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Abstract

This paper investigates the impact of cognitive abilities and preferences on behavior

in games. We first measure subjects’ logical abilities and social preferences and then

evaluate their influence on behavior in strategic-form games. For this purpose, we

estimate how logical abilities and preferences relate to the probability of a subject

being of a specific behavioral type. We find that better logical abilities increase the

likelihood of sophisticated behavior. This shift is stronger for subjects who are classified

as “selfish”. However, not even the most logically able, selfish subjects are identified

as Nash types.
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1 Introduction

This paper investigates experimentally how individual characteristics, in particular logical

abilities, relate to individual behavior in strategic-form games. A large body of evidence

documents systematic behavioral departures from selfish Nash play, particularly in environ-

ments with limited learning opportunities. (See Camerer (2003) and references therein.) It

is still relatively unclear what drives particular behaviors. There are almost unlimited po-

tential causes for why a player might deviate from choosing strategies prescribed by Nash

equilibrium under purely selfish preferences. Bounded rationality, other-regarding prefer-

ences, lack of belief in the rationality of the opponent and the belief that the opponent

might have other-regarding preferences are just a few possible causes. This paper is mainly

concerned with the impact of cognitive abilities on the level of strategic sophistication shown

in strategic-form games, while controlling for social preferences and beliefs about the other

player.

Our experiment has two essential components. The first component measures the ability

of individuals to perform complex chains of reasoning, in particular counter-factual reason-

ing. We employ a computerized variant of the red-hat puzzle, as introduced in Bayer and

Renou (2007).1 The second component of the experiments presents the subjects with twelve

strategic-form games. Ten of these are dominance solvable, for which the logic for iterated

deletion of strictly dominated strategies closely parallels the logic underlying the red-hat

puzzles. We add two dictator games, which are designed as a control for preferences. More-

over, we vary what a subject knows about the cognitive abilities and social preferences of

the opponent, such that we can control for beliefs.

We use the choices made by the subjects in the twelve strategic-form games to identify

different behavioral types, which are more or less strategically sophisticated. Following recent

studies, such as Stahl and Wilson (1994; 1995), Costa-Gomes et al. (2001), Costa-Gomes and

Weizsäcker (2008), we estimate a mixture density model, where each subject’s behavior is

determined, possibly with errors, by one of a rich set of behavioral types. Although we

consider fifteen possible behavioral types, only six of them are of significant importance in

the sample. An Altruistic type identifies the strategy profile that maximizes the sum of his

1See also Weber (2001).
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own and the opponent’s payoff and chooses the corresponding action. An Optimistic type

identifies the strategy profile that maximizes his payoff and takes the corresponding action

(i.e., “max max” behavior). An L0 player uniformly randomizes over his actions. The more

sophisticated L1 type (Naive in Stahl and Wilson; 1994 and 1995) best replies to L0. An L2

type is even more sophisticated and best replies to L1. Lastly, a D1 player does one round

of deletion of strictly dominated strategies and best replies to a uniform distribution over

the opponent’s remaining strategies.

We now summarize the main results of the paper. Firstly, from the red-hat puzzles,

we derive an index of logical ability for each subject. The index ranges from zero to four

and can be interpreted as a subject’s depth of reasoning. In particular, a subject with a

score of two or more has the ability to put himself in the position of the opponent (strategic

thinking), while a subject with a score of one or less cannot. In the sample of 154 subjects,

the percentage of subjects showing an iteration depth of zero, one, two, three and four is 0%,

52.6%, 24.03%, 5.84% and 17.53%, respectively. About one-half of the subjects can think

strategically.

Secondly, the econometric analysis of behavioral types gives a relatively simple description

of subjects’ behaviors. As already alluded to, the most informative statistical model identifies

six behavioral types, Altruistic, Optimistic, L0, L1, L2 and D1 with percentages of 7%, 2%,

14.2%, 59.9%, 15.4% and 1.6%, respectively. Most subjects (about 75%) are best classified

as L1 or L2 types. L1 is the modal type. This is in line with a result from Costa-Gomes

and Weizsäcker (2008), who found that L1 was the best predictor for play in strategic-form

games. We find no statistical evidence for the presence of Omniscient (rational expectation)

or Nash Equilibrium types. Some previous studies, e.g., Stahl and Wilson (1995), Haruvy

et al. (1999) and Costa-Gomes et al. (2001), found some evidence for a small fraction of

equilibrium types.2 In accordance with most of the studies mentioned above, we also find

some L2, D1 and Optimistic types. Unlike most previous studies, we find strong evidence

for the existence of some Altruistic types.

2In their econometric analysis with information about search patterns, Costas-Gomez et al. found no

evidences for equilibrium types. In sharp contrast with our study and most previous studies, Rey-Biel

(2009) found that a large fraction of subjects (70%) played in agreement with Nash behavior and attributed

the result to the particular games chosen.
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Finally, we turn our attention to the relation between logical abilities and behavioral

types. Intuitively, one might expect the behavior of individuals with better cognitive abilities

to conform more closely with solution concepts such as iterated deletion of strictly dominated

strategies or Nash equilibrium. We find evidence for cognitively more able players playing

more sophisticated strategies. Surprisingly, subjects do not take into account information

they receive about the cognitive ability and social preferences of their opponents.

The general pattern we observe is as follows: the higher the index of logical abilities, the

more sophisticated (i.e., L1, L2 or D1) is the behavioral type. In particular, we find that

the best predictor for play is the L2 type if a subject has a logical ability of three or more,

while the best predictor is the L1 type if a subject has a logical ability of two or less. Logical

abilities do have a significant impact on play. However, the impact of logical abilities is not

as extreme as one might have expected. Even the subjects with very good cognitive ability

are not behaving as L3 or Nash types, which are among the most sophisticated types we

looked for. Yet, the observed L1 and L2 types’ expected payoffs (given the distribution of

play observed in the sample) are very high. The expected payoff of an L2 type is about 99%

of that a player with rational expectations, the ideal of game theory, would achieve. Our

most prevalent type, L1, still achieves 96% of the rational expectation payoff. In contrast,

a Nash type would achieve less than 90% of the rational expectation payoff.3 In terms of

outcomes, the subjects’ behavior is quite sophisticated after all, and subjects with better

logical abilities are more likely to be of the types that achieve higher payoffs.

These results are consistent with the findings by Burnham et al. (2009) and Braas-

Garza et al. (2012), who show that certain measures of cognitive abilities are correlated with

sophistication in beauty contests. In addition to those findings, we are able to look deeper

into the forces driving this relationship. We do not find differences in behavior regardless of

the information received about the cognitive abilities and social preferences of the opponent.

This implies that the impact of cognitive abilities on strategic sophistication is likely to

be direct, rather than indirect. Better cognitive abilities itself lead to more sophisticated

strategies. The alternative explanation that better cognitive abilities imply optimistic beliefs

about the rationality of others which in turn cause more sophisticated strategies is not

3L0 types achieve even less with about 80%.
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supported by our data. In that case, varying the information about the opponent’s logical

abilities and dictator game choices should change the relationship between logical abilities

and play in the strategic from games, which we did not observe.

This paper contributes to the large literature on iterative reasoning in games, which

includes McKelvey and Palfrey (1992), Beard and Beil (1994), Nagel (1995), Ho et al. (1998),

Goeree and Holt (2004), Huyck et al. (2002), Cabrera et al. (2007), to name just a few

important contributions.4 A recurring feature of many of these studies is the use of games

solvable by iterated deletion of strictly or weakly dominated strategies. In these studies, the

ability of individuals to perform complex chains of reasoning is associated with their ability

to iteratively delete dominated strategies in strategic-form games. The use of these games,

however, suffers from the lack of control for beliefs about the rationality of others and for

social preferences.5 A novelty of our experiment is that we are able to provide these controls

with a computerized version of the red-hat puzzles. The second strand of literature our paper

contributes to is that on behavioral types and behavior in strategic-form games (see, among

others, Stahl and Wilson, 1994; 1995; Costa-Gomes et al., 2001; Camerer et al., 2004; Costa-

Gomes and Crawford, 2006; Rey-Biel, 2009; Arad and Rubinstein, 2012; Burchardi and

Penczynski, 2014).6 Finally, our paper contributes to the large literature on how cognitive

abilities correlate with behavioral biases, risk and time and social preferences (for recent

papers see Oechssler et al., 2009; Dohmen et al., 2010; Benjamin et al., 2013).

2 Experimental Design

The experiment was conducted at AdLab, the Adelaide Laboratory for Experimental Eco-

nomics at the University of Adelaide in Australia. We used Urs Fischbacher’s (2007) ex-

perimental software Z-tree. A total of 154 subjects participated in eight sessions and were

4We refer the reader to chapter 5 of Camerer (2003) for a survey of earlier literature on this topic.
5Gneezy et al. (2010) and Dufwenberg et al. (2010) use a version of the game “Nim” to study if and how

humans learn backward induction. Since players have (weakly) dominant strategies, this zero-sum game can

be used to measure the depth of iterative reasoning in humans if one accepts the auxiliary hypothesis that

it is common knowledge that players do not play weakly dominated strategies.
6Beyond the types typically considered, we also included types that capture other-regarding preference

(e.g., Fehr and Schmidt (1999) or Charness and Rabin (2002)) and others we deemed promising.
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recruited using ORSEE (Greiner, 2015). For each of our four conditions (which we will

explain later), we conducted two sessions resulting in between 36 and 42 subjects per con-

dition. A session lasted for about 90 minutes and on average subjects earned about 20.4

Australian Dollars. Earnings ranged from AUD 8 to AUD 36. The 154 participants were

mostly students from the University of Adelaide and the University of South Australia. All

subjects had no previous experience with participation in economic experiments. The ex-

perimental instructions used can be found in Appendix F. The experiment consisted of

three stages. In the first two stages we measured logical abilities and got an indication of

subjects’ social preferences, while the third stage collected the subjects’ play in normal-form

games. The elicitation of social preferences could not be distinguished by the subjects from

the normal-form games part, as it took place within the same computer interface.

2.1 A measure of logical abilities

This section presents the first stage of our experiment, the red-hat puzzles, and describes

our measure of logical ability. Along with a measure of “social preferences,” this measure of

logical ability is at the heart of our analysis of behavior in strategic-form games.

A remark is in order. There is a large number of cognitive ability tests: the Wechsler

Adult Intelligence Test, the Stanford-Binet Intelligence Test, the Woodcock-Johnson Tests

of Achievement, the Bender-Gestalt Test, just to name a few. These tests typically measure

general cognitive abilities by summing across tests of several specific aptitudes, usually verbal

aptitude, quantitative aptitude, and sometimes technical aptitude. We decided not adopt

any of these general cognitive tests for a number of reasons. First and foremost, we wanted

a specific test of cognitive ability able to measure the ability of subjects to perform complex

chains of reasoning, in particular counter-factual reasoning. We were less interested in the

literacy or visual aptitudes of our subjects. Secondly, our test is simple to administer.

Thirdly, the scale of our measure ranges from 0 to 4, while the scale of most general cognitive

ability tests ranges from 0 to 250. Such a wide scale would have been problematic for our

econometric analysis (see section 2.3). Moreover, our test is easy to interpret: a higher score

means a higher ability to perform complex chains of reasoning. This is not the case with

general cognitive ability tests. Finally, the logical puzzle we are using requires a stepwise
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counter-factual reasoning that is very similar to that used in finding Nash equilibria in games

that are dominance-solvable.

2.1.1 The Red-Hat Puzzle

We first present a logical puzzle, which is the basis for our measure of logical ability. Each

of N individuals has either a red hat or a white hat, observes the hat color of others, but

cannot observe the color of his own hat. Along comes a trusted referee, who declares that

“at least one individual has a red hat on the head.” The referee then asks the following

question: “What is your hat color?” All individuals simultaneously choose an answer out

of “I can’t possibly know,” “I have a red hat,” or “I have a white hat.” Individuals then

learn the answers of the other individuals and are asked again what their hat color is. This

process is repeated until all individuals have inferred their hat color. This problem is known

as the red-hat puzzle (henceforth, RHP).7

Suppose that an individual, say Bob, sees that no one else has a red hat. Since it is

commonly known that there is at least one red hat, he must conclude that he has a red hat.

Now suppose that Bob sees one red hat, say on Ann’s head. He should answer “I cannot

possibly know” the first time the question is asked, as he sees another red hat. However, if

Bob can iterate his reasoning further, he can infer his hat color from Ann’s answer. If Ann

says “I cannot possibly know,” Bob must realize that he has a red hat for otherwise, Ann

would have known that she has a red hat right away and should have answered “I have a

red hat.” However, if Ann says “I have a red hat” right away, then Bob can infer that Ann

cannot have seen any other red hats. So Bob knows he has got a white hat. If Bob sees two

red hats, then he will be able to deduct his hat color in three steps by applying the logic of

how to determine your hat color when you see one red hat to the two people who wear red

hats. If they can figure our that they have red hats by their second answer, he knows that

they cannot have seen another red hat and his hat is white. If they cannot, then he knows

that they must have seen another, i.e. his, red hat.

In general, the greater the number of red hats an individual observes, the more complex is

7The same problem is also known as the “Dirty Faces Game.” For an alternative exposition see Fudenberg

and Tirole (1991, pp. 544-548) or Osbourne and Rubinstein (1994, p. 71). Weber (2001) ran experiments

based on a Bayesian Game derived from the logical puzzle.
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the reasoning needed to logically infer the color of one’s own hat. An individual needs m+ 1

iterations to figure out his hat color, where m denotes the number of red hats this individual

observes. In Bayer and Renou (2007) we showed that this puzzle it is both difficult(the

median subject can only solve puzzles with up to one observed red hat) and discriminatory

(more than 10 percent were able to solve all puzzles including those where they observed

three red hats).

We now describe our experimental protocol. In our experiment, a human subject was

paired with three computers, which were acting as “players.” Computers were programmed

to choose the logically correct answers in each round (see below), and the instructions em-

phasized this point heavily. Additionally, subjects were told (and constantly reminded with

an on-screen message) that there was at least one red hat.

Subjects were asked to infer their hat color from the information given to them. At

any point when they were asked, they had three possible answers to choose from: “I have

a WHITE hat with certainty,” “I have a RED hat with certainty,” and “I cannot possibly

know.” In a given puzzle, the first time a subject had to choose an answer, the information

a subject had was the hat color of the three computer-players (along with the fact that

there was at least one red hat). In any subsequent round within the puzzle, the information

a subject had was the complete history of all answers of all players (the computers’ and

his) in all previous rounds. Similarly, the initial information a computer-player had was

the hat color of the two other computers and the human subject and, subsequently, the

complete history of answers. Whenever a computer had to answer, the computer’s answer

was the (unique) logically correct answer inferred from their information and history. Before

subjects started the experiment, they had to answer some control questions testing their

understanding of the instructions.

A RHP was stopped after either a wrong answer by the human or a correct announcement

of the hat color.8 This stopping procedure is necessary to avoid logical inconsistencies. To

see this, suppose there is only one red hat, which is worn by the human subject. The subject

initially observes three white hats. Now, if the subject (wrongly) answers “I cannot possibly

know,” then computers should logically infer and, if allowed, answer “I have a red hat.”

8In a given round, announcing a hat color was correct only if it was actually possible to infer the hat

color at this given round.
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However, this contradicts what the subject observes. Although the computers in this case

would chose the logically correct answers, we would have lost control over how a subject

interprets this inconsistency. We believe that the observation of contradicting computer

announcements and physical reality would have led subjects to believe that the computers

were not properly programmed or that our claim that the computers are logically correct

was based on deception.

Since each individual was paired with three computers, we had seven possible distinct

logical situations. A logical situation was determined by the number of red hats a subject

saw and whether the subject had a red or white hat herself. The more red hats a subject

was observing, the more steps (iterations) were required to correctly infer the hat color.

Subjects played all seven situations in increasing order of difficulty and without any

feedback in between. For any mistake, we deducted 2.5 Australian Dollars (AUD) from the

subjects start-up amount of AUD 20.00. As any mistake immediately terminates a RHP,

subjects payout from the first stage of the experiment could be calculated as AUD 2.5 for

the show-up fee plus AUD 2.5 per puzzle correctly solved. We used the frame of “deduction

per mistake” in order to make the incentive to think hard at every step of the game as strong

as possible (given our financial means).9

2.1.2 Our measure

Table 1 reports the percentage of subjects over the entire sample who correctly solved a

puzzle (as a function of the number of steps needed to solve it). Some remarks are worth

making. Firstly, as expected, the more iterations are required to correctly infer one’s hat

color, the lower is the percentage of correct answers. Secondly, and somewhat surprisingly,

there is no significant difference between solving a puzzle requiring three iterations and one

requiring four iterations (26.6% vs. 26.3%, p > 0.92, test of proportions), while there is

a significant difference between solving a puzzle requiring two iterations and one requiring

three or four (p < 0.001 for all pairwise tests of proportions). This suggests that if an

individual can perform three steps of iterative reasoning, then she can also do four steps.

9For our subjects losing AUD 2.5 with a single wrong decision was quite a strong incentive. A student job

was paying about ten Dollars per hour and the median hourly wage in South Australia was about AUD 20

at the time of our experiments. We also conjecture that the loss frame increases effort through loss-aversion.
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Thirdly, and reassuringly, all subjects were able to solve the easiest puzzle, i.e., to state that

they had a red hat when they were observing three white hats.

[Table 1 about here]

We now construct a simple index of logical ability so as to quantify the number of steps

of iterative reasoning an individual is able to perform. Each puzzle can be parameterized

by a pair (m,n), where m is the number of red hats a subject observes and n is the actual

number of red hats (n = m+ 1 or n = m). If a subject observes m red hats, m+ 1 iterations

are required to correctly infer his hat color: the higher m is, the more complex is the chain

of reasoning. In our experiment, we had seven possible situations: (0, 1), (1, 1), (1, 2), (2, 2),

(2, 3), (3, 3) and (3, 4).

The index we adopt is an integer ranging from 0 (all puzzles incorrectly solved) to 4 (all

puzzles correctly solved). The index is supposed to tell us how many steps of counter-factual

reasoning a person can do. An index of i predicts that a subject solves all puzzles requiring

i or less iterations and fails all others. For each subject, we simply ascribe the index that

minimizes the number of wrong predictions.10

[Table 2 about here]

Table 2 shows a few examples of how our index works. The table reports which of the

seven puzzles (requiring one to four steps) a person solves correctly (c) or wrongly (w) and

shows the index assigned as well as how many predictions errors the assigned index leads to.

The puzzles are identified by the number of red hats seen and the total number of red hats

(m,n) as explained above. A subject has a pattern of answers consistent with the index if he

has solved all puzzles requiring i or less iterations and failed all others. Remarkably, 78.6%

of the subjects exhibit a consistent pattern of answers. The first example in the table above

shows a person who has a pattern consistent with a person who can do three steps but not

four and is therefore assigned an index of three. Since the pattern is fully consistent there

are no prediction errors. The second example shows a person who gets all step one and step

two puzzles right but fails to solve all higher puzzles except one step four puzzle. If we assign

10If there are multiple minimizers, we chose the smallest.
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this person an index of two, then there is one prediction error (shown in bold), as a step two

person is not predicted to solve a level four problem. It is easy to check that any other index

value would lead to more than one prediction error. Our procedure would interpret the one

correct step-four outcome as luck. In the second example in the table above our procedure

assigns a mistake in a low level puzzle to bad luck. The final example shows how our decision

to choose the lower index number if two at the same time minimize the prediction errors

turns out. Here the subject gets all step one and two puzzles and one of the two step three

puzzles right. Both, assigning an index of two or three lead to one prediction error. In this

case we are conservative and assign an index of two.

A standard criterion for a good measure and the existence of a one-dimensional hierar-

chical scale is that the coefficient of reproducibility (i.e. the fraction of correctly predicted

outcomes) is above 90 percent, Guttmann (1950). Our measure satisfies this criterion, as

it predicts 91.5 percent of the outcomes correctly. Figure 1 shows the distribution of our

measure across subjects.

[Figure 1 about here]

Looking at the distribution, it catches the eye that the frequency of four step individuals

is higher than that of three step subjects, which cause the distribution to be bimodal. There

are two potential reasons for this. Firstly, an index value of four steps means that the subject

can do at least four steps of iteration, as we do not have any puzzles that require more steps

of iterative reasoning. So the real distribution of iterative abilities could be unimodal, as the

subjects with the index value of four in fact should be distributed over the bins for iteration

abilities of four, five, six, up to infinity, which we cannot distinguish. Secondly, there is

also a possibility that some subjects categorized as level four have been able to infer the

structure of the problem from their counterfactual reasoning. In other words, some people

who are able to counter-factually reason a few steps are able to extrapolate the pattern for

more difficult tasks without actually requiring to iterate further. This effect can either be

due to learning from easier puzzles, which is possible but difficult due to the lack of feedback

in our design, or from introspection. From a companion paper Bayer and Renou (2009),

where we investigate the impact of feedback, order of puzzles, repetition and one-shot play

on performance, it can be inferred that introspection is likely to be the dominant force.
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In light of the results, it makes sense to think of alternative ways of characterizing the

cognitive abilities of our subjects. First, one could divide subjects into those who can

put themselves into the shoes of someone else and those who cannot. All subjects with a

score higher than one fall into the former category and those with a score of one into the

latter. A second natural way of grouping subjects are the following three groups: a) no

counter-factual reasoning (score of one), b) some counterfactual reasoning (score of two)

and c) understanding the structure of the problem (scores of greater than two). This way

of combining levels three and four makes sense, since about 74 percent of the subjects that

were able to solve the problems of level three were also able to solve the most difficult puzzle.

We will make use of both of these alternative categorizations, when we investigate the link

between cognitive abilities and play in strategic-from games.

2.2 Social preferences

In the second stage of the experiment, subjects were presented with a dictator game, designed

to provide a crude measure of social preferences. The dictator could implement three different

allocations: A = (4.5, 4.5), B = (6.0, 1.5) and C = (3.0, 9.0), expressed in Australian Dollars

and with the first coordinate representing the monetary payoff of the dictator. Subjects had

to choose between A, B or C and then to confirm their choices, in order to minimize the

rate of possible mistakes. As we wanted to exclude other motivations than social preferences

(such as reciprocity or conformity), subjects played one game as dictator and one game as a

receiver with different partners and without feedback.

A selfish dictator would choose option B. For a person to choose A or C, other-regarding

preferences are necessary. For a subject to choose A over B, the concern for the other subject

must be large enough such that the increase in the payoff of the other subject compensates for

the loss in one’s own payoff. For a player to prefer C over the other two options, the concern

for the other subjects must be even greater. Also, note that the total surplus increases from

B to A and from A to C, while the own payoff decreases.

Our choice of allocations was guided by the idea that a person who prefers C is willing to

sacrifice quite a bit of her own payoff in return for social efficiency. A person who chooses A

tends to dislike advantageous inequity, whereas a person who chooses B is relatively selfish.
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For our purpose, such an admittedly crude classification of subjects is sufficient.

In our sample of 154 subjects, 27% have chosen alternative A, 50% alternative B, and

23%, alternative C.

2.3 Behavior in games

The last stage of our experiment consisted of twelve strategic-form games. Each player had

three pure strategies in each game. All but two games were dominance solvable and each

game had a unique Nash equilibrium in pure strategies.11 More precisely, in three games, one

round of deletion led to the subject’s equilibrium strategy (i.e., the subject had a dominant

strategy). Two and three rounds of deletion were required in three games each, whereas

there was one game requiring four rounds. The games are presented in Appendix C.

Six games and their respective transposes constitute our twelve games; most of them

taken from Costa-Gomes and Weizsäcker (2008). Moreover, all games were presented to the

subjects as if they were row players. Thus, subjects were actually playing the same twelve

games and had the same view of each game, i.e., the view of a row player. We randomized the

order of the games so as to control for possible order effects. We had four different sequences

of games, in which a subject never played a game and its transposed in succession.12

A subject was initially seeing his own payoff table, but not the payoff table of his op-

ponent. The subject had to wait for 15 seconds before being able to see the payoff of his

opponent; she had to click on a button to do so.13

The monetary payoff from the second and third stage of the experiment consisted of the

payoff obtained in two randomly chosen games out of the fourteen games played in phases

two and three (twelve strategic-form games, one dictator game as the dictator and one as

the receiver). Subjects were informed about this in the instructions.

To summarize, we obtain a measure of logical ability with the red-hat puzzle. To control

for social preferences, we use dictator games. We randomly rematched subjects in between

11In all dominance solvable games, a strictly dominated strategy was dominated by a pure strategy.
12We found no order effects.
13We included the delay and the option to view the payoff of one’s opponent to gather some additional

information, e.g., whether a player with a dominant strategy viewed the payoff of his opponent. We found

no significant effect, however.
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stage two and three of the experiment and informed subjects of that procedure. No feedback

was provided during stage three (i.e., the strategic-form games).

The experiment consists of four different conditions, which differ in the level of infor-

mation given to subjects in stage three. In the fullinfo condition, subjects were told which

option the opponent had chosen in the dictator game and how many RHPs the opponent

had correctly solved. The number of RHPs solved is a signal about the cognitive ability

of the opponent, whereas the choice in the dictator game is a signal about the opponent’s

preferences. In the red-hat condition, only the number of correctly solved RHPs is provided.

In the dictator condition, the subjects were only told the opponent’s choice in the dictator

game, while in the noinfo condition no information was provided.

3 Hypothesis and experimental results

In what follows we will present the results of our experiments. Before we get into the details,

let’s talk about hypotheses. Our general goal of the paper is to find out how cognitive

abilities as measured by the RHP shape play in normal form games. At the same time

we want to control for social preferences and use our different treatments to draw further

inferences about what drives play in the normal-form games. One can hypothesize that Nash

equilibrium (our standard solution concept) is the process that drives our data. Then the

following hypothesis should hold.

Hypothesis 1 Observed behavior is largely consistent with Nash equilibrium.

If the hypothesis above holds then one might investigate where observed deviations result

from. Candidates are that a subject cannot locate a selfish Nash equilibirum or has social

preferences. Since we have information on subjects’ cognitive abilities and on their preference

we can test the following hypotheses if required.

Hypothesis 2 Subjects with higher cognitive ability play Nash more often.

Hypothesis 3 Subjects who have chosen the selfish option in the dictator game should play

selfish Nash more often.
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Now suppose that subjects are boundedly rational and choose their actions based on a

mixture of their own cognitive ability, preferences and their beliefs about the ability and the

preferences of their opponents. Then we can provide some alternative hypotheses. In what

follows, when we speak of sophistication then we mean the level in a level-K style model.

First, we would expect that the own ability is one driver of displayed strategic sophistication.

Somebody who cannot perform more than one step of counterfactual reasoning, for example,

cannot perform the logic required for consciously behaving as a level 2 player in a level-K

model.

Hypothesis 4 Subjects with better cognitive abilities are associated with more sophisticated

behavioral types.

Note that this does not imply that two players with different cognitive abilities will

have to behave differently or that players with the same cognitive abilities have to behave

identically. Two highly cognitively able players, for example, could have different beliefs

about the cognitive abilities of others and as a result one could behave as level 1 and the

other as level 2. If subject’s beliefs about the other player are an important determining

factor of how people behave, then providing a signal about the opponents cognitive abilities

should have the effect proposed in the next hypothesis.

Hypothesis 5 If subjects know the cognitive abilities of the opponent, then on average the

sophistication increases with the abilities of the opponent.

Similarly, if beliefs about the preferences are a driver, then the observed types should

depend on a signal about them. Observe that level-K is typically formulated in a way that is

implicitly assumes that payoffs in a game represent preferences over outcomes. Subjects with

social preferences are then typically misclassified as less sophisticated than they actually are.

Often their behavior will be picked up by level zero types or by other non-strategic types.

The following hypothesis arises from this logic.

Hypothesis 6 If subjects observe a signal about the preferences of the opponent that deviates

from selfishness, then they are associated more often with non-strategic types.
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3.1 Nash play

This section briefly comments on the overall compliance with the concept of Nash equilib-

rium. To be precise, let G be one of the twelve strategic-form games subjects were presented

with. (Remember that all games had a unique Nash equilibrium in pure strategies.) We say

that a subject plays according to the concept of Nash equilibrium if he plays the equilibrium

strategy of G, under the assumption that preferences are indeed given by G.

[Table 3 about here]

Table 3 reports the percentage of subjects’ behavior consistent with the concept of Nash

equilibrium, as a function of number of rounds of iterated deletion of strictly dominated

strategies required. The percentages are surprisingly low. In games with a strictly dominant

strategy, subjects chose the Nash strategy about two-thirds of the time, but the fraction

drops to only about one-third for games where two, three or four rounds of iteration are

necessary. In games that are not dominance solvable, the percentage drops even further.

Tests of proportions reveal that the fraction of Nash behavior is higher in games with a

strictly dominant strategy than in all other games (p < 0.01 for all pairwise comparisons)

and lower in games, which are not dominance solvable, than in all other games (p < 0.01

for all comparisons). Comparing the percentage of Nash behavior to one third, i.e., as if

subjects play any of their actions with equal probability, shows that for games with a strictly

dominant strategy, the percentage is significantly higher (p < 0.01, binomial distribution

test). Strikingly, for games that are not dominance solvable, the percentage of Nash behavior

is significantly lower than one-third (p < 0.01). For the remaining games, the percentages

of Nash behavior are not significantly different from one-third.

From a mechanism design perspective, the poor predictive power of Nash equilibrium

suggests that Nash implementation is problematic. Furthermore, the relatively low compli-

ance rate in games with a strictly dominant strategy suggests that implementation of social

choice functions in dominant strategies is not even a guarantee. Moreover, even if we restrict

our attention to subjects having chosen the action B, i.e., the selfish action, in the dictator

game, the aggregate compliance rate with strict dominance is still less than 80%. This seems
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to indicate that preferences alone cannot explain why the dominant strategies are not played.

Generally, Nash equilibrium is a poor descriptor of observed play in the normal form games.

Finding 1 Play in normal-form games is not guided by selfish Nash equilibrium.

This result implies that we have to reject 1 and a further investigation of Hypotheses 2

and 3 is not necessary.

3.2 Information conditions

The treatment manipulation of our study was designed to shed some light on how subjects

decide which strategy to play in normal-form games. We varied the amount of information

a subject has about the cognitive abilities and social preferences of the opponent. In the

four conditions we either gave no information (N = 36), information about how many RHPs

the opponent solved (N = 38), information which dictator-game option the opponent chose

(N = 38), or both (N = 42). A person, who forms conjectures about what the opponent is

likely to do in a game in order to best-respond to it, should take the information provided

into account. On the other hand, a subject who uses a fixed rule (i.e. playing like a level-K

type or a non-strategic type), would disregard such information.

If subjects used the information we would expect a statistical association between the

treatment and the distribution of strategies played in a particular game. The distributions of

actions taken in the different games look extremely similar across treatments. We conducted

Fisher Exact tests on the contingency tables for all 12 games. Only in a single game we

could reject the null-hypothesis that there is no association. One successful test out of 12

is well within the realm of false positives. And indeed, using Fisher’s method of combining

the tests, we find that an association across all games is extremely unlikely (p = .66). The

table below shows the p-values for the individual and the combined tests.14

[Table 4 about here]

14Fisher’s combined probability test assumes that the individual tests are independent. This assumption

might be violated in our case, since the same subjects play all the games. However, if the p-values of

individual tests are correlated, then the test is biased towards rejecting the null, which strengthens our

argument.
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Finding 2 Subject’s play in the normal-from games does not differ across information con-

ditions.

This finding in itself is no proof yet that Hypotheses 5 or 6, which link information to

behavior have to be rejected. It is still possible that information-dependent behavior in

the treatments where information was provided aggregates to similar over-all behavior as

that observed in the treatment without information. However, comparing the behavior of

players who observe different signals about the cognitive abilities in the strategic-form games,

does not show significant differences either. We take only subjects that have observed the

performance of their opponents in the RHP (N = 80). Then we compare the distribution

of behavior for subjects that saw scores that correspond to LO measures of 1,2,3 and 4. A

Fisher exact test does not find a difference in any game and combining the games provides a

combined p-value of 0.99.15 Given this result we have to reject Hypothesis 5. This finding is

in contrast to Agranov et al. (2012), who find that manipulating the beliefs about cognitive

abilities of others has an impact on play in guessing games.Gill and Prowse (2015) find that

in the 11-20 game only subjects who have a high cognitive ability themselves adapt their

behavior according to the information they have about the opponent.

Similarly, we do not find differences in behavior depending on the signal a subject receives

about the social preferences of the opponent. Comparing play of informed subjects in the

games conditional on which action the opponent had chosen in the dictator game does not

show any significant differences for any game. Combining the tests using Fishers method

yields p = 0.28. Therefore, we have to reject Hypothesis 6.

3.3 Behavioral types

So far we have established that neither Nash equilibrium, nor the information received about

rationality and social preferences of the opponent are driving behavior. This implies that it

is likely that subjects behave according to some fixed decision rules. In what follows, we are

postulating some potential types and then via a mixture model estimate the fraction of the

15Other ways of slicing the sample do not change this result. If one. e.g. compares the distributions of

players who faced subjects that could not put themselves in the shoes of others (LO ≤ 1)and those who

could (LO > 1) yields p = 0.91.
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population behaving according to the different types.

We postulate that a subject can be one of fifteen possible behavioral types, labeled Al-

truistic, Pessimistic, Optimistic, L0, L1, L2, L3, D1, D2, Equilibrium, Omniscient, Regret,

Best-reply to Altruistic, Inequity Aversion, and Efficiency. Altruistic takes the decision cor-

responding to the profile of decisions that maximizes the sum of his own and opponent’s

payoffs. Pessimistic takes the decision that maximizes his minimal payoff over his oppo-

nent’s decision. Optimistic takes the decision that maximizes his maximum payoff over his

opponent’s decision. L0 uniformly randomizes over his actions. L1 conjectures that his op-

ponent plays each of his actions with equal probability and best-replies to this conjecture,

i.e., L1 best replies to L0. L2 best replies to L1, i.e., he conjectures that his opponent plays

according to L1 and best replies to this conjecture. Similarly, L3 best replies to L2. D1 does

one round of deletion of strictly dominated strategies, conjectures that his opponent plays

each of the remaining strategies with equal probability, and best replies to this conjecture.

D2 does two rounds of deletion of strictly dominated strategies, conjectures that his oppo-

nent plays each of the strategies remaining with equal probability, and best replies to this

conjecture. Equilibrium conjectures that the opponent plays a Nash equilibrium strategy

and best replies to this conjecture. Omniscient best replies to the empirical distribution of

played actions in each game. The ten behavioral types we have described so far are bor-

rowed from Nagel (1995), Stahl and Wilson (1995) and Costas-Gomez et al. (2001). We have

also considered four additional types that we ex-ante deemed promising. Regret minimizes

his maximum regret over the decision of his opponent. Best-reply to Altruistic best replies

to Altruistic. Inequity Aversion and Efficiency take equilibrium decisions, but with other-

regarding preferences à la Fehr and Schmidt (1999) for inequity aversion and à la Charness

and Rabin (2002) for efficiency.16

3.3.1 The statistical model

This section presents the statistical model adopted for the estimation of types. For each

subject i ∈ {1, . . . , n}, the vector of observables (xi, yi) consists of the play in the twelve

16For inequity aversion, we have used the payoff function ui(ai, aj)− 1/2 max(uj(ai, aj)− ui(ai, aj), 0)−
1/4 max(ui(ai, aj) − uj(ai, aj), 0) where u is the material/experimental payoff, while for efficiency, we have

used ui(ai, aj)+0.5uj(ai, aj) if uj(ai, aj) > ui(ai, aj) and 0.5ui(ai, aj)+0.5uj(ai, aj) if ui(ai, aj) ≥ uj(ai, aj).

18



different games, i.e., xi := (x1i , . . . , x
12
i ) where xki ∈ {A,B,C} is the action played by player

i in game k, together with the outcome of the logical ability test, the choice made in the

dictator game, the treatment played, and personal characteristics (age, degree, gender, etc).

As already explained, we hypothesize that each subject has a behavioral type θ ∈ Θ, which

determines a specific play in all games. (See Appendix D.) We assume that conditional on

observables y, behavioral types are independently and identically drawn from the distribution

py. Two important conditioning observables are the logical ability index and the choice made

in the dictator games.

We further assume that in each game k, conditional on observables y, subject i of type θ

plays the action xki (θ) consistent with his type with probability (1−eyθ) and plays any one of

the remaining two actions with probability eyθ/2. Note that if eyθ = 2/3, a subject uniformly

randomizes over his three actions. This simple observation makes it possible to identify the

L0 type.

Denote xi(θ) the number of actions consistent with type θ out of subject i’s profile of

actions xi, i.e., xi(θ) := |{k : xki = xki (θ)}|. It follows that the probability that subject i of

type θ plays the sequence xi of actions is:

Pr(xi|eθ, θ, y) = (1− eyθ)
xi(θ)(eyθ/2)12−xi(θ).

Thus, the probability that subjects with observables y play the profile x := (x1, . . . , xn) is:

Pr(x|ey, py, y) =
∏
i

(∑
θ

py(θ)(1− eyθ)
xi(θ)(eyθ/2)12−xi(θ)

)
,

where ey is the profile of error rates (eyθ)θ. The log-likelihood l((py, ey)) of (py, ey) is thus

given by: ∑
i with observables y

ln

(∑
θ

py(θ)(1− eyθ)
xi(θ)(eyθ/2)12−xi(θ)

)
.

To maximize the log-likelihood l((·, ·)) with respect to (py, ey), we implement the EM algo-

rithm of Dempster et al. (1977) (see also Redner and Walker, 1984; Little and Rubin, 1987;

El-Gamal and Grether, 1995).

The confidence intervals are obtained by bootstrapping, as analytical standard errors are

not available.17 For model selection, we use three different criteria for fit and discriminatory

17For the bootstrap, we re-sampled the original data with replacement, with the number of observations
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power: the Akaike Information Criterion (AIC) adjusted for small samples, the Bayesian

Information Criterion (BIC) and the Average Normalized Entropy (ANE). The lower AIK

and BIC are, the better is the model. We unfortunately cannot not use Likelihood-ratio

based test like the Vuong test, which was used in Kawagoe and Takizawa (2012), e.g., since

due to the use of the EM algorithm we cannot be sure about the distribution of the test

statistic. The higher the entropy, the less informative is the model.18

3.3.2 Econometric results

Table 5 reports our estimation results for our most preferred models for the whole sample and

for sub-samples of subjects with cognitive abilities of one and above on. Models were selected

as follows.19 For each logical ability score, we started with the full model containing all our

fifteen types and eliminated the types with inconsistent error estimates.20 After removing

the inconsistent types, we had an intermediate model. For the final model selection, we then

proceeded in two steps.

[Table 5 about here]

First, we removed the types with estimated error rates of close to two-thirds and replace

these types by the type L0. Recall that for any game a type predicts that one of the three

actions is played. If the error probability (i.e. the probability to choose any of the two

alternative strategies with probability e/2) for a type is equal to 2/3, then a player of this

type mixes over the three alternatives with equal probabilities. This is just the behavior

of a L0 type. So the types with estimated error rates of around 2/3 all pick up the same

behavior. Consequently, we created and estimated a pseudo-type L0 that always plays the

middle action B, but has error rate e. Since the estimated error rate for the new type was

equal to the number of observations in the original data, and re-performed the estimation. After 2000 re-

samplings, we used the resulting distributions of estimates to determine the bootstrap confidence intervals.
18El-Gamal and Grether (1995) regard values below .38, which was the highest value they observed in

their study, as good.
19All estimations are available upon request.
20Estimated error rates of well above two-thirds imply that subjects played the strategies consistent with

their behavioral types with a lower probability than any of the other two alternatives.
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indeed close to two-thirds, we are confident that we successfully identify the L0 types in the

sample.21 This procedure allows us to actually pick up L0 types, which a variety of studies

are not able to do.

Second, we checked if reducing the model further improved parsimony without worsening

the fit. Models were compared in terms of their ANE, AIC and BIC scores. Models reported

in Table 5 dominate all other models but one in all criteria, and dominate the remaining

model in two out of three criteria. Note that the selected models have relatively low ANEs,

which confirms their excellent discriminatory power.22

Table 5 shows the type estimation for the whole sample and also separately for subjects

with an ability score of one and those of more than one. Note that in our puzzles an ability

of more than one required putting oneself in the shoes of a computer, while a score of one did

not. We first note that no subject is best described as the Nash type. This is consistent with

the observations made in Section 3.1. Moreover, the distribution over types in our sample is

roughly consistent with existing findings. Some of the games in our experiments were first

used by Costa-Gomes and Weizsäcker (2008), who concluded that their subjects typically

behaved as L1 types. Our results are consistent with this finding: the most prevalent type

in our sample is the L1 type (roughly 59.9% of the subjects). Additionally, in an earlier

study, Costa-Gomes et al. (2001) equally found L1 to be the most prevalent type in their

econometric analysis of behavioral types with information about search patterns. The next

largest group of subjects (15.4%) are subjects classified as type L2.23 Note that behaving

as an L2 type is near optimal in our sample, as L1 is the most prevalent type and L2 best

replies to L1.24 Next, we need to mention that we found a large number of subjects (more

21The five estimates we obtain for the different models all lie between 0.622 and 0.706. All bootstrapped

confidence intervals contain 2/3.
22As robustness tests we also estimated a variety of models for the whole sample using the same model

selection criterion. Additionally, we also estimated a model using all data, where error rates could differ not

only by type but also by the level of cognitive ability. The resulting ex ante type probabilities where very

close to those reported in Table 5. These estimation results are available from the authors on request.
23In their econometric analysis of behavioral types without information about search patterns, Costa-

Gomes et al. (2001) found L2 to be the most prevalent type.
24An Omniscient type would certainly do better; but according to our most preferred models we did not

find this type in the sample.
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than 14%) exhibiting L0 behavior. The remaining subjects were classified as either Altruistic

(about 7%), Optimistic (2%) or D1 (1.6%).

Finding 3 Behavior in the strategic-form games is heterogenous and best described by a

distribution of player types that does not include a Nash type.

We now concentrate on the relationships between logical ability and behavior. The

separate estimations for subjects with cognitive ability one versus more than one, show

that being able to put oneself into the shoes of others (required for step> 1) leads to more

sophisticated play in the strategic-form games. The mass of the distribution of types shifts

from less sophisticated types such as L0 and L1 to more sophisticated types such as D1 and

more prominently L2. In particular, a subject with a logical ability greater than one is more

than four times as likely to be of type L2 than one with the logical ability of one.

Next we further separate the sample in order to see if type distributions differ across

subjects with different cognitive abilities above one. Figure 2 plots the estimated probabilities

to be of a certain behavioral type conditional on a logical ability score of one, two, and three

and more (see the additional estimates in Table 7 in Appendix E). Remarkably, a subject

with a score of three or more is about twice as likely to be of the L2 type than a subject

with a score of two, and about ten times as likely than a subject with a score of one. Mann

Whitney U-Tests confirm the observation that subjects with better logical abilities are more

likely to be of the L2-type (p < 0.002). In fact, conditional on a logical ability index of three

or more, the most likely type is L2, while L1 is the most likely type conditional on a logical

ability index of two or less.

Also, a subject with an index of one is infinitely more likely to be of type L0 than a

subject with an index of two, and four times more likely than a subject with a score of

three or more (Mann Whitney U-Test, p < 0.001). These observations are reassuring as L0

behavior does not require to put oneself in the position of the opponent, which subjects with

a logical ability index of one cannot do. On the contrary, L2 behavior does require to put

oneself in the position of the opponent, which subjects with a logical ability index of two or

more can do.

An additional piece of evidence for the impact of logical abilities on behaviors in strategic-

form games is the fact that all Optimistic subjects have an index of logical ability of one.
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Recall that an Optimistic chooses the action that maximizes his maximum payoff over his

opponent’s decision. In sum, logical abilities have a strong impact on behavior in our games

and Hypothesis 4 is confirmed.

Finding 4 Subjects with higher logical ability are likely to play strategically and more so-

phisticatedly in the normal-form games.

[Figure 2 about here]

We now turn our attention to the relationship between the “revealed” preferences in the

dictator game, logical abilities, and behavior in strategic-form games. First note that there

is no significant relationship between behavior in the dictator game and logical abilities. In

an ordered probit regression with the logical ability as dependent variable the dummies for

play in the dictator game are all insignificant (p > 0.7 and p > 0.86). In what follows we look

at the association between behavioral type and behavior in the dictator game conditional

on a certain level of logical ability. Figures 3 and 4 plot the estimated probabilities to be of

a given behavioral type, conditional on the choice made in the dictator game and a logical

ability index of one or one and more.25

[Figure 3 about here]

For subjects with a logical ability score of two or more, the choice of actions A or C in the

dictator game does not generate statistical differences in the probabilities to be of a certain

type. In contrast to this, the choice of action B (the selfish action) does generate statistical

differences in the probabilities to be of a certain type when compared with both the choice

of A and C (p-values ranging from 0.001 to 0.007 for pair-wise Mann-Whitney U-Tests).

For instance, subjects who have chosen the selfish action B in the dictator game are more

likely to behave as L2 or D1 types than their non-selfish counterparts. To understand this

observation, recall that Lk and Dk types are defined with respect to “selfish” preferences,

25These probabilities are based on the two models from Table 5 and are the average of the probabilities

of all subjects having chosen a certain action in the dictator game. In general it would have been possible

to estimate six separate models for all combinations. However, due to the low number of observations for

some combinations the estimation would not have been very precise.
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i.e., assuming that the monetary payoffs coincide with a subject’s preferences. Also, subjects

with a logical ability of two or more have the ability to perform counter-factual reasoning,

as the behavior of an L2 or D1 type requires. Both observations explain why the relative

frequency of L2 and D1 types is greater among subjects with a logical ability of two or

more, who have chosen the (selfish) alternative B in the dictator game. Moreover, notice

that almost all subjects who have made a choice of B in the dictator game are of types L1,

L2, and D1. Those types are strategic and obey dominance.

[Figure 4 about here]

For subjects with a logical ability index of one, we can notice that the probability to be of

type L1 conditional on having chosen action B is statistically different from the probability

to be of type L1 conditional on having chosen action A or C (p < 0.034 vs A, p < 0.005 vs

C). This suggests that the probability to be of type L1 is not driven by preferences. Also,

the probability to be of type L0 conditional on having chosen action A or C is statistically

different (higher) from the probability to be of type L0 conditional on having chosen action B

(p < 0.008). This suggests that the type L0 captures not only genuine bounded rationality,

but also behaviors driven by differences in preferences. This confirms hypothesis 6.

Finding 5 Social preferences have an influence on behavior in strategic form games. But

differences in social preferences are not responsible for the correlation between logical abilities

and strategic sophistication in the strategic-form games.

4 Concluding Discussion

The paper has analyzed how individual characteristics, in particular logical abilities, relate

to behaviors in strategic-form games. We have shown that the level-k model explains the

data reasonably well. This study thus reinforces previous studies, e.g., Stahl and Wilson,

(1994; 1995); Costa-Gomes et al. (2001); Camerer et al. (2004); Costa-Gomes and Crawford

(2006).

The main contribution of the paper, however, is to relate individual characteristics to

the likelihood to be of a certain behavioral type. Among other things, we find that subjects
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with better logical abilities are more likely to be of type L2. Also, subjects with high logical

abilities and who have chosen the selfish action in the dictator game are even more likely to

be of type L2. Conversely, subjects with lower logical abilities or who have not chosen the

selfish action in the dictator game are found to be more likely of type L0 or L1.

One potential useful application for our results could be mechanism design theory. As

argued in Crawford et al. (2009), adopting a structural non-equilibrium view, in particular

the level-k model, in mechanism design problems should lead to more effective designs in

concrete problems. Yet, an essential difficulty for policy makers remains: how to estimate

the distributions of Lk types in the targeted population? Crawford et al. (2009) assume

that the distribution of Lk types is known to the policy makers, but it has to be estimated in

practice. We do provide such an estimate conditional on two characteristics: logical abilities

as measured in the red-hat puzzles, and concerns for others as expressed in the dictator

games. Since logical abilities correlate with education and years of schooling and the concern

for others may correlate with occupation, subjects studied or religion, this provides a possible

route for a better estimation of the distribution of Lk types in a population. Unfortunately,

in a recent paper Georganas et al. (2015) have demonstrated that type distributions might

not be stable across games. We regard our study as a first step of what we believe to be an

important area of future research.
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A Tables

steps 1 2 3 4

solved in % 100.00 55.5 26.6 26.3

Table 1: Correctly solved puzzles by iteration steps required

(0, 1) (1, 1) (1, 2) (2, 2) (2, 3) (3, 3) (3, 4) index errors

c c c c c w w 3 0

c c c w w c w 2 1

c c w c c w w 3 1

c c c c w w w 2 1

Table 2: Examples of how the index is assigned

Solvable in 1 round 2 rounds 3 rounds 4 rounds ∞ rounds

Nash behavior 66.67% 36.80% 32.03% 32.47% 15.58%

Table 3: Fraction of Nash behavior as a function of rounds of deletion

Game 1 2 3 4 5 6 7 8 9 10 11 12 combined

p-value .82 .33 .80 .72 .35 .83 .03∗ .69 .10 .98 .61 .59 .66

Table 4: P-values for Fisher tests of association
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All 1 Step > 1 Steps

N = 154 N = 81 N = 73

pθ eθ pθ eθ pθ eθ

Altruist 0.070 0.217 0.066 0.152 0.077 0.284

[0.025,0.157] [0.066,0.438] [0.023, 0.227] [0.000, 0.517] [0.014, 0.169] [0.097, 0.626]

Optimist 0.020 0.194 0.063 0.270

[0.007,0.118] [0.090,0.499] [0.014, 0.151] [0.095, 0.488]

L1 0.599 0.249 0.631 0.261 0.534 0.232

[0.496,0.705] [0.211,0.286] [0.479, 0.762] [0.203, 0.315] [0.370, 0.684] [0.186, 0.275]

L2 0.154 0.249 0.0630 0.169 0.275 0.244

[0.076,0.243] [0.181,0.333] [0.011, 0.251] [0.095, 0.705] [0.145, 0.413] [0.184, 0.309]

D1 0.016 0.111 0.049 0.131

[0.000,0.097] [0.095,0.748] [0.000, 0.132] [0.097, 0.264]

L0 0.142 0.685 0.212 0.706 0.064 0.622

[0.007,0.201] [0.524,0.836] [0.017, 0.302] [0.526, 0.866] [0.000, 0.137] [0.386, 0.742]

lnL −1431.82 −784.77 −639.364

AIC 2868.58 1588.81 1298.16

BIC 2919.05 1609.09 1317.34

ANE 0.200 0.164 0.256

Table 5: Type Estimation
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Figure 1: Empirical distribution of the measure of logical ability
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Figure 2: Logical abilities and behavioral types
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Figure 3: Choices in dictator games and behavioral types: subjects with an index of two

or more
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Figure 4: Choices in dictator games and behavioral types: subjects with a score of one
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C Games

This section presents the 12 games that each subject played. For any i > 1 even, game

i is the transposed of the game i − 1. Games 5 and 7 are taken from Costa-Gomes and

v. Weizsäcker (2008), while game 9 is adapted from Costa-Gomes and v. Weizsäcker. In

parentheses, we indicate the number of rounds of deletion of strictly dominated strategies

required to reach the Nash equilibrium, while we indicate in bold the Nash payoff. Iteration

n consists in deleting all pure strategies that are strictly dominated when the opponent’s

strategy space is given by the strategies not deleted at iteration n− 1.

A B C

A (47,56) (13,68) (17,17)

B (62,37) (35,45) (19,21)

C (46,21) (20,22) (12,19)

Game 1 :(1,1)

A B C

A (82,63) (44,37) (14,72)

B (92,21) (26,29) (48,36)

C (36,17) (71,41) (16,63)

Game 3 :(2,1)

A B C

A (73,80) (20,85) (91,12)

B (45,48) (64,71) (27,59)

C (40,76) (53,17) (14,98)

Game 5 :(3,2)

A B C

A (74,38) (78,71) (26,43)

B (96,12) (10,89) (37,25)

C (15,51) (83,18) (39,62)

Game 7 :(2,3)

A B C

A (30,59) (34,91) (96,43)

B (36,48) (85,33) (39,18)

C (49,86) (43,14) (25,55)

Game 9 :(4,3)

A B C

A (92,41) (36,26) (24,22)

B (43,17) (70,50) (40,87)

C (75,16) (49,75) (57,35)

Game 11 :(∞,∞)
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D Behavioral types

Table D compactly presents the predicted play of an individual of type θ in any of our twelve

games. In each cell of the table, the vector (·, ·) represents the predicted play of the row

player and the column player (the first element corresponds to the row player). For instance,

an Altruistic type is predicted to play A in game G7 as a row player and B as a column

player. To obtain the predicted play in game Gn for n > 1 even, it suffices to consider the

play in game G(n− 1) and to permute the vector. For instance, in game G4, pessimistic is

predicted to play C as a row player and B as a column player.

Types G1 G3 G5 G7 G9 G11

Altruistic (A,A) (A,A) (A,A) (A,B) (A,C) (A,A)

Pessimistic (B,B) (B,C) (B,B) (C,A) (B,A) (C,B)

Optimistic (B,B) (B,C) (A,C) (B,B) (A,B) (A,C)

L1 (B,B) (B,C) (A,A) (A,B) (A or B,A) (C,B)

L2 (B,B) (B,C) (A,B) (C,A) (C, A or B) (B,B)

D1 (B,B) (B,C) (A,B) (C,B) (B, A) (C,B)

D2 (B,B) (B,C) (B,B) (C,B) (B, A) (C,B)

Omniscient (B,B) (B,C) (A,B) (A,B) (B, B) (B,B)

Minimax regret (B,B) (A,B) (A,A) (A,B) (A,A) (B or C,B)

Best reply to altruistic (B,B) (B,C) (A,B) (C,B) (A,B) (A,A)

Taste for efficiency (B,B) (C,B) (A,A) (A,B) (C,A) (No pure,No pure)

Inequity aversion (B,B) (C,B) (A,A) (A,B) (C,A) (No pure,No pure)

L3 (B,B) (B,C) (B,B) (C,C) (B or C, A) (B,C)

NE (B,B) (B,C) (B,B) (C,C) (C, A) (A,A)

Table 6: Predicted behaviors in all games
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E Additional estimations

1 Step 2 Steps > 2 Steps

N = 81 N = 37 N = 36

pθ eθ pθ eθ pθ eθ

Altruist 0.066 0.152 0.199 0.442 0.055 0.211

[0.023, 0.227] [0.000, 0.517] [0.027, 0.353] [0.286, 0.581] 0.022, 0.148 [0.083, 0.834]

Optimist 0.063 0.270

[0.014, 0.151] [0.095, 0.488]

L1 0.631 0.261 0.596 0.229 0.337 0.218

[0.479, 0.762] [0.203, 0.315] [0.389, 0.808] [0.149, 0.308] [0.145, 0.603] [0.173, 0.278]

L2 0.0630 0.169 0.183 0.217 0.399 0.254

[0.011, 0.251] [0.095, 0.705] [0.049, 0.368] [0.106, 0.383] [0.174, 0.618] [0.205, 0.362]

D1 0.023 0.091 0.127 0.178

[0.000, 0.105] [0.086, 0.821] [0.000, 0.291] [0.092, 0.591]

L0 0.212 0.706 0.050 0.686

[0.017, 0.302] [0.526, 0.866] [0.000, 0.133] [0.168, 0.756]

lnL −784.77 −330.68 −307.446

AIC 1588.81 677.30 636.35

BIC 1609.09 686.64 647.14

ANE 0.164 0.177 0.311

Table 7: Additional Type Estimations

F Sample instructions
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Instructions 

 

 

Thank you for your participation in this experiment. If you read these instructions 

carefully and act upon them, you can earn real money. 

 

You are not allowed to communicate with other participants during the course of the 

experiment. If you do not follow this rule you may be excluded from the experiment. 

 

Your task 

Your task in this experiment is to determine the colour (red or white) of your hat. You 

will be paired with 3 computer-players. You will be able to see the colour of the hats 

of the computer-players, but not the colour of your own hat. The computer-players are 

in a similar situation. They observe your hat colour and the hat colours of their fellow 

computer-players, but not the colour of their own hat. However, everybody knows 

(you and the computer-players) that at least one player has a red hat. The picture 

below shows a typical situation: 

 

 
You observe in this case that one of the computer-players has a red hat while the other 

two have white hats. The question marks “??” indicate that you do not know your hat 

colour.  

You are asked to decide what you can infer from the information you are given. 

Possible answers are: “I have a WHITE hat with certainty”, “I have a RED hat with 

certainty”, and “I can’t possibly know”. One of these answers is correct, the two 

others are wrong. Note that answering “I can’t possibly know” is wrong whenever it is 

possible to correctly infer the hat colour from the information given. Similarly ticking 



“I have a WHITE hat with certainty” or “I have a RED hat with certainty” is only 

correct if it is actually possible to logically infer that your hat colour is white or red. 

 

The game may end after your initial decision. If the game continues, you will be given 

the additional information of what the computer-players have inferred from their 

observation. Recall that the computer-players face the same problem as you do. They 

can see the hats of all the others but not their own. Therefore, in the above situation, 

Computer 1 knows that the hats of computers’ 2 and 3 are white, and also knows your 

hat colour. However, it does not know its own hat colour. Consequently, the 

computers also have a logically correct answer to the question: what can you 

(Computer) infer about your hat colour? The computers ALWAYS choose the 

logically CORRECT answer.  

 

 
Above you can see a possible screen for your second decision. You again have to 

decide what you can infer about your hat’s colour. However, now you have the 

additional information about what the computers (correctly) announced in the decision 

round before. After you have made another decision, the game may end or continue. If 

the game continues, you will again be given the additional information of what the 

computers inferred from the previous round. This process will go on until you either 

correctly inferred your hat colour or until you made a mistake. 

 

Different games 

After a game has ended, another new game will start. You will be given a set of 7 

games.  



Payment 

You will start with 20 Australian Dollars. For each mistake you make, we will deduct 

2.50 Dollars from your account. After the 7 games you will be paid the amount 

remaining in cash. 

 

Introductory questions 

Before you start the actual game we will ask you some questions about the game. 

These questions will be designed to test if you understand the instructions. Please 

make sure to read the instruction very carefully, as failing to answer the pre-game 

questions correctly may lead to exclusion from the experiment. 

 

Questions 

Do you have any questions? If yes please raise your hand and we will come and 

answer them in private. 

 

 



Instructions 

 

Welcome to our experiment. Please read these instructions carefully. Understanding 

the instructions is crucial for earning money. 

This is an experiment in decision-making. You will be paid for your participation. The 

exact amount of money you will receive will be determined during the experiment and 

will depend on your choices. This amount will be added to your total earnings from all 

task of today’s session. In this experiment you will play in 14 situations. 

If you have any questions during the experiment, raise your hand and the experimenter 

will assist you. It is strictly forbidden to talk, exclaim, or to communicate with other 

participants during the experiment. It is very important for us that you obey these 

rules. Otherwise the data generated in this session are useless. 

 

The task 

You will be asked to choose an action each in nine different situations. In each 

situation you are randomly paired with another participant. The participant will also 

have to choose an action. You and the participant you are paired with have to choose 

the action at the same time, such that both you and your partner cannot condition the 

choice on the choice of each other. The payoff you receive in a situation depends on 

your action and on the action of the other participant, as the other participants payoff 

will depend on his/her and your choice. All payoffs are in Dollars. Recall that we will 

randomly determine one of the nine situations where you will pay your payoff in 

Dollars.  

 

The actions you can choose from vary from game to game. The actions the other 

participant can choose from also vary from game to game. You (and the participant 

you are paired with in a particular round) may have one (A), two (A or B) or three 

actions (A, B, or C). The possible choices will be communicated to you in the top left 

corner of your decision screen. The participant you are paired with in a particular 

round may also have one, two or three choices (X, Y, Z). 

 



Your payoffs - depending on your choice and the choice of the participant you are 

paired with - will be shown on the same screen below the information on the available 

choices. 

Further below you can mark your decision and finalize it by clicking the “OK” button. 

 

About 20 seconds after this information is presented to you a button appears. Pressing 

this button allows you to see the payoff of the participant you are paired with 

depending on your and his/her choice. The information on your payoffs will remain on 

the screen no matter if you choose to view the payoff of the other person or not. It is 

entirely up to you if you want to view the information on the other person’s payoff or 

not. Note that you can mark and finalize your choice already before this button even 

appears. 

 

We end these instructions by presenting some screenshots (in chronological order of 

their possible appearance). In the actual game, the white circles will be replaced by 

numbers, which represent payoffs in Dollars. 

  

Screenshot1:  This is what a screen initially looks like (you can already decide if you 

want) 



 

Sceenshot 2:  After twenty seconds the button has appeared. You can click on the 

button see the other’s payoff or not 

 

 

Sceenshot 3: This shows what you see if you click on the button 


