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Abstract

It is well known that (seasonal) unit root tests can be seriously affected by the presence
of weak dependence in the driving shocks when this is not accounted for. In the non-seasonal
case both parametric (based around augmentation of the test regression with lagged depen-
dent variables) and semi-parametric (based around an estimator of the long run variance
of the shocks) unit root tests have been proposed. Of these, the M class of unit root tests
introduced by Stock (1999), Perron and Ng (1996) and Ng and Perron (2001), appear to be
particularly successful, showing good finite sample size control even in the most problematic
(near-cancellation) case where the shocks contain a strong negative moving average compo-
nent. The aim of this paper is threefold. First we show the implications that neglected weak
dependence in the shocks has on lag un-augmented versions of the well known regression-
based seasonal unit root tests of Hylleberg et al. (1990). Second, in order to complement
extant parametrically augmented versions of the tests of Hylleberg et al. (1990), we develop
semi-parametric seasonal unit root test procedures, generalising the methods developed in
the non-seasonal case to our setting. Third, we compare the finite sample size and power
properties of the parametric and semi-parametric seasonal unit root tests considered. Our
results suggest that the superior size/power trade-off offered by the M approach in the

non-seasonal case carries over to the seasonal case.

Keywords: Seasonal unit roots, weak dependence, lag augmentation, long run variance esti-
mator, demodulated process.
JEL: C12, C22.

1 Introduction

Over the last three decades, a debate has been conducted in the literature as to whether

the within-year variations in seasonally observed time series processes are deterministic or
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attributable to unit root(s) at the seasonal frequency components of the data. This is an im-
portant question because incorrect modelling of the seasonality present in a series has serious
implications for the statistical validity of any subsequent procedures. Moreover, most available
seasonally adjusted data are based on filtering methods which imply the application of seasonal
differencing to the data. If the data do not contain seasonal unit roots then the resulting sea-
sonally adjusted data will contain moving average unit roots, rendering standard autoregressive
modelling methods invalid. In order to formally investigate this issue, in the seminal paper in
this literature, Hylleberg, Engle, Granger and Yoo (1990) [HEGY] propose a seasonal gener-
alisation of the regression-based augmented Dickey-Fuller [ADF| unit root test, where serial
correlation in the driving shocks is accounted for by the inclusion of lagged dependent variables
in the test regression. This procedure allows the practitioner to test for unit root behaviour at
each of the zero and seasonal frequency components of the data, either separately or via a joint
test. HEGY outline their procedure for quarterly data; this has been extended to the case of
monthly data by Beaulieu and Miron (1993) and to an arbitrary seasonal periodicity, say S, by
Smith and Taylor (1999) and Smith et al. (2009).

In the non-seasonal case it is well documented that ADF-type unit root tests can suffer
from a variety of drawbacks in small samples, most notably low power under the alternative,
particularly where deterministic components are present in the data which need to be accounted
for (de-trending), and significant size distortions under the null when strong negative moving
average behaviour in the so-called near-cancellation region is present in the driving shocks.
Moreover, on the one hand finite sample power is decreased, other things equal, the greater the
lag augmentation length used in the test regression, but on the other hand distortions due to
near-cancellations are mitigated, other things equal, the greater the lag length used, yielding
the well-known trade-of between these two aspects in finite samples.

The aforementioned issues have led to a large literature aimed at developing tests which
simultaneously have both good finite sample size and power properties. In relation to the
former, Elliott, Rothenberg and Stock (1996) [ERS] show that near-efficient unit root tests
can be obtained by the use of local GLS, rather than conventional OLS-based, de-trending
of the data. For the latter, see Perron and Ng (1996) for tests based on OLS de-trending
and Ng and Perron (2001) for tests based on local GLS de-trending build on the class of
modified (M) unit root tests originally proposed in Stock (1999). These are based on statistics
which do not emanate from an estimated regression and so, as such, do not use parametric lag
correction to correct for weak dependence in the shocks. Rather, weak dependence is shown
to appear through a nuisance parameter, the long run variance, which appears in the limit
distribution of the statistics. This is then corrected for via a non-parametric estimate of that
parameter. Both sums-of-covariances and autoregressive spectral density estimators can be
used. Ng and Perron (2001) show that the latter combined with a new information criterion,
the modified Akaike information criterion [MAIC] to select the autoregressive lag length used
in that estimator perform particularly well in practice even in the presence of strong negative

moving average components. As a result the M tests have become increasingly popular in the



unit root literature; indeed, in discussing the ADF tests, Haldrup and Jansson (2006, p. 267)
argue that “... practitioners ought to abandon the use of these tests...” in favour of the M tests
because of “... the excellent size properties and ‘nearly’ optimal power properties” of the latter.

The HEGY tests, like ADF tests, use parametric lag augmentation, to account for weak
dependence in the shocks. Focusing on the case where the shocks follow a finite-order autore-
gressive process of order p [AR(p)], Burridge and Taylor (2001) and Smith et al. (2009) show
that such lag augmentation can provide only a partial solution with the limiting null distribu-
tions of certain of the harmonic frequency unit root tests still depending, in general, on the
parameters of the AR(p) polynomial with the consequence that not all of the HEGY-type tests
can be reliably used in practice. However, it has been known since the seminal work of Box and
Jenkins (1976) that seasonally observed time series tend to display significant moving average
behaviour. Indeed Box and Jenkins (1976) developed the well-known seasonal ARIMA factori-
sations, the best known example of which being the so-called airline model. ARMA behaviour
can also be a manifestation of neglected periodic autoregressive behaviour (see, for example,
Ghysels and Osborn, 2001, Chapter 6). It is therefore particularly important that any seasonal
unit root test can allow for moving average behaviour. Recently, del Barrio Castro et al. (2012)
have demonstrated that the results of Burridge and Taylor (2001) and Smith et al. (2009) carry
over to the case where the shocks admit a stationary and invertible ARMA representation,
provided the lag augmentation length increases at any appropriate rate with the sample size,
analogous to the results obtained for the ADF test by Said and Dickey (1984).

Motivated by these issues and the success of the M unit root tests in the non-seasonal case,
the purpose of this paper is to develop a new class of regression-based seasonal unit root tests
based on the M testing approach of Stock (1999), Perron and Ng (1996) and Ng and Perron
(2001). In the case of tests at the harmonic seasonal frequencies we show that this requires the
use of methods based on demodulated processes. We also develop seasonal implementations
of the Phillips and Perron (1998) [PP] semi-parametric unit root tests which, like the M
tests, are based on statistics which correct for weak dependence through an estimate of the
long run variance. We show how the same can be done in the seasonal case using estimates,
either sum-of-covariances-based or autoregressive spectral density-based, of the spectrum at
the zero and seasonal frequency components of the data. Our analysis explicitly allows for the
presence of ARM A shocks. Where sums-of-covariances based estimators are used, the shocks
need not be invertible but must satisfy the weaker condition that they do not admit spectral
zeroes at either the zero or seasonal frequencies. Invertibility is required where autoregressive
spectral density estimators are used. We demonstrate that the limiting distributions of all
of the resulting PP and M statistics are pivotal under both the null hypothesis and under
near-integrated alternatives, attaining the limiting distributions achieved by their standard
HEGY counterparts when the shocks are independent and identically distributed [I1D]. Where
autoregressive spectral density estimators are used, a seasonal analogue of the MAIC criterion
of Ng and Perron (2001), developed in del Barrio Castro et al. (2012) can be used to select the

autoregressive lag length.



The remainder of the paper is organised as follows. In Section 2, we review the standard
seasonal autoregressive model framework, highlight the typology of seasonal deterministic trend
functions relevant for the seasonal unit root literature, outline the parameter restrictions on
this model which yield (near) unit roots at the zero and seasonal frequencies, and provide
a basic outline of the augmented HEGY tests. In Section 3 we discuss the implications that
neglecting weak dependence has on the limit distributions of the unaugmented HEGY tests and
use these representations to inform us on how to develop seasonal analogues of the non-seasonal
PP unit root tests, together with seasonal analogues of the M class of unit root tests. The
large sample properties of the new seasonal PP and seasonal M unit root tests are detailed in
Section 4. Section 5 presents a Monte Carlo comparison of the finite sample properties of the
augmented HEGY tests and the new tests. As with the non-seasonal case, our results suggest
that overall the seasonal unit root tests based on the M approach offer the best size/power

trade-off available. Section 5 concludes. Mathematical proofs are contained in the appendix.

2 The Seasonal Unit Root Framework

2.1 The Seasonal Model

Consider the univariate seasonal time-series process {ysn+s}, observed with constant seasonal

periodicity, S,! which satisfies the following data generating process [DGP]

YSn+s = TSn+s T USnts (213)
a(L)rsnts = Usnts, s=1—2S5,....0, n=1,2,...,N (2.1b)

where pgy1s is a purely deterministic component, further details on which are given below, and
a(z) =1-— Zle a2/, is an AR(S) polynomial in the conventional lag operator, L. In what
follows we define the total sample size to be T := SN and the number of harmonic seasonal
frequencies to be S* := [(S —1)/2], where |.| denotes the integer part of its argument.

We assume that {ugnts} in (2.1b) is a mean-zero covariance stationary (linear) process

satisfying the following conditions:

Assumption 1: The random error term ug,4s in (2.1b) follows the linear process ugy,4+s =
Y(L)egnts, where eg,1s is T1D(0,02) with finite fourth order moments and where the lag
polynomial ¢(2) := 1+ >272, V20 satisfies: (i) ¢(exp {£i2wk/S}) # 0, k =0,...,[S/2]; and
(i) S50, jly] < oo.

Assumption 1 ensures that the spectral density function of ug,1s is bounded, and that
it is strictly positive at both the zero and seasonal spectral frequencies, wy = 27k/S, k =
0,...,[.8/2]. Under Assumption 1 the long run variance of ug,.s may be defined as A2 :=
a2(1)? = v + 22;’;1 7vj, where v; := E(ugntstusnts—j), 5 = 0,1,... Notice that \3 =
27 f,(0), where f,(w) denotes the spectrum of {ug,4+s}. Analogous quantities can be de-
fined at the Nyquist, wg/, = 7, frequency, where S is even, as )\%/2 = U?i/}(—l)2 =y +

!For example, S = 4 yields the case of quarterly data, S = 12 monthly data, and S = 1 non-seasonal data.



2372 cos[mj]v;, and at the seasonal harmonic frequencies, (wg, 2 —wy), as A= 02(ai+b3) =
Yo+ 23772, cos [wij] vy, b =1,..., 8% where ay, := Im(i[exp(iwy)]) and by, := Re(¢[exp(iwg)]),
k=1,...,5% with Re(-) and Zm(-) denoting the real and imaginary parts of their arguments,
respectively. Notice that )\%/2 =27 f,(7) and A2 = 27 f,(27k/S), k = 1,..., S*.

For the deterministic component in (2.1a), fign+s := 0’ 2gn+s,¢, We consider three empirically
relevant cases (£ = 1,2,3). Here and in what follows, it is understood that terms relating to
frequency 7 are to be omitted when S is odd and that where reference is made to the Nyquist

frequency this is understood only to apply where S is even.

Case 1: Zero and seasonal frequency intercepts:

ZSn+s,1 1= [1,cos(2m(Sn + 5)/S),sin(2w(Sn + 5)/9), ...
oy c08(2S*(Sn + 8)/S), sin(2rS*(Sn + s)/S), (_1)Sn+s]’ :

s=1-5,..,0,n=1,..,N, with § : = (6,0}, ..., 0., 05/2) and & := (51, 0p2)", k= 1,..., S*.
Case 2: Zero and seasonal frequency intercepts, and zero frequency trend:

[ !
ZSn+4s,2 1= [zSnJrS’l, Sn + s] ,

s=1-— S,...,O, n = 1,...,N, with 6 : = ((50,5/1,...,(5%*,53/2,80)/ and 5k = (5k,175k,2),7 k =

Case 3: Zero and seasonal frequency intercepts and trends:
! ! !
ZSn+s,3 ‘= [Z.S'n+s,17 (Sn + S) ZSnJrs,l] )

— _ _ / _
s=1-5..0,n=1,.,N, with §: = (50,5;,...,5'5*,55/2,50,5’1,...,5’5*,55/2) and 0, =
(Or1,0k2) s k=1,...,5%.

Following Elliot, Rothenberg and Stock (1996) and Rodrigues and Taylor (2007), the initial
conditions, x1_g, ..., Xg, are taken to be of op(Tl/Q). Relaxing this assumption will not alter the
limiting null distributions of the test statistics we outline in this paper because tests based on
data which have been de-trended under Cases 1, 2 or 3 will be exact similar with respect to the
initial conditions; see Smith et al. (2009).

2.2 The Seasonal Unit Root Hypotheses

The focus of this paper is on tests for seasonal unit roots in the Sth order polynomial a(L) of
(2.1b). This polynomial can be factorised at the zero and seasonal spectral frequencies, wy, k =
0,...,.5/2], so that o(L) = ,Ei/ow wk (L), where wp (L) := (1 — apL) associates the parameter
ap with the zero frequency (wo = 0), wi(L) := {1 — 2], cos(wk) — By sin(wg)] L + (a2 + B2)L?}
corresponds to the conjugate (harmonic) seasonal frequencies (wg, 2m — wy,), with the associated
parameters oy and [, k = 1,..., 5% and wgy (L) = (1 + OéS/zL) which associates the ag)s
parameter with the Nyquist frequency (wg/o = ).



Our interest in this paper centers on testing the ([.S/2]| + 1) unit root null hypotheses,
Hpp:op =1, Hy.s/2 tagn =1, Hop:ap=1, [,=0, k=1,...,5 (2.2)

such that Ho o corresponds to a unit root at the zero frequency, while Hy g/ yields a unit root
at the Nyquist frequency, and finally Hy ., k = 1,..., 5%, yields a pair of complex conjugate unit
roots at the harmonic seasonal frequencies (wg,2m — wy). In order to examine the asymptotic
local power properties of the test procedures we discuss, we follow Rodrigues (2001) and Ro-
drigues and Taylor (2007) and focus attention on the alternative hypotheses of near integration

at the zero, Nyquist and harmonic seasonal frequencies; that is,

Hicao=exp ()2 (1+ %), Hicy, asp=ep (92) = (1+52),
(2.3)
Hie top=exp (%)= (1+%)NB =0, k=1,...,5"

where ¢, k= 0,...,[S/2] are fixed constants. Under H; ., the process {ysn+s} admits either
a single root (k = 0,.5/2) or a pair of complex conjugate roots (k = 1,...,S5*) with modulus in
the neighbourhood of unity at frequency wy. These roots are stable for ¢, < 0 and explosive for
¢ > 0. Notice that Hy ., reduces to Hoy where ¢, =0, k =0,...,[S/2]. In what follows, let
c := (co,C1,-,¢5/2)) be the ([S/2] + 1)-vector of non-centrality parameters and denote the
lag polynomial a(L) under Hj ¢ := ﬂ,&i/ozj Hi. as A¢c:=1— Zle a;?Lj.

2.3 The Seasonal Unit Root Test Regression and Augmented HEGY Tests

Following HEGY (1990) and Smith et al. (2009), among others, the regression-based approach
to testing for seasonal unit roots in a(L) consists of two steps. In the first step one de-trends the
data in order to yield tests which will be exact invariant (assuming pg,+s is not under-specified)
to the elements of ¢ which characterise the deterministic component figy+s in (2.1a). This can
either be done using OLS de-trending, as in, for example, HEGY and Smith et al. (2009), or by
local GLS de-trending as in Rodrigues and Taylor (2007). We define the resulting de-trended
data series as ygn ts = YSnts — S’TzSnJF&E where £ = 1, 2 and 3 corresponds to the deterministic
kernels defined in Cases 1, 2 and 3 above, and where 7 = 1 indicates OLS de-trending and
7 = 2 local GLS de-trending.? That is, 51 is the OLS estimator obtained from regressing ysnts
onto zgnys,¢. While, as in Rodrigues and Taylor (2007), b5 is obtained from the OLS regression

of yc on zc ¢, where
/
Ve i = (Y1-5,Y2—-5 — QTY1-5,Y3-5 — QTY2—5 — Q5Y1—-S, .-, Yo — ATY—1 — = - — AGY1-5, Acy1, .. Acyr)
Zeg = (Z1-56,22-5,¢ — QT21-8¢, 3-S5 — O]Z2_§¢ — QG21_G¢, .y 206 — Q]2 6 — =
/
— 0521-5¢, D216, oy DT g)

for ¢ = ¢ := (€, ¢1,...,C|g/2))"- The local GLS de-trending parameters, ¢, k = 0, ..., [S/2],

are determined by the significance level that the seasonal unit root tests are to be run at and

2In order to economise on notation we will not introduce any specific notation to distinguish between these

two different de-trending schemes.



the de-trending scheme employed; see Rodrigues and Taylor (2007, p.556). For example, under
Case 1 for tests run at the 5% level, ¢o = ¢g/o = —7 and ¢ = —3.75, k = 1,...,5*. The
resulting de-trended series satisfies a(L)ygnJrS = ugnJrs with ugn+s = 1/)(L)€§Sn+s,
and sgn . are the correspondingly de-trended versions of ugns and £sp+s, respectively.

£
where u Snts

Under the additional assumption that 1 (z) is invertible with (unique) inverse ¢(z), such
that an autoregressive approximation of order say p* is valid, the second step is to then expand
the composite AR(p*+S5) polynomial ¢*(z) := a(2)¢(z) around the zero and seasonal frequency
unit roots exp(+i27k/S), k =0, ..., |S/2], to obtain the augmented HEGY-type regression®

S/2 S* p*
19 _ 1 # %€ * 19 €
AsySn-i-s - Z TkYE, Snts—1 + Z T5Yj5 Sn+s—1 + Z ¢jAsySn+s—j + USn+s,p* (2'4)
k=0 j=1 j=1
where Ag :=1— L°, and

S—1

ygsnﬂ = Z cos|(i + 1)wk]ygn+8_i, k=0,..1[5/2] (2.5)
i=0

where wy = 0 and wg/, = 7; and

S—1

y;’:gSn—&-s—l = Z Sin[(i + 1)wj]ygn+3_ia (2.6)
=0

with w; = (277)/5,7 = 1,...,5*. Cf. Proposition 1 of Smith et al. (2009, p.533).

Unit roots at the zero, Nyquist and harmonic seasonal frequencies imply that mo = 0, 7g/o =
0 and 7, = 7 =0, k = 1,..., 5%, respectively, in (2.4); see Smith et al. (2009). Consequently,
tests for the presence or otherwise of a unit root at the zero and Nyquist frequencies are
conventional lower tailed regression {-tests, denoted ¢p and tg/,, for the exclusion of ya Snts—1
and yg /2, Snts—17 respectively, from (2.4). Notice that for S = 1, ¢ is the standard non-seasonal
ADF unit root test statistic. Similarly, the hypothesis of a pair of complex unit roots at the kth
harmonic seasonal frequency may be tested by the lower-tailed ¢;, and two-tailed ¢; regression
t-tests from (2.4) for the exclusion of yi Snis_1 and yzgsn 11, Tespectively, or by the (upper-
tailed) regression F-test, denoted Fj, for the exclusion of both y,i Snts—1 and y]::ésn 4o_q from
(2.4). Ghysels et al. (1994) also consider the joint frequency (upper-tail) regression F-tests
from (2.4), F |g/2) for the exclusion of y§/2’5n+s_1, {y§,3n+371}3~9;1 and {y2§sn+s_1}£;1, and
Fy...|s/2) for the exclusion of yg,sn_i_s_l, yg/?,sn+s—1’ {y§7sn+s_1}f;1 and {y2§sn+s—1}£;1' The
former tests the null hypothesis of unit roots at all of the seasonal frequencies, defined as
Hp geas := N ,Ei/ 12 ! Hy i, while the latter tests the null hypothesis of unit roots at the zero and all
of the seasonal frequencies, defined as Hy := ﬂ,Ei/OQ ! Hy . Observe that a(L) = Ag under Hy.
Implementation of these tests, including relevant critical values, using OLS de-trending has been
considered in, inter alia, HEGY, Smith et al. (2009) and Ghysels et al. (1994). Corresponding
results for the case of local GLS de-trending are given in Rodrigues and Taylor (2007).

3In the case of OLS de-trending, an asymptotically equivalent procedure is to omit the first step and to include

the relevant deterministic regressors in the auxiliary regression (2.4).



The limiting null distributions of the OLS de-trended HEGY statistics are given for the case
where 1(z) = 1 in (2.1b) and accordingly p* = 0 in (2.4) by Smith and Taylor (1998). In the
case where ¢(z) is pth order, 0 < p < oo, Burridge and Taylor (2001) and Smith et al. (2009)
show that the limiting null distributions of the OLS de-trended {9, tg/; and F, k = 1,...,.5",
statistics from (2.4), are as for p = 0, provided p* > p in (2.4). They show that this is not true,
however, for the ¢, and ¢}, k = 1, ..., S*, statistics whose limit distributions depend on functions
of the parameters characterising the serial dependence in ug,+s in (2.1b). Representations for
the corresponding limiting distributions under near seasonally integrated alternatives are given
in Rodrigues and Taylor (2004) and again shown to be free of nuisance parameters with the
exception of the ¢, and t7, k = 1,..., 5%, statistics. Corresponding results for the local GLS
de-trended HEGY-type statistic are given in Rodrigues and Taylor (2007) and here it is also
the case that the harmonic frequency t-statistics depend on nuisance parameters arising from
the serial correlation in ug,1s. Where ¢(z) is (potentially) infinite-ordered, del Barrio Castro
et al. (2012) show that provided the lag length p* in (2.4) is such that 1/p* + (p*)3/T — 0, as
T — oo, then limiting distributions of the OLS and local GLS de-trended HEGY statistics will

be of the same form as derived for those statistics under finite p.

3 Semi-Parametric Seasonal Unit Root Tests

The so-called HEGY approach outlined in section 2.3 adopts a parametric approach to modelling
serial correlation present in ug,4s of (2.1b). In this section we explore two alternative non-
parametric approaches to accounting for the serial correlation in wg,+s, mirroring analogous
alternative approaches to the parametric ADF unit root tests developed for non-seasonal data.
Accordingly, therefore, these methods will be based around corrections for weak dependence to
HEGY-type statistics obtained from a lag un-augmented HEGY regression; that is, while the
first step, in which we de-trend the data, of the two-step HEGY-type procedure remains the
same as was outlined in section 2, in the second step we now expand only the polynomial «(z)

around the zero and seasonal frequency unit roots. Doing so yields the auxiliary regression

equation?
1S/2] 5*
3 _ 1 3 3
AsySn—I—s - Z 7T]fyk,SnJrsfl + Zﬂ;y;,Sn-i-s—l + uSn+s‘ (3'1)
k=0 j=1
Both the normalised OLS estimates of 7, mg/p, m and 7, k = 1,...,5%, denoted T,
TTgs9, T and T7), k = 1,...,5% and the corresponding regression t- and F-statistics,

outlined as in section 2.3 but now computed from the un-augmented HEGY regression in (3.1),
will depend in general on nuisance parameters arising from any weak dependence present in
Ugn+s- In Theorem 3.1 we now provide representations for these limiting distributions. These
representations are indexed by the parameter { whose value is determined by which of Cases 1-3

of pgn+s, as outlined in section 1, holds and the frequency under test. For the zero frequency

4Again, for the case of OLS de-trending, an asymptotically equivalent procedure is to omit the first step and

to include the relevant deterministic regressors in (3.1).



wp tests: Case 1: ¢ = 1; Cases 2 and 3: ¢ = 2. For the seasonal frequency wy, k =1, ..., | S/2],
tests: Cases 1 and 2: ( = 1; Case 3: {( = 2.

Theorem 3.1. Let ysn+s be generated by (2.1) under Hy  and let Assumption 1 hold. Then
the HEGY-type statistics computed from (3.1) are such that, as T — oo,

1 Lo . o
- f() J}ick (r)d‘]]ick (T) + Dk fO ']Igc )djlg ck( ) IBAgO
T7Tk‘ (2-D) 1 ¢ ¢ 2 ) k= 0, ceey LS/QJ (32)
2 {fo |:Jk,ck (T‘)} dr + Dy fO [Jk Clc )} dT‘}
. * A2 =0
Ji T 0T, ) = J3 T (T, () + M
T, = 0 k 0 k k Y] Fe1.. 8" 53

;{fo[kckr} ar+ i o) ab

and
¢ 1 ¢+ Cx Ak—’m
A f kc >dJk,c (7") +Dkf Jk,c )d‘]kc ( ) 2
o= e ‘ ’ P =T, k=0, (/2
Y 1 *
{fo 5 r} dr + Dy Jy [T, ()] dr}
(3.4)
< ¢ S Cx (A=0)
A f ch )d‘]k,c (7”) - f ch )dch ( ) 2 *
tz 1];2 0 k k 0 k k 2X% _.7 C’ k=1, S* (3'5)

Y {fol [J]i%(r)} dr+f0 [J,E*Ck r)] dr}1/2

where ‘=7 is used throughout the paper to denote weak convergence in the Skorohod topology,
Dy =0, for k =0, S/2 and Dy := 1, for k = 1,..., 5%, )\}';2 =0 + 22 sin(wgi) v, k =
1,...,8%, and where Wo(r), Wg)o(r), Wi(r) and Wii(r), k =1,...,S*, are mutually independent
standard Brownian motions, Jg’co(r), Jg/usm(r), Jlg,c’k(r) and J,g*Ck( ), k = 1,...,58% are
mutually independent functionals of these Brownian motions whose precise form depends on
the de-trending index € and on whether ygn+s s formed using OLS de-trending or local GLS
de-trending. In the case of local GLS de-trending: for ( = 1 these are standard Ornstein-
Uhlenbeck [OU] processes, viz.,

J,;Ck (r) = /OT exp(ci(r — s))dWy(s), k=0,...,]5/2]

T (r )::/0 exp(ca(r — s)AW:(s), k=1,... 5"

while for ( = 2,

(1—c)JL, (1) +& [} sIt (s)ds
2 1 Ch 0 °Yk,cy
— _ k=0,... 2
Jk,ck (T) Jk,ck (T) r { 1— Ck + Ck‘/3 ) 07 LS/ J
(1 =) I (1) + & [} sT* (s)ds
1% ,Ck 0 k,ck *
— _ k=1,..,5".
‘]kck( ) k‘,ck(’r’) T{ 1—Ck;+ck./3 ’ ) ,S

For OLS de- trendmg they are de-meaned standard OU processes for ( = 1, so that, for example,
J&Co( r) = J o fo ¥ o (8)ds, while for ¢ = 2 they are de-trended OU processes, so that,
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for example, J§ . is the de-meaned and de-trended standard OU process, J§ . (1) == J§ ., (r) —
1
12— ) 2 (s ) Ty ().

Remark 3.1. Representations for the limiting distributions of the corresponding joint F
statistics, Fy, k =1,...,5%, F|_|g/2) and Fy_|g/2| are given by the average of the squares of the
limiting distributions for the t-statistics involved in their formulation given in Theorem 3.1. So
that, for example, Fj, = % (Ti)2 + (T;C)Q], k=1,..5%

Remark 3.2. The results in Theorem 3.1 (and consequently also in Remark 3.1) show that
the limiting distributions (under both null and local alternatives) of the uncorrected HEGY
tests from (3.1) depend on nuisance parameters which arise when ug, s is weakly dependent.
When ugy+s is IID, which occurs where ¢(z) = 1, then the true lag order in (3.1) is p* = 0,
and the representations in (3.2)-(3.5) are pivotal because here A} = 4o, k = 0,...,S5/2],
and )\22 =, k =1,...,5" Indeed, these pivotal forms, for the statistics at the zero and
Nyquist frequencies and for all of the F-type tests coincide with those which obtain from
the appropriately augmented HEGY tests discussed in section 2.3. Relative to these pivotal
distributions, we see that in the presence of weak dependence in ugy,+s the un-augmented HEGY
statistics from (3.1) have limiting distributions whose numerator includes an additional term
arising from the difference between the short run variance of ug,+s and the long run variance(s)
of ugn1s at the frequency component relating to that statistic and, in the case of the t-statistics
(and, hence, the F-statistics), are also scaled by the ratio of the long and short run variances

of ugn+s at that frequency.

The representations given for the limiting distributions of the un-augmented HEGY statis-
tics in Theorem 3.1 are useful because they enable us to see immediately how, given consistent
estimators for 79, A2, k = 0,...,[5/2], and )\’,;2, k=1,...,5% these statistics can be trans-
formed to obtain modified statistics whose limiting distributions coincide with those which
obtain in the case where ¥ (z) = 1. We now consider two possible approaches for achieving
this, mirroring developments in the non-seasonal unit root literature. In section 3.1 we will first
consider seasonal analogues of the non-seasonal PP tests. In section 3.2 we will subsequently
propose M-type seasonal unit root tests. As we shall see, in the case of tests at the harmonic

seasonal frequencies this will necessitate the use of demodulated processes.

3.1 Phillips-Perron-Type Seasonal Unit Root Tests

Computation of seasonal versions of the non-seasonal PP unit root tests will require consis-
tent estimators of the nuisance parameters which feature in the limit distributions of the un-
augmented HEGY statistics from (3.1) given in Theorem 3.1. As we will show, under the
conditions in this paper, these may be based on either sums-of-covariances (or kernel-based)
estimators or autoregressive spectral density estimators.

In their original article PP consider a sums-of-covariances estimator of the long run variance,

)\8. In the context of correcting the un-augmented HEGY statistics, the results in Theorem
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3.1 imply that we will need the following sums-of-covariances estimators (see also Breitung and
Franses, 1998, and Gregoir 2006), where it is to be recalled that wy := 27k/S, k=0, ..., | S/2]:

T-1

Mwa = > w(i/m)Ajcos(wef),  k=0,...,15/2] (3.7)
j=—T+1
T—1

Mya = > k(i m)jcos(n/2+wri),  k=1,...,8 (3.8)
j=—T+1
where 4; is the sample autocovariance of order j computed from the OLS residuals from es-
timating (3.1). These estimators are consistent under H; . provided the kernel function « (-)
satisfies e.g. the general conditions reported in Jansson (2002, Assumption A3) and the band-
width parameter m € (0, 00) satisfies the rate condition 1/m + m?/T — 0 as T — oo (which
corresponds to Assumption A4 of Jansson, 2002).

It is well-known that semi-parametric unit root tests based on sums-of-covariances estima-
tors can behave quite poorly in finite samples; see, for example, Haldrup and Jansson (2006).
An alterative approach, which in the non-seasonal case has been shown to deliver unit root
tests with considerably better finite sample size properties, is to use the so-called autoregres-
sive spectral density estimators of the form proposed in Berk (1974); see, in particular, Ng
and Perron (2001) and Haldrup and Jansson (2006). Following the approach in Berk (1974),

the autoregressive spectral density analogues of the sums-of-covariances estimators in (3.7) are

given by:
N sg . Sz
Map= ———5 Mppap=————3 (3.9)
1-o0 [1-0(-1)]
<o s2 %
)\k‘,AR = e kzl,,S (310)

{1—¥R6(a(dm%n>}2+-{Dn(%(dww)>}y

while the autoregressive spectral density analogues of the estimators in (3.8) are given by

2
A2, = Se k=1,...,8"

N 2 N 27
1= 5 & cos ([jwe + 51) )+ {002, dysin ([ + 31) )

(3.11)
where s2 and gg(L) = f;l qu“LZ denote the OLS residual variance estimator and the fitted
augmentation polynomial, respectively, from the augmented HEGY regression, (2.4), with é}“
denoting the OLS estimator of ¢7, j = 1,..., p*, from (2.4). As with the requirements needed
for the validity of the augmented HEGY tests in section 2.3, consistency of the autoregressive
spectral density estimators under Hj . requires that: (i) (1/p*) + (p*)?/T — 0 as T — oo, and
(ii) that the lag polynomial v (2) is invertible; see Berk (1974).

Based on the estimators ;\%ﬁ, 5\29/27}“ ;\%h and 5\;;72}1, h=WA, AR, k =1,...,5%, defined
in (3.7), (3.8), (3.9), (3.10) and (3.11), seasonal analogues of the non-seasonal PP unit root

statistics can be derived from the functional forms of the limit distributions of the un-augmented
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HEGY statistics from (3.1) given in Theorem 3.1, as follows:

(%) [1 o
Zo=  Tin— =t 3 (Visween) |+ k=0008/2] (312)
L Sn+s=1 i
(8 -3)[1 & 1
- S ’ *§ _
Zi= TR -~ Y (B%men) |+ k=Lous® (313)
L Sn+s=1 i
and
1/2 (;\2 —’?0> M52 T .12
Y k;h kh
Zy = 2t~ > <y£75n+8_1> . k=0,...,[5/2)(3.14)
/\kvh L Sn+s=1 d
1/2 (5\*2 _%) (52 T ;172
Yo'« k,h k,h * *
Zy=  —tp- =3 (U , k=1,...,5 (3.15)
)\k,h L Sn+s=1 i

where 4g is the OLS residual variance estimate from (3.1).

Remark 3.3. Notice that for S =1, Z, in (3.12) and Z;, in (3.14) reduce to the non-seasonal

unit root tests proposed in PP.

Remark 3.4. PP-type analogues of the F-type statistics Fy, k = 1,...,5%, Fy _|s/2) and
Fo,...|s/2) discussed in section 2 can also be constructed using the corrected normalised coef-
ficient estimate statistics in (3.12) and (3.13). With an obvious notation we will denote these
statistics as Fppg, k =1,...,5% Fpp1.|s/2), and Fppy..|s/2)- These statistics can be defined
generically as follows:

1
Fpp:= —(RZ) [RAY'YR'| (RZ) (3.16)
v
where v denotes the number of restrictions being tested; Z := [Zm,Zm,prZwQ,Zw;, e

Zrges Zrzys Zng)y) 18 SX LY = [yo|yilyily2ly3l - |ys«[ys-
i =0,5/2, are T'x 1 vectors with generic element y§5n+s_1, andy;andy;,i=1,...,5  are T'x 1

YS/2] is a T'x § matrix where y;,

vectors with generic elements yf Snts_1 and yf%n +s_1» respectively; A is an Sx S diagonal matrix
such that, A == T2diag {1/A3 1, 1/A2 1/, 1/53 0, 1/03 , - 1/88 1 1/A8. 4 1/A8 ),

and finally R is the relevant v x S selection matrix; for example, setting

Jo1roo0 ...0
oo 10 ...0

)

yields the Fpp statistic, whilst setting R = Ig, where I, denotes the ¢ x ¢ identity matrix for

any positive integer g, results in Fppg_|s5/2]-
3.2 M-Type Seasonal Unit Root Tests

3.2.1 Zero and Nyquist Frequency Tests

For the non-seasonal (S = 1) case, Perron and Ng (1996), Stock (1999) and Ng and Perron
(2001) define the trinity of so-called M unit root test statistics as follows:

R (S i
MZ, = o257 £ \2
> =1 (Y1)

T 1/2
, MSBg = (T—2 > (w5 )? /xgﬁ) (3.17)
n=1
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and MZ,, = MZ, x MSBy, where 5\(2% is either X&WA of (3.7) or X&AR of (3.9), noting
that, for S =1, (3.1) and (2.4) reduce to non-seasonal un-augmented and augmented Dickey-
Fuller regressions, respectively. Stock (1999) shows that the first of these statistics, MZ,,
can be re-written® as MZy = Zy + L(f0)?, where Z; is as given in (3.12) for S = 1, and
where 7 is the OLS estimate of mp from (3.1) when S = 1. It can therefore be seen to be a
modified version of the PP non-seasonal unit root test statistic, Zy. These two statistics are
asymptotically equivalent under Hy .. The second statistic, MSBy, can be used as a basis for
a unit root test by noting that the sums of squares of an I(1) series is of O,(7?) while that of
an 1(0) series is of Op(T'). A test which rejects for small values of the MSB statistic therefore
tests the unit root null hypothesis against the stationary alternative. Stock (1999) shows that
MSB, can be viewed as a modified version of Bhargava’s (1986) R statistic. Finally, because
Zy, = MSBy x Z,, Ng and Perron (1996) propose MZ;, as a modified version of the PP
Zy, test. As with the corresponding coefficient-based modified statistics, M2, and Z;, are
asymptotically equivalent under Hy..

Using the estimators 5\%7,1, h=WA, AR, k = 0,5/2, from section 3.1 we can generalise the
principles underlying the trinity of non-seasonal M unit root tests to tests for unit roots at the
zero and Nyquist frequencies in the seasonal case. Consider first the modified coefficient-type
tests. Here, in a similar vein to the relationship that holds between MZq and Zj in the non-
seasonal case, it is straightforward to show that M2, = Z, + L (7x)? +0,(1), k = 0, S/2, where
for the zero (k = 0) and Nyquist (k = S/2) frequencies,

2 2 .
T [<y£T> - <y£,0> ] - Ai,h
2
_o T ¢
272 gy sm1 (yk,5n+s—1)

Noting that the HEGY transformed level variables yg Snys and yg /2, Snts? defined in (2.5)

MZ), = , k=0,8/2. (3.18)

and (2.6), filter out unit roots at all but the zero and Nyquist frequency, respectively, the
sums of squares of these variables can be used to form the analogues at the zero and Nyquist

frequencies, respectively, of the non-seasonal MSBy statistic defined in (3.17); that is,

T 1/2
1 2
MSBy, = [T25\2 > <y,§’5n+3_1> ] , k=0,5/2. (3.19)

k,h Sn+s=1
Combining (3.18) and (3.19), M versions of the seasonal PP-type Z;,, k = 0, .5/2 statistics can
then be straightforwardly defined as follows

MZ,;, = MZ, x MSBy, k=0,5/2. (3.20)

3.2.2 Harmonic Frequency Tests

In order to generalise the M tests to the harmonic seasonal frequencies, two possible approaches
could be used. Our attention here will be focussed on tests based around the use of the demod-

ulator operator introduced by Granger and Hatanaka (1964), subsequently used in the context

5The term —T~*(y5)? can be omitted from the numerator of M2, for the case of local GLS de-trended data;
see Mueller and Elliott (2003).
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of testing for harmonic frequency unit roots in Gregoir (1999, 2006, 2010). An alternative
approach is to define M tests at the harmonic frequencies analogously to the zero and Nyquist
frequency MZj, MSBj, and MZ;, k = 0,5/2, tests outlined above, using the relevant HEGY
auxiliary variables ygsnﬂ and yZ?SnJrS, k=1,..,5" from (2.5) and (2.6). Monte Carlo simula-
tion results reported in the accompanying working paper suggest, however, that this approach
yields tests with inferior finite sample size properties than the standard augmented HEGY tests
discussed in section 2.2 and so we will not discuss this approach further here.

To illustrate the principle of demodulation, consider the complex-valued process, zgn+s,

near-integrated at frequency wy; viz.,
I .
(1 — (1 + ?’“) e_“"kL> ZSmis = USnrs (3.21)

where the innovation ug,+s satisfies Assumption 1. By recursive substitution it follows from

(3.21) that zg,4+s can be written as,

Sn+s
snss = €I (1 ZYSz 4 Y (14 yIredeidy | (322)
7j=1

From the representation in (3.22) we observe that zg,s is driven by the complex innovation
ek u;. Moreover, (3.22) shows that zg, 5 can be expressed as a complex-valued near-integrated
process at the zero frequency, viz., (1 + % )(S"+S 20 + ZS"+S(1 + %)Sntsmieiondy,; multiplied

_i“’k(sn+s). The latter shifts the peak in the spectrum which

by the demodulator operator e
occurs at the zero frequency with the former to a peak in the spectrum at frequency wy.
Hence, in order to use the demodulation-based approach just described to develop harmonic

frequency M-type tests we first need to define the demodulated complex conjugate variables,

Yt = €T (1 e D) AD (L) g, (3.23)
Vi dnss = €I (1 e LY AD (L) g3, (3.24)

in each case for k =1, ..., 5%, where

S* S—1
AYL):=(1-L)(1+1L) Z (1 — 2coswj]L + L?) = sin[w] ™ Z sin[(j + 1)wy]L7)
i#kg=1 =0

omitting the factor (1 + L) above when S is odd. As demonstrated in the Appendix (see
equation (B.24)), applying the filter A?(L) to ygn , vields a real-valued near-integrated process
at frequency wjy, with associated AR(2) polynomial (1 — 2cos(wy)(1 + %)L +(1 + %)2L?).
Consequently, the filters (1—e“*L)AY(L) and (1—e~*“*L)AY(L) when applied to ygn . deliver
the complex-valued near-integrated processes with associated (complex) AR(1) polynomials
(1—(1+ %)e ™*rL) and (1 — (1 + %)e™k L), respectively; see (B.26)-(B.29) in the Appendix.
iwk(Sn+s) and e~™k(57+9) in (3.23) and (3.24),
respectively, yields the complex-valued near-integrated processes at the zero frequency, yg Snts
and yk Sn+s, associated with the filters (1 —(1+%)e “*L) and (1— (1+ % )e™* L), respectively;

see (B.30) and (B.31) in the Appendix.

Finally, the demodulation by multiplication by e
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¢,Da

The following weak convergence results for y and 452 of (3.23) and (3.24), respec-

k,Sn+s k,Sn+s
tively, follow straightforwardly from (B.30) and (B.31) in the Appendix,
B Da O'¢ ( zwk) . 0'1/} ( zwk)
T e = Ty e ) F L )] = T e () (329)
b 7y (e=) Ty
1/2yiDSLrNJ+s = \/i [Jlg,ck (r) = Zjlg,ck (T)} = T“Hlﬂ,ck (r) (3.26)

in each case for kK = 1,...,5*. In (3.25) and (3.26), ¢(-) is as defined in Assumption 1, while
J,g,ck (r) and J,g*ck (r), k=1,...,5% are the independent OU processes of Theorem 3.1 (defined
in Remark A.3 of the Appendix). Notice that Jj ., and Jy ., in (3.25) and (3.26), respectively,
form a complex conjugate pair of complex OU processes

As the limiting representations given for yk SnJrS and yk SnJrS in (3.25) and (3.26) make clear,

developing feasible harmonic frequency M-type test statistics based on these demodulated vari-

£,Db
k,Sn+s’

with estimates of the nuisance parameters o1 (e™*) and o1)(e~*) which feature in (3.25) and

ables will require taking appropriate real-valued transformations of yk Sn L.andy together
(3.26), respectively, which are consistent under Hj .. Given results already established in this
paper, it is easily seen that the latter can be achieved, under the additional conditions stated
in section 3.1, using the autoregressive spectral density estimators, )\i AR = s2{1—[p(e™r)]} 2
and /\k. “AR = =s2{1—[¢ ( )12 k= 1,..., 5%, where 52 and ¢(-) are as defined below (3.11),
&.D 1/2. £,Db

such that ()‘k: AR T)~ 1/2 (N SaLTNJ—i-s ﬁo]]k,ck(r) and ()‘k; AR )~ /2 Yk.S|rN |+s \[Jk Ck( r). For
the former, we take the following transformations

yba o
Re,& L k,Sn+s k,Sn+s
Y = —TRe 3.27
koSt 2 <)\k ArVT kAR\/T> a0
£D £,Db
JImE llm YR Sn-s _ YkSn+s (3.28)
k,Sn+s 9 )\k,AR ,— Ak,AR\/»

for k = 1,...,5% Notice that the transformations in (3.27) and (3.28) are designed such that
they weakly converge to J,i o, (1) and J,g*ck (r), respectively. Other transformations with this
same asymptotic property could be used instead, but we found little difference even in very
small samples compared to using (3.27) and (3.28).

The sequence of transformations in (3.23)-(3.24) and (3.27)-(3.28) therefore transform the
original series yg +s Which admits a complex pair of (near-) unit roots at frequency wy into
two (scaled) series, y, S’s 4 and y%ng > each of which has a single (near-) unit root at the
zero frequency. Consequently, under Hy j where ygn +, admits a pair of unit roots at frequency
wy, then so the two demodulated series yﬁgg s and yﬁ;ﬂ& s
unit root. Likewise, under Hj,, y,?g’g s and yf’rgf ', each admit either a stable (¢, < 0) or

will each contain a zero frequency

explosive (cx > 0) root at frequency zero. Consequently, by analogy to the non-seasonal M

tests in section 3.2.1, Hop, can therefore be tested against Hy ., using either y, S’fl 4s OT Yy S;f g
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in the following harmonic frequency M-type statistics, in each case for k =1, ..., 5%,

) T 271/2
IC?
K-MSBy. = T( > yk,§n+s_1) (3.29)
Sn+s=1
K.e\2 K,e\2
() - ()] -
K-MZ), = . (3.30)
[IC-MSBg]
K-MZy, = K-MZp x K-MSBj, (3.31)

where setting L = Re in (3.29)-(3.31) denotes tests based on y§§f+s, while setting K = Im
denotes the corresponding tests based on yfrgf s In parallel with the M tests from section
3.2.1, Hyy, is rejected in favour of Hp. for large negative values of Re-MZy, Im-MZy,
Re-MZ;, and Im-M2Z;, , and for small values of Re-MSBy, and Zm-MSBy, k=1, ..., 5*.

The harmonic frequency M-type unit root test statistics proposed in (3.29)-(3.31) will be
shown later in Theorem 4.1 to share the same limiting distributions as the corresponding M-
type tests defined for the zero and Nyquist frequencies in section 3.2.1. As a result, asymptotic
critical values for the tests based on these statistics are therefore as given for the corresponding
tests in the non-seasonal case. Moreover, this also implies that their asymptotic local power
functions under H; ., will be close to the power envelope for testing for a single unit root at either
the zero or Nyquist frequency. This is known to lie considerably beneath the power envelope
for testing Hoj, against Hi,; see, for example, Rodrigues and Taylor (2007). Consequently,
one could consider joint tests which combine the M-type statistics based on (3.27) and (3.28)
in order to increase power. To that end we consider the test which rejects for large values of
the following statistic, analogous to the F}, test statistic of HEGY from section 2.3:

1

FRi=3 [(Re—MZtﬁk)Q + (Im—MZtﬂkf] L k=1,..,5"% (3.32)

Similarly, M Z-type analogues of the joint frequency F _ |g/2) and Iy | 5/2) HEGY tests from

-----

section 2.3 can be formed by rejecting Hy seas and Hy for large values of the statistics

S*
1 2
D o D

Fyga.1s2) = 1 QkZFM»k’ + (MZt.,rS/2) ] (3.33)

and o

1 2 2
D o D

FM70_”|_S/2J = g 2kZFM’k + (MZt.,rO) + (MthS/Q) ] 5 (334)

=1

respectively. Analogous joint tests can also be formed by rejecting Hy ., Hogseas and Hy for

small values of the MSB-type statistics,

MSBY = %[(Re-MSBk)%(Im-MSBk)?} Vo1, s (3.35)
g 1/2
MSBE (g = ﬁ {Z [M862]2+MSB§/2} (3.36)
g+ = 1/2
MSBY (g = ;{; [M532}2+M363+M83§/2} (3.37)
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respectively.

Remark 3.5: A natural possible alternative to using the FRA i statistic in (3.32) for testing
Hyp, k=1,...,5% would be to form tests based on the statistics

2|65 - O8) ] + [ (f) - ()] -1
_ L k=1,..,5"
[2MSBY]
MZP = MEZLXMSB, k=1,..,5

MZ}

In unreported Monte Carlo simulations we found these tests to display considerably worse size
distortions than the standard augmented HEGY tests when MA components are present in the
DGP, and so we do not recommend the use of tests based on these statistics and will therefore
not consider them further. For completeness we will, however, report representations for their

limiting distributions in Remark 4.6 below.

Remark 3.6: The statistics in (3.32)-(3.37) are based on the approach underlying the corre-
sponding F-type HEGY statistics from section 2.3, whereby the joint F-statistic is formed as
the average of the corresponding squared individual ¢-statistics involved. An alternative is to
follow the approach used to develop point optimal seasonal unit root tests in Rodrigues and
Taylor (2007), whereby the optimal joint tests are based on the sum of the individual optimal

test statistics involved. We define these test statistics as follows,

Sr = ReMZy +Im-M2Z;,, k=1,..,5"
S* S*
sz = D Sk T MZig o sja) = D Shap + MZiy + M2y,
k=1 =1

rejecting Hyj for large negative values of SRA’,C, kE=1,..,5% and Hpgseas and Hy for large
negative values of % 1..s/2) and S 0|52, Tespectively.

4 Asymptotic Results

In sections 4.1 and 4.2, respectively, we now present the large sample distributions of the
seasonal PP-type and seasonal M-type unit root test statistics proposed in section 3. In
particular, we show that these have pivotal limiting distributions whose form coincides with
those which obtain in the case where the shocks are serially uncorrelated. Local asymptotic
power functions of these tests, together with the relevant power envelopes, are then graphed

(using direct simulation methods) in section 4.3.

4.1 The PP Type Seasonal Unit root Tests

In Theorem 4.1 we now detail the limiting distributions of the new PP-type seasonal unit root
test statistics proposed in section 3.1. The proof of Theorem 4.1 follows directly from the proof
of Theorem 3.1 and the consistency properties of the long run variance estimators used in the

construction of the PP-type statistics.
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Theorem 4.1. Let ys,+s be generated by (2.1) under Hy ¢ and let Assumption 1 hold. More-
over, let the additional conditions stated in section 8.1 hold such that the estimators X&h, 5\%/2 b
)‘kh and )\kh, h=WA, AR, k = 1,...,5%, are consistent. Then, as T — oo, the PP-type

coefficient statistics introduced in section 3.1 and Remark 8.4 satisfy,

Zp = : _ 1 Y . k=0,...,15/2] (4.1)
fo [J,fc (r)} dr + Dy, fo {J,g*c (T)} dr
Jo Tee MdTg  (r) = fy Tf, (1)dIS, (1)
7. = [Okk i o Sl kk},k:L”wﬁ (4.2)

2
k[ﬁﬁm]w+k[ﬁ%)}w
while the corresponding t- and F—type statistics satisfy
Jo Tk o (VAT () + Dy fy I, (AT, ()

RTIRCEa
{fo [ kcn r] dT+Dkfo [chk( )} dr}

[ [ r] i, {ngk >rdr}“

Z

k

Zx

Feme = 5| (7) 4 (7)) ks (4.5)
N E )
Fppj..|s;2 = 5= Z <7;C> "‘Z(Z:C) , J=0,1 (4.6)
i=j k=1

where Dy, = 0, for k = 0,5/2 and Dy, = 1, for k = 1,...,5*. The limiting processes, ngco(r),

J§/27CS/2 (r), Jg’ck (r) and J,g*ck (r), k=1,...,5% are as defined in Theorem 3.1.

Remark 4.1: The limiting null distributions of the PP-type statistics from section 3.1 are
obtained on setting ¢, = 0 (so that, correspondingly, Hyj holds) in the representations given
in Theorem 4.1. These limiting null distributions coincide with those reported in Smith et al.
(2009) and Rodrigues and Taylor (2007), for OLS and local GLS de-trending respectively, for
the corresponding HEGY statistics from (3.1) in the case where ugy, 5 is serially uncorrelated.
Notice also that, contrary to what is shown in, inter alia, Burridge and Taylor (2001) and del
Barrio Castro, Osborn and Taylor (2012), for the corresponding ¢;, and ¢} augmented HEGY
statistics from (2.4), when wug,s is serially correlated the limiting null distributions of the
harmonic frequency PP-type test statistics Zy, Z;,, Z] and Zyx, k=1,..5% are free from
nuisance parameters. Indeed, the asymptotic null distributions of Z; and th coincide with
those reported for the augmented HEGY ¢, and ¢}, statistics, k = 1,...,.5*, in Burridge and
Taylor (2001) and del Barrio Castro, Osborn and Taylor (2012) for the case where a; = 0

and by = 1; that is, in the absence of serial correlation in ug,+s. The foregoing asymptotic
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equivalence results between the HEGY and corresponding PP-type statistics also hold under

the local alternative, Hi .

Remark 4.2: Selected critical values for tests based on the statistics in (4.1)-(4.4) and (4.5)-
(4.6) (for the quarterly, S = 4, and monthly, S = 12, cases) are provided for the case of OLS
de-trended tests in HEGY, Ghysels et al. (1994) and Smith and Taylor (1998), and for GLS
de-trended tests in Rodrigues and Taylor (2007). Notice that the limiting null distribution in
(4.1) for both k = 0 and k = [.S/2] coincides with the limiting null distribution of the standard
normalised bias statistic of Dickey and Fuller (1979), with relevant critical values provided in
Fuller (1996). Furthermore, the limiting null distribution in (4.1), for £ = 1,...,.5*, coincides
with the limiting null distribution of the Dickey et al. (1984) unit root test statistic, from where

relevant critical values can be obtained.

4.2 The M-Type Seasonal Unit Root Tests

In this subsection we detail the limiting distributions for the various M-type seasonal unit root
test statistics proposed in section 3.2. In Theorem 4.1 we first provide limiting representations
for the single unit root M-type statistics in (3.18)-(3.20) and (3.29)-(3.31).

Theorem 4.2. Let the conditions of Theorem 4.1 hold. Then, as T — oo: (i) for the zero
(k = 0) and Nyquist (k = S/2) frequencies, the single M-type seasonal unit root test statistics
in (3.18)-(3.20) satisfy,

MZp = {2/01 S (r)rdr}l { [J,i%(l)r - 1}, k=0,5/2 (4.7)

MSBy = { / 1 [J,i%(r)rdr} — MSBy,, k=0,5/2 (4.8)
0

MZ,, = % {/01 [J,g,ckwf dr}_l/2 { [J,i%(l)r - 1}  k=0,5/2; (4.9)

(i) the harmonic frequency single unit root test statistics in (3.29)-(3.31), where it is to be

recalled that setting K = Re in what follows yields the results for statistics based on y,?g’s_i_s
while setting K = Im yields the corresponding results for the statistics based on ygi&f ' gr Salisfy

K-MZy = {2/01 [Hgﬁk (r)]Zdr}l { [Hgyck (1)]2 - 1} = MZE, k=1,..,5(4.10)
1/2

1 2
K-MSB;, = U [HC (r)} dr] = MSBY, k=1,..,5" (4.11)
0

k7ck

K-MZ;, = MZEFxMSBY = K-T¢, k=1,..,5" (4.12)

where M, (r) == Jg, (r) if K = Re and Hy, (r) := JiS (r) if K = Im, with J5,(r),
Jg/2 cs)s (r), J,iCk (r) and J,gj;k(r), k=1,...,5% ¢ =1,2, the independent (scalar) OU processes

defined in Remark A.3 of the Appendiz.
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Remark 4.3: Using It6’s rule, the limiting distributions given for MZy, k = 0,5/2, in (4.7),
which are identical (for a given value of ) to and independent of those given for Re-MZy,
and Im-M2Zy, k = 1,...,5%, in (4.10), can be seen to coincide with those given for Z, for
k =0,5/2, in (4.1). Similarly, the limiting distributions for the M2, , k = 0, S/2, statistics
of (4.9) are identical (for a given value of () to and independent of those for Re-MZ;, and
Im-M2Z,, in (4.12), and coincide with those given for Z;, , for k = 0,.5/2, in (4.3). Moreover,
it is also seen from (4.8) and (4.11) that the limiting distributions of the MSBy, k = 0,5/2,
Re-MSByj, and IZm-MSBy, k = 1,..., 5%, statistics are identical (again for a given value of ()

and are mutually independent.

Remark 4.4: The limiting distributions which obtain for the seasonal M-type statistics dis-
cussed in Theorem 4.1 coincide with those of the corresponding non-seasonal M statistics
detailed at the start of section 3.2.1. Selected critical values for the tests based on these statis-
tics can therefore be obtained from Table I of Elliott et al. (1996, p.825) and from Table 1 of
Ng and Perron (2001,p.1524). Moreover, the asymptotic local power functions of these statis-
tics also coincide with those given for the corresponding statistics in the non-seasonal case and
graphed in Figures 1-3 of Elliott et al. (1996, pp.822-24).

In Corollary 4.1, the proof of which follows immediately from the results given in Theorem
4.1 using applications of the Continuous Mapping Theorem, we now detail the limiting distri-
butions of the harmonic frequency M-type Fﬁ/l,k, MSBY and S]/)\/t,k’ k=1,..,5% statistics and

. . D D D s . . .
the joint frequency FM,j...LS/2J’ MSBj...LS/2J and SM,j...LS/2J’ j = 0,1, statistics from section
3.2.

Corollary 4.1. Let the conditions of Theorem 4.1 hold. Then, as T — oo,

R = ;[(Re-ﬂf)Q—l—(Im-’];f)Q] = PRy k=15

FMO 18/2] =™ o . [22]:?\4 kT <T<> (Téﬂ)z]

S*
1 ¢ 2
Fpii.1s2 = -1 lzzfafuc + (TS/2>
=1

1/2

MSB) = 9326%73@) (smes%gmf} — MSBY, k=1,..,5"

1
2
1/2
and
Sup = ReTE+Im-TIE, k=1,..,5

S* S*
Sii.isp = D (Re'TIf +Im'TkC) + Tg)5 Sho.ls/2) = D (Re'TIf + Im'TkC) + 5 + Ty
k=1

where ’Z;f, k =0,5/2, are as defined in Theorem 4.1, and Re—?}f, Im-’]}f and 9)36%’,5, k=
1,...,.5%, are as defined in Theorem 4.2.
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Remark 4.5: The limiting distributions which appear in Corollary 4.1 have not appeared
in the literature before. Consequently, in Table 1 for the S/DM and MSBP tests, and in Table
2 for the FR/( tests, we provide selected asymptotic null critical values, computed by direct
simulation of the relevant limiting null distributions in Corollary 4.1, using 100,000 Monte
Carlo replications and a discretisation of N = 1000 steps, for versions of the statistics based on
either OLS de-trended data or local GLS de-trended data, the latter using the relevant values of
¢ detailed in section 2.3. Critical values are reported for each of Cases 1-3 for the deterministic

component outlined in section 1.

[Tables 1 - 2 about here]

Remark 4.6: We conclude this section by providing representations for the limiting distribu-
tions of the alternative M-type harmonic frequency unit root tests discussed in Remark 3.5.

Under the conditions of Theorem 4.1 it is straightforward to show that

Mz = [Jg’c’“(l)r - [Jéfck@)r _C k=1,..,5"
k Jo [J’g’ck (T)} S I [ng*ck (r)} Car v
2 . ;5
M2 = e W]+ [ 0] -2 B

) { i [ 5 (r)]erJr Jy [J,ﬁj‘ck (r)rdr}

4.3 Asymptotic Local Power Functions

Figures 1 and 2 graph the asymptotic local power functions of the seasonal PP-type and sea-
sonal M-type unit root tests proposed in section 3, together with the corresponding augmented
HEGY tests of section 2 and the seasonal point optimal-based tests of Rodrigues and Taylor
(2007). Results for the zero, Nyquist and harmonic frequency unit root tests (which are in-
dependent of the seasonal aspect, S) are given in Figure 1, while results for joint frequency
tests for the quarterly case, S = 4, are given in Figure 2. In each case the tests are based
on local GLS de-trending® with results given for ¢ = 1 and ¢ = 2, where ¢ is as defined in
section 4. Each graph also reports the relevant Gaussian asymptotic local power envelope as a
benchmark. The local power functions were calculated using direct simulation methods using
80,000 Monte Carlo replications, discretising over N = 1000 steps. The horizontal axes of the
graphs are indexed by ¢ which is used generically to denote either the relevant frequency-specific
non-centrality parameter, cg, kK = 0,..., [ .S/2] (so that for tests at the zero frequency, for ex-
ample, ¢ = ¢p) or, in the case of joint frequency tests, a common non-centrality parameter (for
example, ¢ = ¢; = ¢o in the case of the tests of the null hypothesis of unit roots at all of the

seasonal frequencies).

5This will be the case for all of the numerical results presented in the remainder of the paper. Corresponding

results for tests based on OLS de-trended data are available on request.

21



Consider first Figure 1(a) and 1(b) which reports results for the zero and Nyquist frequency
tests. In particular results are reported for the Zy, Z;,, MZy, MZ;, and MSBy, k = 0,5/2,
tests from section 3 together with the feasible point optimal-type tests from section 4 of Ro-
drigues and Taylor (2007, pp.556-558). The latter statistics will be denoted P 1, k = 0,5/2, in
what follows, and are based on the local GLS de-trending parameters ¢ given in section 2.3. As
discussed in section 4, for a given value of ( the large sample behaviour of a given zero frequency
statistic and its Nyquist frequency analogue coincide, and coincide with the behaviour of that
statistic in the non-seasonal (S = 1) case. This is also true of the P, 1, k = 0,.5/2, statistics,

as demonstrated in Rodrigues and Taylor (2007).
Figures 1-2 about here

For the case of local GLS de-meaning (¢ = 1) in Figure 1(a) it is seen that the asymptotic
local power functions of the Zy, Z;, , MZy, MZ;, , MSBj, and Py, 1, k = 0,5/2 tests all lie very
close to the Gaussian power envelope and are almost indistinguishable from each, echoing results
in Figures 1-3 of Elliott et al. (1996). For the local GLS de-trended ({ = 2) case in Figure
1(b), we see a decline in the power curves and the power envelope relative to the corresponding
quantities in Figure 1(a), again consonant with Figures 1-3 of Elliott et al. (1996). In the local
GLS de-trended case the tests again all lie very close to one another and again are effectively
indistinguishable from the Gaussian power envelope.

Figures 1(c) and 1(d) present the corresponding results for the harmonic frequency PP-type
tests, Zy, Zy, and Fppy, k € {1,...,5*}, together with the harmonic frequency M-type tests
of section 3.2.2 and the feasible point optimal P r test of Rodrigues and Taylor (2007). The
Gaussian local power envelopes in this case are taken from Gregior (2006) and Rodrigues and
Taylor (2007). For a given value of ¢ the demodulated single unit root M-type tests in (3.18)-
(3.20) and (3.29)-(3.31) were all virtually indistinguishable from one another and so we plot
only the local power function of Re-MZ;, in Figures 1(c) and 1(d).

Looking first at the results for local GLS de-meaning (¢ = 1) in Figure 1(c), it is seen that
the local power function of the demodulated single unit root M test lies well below the Gaussian
local power envelope and well below the power functions of the other harmonic frequency unit
root tests, as would be expected given that each of the latter jointly test on both complex
conjugate harmonic frequency unit roots rather than only one of the pair of roots. Of the other
tests, the P, v, Z), and Z;, tests display the best power and are virtually indistinguishable from
one another. The MSB}, and the S/DVM test of Remark 3.6 are both slightly less powerful than
the aforementioned group of tests, followed by the standard HEGY F}, test (notice that Fj, and
the PP-type Fppy, test have the same asymptotic local power function) and the demodulated
FR/(,l test whose power functions lie close to one another. For the local GLS de-trended case
in Figure 1(d) we see the same power ordering among the tests as was seen in Figure 1(c) but
the differences between these power functions are far less pronounced, with the exception of
the demodulated single unit root M test whose power function still lies well below those of the
other tests. As with the corresponding results in Figures 1(a) and 1(b), the power functions

and the power envelope again decline relative to those in Figure 1(c).
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Finally in Figure 2 we graph the Gaussian power envelopes and asymptotic local power
functions of the joint frequency tests discussed in this paper which obtain in the quarterly case,
S = 4. Specifically, Figures 2(a) and 2(b) report results, for the local GLS de-meaned and
de-trended cases respectively, the Fjs, F/I\)/l,12> MSBY,, 5’?\4712 and the corresponding feasible
point optimal test of Rodrigues and Taylor (2007), denoted PTio 7, tests, while Figures 2(c)
and 2(d) report results, again for the local GLS de-meaned and de-trended cases respectively,
for the Fyio, FRA,Ole MSEBR 5, S]/)\47012 and PTpi2 1 tests, the latter again denoting the relevant
feasible point optimal test from Rodrigues and Taylor (2007). Recall that the asymptotic local
power functions of the PP-type Fpp 12 and Fppoi2 tests of Remark 3.4 coincide with those of
the HEGY Fi and Fppo tests, respectively.

Consider first Figures 2(a) and 2(b) which pertain to tests of the null hypothesis of unit
roots at all of the seasonal frequencies, Hpseas = ﬂileo,k- The LS‘/D\,L12 test and the feasible
point optimal Pia 7 test outperform the other tests regardless of whether de-meaning or de-
trending is considered. For the de-meaned case, the MSBY, test outperforms both the Fio and
FRA’H tests, but for the de-trended case these three tests all perform quite similarly. Rather
similar qualitative patterns are also observed in Figures 2(c) and 2(d) for the corresponding

tests of the overall null hypothesis, Hy = ﬂiono,k.

5 Finite Sample Results

In this section we investigate the finite sample size and (local) power properties of the new
semi-parametric seasonal PP-type and seasonal M-type unit root tests proposed in section 3,
comparing them with the augmented HEGY tests of section 2 and the feasible point optimal
tests of Rodrigues and Taylor (2007). Our simulations are based on the following quarterly
(S =4) DGP:

2
(1= [ a2 (e [ o] 2) (1 [0 3] 22) s = wamis 5= =300, 0= 1,00

AN AN AN

(5.1)
with x_3 = --- = g = 0 and where u4,4s a stationary error whose properties will be detailed
below. Results relating to finite sample size, where ¢y = ¢; = ¢o = 0, are reported in section 5.1,
while finite sample power results, where ¢; < 0, for some i € {0,1,2}, are reported in section
5.2. Results are reported for N = 50 and N = 100 years of data, yielding total sample sizes of
T = 200 and T = 400, respectively.

For the long run variance estimates needed to implement the new semi-parametric tests
proposed in this paper, we explored the use of Bartlett and Quadratic Spectral kernels for
the sums-of-covariances estimators X&W A S\%W A 5\’{2W 4 and X%W 4, and the corresponding
parametric autoregressive spectral density [ASD]| estimators 5\3 AR’ 5\% AR’ S‘T?AR and ;\g AR
The tests based on ASD estimates displayed considerably better finite sample behaviour than
those based on sums-of-covariances estimates and so we only report results here for the former;
results for the latter can be obtained from the authors on request. For the purpose of estimating

P (ei‘*’k) and v (e‘i“’k) , which are necessary for the computation of the demodulated tests, as in
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section 3.2.2 we use the ASD estimators 5\% Ap and ;\T?A r- The AR lag order used in constructing
the ASD estimates was determined using the modified MAIC criteria recently proposed by del
Barrio Castro, Osborn and Taylor (2016) using Schwert’s rule, kmax k' := LK[%PMJ, with K a
constant discussed below, to determine the maximum lag length allowed. As in Perron and Qu
(2007) the M AIC criteria is computed based on OLS de-trended data. Results are reported for
both Case 1 (zero and seasonal frequency intercepts) and Case 3 (zero and seasonal frequency

intercepts and trends). As noted before, all reported results are based on local GLS de-trending.

5.1 Empirical Size

Tables 3-5 report the results of our empirical size simulations. Table 3 reports results for tests
for a unit root at frequency zero for both Cases 1 and 3. Table 4a (Case 1) and Table 4b (Case
3) report the corresponding results for the tests for a unit root at the Nyquist frequency, while
Table 5a (Case 1) and Table 5b (Case 3) report results for the harmonic frequencies. Joint
frequency tests are also reported, where relevant to the frequency under consideration, in the
tables.

As discussed in section 1, both non-seasonal and seasonal unit root tests are most prone to
the problem of over-sizing in finite samples when there is a significant MA component in the
shocks which is such that it causes a near cancellation effect with the autoregressive unit root.
Because the non-seasonal M tests have been shown to be particular effective in controlling
these distortions, our focus in this subsection is to investigate whether the seasonal M-type
tests proposed in this paper are also effective against such near cancellation effects. The results
in Tables 3-5 therefore pertain to the case where the error term wyy,4s in (5.1) follows an MA
process which displays a near-cancellation region with the autoregressive polynomial wy (L), as
defined at the start of section 2.2, at the frequency wg, k = 0,1, 2, of interest. To that end we
generate u4n+s as the MA(q) process

Udn+s = €4n+s — 9q54n+57q7 E4nts ™~ NIID (0, 1) s s = —3, ...,O, n = 1, ceey N

initialised at ¢; = 0, 7 < 0. The order of the MA process and the range of values of the
MA parameter which generate a near cancellation region vary according to the frequency of
interest. For the zero frequency we consider ¢ = 1 and 6; € {0,0.2,0.4,0.6,0.8,0.9}. For the
Nyquist frequency we consider ¢ = 1 and 6; € {0,—0.2,—-0.4,—0.6,—0.8,—0.9}. Finally, for
the harmonic frequency, we consider ¢ = 2 and 6, € {0,—0.04, —0.16, —0.36, —0.64, —0.81}.
It can be seen that these designs generate near cancellation regions at the zero, Nyquist and
harmonic frequencies, respectively. Notice also that the moduli of the resulting MA roots is the
same for each of these three designs. Given the range of values of 6, considered, we set K = 12
in the formula for ky.x x above in order to allow for a reasonably long lag length in the AR
approximation.
Tables 3 - 5 about here

Consider first the results in Table 3 for the zero frequency tests. Although the standard
HEGY ¢y test displays reasonably good size control both when 6; = 0 and when 6; is small,
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its empirical size rises significantly above the nominal level as 61 increases. This occurs in both
Cases 1 and 3 of the deterministic component, with the distortions slightly lower in general under
Case 3. Although ameliorated as T increases, the empirical size of ¢y remains uncomfortably
large, even for N = 100, for large values of ;. To illustrate, under Case 1 and 6; = 0.9 the
empirical size of ty is almost 23% for N = 50 reducing only to 18% for N = 100. The size
distortions seen in the PP-type Zy and Z;, are significantly worse than for ¢y with these tests
rejecting almost all of the time in the previous two examples. Consistent with findings for
the non-seasonal case in Ng and Perron (2001), the trinity of zero frequency M-type tests all
display significantly better size control than the HEGY ¢y test, and show more pronounced
improvements in relative size control than the HEGY tests as the sample size increases. In the
example above, the three M tests all display empirical size of around 8% for N = 50, with
no over-sizing seen for N = 100; indeed, again consistent with the simulation results in Ng
and Perron (2001), the tests are all slightly under-sized in the latter case. As with the ¢ test,
distortions tend to be lower under Case 3 (with the exception of the case where 6; = 0.9 and
N = 50); here the three M tests for §; = 0.9 are again slightly under-sized when N = 100
(compared to 17% size for tp). The feasible point optimal Py 7 test of Rodrigues and Taylor
(2007) behaves very similarly to the trinity of M tests. Similar observations can be made about
the joint frequency tests in Table 1. The PP-type Fppoi2 test is very badly oversized when
f, > 0. The lowest size distortions are again displayed by the joint frequency M-type tests
from section 3 and the corresponding feasible point optimal test, Fyi2 7, from Rodrigues and
Taylor (2007), although the latter is consistently undersized, particularly so under Case 3. In
particular, the FRA,012 test displays consistently better size control than the HEGY Fpio test.

Turning to the results for the Nyquist frequency in Tables 4a and 4b, very similar patterns
of size distortions are seen here as were observed in Table 3 as might be expected, given that an
equivalent near cancellation effect is obtained here for a given value of 8 as for the zero frequency
results. In addition to the joint tests considered in Table 3, Tables 4a and 4b also report the
joint tests for testing the null hypothesis of unit roots at all of the seasonal frequencies, Hy seas-
Again the same relative behaviour is seen between the HEGY-type, M-type and PP-type tests
as is observed for the other tests.

Finally, we turn to the results for the seasonal harmonic frequency in Tables 5a and 5b.
Consider first the results in Table 5a for deterministic Case 1. As with the results for the
HEGY tests in Tables 3 and 4a-4b, the harmonic frequency HEGY F} test displays good size
control for small values of > but is again rather over-sized for the larger values of 65 considered.
For example, for 62 = 0.81 and N = 50 the F test has size of about 12% falling to about 8%
for N = 100. The best size control is offered by the F/]i,u test which displays excellent size
control for all values of 0y considered for both N = 50 and N = 100. In the example given
above F/]i,u has empirical size of about 5% for N = 50 and 3% for N = 100. The single root
demodulated tests Re-M2Z1, Im-M2Z1, Re-M2Zy,, Im-M2Z;,, Re-MSB; and Zm-MSB;, all
perform quite similarly to one another but do not control size quite as well as F/[\)/t,p displaying

significant under-size when 6 = 0.81, and some over-sizing for 3 = 0.16 when N = 50. The
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MSBY and P 7 test of Rodrigues and Taylor (2007) behave similarly to one another, displaying
slightly poorer size control than the HEGY Fj test. The worst size control is displayed by the
PP-type Fpp1 test.” As regards the joint frequency tests, here the feasible point optimal tests
of Rodrigues and Taylor (2007) appear to offer the best size control overall. The joint frequency
M-type tests perform similarly to the corresponding joint frequency HEGY tests, Fi2 and Fpo.

The results in Table 5b for deterministic Case 3 show a similar ordering between the various
tests but with an overall deterioration seen in the finite sample size control of most of the tests
considered. Again the best size control among the harmonic frequency unit root tests is shown
by the F/?/Ll test, which displays fairly similar size control overall to the single root demodulated
tests. These tests again display considerably better size control in the near cancellation region
than the HEGY F} test. To illustrate when 0o = 0.81, the HEGY F} test has empirical size of
about 25% for N = 50 and 16% for N = 100, while the empirical size of F/]i/t,l in these cases are
about 4% and 3%, respectively, and those of the P; r test are about 20% and 7%, respectively.
In the case of the joint frequency tests, the joint frequency M-type tests display arguably
the best overall size control, now notably better than the corresponding joint frequency HEGY
tests. The feasible point optimal tests of Rodrigues and Taylor (2007) also avoid any over-sizing
but display a stronger tendency to under-sizing than the M-type tests.

5.2 Empirical Power

Figures 3-6 graph the finite sample (size-adjusted) power functions of the tests considered in this
paper for the case where the data are generated according to (5.1) with w445 ~ NIID(0,1),
with K commensurately set to zero in the formula for k. . And as in Rodrigues and Taylor
(2007) the power results pertain to the case where, when moving a particular non-centrality
parameter ¢, k = 0, 1,2 away from unity, the remaining non-centrality parameters are all held
at zero. The index, ¢, on the horizontal axes of the graphs has the same meaning as described
above for Figures 1 and 2.

Figures 3 - 6 about here

From Figure 3 we observe that the zero frequency unit root tests considered display very
similar power behaviour, particularly so when local GLS de-trending (Case 3) is considered, in-
deed here even for N = 50 the power functions of the various tests are almost indistinguishable.
In the case of local GLS de-meaning (Case 1) and for the smaller sample size, N = 50, and as
we move towards the stationarity region (i.e., as ¢ becomes more negative) we note that the
point optimal test PTy loses some power relative to the other tests, but overall finite sample
power is still basically very similar across all of the zero frequency tests reported in Figure
3. We do not report corresponding results for the Nyquist frequency unit root tests statistics
here because they were almost indistinguishable from the corresponding zero frequency tests

reported in Figure 3.

"We do not report size properties for the PP-type Z; and Zy, tests because these were qualitatively no different

from those reported for Fpp ;.
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Turning to the results for the harmonic frequency unit root tests reported in Figure 4 we see
that, in line with the corresponding asymptotic local power results reported in Figure 1, there is
rather more variation across the finite sample power properties of the various tests, as compared
with the results for the zero frequency tests in Figure 3. Again consistent with the corresponding
asymptotic local power results in Figures 1(c) and 1(d), we see in Figure 4 that the demodulated
single unit root test Re—MZ;, (again we only report one of these demodulated single unit root
tests because they all displayed virtually identical power properties) displays considerably lower
power than the other harmonic frequency unit root tests. As for the remaining tests, under
local GLS de-meaning (Case 1) the best performing tests are PTy, MSBY and S]\D/[,lv all three
of which outperform the F; and F ]\D4’1 tests, which perform very similarly, on power. These
rankings hold for both N = 50 and N = 100; indeed, the local power properties of a given
test alter little between the two sample sizes, suggesting again that the asymptotic local power
functions provide good predictors for the finite sample powers of the tests. Under local GLS
de-trending (Case 3), roughly the same power ordering as was observed for Case 1 is seen,
although again as predicted by the asymptotic local power functions, the power differentials
between the tests are decreased relative to those seen under Case 1.

We turn now to the finite sample power functions of the joint seasonal unit root tests graphed
in Figure 5. For both sample sizes and under both Case 1 and 3 we see that the differences
across the various power functions are relatively small. In terms of relative performance, under
local GLS de-meaning (Case 1) for both sample sizes considered, the highest power is delivered
by PTi, closely followed by Sﬁ,m and MSBE), with the lowest power displayed by Fio and
FJ\I?L127 the latter two displaying almost identical power. Under local GLS de-trending (Case
3) we again see that the best performing tests on power are P12 and S]\L/)[’lz, while the power
performances of Fio and Fﬁm are now as good and sometimes superior to that of MSBL,.

Finally, in Figure 6 we display finite sample power graphs for the tests of the null hypothesis
of a unit root at both the zero and all of the seasonal frequencies. The conclusions that we
can draw from these graphs are qualitatively similar to those remarked on above for the joint
seasonal frequency unit root tests. The only exception is for local GLS de-trending, where it is

observed that Fyio, Fz\[},om and MSBP,, display almost identical finite sample power.

6 Conclusions

In this paper we have generalised the class of semi-parametric unit root tests developed for
non-seasonal data by Phillips and Perron (1998) and the related so-called M tests of Stock
(1999), Perron and Ng (1996) and Ng and Perron (2001), to allow for unit root testing at the
zero and seasonal frequencies in seasonally observed data. For the case of tests involving the
seasonal harmonic frequencies this was shown to necessitate the use of demodulated data in
constructing the M-type class of test statistics. In the non-seasonal case the M unit root tests
are known to considerably superior finite sample size control than the parametric augmented

Dickey-Fuller tests in the most problematic (near-cancellation) case where the shocks contain
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a strong negative moving average component. Using Monte Carlo simulation methods we have
shown that this result carries over to the seasonal case with the M-type seasonal unit root tests
we develop here displaying significantly better finite sample size control than the corresponding
parametric HEGY seasonal unit root tests in near cancellation regions. As in the non-seasonal
case, these improvements in finite sample size were shown not to come at the expense of any
loss in power relative to the HEGY tests. Moreover, certain of the M-type seasonal unit root
tests were shown to achieve similar power to the feasible point optimal tests of Rodrigues and
Taylor (2007).
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Appendix

A Preliminary Results

Before providing the proofs of the main results given in the paper, a number of preliminary
results are needed first. To that end, we first note that under (2.3), zg,+s in (2.1b) can be

written as,

S*
ASO ACS?? Hk:l AZk TSn+s = USn+s (Al)

where A’ :=1—apL =1— (1 + g—?v) L, ACSS/; =1+agpl=1+ (1 + C;J/VQ) L,and A}* :=1—
2 cos [wg] apL+afL* = 1—-2cos [wg] (1+ &) L+ (1 + SC—}“V)Q L% for k = 1,...,5* Consequently,
(A.1) can be equivalently written as,

*

S
Pt =[S0 (51 -+ 9)] [Ssae s (54 )] {H“ Sty (Sn+ s)} uswie  (A2)

where, for wp =0 and wg/y = T,

Sn+s
Sic, (Sn+s) = Z cos [((Sn+s) — j) wi] ozfnJrS_jLS"“_j, i=0,5/2 (A.3)
j=1

and, for w, = (27k)/S,k=1,..., 5%,

Sn+s—1
Sk, (SN +s) = sin [wi] " 2 sin[((Sn+s) +1—j) wg] agnJrS*JLS”"‘S_j
=0

= sinfwg] ™" (sin[((Sn+s) + 1) wi] Sp,, (S +s)
—cos[((Sn+s) + 1) wi] Sp,, (Sn+ s)>

with
Sn+s ‘ .
Shc, (S +5) 1= Z cos [jw] a,f"JrS*jLS”“_J
j=1
Sn+s 4 .
i (Snts) =" sin[jwp]ag" LI (A.4)
j=1

In view of the foregoing, the identities given in Gregoir (1999, p. 463) can be extended to the

terms in (2.3) as follows,

A80+A;S//22 - 1 1<CS/2_CO>L_1_|_O(1/N) (A.5)
2 2 2 SN ’
A+ (1 —2cos [wg] + L) AF _ o I 2 cos [wg] (cx — CO)L
2k (w) 2k(wg)SN 2k(wg) SN
(2¢c — co) 9 c 12

26(wr) SN 25(wy) (SN)?
o) -o(H)ro(L) <o) @
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A% 4 (1 = 2cos [wy] + L) AZY

S/2 Cs/2 _ 2cos [wi] (65/2 — ck) I
2(wr) B 2k (wr) SN 2k(wg) SN
(2Ck — 05/2) 9 cz 9
2k (wk) SN 2k (wi) (SN)?
= 140 i +0 1 +0 1 +0 L (A.7)
B N N N N2 :
and
2cos[wg] =L ,¢;  2cosfwj]—L .,
T o) o SR AVA
QK(wk]) 2/{((‘%])

~ 4cos [wg] cos [wy] (¢j — cx)
2k (W) SN L+ 2k (wy)

2 [cos [wy] <& — cos [wj] &

= 1 SN] L2

4 [cos [wi] 5& — cos [wj] k] o 2 (k)
2r(wij) L 2k(wi;) SN L
+2 [cos [wk] (;—JN)Q — cos [wj] (5—}\,)2} 2 1 <c§ — c%) .3
2r(wk;) 2k(wrs)  (SN)?

1 1 1 1 1 1

1-o(y)+o(y)ro(y)-o(5)+o(5e) -0 (52) s
where £(wy) := 1 — cos [wg] and K(wg;) := cos [wy] — cos [w;], 7,k =1,..., 5%

Consequently, noting that A Sy ., (Sn + s) = 1 and using (A.5)-(A.8), it follows from (A.2)
after some tedious algebra and using the standard trigonometric identities, sin [((Sn + s) + 1) wg]
= cos [wg] sin [(Sn + ) wi|+sin [wg] cos [(Sn + s) wi] and cos [((Sn + s) + 1) wi| = cos [wg] cos [(Sn + s) wy]
— sin [wg] sin [(Sn + s) wg], that zg,4+s can be decomposed into the sum of frequency specific
partial sums plus an asymptotically negligible term (see also Gregoir, 1999); that is,

1 1
Tn+s = ESO,CQ (Sn + 5) USn+s T gSS/Q,CS/Q (Sn + 5) USn+s
S*

2
+§ Z [cos [(Sn + s) wi] SP., (51 =+ 5) Usns
k=1

sin [(Sn + 5)wr] S, (Sn+ 8)usnes] 40, (1), (A9)

It will prove convenient, for the analysis that follows, to re-write (A.9) in the so-called

vector-of-seasons representation; viz.,
1 n co\n—i 1 " Cg/9\ i
X, = §C’0 z;exp (N) U; + ECS/Q Z;exp (—]\; ) Us;
1= 1=

2 S* n n—i
+S;Ck;exp (Cﬁk) Ui +o0p (1) (A.10)

where X, 1= [Tgn—(5-1)s TSn—(5—2), -+ Tsn)'s = 0,..., N, and Uy, := [tgn—(5-1)s USn—(S—2)» -+ Usn]'s
n=1,..,N;Co:= Circ[l,1,1,...,1]and Cg/y := Circ[l, —1,1,..., ~1] are S x S circulant matri-
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ces of rank 1, while for w; = 27i/S, C; := Circ[cos [0], cos[w;], cos[2w;], ..., cos[(S —1)w;]],

i=1,...,59*% are S x S circulant matrices of rank 2.8

Remark A.1: In order to relate (A.10) to (A.9) we have made use of the fact that the circulant
matrices involved can be written as Co = vovo', where vo' := [1,1,1,...,1], Cg/5 = vg/avg/s,
where vg),' = [~1,1,—1,...,1], and Cj = v;v} and finally the matrix C; = Circ[sin[0],
sin [(S — 1) wj], sin[(S —2)wj], ..., sin[w]], with C; = v;v}’, which will be used later in

lemma A.1 where

o [ cos w; (1—9)] cos wi (2—8)] - cos [0] ] B h;./ ] (A1)
sinfw; (1 —=95)] sinfw; (2—-2S5)] --- sin[0] h
and
o —sinfw; (1 -95)] —sinfw; (2-95)] --- —sin[0] _ —h}“-’ ’ (A12)
! cos[wj (1 —=95) coslw;j(2—S5) .-+ cos[0] h’
j=1,...,5%
We also note that,
i n e \S(n—j) . i i n e\ (n=7) . i
D j=1€Xp (SN)S | Usj—(s-1) Yjorexp (%) L Usj—(s-1)
Sy exp () ™" usi—s-2 Sy exp (%) ug(s2)

S
Z?:l exp (5%) =9 ugs;j

— zn:exp (%’“)”_j U;. (A.13)
j=1

Remark A.2: Asshown in Burridge and Taylor (2001), the error process, Uy, defined in (A.10)

satisfies the vector M A(co) representation
oo
Up=> B, ; (A.14)
§=0

where E,, = [egp—(5-1), Esn—(5—2), -+ Esn]’ 18 @ vector of IID errors, and the S x S matrices
Wy, ¥;, 5 =1,2,..., are,

1 0 0 0

P1 0 0

T — )2 P1 0 0
1 0

3 (0 U

| Ys—1 Ys—2 ts—3 Ys—a oo 1

8For further details on these circulant matrices see, for example, Osborn and Rodrigues (2002) and Smith et
al. (2009).
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and

Yjs Yis—1 Yis—2 Yis—3 o Yis_(5-1)
Yjs41 is Yis—1 Yis—2 o Yis_(5-2)
¥, - Yjsi2 Pisy1 pjs Yis—1 o Yis_(s-3)
Yjs43 Yjst2 Vst VYis o Wis—(s—a) |
| Vjs+s-1 Vjs+s—2 Vjs+s—3 Vjs+s—4 - Yis
respectively. O

The following Lemma provides a multivariate invariance principle for Yé, where Yf =
[ygnf(sil), ygnf(sﬂ), - ygn}’, with ygnJrS = TSnts — ¥ 2Zsn+s,e and where it is recalled that
the parameter £ € {1,2,3} denotes the deterministic Case of interest.

Lemma A.1. Let the conditions of Theorem 3.1 hold. Then,

NTPYE = g[¢(1)coﬁ (r) + ¥(=1)Cs/2¢,,, (1)

+2Z<bCJ )+ a:CiJE (r ))] ,rel0,1] (A.15)

where J&, (r) := [thkS (7“)7‘]5&,275 (r), ..., JS ()] is an S x 1 vector OU process such that

? ek 70

ngk (r) = chk (1) dr +dW¢ (1) and WE (1) is an S x 1 vector Brownian motion process; a; :=
Im(ylexp(iw;)]) and b; == Re(¢lexp(iw;)]), i = 1,...,.8%, with Re(-) and Im(-) denoting the real
and imaginary parts of their arguments, respectively; and Cy, Cg/9, C; and Ci,i=1,...,5%
are S X S circulant matrices as defined in Remark A.1. Finally, with OLS de-trending:

1
Jclk,s (r) = Jeps (7“)—/0 Jey,s (1) dr

) = 2o -12(r-3) [ (--3) [1 S <r>] ar

Bt = R -12(r=3) [ (r=3) e

and with local GLS de-trending:

Jops (1) 1= Jops (1)
2 o 1 : . !
T2 (r) = Jes(r [ SZS (AJ% (1) +3(1 )\)/0 he, s (h) dh)]
J?k’s (r) = Jegs(r)—r [)\J%s (1) +3(1 =X /1 hde,.s (h) dh}
0

with A :== (1 —7¢)/ (1 —1—6—1—62/3), in all cases for the indices s = 1—S,...,0 and k =0, ..., | .S/2].
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Proof of Lemma A.1: Following along the same lines as for the proof of Lemma 1 in del
Barrio Castro, Osborn and Taylor (2012) and Phillips (1988) it follows that,

1Nzn:exp (%)n_E = T (r); (A.16)

Zexp(Ck>"Z o q/(1)\/1ﬁizn;exp(§s)”_i&+op(1):»\11(1)Jck (r)

where E; and U; are as defined in Remark A.2, dJ., (r) = ¢xJc, (r)dr +dW (r), W(r) is an
S x 1 vector standard Brownian motion and J., (r) is an S x 1 vector standard OU process.
Next observe from (A.10) and (A.14), that

N_1/2Xn _ ;CON_1/2;GXP (%) U+SCS/2N 1/2 Zexp(c}g\f) Z‘Ui
5* n i
= LG () 1/22exp( 0 Bt gCone )N 1/226"19(015\;2) E

2 _ n—i
+< ; Cp® (1) NV/2 ; exp (%) Ei +0,(1)

where this approximation follows using similar arguments to those used in Boswijk and Franses
(1996, p.238). Using (A.16) and the continuous mapping theorem [CMT] the result in (A.15)
follows immediately. Noting that ¥(1) is also a circulant matrix, then by the properties of prod-
ucts of circulant matrices it can be shown that CoW (1) = 1 (1) Cp, Cg/2¥® (1) = ¢ (=1) Cg/,
C;%® (1) = b;C; + a;C; and C;¥ (1) = —a;C; + b;C; for j = 1,...S%; see, inter alia, Davis
(1979, Theorem 3.2.4), Gray (2006, Theorem 3.1) and Smith et al. (2009) for further details.
The stated result then follows immediately. Il

In order to obtain results for the asymptotic distributions of the different test statistics
discussed in this paper, the limiting results collected in the following Lemma will also prove

useful.

Léemma A.2. Le; the conditions of Lemma A.Zghold. Itéthen followz for an = [yfgn (5—1)°
. *, *. *, * .
yj,Sn—(S—Q)""’yj,Sn]/7 J=0,...15/2], and Y5 := [yi,Sn—(S—l)’yz‘,Sn—(S—2)""’yz snls 1=

5%, as T — oo, that

NTVRYE o (1) CoJE, (r)

- (A.17)
NTVRYE L v = o (=1) Cepds () (A.18)
1/2Y5 = a(biC’i—i—aiCi) ng (7“), i1=1,..,5" ( )

- (A.20)

i,|rN|
1/2Y*§ g (bzéz — aZCz) ng (7“) s 1= 1, ceny S*

i,|rN |

where the vector OU process, Jci (r),1=0,...,|5/2], the constants a; and b;, i =1, ..., 5%, and
the circulant matrices, C;, i = 0, ..., |S/2], and Cj, j = 1,...,S* are as defined in Lemma A.1.
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Proof of Lemma A.2: Noting that an = Cij, j=0,..,|5/2], and that Y*£ C,YS, i =
1,...,5%, the stated results follow immediately from Lemma A.1 using the followmg identities:
CoCo = SCy, Cs/3Csp9 = SCsy9, C;C; = 5C;, C;C; = 5C; and C;C; = =505, j = 1,..., 5%,
recalling that the matrix products between Cp, Cyg/9, Cj and Cj, j =1,...,5% are all zero
matrices, and that multiplication between circulant matrices is commutative.

Then, using Remark A.1 and (A.17) to (A.20), for the zero and Nyquist frequencies, appli-
cations of the multivariate FCLT and CMT establish that:

N e > VSOV 2T (1) = 0VEe () VI ()
= VS (1) JG () (A.21)
N2 = oVEh (1) (- )VS/Z%JES/Q (1) =t oV (1) (1) V355, (1)
= oV (1) (-1 Ty, () (A.22)

S/2 Cs/g

where v} and v/ /o are defined in Remark A.1. In the case of the harmonic frequencies it follows
that,

1 1
N-V28 = 0/S/2b; |cos|w; (s)] h} JE (r) + sin [w; ( h*’i
yl,SLrNJJrs g 5/2 C; ( ) [ \/ﬁ )
| 1 1
+04/S/2a; |sin [w; (s)] h/ ) — cos [w; (s)] hY’ JS (r
V5] o o (15—, (0

= 04/5/2b; [cos[ ; (s)] b}

) + sin (w; [s]) i '3¢ (1)
+a\/5/2a; [sin [w; (s)] b/

)

(

Jﬁ(r
(IEF () — cos i (5)] B3 "IET ()]

= 0\/572b: [cos [wi (5)] I, (1) + sin [ ()] IES, ()]
+0/5]2a; [sinfw (5)] IS, () = cos[wi (5)] I, ()] (A.23)
and
l/zyz*%LrNHs = 0+/5/2b; [sm w; (s)] hj S/QJgi (r) — cos |w; (s h*’\/;i/Q )]
—0 a -cos [wi — sin |w ’!"; € (r
S/2a, i T/ )+ sin o ()] b — =T, )]

= o\/5/2h; [sin[m(s)]h;JﬁJ( ) — cos wi ()] 15" IE ()]
~a\/5/2a; |cos w; ()] B/IET (r) + sin [w; ()] b3 (7)]
= o\/5/2b; [sin wi (5)] I, (r) = cos [wi (s)] TS (r)}
—0\/S)2a; :cos wi ()] IS, (r) + sin [wi (5)] TS5 (r )] (A.24)

1,C;

for i = 1,...,5* and where h/ and h}’ are the first and second rows of v/
in Remark A.1. B

respectively, defined
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Remark A.3: It can be seen from the results in Lemma A.2 that the right members of
(A.17)-(A.20) are formed from (orthogonal) linear combinations of S independent de-meaned
or de-trended OU processes which comprise Jﬁk (7). Recalling that Cp and Cg/5 both have rank
one, and that C; and 6j for j =1,...,5%, are all of rank two, it can be seen that each element
of CZ-Jgi (r),i=0,5/2, and of Cngj (r), éjJﬁj (r),j=1,...,8% is, after re-scaling, a function
of a scalar standard OU process and of two standard OU processes, respectively, as indicated
in (A.21)-(A.24).

Remark A.4: Note that the deterministic kernels considered for the de-meaning and de-
trending of the variables, have different impacts on the frequency specific OU processes. These

set of processes at each frequency for each case are summarised for convenience as follows,

Case 1 (€=1) : Jg,,(r), Jé/Q cs)s (r), Jil,c,- (r), JZIZZ (r)y,i=1,..,8*
Case 2 (£=2) : Jaco (r), Jé/Q cs)s (r), Jil,c,‘ (r), JSZ (r),i=1,..,5*
Case 3 (£=3) : Jge (1), 5 csss (1) J2e (7)), JH (r),i=1,..,5

where J,f o (r), k=0,...,].5/2], and where it is to be recalled that ( = 1 and { = 2 correspond
to de-meaned and de-trended OU processes, respectively. These are defined in (A.21)-(A.24)
a5 Sy (r) = VIIE (1), TG o, (1) = Vg dElys (1), T, (1) i= WIEL (1) and JET (r) =
Wi/ 3 (r) for k=1,..., 5"

B Proof of Main Results

B.1 Proof of Theorems 3.1 and 4.1

First re-write (3.1) in vector form, viz, y = Y3, + u, where y is a T' x 1 vector with generic

clement Agyg, ;Y = [yoly1|yi|yalys| - [ys+ [y
| S/2] are T x 1 vectors with generic elements yfsn+8_1, and y;,i=1,...,5" are T' x 1 vectors

YS/Z] is a T x S matrix where y;, 7 = 0, ...,

with generic elements y:‘%nﬁil, respectively, and [y := [mg, mi7}, 72, 75, ...,TrS*,Wg*,TrS/Z],.
The OLS estimator from (3.1), may then be defined via,

T := [T2Y'Y] ' [T'Yy]. (B.1)

Because 772Y'Y weakly converges to an S x S diagonal matrix, this as a consequence of the
asymptotic orthogonality of the HEGY auxiliary variables discussed previously, we may there-
fore separately derive the large sample behavior of the OLS estimators of 7;, j =0, ..., [S/2],
and 77, i = 1,...,5% To that end, the so-called normalised bias statistics then satisfy the

following,

1 —-1\N 0 '3 &
T y}y r Zn:l Zs:l—S yj,Sn+s—1AsySn+s

T 2y'y; P 9N 0 13 2
37 T2 1 2 smios (?/j,Sn+s—1)

T#; = +o,(1), j=0,...[8/2]

(B.2)
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and

yv* -1V 0 3 £
T 1 / —I—O (1) _ T Zn:l Zs:l—S’ yZSn+s—1AsySn+s
T- 2y, y;i 7 725N §0 o ?
D=1 Ds=1-8§ Y Sn+s—1

Consider first the denominators of (B.2) and (B.3). Using the results that Cp and Cg/, are
symmetric and orthogonal both to each other and to C; and C;, and the fact that C;C;C; =
S2C; for j = 0,5/2, then appealing to the multivariate invariance principle in (A.15) and using

T7; =

)

+o, (1), i=1,..,8% (B.3)

an application of the CMT we have that

N 0 N
- 2 - 3 ¢
r QZ Z <y§,5n+s—1) =T QZS (Yn/_1Can_1> +0, (1)
n=1s=1-5 n=1

. 1
= 5'25/0 Jgj (T)ICJ’-CjCng (r)dr
1
— 0% (coslw;])’ /0 3E (1) CHIE () dr,j = 0,8/2, (BA)

where wg = 0, wg/p = ™ and Jﬁj (r) = LJgj (r) for j = 0,5/2. Next we use the result that

9

Ci,i=1,...,58% is symmetric and that C; = —C};, and note also that C; and C; are orthogonal
to Cy and 05/2 and that C;C;C; = (%)QCZ, C’lCZa = (%)261, 6:0101 = — (g)261 and
é;Ciéi = (%)2 C;. Using these facts we have that,

: 2 (S ¢ ¢
TS Y () T3 () () o
n=1s=1-S5 n=1
0
>
-

2 9 Nors £ ¢
(v%000) =T > (2> (YValaCi¥i) + 0, (1)

M

-

n—

—_

s

N
TJZ S (Yé’ v ):> o (S 2 (2 2/1Jé (r) CiCiCiIE, () dr +
2 5 LGY, S2 B) A S 0 c; i“iide,
2 2 1
% (§> bia; (;> / Jgi (T)/Ciciéi‘]gi (r) dr +
0
2 2 1
i (3) () [ 0races s
0
9 (5 2 (2 2/1J5()C’CCJ (r)dr (B.5)
2\2/)7"\S/) ) '
2 (a2 +02) 1
-zl l)/Jﬁ,T(r)cJ“()d i=1..,§

where J& (r) := ﬁ § (r).

Consider next the numerators of (B.2) and (B.3). For (B.2) we observe that,

N 0 N
_ _ 13 .
T3 D 8 snie1 DU =T 1D Y, CiASYE + Aj+0, (1), j=0,5/2 (B.6)
n=1s=1-95

n=1
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where A := S~1 2292_11 (S — i) cos [iw;] N1 Ziv 1 (ug mugn) so that
Aj -V =571 Zf;ll( — i) cos [iwj] y; for wj = S 1,j=0,5/2. And AgY;s := [Asysn (5—1)

13 &
AS ysn,(S,Q)v (A AS ySn] :
Similarly, for the numerator of (B.3) it follows that for j =1,...,5%,

N 0 N
_ _ 13
T ! Z Z yf',Sn—i—s—lAsygn—i-s =T ! Z Ynl—lchsys + Aj + Op (1) (B7)

n=1s=1-S5 n=1
N
_ & = -~
! Z Z y] Sn+s— 1Asygn+s =T ! Z Yn,—lc’jASYTf + Aj + Op (1) (B'8)
n=1s=1-S5 n=1

where A := §~1 Z.Sfl (S —i)cos [iwj] N“T SN (ug m“f%) and A := —S~1 Zf;ll (S — 1) sin [iwj]
DD (ugs musn> Note that A; — \Ill =51 Z ' (S — i) cos [iw;] 7 and A; — \11]2 =
-5~ Zi:l (S — i) sin [iw;] v; for w; = QT, j=1,...,5%
Again using (A.15), applications of the CMT, the identities C,CC) = S2C}, for k = 0, 5/2,
_ /S\2 = _ (S\2 &~ ~ o S\2 = ~A = _ [(8\2
and C;C;C; :2(5) Cj, €3G0 = (25) €505 GiC = 2—(5) 5, €5 G505 = (fl Cj,
CiC;C; = (5)° Cj, CiC;Ci= — (5)” €y, C;C5C; = (5)” Cj and C;C;C; = (5)° C; for
j = 1,...,8% the orthogonality between the circulant matrices and Theorem 2.6 in Phillips
(1988), the following results are consequently obtained:
i) For the zero and Nyquist frequencies (k = 0, .5/2),

N 2 2 1 S
TS VI CAYS - WCO;W /0 36 () CLCRCR (1) dIS ( Z (viary)
n=1 7j=2
2 1 oo
_ ¢ 2 [ 36 (Y ¢ 1 %
= %20 (cosfun]) /0 JE () CrdJS, (r) + S;E (vFevus)
1 1 o0
= o2 (coslwg])? / IE (r) CdIS: (r)+§ZE(U€’CkU§) (B.9)
0 -
Jj=2
where wy = 0 and wg/y = 7.
ii) For the harmonic frequencies (j = 1,...,5%),
1 al & 02 2 2 ! sl
T Y, CiAsYS = 5 <5> bj/o (r) CLC; (b;C + a;C;) dIS. (r)
n=1
0'2 2 2 1 A=, >
+ (s) aj/o 3 (1) T,C; (b;C) + a,C) d Skz (v7e;ur)
_ 2 [Ty 3 Ua?‘ls/f&
- gb] 0 JCj (T’) deJCj (r) + ?ajb] 0 JCj (7“) C]dJCj (T)
0.2 1 2 1
+§Ea§ i IS (r) C;dIS, (1) — ~Sa;bj / JE, (r) CjdJe, (r)
1 £ 3
+§ZE<U1’CJUk)
k=2
2 2 2
lop (aj + bj) 1 0
_ NI ) g ey cadtt €1 776
_ . /0ch (r)' C;dI¢] Z ( CjUk>, (B.10)



N 2 2 1
_ 2
T‘lej’_lchgYﬂ? = %& <S) bj/o (1) C5C;5 (b;C5 + a;Cy) dIE, (r)
n=1
0:52 2 2 1 ¢ 1= = a 3 1 > & 7€
+5 (g) @ [ 95 0V TT (€5 + i) a, () + g > B (UFC;0f)

A C;dJe, % [ 36 (r) Cjads
- Fj 0 cj() () gjaj 0 Cj(r) J Cj(r)
o2 1 . o2 5 [ L
+§€ajbj i JE, (r) CddS, (r) + gsaj /0 JE, (r) CydJe, (r)
1 o0
& v 17
+5 Y E(Uf'oUf)
k=2
2 2
+b o0
j —_—
= 7( 0 ) / 3¢ () Cjd3 (r Z (vfe,us)
0 k
where J&! (1) := ﬁ 5 (7).
Moreover, for k =0 and k = S/2,
S & 17t S cos i L2
S E (UFChU$) + W = 3 coslieor] i = 5% = %) (B.12)
Jj=2 :
and for j =1,2,...,5%
1 o) [e’s) ' 1
5 Y E (Uf’ch,f) +0) = D cos[(S—i)wj]yi = Z()\? — ) (B.13)
k=2 =1
3 Y E (Uf’CjU,§> + = =) sin[(S - i) wj]v = Z(Aﬁ — %) (B.14)
k=2 =1
with w; = Zg].

Combining the results in (B.6), (B.9) and (B.12) and in (B.7), (B.8) and (B.12) we establish
that for k =0 (wo = 0) and k = S/2 (wg/y = 7),

Jo Jex (r) Crdde (r) + (3272 cos [iwk] 7:) /o2 [ (cos|wy])]”

7 = fO ng CkJEZ( dr (B.15)
and for j = 1, ..., S* that,
ra o SRR 2>’C»dJ£j< N+EEcos(S—dusln) g
i JEIE vy €38 (r) dr
—_— o (a +b3) fo e (r) Cyddel (r) + (232, sin [(S — ) w)] 7). (B.17)

o2(a b
(7+ Jast oy €38 () ar

Next observe that the corresponding ¢-statistics from (3.1) can be written as

- 0 1/2

te = 3°TR, |T- 22 3 (yk5n+s) +op(1), k=0,..,[5/2] (B
L n=1s=1-5
_ N0 1/2

tr = 7, 1w |12y (ylSW) +op(1), i=1,...,5" (B.19)
L n=1s=1-5
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where 7 is the usual OLS variance estimator from (3.1); that is, 5o := T 32N, 22:175(ﬁ§n+5)2.
Observe from (B.15)-(B.17) we obtain that 7; = 0, (1) and 7} = o0, (1), and hence 7 :=
T Zvjj—l S S(AsySn+s) + 0, (1) so that 5o > o2 (1 +>00 1/’2‘>'

Substituting the results that J5 — lop= (1 + Z e ¢J2>, the results in Remark A.1, and the
results in (B.15)-(B.17) and (B.4)-(B.5) into (B.18)-(B.19) and using applications of the CMT,
after some simple manipulations, we finally obtain the stated results in Theorem 4.1, where we
have defined the independent standard OU processes Jécl, (r) :=vII& (r),i=0,5/2, Jﬁcj (r) :=
h;-Jg,r (r) and Jﬁzj (r) == hj ’Jgf (r) where h’ and h}’ are the first and second rows of v’,
respectively, for j =1,...,5* (see Remarks A.1 and A.3). B

B.2 Proof of Theorem 4.2
Observe that, using Lemma A.2, (A.21), (A.22), (A.23) and (A.24) it follows that,
1/22/55\_7«]\” = U\Fﬂ’( ) Oco( )
1/2, & ¢
N© /yS/QSLrNj = oVSy(-1)(-1)° JS/Q,CS/Q(T)'
Consequently, for the MZ,, . k= 0,5/2 tests we obtain that,
(SN)~12 yo s = 0% (1) 5, (1) (B-20)
(SN 2y ey = o (D) (DT, (1) (B.21)

Using the results in (B.20), (B.21) and (B.4) and the fact that 5\% 2 624 (1)* and /\S/2 it
o) (—1)2, it therefore follows that,

o o] I, (1 — a2 ostin)® [ 0] 1
200 cosfol* fy [Ke, (0] 0 2y Ko )]

MZ,, = k=0,5/2 (B.22)

where wp = 0 and wg/, = 7. The results for the MSBy, k = 0, S/2, statistics are easily obtained
from (B.4) and (B.5). Combining the results for MSB) with (B.22), the limit of MZ;, then
follows straightforwardly.

Turning to the harmonic frequency statistics, note first that the circulant matrix associated
with the filter AP (L) = sin [wg]~ (ZS ) sin [(5 4+ 1) wy] Lj) (see Remark 2 in Smith, Taylor
and del Barrio Castro, 2009) is

ko Cir sin [wg] sin [Swi| sin[(S — 1) wg] sin [2wy]
¢F = i [sin [we]” sin [wg] sinfwg] 777 sin [wg] (B.23)
I

where O}, and C}, are defined in Remark A.1. Hence, as in Lemma A.2, the effect of the filter
AY (L) on ygn 45 can be illustrated by pre-multiplying (A.10) by the circulant matrix C*.

fs Ck>Zexp( )_iUf—i-op(l) (B.24)

C
SIl

Cchyf = (C’ +
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where C* i= (G + ST, ), GGy = G4 = for k # j and CyCy = §Cp and CrCy = $Cr.

sinfwg]

Note that for C* it also holds (see Property 1.3 and expression (2) in Gregoir, 2006) that,

k e_iwk _ e’iwk n
7= S — e 0% T G — = OK (B.25)
with
Cp = Circ [17e*i(Sfl)wk,efi(Sfmwk, o 76,%}
C',:r .= Circ [l,ei(s_l)“’k’ei(s—?)w’ o ’eiwk] .

Moreover, the circulant matrices associated with the filters (1 — ei‘“kL) and (1 — e*i“’kL) are
given by ngk := Circ [1,0,0,--~ ,O,ei“’k] and D, := Circ [1,0,0,~- ,0, e_i“’k], respectively.
Hence, the effects of the filters (1 — e “+L) A) (L) and (1 — e “*L) A) (L) on ygnJrs can be
analysed by pre-multiplying crYS by ngk and D, , respectively, i.e.,

n .
_ Ck n—
DiCMYE = O Y exp <N) U + 0, (1) (B.26)
i=1
— kv e RS CR\" e
D, CMYE = CF Y exp (N) Ut + 0, (1) (B.27)
i=1
where we use the facts that D C\” = DJ CiF =0, that WD* C, = C, and that

ei"‘)k
eiwk _efiwk

matrices. Hence, from (B.26) and (B.27) we have, as in (A.16), that,

D, C’,j = C’,j , each of which follows from the properties of the product of circulant

ﬁDJF CMYipy = 0GR (1) 3, (r) = oo (¢4) £7 €735, (1) (B.28)
and

\F Dy, CFYS = oG W (1) 38, (r) = b (e ) & TS, (r) (B.29)
where & 1= [1,e7 Wk e~ 2wk, ...,e_i(s_l)“’k]’, & = [1’6—1‘(5—1)%7 e S Dwr elr)! EfF =
[1, ek, e . eHS—Dwr)/ E =11, eS=Dwk - i(S—Nwr - = eiwk] and Jgk( )isan S x 1

vector of de-meaned/de-trended OU precesses. V¥ (1) is an S x S circulant matrix ¥ (1) :=
Circ [1 + Z;; Yjs, Z;’il Vi(s-1)5 Z;";l Vi(5-2)," " » Z;";l 1/;]} where the 9, are the coefficients
of the polynomial ¢ (z) := 14 3772, z91p; and hence ¥ (¢™*) is ¢ (z) evaluated at z = e™*
Notice that C,j and C; are circulant matrices of rank one. For a circulant matrix say A :=
Circ[a1,a2,a3, -+ ,ag] of order S x S it is always possible to write A = FAF* where F is the

matrix associated with the eigenvectors and is defined for all circulant matrices as

1 1 1 S 1
27 A7 -2(S—-1)m
1 e 'S e 'S e e tTE
47 - 87 .4(S—1)7
—1 g —i g —i———
F=1|1 e s e 's -eeoe s ,
2(S—1)7 4(S—1)7 2(S—1)27
1 et 5 ' 5 ... et m
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F* is the conjugate transpose of F and A := diag [A\ A2, A3... A\g], where \; j=1,2,3,--- 5,
are the eigenvalues of A, which can be obtained as \; := Pa(exp(2F)i~1), where Py (z) =
ZJSZI ajzj ~1 s the polynomial associated with the circulant matrix A. Hence, based on this
it can be seen that the matrices €7 and C,j have rank one and, from Theorem 3.1.1 of Fuller
(1996), that the non-zero eigenvalues of C,~ and C’,j , which are equal to S, are located in
position j + 1 for C}, and in position S — j + 1 for C;", where j is such that w; = 2”] The
results in (B.28) and (B.29) then follow straightforwardly. Note also that in the case of D,
the element in position j + 1 in the principal diagonal of the matrix of eigenvalues will be zero
and, similarly, in the case of Djk the element in position S — j + 1.

Next observe that the vector of seasons representations of (3.23) and (3.24) with Y,f;?h =

[yi DS};L (5—1) yi7227(572)7 e ,yi %};] , h = a and b based on (B.28) and (B.29) are such that

1 a o iw w —
\/SiNYké,y[Ir)N] = ﬁ (6 k) (e kl) & /Jgk (r) =

ﬂw(e ) RVEP

= 5 () 1[I () + g (o)

_ \% (%) 1 Jlg%() ige (T)] (B.30)

%w (eiw’“) 16”’“5?'.]& (r)

-1 %/ 1 13
(r) + thy, S/QJC’“ (r)]

and

L epb

V'S
— T (e—iwn b r) —i w1 ge r
- \/51/’( )1 hkack() hkm-lckwl

= 7 (%) 1 [ 3] (r) — w3 ()]

= AU Jé NGRS G] (B.31)
respectively, where 1 is an S x 1 vector of ones, h;, and hj, are defined in Remark A.1, J Ek (r)
and J& (r) are defined in Lemma A.1 and finally JS (r) and J&' () are defined in (A.23),
(A.24) and in Remark A.3.

Using the consistency of the estimators of aw( Z""’V) and aw( *"“’k) N AR = Se{l —
[d)( wr)1=1 and )\z AR =S11—-1[0 ( ~wr)]}~1 it is then possible to show that,

o —iw —iw
mYk,[rN] = ﬁ (e k) (e kl)ggl']gk(r):

g

(e7*) 1™ TS, (r)

X a * 1
CRarT) 258 vy = 75 [T, 004175, (0] = ST )

. 1 \ ] —
(NearT)™ 1/2y,§ ]?S'bl_rNJ+s 7 [J,ick (r) — zJ,g% (r)} = ﬁaﬂk,ck (r).

Noting that the auxiliary variables y,- S£ s and ¥y S,& defined in (3.27) and (3.28) are free from

nuisance parameters, it is then straightforward from here to obtain the representations given for
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the asymptotic distributions of the K-MZy,, K-MSBj, and K-MZ;, statistics in (4.10), (4.11)
and (4.12), along with the results for the joint frequency statistics from section 3.2.2 given in
Corollary 4.1 R
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Table 1: Asymptotic critical values for the MSBP-type and SRA—type tests

Case 1 Case 2 Case 3
0.010 0.025 0.050 0.100 0.010 0.025 0.050 0.100 0.010 0.025 0.050 0.100

OLS de-trended

MSB} 0.140 0.153 0.166  0.182 0.140 0.153 0.166  0.182 0.111 0.118 0.125 0.134
MSBY, 0.259 0.280 0.301  0.327 0.259  0.280 0.301  0.327 0.200 0.212 0.223 0.237
MSB3,  0.363  0.390 0.416  0.449 0.333 0.3556 0.376  0.402 0.274 0.289 0.302 0.319
S -5.733  -5.312  -4.953 -4.541 -5.733  -5.312  -4.953 -4.541 -6.825 -6.419 -6.079 -5.691
Sz -7.904 -7.377 -6.939 -6.426 -7.904 -7.377 -6.939 -6.426 -9.576  -9.073 -8.653 -8.175
Shio012 -9.944 -9.347 -8.833 -8.250 -10.504 -9.920 -9.436 -8.847  -12.23 -11.636 -11.164 -10.615
Local GLS de-trended

MSB} 0.176  0.197 0.219  0.250 0.176  0.197  0.219  0.250 0.125 0.135 0.144 0.156
MSBY, 0.330 0.368 0.402 0.451 0.333 0.369  0.405  0.453 0.224 0.239 0.253 0.271
MSB3, 0474  0.519 0565  0.624 0.415 0.453 0.488 0.533 0.308 0.327 0.344 0.366
S -3.951 -3.506 -3.115 -2.648 -3.951 -3.506 -3.115 -2.648 -5.758  -5.350 -5.025 -4.642
S -5.197 -4.624 -4.168 -3.596 -5.197  -4.623 -4.167 -3.596 -8.012 -7.512 -7.106 -6.647
Shio12 -6.307 -5.679 -5.137 -4.496 -7.245 -6.648 -6.121 -5.519 -10.136  -9.603 -9.134  -8.614

Notes: Case 1 indicates that the deterministic component used consists of a zero and seasonal frequency intercepts;
Case 2 indicates that zero and seasonal frequency intercepts and a zero frequency trend were used; and Case 3

indicates that zero and seasonal frequency intercepts and trends were used.

Table 2: Asymptotic critical values for the FRA—type tests

Case 1 Case 2 Case 3
0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990

OLS de-trended

FRA.l 5.540 6.555 7.496 8.648 5.540 6.555 7.496 8.648 8.420 9.615 10.667 12.028
F.R/l.lQ 5.087 5.867 6.592 7.498 2333 2.869 3.384  4.064 7.847 8.778 9.607 10.682
FRA.OlQ 6.403 7.278 8.083 9.063 7.338 8.261 9.081 10.069 10.010 11.039 11.967 13.182
Local GLS de-trended

FRA.l 2,555 3.259 3.961 4.880 2.555 3.259 3.961 4.880 5.731 6.695 7.565 8.765
F/th.lZ 2.352 2.880 3.414 4.052 2.333 2.869 3.384  4.064 5.343 6.089 6.782 7.648
FRA.OIQ 2.208 2.647 3.073 3.616 3.956 4.620 5.249 6.035 5.099 5.723 6.318 7.016

Note: See notes to Table 1
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Figure 1: Gaussian asymptotic local power envelopes and asymptotic local power functions of zero, Nyquist and harmonic frequency local GLS de-trended unit root tests

(a) de-meaned zero (k = 0) and Nyquist (k = S/2) frequency tests  (b) de-trended zero (k = 0) and Nyquist (k = S/2) frequency tests
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Figure 2: Gaussian asymptotic local power envelopes and asymptotic local power functions of joint frequency local GLS de-trended unit root tests for the quarterly case (S = 4)

(a) de-meaned joint seasonal frequency tests
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(c) de-meaned joint zero and seasonal frequency tests

D 4

0 2 4 6 8 10 12 14 16
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Figure 3: Finite sample size-adjusted power functions of zero frequency unit root tests (quarterly case, S = 4)

(a) local GLS de-meaned tests - N = 50 (b) local GLS de-meaned tests - N = 100
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Figure 4: Finite sample size-adjusted power functions of harmonic frequency unit root tests (quarterly case, S = 4)

(a) local GLS de-meaned tests - N = 50 (b) local GLS de-meaned tests - N = 100

(d) local GLS de-trended tests - N = 100




Figure 5: Finite sample size-adjusted power functions of joint seasonal frequency tests (quarterly case, S = 4)

(a) local GLS de-meaned tests - N = 50

(b) local GLS de-meaned tests - N = 100

(c) local GLS de-trended tests - N = 50
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Figure 6: Finite sample size-adjusted power functions of joint zero and seasonal frequency tests (quarterly case, S = 4)

(a) local GLS de-meaned tests - N = 50 (b) local GLS de-meaned tests - N = 100
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