively constant quantity of the initial regions, SLIC ensures the number

of iterations required for the remaining task. This helps the running time for BPT prepar-

ation and simplification of SLIC to remain stable and independent of the frame size. The

drawback of SLIC is the input requirement of K. It will lead to inaccuracy when the user

provides an unreasonably small K value. For that reason, in this experiment, K is set to

be large enough, because the result of the pre-segmentation is prepared for the merging

steps.

In this experiment, an implementation of mean shift introduced by [68] is adopted.

No user input was needed to perform the pre-segmentation; therefore, the previous is-

sue with SLIC does not exist, although the running time is longer than the other pre-

segmentation algorithms. Although the boundary recall and under-segmentation results
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in the simplified tree does not produce the best results compared with other algorithms,

mean shift consistently produces better over segmentation rate in all distance measures.

The result of a single frame segmentation produces a number of superpixels or re-

gions. This task is performed in order to provide intra-frame segmentation in multi-scale

details. The next step is to find the inter-frame relationship in order to identify the region

correlation across frames. The identification of inter-frame BPT node relationship will

be discussed in the next chapter. The regions/supervoxels and their adjacency graphs

will be recorded in the database in order to support video content metadata. The region

features will be recorded in the superpixel table, while the adjacency graph is designed

to be recorded in the spatialEdge according to the database design in Figure 3.12.

4.6 Conclusion

In order to seek the most reliable techniques, boundary recall, under-segmentation

error, over-segmentation rate and running time are presented in Table 4.6. The optimum

performance should maximize the boundary recall and over-segmentation rate, mean-

while minimize the under-segmentation error. If the weights of boundary recall, under-

segmentation and over-segmentation are equal, the best value is achieved by watershed

with the histogram similarity measure.

In the watershed simplification result with histogram similarity measures, the over-

segmentation rate is very small (at 0.055). This is indicated by the fact that the bound-

ary recall is consistently high because the simplification chooses the low level nodes in

the tree and only small simplification steps are performed. This is confirmed by the
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small change in the over-segmentation rate before and after simplification (from 0.057

to 0.055). This means that the initial segmentation does not undergo a significant simpli-

fication, as shown in Figure 4.5(b). According to Table 4.6, therefore, the most reliable

method is mean shift with the absolute similarity measure.

If speed is considered, however, the SLIC with the Euclidean similarity measure out-

performs the others. This gives the best running time, while achieving good under-

segmentation error and over-segmentation rate. Furthermore, the boundary recall of

this combination is better than mean shift with absolute similarity.

An interesting aspect of the watershed result is that, out of all the similarity meas-

ures, watershed gives the worst speed. This is due to the amount of initial segmentation,

which causes subsequent merging, and means that the simplification needs many more

iterations. The small over-segmentation rates indicate that the number of final segments

is still far more than the expected number of segments in the ground truth. All of the wa-

tershed based techniques demonstrate this over-segmentation issue, which is confirmed

by the visual results in Figure 4.5.

A result of the average of boundary recall and over-segmentation rate is achieved in

high value by SLIC with Euclidean distance, and this combination gives the best speed

of all the techniques (see Table 4.6). This suggests that, in this study, the SLIC initial

segmentation with K set to be 1000 outperforms the alternative techniques. This con-

clusion is based on the evaluation of the simplification result compared to the ground

truth from xiph.org data set.
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Spatial Approach

5.1 Introduction

This chapter is dedicated to discussing the spatial approach to video segmentation

on BPT. The preliminary tasks, pre-segmentation, merging, BPT construction and sim-

plification, have been discussed in Chapter 4. In the spatial approach, every frame is

individually segmented. The remaining task is to create the region links across success-

ive frames.

The frame pre-segmentation and simplification demonstrated in Chapter 4 produces

two sets of regions. They are called pre-segmentation and simplification set. The set

can be represented as a graph, in which the vertex/node reflect a region, and the edge

represent the neighbouring relationship. The graph representing the intra-frame region

relationship is called a spatial Region Adjacency Graph (RAG).

An inter-frame relationship is built as a node matching between two spatial RAGs.

106
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Temporal edge is defined as an edge connecting a pair of regions in different frames.

There are three methods to be evaluated in order to build the temporal edge. The first

technique is a limited window search. Secondly, a genetic algorithm to be employed to

find the best pair of nodes in the binary partition tree at any level. The last experiment

develops the temporal relationship between top salient nodes across successive frames.

5.2 Spatio Temporal Region Adjacency Graph (STRAG)

STRAG consists of a spatial and temporal adjacency graph. As discussed in previous

chapter, a spatial region adjacency graph is created through a frame segmentation. In a

region adjacency graph G = (V , E), where V are vertices which represent regions; E are

edges which represent distance between neighbouring regions. The edges are spatially

connected; therefore, they are called spatial edges. For instance, a video consists of n

frames; it has G = {G1,G2, ...Gn} in every Gi, there exists m vertices Vi = {V1
i ,V2

i , ...Vmi }.

Spatial edges connect every neighbouring pair of vertices, for each Vi there exist p <

(m×m) edges. On the other hand, temporal edges correlate vertices of the graph across

frames Vri , V s
j where i, j ∈ {1, ..., n}n and r, s ∈ {1, ...,m}.

Temporal Edge is established by a matching operation between regions in subsequent

frames. In a single video, subsequent frames are made up of similar objects; some of

which are motionless, while others move. Most of the regions in the current frame

are inherited from the previous frame, except if they belong to different shots of the

video. Temporal edge aims to record those relationships. Due to motion, some regions

have their counterparts in slightly different locations. Some static regions have their
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correlated regions at the same location. It can be expected that the region pair shares

similar features such as colour but the location moves slightly, and the shape can thus be

evolved.

There are some criteria underlying the choice of a region as a temporal counterpart,

although it is important to note that some regions have no temporal links caused by

disappearance from the scene or occlusion. The possible counterpart of a region in a

subsequent frame is determined by position and feature similarity.

(a) Ilustration of Spatio Temporal Edge in Streaming Scenario (b) Region Temporal Correlation

of Region #100 in Frame #1 -

#3 ‘Soccer’ Video

Figure 5.1: Spatio Temporal Correlation, Illustration and Example

The temporal edge represents a short relationship. It is illustrated in Figure 5.1. In

the illustration, there are five vertices in frame #1 and six in frame #2. In reality, the

first frame of soccer, for example, has 103 while the second frame has 120 vertices. A
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vertex in the current frame can have n pairs in the previous and subsequent frames. An

example of this relationship is depicted in Figure 5.1(b) for region label 100 in the first

three frames of the soccer video.

5.3 Limited Windows Search Temporal Edge

In this method, a set of spatial segmentations are generated for a particular frame. The

current frame (t) is considered as the frame where the region is located. The temporal

edge will be made to the previous frame (t − 1). A bounding box of a particular region

Rt
i. in the current frame is determined, and a twice bigger search window is projected to

the preceding frame. This is designed to deal with possible region movements. Assuming

there are l regions in the search window Rt−1
j = {Rt−1

1 , . . . Rt−1
l }, the smallest distance to

the current region is selected as the region pair.

s = arg minj

(∥∥∥(~cRt
i
− ~cRt−1

j
)
∥∥∥
2

)
(5.1)

Where s is the selected index of projected region, therefore Rt−1
s is the pair of Rt

i, j ∈

{1 . . . l}. This formula is executed for all Rt
i where i ∈ {1 . . . n}, n is the quantity of the

region in the current frame. The visual illustration of limited windows searching that we

implemented in this proposal can be seen in Figure 5.2.
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Figure 5.2: Current Region Bounding Box and Search Window in The Previous Frame

As illustrated in Figure 5.2, this is the actual snippet of frame 26 and 27 of Soccer

video with the SLIC pre-segmentation (k = 500). It shows the pairing process to establish

a temporal edge between a region (the ball) in the current frame (frame #27), and

the prospective candidates in the search window in the previous frame (frame#26).

The search window is twice the size, with a centroid in exactly the same position. The

member of prospective candidates Rp consists of all regions touching the search window.

There are 11 region candidates and the algorithm will choose the closest colour distance

to the current region.

Accumulation of temporal edge throughout a video constructs a long-term relation-

ship. The region trajectory can be observed, and their relationship can be explored with

further merging criteria.
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Figure 5.3: Invalid Long Term Neighbourhood Between The Ball and Foot of The Player

From Frames #13 to #19

5.3.1 Long Term Temporal Relationship

A pair of regions which are consistently neighbouring each other and move in a similar

direction and velocity is a cue that they might belong to a single object. In contrast, if

there is a pair of neighbouring regions in some frames but in certain frames they are

separated, it is reasonable to argue that they belong to different object. The idea of region

long term neighbourhood merging has been proposed in [5]. Long term neighbourhood

represents region activity in a group of frames in a certain shot.

A long term region temporal neighbourhood is defined as a set of consistent neigh-

bouring regions during a number of frames. They have to keep neighbouring each other
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in every frame they exist in. Their neighbourhood is no longer valid if this requirement

is violated. R1 and R2 are considered to have a long term neighbourhood if they are spa-

tially neighbouring in every frame in which they coexist. The long term neighbourhood

between R1 and R2 is no longer valid whenever they are disconnected in any particular

frames in which they coexist.

For example, the ball and the player foot in the Soccer video as shown in Figure 5.3,

are initially in contact but after several frames (frame #19) the ball and the foot become

disconnected. It is indicated that the ball, and the foot are different objects. Therefore,

merging between the ball and the foot has to be avoided. In contrast, the neighbouring

relationships between the red jersey and black trousers are consistently existed in all

frames. As a result, they have valid long term temporal neighbourhood and merging

between them is recommended.

Several conditions can happen in relation to a pair of long term neighbourhood, as

can be seen in Figure 5.4.

5.4 Genetic Algorithm Approach

Genetic algorithms (GA) are search procedures inspired by biology and the workings

of natural selection, and were originally proposed by John Holland in the 1960’s [125].

Many implementations of this algorithm can be found in the image processing field. GA

is particularly useful when an exhaustive search for the solution is expensive in terms of

the computational cost. In our implementation, the start and desired final conditions are

known, making this problem suited to a GA solution.
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(a) Consistent neighbouring (b) Convergent neighbouring

(c)Probable Single long term neighbourhood (d)Close but not a neighbour

(e)Probable occlusion

Figure 5.4: Long Term Region Neighbourhood Relationship
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The purpose of this experiment is to correlate objects temporally between successive

frames in a video. Temporal correlation is important in video analysis for purposes such

as: key frame identification, object tracking, activity recognition and cognition. A series

of frames in a single scene generally contains the same objects, and therefore an object

in the previous frame is likely to appear in the current frame and in future frames. The

problem we propose is finding them in the corresponding binary trees. The object may

move slightly or be subject to rotation, scaling or warping.

The problem is defined as searching the match nodes in two different binary partition

trees. Given a single target branch which contains a number of region nodes of a BPT

representing a salient and/or semantic object, where are the corresponding branches on

the BPT of the subsequent video frame? This is not an easy problem to solve as the

branch in one frame may map to many branches in the next frame or vice versa. This

problem is well suited to a GA solution.

The Genetic Algorithm (GA) has been used by many researchers in image and video

processing. A GA is used for image retrieval utilizing local similarity in [126]. Image

enhancement and segmentation works take advantage of the GA e.g. [127]. The Genetic

Algorithm is successfully implemented on a shape based object recognition based on

Fourier’s descriptors in [128]. An Interactive Genetic Algorithm (IGA) is used on low

level image properties such as colour, texture and edge description as a basis for machine

classification with a user in the loop in [129]. The GA is employed for emotion based

video scene retrieval using an interactive genetic algorithm in [130].

In the approach utilized here a genetic algorithm is applied to identify the temporal

correlation between a node in the tree of different frames in a video clip.



5.4. GENETIC ALGORITHM APPROACH 115

5.4.1 Genetic Algorithm on BPT

In order to perform a genetic algorithm, some data structures and rules must be ap-

plied to the chromosome coding, fitness function, crossover and mutation. The problem

space is performed in a BPT. Therefore, a binary chromosome representation is selected.

The first 1 digit represents the root of the binary tree. The following digits represent the

left leaf where the value is 0 and the right leaf where the value is equal to 1. The number

of genes in a chromosome is based on the level inside the binary tree. Some genes are

valued 0 for the most significant bit, however. As illustrated in Figure 5.5, the binary tree

consists of three levels, and the chromosome is coded on three binary digits. For a real

image, the number of levels in a tree can vary from tens to hundreds of levels.

Figure 5.5: Chromosome

The fitness function plays a central role in genetic algorithms. A fitness function

provides a measure of similarity between a target and the candidate solution. Each

chromosome is considered as a solution candidate and compared to the target. Based on

Figure 5.5, each chromosome represents one node in the BPT and a region area in the

original image. In this research, provided that each region target and solution candidate

has some statistical data (e.g. pixel intensity), it is compared according to the fitness
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Figure 5.6: Complete Flowchart of Proposed GA Algorithm

function defined with the following equation:

ϕ((Rt
i, R

t+1
j ) =


1 if δe~c(Rt

i, R
t+1
j ) = T

0.99
δe~c(R

t
i ,R

t+1
j )

if δe~c(Rt
i, R

t+1
j ) 6= 0

(5.2)

Where ϕ denotes fitness value of a chromosome compared to the target, t denotes

index of the tth frame in a video sequence. δe~c(R
t
i, R

t+1
j ) is calculated using Euclidean
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distance formulated in 4.1. Rt
i denotes region ith of frame t as a target region, and Rj

denotes region jth of frame t+ 1. ~cRt
i

denotes the region average colour value of region

Ri in frame t, while ~cRt+1
j

denotes the same of region Rj on frame t + 1. δe~c(R
t
i, R

t+1
j )

denotes the colour distance between region Ri in frame t and region Rj on frame t+ 1

and T is a constant set to zero when both regions are identical, the fitness value is set to

be one.

The initial population is unique and randomly generated within the solution space.

The lowest leaf is a very small region and there are a lot of regions at the lowest level.

The randomly generated chromosomes are designed to select larger regions at higher

levels nearer the root to produce faster solutions.

At each iteration of the GA the quality of the chromosome relative to the target gradu-

ally improves. Crossover and mutation are two operators which aid the solution and

play an important role in modifying the chromosome in order to search for non local

solutions. Crossover is an attempt to improve the fitness of the chromosome genes by

combining the genes of two high-ranking chromosomes. A roulette mechanism is chosen

in our algorithm. Each time two chromosome parents are chosen, the crossover mechan-

ism is applied until a better fitness value is achieved compared to both of their parents,

or a maximum crossover is achieved. In the case of maximum crossover the process is

aborted and the original chromosome survives to the next generation.

Mutation is another operation, which aims to achieve better chromosomes in the sub-

sequent generations. This operation is done every time a random value is greater than

the mutation threshold. Mutation will be executed until a better chromosome is achieved

or the maximum number of mutation attempts (m) is reached. The mutation rate para-
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meter is an empirical value in this algorithm. Mutation is aborted when the fitness value

falls below that of the original chromosome. If this is the case, the original chromosome

will live on in the next generation. Mutation can be achieved either by random selection

of a gene to be changed from one to zero or zero to one or a bitwise operation shifting

left or right. A flowchart of the proposed algorithm is illustrated in Figure 5.6.

5.4.2 Experiment Result and Discussion

Table 5.1: Genetic Algorithm Parameters

No Parameter Value

1 Population Size 100

2 Crossover rate 0.7

3 Mutation rate 0.1

4 Max Generation 40

5 Min fitness 500

6 Max crossover attempt 10

7 Max Mutation attempt 10

8 Max solution branch 100

In the experiment, the genetic algorithm is configured according to Table 5.1. The

results of the first experiment are shown in Figure 5.8. A branch is selected as the target

and represents the helmet object of the foreman on the BPT as illustrated in Figures

5.7(b) and 5.7(c). The solution is found in the next frame as illustrated in Figure 5.8.

The solution is found on the third iteration of the GA. The solution is a single branch
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(a) Original First Frame (b) Target Region

(c) BPT of Fisrt Frame and The Selected Target Node

Figure 5.7: First Frame of ‘Foreman’ Video and Selected Target
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which starts from the circled node in Figure 5.8(c).

In our experiment, a scenario of occlusion in the region target can be seen in the

Figure 5.9, the region and nodes target still the same as illustrated in Figure 5.7.

(a) Occluded Second Frame (b) Obtained Solution

(c) BPT of Second Frame and The Obtained Solution Nodes

Figure 5.9: The Second Frame With Occlusion and Obtained Nodes Solution

As can be seen in Figure 5.9, because the target region is completely occluded (fore-
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(a) Original Second Frame (b) Obtained Solution

(c) BPT of Second Frame 2 and The Obtained Solution Node

Figure 5.8: The Second Frame Without Occlusion and Obtained Solution
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man hat in the second frame), the corresponding region is obtained from two different

branches of the tree.

The first experiment is conducted with one to one searching, while the second exper-

iment is conducted to test the ability of the proposed algorithm to deal with scattered

solutions across several branches. In the real world, this happens for example when an

object is covered by another object or an object is broken into smaller pieces.

The results show that the algorithm can precisely find the target. This shows that

the algorithm works in both occluded and non-occluded target. In our experiment, the

genetic algorithm has successfully solved the problem of temporal correlation of objects

inside a binary tree representation. The algorithm can successfully identify regions in-

side a binary partition tree and find their best match according to a cost function in

subsequent frames. The algorithm is robust and can cope with objects either within a

single branch or separated into a number of branches. Furthermore, the measure of the

fitness function provides a measure of the quality of the object match. This algorithm

can also find a target object in the presence of translation, rotation and occlusion.

5.5 Inter-frame Salient Region Matching

5.5.1 Region Based Saliency in a Single Frame

BPT provides multi resolution segmentation representations. The root on the top level

represents an entire image, and the lowest leaves represent the initial pre-segmentation

results whilst being small and (most likely) meaningless. There must be a salient node
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in between the top and lowest level. By definition, saliency is a region which has popped

out around their neighbours.

In this experiment, the binary partition tree (BPT) is generated for every frame from

the video sequence. Each node in the BPT (except the root), is evaluated according

to a distance measure to its parent. A sharp change in the mean colour between child

and parent indicates that the child node is a prominent region. In order to identify the

noticeable regions in a frame according to this measurement, a rank-ordered region is

presented. A higher rank indicates the region as being more conspicuous in a frame.

Salient nodes can be found anywhere in the BPT but are obviously larger toward the top

of the tree.

5.5.1.1 Region Node Saliency Calculation

According to [7], each node in the BPT experiences an evolution from a small initial

child region node to the whole image represented by the root. During the evolution

from low levels of the BPT towards the root, each node is merged with its neighbour

to form a new parent node. As can be seen in Figure 5.10, every node in the binary

partition tree forms a triangle consisting of left child and right child with one parent.

Every parent region contains the accumulation of area, mean colour and centroid from

both child nodes. If those child nodes are homogeneous, the colour distances between

them are insignificant. Consequently, the parents mean colour distance to its child will

be relatively small. In contrast, a pair of heterogeneous child nodes results in a higher

distance between parent and child nodes. When the difference is large, it indicates a

critical merging occurs, and therefore, the region may be distinct (i.e. salient).
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Figure 5.10: Child and Parent Nodes Triangle

Each node, (except the root) is examined for saliency by calculating the distance

from its parent. Rather than defining a path from the lowest child node to the root, as

suggested in [120], in this work, the distance to its parent is calculated for every child

node in the BPT. The distance δe~c(Rn, Rn−1) and δe~c(Rm, Rn−1) are calculated based on

Euclidean colour distance in 4.1. Where Rn and Rm are left and right child and Rn−1 is

the parent node. δ~c(Rn, Rn−1), δ~c(Rm, Rn−1) denote the colour distance of node n, and

node m to its parent (node n− 1).

Each region/node is ordered by its distance to the parent, meaning that the highest

distance is considered as the most salient. The more salient regions are more likely to be

found in the future frames of the video.



5.5. INTER-FRAME SALIENT REGION MATCHING 125

5.5.1.2 Region Node Feature selection

In the experiment, we use location, colour and area as the distance metrics utilizing

Euclidean norm. Two regions at the current and future frames are paired as a match if

the distances between them are small enough. The contribution from each variable in

the Euclidean estimation needs to be scaled according to the individual importance.

Weighting factors can be varied, according to the video content. In this experiments,

with the weighting factor was chosen manually, although we did means for automatic

selection, but it is beyond the scope of this chapter. We can model the feature of a region

n as Rn = (c1, c2, c3, xc, yc, a). c1, c2 and c3 denote colour features of a region (Rn). The

colour feature depends on its colour space, in RGB, for example; c1 = Red, c2=Green and

c3 = Blue colour components. xc and yc denote the centroid in horizontal and vertical

axes respectively. a denotes the size of the region (Rn).

5.5.2 Region Temporal Matching

This experiment is designed based on the reasonable premise that a salient region

in the current frame will also be present in a future frame. In the processing of a single

frame, the more salient regions will be paired before the less salient regions. It is sensible

to give priority to the more salient regions, because they are more distinct and should be

easier to find in future frames.
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5.5.2.1 Inter-Frame Region Similarity

In order to determine the region link across frames the similarity between them has

to be calculated. A region has a number of features, which are location, intensity, colour,

and area. A matching rate between regions in two consecutive frames is determined

according to the similarity in colour, position and size. Let us consider Ri is a region i

in current frame t, and Rj is a region in the upcoming frame t + 1. Colour similarity

between Rt
i and Rt+1

j , δe~c(Rt
i, R

t+1
j ) is calculated using Euclidean colour distance referred

to equation 4.1. The similarity between them can be calculated using the equation 5.5.

δ~ct(Rt
i, R

t+1
j ) =

√
(xcRt

i
− xcRt+1

j
)2 + (ycRt

i
− ycRt+1

j
)2 (5.3)

δs(Rt
i, R

t+1
j ) = 1−

(min(aRt
i
, aRt+1

j
)

max(aRt
i
, aRt+1

j
)

)
(5.4)

δcts(R
t
i, R

t+1
j ) = β1δe~c(R

t
i, R

t+1
j ) + β2δ~ct(R

t
i, R

t+1
j ) + β3δs(R

t
i, R

t+1
j ) (5.5)

Where β1, β2 and β3 are the weighting coefficients for colour, centroid and size re-

spectively. δcts(Rt
i, R

t+1
j ) is and inter-frame region distance, considering colour, centroid,

δ~ct(R
t
i, R

t+1
j ) is inter-frame centroid distance, and δs(R

t
i, R

t+1
j ) is the inter-frame size dis-

tance.
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Figure 5.11: Inter-Frame Region Pair

5.5.2.2 Regions Temporal Saliency

A salient region in the current frame will be matched with a region with the highest

similarity in the upcoming frame. The process can be repeated until the entire area of

the image is covered. It is not necessary to examine all the nodes in the BPT since there is

significant redundancy within the tree. A number of node pairs can be identified across

the temporal domain. An example of nodes’ pair across frames is shown in Figure 5.11.

In order to match region pairs in successive frames, the algorithm below is applied:

1. Calculate spatial saliency for all nodes in the BPT of the current and upcoming

frame by measuring the colour distance between the leaf node and the parent node

according to equation 4.1.
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2. Order the list of regions according to the distance measure and produce an ordered

list for both frames.

3. Enter the maximum rank of salient regions which will be matched against salient

regions in upcoming frames e.g. the first 20.

4. Find the closest match for every salient region in the current frame against regions

in the upcoming frame according to equation 5.5.

5. Order the list of the region pairs according to their distance.

Although there are thousands of region nodes, the constraints such as colour and

location make the number of calculations relatively small. Due to the ordering used in

both region lists, high ranks in the first frame are likely to match with high ranks in the

upcoming frame.

5.5.3 Salient rank ordered

Every salient region candidate is rank ordered according to its saliency level. This is

calculated according to its difference compared to surrounding regions, area and posi-

tion. The salient region list is paired to the salient rank ordered list. In order to minimize

iteration, it is expected for the top salient list to get its matching pair from the top salient

list in the subsequent frame.
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5.5.4 Experiment Result

In the experiments, we examined the 20 most salient regions of the first three frames

in the test video ‘Akiyo’. In order to illustrate this, a number of selected regions are shown

in Table 5.2. Table 5.3 shows the scores for the first three frames of ‘Akiyo’. The greatest

similarity is observed at the top of the table with the differences increasing downwards.

In the next experiment, the temporal region match is examined for two consecutive

frames. The results are ordered according to the inter frame distance. The lower the

distance, the greater the similarity; the distance could be zero representing an exact

match for position, colour and area. A lower rank indicates a higher matching error and

a decreased likelihood it is the same object. A region can have high spatial saliency but

this does not guarantee a high temporal match.

The results are repeatable across most video sequences but we present the results

for frames 1 and 2 of ‘Akiyo’. The algorithm maps the 20 topmost salient regions in

consecutive frames. Some of the matches are very good and have minimal error whilst

matching errors can be identified particularly for small non saturated regions. The result

below is between first and second frames, threshold = 28, centroid coefficient β1 = 0.75,

mean Colour coefficient β2 = 1, area coefficient β3 = 1.5, colour space: CIE l*a*b. In The

result for the top saliency rank in the frames 1 to 3 is shown in Figure 5.2.

The first 20 regions cover approximately 47 percent of the total image area. The

increase in distance for the first 20 most salient regions is shown in Figure 5.12. An

abrupt increase in the distance can be clearly observed at the rank of 11 and the rest of

the graph. This indicates when matching errors start to happen.
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Table 5.2: Spatial Saliency Rank Ordered for Frames 1, 2 and 3

Rank Frame 1 Frame 2 Frame 3

1

3

8

9

10

All
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Table 5.3: Spatial Saliency Ordered List of Frame 1,2, and 3

Rank Frame 1 Frame 2 Frame 3

1 81,548 80,809 81,562

2 73,315 74,638 74,214

3 69,916 69,667 70,007

4 42,874 43,979 59,336

5 39,993 40,256 50,255

6 38,003 39,271 43,764

7 36,135 37,518 41,638

8 35,369 35,725 37,375

9 31,501 30,948 30,901

10 29,954 29,474 30,348

11 29,436 28,018 30,250

12 27,653 27,094 28,711

13 27,394 26,329 27,466

14 25,749 25,889 26,164

15 23,935 24,373 25,222

16 22,462 22,592 23,441

17 22,422 21,791 23,069

18 22,390 20,502 22,635

19 22,355 20,428 20,075

20 21,853 20,247 19,176
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Figure 5.12: Ordered Region Pair Distance Frame 1 and 2

5.6 Conclusion

A spatial approach is demonstrated where the segmentation is carried out individually

for each frame. Region correlation across frames has to be calculated accordingly. In

this chapter, three methods to establish a correlation between regions across frames are

demonstrated.

Limited window searching is designed with an assumption that regions in the current

frame have its pair in the previous frame but the position is not always static. The correl-

ated region is therefore expected to be found over a twice bigger area than the current

region size. Thereby, if the region moving as far as their size can be anticipated. This

technique is dedicated to build all regions in consecutive frames. This technique is an

iterative method. Consequently, the computation is highly depended on the number of

segments in each frame. Let’s assume that the twice bigger window contains nine pro-



5.6. CONCLUSION 133

spective regions, and we have 1000 regions in every frame. The iteration would be nine

thousands for every pair of consecutive frames. In fact, watershed, for example, gives

around 5000 regions per frame, mean shift and SLIC around 1000 and 500 respectively.

In order to avoid that heavy computation, an inter frame salient region matching is

demonstrated. The region in every frame is ranked on its saliency. Saliency is defined as

the child-parent distance in the tree structure. The mating operation performs for short

list salient regions. Because the calculation of high saliency in each frame is carried

out independent of each other, it is possible that some salient regions in the particular

frame does not exist in the list of another frame. This issue causes some low score match

region pairs to be incorrect pair, in Figure 5.12. The inter-frame region distance sharply

increased at rank 11. It is indicated that they are incorrectly matching to the region in

another frame.

A genetic algorithm approach is designed to conduct searching in the binary tree

structure. The target region is picked from a node on the tree of a particular frame.

The searching is conducted in the tree of any other frame. The expected result is the

closest regions in the target frame. It is demonstrated even though the object has been

covered by an occlusion, the algorithm still be able to find the target. This approach is

not designed to established an inter-frame region link.

According to the discussion above, region link calculation in general suffer from high

computational loads. Alternatives need to be explored, and a volumetric approach is one

of the possible ways, as will be discussed in the next chapter.
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Volumetric Approach

6.1 Introduction

The purpose of this chapter is discussing a volumetric approach whereby the three-

dimensional matrices employed to represent a video. Every picture element in a video

(voxel) is considered as a point in a three-dimensional space of x (horizontal) y(vertical)

and t (temporal) axis. The segmentation is carried out to group the voxel in regard to

a particular homogeneity criterion so as to produce a number of non-overlapping super-

voxels/volumes. Pre-segmentation is prepared using the watershed and SLIC algorithms

in 26 voxel neighbourhoods. Initially, the partition is highly over-segmented, so further

merging step and simplification need to be performed.

In order to obtain a simpler version of the segmentation, a merging task is performed,

and the supervoxels, merging history is recorded in the BPT structure. As previously

discussed in the general framework, the identification of critical merging is carried out

134
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in order to discover the pruning nodes on the tree. By cutting the tree at the pruning

point, a simpler tree is obtained and, as the result, a simple version of segmentation is

produced.

6.2 Supervoxel Segmentation

In order to provide a set of homogeneous partitions, a pre-segmentation task is con-

ducted. A video can be considered to be a matrix of voxels in the spatio temporal (x, y, t)

space. Our work is based on two supervoxel algorithms. Watershed algorithm can be

applied to partition the voxels into three-dimensional matrix using 6, 18 or 26 pixel

neighbourhood (allowed in Matlab). Watershed work on gradient magnitude of the

video input. Secondly, [69] uses a fast implementation of the improved K-means (SLIC)

algorithm in local search area. As a result, it is faster without necessarily needing to get

the whole object in a global search.

The main benefit of supervoxels is the consistent label inter frame, meaning that it can

avoid matching tasks among regions in the subsequent frames. Matching regions across

frames has been discussed in Chapter 5, but is both error prone and requires a heavy

computational load due to many-to-many inter-frame region relationships. Supervoxels

carry spatial and temporal information (motion) in a single representation.

Figure 6.1(a) illustrates four supervoxels as a result of segmentation and the volume

adjacency graph in Figure 6.1(b). Neighbourhoods are divided into two categories: tem-

poral and spatio-temporal neighbourhoods. As can be seen in Figure 6.1(a), supervoxels

2 and 4 are temporal neighbourhoods wherein supervoxel 2 is before 4. Spatio-temporal
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(a) Volumetric Segment (b) Corresponding VAG

Figure 6.1: Illustration of Volumetric Segmentation and a corresponding Volume Adja-

cency Graph

neighbourhoods are illustrated between supervoxel 1 and 2, where they are coexist in

the same time instant. Spatio temporal neighbourhoods occur only if a pair of super-

voxels are spatially neighbouring in every frame in which they coexist. In other words,

if two supervoxels only share borders in a number of frames but are separated in the

remaining frames, they are not considered as valid neighbours. They therefore have no

chance to merge in order to form a greater supervoxel; this avoids merging between two

supervoxels belonging to different object.

6.2.1 Three Dimensional Watershed

Watershed algorithms can be expanded into three-dimensional space by utilizing 6,

18 or 26 pixel neighbourhoods. The fast implementation is available in a standard

Matlab function which is based on the flooding approach [67]. Table 6.1 shows pre-

segmentation results for some test video sequences.
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Table 6.1: Pre-Segmentation Result and BPT Before Simplification

Video Size
Initial Supervoxels

Nodes Level Edges
Quantity Size frames

Carphone 144x176x20 2675 106.25 3.556 5349 47 10563

Soccer 288x352x21 16946 62.611 3.419 33891 62 67158

Stefan 240x352x21 18938 41.854 3.797 37873 76 75747

The visual result of the watershed algorithm is shown in 6.2(b). The 3D plot is made

for frames 1 to 10 of the ‘Carphone’ video which is illustrated in Figure 6.2(a). As can be

visually observed, the size of the supervoxels is varied but most of them are small. The

duration of a supervoxel is around 3 frames. If we compare to the ground truth of this

video, which has 16 isolated object candidates in the soccer video, in the whole 10 frame

duration, the pre-segmentation produces almost 17,000 supervoxels. Therefore, a single

object candidate in ground truth would consist of around 1,000 supervoxels.

6.2.2 SLIC Supervoxel

[69] introduce a fast implementation of a well known K-means clustering algorithm,

by limiting search area into a particular window. As a derivation of K-means, SLIC needs

K values either direct or indirect. The value of K determines how many segments are

expected. One may argue that this is a disadvantage due to the dependency of the

algorithm on the value of K. In this proposal, however, supervoxels are not intended to

be the final result, therefore, setting a high value of k leads to an over-segmented result.
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(a) Original 10 Frames ‘Carphone’ Video (b) Over-segmented in 3D Plot

Figure 6.2: Watershed Pre-Segmentation of ‘Carphone’ Video

Later, the small partitions are subject to the next merging process. The publicly available

implementation of SLIC is provided by [69]; in this experiment the initial volume is set

to 1000. The initial supervoxels before K-means is executed in 10 x 10 x 10.

The result of the initial segmentation of the test video can be seen in table 6.2.

Table 6.2: Pre-Segmentation Result of SLIC supervoxels

No
Video Supervoxel

Time(s)/Frame
Name Size Quantity Size Frames

1 Carphone 144x176x21 716 743 8.8 0.13

2 Soccer 288x352x21 2865 743 8.65 0.73

3 Stefan 240x352x21 2420 698 9.25 0.47
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(a) The First 6 Original Frames (b)Volume Segmentation Using SLIC

Figure 6.3: SLIC Supervoxels Pre-Segmentation of ‘Soccer’ Video

An example of a pre-segmentation result using SLIC on the ‘Soccer’ video is illustrated

in Figure 6.3(b). In the experiment, 21 frames are segmented in a single execution, and

the pre-segmentation speed is quite fast, as can be seen in the running time column in

Table 6.2.

6.3 Supervoxel Merging

6.3.1 Supervoxel Neighbourhood

Neighbouring relationships between supervoxels are defined as temporal and spatio-

temporal. A temporal neighbourhood occurs when a supervoxel exists before another as

illustrated in Figure 6.4(a). They share a spatial location, and coexist on a maximum

of two frames where they meet each other. The merging between them extends the
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duration of the merged supervoxel. On the other hand, a spatio-temporal neighbourhood

is defined as two supervoxels coexist and touching each other in a number of frames, as

illustrated in Figure 6.4(b).

(a) Temporal Neigbourhood (b) Spatio Temporal Neighborhood

Figure 6.4: Supervoxel Neighbourhood

Supervoxels and neighbouring relationships among them in an entire video create a

volume adjacency graph as illustrated in Figure 6.1 (b). Each supervoxel is represented

as a vertex V, while the neighbouring relationship between them is represented as an

edge E . The similarity between a pair of neighbouring supervoxels is recorded in the

edge data structure.

6.3.2 Supervoxel Similarity

Similarity is an inverse of merging cost, and this cost is equal to distance between a

pair of supervoxels. Some properties such as mean colour, number of frames, start and

end frames, and centroid displacement are recorded as supervoxel features. The distance

between a pair of neighbouring supervoxels is mainly measured based on their colour

difference and centroid displacement. Centroid displacement is the distance between
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the spatial centroid of the supervoxel in the start and the end frame. It represents the

general motion direction and speed of the region during a period of time. The merging

cost is calculated when a pair of partitions are going to merge, how far the average colour

changes and how far the direction and speed of a region’s movement is modified. Priority

to merge is assigned to pair of supervoxels with higher similarity (e.g. lower merging

cost). This allows homogeneous supervoxels to merge at an early iteration. Let consider

a supervoxels Vi = (~c, cx1, cy1, cx2, cy2, a, nf) where ~c is the colour average of supervoxel

i; (cx1, cy1) and (cx2, cy2) is the centroid of the first and last frame of the supervoxel;

nf is the number of frames of the supervoxel. The merging cost is calculated according

to its colour and centroid distance in respect to the formula 6.1.

δv(Vi, Vj) = α.δes~c(Vi, Vj) + β.δ~d(Vi, Vj) (6.1)

δv(Vi, Vj) denotes the distance between supervoxel Vi and Vj , considering the colour,

size and direction of the supervoxel. Let us assume Vk is a merging result between Vi and

Vj and the colour average of Vk can be calculated using equation 4.2 and substituting

region/superpixel Ri and Rj with supervoxels Vi, Vj respectively.

~cVk =
aVi ∗ ~cVi + aVj ∗ ~cVj

aVi + aVj
(6.2)

Where aVi and aVj denotes the size of supervoxels i and j, adding those two volume size

is equal to the size of the merging result between them. The ~cVk denotes the new colour

average if Vi and Vj are merged.

δes~c(Vi, Vj) =

(
aVi ∗

∥∥∥(~cVi − ~cVk)∥∥∥
2

)
+

(
aVj ∗

∥∥∥(~cVj − ~cVk)∥∥∥
2

)
(aVi + aVj)

(6.3)
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The δes~c(Vi, Vj) denotes colour Euclidean distance between Vi and Vj, considering the size

and colour of the supervoxels.

velVi =
1

nfVi

√
(cx2Vi − cx1Vi)2 + (cy2Vi − cy1Vi)2 (6.4)

dirVi = arctan
(cy2Vi − cy1Vi)
cx2Vi − cx1Vi

(6.5)

δ~d(Vi, Vj)) = dirVi .velVi − dirVj .velVj (6.6)

δv(Vi, Vj) represents the merging cost if supervoxel i and j are merged. The merging

cost consists of two factors: the combinations of colour and size factor δes~c(Vi, Vj) and the

movement factor δ(~d(Vi, Vj)) while α and β are coefficients of colour and movement re-

spectively. The colour and size factors are computed based on the colour model vecc(Vi)

difference multiplied by the size of the supervoxels N(Vi). The colour difference is com-

puted using L-2 norm. The movement speed and direction of a supervoxel is computed

by the movement of the centroid of the region of a particular supervoxel at the starting

frame and the intersection of the supervoxels at the terminated frame. vel(Vi) denotes

the movement speed of the centroid, it is calculated by using a quadratic formula of

horizontal and vertical displacements of the centroid, divided by the number of frames

of the supervoxels. The direction dir(Vi) is computed in polar coordinates. The distance

between a pair of supervoxels δ(~d(Vi, Vj)) is calculated by the difference in their direction

speeds.



6.3. SUPERVOXEL MERGING 143

6.3.3 Merging

The merging procedure conforms to that discussed in the general framework (Chapter

3). It is performed sequentially in regard to equation 6.1. The merging history is recor-

ded in the binary tree structure. In every iteration, the edge’s list is updated, and the

upcoming selected pair is decided. The tree appearance shows no difference to the BPT

of a single frame. The main difference between of the supervoxel BPT is that the node

in the tree represents a series of regions in subsequent frames instead of a region in a

particular frame. In this volumetric approach, every single node represents a supervoxel

which is the correlated region across frames with a consistent label.

The merging operation is carried out on the Volume Adjacency Graph (VAG), which

is constructed from all edges of every node. An illustration of a VAG can be seen in

Figure 6.1(b). The merging order depends on the edge weight in the graph. A lower

merging cost will result in a higher place in the merge order. When partitions Vi and

Vj are selected for merging, the corresponding edge is discarded from the VAG, and the

affected edges’ weights are updated. The merging is iterated until no more edges are left

in the updated volume adjacency graph. When the merging is stopped, the root node is

achieved at the top of the tree, and represents the entire video. The number of iterations

needed to achieve the final root node is n− 1, where n is the number of initial partitions.

The total number of nodes in the tree after merging will be 2n− 1.

The BPT represents a multilevel view of video segmentation. The top node is the

root which represents an aggregate of the entire video. The lowest child nodes are the

original pre-segmentation. The other nodes are a result of the selective merging process.

The higher levels give a smaller number of big supervoxels (under-segmentation) while
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(a) Top 6 Levels of BPT (b) Plot of 2nd Level at frame 1

Figure 6.5: Top Level BPT of Carphone Video

the lower levels give a large number of small and often meaningless over-segmented

supervoxels.

Figure 6.5 shows pieces from the top-level of the BPT for the ‘Carphone’ video. The

number of original regions from the watershed pre-segmentation result before merging

was 2675 partitions. After the merging task was carried out the multi-scale segmentation

is presented in a BPT consisting of 5349 nodes. An illustration of the BPT and a plot of

the corresponding volumes can be seen in Figure 6.2. At the second level from the top for

example, it consists of two partitions only. The node in that level is illustrated in Figure

6.5(b); It shows two spatio-temporal neighbouring partitions. As can be seen, every

single node represents the correlated regions across frames (in the actual experiment, it

consists of 20 frames consistent partitions, although for illustration purposes, only seven

frames are drawn).
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Figure 6.5(b) shows a plot of the volumes at level 2 and shows some simple semantic

content in the right node(yellow), which represents the car window, while the left node

(red) is not semantically meaningful as it is an under-segmented partition. Relying on the

level of the tree cannot ensure that the nodes in a particular level are salient enough to

be object candidates. As can be seen in Figure 6.5(b), the red partitions experienced an

excessive merge, because they are under-segmented and contain more than one object.

Tree representation allows detailed browsing to the lower level of the tree, whenever a

node is under-segmented. The question of to what extent detailed browsing is needed

and where the salient node can be discovered in a cluttered tree with thousands of nodes

is not easy to answer, however.

6.4 Evolutionary analysis for Tree Simplification

Evolution analysis was introduced in [120] to identify the salient nodes in the BPT of a

still image. This chapter proposes to extend the idea to a BPT of volumetric video. In the

previous work, the evolution involved growing spatial regions while, in this approach,

the supervoxel grows in the spatio-temporal axis. Supervoxel BPT is a historical merging

archive that created over initial supervoxels refers to the merging rule set out in section

6.3.3, which respect to the merging cost formulated in equation 6.1. The merging cost

considers colour and movement of supervoxel. Evolutions need to take into account both

factors in order to examine a merging event considered as normal or critical. The speed

and direction of a partition is simplified by calculating the angle of the supervoxel. For

example, if there is a pair of supervoxels that have similar colour but move in distinct

directions, they are not supposed to be merged because they probably belong to different



146 CHAPTER 6 Volumetric Approach

object candidates.

The basic idea of evolution analysis is categorizing the merging task as normal or

critical. Normal merging happens between two partitions with small differences, with the

outcome being a new composite partition with small changes. Critical merging happens

between a pair of neighbouring partitions with highly different features. Because of that

the merging result will be very different compared to the original partitions.

The initial segmentation produces vast numbers (around thousands) of small super-

voxels. If the number of initial partitions is n there will be n number of possible paths

from the leaf to the root. Paths can be defined as P = {P1, P2, Pn}, and each path has

a collection of nodes from the lowest leaf towards the root. Every individual path is

defined as Pi = {nd1, nd2, ..., ndl} while l is the number of nodes along the path from

the lowest leaf to the root, l can vary for each path. The evolution for every path Pi is

defined as:

γ(k) = α.~cndk + β.~dndk k ∈ {1...l} (6.7)

Where γ(k) is the evolution function at level k of a certain path, ~cndk and ~dndk are

average colour and centroid movement of node k, α and β are constants to control the

proportion of mean colour and centroid movement.

Figure 6.6 plots the evolution function against the node number (k) for the ‘Carphone’

video. It begins at layer 1, (the lowest child node) towards layer 23 at the top of the tree.

It is observed that for the first six nodes, the colour and centroid movement remain steady

at around 80. This means that for the first six layers the partitions are homogeneous,

indicating the same salient object. A discontinuity is observed at k = 6, this is a cue that
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merging has occurred between heterogeneous supervoxels. A prominent discontinuity is

at k = 21, indicating that it is likely that at this point the merge has occurred between

dissimilar objects, as can be seen in the plot of the first frame of that particular node,

and the result when they merge (see Figure 6.6).

In order to identify the critical merges, a mathematical tool is adapted from [120]. A

modified first and second derivative is employed.

γ′(k) =| γ(k)− γ(k − 1) | (6.8)

γ′(k) =| (α.~cndk + β.~dndk)− (α.~cndk−1
+ β.~dndk−1

) | k ∈ {2...l} (6.9)

γ′′(k) = γ(k − 1) + γ(k + 1)− 2γ(k)

(6.10)

γ′′(k) = (α.~cndk−1
+ β.~dndk−1

) + (α.~cndk+1
+ β.~dndk+1

)− 2(α.~cndk + β.~dndk) k ∈ {2...l}

(6.11)
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Figure 6.6: Plot of The Peaks, k = 21, Node in The BPT and The Projection in The First

Frame

By substituting equation 6.7 to equation 6.11 the evolution of volume in the tree can

be tracked and plotted in a graph, as shown in Figure 6.6. As can be seen in Figure 6.6,

for the γ(k) graph (the red line), it is observed that for the first 12 nodes, the colour and
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centroid movement remains steady at around 80. This means that for the first 12 layers

the partitions are homogeneous, indicating they belong to a single object. A discontinuity

is observed is at k = 13, this is a cue that merging has occurred between heterogeneous

volumes. It is likely at this point that the merge has occurred between two dissimilar

objects.

The difference between the parent node (k+1) and the current node (k), γ(k+1)−γ(k)

is considered to be the first derivative of γ(k). A critical merge between left child and

right child (sibling) can be identified by the value of the first derivative of γ′(k). Figure

6.6(b) shows the evolution of the volume along a path, a value close to zero means a

homogeneous merging has taken place. According to equation 6.11, the peak of the

evolution is observed where the second derivative γ′′(k) crosses the zero line. Equation

6.9 calculates the magnitude of change along each path. An example of the highest peak

in Figure 6.6 at k = 21 shows a critical merging when the face of the people starts to

merge to the background.

A modified second derivative is employed to identify the maxima (peak). The maxim-

a/peak is marked by negative value of the the second derivative function. Many peaks

could be small enough to indicate that a critical merging has occurred, however. In this

experiment, therefore, the algorithm will select the three highest peaks detected in each

path. The selected peaks will be ordered with regard to its value. The first peak (highest)

in each path is considered as the most critical merging event, where a very heterogeneous

supervoxels merged. It is indicated that the pair of supervoxels most likely belonging to

different objects. The set of nodes that have the highest peak during is the evolution

forms a set of pruning node candidates called simplification1. The second and the third
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peak forms simplification2 and simplification3 respectively. The BPT is pruned in or-

der to get simpler version as illustrated in Figure 6.7. With regard to the original video,

an over-segmented result will occur, as can be seen in Figure 6.7(a). Conversely, if the

highest peak in every path is selected, the result will be under-segmented, as seen in

Figure 6.7(c).

(a) simplification3 trees (b) Final Segmentation Result

(c) simplification2 trees (d) Final Segmentation Result

(e) simplification1 trees (f) Final Segmentation Result

Figure 6.7: Simplified BPT and its Corresponding Segmentation at Frame 1 of ‘Carphone’

Video
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As can be seen in the result of the proposed algorithm in Figure 6.7, three levels of

simplification are provided. The algorithm does not define a final single partition. It

is designed to identify sets of important nodes on the tree. Each set of nodes can be

scattered in any level of the original BPT. Simplification1 comes from the highest peak

in every path, simplification2 and simplification3 from the second and third highest.

These are the two requirements that have to be fulfilled by every member of simplifica-

tion sets. Firstly, none of the node members of the simplification set have parent-child

relationships, either directly or indirectly. Secondly, the size accumulation of all nodes in

the simplification set has to be equal to the size of the video. The proposed algorithm is

summarized as follows:

1. Create a BPT of a video

(a) Pre-segment using the pre-segmentation algorithm.

(b) Calculate the mean colour and centroid motion.

(c) Form a Volume Adjacency Graph (VAG).

(d) Iteratively merge the partition until the root is obtained, update VAG in every

step.

2. Evolution analysis to identify simplified BPT

(a) Prepare a variable (P ) to records peaks data consisting of (path number, {node

number, peak value})

(b) Calculate the peaks for each path and record in the variable P .

(c) For all identified peaks, select the first, second and third highest peak in every

path and record the peak value and node number in the simplification1,

simplification2 and simplification3 sets.

(d) Select only unique nodes in these sets.
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(e) Check all the member of simplification set, if a sibling of a node do not in-

cluded in simplification sets add the sibling node.

(f) Check if there is a direct or indirect child-parent relationship, and choose the

child as a member of the set and remove the parent.

3. Plot the salient video segmentation according to the peak node

(a) Prune the BPT at the nodes in the simplification sets.

(b) Plot the supervoxels correspond to the simplification sets.

6.5 Results and Evaluation

In order to assess the segmentation results before and after simplification, boundary

recall, under-segmentation error and over-segmentation rate are measured. The ideal

value of recall is one, which is achieved when all boundaries in the ground truth are

completely aligned with the boundaries of the segmentation result. Under-segmentation

error happens when two partitions belonging to different objects in the ground truth start

to merge. A boundary of the ground truth therefore exists but cannot be found in any

segmentation result. A higher under-segmentation value leads to many objects being

missing from the segmentation result because they were excessively merged. Under-

segmentation shows the error rate caused by excessive merging.

The simplification task begins with an over-segmentation condition. Simplification

aims to detect where the tree must be pruned in order to get a simpler version of the

tree and to discover salient nodes close to the expected object. In the real experiment,

however, the result hardly achieves a hundred percent correct segment conforming to the
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ground truth. This is due to two reasons: firstly, because of the ground truth itself. The

ground truth of the test video has been produced by human subjects who manually craft

the boundary of each region object in every single frame. The available ground truth

does not therefore reflect the absolute truth in that the segment may be interpreted dif-

ferently. The second factor is the simplification algorithm. Without any prior knowledge

of the object within the scene, simplification algorithms rely on the intrinsic features

only. Nevertheless, comparing with ground truth is one of the most feasible ways to

measure the quality of segmentation objectively. The comparison of the boundary recall

of the initial pre-segmentation and simplification results is presented in Table 6.5. The

comparison of under-segmentation error can be seen in Table 6.7.

In this chapter, the test video sequence from the xiph.org data set is used. Accumu-

lated boundary recall, under-segmentation error and over-segmentation rate are evalu-

ated. Moreover, the execution time is also compared.

6.5.1 Pre-Segmentation

Pre-segmentation aims to obtain an initial partition where the merging process would

begin. Pre-segmentation produces a number of small partitions, and it is desired to

avoid loss of detailed information. Watershed and SLIC are selected to prepare initial

supervoxels. Figure 6.9 shows the visual pre-segmentation result of the first frame of the

test video sequences using both algorithms.

The watershed is executed in a three-dimensional using 26 pixels neighbourhood.

The implementation of watershed is available in the MATLAB standard. Watershed al-



154 CHAPTER 6 Volumetric Approach

Table 6.3: Watershed Pre-Segmentation Result

No Video Name Quantity Size Duration Recall Precision

1 bus 61048 9.723 2.336 0.939 0.364

2 container 51912 13.741 2.568 0.942 0.172

3 garden 47548 11.670 2.493 0.944 0.182

4 ice 22373 51.095 2.859 0.945 0.219

5 paris 48016 14.705 2.521 0.942 0.086

6 salesman 13197 12.809 2.424 0.940 0.180

7 Soccer 54320 11.810 2.641 0.945 0.153

8 Stefan 39999 14.748 2.436 0.943 0.143

gorithms work on gradient magnitude video as converted from its colour version. Water-

shed works without needing any parameter setting.

SLIC is a modified K-means introduced by [69] The implementations of SLIC super-

voxels are publicly available from their website. It works with the original colour video.

The SLIC algorithm inherits K-means properties, it needs a certain number of expected

quantity of partition K. In the experiment, K is supplied indirectly by defining the ex-

pected size of partition. In this experiment the expected size is set to 1000. This means

that the expected K is equal to the number of voxels divided by 1000. For example if

we have a video with frame resolution of 200 x 100 and it has 20 frames, it consists of

400,000 voxels, if the expected size of partition is 1000, the expected K is 400,000/1000

and is equal to 400.
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Figure 6.8: Visual Result of Pre-segmentation of The First Frame of The Video Tests
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Figure 6.9: Visual Result of Pre-segmentation of The First Frame of The Video Tests
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Table 6.4: SLIC Pre-Segmentation Result

No Video Name quantity size duration recal precision

1 bus 2642 767.416 9.388 0.929 0.422

2 container 2465 822.523 10.068 0.965 0.245

3 garden 2227 758.681 10.273 0.960 0.199

4 ice 2395 846.563 9.477 0.985 0.299

5 paris 2735 741.320 10.455 0.900 0.104

6 salesman 608 833.664 10.016 0.894 0.207

7 Soccer 2584 784.644 8.957 0.926 0.231

8 Stefan 2419 698.470 9.079 0.980 0.179

The detailed partition produced in the pre-segmentation task is evaluated in order to

see the condition before the simplification task is performed. Tables 6.3 and 6.4 show

the evaluation results for watershed and SLIC respectively. The quantity describes the

number of partitions obtained by the pre-segmentation task. The size column shows

the average size of supervoxels in the entire video.The duration column is taken from

the average supervoxel life time during temporal axis. Recall and precision describe

how well the boundaries of the partitions aligned to the boundaries of the ground truth.

Recall describes the average recall value from all frames in the entire video. Average

precision also shows in the precision column.

As can be seen in the column quantity of Table 6.3 and Table 6.4, watershed produces

around twenty times more partitions compared to that of SLIC. It is directly affected by

the average size and duration. The boundary recall and precision of both algorithms
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are not much different. SLIC gives 0.9423 on average for boundary recall values, while

watershed yields slightly better at 0.9425. The value indicated that around 94 percent

of ground truth boundaries are correctly aligned to the result of segmentation and six

percent of the ground truth boundary were not well matched to the boundary of the

segmentation results. In regard to the quality evaluation, therefore, both algorithms

yield nearly the same in terms of the quality boundary recall and precision.

6.5.2 Simplification Results

Pre-segmentation produces quite high boundary recall results, but it still comprises too

many partitions compared to the expected number of segments. Further tasks therefore

need to be done in order to reduce the final number of segments. According to Tables 6.4

and 6.3, the quantity of partitions for the first twenty frames of video in the experiments

is around forty thousand for watershed and approximately two thousand for SLIC. It is

still far from the expectations in the ground truth, however, which consists of twenty

partitions on average. Simplification aims to reduce the number of partitions to be as

close as possible to the expected number of regions while still maintaining a good value

of boundary recall and a small under-segmentation error. In other words, the objective of

simplification is to maximize the boundary recall, minimize the under-segmentation error

and maximize the over-segmentation rate. The over-segmentation rate is calculated as a

fraction between the expected quantity of ground truth partitions and the actual number

of partitions in the segmentation or simplification result. The ideal value is one, which is

achieved when the number of segment equal to the quantity of expected ground truths.

In our proposal, the simplification is performed in three levels and gives a different set
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of results.

Table 6.5: Boundary Recall and Precision After Simplification for Watershed Pre-

segmentation

No
Video

Name

simplification1 simplification2 simplification3

Recall Precision Recall Precision Recall Precision

1 bus 0.87589 0.3890 0.83962 0.4154 0.85878 0.3887

2 container 0.80775 0.3838 0.86931 0.3220 0.90438 0.3478

3 garden 0.86945 0.2117 0.87233 0.2066 0.91650 0.1926

4 ice 0.85432 0.3417 0.87788 0.3437 0.88279 0.3485

5 paris 0.81590 0.1005 0.87992 0.1019 0.86842 0.1029

6 salesman 0.87662 0.1771 0.89127 0.1755 0.87717 0.1742

7 Soccer 0.86293 0.2397 0.86106 0.2016 0.85610 0.2063

8 Stefan 0.91892 0.1499 0.91717 0.1546 0.91976 0.1534

Comparing Table 6.5 and Table 6.6, the watershed algorithm generally produces a

better rate of boundary recall compared to that of SLIC. At the same time watershed

produce a worse over-segmentation rate, as presented in Table 6.7. Figure 6.10 compares

the result of the simplification3 with the boundary recall produced by BPT on watershed

and SLIC. The watershed in general produces better boundary recall but gives more

partitions, while SLIC tends to slightly lost the boundary recall but produces a smaller

number of partitions. SLIC, therefore, has a better over-segmentation rate, which means

that every partition in the SLIC occupies a wider area of the ground truth.
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Table 6.6: Boundary Recall and Precision After Simplification for SLIC Pre-segmentation

No
Video

Name

simplification1 simplification2 simplification3

Recall Precision Recall Precision Recall Precision

1 bus 0.66464 0.44638 0.75042 0.47900 0.71234 0.46083

2 container 0.63684 0.43098 0.63273 0.44946 0.71324 0.34534

3 garden 0.78030 0.23310 0.83584 0.23010 0.86257 0.21876

4 ice 0.81037 0.71260 0.82524 0.68157 0.92614 0.47109

5 paris 0.70803 0.14093 0.72510 0.14351 0.75995 0.12477

6 salesman 0.60898 0.19501 0.70264 0.20793 0.68151 0.20148

7 Soccer 0.67323 0.44592 0.68289 0.46326 0.68611 0.45379

8 Stefan 0.80817 0.27324 0.80990 0.26985 0.87564 0.26502

Table 6.8: Under-segmentation Error Before and After Simplification for Watershed and

SLIC Pre-Segmentation

No
Video

Name

Watershed SLIC

Preseg Simp 1 Simp 2 Simp3 Preseg Simp 1 Simp 2 Simp3

1 bus 0.709 0.832 0.825 0.750 0.310 0.695 0.798 0.803

2 container 0.513 0.380 0.432 0.414 0.084 0.562 0.554 0.497

3 garden 0.661 0.599 0.603 0.592 0.121 0.744 0.709 0.558

4 ice 0.335 0.390 0.389 0.373 0.069 0.164 0.161 0.104

5 paris 0.240 0.303 0.286 0.306 0.066 0.269 0.228 0.221

6 salesman 0.387 0.484 0.442 0.438 0.153 0.411 0.371 0.446

7 Soccer 0.669 0.754 0.750 0.701 0.077 0.443 0.437 0.439

8 Stefan 0.640 0.547 0.522 0.517 0.075 0.364 0.362 0.276

average 0.519 0.536 0.531 0.511 0.119 0.456 0.452 0.418
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Table 6.7: Over-segmentation Rates Before and After Simplification for Watershed and

SLIC Pre-Segmentation

No Video
Watershed SLIC

Pre Simp1 Simp2 Simp3 Pre Simp1 Simp2 Simp3

1 bus 0.0010 0.0231 0.1407 0.0512 0.0062 0.065 0.098 0.090

2 container 0.0012 0.4246 0.0786 0.0608 0.0066 0.242 0.327 0.119

3 garden 0.0008 0.1401 0.0817 0.0243 0.0045 0.197 0.067 0.032

4 ice 0.0015 0.0406 0.0537 0.0419 0.0045 0.164 0.114 0.030

5 paris 0.0008 0.0795 0.0169 0.0241 0.0034 0.097 0.070 0.025

6 salesman 0.0024 0.1223 0.0389 0.0359 0.0135 0.185 0.082 0.052

7 Soccer 0.0009 0.0757 0.0367 0.0511 0.0059 0.193 0.147 0.119

8 Stefan 0.0011 0.0418 0.0633 0.0339 0.0054 0.499 0.138 0.084

The conditions before and after simplification can be observed in Table 6.3, Table 6.3,

Table 6.5 and Table 6.6. Simplification is performed by merging a number of pairwise

partitions, with the associated risk of excessive merging. Excessive merging between two

partitions causes the boundary separated two objects in the ground truth to dissolve. It

affects the declining value of boundary recall. Although during simplification, excessive

merging was avoided by identifying the critical merging, there is still the potential for it

to occur. Particularly when a pair of partitions have low contrast, although they belong to

different objects, the feature distances between them are small. In such circumstances,

the boundary recall of the simplification result tends to drop compared to the pre-

segmentation result. Moreover, at the simplification of lower peaks (i.e. simplification2
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Figure 6.10: Comparison of The Result of simplification3 Between Boundary Recall and

Over- segmentation Rate

and simplification3) produces a smaller rate of under-segmentation, but at the same

time it shows more partitions involved and therefore worse over-segmentation rate. In

Figure 6.11, the results of simplification can be visually observed. Because of space lim-

itation, only the first frame of three video clips are figured out while the complete results

for all frames are available in Appendix B for the ‘Soccer’ video. The remaining results

are available in the digital format.

In Table 6.8 the under-segmentation errors are presented. In general, the under-

segmentation error before simplification is smaller than the condition after simplification.
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A small value is expected in this parameter. SLIC gives better results in terms of under-

segmentation error.

Watershed SLIC
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Figure 6.11: Visual Comparison of Simplification 1,2 and 3 of The First Frame ‘Ice’ Video

Test Using Watershed Versus SLIC Pre-segmentation
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Figure 6.12: Visual Comparison of Simplification 1,2 and 3 of The First Frame of ‘Bus’

Video Test Using Watershed Versus SLIC Pre-segmentation
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Figure 6.13: Visual Comparison of Simplification 1,2 and 3 of The First Frame of ‘Soccer’

Video Test Using Watershed Versus SLIC Pre-segmentation

As can be seen in Figures 6.11, 6.12 and 6.13 the simpification2 and simplification3

shows gives a lot more details segmentation compared to the simpification1. The
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tendency for over-segmentation error can be clearly seen in the simpification2 and

simpification1 result. For example, in Figure 6.13 on BPT of SLIC, the ball on the soccer

video has undergone excessive merging and was merged to background in simplification2,

compared to simplification3 where it still perfectly segmented. Consequently, the score

for the under-segmentation error gets higher and the boundary recall becomes lower in

the simplification2. Loss of detailed information is an undesirable property of segment-

ation; therefore, it must be avoided.

6.5.3 Running Time

Figure 6.14 shows the total execution time for all tasks needed to segment and sim-

plifies the tree for every frame of the test video sequence. The detailed execution time

for each task can be seen in Table 6.9. The running time for segmentation is insignificant

compared to the entire running time. It can be understood that the BPT preparation and

simplification in the watershed take a much longer time, due to the number of iterations.

The number of iterations is directly proportional to the number of the pre-segmentation

results. Consequently, watershed algorithms take longer to complete all the tasks.

Watershed takes far longer to prepare a complete binary partition tree and simpli-

fication compared to SLIC. It is directly affected by the number of iterations needed to

achieve the final root node. The number of iterations in preparing BPT was twice the

quantity of partitions in the pre-segmentation result. The iteration in preparing BPT for

the partitions yielded by watershed is much higher than that of SLIC, therefore. Although

the pre-segmentation needs longer in SLIC, the rest of the tasks needs a smaller amount

of time. In total from the pre-segmentation to the simplification for all three peaks shows
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that SLIC is computationally lighter than watershed.

The running time presented in this thesis was executed using a PC with specification:

Intel Core i7 2.10 GHz processor, 8GB memory with Windows 7 Home Basic operating

systems.

Figure 6.14: Total Running Time Comparison in Milliseconds

The total running time shows that SLIC generally needs smaller amounts of time to

complete all tasks. In terms of pre-segmentation, however, watershed outperforms SLIC.

Watershed needs around 2.5 milliseconds for each frame to produce a partition, while

SLIC takes around 500 milliseconds (0.5 second) to perform pre-segmentation. Con-

versely, preparations for the BPT and the simplification need a much shorter duration on
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Table 6.9: Running Time in Milliseconds (for 20 Frames)

No Video
Watershed SLIC

Pre BPT Simp Total Pre BPT Simp Total

1 bus 3.4 2,668.7 1144.6 3,816.7 571 53.3 61.5 685.7

2 container 2.9 2,606.3 1242.9 3,852.0 566.3 26 36.4 628.6

3 garden 2.4 1,372.6 727.1 2,102.1 497.1 27.7 26.4 551.2

4 ice 2.6 523.8 190.2 716.6 575.7 29.5 45.6 650.8

5 paris 3 1,499.1 738.3 2,240.5 568.9 23.7 45.3 637.9

6 salesman 0.6 139.6 58.7 198.9 132.1 3.1 3.8 139.1

7 Soccer 3 2,129.6 1278.0 3,410.6 732.7 19.7 45.2 797.6

8 Stefan 2.5 1,271.5 527.7 1,801.7 401.3 49.1 64.7 515.0

SLIC. BPT preparation and simplification depends on how many iterations are needed.

Because SLIC generates a fewer number of initial supervoxels, the number of iterations

in forming the BPT and simplification is fewer, meaning that, the speeds of the two re-

maining tasks are faster.

6.6 Record supervoxel BPT and Simplification

The pre-segmentation and simplification results that have been discussed are designed

to support the metadata. The result is recorded into the database.The volumetric ap-

proach produces a number of volumes/supervoxels. A supervoxel is recorded in the

supervoxel table, while the neighbourhood relationship is recorded in the svEdge table.
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The neighbourhood relationship is classified into spatio-temporal and temporal edges

and will be recorded in type column in the svEdge table as metadata designed in figure

3.12.

6.7 Conclusion

As suggested in Chapter 4, the proportional Euclidean similarity measure is light

enough in terms of computation and maintains the quality of the result, as indicated

by the high boundary recall rate. For that reason, it is implemented in this chapter. The

simplification algorithm prepares three levels of simplification namely simplification1,

simplification2 and simplification3. In order to take into account the motion, the

weighted speed and direction of the supervoxels are added to the final similarity meas-

ure. Two pre-segmentation algorithms are evaluated in relation to their production of

the initial supervoxels. The K parameter of SLIC is indirectly set by setting size of the

window search at 1000. The experiments try to reveal the preferred technique to provide

reliable output. The expected output is a simpler version of the tree, and thus a simpler

segmentation of the video that still keeps the boundary of the objects. It is measured by

comparing the segmentation result to the ground truth across frames.

Pre-segmentation is carried out by watershed using 26 pixel neighbourhoods in order

to work with three-dimensional space time matrices. The result is highly over-segmented

with 42,000 partitions yielded in 20 frames of video tests (see Table 6.3). The duration

of the supervoxels relatively short in less than three frames out of a total of twenty one

available. The total number of nodes in a BPT will doubled of the number of the initial
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supervoxels (n). The simplification process will look for the critical merging events on

the forty two thousand paths along the tree.

On the other hand, BPT constructed on SLIC initial pre-segmentation is simpler. The

initial supervoxels is around 2000 with an average of nine frames out of 20 available

(see Table 6.4). Compare to the BPT constructed from initial supervoxels yielded by

SLIC, which started with around 2000 partitions with around nine frame duration on

average ( See Table 6.2) with similar video tests. The total number of nodes in entire

BPT before simplification consists of around 4000. The simplification process will look

for the critical merging events on the 2000 paths along the tree. It is obvious why

BPT creation and simplification through SLIC is much faster than through watershed.

According to Figure 6.14 for almost all the video tests the entire process is faster in SLIC

than in watershed.

Quality of output is expected to be closer to the available ground truth. This is meas-

ured by boundary recall, under-segmentation error and over-segmentation rate. Ac-

cording to Tables 6.6 and 6.7 the boundary recall of simplification1, simplification

and simplification3 in watershed are superior to that in SLIC. The precision of SLIC in

simplification1, simplification and simplification3 is generally better than that in wa-

tershed. This suggests that in watershed, the simplification results keep the unnecessary

boundary that doest not exist in the ground truth. This conforms with Table 6.7 in respect

to the over-segmentation rates. On average, SLIC gives a better over-segmentation rate.

This confirms that the simplification through SLIC provides a close number of segments

as those in the ground truth. For example, simplification1 of ‘Ice’ video in Table 6.7

shows SLIC at 0.164 while in watershed it is 0.091. This means that in simplification1
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in SLIC, each segment in the output occupies 0.164 of the ground truth while in the

watershed it take up only 0.091 part. Considering the boundary region recall, preci-

sion, over-segmentation rate and speed, the simplification of supervoxels BPT in SLIC

performs better than that in watershed.



Chapter 7

Region Based Metadata

7.1 Introduction

This chapter is dedicated to discussing our proposal for regional based metadata and

spatio temporal queries. The metadata is generated from the simplification result dis-

cussed in previous chapters. The metadata is designed to convey visual content in more

human-like textual data rather than recording meaningless intrinsic data such as RGB

code, pixel position in numeric x, y and z or motion vector. The metadata is provided

in order to allow the proposed prototype to answer information enquiries regarding the

video content.

The term metadata has been widely used in relation to videos and images to refer to

some device embedded technical data such as device identity, date time and location(geo-

tagging). MPEG-7 also enables object annotation in a video, although it does not have

any standard for the automatic extraction of audiovisual (AV) descriptions/features, and

172
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or for its search mechanism [9]. We intend to record textual information regarding the

video content in a relational database (RDBMS) in order to allow an adaptation of the

standard query language to interact with the metadata.

Currently, there are many approaches to content querying. For example, [109] use

query by example (QBE) and query by feature to express the information requests to

the multimedia database system. Another approach [101] uses object SQL to reveal the

data from a video database. In our example, a standard query language is adapted with

a number of extensions in order to deal with spatio temporal data. Some additional

keywords are therefore introduced, and special functions are prepared to empower the

RDBMS machine to be able to carry out the spatio-temporal logic.

Preceding chapters have proposed many ways to harvest the object candidates from

the video content. Some of the candidates may be close to the real object as represented

in the available ground truth, however, the rest may still be meaningless. The object

candidates in the various levels prepared in the binary partition tree would be turned

into metadata.

The designed metadata conveys region statistics for multiple frames in a video. Re-

gion features include colour, area, location in a frame, and its presence in the frames,

together with child-parent distance their relative colour compared to their neighbours.

The content of the metadata is listed below:

1. Volume/supervoxel identity

2. Node level in the binary partition tree

3. Node statistics(colour average, size, centroid)
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4. Nodes distance to its parent and child in the tree

5. Nodes distance to its neighbours in spatio-temporal space

6. Supervoxels in temporal domain (how long it is alive, how far it is moving)

The rest of this chapter will discuss a number of important issues such as: the database

design, the function to convert nodes in the BPT into video metadata, the design of the

spatio-temporal query and the function to deal with it, the prototype of the multimedia

database management system to manage the video content based on a binary partition

tree and the evaluation of the result for a number of spatio temporal operations.

7.2 Metadata Modelling

Metadata is designed to record nodes and the neighbouring relationships of the BPT

structures. In addition to metadata, the original video and label map of the video are

recorded. A pre-segmentation task prepares the label map which reflects the initial su-

pervoxels. Metadata permits a content information request to be processed without ac-

cessing the original video. BPT structures allow multi-scale information processing, for

example, if an information request fails to get the answer in the high level tree, the

searching mechanism can track down to the lower level (i.e. access more detail). The

searching is considered to have failed whenever it reaches the lowest level of the tree

and the desired information has not been found. Figure 7.1 illustrates the relationship

among query, metadata and the binary partition tree. Searching is performed using the

metadata which follows the BPT structure, the video and the original label map need to

be accessed in order to display the result visually.
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Figure 7.1: System Architecture

The BPT generator and simplification tasks produce a number of nodes in any level

from the most detailed and small up to the entire global content. The information of how

far a node stands out from its neighbours is also provided as a result of critical merging

identifications. Although some salient nodes were therefore identified, the information

obtained is not user friendly. For example, the colour of the region is recorded in numeric

RGB values instead of its colour name, and the displacement of the centroid which is

considered as the region motion speed and direction is also numerically recorded. In

order to prepare for a term in a human language, an interface needs to be provided with

the information necessary to convert that numeric value into human terminology. The

original value is still kept in the metadata in order to serve a more accurate information

request from another machine processing task such as robot vision.

The main structure of video metadata consists of the reference table, original video
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identity, node and neighbourhood. Reference tables allow conversion from numerical

values into a textual term of colour and direction of movement. Video tables are provided

in order to record the identity of the video. The processing results are documented in

some entities such as supervoxel, superpixel and the edges. The structure of the database

can be seen in Chapter 3, Figure 3.12 and the detailed context of each database table is

described in Table 7.1.

Table 7.1: Explanation of The Database Table Usage

No TableName Usage Data Producer Data Usage

1 video Record the identity of the

video, location of the ori-

ginal video and the original

label map produced by pre

segmentation algorithm

spatial ap-

proach, volu-

metric approach

answer user

query

2 superPixel Record the frame/single

image pre-segmentation

and simplification

spatial ap-

proach, pro-

jection of

volumetric

approach

answer spatial

user query

3 spatialEdge Record the region/super-

voxel neighbourhood, con-

trol the merging order for

spatial approaches

spatial segment-

ation, spatial

merging

answer spatial

neighbouring

query

Continued on next page



7.2. METADATA MODELLING 177

Table 7.1 – Continued from previous page

No TableName Usage Data Producer Data Usage

4 temporal

Edge

Record the inter frame re-

gion neighbourhood

temporal re-

lationship

establishment

task

answer user

temporal query

5 supervoxel Record the volumetric mul-

tiframe pre-segmentation

and its simplification

supervoxel seg-

mentation and

simplification

answer spatio

temporal query

6 svEdge Record the spatiotemporal

neighbourhood relation-

ship

supervoxel seg-

mentation, su-

per voxel mer-

ging and super-

voxel simplifica-

tion

answer spatio

temporal query

7 refColour Record colour reference

and the textual term of col-

our

input answer textual

colour term

query

8 refDirection Record the direction refer-

ence and textual term of

direction

input answer textual

direction term

query

In the implementation, this database is stored in MySQL. Standard query processing

of the data is handled by this database management system machine.
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7.3 Conversion of Binary Partition Tree into Metadata

Metadata includes all the data processing results in the pre-segmentation and simpli-

fication tasks discussed in the previous chapters. Some conversions need to be done in

order to provide human terminology for some features. Colour conversion is carried out

according to the colour value and colour space referring to the reference table. Colour

conversion needs to be done when the conversion of BPT to metadata is performed. Dir-

ection, either in motion or neighbourhood (spatial edge, does not need to be converted

into textual value: the original value will be kept. Conversion only needs to be per-

formed when a query request is accepted with a direction specific keyword. In order to

perform a direction query, the algorithm will accept the desired direction from the query

and convert it to a numerical value according to a reference table. The answer to the

direction query will be found in the data according to the numerical value calculated.

7.3.1 Direction Mapping

In order to provide the metadata in a readable form for humans, a query related to

direction does not need to provide the exact angle and speed of the direction. The human

language of direction is accepted by a query processor. The direction query processor

will translate the request into appropriate numeric data in the actual metadata. The

references for direction can be seen in Figure 7.2, while the conversion from the angle

to textual direction can be seen in Table 7.2.

The direction conversion table allows different references to be applied if desired. The

direction would be recorded as the original numerical value. The direction reference is
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Figure 7.2: Reference Direction

Table 7.2: Conversion table from angle to semantic

code Semantic Semantic Radian angle Degree min Max

0 upper North 1.57 90 67.5 112.5

1 upper right north east 0.785 45 22.5 67.5

2 right east 0 360 337.5 22.5

3 under right south east -0.785 315 292.5 337.5

4 under south -1.570 270 247.5 292.5

5 under left south west -2.356 225 202.5 247.5

6 left west 3.14 180 157.5 202.5

7 upper left north west 2.356 135 112.5 157.5
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employed in order to answer the query. For instance, when the query state ‘motion =

left’, the algorithm refers to the table refDirection and reads all the nodes adequate

the direction value. The maximum and minimum value of each direction is allowed to

deviate for each angle. For example, the ‘left’ direction is 180 degrees, but it is allowed

between 157.5 to 202.5.

Algorithm translateDirection Assign Textual Colour for all Nodes

1: procedure TRANSDIRECTION(textdirection) . Translate direction query

2: Direction← refDirection(directionName = textdirection)

3: nodesResult← Nodes(nodes.directionbetween(Direction.min)to(Direction.max))

4: return i

5: end procedure

7.3.2 Colour Textual Mapping

In order to simplify the colour semantic, a simple 16 colour range is mapped to the

RGB colour code. This is usually used in web save colour code (source HTML 4.01

Specification section 6.5 "Colors" from W3.org). This can be extended to other colour

sets for a more complete semantic such as a 256 colour set. The reference 16-colour

table can be seen in table 7.3. Colour codes for each node are assigned when writing

the particular node to the table. The colour code is assigned by calculating the nearest

distance of every node colour to the particular colour in the refColour table.
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Table 7.3: Conversion table for numerical colour to semantic

Name Red Green Blue Semantic

White 100% 100% 100% 15 (white)

Silver 75% 75% 75% 7 (light gray)

Gray 50% 50% 50% 8 (dark gray)

Black 0% 0% 0% 0 (black)

Red 100% 0% 0% 12 (high red)

Maroon 50% 0% 0% 4 (low red)

Yellow 100% 100% 0% 14 (yellow)

Olive 50% 50% 0% 6 (brown)

Lime 0% 100% 0% 10 (high green); green

Green 0% 50% 0% 2 (low green)

Aqua 0% 100% 100% 11 (high cyan); cyan

Teal 0% 50% 50% 3 (low cyan)

Blue 0% 0% 100% 9 (high blue)

Navy 0% 0% 50% 1 (low blue)

Fuchsia 100% 0% 100% 13 (high magenta); magenta

Purple 50% 0% 50% 5 (low magenta)
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Algorithm assigncolourDB Assign Textual Colour for all Nodes

1: procedure ASSIGNCOLOUR(nodes,colourlist,destination) . Assign Textual colour

2: while i 6= endofnodes do . Read all nodes

3: c1 ← nodes(i).c1

4: c2 ← nodes(i).c2

5: c3 ← nodes(i).c3

6: colourCode← getNearestColour(c1, c2, c3, colourlist)

7: insertinto destination values (nodes(i), colourCode)

8: i++

9: end while

10: return i

11: end procedure

7.4 Multimedia Database Architecture

7.4.1 Extended Spatio Temporal Query Keywords

Standard query language has no ability to deal with the spatio temporal information in

the tree representation. Extended SQL is designed to reveal data from a binary partition

tree of a video sequence. The structure of the metadata has been discussed in Chapter

3. The operations to generate metadata has been discussed in Chapters 4,5 and 6. An

extended standard query language is proposed in order to deal with hierarchical spatio-

temporal segmented data. The standard query language (SQL) does not support spatio

temporal requests, and therefore, several special keywords are introduced. In order to

handle an extra keyword, queries are processed in two separate stages: in the first stage,
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an additional function is embedded in front of the normal MySQL machine in order to

decode some extended keywords. After it has been decoded into standard query, the

request is submitted to the database machine. The proposed extended keywords are

listed below:

• motion

Sleft

Sright

up

down

Static

dynamic

• colour

single colour

multiple colour with ‘OR’ operator

• temporal

before

after

• Saliency

TopSaliency
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7.4.2 Spatio Temporal Query Pre-Processing

7.4.2.1 Syntax Checking

A standard query processing machine could not carry out the spatio temporal request.

A query supplied by the user has to be pre-processed before being passed to the standard

DBMS machine. The first task of query pre-processing is ensuring that the query is valid.

Due to the desired retrieval function, in the prototype, the primary keyword adapted

is limited to SELECT statements related keywords. The second task is to identify the

extended keyword, decode it and assign the processing into a specific function for each

keyword. The functions perform decoding tasks for every extended keyword, from the

particular keyword into normal SQL syntax. The third task divides the query into sub

queries in SQL in order for them to be executed by MySQL machine. The results of

query decoding are a number of sub queries that can be executed independently. The

result of each sub query is operated to obtain the final result. The row sets as a result

of individual sub queries are operated by a logical operator. The result can be a list of

partitions which meet the criteria. In order to display the result, a list of nodes will be

displayed according to the original video and original label map, as illustrated in Figure

7.1. The pseudo code of the execution strategy and syntax checking is defined in the

algorithm SQL Syntax Checking.

Because the option of the keyword and the object has already been defined in the

metadata structure, the probable query syntax combination is limited. The algorithm to

check syntax and grammar is defined in pseudo code SQL Syntax Checking below.
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Algorithm SQL Syntax Checking

1: procedure CHECKSQL(query) . Check the Query

2: keywords← breakdown(query)

3: if keyword[1] ==′ SELECT ′ then

4: indexFROMKey ← find(keywords,′ FROM ′)

5: column← keywords[2 : indexFROMKey]

6: datasource← keywords[indexFROMKey + 1]

7: Logicalop← find(keywords[indexFromKey + 2 : end], logicalop)

8: ExtQuery ← find(keywords[indexFromKey + 2 : end], ExtKeywords)

9: i← 1

10: StandarQuery ← (keyword[1] + column+′ FROM ′ + datasource

11: while i < Length(ExtQuery) do

12: StandarQuery ← StandarQuery + decodeExtQuery(ExtQuery(i))

13: increment(i)

14: end while

15: Rows← execute(StandardQuery)

16: else

17: need ‘SELECT’ at the beginning

18: end if

19: return Rowset

20: end procedure
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7.4.2.2 Pre-Processing Function

There are a number of extension keywords and related logical operators. Each keyword

is mapped to a particular function in order to be dealt with. The functions are in charge

of decoding the keywords into a sentence in a standard query language in order to be

executed by RDBMS using the available metadata. In order to receive the query, after

checking the syntax operator and the arguments are identified. Each operator and ar-

gument are passed to the special function in order to decode the syntax into a standard

query language syntax in order to be sent to the RDBMS machine for execution. There

are three functions prepared to deal with each syntax which are:

• motion decoding function

• direction decoding function

• neighbourhood decoding function

7.4.3 Spatio Temporal Query Processing

The metadata is a direct reflection of the binary tree structure. By default, searching is

started from the root and iteratively progressed to the lower level. Every time the level is

lowered, the result will be evaluated. Once the result meets the requirement, searching

is stopped. When the result is turned away from the requirement, the searching in the

particular branch is stopped, but is continued in other branches. Whenever all branches

are stopped, either because the lowest child nodes have been detected, or due to getting

away from the target, the searching produces no result.
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7.4.4 Spatio Temporal Query Post Processing

The execution of each sub query results in a row of sets which meet the criteria sup-

plied in the query request. The row sets need to be operated to another subquery to

get the final result. The final set means nothing, if it is given to the user as the original

tabular result. The results need to be converted into the desired format. Our proposal

provides a possible format, such as a list of frames, where the expected object exists, the

specific supervoxel only, or a projection of the region in the particular frames. In order

to display the result, we need to access the initial label map and the original video.

7.5 Multimedia Database User Interface

The prototype of the multimedia database interfaces are divided into two categories.

First, the interface is designed for the server side, which has functions such as to open

the video, perform segmentation, generate a binary partition tree, perform simplification,

and record the metadata. Then, there is a user side which provides an interface to write

the query and display the query result.

The user interface for the video database prototype is provided in Figure 7.3. The

user interface allows users to type a query and the result is displayed in the display video

results as can be seen in Figure 7.4.



188 CHAPTER 7 Region Based Metadata

Figure 7.3: User Interface for Generate Metadata

7.6 Result and Evaluation

Although each extended keyword is tested and produces a result, evaluating how far

the results meet the expected quality is not straightforward. This is different from the

evaluation in the previous chapters. In that case, a comparison of the simplification to

the available ground truth was an objective measure of the quality. To measure whether

or not a query produces an appropriate result can be very subjective, however.

The evaluation in this section aims to answer the question ‘is the query working?’,

therefore. We still use the same dataset in order to evaluate every single spatio temporal

operation proposed in the previous section. In our experiment, the result from the pre-

segmentation would be visually compared to the result from the simplified sets.
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Figure 7.4: User Interface for Execute Spatio Temporal Query

7.6.1 Spatial

Spatial features such as colour can be the requirement of content queries. Colour, for

example, can be passed to the system as a query specification. It can be a single colour or

combination of more than one colour. Particularly for colour, only the OR operator can

be answered because in every node a single colour is assigned, therefore, an AND logical

will not work.

7.6.1.1 Single Colour in pre-segmentation set

This experiment tries to retrieve the content in the soccer video that has a maroon

colour. This would be retrieved from pre-segmentation set before simplification. The

complete query syntax is:

select svId,volnumber from superVoxel,video where textColour = ‘maroon’ and

leftleaf=0 and video.title = ‘soccer’
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The result can be seen in Figure 7.5.

(a) frame 1 (b) frame 5 (c) frame 10

(d) frame 15 (e) frame 20

Figure 7.5: Frame 1,5,10,15,20 of Single Colour Query Result for Pre-segmentation of

‘Soccer’ Video

7.6.1.2 Single Colour in A Simplified Segmentation Sets

This experiment tries to retrieve content in the soccer video that has a maroon colour

. It would be retrieved from simplified set. The complete query syntax:

select svId,volnumber from superVoxelAll where colourName1 = ‘Maroon’ and

simplified=simplevel and title = ‘soccer’

The variable simplevel can be set 1, 2 or 3 to specify which simplification level to be
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retrieved. The result can be seen in the Figure 7.6.

(a) frame #1 and #10 Simplific-

ation 1

(b) frame #1 and #10 Simplific-

ation 2

(c) frame #1 and #10 Simplific-

ation 3

Figure 7.6: Frames #1 and #10 of Single Colour Query Result for Simplification 1,2 and

3 of The ‘Soccer’ video

As seen in Figure 7.6, the maroon object cannot be retrieved from simplification1 due

to the effects of merging. Merging among supervoxels causes the colour average among

them do not to reflect the original colour. In contrast, simplification3 still maintains the

original colour information in the partition, and therefore the result shown not only the

pure maroon colour but also the regions around them that has been merged but the total

average still in maroon colour range.
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7.6.1.3 Multiple Colour in simplified segmentation set

This experiment tries to retrieve content in the soccer video which has silver or grey

colour. This is retrieved from simplification2 set. The complete query syntax is:

select svId,volnumber from superVoxelAll where (colourName1 = ’Silver’ OR col-

ourName1 = ‘Gray’ ) and simplified=2 and title = ‘soccer’

The result can be seen in Figure 7.7.

(a) frame 1 (b) frame 5 (c) frame 10

(d) frame 15 (e) frame 20

Figure 7.7: Frame 1,5,10,15,20 of Multiple Colour Query Result for Simplification 2 of

the ‘Soccer’ video
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7.6.2 Spatio Temporal

Generally, a spatio temporal related operation is usually needed by an object tracking

task.

7.6.2.1 Static Background Filtering from Pre-Segmentation Set

Video content consists of a foreground and background. Background parts can be

either static or experience camera motion (ego motion) while the foreground is usually

moving. Filtering part of the scene with no motion can be performed with the textual

query below.

SELECT region FROM supervoxel where motion = ‘static’ and Leftleaf = 0 and video

= ‘ice’

The output can be seen in Figure 7.8.

7.6.2.2 Static Background Filtering From A Simplified Set

This experiment tries to retrieve content in the ‘Ice’ video which has no motion (static).

This is retrieved from simplification1 set. The complete query syntax is:

SELECT region FROM supervoxel where motion = ‘static’ and Lastleaf = 1 and video

= ‘ice’

The output can be seen in Figure 7.9.
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(a) frame 1 (b) frame 5 (c) frame 10

(d) frame 15 (e) frame 20

Figure 7.8: Frame 1,5,10,15,20 of Static Region Query Result for The Pre-segmentation

of The ‘Ice’ Video

(a) frame 1 (b) frame 5 (c) frame 10

(d) frame 15 (e) frame 20

Figure 7.9: Frame 1,5,10,15,20 of Static Region Query Result for the simplification1 Set

of The ‘Ice’ Video
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7.6.2.3 Moving Foreground Filtering from the Pre-Segmentation Set

This experiment tries to retrieve content in the ice video which moves to the right

direction. It is revealed from a pre-segmentation set. The complete query syntax is:

select svId,volnumber from superVoxel where motion = right and leftleaf= 0 and

video = ice

The result can be seen in Figure 7.10.

(a) frame 1 (b) frame 5 (c) frame 10

(d) frame 15 (e) frame 20

Figure 7.10: Frame 1,5,10,15,20 of Right Motion Region Query Result for The Pre-

segmentation of The ‘Ice’ Video
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7.6.2.4 Moving Foreground Filtering from the Simplified Set

This experiment tries to retrieve content in the video which moves to the right direc-

tion in the ‘Ice’ video. It is retrieved from the simplification1 set. The complete query

syntax is:

The result can be seen in Figure 7.11.

select svId,volnumber from superVoxel where motion = right and lastleaf = 1 and

video = ‘ice’

(a) frame 1 (b) frame 5 (c) frame 10

(d) frame 15 (e) frame 20

Figure 7.11: Frame 1,5,10,15,20 of The Right Motion Region Query Result for Simplified

Segmentation of the ‘Ice’ Video

As can be visually seen from the result of the pre-segmentation set and simplified set
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above, the pre-segmentation set gives more supervoxels and, therefore, more regions per

frame. Small motions in every single region will affect the result. This can be seen in

Figure 7.10 where some of the static background was misinterpreted as moving regions,

while some regions inside the moving object are considered as static objects. This is

because the motion can be identified in the motion boundary that is located on the border

of the moving object. While in the middle of the object, if a partition is surrounded by

an almost similar colour region, the motion will be absent. This is one of the weaknesses

of this technique since the motion vector is not explicitly calculated.

In contrast, Figure 7.11 presents the result of moving objects from the simplified set.

Simplified sets provide a smaller number of regions with larger sizes. The result looks

much better; as few static backgrounds were misinterpreted as moving objects. This is

because, when they are merged with each other, misinterpreted motion due to centroid

displacement has been compensated.

7.6.3 Motion and Colour

This experiment tries to retrieve content in the video which moves to the left direction

and maroon colour from the ‘Soccer’ video. It will be retrieved from the simplification1

set. The complete query syntax is:

select svId,volnumber from superVoxel where motion = left and textColour = ‘ma-

roon’ and lastleaf = 1 and video = ‘soccer’

The result can be seen in Figure 7.12.
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(a) frame 1 (b) frame 5 (c) frame 10

(d) frame 15 (e) frame 20

Figure 7.12: Frame 1,5,10,15,20 of Left Motion Region and Colour = maroon Query

Result for a Simplified Segmentation of The ‘Soccer’ Video

7.6.4 Top Salient Candidate

This experiment tries to retrieve salient content in the video. Salient content is re-

vealed from the entire tree. For example, if one desired the five most salient content in

the ‘Ice’ video, the query can be formulated as follows:

SELECT svId FROM Supervoxel WHERE area > 10000 and TopSaliency <=5 and

Video = ‘ice’

The result can be seen in Figure 7.13.
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(a) Ground Truth (b) The Top 5 Salient Nodes

Figure 7.13: Top 5 Salient Candidate and The Corresponding Ground Truth of the ‘Ice’

Video

As can be seen in Figure 7.13, the five most salient nodes correspond to the object in

the ground truth. The image on the right side shows the first rank (denoted by letter 1)

to the fifth most salient (denoted by letter 5). The red colour denotes the area of the

salient region corresponding to the ground truth. As can be seen, the majority of the first

rank salient partitions correspond to the object in the ground truth. The second to the

fifth salient partitions correspond to the ground truth object to some extent. The ground

truth of salient 4th and 5th rank correspond to the same ground truth. This is an example

of the ground truth quality problem. As can be seen, this ground truth object consists

of more than one object that occlude each other, and are therefore considered as one

ground truth object.

This experiment demonstrates a potential application to request a summary of the

content of a video. Further steps to recognize and describe the salient nodes lead to
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automatic video content description.

7.7 Conclusion

In this chapter, a prototype of the video database management system has been

provided. The metadata is produced based on a hierarchical BPT structure. The func-

tionality of an extended query language to support spatio temporal requests has been

demonstrated. Measuring the output quality of the testing query is not straightforward,

since instead of providing quantified output a visual output is presented at the evalu-

ation.

The colour query request has been tested for the pre-segmentation set, simplification1,

simplification2 and simplification3. As can be seen in Figure 7.5, the result from the

pre-segmentation set shows an incomplete result. The simplification1 set in Figure

7.6(a) does not show any result. This is because in simplification1, the merging has

been carried out and the colour feature has been undergone considerable changes from

its original colour due to averaging operation. The simplification2 and simplification3

which have lower peaks show better results as the colour feature are still retained. In gen-

eral, colour query requests are answered more precisely in the initial pre-segmentation

set. High level simplification (simplification1 is the highest level and the simplest tree)

causes a loss of information in respect to the colour detail, meaning that colour inform-

ation requests cannot be answered correctly. As can be seen in the simplification2 and

simplification3, besides the requested colour object, the objects around them are also

present on the output. Figure 7.7 shows a similar outcome: the red colour object ex-
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ists in the output even though the query requests silver or grey objects. This is from

simplification2 set.

Regarding temporal activity, a query of a static object is carried out. Figures 7.8 and

7.9 compare the static object query for the pre-segmentation set and the simplification

set. As can be seen, the result from the simplification set gives a more continuous object

compared to the discrete and incomplete object from the pre-segmentation set. The

moving object query is shown in Figures 7.10 and 7.11. The result confirms that the

simplification sets give better output, as can be seen in Figure 7.11. This is because the

motion misclassification that occurs at the smaller partitions is compensated for when

they are merged to form bigger partitions.

In the BPT structure, the evolutions of partitions are recorded. Salient partitions are

identified by exploiting its formation history. Analogous to the way the pruning node is

identified by exploiting the distance between child nodes and parent nodes, the salient

nodes are identified in the same way. Nodes are rank ordered according to the child-

parent distance: the higher the distance the more salient a node. The top ranks are then

compared to the ground truth objects. It is arguable that objects in the ground truth are

salient, and are therefore selected by human subject who created it. Figure 7.13 shows

the top ranks salient nodes from ‘Ice’ video. It can be seen that the top most regions are

aligned to the ground truth.

This chapter has demonstrated how the intermediate metadata is able to answer con-

tent queries. As previously mentioned, this is not designed to provide exact semantic

meaning, such as retrieving a frame with football players in it, but it can provide inter-

mediate descriptions of the target scene. For example, if the user knows that the target
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is a football player with a red T-shirt, one can describe the query as: search for a moving

red object, as demonstrated in Figure 7.12. Of course if in the video collection, there

is another video with a moving red object, this will also be selected as the output. In

order to avoid this, more detailed descriptions of the target need to be defined, such

as: search the moving red object and static green object. The top salient functionality

demonstrates the ability to search for important objects that may be semantically mean-

ingful, as demonstrated in Figure 7.13, and therefore, a summary of the video content

can be created. This could be the input to automatic recognition tasks. More intensive

exploration and video testing still needs to be done in order to cope with more complex

requests.



Chapter 8

Summary and Future Work

8.1 Conclusion

The main objective of this thesis has been to provide intermediate level metadata of

video content that enables content-based information requests. The separation of low

level processing and high level content analysis is performed by generating metadata.

It is useful to facilitate higher-level processing such as cognition without the need to

carry out lower level data processing such as segmentation or merging. A number of

experiments in Chapter 7 provide evidence for some extent of cognition. The tasks can

be completed by accessing the metadata without directly connecting the original video

unless visualization of the result is required.

The metadata is recorded based on pre-segmentation, merging and simplification

tasks in a binary partition tree framework. The functionality of the metadata is eval-

uated by formulating colour-related, motion-related and salient content queries. The

203
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experiment in Chapter 7 demonstrated a higher-level content analysis, where high level

content requests can be processed. The metadata is designed to record intermediate level

abstraction, whereby a content information request has to be expressed in a certain form

of description. The metadata is not equipped with semantic descriptions such as ‘football

player’, ‘dancer’, etc., but information such as colour, motions, and direction are recor-

ded so that a semantic request can be described in simpler forms. For example, a request

for content of ‘football player in red T-shirt’ can be described as: ‘red object moving and

static green object’.

An unsupervised scenario is desired due to its freedom from user intervention and

to pave the way to a general solution and machine autonomous processing. The pre-

segmentation, merging and simplifications are carried out in unsupervised manner. Dur-

ing these tasks, no user intervention is needed to guide the process. As demonstrated

in Chapters 4, 5, and 6, where the metadata is prepared, the process is based on the

image or video data only. The input needed is a K value when the pre-segmentation al-

gorithm is SLIC, and the α and β to set the proportion of colour and motion factors in the

similarity measure for supervoxel merging. No user input or provided prior knowledge

is needed to drive the segmentation quality. This unsupervised functionality, however,

affects the quality of the segment, which may be far from the semantic meaning. This

quality is acceptable for two reasons: the output of segmentation and simplification is

not designed to provide semantic objects; the binary partition tree records the merging

history that enables searching from coarse to detailed partitions.

A binary partition tree is created to record the transformation of each initial partition

to the root (representing the entire image/video). The BPT for a single frame/image has
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been discussed in Chapter 4, while Chapter 6 introduced the tree for an entire video. The

forms of BPT for two different purposes are identical; the only difference between them

is the data represented by the node. In a single frame, every node in BPT represents a

region/superpixel. In an entire video, every node of the BPT represents a volume/super-

voxel.

BPTs record node transformation from low level nodes, which represent initial small

partitions, to high level nodes, which represent the merging result and are therefore, big-

ger and more extensive documented structurally. The tree structure allows an operation

to track the evolution of the nodes. An analysis of the transformation is carried out in

order to identify critical merging, where the nodes have undergone significant changes.

Significant changes indicate that a pair of nodes belong to different objects. In this event,

the nodes experience critical merging, and the node is considered to be a pruning node.

The branch of the tree under the pruning nodes have experienced insignificant changes

during their merging operation. It is reasonable, therefore, to cut these branches from

the tree under the pruning nodes. The remaining nodes at higher levels to the critical

nodes to the root remains in the BPT. As illustrated in Figure 6.7, the simplified tree is

simple, and consists of fewer nodes. It also demonstrates three levels of simplification,

which are dependent on the level of critical merging occurring on the pruning nodes.

The critical merging rate is indicated by the value of the peak (local maxima) on the

node evolution. Higher peaks are usually identified in the later merging iterations, and

therefore, in the higher levels of the tree (closer to the root). Figure 6.7(a) confirms this

indication that the highest simplification level (simplification1) gives fewer numbers of

nodes, and therefore, fewer partitions. The higher levels of simplification are prone to
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under-segmentation problems due to excessive merging, however. Under-segmentation

error is clearly seen in Figure 6.7(a) where the face has been merged with the back-

ground. In contrast, lower level segmentation still maintains the detail, but it suffers

from over-segmentation error. A high over-segmentation rate is observed in the pre-

segmentation result as presented in Figures 6.8 and 6.9. The simplification results with

better over-segmentation rates are compared in Table 6.7 and illustrated in Figures 6.11,

6.12 and 6.13.

Pre-segmentation plays an important role in preparing the hierarchical partition tree

in the BPT structure. According to Table 4.1 in Chapter 4, the watershed algorithm pro-

duces highly over-segmented initial partitions with the advantages of superior boundary

recall. In contrast, mean shift and SLIC produce moderate over-segmentation rates with

less boundary recall. The number of initial partitions directly affects the complexity of

BPT, which means that BPT created with watershed are much complex and have more

nodes than those from mean shift and SLIC. Simplification is highly affected by BPT com-

plexity, and Table 4.5 shows a comparison of the evaluated methods, indicating that, on

average watershed takes longer to complete all tasks. The most stable boundary recall is

shown by a simplified tree from SLIC at around 0.82.

A good segmentation result is expected to be close to the human segmentation, which

is represented by the ground truth. Although it is still arguable that some ground truth is

subjective, the ability to asses segmentation quality reliably still depends on the ground

truth. As mentioned before, pre-segmentation produces an initial over-segmentation par-

titions, and therefore, a simplification task needs to be performed in order to obtain set

of segments that closer to the expected ground truth. The quality of simplification is
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assessed by comparing the boundary of partitions and the ground truth. The quantifica-

tion is presented in boundary recall, precision and under-segmentation error. According

to Figures 4.2(a), 4.3(a) and 4.4 (a) the best boundary recalls are achieved by simpli-

fied partitions using the histogram distance measure in watershed, mean shift and SLIC.

The histogram distance method needs double the computation time, however. With a

slight lower boundary recall, Euclidean and absolute distance take less time to create

and simplify the BPT. Comparing Tables 4.2, 4.3 and 4.4, in general, for the same in-

put, Euclidean distance gives the best performance. Considering the boundary recall,

speed, over segmentation-rate and under-segmentation error a combination of SLIC and

Euclidean distance is the most reliable combination of methods. This evaluation was

conducted on eight test videos on a frame segmentation basis.

A frame-to-frame approach dedicated to deal with streaming condition where one

frame available at a time. Segmentation and simplification are carried out for each indi-

vidual frame. Matching tasks aims to correlate regions in the current and the previous

frame. A temporal adjacency graph is documented as a complement to RAG. The quant-

ity of partitions in each frame affects the number of matching operations required.

Video content in a particular frame is usually inherited from the previous frame. The

regions in the current frame therefore have a correlation to their predecessor. Correlated

regions could stay in the static position or move in a certain direction. Limited win-

dow searching aims to establish all region correlations across the frame by moving the

window in the current frame and seeking the most similar regions in a window twice

the size in the previous frame. This is work for the entire frame, however, which needs

heavy computation. For instance, region correlation of a frame with 1000 regions can
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be calculated as follows. It is assumed the twice bigger windows contain nine regions

and therefore establishing region correlation across two frames is equal to nine thousand

iterations.

The salient region correlation method tries to minimize the iteration by selecting only

the most salient region. Salient regions are indicated by the high child-parent distance.

The highest child-parent distance over the tree is considered to be the most salient. The

salient region list is prepared for all frames, and correlation is built among the salient

regions. It is fast, but incomplete and according to the figures in Table 5.2 and Figure

5.11 there is a possibility of matching salient regions that are in fact uncorrelated.

Considering video as three-dimensional matrices is an alternative way to avoid the

heavy computation required to build the temporal region correlation. To be able to

represent video in that way, the entire video has to be available as an input. A set of

supervoxels is produced in pre-segmentation of three-dimensional matrices. These has

spatial and temporal dimension at the same time. Table 6.3 shows the pre-segmentation

using watershed algorithm that is highly over-segmented (at 26.165 on average) with

short duration at around 3.1 frames. SLIC supervoxels more manageable with a stable

number of partitions since it depends of the input parameters.

As can be seen in Table 6.4 the SLIC produces on average 2259 initial partitions with

an average duration of 9.7 frames. Acording to Table 6.9, the speeds of the entire process

from initial segmentation to the simplification of SLIC are faster than that of watershed.

Average running time recorded at 575 and 875 milliseconds for SLIC and watershed

respectively. This is because the quantity of the initial partition affects the entire itera-

tion. Considering the quality of segmentation indicated by the boundary recall rate, the
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under-segmentation error and over-segmentation rate presented in Tables 6.5, 6.6, 6.7,

and 6.8. The BPT created over the initial segmentation produced by SLIC is more reliable

than that of watershed. It is fast and maintain good quality of segmentation.

According to Figures 7.5, and 7.6 the colour query answered precisely using the pre-

segmentation set. This happens because in pre-segmentation set the original colour that

was set is retained, while, in the simplification set, supervoxels have been merged with

each other, and therefore the colour has been mixed. It can be seen in Figure 7.6(a), the

simplification1 set (the coarsest level) the colour request does not give any output.

A motion-related query is demonstrated in Figures 7.8, 7.9, 7.10, and 7.11. According

to the experiment, the motion-related query gets a better response on the simplification

set. As can be seen in Figure 7.8, a request for the static region answered with many

holes in the middle of object compared to Figure 7.9, which shows a complete requested

object. This occurs due to misclassification of the motion on the small partitions, which

was compensated for when they were merged to the bigger partitions. This is the draw-

back of those methods that assume the centroid displacement represents the motion of

the regions. This drawback is eliminated when the merging task has been conducted,

however.

The motion-related combined with colour-related query on an intermediate metadata

can be a powerful tools to retrieve objects in a video database. As mentioned in the

beginning that the objective of this thesis is to provide intermediate level metadata.

The content information request in semantic level cannot directly answer, but one can

describe the semantic so that the metadata can answer it. For example, intermediate

metadata cannot answer a semantic request such as: ‘search football player with red
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T-shirt’, or ‘search ice skating video’. A further description need to be formulated, for

example instead of ‘search the football player with red T-shirt’, the query can be formu-

lated as ‘search the moving red object’, therefore, the proposed metadata can answer it as

demonstrated in Figure 7.12. Of course if there are more video with red moving objects,

the answer will be selected as the output as well. A more precise description need to be

formulated to get the desired output such as: ‘search red moving object and green static

object’.

Salient supervoxels are formulated as a child node that is distant from its parent. As

mentioned before, this indicates a critical merging between a pair of nodes of the tree.

Critical merging suggests that the merging parties belong to different objects. In general,

saliency is defined as an area in visual space that exhibits differences to its surround-

ing. By exploiting child-parent distance, a rank-ordered salient node is prepared. An

example of top-most salient supervoxels is obtained from the ‘Ice’ video (Figure 7.13).

This ability enables a video content summary to be composed that can be displayed as a

list of important objects. Further work needs to be done to generate textual description

automatically at the semantic level.

There are some issues that need to be addressed such as speed and inaccuracies. The

issue of speed is one of the most significant problems. Table 6.9 shows that the running

time needed for pre-segmentation, merging and simplification of 20 frames is quite slow

compared to the video frame rate, which is 25 per seconds. The fastest speed is achieved

by SLIC with 28 ms per frame on average for the 256 x 350 pixel/frame, in our testing

machine. In fact, commercial video broadcasts using much higher resolutions (around

1024 x 1024), and therefore, to be usable in practical conditions the speed needs to be
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accelerated.

Inaccuracies identified in pre-segmentation and simplification results. In the current

implementation, the motion vector is not explicitly calculated. Rather, it is estimated

by the centroid displacement of the supervoxel. Due to the nature of motions, they are

usually detected in the border of a region, but the risk of misinterpreting motion has been

shown to have unwanted effects, particularly in the pre-segmentation set. Although this

issue has been compensated for in the simplification set referred to Figure 7.11, more

precise motion information leading to better interpretation of the segment is needed.

Obtaining the motion vector, however, may reduce the speed, and therefore, overall, a

moderate consideration of this issue has to be taken.

Inaccurate colour is identified in the simplification set that is demonstrated in Figure

7.6. This occurs due to the averaging operation when the merging task is executed.

The second condition is because a limitation of semantic name of colour that adopted

in the experiments. 16 semantic colour names are used. There is another option to use

more semantic colours, but the problem with this is that sometimes these are not close to

what humans usually used. One possibility is for the user interface to choose the colour

sample.

8.2 Future Work

Intermediate metadata of video content has been provided, and some functionalities

were demonstrated. There are some limitations that need to be addressed, however, as

well as opportunities to develop the techniques in practical conditions. Some possible
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expansions of this work are:

• As demonstrated in Chapter 7, some experiments to exploit the content query are

carried out. A description of requested content has yet to be defined in order to get

the desired output, and the user has to define the description based on the available

data recorded. It would be helpful if a machine provided those descriptions and let

the user write to express his/her request in semantic human language.

• Streaming conditions where only a single frame is available at one time, need

frame-by-frame approaches whereby segmentation and simplification are carried

out in the frame. The upcoming frame is then processed individually and there-

fore, a correlation between the regions in a current and previous frame has to be

made. In order to implement that scenario in practical conditions, an implement-

ation of segmentation, simplification and region matching at frame rate speed has

to be achieved.

• Pre-processing and metadata standardization in order to allow multimedia data

interchange leading to the new design of multimedia communication.

• Semantic recognition can be performed for the top salient nodes. This could be

done by selecting the highest rank salient nodes in the tree and performing recog-

nition by drawing on prior knowledge such as an MPEG-7 shape database.

• Employing a region based database to carry out content searching without knowing

any information about the target object. This can be done by an incomplete input

such as only using the prominent colour surrounded by other colours.

• Tree based video coding can also be developed from the region database. By con-
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sidering static regions in the tree that might be isolated in many high level branches

in the BPT, tree based video coding can be generated by sending complete tree at

the beginning followed by dynamic nodes only in the remaining frames.

• Provide a hierarchical region extraction service in order to allow the research com-

munity to make use of the metadata and spatio temporal query syntax to achieve

higher level of cognition using the machine learning algorithm.

• Develop an integration with audio to text conversion and summarization in order

to provide more reliable metadata.

• Speed up the pre-segmentation, merging and simplification by implementing the

algorithm in a dedicated hardware in order to achieve real time processing speeds.
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Publications

1. Arief Setyanto, John C Wood, and Mohammed Ghanbary. Evolution Analysis of

Binary Partition Tree for Hierarchical Video Simplified Segmentation. In Computer

Science and Electronic Engineering Conference, volume i, pages 52 - 57, 2014.

2. Arief Setyanto, John Charles Wood, and Mohammed Ghanbari. Platform for Tem-

poral Analysis of Binary Partition Tree. In Signal Processing: Algorithms, Architec-

tures, Arrangements, and Applications (SPA), 2013, pages 45 - 50, Poznan, Poland,

2013.

3. Arief Setyanto, John Charles Wood, and Mohammed Ghanbari. Genetic Algorithm

for Inter-frame Region Object Temporal Correlation in Binary Partition Tree. In

System Engineering and Technology (ICSET), 2012 International Conference on,

pages 1 - 5, 2012.
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Simplification Result

Color code simplification result for ’soccer’ video for first, second and third saliency

peak. Complete simplification result available in the Compact Disc. Video format of

Query Result is also available in digital format.
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(a) WS simp 1

frame 1 to 10

(b) WS simp 2

frame 1 to 10

(c) WS simp 3

frame 1 to 10

(d) SLIC simp

1 frame 1 to

10

(e) SLIC simp

2 frame 1 to

10

(f) SLIC simp

3 frame 1 to

10

Figure B.1: Visual result of simplification peak 1, 2 and 3 of frames 1 - 10 of soccer video

clips on watershed and SLIC pre-segmentation
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(a) WS simp 1

frame 11-20

(b) WS simp 2

frame 11-20

(c) WS simp 3

frame 11-20

(d) SLIC simp

1 frame 11-20

(e) SLIC simp

2 frame 11-20

(f) SLIC simp

3 frame 11-20

Figure B.2: Visual result of simplification peak 1, 2 and 3 of frames 11 - 20 of soccer

video clips on watershed and SLIC pre-segmentation
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