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Afriat’s Theorem and Samuelson’s ‘Eternal Darkness’∗

Matthew Polisson† Ludovic Renou‡

May 14, 2016

Abstract: Suppose that we have access to a finite set of expenditure data drawn from
an individual consumer, i.e., how much of each good has been purchased and at what
prices. Afriat (1967) was the first to establish necessary and sufficient conditions on
such a data set for rationalizability by utility maximization. In this note, we provide
a new and simple proof of Afriat’s Theorem, the explicit steps of which help to more
deeply understand the driving force behind one of the more curious features of the
result itself, namely that a concave rationalization is without loss of generality in a
classical finite data setting. Our proof stresses the importance of the non-uniqueness
of a utility representation along with the finiteness of the data set in ensuring the
existence of a concave utility function that rationalizes the data.
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JEL classification numbers: C60, D11

Suppose that we have access to a finite set of expenditure data drawn from an individual

consumer, i.e., how much of each good has been purchased and at what prices. When is

such a consumer’s behavior consistent with the maximization of a stable preference over con-

sumption goods? Afriat (1967) was the first to establish necessary and sufficient conditions

on a finite set of price and demand observations in order to provide a definitive answer to

this question. In this note, we provide a new and simple proof of Afriat’s Theorem, the

explicit steps of which help to more deeply understand the driving force behind one of the
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more curious features of the result itself, namely that a concave rationalization is without

loss of generality in a classical finite data setting.

Formally, let D = (pt, xt)t∈T be a finite data set, where xt = (xt
1, x

t
2, . . . , x

t
`) ≥ 0 denotes

the consumption of ` goods purchased at prices pt = (pt
1, p

t
2, . . . , p

t
`) � 0. The data set

D = (pt, xt)t∈T is said to be rationalizable if there exists a preference relation <∗ on R`
+,

which is complete, transitive, and locally non-satiated, such that, at every observation t ∈
T , xt <∗ x for any x ∈ Bt := {x ∈ R`

+ : pt · x ≤ pt · xt}. In words, a data set is

rationalizable if we are unable to reject the hypothesis that a consumer has consistently

chosen a preferred option from the set of feasible alternatives. It is worth stressing that we

require the consumer’s preference to be stable, i.e., unchanging across observations.

Theorem 1 (Afriat’s Theorem). The following statements are equivalent:

(1) The data set D = (pt, xt)t∈T is rationalizable.

(2) Given the data set D = (pt, xt)t∈T , there exists (vt, λt)t∈T , with (vt, λt) ∈ R× R++ for

all t ∈ T , such that

vt′ ≤ vt + λtpt · (xt′ − xt) for any (t, t′) ∈ T × T. (Afriat inequalities)

(3) There exists a continuous, strictly increasing, and concave utility function v : R`
+ → R,

such that, at every observation t ∈ T , xt ∈ arg maxx∈Bt v(x).

For seminal statements and proofs of Afriat’s Theorem, see Afriat (1967), Diewert (1973),

and Varian (1982); for the relationship between our approach and the broader literature, we

refer the reader to the discussion which immediately follows the proof. Before formally

proving Theorem 1, we emphasize a number of distinctive features of our approach. Firstly,

and most importantly, our proof (in its construction) stresses the importance of the non-

uniqueness of a utility representation along with the finiteness of the data set in ensuring

the existence of a concave utility function that rationalizes the data. Secondly, like Varian’s

(1982) algorithmic proof, ours is entirely constructive; however, unlike Varian (1982), we first

construct the numbers (vt)t (interpreting vt as the utility of consuming the bundle xt) and

then the numbers (λt)t (interpreting λt as the shadow value of the expenditure pt ·xt). Lastly,
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most renditions of Afriat’s Theorem typically incorporate a further equivalent statement,

namely that the data set obeys an intuitive no-cycling condition known as the generalized

axiom of revealed preference (GARP);1 we omit this statement of the theorem as our proof

does not appeal to GARP.

We first prove that (1) =⇒ (2), i.e., the necessity of the Afriat inequalities for ratio-

nalizability by a complete, transitive, and locally non-satiated preference relation, in three

distinct lemmas. Throughout, let X := {xt : t ∈ T} denote the finite set of observed con-

sumption bundles. By convention, the infimum (resp., supremum) of the empty set is +∞
(resp., −∞), r/0 = +∞ for any r > 0, and R := R ∪ {−∞,+∞} is the extended real line.

Lemma 1. If the data set D = (pt, xt)t∈T is rationalizable, then there exists a complete and

transitive preference relation < ⊆ X × X , such that

xt′ < xt =⇒ pt · (xt′ − xt) ≥ 0 for any (t, t′) ∈ T × T, (i)

xt′ � xt =⇒ pt · (xt′ − xt) > 0 for any (t, t′) ∈ T × T. (ii)

Condition (i) states that if xt′ is weakly preferred to xt, then xt′ must cost at least as

much as xt when xt is purchased; condition (ii) states that if xt′ is strictly preferred to xt,

then xt′ must cost strictly more than xt when xt is purchased.2

Proof of Lemma 1. Assume the data set D = (pt, xt)t∈T is rationalizable by the complete,

transitive, and locally non-satiated preference relation <∗. (a) Suppose that there exists

some (t, t′) such that xt′ <∗ xt and pt · (xt′ − xt) < 0. By the completeness and local non-

satiation of <∗, there exists some ε > 0 and some x in the open ball of radius ε around xt′

such that pt · x ≤ pt · xt and x �∗ xt′ . By the transitivity of <∗, x �∗ xt′ and xt′ <∗ xt imply

that x �∗ xt, contradicting the optimality of xt. (b) Suppose that there exists some (t, t′)

such that xt′ �∗ xt and pt · (xt′ −xt) ≤ 0. This immediately contradicts the optimality of xt.

It follows from (a) and (b) that (i) and (ii) hold, with < the restriction of <∗ to X ×X .

1 A typical route to proving the theorem is to first show that rationalizability implies GARP, subsequently
that GARP implies the Afriat inequalities, and finally that the Afriat inequalities imply rationalizability.

2 It is not uncommon to equivalently represent conditions (i) and (ii) using their contrapositives, i.e.,
(i′) pt · (xt′ − xt) < 0 =⇒ xt � xt′ for any (t, t′) ∈ T × T , and (ii′) pt · (xt′ − xt) ≤ 0 =⇒ xt <
xt′ for any (t, t′) ∈ T ×T . Condition (ii′) states that if xt′ is affordable when xt is purchased, then xt must
be weakly preferred to xt′ ; condition (i′) states that if xt′ costs strictly less that xt when xt is purchased,
then xt must be strictly preferred to xt′ . Conditions (i) and (ii) are similar to the conditions in Varian
(1984) for cost minimization.
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We now apply Lemma 1 in order to construct a specific utility representation of <. A set

of real numbers (vt)t∈T is said to represent the preference relation < if vt ≥ vt′ ⇐⇒ xt < xt′

for any (t, t′) ∈ T × T .

Lemma 2. Given the data set D = (pt, xt)t∈T , if there exists a complete and transitive

preference relation < ⊆ X ×X , such that (i) and (ii) hold, then there exists a representation

(vt)t∈T of <, such that
vt′ − vt

vt − vt′′
≤ pt · (xt′ − xt)

pt · (xt − xt′′)
, (iii)

for all triplets (t′, t, t′′) ∈ T × T × T satisfying xt′ � xt � xt′′ and pt · (xt − xt′′) ≥ 0.

To understand condition (iii), consider any function v that rationalizes the data, and

suppose that for some (t′, t, t′′) satisfying v(xt′) > v(xt) > v(xt′′) and pt · (xt − xt′′) ≥ 0,

v(xt′)− v(xt)

v(xt)− v(xt′′)
>
pt · (xt′ − xt)

pt · (xt − xt′′)
,

i.e., condition (iii) is violated (with v(xt) = vt, v(xt′) = vt′ , and v(xt′′) = vt′′). This

statement is then equivalent to

pt · (xt − xt′′)

pt · (xt′ − xt) + pt · (xt − xt′′)
v(xt′) +

pt · (xt′ − xt)

pt · (xt′ − xt) + pt · (xt − xt′′)
v(xt′′) > v(xt),

i.e., a convex combination of v(xt′) and v(xt′′) is strictly greater than v(xt) (recall that

pt · (xt′ − xt) > 0 since v(xt′) > v(xt); see Lemma 1). Moreover, notice that the bundle

yt :=
pt · (xt − xt′′)

pt · (xt′ − xt) + pt · (xt − xt′′)
xt′ +

pt · (xt′ − xt)

pt · (xt′ − xt) + pt · (xt − xt′′)
xt′′

exhausts the budget at prices pt, i.e., pt · yt = pt · xt. Since v rationalizes the data set, it

must be that v(xt) ≥ v(yt). Combining this inequality with the above inequality, it follows

that v cannot be concave. Therefore, condition (iii) is essential in ensuring the existence

of a concave rationalization. It is worth stressing that the existence of a representation

satisfying condition (iii) rests heavily on non-uniqueness properties. If the representation

was unique up to an affine transformation, condition (iii) would not necessarily hold. Indeed,

if v rationalizes the data but fails condition (iii), then any affine transformation αv+β, with

(α, β) ∈ R++ ×R, would also violate condition (iii) since the ratios remain unchanged, i.e.,

v(xt′)− v(xt)

v(xt)− v(xt′′)
=

(αv(xt′) + β)− (αv(xt) + β)

(αv(xt) + β)− (αv(xt′′) + β)
,
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for any (xt′ , xt, xt′′). For instance, in the domain of risk, the expected utility representation

is unique (up to an affine transformation),3 and concavity of the Bernoulli function is not

without loss of generality, as demonstrated by Polisson, Quah, and Renou (2015). (See also

the examples under uncertainty in Bayer et al. (2013) and Echenique and Saito (2015).)

Proof of Lemma 2. Since the preference relation < is complete and transitive, there exists

a partition {T0, T1, . . . , Tn} of T such that xt � xt′ for all (t, t′) ∈ Ti × Tj with i > j, and

xt ∼ xt′ for all (t, t′) ∈ Ti × Ti, i.e., we can partition the set of observations into equivalence

classes, ordered from the worst to the best. By the finiteness of X , a representation (vt)t∈T

of < exists. Since there is nothing to prove if T\(T0∪Tn) = ∅, assume that T\(T0∪Tn) 6= ∅.

For all t ∈ T , define the sets U t := {t′ ∈ T : xt′ � xt} and Lt := {t′′ ∈ T : xt �
xt′′ and pt · (xt − xt′′) ≥ 0}. For every t ∈ T\(T0 ∪ Tn), let

mt = inf
(t′,t′′)∈Ut×Lt

pt · (xt′ − xt)

pt · (xt − xt′′)
.

By construction, mt > 0 for all t ∈ T\(T0 ∪ Tn), so that inft∈T\(T0∪Tn) m
t > 0. Choose any

m∗ ∈ (0, inft∈T\(T0∪Tn) m
t]\{+∞}, where (0, inft∈T\(T0∪Tn) m

t] can be viewed as a half-open

interval on the extended real line R.

Let vt = 0 for all t ∈ T0 and vt =
∑i

j=1(m
∗/(m∗ + 1))j for all t ∈ Ti, i = 1, 2, . . . , n.

Clearly, (vt)t∈T is a representation of <. We now argue that (vt)t∈T is also a representation

of < which satisfies condition (iii). Choose any triplet (t′, t, t′′) ∈ T × T × T satisfying

xt′ � xt � xt′′ and pt · (xt − xt′′) ≥ 0. Assume that t′ ∈ Ti′ , t ∈ Ti, and t′′ ∈ Ti′′ , with

i′ > i > i′′ ≥ 1. (If i′′ = 0, a similar argument applies.) We have that

vt′ − vt

vt − vt′′
=

∑i′

j=1

(
m∗

m∗+1

)j −∑i
j=1

(
m∗

m∗+1

)j
∑i

j=1

(
m∗

m∗+1

)j −∑i′′
j=1

(
m∗

m∗+1

)j =

∑i′

j=i+1

(
m∗

m∗+1

)j
∑i

j=i′′+1

(
m∗

m∗+1

)j

≤
∑i′

j=i+1

(
m∗

m∗+1

)j
(

m∗
m∗+1

)i =
i′∑

j=i+1

(
m∗

m∗ + 1

)j−i

≤ lim
i′→∞

i′∑

j=i+1

(
m∗

m∗ + 1

)j−i

= m∗,

3 By uniqueness up to an affine transformation, we mean uniqueness within the class of expected utility
representations.

5



where the inequalities follow from the fact that we are summing over positive terms and
∑i

j=i′′+1

(
m∗

m∗+1

)j ≥
(

m∗
m∗+1

)i
> 0. Finally, by construction, we have that

m∗ ≤ mt ≤ pt · (xt′ − xt)

pt · (xt − xt′′)
,

which completes the argument.

We now apply Lemmas 1 and 2 in order to construct multipliers, thereby completing

the proof that the Afriat inequalities are a necessary condition for rationalizability by a

complete, transitive, and locally non-satiated preference relation.

Lemma 3. Given the data set D = (pt, xt)t∈T , if there exists a representation (vt)t∈T ,

satisfying (iii), of the complete and transitive preference relation < ⊆ X ×X , satisfying (i)

and (ii), then there exists (λt)t∈T , with λt ∈ R++ for all t ∈ T , such that

vt′ ≤ vt + λtpt · (xt′ − xt) for all (t, t′) ∈ T × T. (Afriat inequalities)

Proof of Lemma 3. For every t ∈ T , consider the interval

I t :=

[
sup
t′∈Ut

vt′ − vt

pt · (xt′ − xt)
, inf

t′′∈Lt

vt − vt′′

pt · (xt − xt′′)

]
⊆ R.

By the definition of Lt, we have that

inf
t′′∈Lt

vt − vt′′

pt · (xt − xt′′)
> 0,

for all t ∈ T . From Lemma 2, we have that

inf
t′′∈Lt

vt − vt′′

pt · (xt − xt′′)
≥ sup

t′∈Ut

vt′ − vt

pt · (xt′ − xt)
,

for all t ∈ T such that U t × Lt 6= ∅. It then follows that I t ∩ R++ 6= ∅ for all t ∈ T . Choose

any λt ∈ I t ∩ R++ for all t ∈ T .

We now verify that (vt, λt)t∈T as constructed does indeed satisfy the Afriat inequalities.

For any t ∈ T , there are three cases to consider. Firstly, choose any t′′ ∈ T such that

vt > vt′′ . If pt · (xt′′ − xt) < 0, then

vt + λtpt · (xt′′ − xt) ≥ vt +
vt − vt′′

pt · (xt − xt′′)
pt · (xt′′ − xt) ≥ vt′′ ,
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Figure 1: Example

since 0 < λt ≤ (vt − vt′′)/pt · (xt − xt′′). Similarly, if pt · (xt′′ − xt) ≥ 0, then

vt + λtpt · (xt′′ − xt) ≥ vt′′ ,

since λt > 0. Secondly, choose any t′ ∈ T such that vt′ > vt. We have that

vt + λtpt · (xt′ − xt) ≥ vt +
vt′ − vt

pt · (xt′ − xt)
pt · (xt′ − xt) ≥ vt′ ,

since λt ≥ (vt′ − vt)/pt · (xt′ − xt) > 0 and pt · (xt′ − xt) > 0. Thirdly, choose any t∗ such

that vt = vt∗ (hence, xt ∼ xt∗). Lemma 1 guarantees that λtpt · (xt∗ − xt) ≥ 0, and therefore

vt + λtpt · (xt∗ − xt) ≥ vt∗ since λt > 0. This completes the proof.

In the progression from Lemmas 1 to 3, we have proven that the Afriat inequalities are

a necessary condition for rationalizability by a complete, transitive, and locally non-satiated

preference relation. To further illustrate the mechanics of our construction, consider the

following numerical example.4 Suppose that a consumer is observed to have chosen the

bundle x1 = (4, 1) at the prices p1 = (1, 2), x2 = (2, 2) at p2 = (2, 2), and x3 = (2, 1) at

p3 = (2, 1). This scenario is depicted in Figure 1.

Suppose that a complete, transitive, and locally non-satiated preference relation <∗ ratio-

nalizes the data, with x1 �∗ x2 �∗ x3. Since p2 · (x1−x2) = 2 > 0, p3 · (x1−x3) = 4 > 0, and

4 We are grateful to an anonymous referee for providing this example.
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p3 · (x2− x3) = 1 > 0, Lemma 1 is satisfied, with < the restriction of <∗ to X ×X . Turning

to Lemma 2, we have T0 = {3}, T1 = {2}, and T2 = {1}; U1 = ∅, U2 = {1}, and U3 = {1, 2};
L1 = {2, 3}, L2 = {3}, and L3 = ∅. It follows that m2 = p2 · (x1 − x2)/p2 · (x2 − x3) = 1.

Letting m∗ = m2 = 1, the numbers v3 = 0, v2 = 1/2, and v1 = 3/4 satisfy Lemma 2.5 Turn-

ing to Lemma 3, we have I1 = (−∞, 3/8], I2 = [1/8, 1/4], and I3 = [1/2,+∞). Choosing

λ1 = 1/8, λ2 = 1/4, and λ3 = 1/2, the set (vt, λt)t=1,2,3 satisfies the Afriat inequalities.

As a final step, we prove that (2) =⇒ (3), i.e., the sufficiency of the Afriat inequalities

for rationalizability by a continuous, strictly increasing, and concave utility function.

Lemma 4. If there exists (vt, λt)t∈T , with each (vt, λt) ∈ R×R++ for all t ∈ T , that satisfies

the Afriat inequalities, then there exists a continuous, strictly increasing, and concave utility

function v : R`
+ → R, such that xt ∈ arg maxx∈Bt v(x) for all t ∈ T .

Proof of Lemma 4. This proof is not new, but we provide it for completeness.6 Let the

utility function v : R`
+ → R be defined by v(x) = inf {vt + λtpt · (x − xt) : t ∈ T} for any

x ∈ R`
+. Notice that the piecewise linear utility function v is continuous, strictly increasing,

and concave. By the definition of v, for all t ∈ T , v(xt) = vt∗ + λt∗pt∗ · (xt − xt∗) ≤
vt + λtpt · (xt − xt) = vt for some t∗ ∈ T , and if this inequality were to hold strictly, then

the Afriat inequalities would be violated. Therefore, v(xt) = vt for all t ∈ T . Now, at any

t ∈ T , choose some x ∈ Bt = {x ∈ R`
+ : pt · x ≤ pt · xt}. Again by the definition of v, for this

t ∈ T and x ∈ Bt, v(x) ≤ vt + λtpt · (x− xt). Since x ∈ Bt, pt · (x− xt) ≤ 0, and therefore

v(x) ≤ vt. Finally, using that v(xt) = vt for all t ∈ T , we have v(x) ≤ vt = v(xt).

Since rationalization by a continuous, strictly increasing, and concave utility function

clearly implies rationalization by a complete, transitive, and locally non-satiated preference

relation, we have shown an equivalence between (1), (2), and (3), and the proof of Afriat’s

Theorem is therefore complete.

Some background and concluding remarks are helpful to situate the main insights of

our approach. Afriat’s Theorem was initially stated and proven by Afriat (1967) using a

combinatorial inductive approach. Several years later, the result was simplified, qualified,

5 Suppose the consumer had chosen x̃3 = (1, 3) instead of x3 = (2, 1). In this case, p2 · (x2−x3) = 0, and
therefore m2 = +∞. Following Lemma 2, we are free to choose any m∗ ∈ (0, +∞), e.g., m∗ = 1.

6 It first appears in Afriat (1967), then Diewert (1973) and Varian (1982), among many others.
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and extended by Diewert (1973), who related the theorem more directly to a specific linear

programming problem, and by Varian (1982), who more explicitly linked GARP to the cycli-

cal consistency property of Afriat (1967), and who generally promoted the broad approach

as a nonparametric alternative to demand analysis. More recently, Fostel, Scarf, and Todd

(2004) provided two new proofs of Afriat’s Theorem, one inductive and another exploiting

the dual structure inherent in linear programming problems.

Several extensions and adaptations to the Afriat (1967) approach have proven insightful

and useful over the years. Matzkin (1991), Chavas and Cox (1993), Forges and Minelli (2009),

and Cherchye, Demuynck, and De Rock (2014) provided complete characterizations under

more general (not necessarily linear) constraints. Teo and Vohra (2003) showed that ratio-

nalizability is related to the identification of cycles in graphs, and Geanakoplos (2013) linked

rationalizability to the existence of equilibria in zero-sum games. Reny (2015) circumvented

the Afriat inequalities entirely and directly proved that GARP is necessary and sufficient for

rationalizability (in both finite and infinite data), somewhat in the spirit of Rochet (1987)

and Brown and Calsamiglia (2007). Lastly, Fujishige and Yang (2012), Polisson and Quah

(2013), Cosaert and Demuynck (2014), and Forges and Iehlé (2014) allowed for discreteness

and indivisibilities, which is a natural consideration in many empirical applications.

Our approach delivers further clarity on a particular issue, namely that a concave ra-

tionalization is without loss of generality in a finite data setting. Firstly, let us say that

a preference relation on X is consistent with the data if it satisfies conditions (i) and (ii).

Lemma 2 then states that any preference relation on X , consistent with the data, admits a

specific representation, i.e., a representation that satisfies condition (iii). In turn, Lemma 3

states that this specific representation admits multipliers, which satisfy the Afriat inequal-

ities, and which therefore extends to a concave representation on the entire consumption

space. This observation complements a recent result of Quah (2014), who stated that any

preference relation on X , consistent with the data, extends to a concave rationalization on

the entire consumption space; in this note, we have explicitly constructed a specific repre-

sentation on X , which extends to a concave representation on the entire consumption space.

One advantage of proving the necessity of the Afriat inequalities directly (and without

appealing to GARP) is to highlight the role of non-uniqueness (up to affine transformations),
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and therefore the main insight of the approach can be found in Lemma 2. As Diewert (1973)

concluded, “it is perhaps somewhat surprising that the [utility function] constructed from

a finite body of price and quantity data . . . is continuous, increasing and concave when the

decision-maker’s ‘true’ [preference] only satisfies the much weaker regularity conditions . . .

thus the data will never be able to reveal backward bending indifference curves or non-

convex indifference sets.” Diewert (1973) goes on to quote Samuelson (1950), who made

the earlier observation that “any point where the indifference curves are convex rather than

concave cannot be observed in a competitive market,” and that “such points are shrouded in

eternal darkness.” What this note has highlighted is that the lack of uniqueness of a utility

representation in a restricted finite data setting is largely responsible for such an equivalence.

When budgets are nonlinear, however, a lack of uniqueness (say, up to affine transfor-

mations) of the representation does not necessarily guarantee the equivalence. Indeed, we

also require the ratios of utilities (vt′ − vt)/(vt − vt′′) to be bounded from above by ra-

tios of linear functionals. To see this, let us briefly revisit the work of Forges and Minelli

(2009). In Forges and Minelli (2009), a data set is a finite collection (xt, Bt)t∈T , where

Bt := {x ∈ R`
+ : gt(x) ≤ 0} is a generalized budget set (for all t ∈ T , gt : R`

+ → R is a con-

tinuous and increasing function satisfying gt(xt) = 0). Assume that the data set (xt, Bt)t∈T

is rationalizable. It is straightforward to verify that Lemmas 1 to 3 generalize to this richer

environment. Firstly, the generalized version of Lemma 1 states the existence of a complete

and transitive preference relation <⊆ X × X , such that xt′ < xt implies gt(xt′) ≥ 0 and

xt′ � xt implies gt(xt′) > 0 for all (t, t′) ∈ T ×T . Secondly, the generalized version of Lemma

2 states the existence of a representation (vt)t∈T , such that

vt′ − vt

vt − vt′′
≤ gt(xt′)

−gt(xt′′)
,

for all triplets (t′, t, t′′) ∈ T × T × T satisfying xt′ � xt � xt′′ and gt(xt′′) ≤ 0. Thirdly, the

generalized version of Lemma 3 states the existence of a set of positive multipliers (λt)t∈T ,

such that for all (t, t′) ∈ T × T ,

vt′ ≤ vt + λtgt(xt′).

However, this does not guarantee the existence of a concave rationalization. To guarantee

a concave rationalization, we need to find a finite collection of (normalized) hyperplanes
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(Ht)t∈T , such that (a) Bt ⊆ {x ∈ R`
+ : infht∈Ht ht · (x − xt) ≤ 0} for all t ∈ T , (b) for any

(t, t′) ∈ T × T , xt′ � xt implies that infht∈Ht ht · (xt′ − xt) > 0, and (c)

vt′ − vt

vt − vt′′
≤ infht∈Ht ht · (xt′ − xt)

infht∈Ht ht · (xt − xt′′)
,

for all triplets (t′, t, t′′) ∈ T × T × T satisfying xt′ � xt � xt′′ and gt(xt′′) ≤ 0 (hence,

infht∈Ht ht · (xt − xt′′) ≥ 0). Notice that when the budget sets are classically linear, we have

that Ht = {pt} for all t ∈ T . We refer the reader to Theorem 3 in Cherchye, Demuynck, and

De Rock (2014) for details.

Finally, the approach developed in this paper may be particularly profitable outside of

a classical demand setting, i.e., when combinatorial GARP-like conditions do not straight-

forwardly exist, or when stronger assumptions on the preference relation or utility function

no longer hold without loss of generality. An important message is that as soon as further

structure on the preference ordering is introduced, e.g., some form of separability, then any

utility representation may be unique up to a more restrictive transformation than monotonic

transformation, which then precludes the flexible construction of a concave utility function

that rationalizes the data.

References

AFRIAT, S. N. (1967): “The Construction of Utility Functions from Expenditure Data,” Inter-
national Economic Review, 8(1), 67–77.

BAYER, R.-C., S. BOSE, M. POLISSON, and L. RENOU (2013): “Ambiguity Revealed,” IFS
Working Papers, W13/05.

BROWN, D. J., and C. CALSAMIGLIA (2007): “The Nonparametric Approach to Applied Wel-
fare Analysis,” Economic Theory, 31(1), 183–188.

CHAVAS, J.-P., and T. L. COX (1993): “On Generalized Revealed Preference Analysis,” Quarterly
Journal of Economics, 108(2), 493–506.

COSAERT, S., and T. DEMUYNCK (2015): “Revealed Preference Theory for Finite Choice
Sets,” Economic Theory, 59(1), 169-200.

CHERCHYE, L., T. DEMUYNCK, and B. DE ROCK (2014): “Revealed Preference Analysis for
Convex Rationalizations on Nonlinear Budget Sets,” Journal of Economic Theory, 152 (C),
224–236.

DIEWERT, W. E. (1973): “Afriat and Revealed Preference Theory,” Review of Economic Studies,
40(3), 419–425.

11



ECHENIQUE, F., AND K. SAITO (2015): “Supplement to ‘Savage in the Market’,” Econometrica
Supplemental Material, 83, http://dx.doi.org/10.3982/ECTA12273.

FOSTEL, A., H. E. SCARF, and M. J. TODD (2004): “Two New Proofs of Afriat’s Theorem,”
Economic Theory, 24(1), 211–219.

FORGES, F., and E. MINELLI (2009): “Afriat’s Theorem for General Budget Sets,” Journal of
Economic Theory, 144(1), 135–145.
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