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This paper derives exact representations for discrete time mixed frequency data generated by an
underlying multivariate continuous time model. Allowance is made for different combinations of stock
and flow variables as well as deterministic trends, and the variables themselves may be stationary or
nonstationary (and possibly cointegrated). The resulting discrete time representations allow for the
information contained in high frequency data to be utilised alongside the low frequency data in the
estimation of the parameters of the continuous time model. Monte Carlo simulations explore the finite
sample performance of the maximum likelihood estimator of the continuous time system parameters
based on mixed frequency data, and a comparison with extant methods of using data only at the lowest
frequency is provided. An empirical application demonstrates the methods developed in the paper and it
concludes with a discussion of further ways in which the present analysis can be extended and refined.
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1. Introduction

In multivariate models it is not uncommon to find that the
variables of interest are observed at different frequencies. A leading
example where this arises is in models containing both financial
and macroeconomic variables, the former being observable at
high frequencies (e.g. daily, hourly or minute-by-minute) and
the latter at lower frequencies (often monthly or quarterly). The
default method in such cases is usually to express all data in
terms of a common frequency, typically by aggregating the high
frequency data to the lowest frequency, which inevitably results in
a lot of information contained in the higher frequency data being
discarded. If utilising this information can lead to better inferences
about the relationships between variables, then it is important to
developmethods that enable the information contained in the high
frequency data to be retained alongside the low frequency data.

In recent years a variety of methods have been proposed to
deal with mixed frequency data. Prominent among these in a
regression framework has been the Mixed Data Sampling (MIDAS)
approach proposed by Ghysels et al. (2002, 2006). A typical model
in this framework contains a dependent variable that is observed
less frequently than the explanatory variables, and the MIDAS
methodmakes use of a polynomial weighting scheme to aggregate
the high frequency regressors. A key feature of this approach is
that the weighting scheme depends only on a small number of
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unknown parameters (possibly only one or two) which makes this
a parsimonious method of aggregating the high frequency data.
The basic MIDAS approach has been refined further by Ghysels
et al. (2007), Andreou et al. (2010) and Foroni et al. (2015), among
others.

Another area in which progress has been made recently in
the analysis of mixed frequency data is that of cointegration.
Miller (2010) considers a general cointegrating regression in
which the integrated regressors may be mismeasured, missing,
observed at different frequencies or have certain other types
of irregularity, and derives the asymptotic properties of least
squares and related inferential techniques. Issues of testing for
the presence of cointegration amongst mixed frequency (and
temporally aggregated) data series have been explored by Ghysels
and Miller (2015, 2014)) while Seong et al. (2013) consider
estimation of vector error correctionmodelswithmixed frequency
data via state space representations and the Kalman filter. A
common implication of this body of work is that incorporating
the additional information in high frequency data, rather than
discarding it, can lead to better properties of estimators and
inferential procedures and to improved forecasts.

To date, the analysis of mixed frequency data has, with
one notable exception discussed below, been conducted firmly
within the realm of discrete time models. A common approach
is to consider a vector of variables observed at two different
frequencies, one being high (e.g. weekly), say yH , and one being
low (e.g. quarterly), say yL. Suppose the low frequency variables
are observed once every k (high frequency) time periods, where
k is an integer. Then the aim is to specify a model for the vector
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comprising yLkt , y
H
kt , y

H
kt−1, . . . , y

H
kt−(k−1) (t = 1, . . . , TL), where

TL denotes the number of low frequency observations. Recent
work in this vein has focused on vector autoregressive (VAR)
models, variants of which are in widespread use in empirical
macroeconomics and finance where data are often available at
different frequencies. Examples of this approach include Anderson
et al. (2015), Foroni et al. (2013), Foroni and Marcellino (2013,
2014a,b), and Ghysels (2014), which collectively cover issues
of identification, estimation, inference, and impulse response
analysis in the context of regular and structural VARs.1 A common
feature of this approach is that the high frequency time scale is, in
effect, assumed to be the fundamental time scale determining the
dynamic relationships between the variables and, hence, themodel
specification is tied to the (arbitrary) highest sampling frequency.

The notable exception referred to at the start of the last
paragraph is Zadrozny (1988) who considers a continuous time
autoregressive moving average (ARMA) model2 with mixed
quarterly and annual data for a set of stock and flow variables. The
model is cast in state space form and Kalman filter recursions are
used to compute the Gaussian likelihood function. An advantage
of the continuous time specification is that the model of interest,
whose parameters are estimated, is not tied to the (highest)
sampling frequency. Instead, the dynamic process of interest
operates more frequently (i.e. continuously) than the highest
observation frequency. This is a more realistic setting for many
financial variables, such as financial assets, that are traded (nearly)
continuously. It is also, arguably,more relevant formacroeconomic
aggregates which, although only observed at low frequencies, may
be subject to changes, in response to stimuli, at any point within
the sampling interval.3

In this paper we consider the estimation of continuous time
models formulated as a system of stochastic differential equations
when the observed data are recorded at different frequencies.
The approach is structural in the sense that the parameters of
interest are those of the continuous time model which govern the
(unobservable) dynamics of the observed variables. The temporal
aggregation of stock and flow variables is taken into account in
the derivation of exact discrete models which have the property
that data generated by the continuous time system satisfy these
discrete time representations exactly — there is no approximation
error involved in these representations of the discrete time data.
We treat the cases of common sampling (i.e. all stocks or all flows)
and mixed sampling (a combination of stocks and flows), both
withmixed frequency data. The discrete time representations have
wide applicability because very few restrictions are placed on the
underlying continuous time system, allowing for nonstationary
(including cointegrated) series, as well as stationary series.

The paper is organised as follows. Section 2 introduces the
mixed frequency sampling framework and the continuous time
system under consideration is defined. It also motivates the idea
that discarding information by aggregating to a lower frequency
has adverse impacts on the properties of estimators by reporting
some simulation results based on a simple univariate continuous
time model. The more general sampling framework is introduced
and the continuous time system under consideration is defined.
Section 3 is concerned with the derivation of exact discrete time
models in the case of common sampling with mixed frequencies,
results being reported for the cases of stock sampling (Theorem 1)
and flow sampling (Theorem 2). Section 4 considers the more

1 Foroni and Marcellino (2014b) also consider DSGE models under mixed
frequency sampling.
2 Zadrozny (1988) also extends the ARMA model to allow for exogenous

variables.
3 This argument has been made most eloquently by Bergstrom (1990).
complicated situation in which there is a mixed sample of stock
and flow variables, the exact representation being reported in
Theorem 3. Estimation, based on the Gaussian likelihood, is
discussed in Section 5, which also covers some computational
issues and reports the results of a simulation exercise involving
stationary as well as cointegrated stock variables observed at
mixed frequencies. Use of the exact discrete time model for mixed
frequency data is shown to result in estimators with smaller bias
and root mean square error (RMSE) than estimators based on
extant methods of aggregating all data to the lowest frequency. An
empirical application is provided in Section 6 in which monthly
price indices for the UK and US are combined with daily, weekly
and monthly exchange rate data in an investigation of long run
purchasing power parity (PPP) relationships. Results based on
the lower frequency exchange rate data do not reject the PPP
restrictions but this appears to be due to the estimated parameters
having large standard errors— they are not sufficiently informative
to be able to reject the restrictions. Use of the daily exchange
rate data, however, results in parameter estimates with much
smaller standard errors which result in a strong rejection of the
PPP restrictions. Section 7 concludes the paper and points to some
directions for further research, and proofs of the three theorems,
as well as some additional results, are provided in the Appendix.

2. Temporal aggregation and data sampling: the modelling
framework

The general framework is concerned with the n × 1 vector
y(t) = [y1(t)′, y2(t)′]′ where yi(t) is ni × 1 (i = 1, 2) and
n1 +n2 = n. Attention is given to the situation where the variables
are observed at two different sampling intervals (or frequencies),
although the methods can be generalised to account for more than
two frequencies. The sub-vector y1 contains the variables observed
at the highest frequency while y2 contains the variables observed
at the lowest frequency; these shall be referred to as the high
frequency variables and the low frequency variables, respectively.
For convenience (and without loss of generality) the time index
shall be normalised to unity to correspond to the low frequency
sampling interval. The low frequency observations are therefore,
for stock variables, of the form

{y2t}Tt=0 = {y20, y21, . . . , y2T } = {y2(0), y2(1), . . . , y2(T )},

while for flow variables the observed vector sequence is

{Y2t}
T
t=0 = {Y20, Y21, . . . , Y2T }

=

 0

−1
y2(r)dr,

 1

0
y2(r)dr, . . . ,

 T

T−1
y2(r)dr


.

In both cases T is regarded as being the effective sample size in
view of the dynamic models derived in subsequent sections being
conditioned on an initial value (either y20 or Y20). In this framework
the effective span is also equal to T in view of the low frequency
sampling interval being normalised to unity. The sampling interval
for the high frequency variable will be denoted h, so that for stock
variables the observations are of the form
y1,τh

N
τ=0 = {y10, y1h, . . . , y1,Nh} = {y1(0), y1(h), . . . , y1(Nh)},

while for flow variables the sequence is
Y1,τh

N
τ=0 =


Y10, Y1h, . . . , Y1,Nh


=


1
h

 0

−h
y1(r)dr,

1
h

 h

0
y1(r)dr, . . . ,

1
h

 Nh

Nh−h
y1(r)dr


.

For the high frequency variables, therefore, N denotes the
(effective) number of observations, where Nh = T (implying that
N = T/h). It is also convenient to assume that the high sampling
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Fig. 1. High and low frequency sampling schemes.

frequency (the inverse of the sampling interval) is an integer; this
will be denoted k and clearly k = h−1. For example, if the low
frequency data are observed annually and the high frequency data
monthly, then h =

1
12 and k = 12, reflecting the fact that the high

frequency data are sampled twelve times more frequently than
the low frequency data. Note, too, that the high frequency flow
variables have been normalised by dividing by h which expresses
the observed flow in terms of the low frequency equivalent. For
example, if y1 represents the rate of flow of consumers’ income and
it is observed quarterly, so that h =

1
4 , then dividing by h expresses

the observed quarterly flow as an annual equivalent. Although this
normalisation is not essential in stationary models it does have
some importance in nonstationary/cointegrated systems; see, for
example, Chambers (2011, p. 160). Fig. 1 illustrates the relationship
between the high and low frequency sampling schemes; note that
kh = 1, and in effect τ = tk or τh = tkh = t .

At this stage it is, perhaps, useful to give some indication as to
the importance of using higher frequency data when available, and
to do this a simple univariate example is provided. Suppose y(t)
evolves according to the stochastic differential equation

dy(t) = ay(t)dt + σdW (t), t > 0, (1)

where W (t) denotes a Wiener process, y(0) = 0 and a < 0 to
ensure stationarity. Furthermore, in accordance with the frame-
work defined above, suppose that y(t) is a stock variable observed
at the points h, 2h, . . . ,Nh = T . Three sampling intervals are con-
sidered, h = 1, 1

4 ,
1
12 , as well as two spans, T = 25, 100, and two

values for the autoregressive parameter, a = −5, −1. One inter-
pretation of these values is that if h = 1 corresponds to a year,
then h =

1
4 and h =

1
12 correspond, respectively, to quarterly and

monthly sampling intervals, while the two spans correspond to 25
and 100 years. The observed data can be shown to satisfy

y(th) = eahy(th − h) + ϵ(th), t = 1, . . . ,N,

where

ϵ(th) = σ

 th

th−h
ea(th−s)dW (s)

is an independent N(0, σ 2
ϵ ) sequence with σ 2

ϵ = σ 2(e2ah − 1)/2a.
The results from 10,000 replications appear in Table 1, in which

the bias and root mean square error (RMSE) of the maximum
likelihood estimator of a are reported, the likelihood function
having been concentrated with respect to the parameter σ 2. For
all four combinations of a and T it can be seen that increasing
the sampling interval h (i.e. decreasing the sampling frequency)
leads to an increase in both the bias and RMSE of the estimator.
Furthermore, for a given value of a, increasing the span T for a given
frequency (and thereby increasing sample sizeN) also reduces bias
and RMSE. Also, for given span T , the bias and RMSE are smaller the
closer is a to zero. These results suggest that it is desirable to use
the highest frequency data available if at all possible.4

Returning to themore general framework it is assumed in what
follows that the n×1 vector y(t) satisfies the stochastic differential
equation system

dy(t) = [µ + γ t + Ay(t)]dt + ζ (dt), t > 0, (2)

4 Abstracting, of course, from other complications that may arise when sampling
more frequently, such as seasonality and microstructure noise.
Table 1
Simulated bias and RMSE of maximum likelihood estimator of the parameter a
in (1).

h N Bias RMSE h N Bias RMSE

a = −5, T = 25 a = −5, T = 100
1 25 −0.8653 3.9986 1 100 −0.7135 3.2966
1
4 100 −0.4974 2.4389 1

4 400 −0.0873 0.7057
1
12 300 −0.1268 0.6545 1

12 1200 −0.0347 0.4029

a = −1, T = 25 a = −1, T = 100
1 25 −0.5697 1.9237 1 100 −0.0634 0.3334
1
4 100 −0.1000 0.3772 1

4 400 −0.0235 0.1655
1
12 300 −0.0908 0.3374 1

12 1200 −0.0217 0.1509

whereµ and γ are n×1 vectors of intercept and trend parameters,
A is an n × n matrix of coefficients, and ζ (dt) is an n × 1
vector of (white noise) random measures satisfying E[ζ (dt)] =

0, E[(ζ (dt)ζ (dt)′] = Σdt (where Σ is a symmetric positive
definite matrix), and E[ζ (∆1)ζ (∆2)

′
] = 0 for non-overlapping

time intervals ∆1 and ∆2; see, for example, Bergstrom (1984)
for details of random measures and their use in econometrics.
The aim is to estimate the vectors µ and γ and the matrices
A and Σ . The elements of these vectors and matrices may be
entirely unrestricted (apart from ensuring the symmetry and
positive definiteness of Σ) or they may be known functions of an
underlying parameter vector θ . Either way it is necessary to relate
the parameters of the system (2) to the observed data.

The system of equations in (2) can be regarded as a continuous
time VAR(1) with a deterministic trend, and the focus is on
deriving exact discrete models that have the property that data
generated by (2) satisfy these discrete time representations exactly
and, moreover, are expressed in terms of both the high and
low frequency variables. An alternative approach, adopted by
Zadrozny (1988), is to write the system in state space form
and to use the Kalman filter to derive the Gaussian likelihood
function. Zadrozny (1988) deals with a more general continuous
time dynamic system, namely a continuous time ARMA (p, q)
(without deterministics), but the precise relationships between
the discrete time observations are not needed in his approach.
It can be of interest, however, to derive explicitly these exact
discrete timemodels and to compare themwith the existingmixed
frequencyVARs that have appeared in the literature, and this partly
motivates the approach followed here. It is nevertheless possible,
in principle, to derive discrete time models for more general
continuous time ARMA (p, q) systems with mixed frequency data
by extending themethods of Chambers and Thornton (2012), albeit
at the cost of additional notational complexity; such extensions are
left for future work with the current contribution focusing on the
principles of dealing with mixed frequency data in the setting of
(2).

It is perhaps worth reiterating that the usual approach to esti-
mating the parameters of (2)with data observed atmixed frequen-
cies is to aggregate the high frequency data to coincide with the
lowest frequency, thereby discarding information contained in the
high frequency data. The approach adopted here, however, deals
with the solution to (2) in terms of the high frequency timescale
and thenmanipulates the resulting expressions so that no data are
discarded. The precise formulations are given in the following sec-
tions.

3. Models with common data sampling

In this section discrete time models are derived for the
situations in which both frequency variables are either all stocks
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or all flows. The next section deals with the mixed sample case.
The starting point is the solution to (2) which is given by

y(t) = eAty(0) +

 t

0
eA(t−s)(µ + γ s)ds +

 t

0
eA(t−s)ζ (ds),

t > 0, (3)

where the matrix exponential is defined as

eAt =

∞
j=0

(At)j

j!
= In + At +

1
2!

A2t2 +
1
3!

A3t3 + · · · , (4)

where In denotes the n × n identity matrix. The above solution is
unique in a mean square sense and the definition of the integral
with respect to the random measure can be found in Bergstrom
(1984).

3.1. Stock variables

When both y1 and y2 are stock variables the objective is to
derive a discrete time model that simultaneously incorporates the
low frequency observations y2t = y2(t) (t = 0, . . . , T ) and the
high frequency observations y1,τh = y1(τh) (τ = 0, . . . ,N). What
this effectively reduces to is finding a representation that holds for
the points t = 1, . . . , T , given the value for t = 0, but which
also contains the intermediate points t − h, t − 2h, . . . , t − 1 + h
between each t and t −1; these intermediate points correspond to
the observations on y1. The solution (3) can be used to relate y(t)
to y(t − h) in the form5

y(t) = c(t) + Fy(t − h) + ϵ(t), (5)

where F = eAh and the deterministic vector c(t) and random
disturbance vector ϵ(t) are defined by

c(t) =

 t

t−h
eA(t−s)(µ + γ s)ds, (6)

ϵ(t) =

 t

t−h
eA(t−s)ζ (ds). (7)

For the purpose of deriving discrete time representations for the
observed mixed frequency data, it is convenient to partition the
system (5) in accordance with y1 and y2 as follows:

y1(t) = c1(t) + F11y1(t − h) + F12y2(t − h) + ϵ1(t), (8)
y2(t) = c2(t) + F21y1(t − h) + F22y2(t − h) + ϵ2(t), (9)

in which

c(t) =


c1(t)
c2(t)


, F =


F11 F12
F21 F22


, ϵ(t) =


ϵ1(t)
ϵ2(t)


.

This autoregressive representation depicts the law of motion for
both frequency variables but the problem in using it as a basis for
estimation is that the observations on y2(t) are not observed at
intervals of length h; this variable is only observed when t is an
integer. Nevertheless, (8) and (9) form the basis for a discrete time
representation which is presented in Theorem 1.

Theorem 1. Let y(t) be generated by (2)with y1 and y2 consisting of
stock variables which are observed as y1,τh = y1(τh) (τ = 0, . . . ,N)
and y2t = y2(t) (t = 0, . . . , T ). Then the observations satisfy, for
t = 1, . . . , T ,

5 In (5), t can take any value corresponding to τh.
y1t = b1t +

k
j=1

B11,jy1,t−jh + B12,0y2,t−1 + η1t , (10)

y1,t−h = b1,t−h +

k−1
j=1

B11,jy1,t−h−jh + B12,1y2,t−1 + η1,t−h, (11)

.

.

.
.
.
.

y1,t−(k−1)h = b1,t−(k−1)h + B11,1y1,t−1 + B12,k−1y2,t−1 + η1,t−(k−1)h, (12)

y2t = b2t +

k
j=1

B21,jy1,t−jh + B22y2,t−1 + η2t , (13)

where

B11,j =


F11, j = 1,
F12F

j−2
22 F21, j = 2, . . . , k,

B12,j = F12F
k−j−1
22 ,

j = 0, . . . , k − 1,
B21,j = F j−1

22 F21, j = 1, . . . , k, B22 = F k
22,

b1,t−jh = c1(t − jh) + F12
k−j−1
l=1

F l−1
22 c2(t − jh − lh),

j = 0, . . . , k − 1,

b2t =

k−1
j=0

F j
22c2(t − jh).

Furthermore, ηt = [η′

1t , η
′

1,t−h, . . . , η
′

1,t−(k−1)h, η
′

2t ]
′ is a vector

white noise process with covariance matrix

Ωη = E(ηtη
′

t) =

k−1
j=0

Fη,jΩϵF ′

η,j,

where Ωϵ = E(ϵ(t)ϵ(t)′) =
 h
0 eArΣeA

′rdr and the Fη,j (j =

0, . . . , k − 1) are defined in the proof of the theorem.

Remark 1. A key feature of the discrete time representation
in Theorem 1 is that information contained in the high fre-
quency series, y1, is not discarded, because the intermediate ob-
servations on y1 between each t − 1 and t , given by y1,t−kh,

y1,t−1+h, y1,t−1+2h, . . . , yt−h, are included on the right-hand sides
of (10)–(13). This contrasts with extant methods based on aggre-
gating the high frequency observations to the lowest frequency;
such a system would then be given by (8) and (9) with h = 1.

Remark 2. It is, perhaps, of use to consider a particular example
to illustrate the nature of the discrete time representation in
Theorem 1. Setting h =

1
3 and taking time units to correspond

to a quarter of a year implies that the high frequency variables
are observed monthly and the low frequency variables quarterly.6

Then k = h−1
= 3 and the resulting system of equations is given

in Box I.
Note that y1,t−3h = y1,t−1 and that, for each quarter, there is

an equation for y2 plus three equations for y1, corresponding to
each month in the quarter. None of these equations contains lags
beyond those dated t − 1, and all of the monthly observations
on y1 are included in the low frequency equation for y2, thereby
incorporating all the available intermediate information on the
high frequency variable.

6 For convenience it is assumed that all quarters are of equal length. Although
each quarter contains three months not all months have the same number of days.
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y1t = b1t + B11,1y1,t−h + B11,2y1,t−2h + B11,3y1,t−3h + B12,0y2,t−1 + η1t ,
y1,t−h = b1,t−h + B11,1y1,t−2h + B11,2y1,t−3h + B12,1y2,t−1 + η1,t−h,
y1,t−2h = b1,t−2h + B11,1y1,t−3h + B12,2y2,t−1 + η1,t−2h,
y2t = b2t + B21,1y1,t−h + B21,2y1,t−2h + B21,3y1,t−3h + B22y2,t−1 + η2t .

Box I.
Remark 3. Following on from the example above it is worth com-
menting that the coefficient vectors and matrices are solely func-
tions of theparameters of the continuous time system, even though
the discrete time system is in the form of a mixed frequency VAR;
see, for example, the representations in Foroni et al. (2013). To
emphasise this feature, the continuous time system contains 2n
trend parameters (µ and γ ), n2 autoregressive parameters (A), and
n(n + 1)/2 covariance parameters (Σ). By way of contrast the
unrestricted discrete time mixed frequency VAR contains 6n1 +

2n2 trend parameters (bjt ), 6n2
1 + 6n1n2 + n2

2 autoregressive pa-
rameters (Bij,k and B22), and (9n2

1 + 6n1n2 + n2
2 + 3n1 + n2)/2

covariance parameters. A simple calculation reveals that the pro-
cess of temporal aggregation imposes a total of 9n2

1 + 6n1n2 + 5n1
restrictions. The parsimony achieved by taking the temporal ag-
gregation into account is even greater with mixed frequency data
than with data observed at a common frequency, and greater still
with flow data, as will be seen below.

Remark 4. Even if the underlying continuous time system is
ignored, and (8) and (9) are regarded as the VAR of interest
that operates at the highest sampling interval h, Theorem 1 still
provides the correct form of aggregated system for stock variables.
This is because the bjt ,Bij,k andB22 are expressed as functions of c(t)
and F , which again provides parsimony over a mixed frequency
VAR written directly in terms of the discrete time observations,
as in (10)–(13). Moreover, the representation takes into account
the restrictions on the covariance matrix that arise from temporal
aggregation, a feature that is often ignored in standard treatments
of mixed frequency data.

Remark 5. The discrete time representation in (10)–(13) holds
for both stationary and non-stationary (including cointegrated)
continuous time systems in view of no restrictions having been
placed on the continuous time system matrix A. For example,
neither A, F nor any of their sub-matrices are required to be non-
singular.

Remark 6. Theorem1 shows, for stock variables, that a continuous
time autoregressive model of order one translates into a discrete
time autoregressivemodel of order onewithmixed frequencydata,
as in the case where a common sampling frequency exists. The
difference here is that accounting formixed frequencies results in a
more complicated pattern of restrictions on the discrete time data,
and the covariance matrix Ωη reflects the presence of the higher
frequency components in its construction.

3.2. Flow variables

When both high and low frequency variables are observed as
flows it is necessary to integrate the system to express it in terms of
the observations. This could be achieved by integrating (5) directly
or by integrating the discrete time representation in Theorem 1 it-
self, and it is the latter approach that is followed here. Although
the low frequency variable, y2, is observed as an integral over
(t − 1, t], it is actually convenient to integrate instead over the
interval (t − h, t] that corresponds to the high frequency observa-
tions, as in the case of stock variables above. In manipulating these
systems to eliminate unobservables (in particular the integral of
the low frequency variable over intervals of length h) frequent use
is made of the filter function s(Lh) where

s(z) = 1 + z + z2 + · · · + zk−1
=

k−1
j=0

z j (14)

and L denotes the lag operator.7 This is because the observable
integral of y2, denoted Y2t , can be regarded as the sum of the
unobservable integrals over intervals of length h, denoted Y u

2t = t
t−h y2(r)dr , as follows:

Y2t =

 t

t−1
y2(r)dr =

k−1
j=0

 t−jh

t−jh−h
y2(r)dr =

k−1
j=0

Y u
2,t−jh = s(Lh)Y u

2t .

Some properties of a convolution of s(z) with another matrix filter
are given in Lemma 1 in the Appendix and are used in the proof of
Theorem 2.

Theorem 2. Let y(t) be generated by (2)with y1 and y2 consisting of
flow variables which are observed as

Y1,τh =
1
h

 τh

τh−h
y1(r)dr, τ = 0, . . . ,N,

Y2t =

 t

t−1
y2(r)dr, t = 0, . . . , T .

Furthermore, define the aggregated high-frequency flow variables

Y s
1,τh = s(Lh)Y1,τh =

k−1
j=0

Y1,τh−jh, τ = k, . . . ,N.

Then Y s
1 and Y2 satisfy, for t = 1, . . . , T ,

Y s
1t = c1t +

k
j=1

C11,jY s
1,t−jh + C12,0Y2,t−1 + u1t , (15)

Y s
1,t−h = c1,t−h +

k−1
j=1

C11,jY s
1,t−h−jh + C12,1Y2,t−1 + u1,t−h, (16)

.

.

.
.
.
.

Y s
1,t−(k−1)h = c1,t−(k−1)h + C11,1Y s

1,t−1 + C12,k−1Y2,t−1 + u1,t−(k−1)h, (17)

Y2t = c2t +

k
j=1

C21,jY s
1,t−jh + C22Y2,t−1 + u2t , t = 2, . . . , T ,

(18)

where c1t = h−1s(Lh)b∗

1t , c2t = s(Lh)b∗

2t , b
∗

jt =
 t
t−h bjrdr (j = 1, 2),

C11,j = B11,j, j = 1, . . . , k, C12,j = h−1B12,j, j = 0, . . . , k − 1,
C21,j = hB21,j, j = 1, . . . , k, C22 = B22,

and the bjt (j = 1, 2), B11,j, B21,j (j = 1, . . . , k), B12,j (j = 0, . . . ,
k − 1) and B22 are defined in Theorem 1. Furthermore, ut = [u′

1t ,

7 The lag operator satisfies Ljxt = xt−j where j need not be an integer (as is the
case here when considering Lh).
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u′

1,t−h, . . . , u
′

1,t−(k−1)h, u
′

2t ]
′ is a vector MA(1) process with

Ωu0 = E(utu′

t)

= Kh


2k−2
j=0

HjΩϵ0H ′

j +

2k−1
j=1


HjΩ

′

ϵ1H
′

j−1 + Hj−1Ωϵ1H ′

j


Kh,

Ωu1 = E(utu′

t−1) = Kh


2k−2
j=k

HjΩϵ0H ′

j−k +

2k−2
j=k−1

HjΩϵ1H ′

j−k+1

+

2k−2
j=k+1

HjΩ
′

ϵ1H
′

j−k−1


Kh,

and where the remaining components are defined in the proof of the
theorem.

Remark 7. The discrete time representation in Theorem 2 con-
tains aggregated versions of the high frequency flows. It would be
possible, if desired, to express the equations in terms of Y1t and
its lags directly, although there is nothing to be gained from doing
so for estimation purposes.8 One application where this would be
necessary is forecasting, but all that is really needed is to express
Y s
1t in the form

Y s
1t = Y1t +

k−1
l=1

Y1,t−lh

and to incorporate the lags on the right-hand side of (15).

Remark 8. The discrete time representations in (15)–(18) contain
additional lags of the high frequency variable y1 owing to the fact
that additional backward substitution is required to eliminate all
unobservable components (which arise because of the nature of
flow variables). The resulting discrete time equations implicitly
contain all observations on the high frequency variable over the
interval (t − 2, t] that provide additional information regarding
the dynamics of the system and which may potentially result in
better estimates of the underlying continuous time parameters.

Remark 9. As in the case of stock variables no assumptions
have been made concerning the continuous time parameter
matrix A that governs stationarity. As a result the discrete time
representation in Theorem 2 is also applicable to both stationary
and non-stationary (including cointegrated) systems.

Remark 10. A key difference of the discrete model for flows
when compared to that for stocks is the presence of a moving
average component in the disturbance vector. This is a common
feature when flow variables are concerned and arises due to the
integration involved in determining the observations; seeWorking
(1960).

Remark 11. The covariance matrices, Ωϵ0 and Ωϵ1, appearing in
the definitions of the covariance matrices of ut , Ωu0 and Ωu1,
correspond to E(ϵtϵ

′
t) and E(ϵtϵ

′

t−h), respectively, where ϵt = t
t−h ϵ(r)dr .

Remark 12. Remarks 3 and 4, relating to the parsimony of the
continuous time approach, apply equally, if not more so, in the
case of flow variables. In fact, the disturbance vector being MA(1)

8 Such a representation would appear less parsimonious but would emphasise
the fact that up to 2k − 1 lags of the observed high frequency flow appear in the
discrete time model.
introduces an additional (kn1 + n2)
2 parameters into the discrete

time system via the first-order autocovariancematrix, yet all of the
discrete time parameters remain functions of the same number of
parameters in the underlying continuous time system (2).

Attention now turns to situations in which the variables are
a mixture of stocks and flows as well as the observations being
available at different sampling frequencies.

4. Models with mixed data sampling

In many applications the variables of interest are a mixture
of stocks and flows, and it is therefore of practical importance
to extend the discrete time representations in Section 3 to allow
for such circumstances. In the most general scenario both the
high and low frequency observations would consist of stocks and
flows, but in order to avoid unnecessary complication the model
considered is one where the high frequency variables are stocks
and the low frequency variables are flows. While this distinction is
somewhat arbitrary it does serve to highlight the issues involved
in treating a mixed sample. It also has the advantage, however, of
encapsulating situations where the high frequency variables are
financial variables such as asset prices, exchange rates and interest
rates (observed as stocks) and the low frequency variables are
macroeconomic aggregates such as income/output, consumption,
and investment expenditures (observed as flows).

In order to derive an exact discrete model, the following
assumption is made concerning a sub-matrix of A in (2).

Assumption 1. The n1 × n1 sub-matrix A11 of A is non-singular.

Remark 13. The matrix A11 governs the response of dy1(t) to the
level of y1(t) in the continuous time system (2) and its invertibility
enables the unobservable variable

 t
t−h y1(r)dr to be expressed in

terms of the observable y1(t) − y1(t − h) and
 t
t−h y2(r)dr , the

latter being observable once the operator s(Lh) has been applied.
This type of assumption was also made concerning stock variables
by Agbeyegbe (1987, 1988) (Assumption 2 in both cases) and
Simos (1996) (Assumption 3) although both authors also made
the assumption that the entire matrix A was nonsingular — this
additional assumption is not required here. The assumption does,
however, rule out the possibility of cointegration between a set of
nonstationary stock variables.9

In presenting the exact discrete model for the mixed sample
case it is convenient to partition thematrix functions eAr , P0(r) and
P1(r) in accordance with y1 and y2 as follows:

F(r) = eAr =


F11(r) F12(r)
F21(r) F22(r)


, Pj(r) =


Pj,11(r) Pj,12(r)
Pj,21(r) Pj,22(r)


,

j = 0, 1.

These functions are used as weights in integrals with respect to
the randommeasure ζ (dt) that arise in deriving the exact discrete
model. For example, F(r) is the weight function in the definition
of the random vector ϵ(t) in (7). The presentation of the results
in Theorem 3 is also aided by grouping some of the definitions
together in Table 2.

Theorem 3. Let y(t) be generated by (2) with y1 consisting of stock
variables, which are observed as y1,τh = y1(τh) (τ = 0, . . . ,N), and

9 Subsequent workwill explicitly investigate the case of cointegrated continuous
time systemswithmixed frequency data inmore detail, thereby extending existing
results in Chambers (2009, 2011) to the mixed frequency setting.
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Table 2
Definitions of quantities in Theorem 3.

Quantity i = 1 i = 2

Autoregressive quantities
git ∆hc1(t) +

F12

a2,t−h − A21A−1

11 a1,t−h
 f2t − F21A−1

11 a1,t−h

fit
 t
t−h c1(r)dr

 t
t−h c2(r)dr

ait
 t
t−h(µ1 + γ1r)dr

 t
t−h(µ2 + γ2r)dr

G1i F11 + F12A21A−1
11 F12


A22 − A21A−1

11 A12


G2i F21A−1
11 F22 − F21A−1

11 A12

Autocovariance quantities

Ωξ̄0

k−1
j=0

RjΩv0R′

j +
k−1
j=1


RjΩv1R′

j−1 + Rj−1Ω
′

v1R
′

j


Ωξ̄ s

k−1
j=s

RjΩv0R′

j−s +

k−1
j=s+1

RjΩ
′

v1R
′

j−s−1 +

k−1
j=s−1

RjΩv1R′

j+1−s(s =

1, . . . , k)
Ωv0

 h
0 K0(r)ΣK0(r)′dr +

 h
0 K1(r)ΣK1(r)′dr

Ωv1
 h
0 K1(r)ΣK0(r)′dr

K0(r)

F11(r) F12(r)
P0,21(r) P0,22(r)


K1(r)


−F11(r) − F12A21A−1

11 −F12(r) + F12
P1,21(r) − F21A−1

11 P1,22(r)


NB: Additional quantities, e.g. the Rj , can be found in the proof of Theorem 3.

y2 consisting of flow variables, which are observed as

Y2t =

 t

t−1
y2(r)dr, t = 0, . . . , T .

Furthermore, define the aggregated high frequency stock variables

ys1,τh = s(Lh)y1,τh =

k−1
j=0

y1,τh−jh, τ = k, . . . ,N.

Then, under Assumption 1, the observations satisfy, for t = 1, . . . , T ,

∆hys1t = φ1t +

k
j=1

Φ11,j∆hys1,t−jh + Φ12,0Y2,t−1 + ξ1t , (19)

∆hys1,t−h = φ1,t−h +

k−1
j=1

Φ11,j∆hys1,t−jh

+ Φ12,1Y2,t−1 + ξ1,t−h, (20)
...

∆hys1,t−(k−1)h = φ1,t−(k−1)h + Φ11,1∆hys1,t−1
+ Φ12,k−1Y2,t−1 + ξ1,t−(k−1)h, (21)

Y2t = φ2t +

k
j=1

Φ21,j∆hys1,t−jh + Φ22Y2,t−1 + ξ2t , (22)

where ∆h = 1 − Lh,

φ1,t−jh = s(Lh)


g1,t−jh + G12

k−j−1
l=1

Gl−1
22 g2,t−jh−lh


,

φ2t = s(Lh)
k−1
j=0

Gj
22g2,t−jh,
Φ11,j =


G11, j = 1,
G12G

j−2
22 G21, j = 2, . . . , k,

Φ12,j = G12G
k−j−1
22 , j = 0, . . . , k − 1,

Φ21,j = Gj−1
22 G21, j = 1, . . . , k,

Φ22 = Gk
22,

and the remaining components are defined in Table 2. Furthermore,

ξt = [ξ ′

1t , ξ
′

1,t−h, . . . , ξ
′

1,t−(k−1)h, ξ
′

2t ]
′

is a vector MA(1) process with

Ωξ0 = E(ξtξ
′

t ) = kΩξ̄0 +

k−1
j=1

(k − j)

Ωξ̄ j + Ω ′

ξ̄ j


,

Ωξ1 = E(ξtξ
′

t−1) = kΩξ̄k +

k−1
j=1

(k − j)Ωξ̄ ,k−j,

and where the components determining these matrices are defined
in Table 2.

Remark 14. The form of the exact discrete model in the mixed
sample case is more complicated than in the case of common data
sampling owing to the fact that more operations are required in
order to eliminate unobservable components from the system and
replace them with observable variables. The key component in
this process is the integration of the system (2) over the interval
(t − h, t] and then solving for the integral of y1 in terms of its first
difference, which is where Assumption 1 is utilised.

Remark 15. The (kn1 + n2) × 1 disturbance vector ξt is an MA(1)
process as is common in discrete time representations of first-
order stochastic differential equations containing flow variables.
The autocovariance matrices, Ωξ0 and Ωξ1, are more complicated
than in the case of pure flowvariables reported in Theorem2owing
to the mixed sampling characteristics of y1 (stocks) and y2 (flows)
in addition to the mixed observation frequencies.

Remark 16. Although Theorem 3 has focused on the case of
high frequency stock variables and low frequency flow variables
it would be possible, in principle, to derive a discrete time
representation for the case in which the high frequency variables
are flows and the low frequency variables are stocks. Should such
a scenario arise then a discrete time model could be derived based
on the methods utilised in the proof of Theorem 3.

Attention is now turned in the following sections to issues
of estimation (including computational considerations) as well as
simulation evidence and an empirical example.

5. Model estimation, computation, and simulation evidence

5.1. Estimation

A natural approach to the estimation of the parameters of the
continuous time system (2) is to maximise the likelihood function
based on the exact discrete time representations presented in
Theorems 1–3. Assuming that the random measure disturbance
vector ζ (dt) in (2) is Gaussian (which would be equivalent to it
being the increment of a Brownianmotion processwith covariance
matrix Σdt) results in the discrete time disturbances also being
Gaussian. Consider, first, the case of stock variables, in which the
relevant vector of disturbances is ηt defined in Theorem 1; this
vector has dimension n∗

×1, where n∗
= n1k+n2, and is known to

be vector white noise with covariance matrix Ωη . Let θ denote the
vector of unknown parameters in the model, which will consist of
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the elements of the vectors µ and γ , the matrix A and the unique
elements of the covariance matrix Σ .10 In this case the Gaussian
log-likelihood, based on a sample of size T , is given by

ln Lη(θ) = −
n∗T
2

ln 2π −
T
2
ln |Ωη| −

1
2

T
t=1

η′

tΩ
−1
η ηt , (23)

where |·| denotes the determinant of amatrix. In caseswhere there
are flow variables present the log-likelihood function is of a more
complicated form, reflecting the MA(1) nature of the disturbances.
In the case of amixed sample, the relevant vector of disturbances is
ξt , defined in Theorem 3. Let ξ = (ξ ′

1, . . . , ξ
′

T )
′ denote the n∗T × 1

vector of all sample disturbances stacked vertically. The covariance
matrix of ξ , denoted Ωξ = E(ξξ ′), is of block Toeplitz form, with
typical n∗

× n∗T band given by

[0, . . . , 0, Ωξ1, Ωξ0, Ω ′

ξ1, 0, . . . , 0],

where each 0 above is an n∗
×n∗ matrix of zeros. The log-likelihood

function is then

ln Lξ (θ) = −
n∗T
2

ln 2π −
1
2
ln |Ωξ | −

1
2
ξ ′Ω−1

ξ ξ . (24)

Clearly this function poses more computational challenges than
does ln Lη , due to the required calculation of the determinant and
inverse of the n∗T × n∗T covariance matrix Ωξ . The same would
be true in the case of flow variables where ξ and Ωξ would be
replaced by u and Ωu, respectively, using the relevant information
in Theorem 2. However, the computational difficulties associated
with log-likelihood functions of the form in (24) arising from
continuous time systems were addressed in many of the articles
in Bergstrom (1990), whose proposed procedure is to implement a
Cholesky factorisation of the entire matrix Ωξ which is also able to
exploit its sparse nature.

Alternative approaches could also be used to compute the
likelihood function. Robinson (1993) and Chambers (1998), for
example, employ a frequency domain (Whittle) approximation
to the likelihood and work directly from the continuous time
system (2). The method of residues is used to evaluate the infinite
summations that arise in moving from continuous time to discrete
time in the frequency domain. Such methods could, in principle,
be extended to the case of mixed frequency data, although such an
investigation is beyond the scope of the present paper. Yet another
alternative, and one that has already been mentioned earlier, is
to employ the Kalman filter, as in Zadrozny (1988). However, it
has been argued by Bergstrom (1990, pp. 112–113) that the time
domain approach outlined above, based on Cholesky factorisation,
is less costly in terms of computational burden than the Kalman
filter.

The properties of the Gaussian estimator, θ̂ , obtained by max-
imising either ln Lη(θ) or ln Lξ (θ) with respect to θ would depend
on the time series properties of the variables. In stationary systems,
subject to regularity conditions, the Gaussian estimatorwould typ-
ically have an asymptotically normal distribution and would con-
verge to the true value (θ0) at a rate equal to the square root of
the sample size i.e.

√
T (θ̂ − θ0)

d
→ N(0, V ); see, for example,

Bergstrom (1983). In cointegrated models, on the other hand, dif-
ferent rates of convergence are likely to apply to the parameters
governing the short-run dynamics and the long run cointegrating
vectors — the former typically converge to limiting normal distri-
butions at the rate

√
T , while the latter converge at the rate T to a

10 In the simulations reported below and in the empirical application in the next
section the elements of the Cholesky factorisation of Σ , denoted M , rather than
of Σ itself, are estimated in order to ensure that the covariance matrix is positive
definite. BothM and Σ have the same number of unknown elements, n(n + 1)/2.
limiting mixed normal distribution. Asymptotic results relating to
the estimation of continuous time models of cointegration can be
found in Phillips (1991), Chambers andMcCrorie (2007) andCham-
bers (2011).

5.2. Computation

Inspection of the discrete time representations in Theorems 1–3
reveals that the autoregressive matrices are related to the matrix
exponential F = eAh while the deterministic terms and autocovari-
ance matrices depend on various integrals involving the function
F(r) = eAr . A number of methods exist for the computation of ma-
trix exponentials, themost straightforward involving truncation of
the infinite series in (4) once a point is reached atwhich the change
in successive values for each element is sufficiently small. Although
this may not be the most efficient method a study of comparative
techniques by Jewitt andMcCrorie (2005) in the context of contin-
uous time systems concluded that truncation is valid for the types
of (typically) well conditioned problems to be found in models in
economics, and is therefore the method adopted here.

The issues involved in computing the deterministic terms
and autocovariance matrices are perhaps best illustrated with a
concrete example, and for this purpose we focus on the discrete
time representation in Theorem 1. The deterministic terms b1t and
b2t can be seen to depend on c(t) defined in (6). It is possible to
show (see Appendix) that

c(t) = (C1µ − C2γ ) + C1γ t,

where

C1 =

 h

0
eArdr, C2 =

 h

0
reArdr.

If A is nonsingular thesematrices have exact representations in the
form

C1 = A−1 eAh − I

, C2 = hA−1eAh − A−2 eAh − I


,

while if A is nonsingular the following representations follow from
integration of the infinite series in (4) term by term:

C1 = h
∞
j=0

1
(j + 1)!

Ajhj, C2 = h2
∞
j=0

1
j!(j + 2)

Ajhj.

In this latter case the method of truncation can be used, as in the
computation of eA itself. The covariance matrix Ωϵ in Theorem 1 is
of the form

Ωϵ =

 h

0
eArΣeA

′rdr.

Jewitt and McCrorie (2005), using results of van Loan (1978),
show that this matrix (and eAh as well) can be obtained with the
computation of a single matrix exponential. Let

Q =


−A Σ

0 A′


, P = eQh =


P11 P12
0 P22


.

Then Ωϵ = P ′

22P12 and eAh = P ′

22. The matrix exponential eQh can
also be computed by truncating its infinite series representation.
Similar techniques can be applied to the deterministic terms and
covariance matrices arising in the more complicated representa-
tions in Theorems 2 and 3.

5.3. Simulation evidence

In order to assess the effects of explicitly incorporating mixed
frequency data as opposed to aggregating to the lowest frequency,
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some simulations were carried out using a model containing two
stock variables sampled at two different frequencies. Let y(t) =

[y1(t), y2(t)]′, where y1(t) is sampled at the higher frequencywith
sampling interval h = 1/3 and y2(t) is the low frequency variable
whose sampling frequency is normalised to unity. This scenario
corresponds to y2 being observed quarterly and y1 being observed
monthly. The model is given by

dy(t) = Ay(t)dt + ζ (dt), E[ζ (dt)ζ (dt)′] = Σdt, (25)

where A is a 2 × 2 matrix with coefficients aij (i, j = 1, 2) and
Σ is a 2 × 2 symmetric positive definite matrix with elements
σ11, σ21 and σ22. This model nests a cointegrated system where
A = αβ ′ with α = (α1, α2)

′ and β = (βc, 1)′; in this case α
is the vector of adjustment coefficients and β is the cointegrating
vector, normalised on y2. Three different parametric designs are
considered for the matrix A, as follows:

Design 1: A =


−1 0.5
0.5 −1


; Design 2: A =


−1 −0.5

−0.5 −1


;

Design 3: A = αβ ′, α =


−1
−2


, β =


−1
1


.

Design 1 allows for positive feedback between y1 and y2, while in
Design 2 this feedback is negative; the eigenvalues of A in both
cases are −0.5 and −1.5 so the system is stationary.11 In Design 3
the stationary cointegrating relationship is given by y2(t) − y1(t);
the eigenvalues of A are given by 0 and −1, the former indicating
the zero root (corresponding to a unit root in discrete time) in the
system. In all three experimental designs the covariance matrix
was taken to be of the form

Σ =


σ11 σ21
σ21 σ22


,

where σ11 = σ22 = 1 and σ21 = {0, 0.5}.12 In order to ensure
that Σ is positive definite during estimation (in particular, during
optimisation of the likelihood function), estimates of the lower
triangular matrix M , such that Σ = MM ′, were computed; the
elements ofM are related to the elements of Σ as follows:

σ11 = m2
11, σ21 = m11m21, σ22 = m2

21 + m2
22.

For all these designs the data are generated according to the exact
discrete time representation in Theorem 1.

The results of 10,000 simulations are contained in Table 3 for
Designs 1 and 2 and in Table 4 for Design 3. The tables report the
bias and root mean square error (RMSE) of three estimators of the
model parameters. The column headed ‘Low’ contains the results
when the data are aggregated to the lowest frequency, which
would be the current defaultmethod for estimation. The estimated
system in this case is given by (5) with h = 1. The next column,
headed ‘High’, refers to the infeasible estimator obtained under
the assumption that both variables can be observed at the highest
frequency; the estimated system is again given by (5) but with
h = 1/3.13 The third column, headed ‘Mixed’, is the estimator using
both frequencies of data i.e. the entire set of observations available
to the researcher. In this case themodel being estimated is given in
Theorem 1 in which k = h−1

= 3; the vector of disturbances, ηt , is
of dimension 4 × 1. In all the experimental designs the data were

11 The eigenvalues of A are required to have negative real parts in order for the
system to be stationary.
12 In view of σ11 = σ22 = 1 the parameter σ21 is, in effect, measuring the
correlation between ζ1 and ζ2 in the continuous time system.
13 Although y1 is observed at the highest frequency, y2 is not; this estimator is
therefore infeasible because it is using observations that are not available to the
researcher.
Table 3
Simulation results for Designs 1 and 2.

σ21 = 0 σ21 = 0.5
Low High Mixed Low High Mixed

Design 1: Bias
a11 −0.0472 −0.0239 −0.0264 −0.0670 −0.0251 −0.0288
a12 0.0141 −0.0033 −0.0001 0.0370 0.0012 0.0088
a21 0.0178 0.0018 0.0025 0.0533 0.0054 0.0143
a22 −0.0488 −0.0246 −0.0273 −0.0829 −0.0273 −0.0363
σ11 0.0186 0.0028 0.0034 0.0210 0.0037 0.0035
σ21 −0.0031 0.0008 0.0019 −0.0039 0.0020 −0.0002
σ22 0.0216 0.0022 0.0108 0.0276 0.0037 0.0115
Design 1: RMSE
a11 0.3123 0.1550 0.1836 0.4249 0.1687 0.2333
a12 0.3063 0.1558 0.2062 0.4183 0.1674 0.2508
a21 0.3072 0.1539 0.2093 0.4366 0.1687 0.2611
a22 0.3124 0.1578 0.2366 0.4478 0.1705 0.2833
σ11 0.2358 0.0919 0.0968 0.2155 0.0917 0.0927
σ21 0.1665 0.0683 0.1358 0.1729 0.0741 0.1249
σ22 0.2387 0.0914 0.2050 0.2242 0.0908 0.1869
Design 2: Bias
a11 −0.0468 −0.0251 −0.0281 −0.0462 −0.0233 −0.0279
a12 −0.0118 0.0001 −0.0027 −0.0085 0.0035 0.0023
a21 −0.0067 0.0063 0.0039 −0.0037 0.0093 0.0101
a22 −0.0422 −0.0224 −0.0257 −0.0423 −0.0211 −0.0227
σ11 0.0200 0.0031 0.0041 0.0200 0.0016 0.0031
σ21 0.0007 −0.0008 −0.0013 0.0081 −0.0008 −0.0039
σ22 0.0178 0.0018 0.0110 0.0171 −0.0002 0.0045
Design 2: RMSE
a11 0.3049 0.1539 0.1837 0.3032 0.1540 0.1755
a12 0.2996 0.1539 0.2085 0.3026 0.1537 0.1869
a21 0.3039 0.1534 0.2170 0.2972 0.1541 0.1898
a22 0.3104 0.1535 0.2450 0.3010 0.1544 0.2041
σ11 0.2354 0.0919 0.0964 0.2676 0.0948 0.0983
σ21 0.1640 0.0680 0.1398 0.2237 0.0743 0.1300
σ22 0.2376 0.0916 0.2253 0.2637 0.0942 0.1982

Table 4
Simulation results for Design 3.

σ21 = 0 σ21 = 0.5
Low High Mixed Low High Mixed

Design 3: Bias
βc 0.00014 0.00006 0.00003 0.00013 0.00009 0.00006
α1 0.0005 0.0052 0.0073 0.0308 0.0052 0.0078
α2 −0.0359 −0.0183 −0.0206 −0.0601 −0.0262 −0.0366
σ11 −0.0051 −0.0012 −0.0003 −0.0061 −0.0019 −0.0008
σ21 −0.0193 −0.0052 −0.0115 −0.0268 −0.0050 −0.0132
σ22 −0.0076 −0.0010 −0.0024 −0.0111 −0.0026 −0.0022
Design 3: RMSE
βc 0.0067 0.0051 0.0060 0.0082 0.0071 0.0079
α1 0.1736 0.1151 0.1369 0.2336 0.1561 0.1921
α2 0.2231 0.1222 0.1698 0.2984 0.1610 0.2330
σ11 0.2199 0.0892 0.0977 0.1891 0.0875 0.0926
σ21 0.2099 0.0721 0.1310 0.1821 0.0710 0.1265
σ22 0.2213 0.0892 0.1745 0.1913 0.0870 0.1616

generated at the highest frequency according to (5) with N = 300;
the T = Nh = 100 low frequency observationswere then obtained
from the high frequency data by selecting every third observation.
This is consistent with there being 25 years of quarterly data for y2
and the same span of monthly data for y1.

As can be seen from Table 3, the estimates obtained in
the infeasible case (using high frequency observations on both
variables) tend to produce the smallest bias and RMSE, the latter
being approximately half the RMSE values for estimates based
on the aggregated low frequency data. Estimates obtained using
the mixed frequency data, however, show much lower bias and
RMSE than the low frequency estimates even if they do not
quite match the performance of the infeasible estimator (which
is to be expected). A similar picture emerges from Table 4 in
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terms of the adjustment and covariance parameters, with all
three methods producing very small bias and RMSE in estimating
the cointegrating parameter βc ; this is presumably due to the
superconsistency (faster convergence rate) of estimates of this
parameter. The effect of the continuous time correlation parameter
changing from σ21 = 0 to σ21 = 0.5 in Table 3 is to increase bias
and RMSE in Design 1, particularly for the low frequency estimates,
while the bias andRMSE remain broadly unaffected inDesign 2. For
Design 3 in Table 4 there is a tendency for both bias and RMSE to
increase, though not uniformly.

In summary, the simulations suggest that neglecting high
frequency data (when available) comes at a cost in terms of larger
estimation bias and RMSE. Although the derivation of the exact
discrete model is slightly more complicated when dealing with
mixed frequencies than is the case when data are aggregated to
the lowest frequency, the benefits of doing so would appear to
be worthwhile. An empirical application is explored in the next
section to ascertain the impact of using mixed frequency data in
practice.

6. An empirical example: purchasing power parity

One of the most widely researched areas in the international
macroeconomics/finance arena concerns the stationarity (or oth-
erwise) of the real exchange rate between two currencies. The no-
tion of purchasing power parity (PPP) – ignoring various nuances
and subtleties – essentially suggests that, at least in the long run,
the nominal exchange rate adjusts so that goods and services cost
the same amountwhen prices in different currencies are expressed
in a common currency; this, in turn, has implications for the real
exchange rate. To focus ideas, let P denote the domestic price level,
P∗ denote the foreign price level, and S denote the nominal ex-
change rate expressed as units of domestic currency per unit of for-
eign currency. Then PPP implies that S = P/P∗ or P = SP∗, at least
in the long run. Defining s = ln S, p = ln P and p∗

= ln P∗, another
way of writing this relationship is s = p − p∗, a form that readily
suggests testing PPP by estimating a simple regression of s on p and
p∗ and then testing whether the coefficients on the two regressors
are +1 and −1, respectively. However, given that exchange rates
and price indices are often found to be characterised as containing
unit roots (and possibly two in the case of price indices), cointe-
gration techniques can be used to test the PPP restrictions on the
cointegrating vector (if one is found), but the evidence is somewhat
mixed. A comprehensive account of empirical research into PPP
and the real exchange rate can be found in Sarno and Taylor (2002).

The price indices used in PPP research are typically observed
on a monthly basis while exchange rates can be observed at
much higher frequencies.14 The usual approach is to aggregate the
exchange rate data to the monthly frequency by taking either a
monthly average of daily closing prices or the value at a particular
point in the month (such as a daily price in the middle or at
the end of the month). This approach throws away a great deal
of potentially useful information in the exchange rate data that
may be pertinent to assessing the empirical validity of PPP. In
what follows, the methods derived in this paper are utilised in
an assessment of the implications for PPP of combining the high
frequency exchange rate datawith the lower frequency price index
data.

In accordance with the notation used in previous sections, let
y1(t) = s(t) denote the high frequency exchange rate variable, let

14 Although we focus on the temporal aggregation aspects of price indices a
referee has highlighted that there are also cross-sectional issues involved butwhich
are beyond the scope of this example.
y2(t) = [p(t), p∗(t)]′ denote the vector of low frequency price in-
dex variables, let y(t) = [y1(t), y2(t)′]′, and note that t is being
treated as a continuous time parameter. The most general contin-
uous time system under consideration has the representation

dy(t) = [µ + αβ ′y(t)]dt + ζ (dt), t > 0, (26)

where µ is a 3 × 1 vector of intercepts, α is a 3 × 1 vector of
adjustment parameters, β = [1, βp, βp∗ ]

′ is a 3 × 1 vector of
cointegrating parameters normalised on s(t), and ζ (dt) is a 3 × 1
vector of randommeasures with mean vector zero and symmetric
positive definite covariance matrix Σdt of dimension 3 × 3. The
unrestricted intercept, µ, can be decomposed using the identity
I3 = α(α′α)−1α′

+α⊥(α′

⊥
α⊥)−1α′

⊥
, where α⊥ is the 3× 2 orthog-

onal complement of α satisfying α′

⊥
α = 0. Post-multiplying this

identity by µ yields µ = ακ + δ where the scalar κ = (α′α)−1α′µ
and δ = α⊥(α′

⊥
α⊥)−1α′

⊥
µ is a 3 × 1 vector. This implies that

dy(t) = [δ + α(κ + β ′y(t))]dt + ζ (dt), (27)

so that κ represents an intercept in the cointegrating relation-
ship.15 In terms of the system (2), γ = 0,µ = δ+ακ and A = αβ ′;
the system (27) therefore represents a continuous time cointe-
grated systemwith cointegrating relationship of the form s(t)+κ+

βpp(t)+βp∗p∗(t). The long-run PPP hypothesis consists of the two
restrictions βp = −βp∗ = −1, but we shall also consider a weaker
version inwhich there is a single restriction of the form βp = −βp∗

that does not constrain these parameters to a particular value.
The data used in the empirical application are the monthly

consumer price indices for the United States (P) and the United
Kingdom (P∗) for the period January 1996–March 2014 and the
daily (closing) exchange rate (S),measured inUS dollars per pound,
from January 1, 1996 to March 28, 2014. The exchange rate data
were also aggregated to weekly and monthly frequencies, there
being four weekly observations and twenty daily observations
corresponding to each month; further details concerning the data
are provided in the Appendix.

Table 5 contains summary results and test statistics relating
to estimation of the unrestricted model (26) and various nested
models using the monthly price indices and monthly, weekly
and daily exchange rate data. The table contains the maximised
log-likelihood for the unrestricted model as well as the Schwarz
Information Criterion (SIC) for the unrestricted and restricted
models; for the latter, the values of the likelihood ratio (LR) test
statistics (and their associated p-values) are also reported.16 For
the monthly exchange rate data none of the restrictions is rejected
at the 5% significance level and so the preferred model is one
in which the PPP restriction is imposed. This restricted model
is also chosen by the SIC , and a similar picture emerges with
the weekly exchange rate data. However, moving to the daily
exchange rate data, entirely different conclusions are drawn. All of
the restrictions tested are comprehensively rejected, the preferred
model, chosen on the basis of the likelihood ratio tests and the SIC ,
being the unrestricted model.

To gain further insight into these results, Table 6 reports full
estimates of the unrestricted models for all three exchange rate
frequencies, as well as the restricted (preferred) models for the
monthly and weekly exchange rate data (the preferred model for
the weekly data being the unrestricted model). In addition to α,
β and µ Table 6 also contains estimates of the elements of the

15 The specification of the deterministic component in (27) corresponds to model
H1(1) in the terminology of Johansen (1995).
16 In all cases the p-values are obtained assuming that the LRq statistic has a chi-
squared distribution with q degrees of freedom.
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Table 5
Summary results of estimating (26) and restricted models using monthly price
indices and monthly, weekly and daily exchange rates.

Exchange rate frequency
Monthly Weekly Daily

Unrestricted model (26)
ln L 2543.0592 4364.8994 16,154.1533
SIC −5010.7355 −8654.4159 −32,232.9237∗

Restriction: βp = −βp∗

ln L 2543.0575 4364.8834 16,133.7269
SIC −5016.1166 −8659.7684 −32,197.4554
LR1 0.0034 0.0320 40.8528
p-value [0.9535] [0.8580] [0.0000]

Restriction: βp = −βp∗ = −1
ln L 2543.0439 4364.8833 15,948.8692
SIC −5021.4739∗

−8665.1528∗
−31,833.1245

LR2 0.0306 0.0322 410.5682
p-value [0.9848] [0.9840] [0.0000]

A ∗ denotes the minimum SIC in the column.

Table 6
Estimates of unrestricted (U) and ‘preferred’ (P) models.

Exchange rate frequency
Monthly Weekly Daily
U P U P U/P

αs −0.0391 −0.0403 −0.0473 −0.0491 −0.9267
(0.0210) (0.0213) (0.0178) (0.0231) (0.0852)

αp 0.0056 0.0059 0.0063 0.0063 0.3317
(0.0035) (0.0031) (0.0029) (0.0031) (0.1236)

αp∗ 0.0011 0.0004 −0.0001 0.0000 −0.3827
(0.0052) (0.0031) (0.0015) (0.0031) (0.0936)

βp −0.6313 −1.0000 −0.8815 −1.0000 −3.0260
(1.0707) (1.4411) (0.2601)

βp∗ 0.5914 1.0000 0.8190 1.0000 3.2674
(0.9253) (1.6890) (0.3223)

µs 0.0137 0.0221 0.0121 0.0267 1.6213
(0.0641) (0.0116) (0.0414) (0.0125) (0.3253)

µp 0.0001 −0.0012 0.0004 −0.0014 −0.5634
(0.0082) (0.0017) (0.0049) (0.0017) (0.1353)

µp∗ 0.0014 0.0015 0.0018 0.0018 0.6541
(0.0032) (0.0017) (0.0001) (0.0017) (0.2379)

m11 0.0246 0.0246 0.0269 0.0269 0.0162
(0.0012) (0.0012) (0.0006) (0.0006) (0.0005)

m21 0.0007 0.0007 0.0008 0.0008 0.0934
(0.0002) (0.0002) (0.0003) (0.0003) (0.0302)

m22 0.0035 0.0035 0.0035 0.0035 0.0839
(0.0002) (0.0002) (0.0002) (0.0002) (0.0268)

m31 0.0002 0.0002 0.0002 0.0002 −0.1066
(0.0002) (0.0002) (0.0003) (0.0003) (0.0254)

m32 0.0006 0.0006 0.0006 0.0006 −0.0971
(0.0002) (0.0002) (0.0002) (0.0002) (0.0228)

m33 0.0036 0.0036 0.0036 0.0036 0.0059
(0.0002) (0.0002) (0.0002) (0.0002) (0.0018)

κ −0.3424 −0.5409 −0.2511 −0.5398 −1.7392

Numbers in parentheses denote standard errors.

Cholesky matrix corresponding to Σ; this is a lower-triangular
matrix M such that Σ = MM ′ and is given by

M =

m11 0 0
m21 m22 0
m31 m32 m33


.

The final row of Table 6 contains the implied values of the intercept
in the cointegrating relationship, κ . As can be seen from Table 6,
many of the estimated parameters in the models using monthly
and weekly exchange rate data have large standard errors relative
to the estimated parameter. It is, therefore, perhaps no great
surprise that the restrictions are not rejected when imposed on
the model, due to this level of parameter uncertainty. This is
reflected by the small fall in the value of the log-likelihood reported
in Table 5 when the PPP restrictions are imposed. Using daily
exchange rate data, however, results in parameter estimates with
much smaller standard errors, and hence there is much greater
information available to reject the hypotheses being tested. For
example, β̂p = −3.0260 with a standard error of 0.2601, while
β̂p∗ = 3.2674 with a standard error of 0.3223, so the rejection of
the joint hypothesisβp = −βp∗ = −1 should not be too surprising.
The move from monthly and weekly exchange rate data to daily
data has resulted in more precise estimates of the parameters
of interest and a rather different outcome to the statistical tests
carried out.

7. Conclusions

This paper has derived exact discrete time representations cor-
responding to a system of linear stochastic differential equations
when the observed sample is available at different frequencies. The
cases of common data sampling (all stock or all flow variables) and
mixed data sampling (a combination of stocks and flows) have both
been considered in this mixed frequency scenario. Simulations
based on both stationary and cointegrated systems reveal that
there are substantial gains to be made in estimation (smaller bias
and RMSE) by utilising all the higher frequency data in conjunc-
tion with the low frequency data instead of aggregating all data
to the lowest frequency. An empirical application using monthly
price indices for the UK and US and monthly, weekly and daily ex-
change rate data reveal that substantially different inferences can
be drawn when the highest frequency exchange rate data are used
compared with the lower frequency data. An advantage of consid-
ering mixed frequency data analysis based on an underlying con-
tinuous time model is that the model of interest is not tied to any
particular sampling frequency and the discrete time representa-
tions hold exactly at whatever frequency the data are sampled.

There are a number of directions for further research that
emerge from the results reported here. One obvious extension is
to consider exact discrete time representations for mixed sample
and mixed frequency data generated by an ARMA(p, q) system
in continuous time. This could be achieved by combining the
techniques employed in the proofs of Theorems 1–3 with those
used by Chambers and Thornton (2012)whose empirical examples
demonstrated the benefits of the additional MA components in the
continuous timemodel for improvingmodel fit. In some situations
it would also be beneficial to allow both high and low frequency
variables to be mixtures of stocks and flows and also to allow for
more than two sampling frequencies. A more realistic situation
in some cases would be to allow for the sampling intervals to
be of different lengths, which may be of some importance when
combining monthly and daily data as the number of days in the
months of the year are not equal. Another area inwhich continuous
time models can be advantageous is in producing forecasts of
variables at any future point in time as they are not tied to a
particular sampling frequency. Again the techniques used in this
paper form a basis for these, and other, extensions, and will be
explored in future work.
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Appendix A. Proofs of theorems

Proof of Theorem 1. The aim is to eliminate the unobservable
y2(t−h) from the system (8) and (9) and, effectively, replace itwith
y2(t−kh) = y2(t−1). Lagging (9) by h and repeatedly substituting
backwards enables y2(t − h) to be expressed in terms of y2(t − 1)
as follows:

y2(t − h) =

k−1
j=1

F j−1
22 c2(t − jh) +

k−1
j=1

F j−1
22 F21y1(t − jh − h)

+ F k−1
22 y2(t − 1) +

k−1
j=1

F j−1
22 ϵ2(t − jh). (28)

Substituting (28) into (9) yields the equation for y2, (13), in which
the disturbance term is

η2t =

k−1
j=0

F j
22ϵ2(t − jh).

More generally, lags of y2(t) can be expressed, for 1 ≤ l ≤ k − 1,
as

y2(t − lh) =

k−l−1
j=0

F j
22c2(t − lh − jh)

+

k−l−1
j=0

F j
22F21y1(t − lh − jh − h)

+ F k−l
22 y2(t − 1) +

k−l−1
j=0

F j
22ϵ2(t − lh − jh) (29)

so that, for 0 ≤ l ≤ k − 1, lags of y1(t) can be expressed in terms
of y2(t − 1) as

y1(t − lh) = c1(t − lh) + F11y1(t − lh − h)
+ F12y2(t − lh − h) + ϵ1(t − lh)

= b1(t − lh) +

k−l
j=1

B11,jy1(t − lh − jh)

+ B12,ly2(t − 1) + η1,t−lh,

as required, where (29) has been substituted for y2(t − lh− h) and

η1,t−lh = ϵ1(t − lh) + F12
k−l−1
j=1

F j−1
22 ϵ2(t − lh − jh);

if l = k − 1 in this last summation then it is to be taken as zero.
From these representations it is possible to write ηt in the form

ηt =

k−1
j=0

Fη,jϵ(t − jh), (30)

where the Fη,j (j = 0, . . . , k − 1) are defined by

Fη,0 =



I 0
0 0
0 0
...

...
0 0
0 0
0 I


, Fη,1 =



0 F12
I 0
0 0
...

...
0 0
0 0
0 F22


,

Fη,2 =



0 F12F22
0 F12
I 0
...

...
0 0
0 0
0 F 2

22


,

Fη,j =



0 F12F
j−1
22

0 F12F
j−2
22

...
...

0 F12
I 0
0 0
...

...
0 0
0 F j

22


, j = 3, . . . , k − 2,

Fη,k−1 =



0 F12F k−2
22

0 F12F k−3
22

...
...

0 F12F22
0 F12
I 0
0 F k−1

22


.

The form of the covariance matrix Ωη then follows in view of ϵ(t)
being vector white noise with covariance matrix Ωϵ . �

Proof of Theorem 2. Integrating (10)–(13) over the interval
(t − h, t] and dividing the equations for y1 by h yields, for 0 ≤

l ≤ k − 1,

Y1,t−lh = h−1b∗

1,t−lh +

k−l
j=1

B11,jY1,t−lh−jh

+ h−1B12,lY u
2,t−1 + h−1e1,t−lh, (31)

Y u
2t = b∗

2t + h
k

j=1

B21,jY1,t−jh + B22Y u
2,t−1 + e2t , (32)

where Y u
2t =

 t
t−h y2(r)dr , the b∗

jt are defined in the theorem,
and ejt =

 t
t−h ηjrdr (j = 1, 2). The objective is to eliminate

terms involving the unobservable Y u
2t and replace them with the

observable Y2t =
 t
t−1 y2(r)dr . Noting that Y2t = s(Lh)Y u

2t , the
application of the filter s(Lh) to (31) and (32) yields the equations
in the theorem, in which u1t = h−1s(Lh)e1t and u2t = s(Lh)e2t .

Turning to ut it is possible to write

ut = s(Lh)Khet = s(Lh)Kh

 t

t−h
ηrdr = s(Lh)KhFη(Lh)

 t

t−h
ϵ(r)dr,

where Fη(z) =
k−1

j=0 Fη,jz j from the representation for ηt in (30)
and

Kh =


h−1Ikn1 0

0 In2


.

The role of the symmetric (kn1 + n2) × (kn1 + n2) matrix Kh is
to account for the normalisation by h in the equation for the high
frequency flows. From (7) the integral of ϵ(t) takes the form

ϵt =

 t

t−h
ϵ(r)dr =

 t

t−h

 r

r−h
eA(r−s)ζ (ds)dr
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=

 t

t−h
P0(t − s)ζ (ds)

+

 t−h

t−2h
P1(t − h − s)ζ (ds),

where P0(r) =
 r
0 eAsds and P1(r) =

 h
r eAsds; the splitting of the

double integral to two single integralswith respect to ζ (dt) follows
along the same lines as in the proof of Lemma B2 in Chambers
(2011). From this representation it follows that ϵt is an MA(1)
process with autocovariances

Ωϵ0 = E(ϵtϵ
′

t) =

 h

0
P0(r)ΣP0(r)′dr +

 h

0
P1(r)ΣP1(r)′dr,

Ωϵ1 = E(ϵtϵ
′

t−h) =

 h

0
P1(r)ΣP0(r)′dr.

Using Lemma 1 the convolution H(z) = s(z)Fη(z) has the form
H(z) =

2k−2
j=0 Hjz j and hence ut =

2k−2
j=0 Hjϵt−jh, where

Hj =


j

l=0

Fη,l, j = 1, . . . , k − 1,

k−1
l=j−(k−1)

Fη,l, j = k, . . . , 2k − 2.

The autocovariance properties of ut follow from this representa-
tion and the MA(1) properties of ϵt ; see Remark 11. �

Proof of Theorem 3. Integrating (2) over (t − h, t] and partition-
ing conformably with y1 and y2 yields

∆hy1(t) = a1t + A11Y u
1t + A12Y u

2t + z1t , (33)

∆hy2(t) = a2t + A21Y u
1t + A22Y u

2t + z2t , (34)

where Y u
jt =

 t
t−h yj(r)dr (j = 1, 2), at =


a′

1t , a
′

2t

′ is defined in
the theorem, and

zt =


z1t
z2t


=

 t

t−h
ζ (dr).

Integrating (8) and (9) over the same interval gives

Y u
1t = f1t + F11Y u

1,t−h + F12Y u
2,t−h + ϵ1t , (35)

Y u
2t = f2t + F21Y u

1,t−h + F22Y u
2,t−h + ϵ2t , (36)

where ϵt = [ϵ′

1t , ϵ
′

2t ]
′

=
 t
t−h ϵ(r)dr and ft is defined in the

theorem. Beginning with the equation for flows, solving (33) for
Y u
1t under Assumption 1 results in

Y u
1t = A−1

11


∆hy1(t) − a1t − A12Y u

2t − z1t

. (37)

Lagging (37) by h and substituting into (36) for Y u
1,t−h yields

Y u
2t = f2t + F21A−1

11


∆hy1(t − h) − a1,t−h − A12Y u

2,t−h − z1,t−h


+ F22Y u
2,t−h + ϵ2t

= g2t + G21∆hy1(t − h) + G22Y u
2,t−h + v2t , (38)

where g2t , G21 and G22 are defined in the theorem, and v2t = ϵ2t
− F21A−1

11 z1,t−h. It follows, by backward substitution, that

Y u
2,t−h =

k−1
j=1

Gj−1
22 g2,t−jh +

k
j=2

Gj−2
22 G21∆hy1(t − jh)

+Gk−1
22 Y u

2,t−kh +

k−1
j=1

Gj−1
22 v2,t−jh. (39)
Substituting (39) into (38) yields

Y u
2t = ḡ2t +

k
j=1

Φ21,j∆hy1(t − jh) + Φ22Y u
2,t−1 + ξ̄2t , (40)

where ḡ2t =
k−1

j=0 Gj
22g2,t−jh, Φ21,j (j = 1, . . . , k) and Φ22 are

defined in the theorem, and ξ̄2t =
k−1

j=0 Gj
22v2,t−jh. In order to

transform Y u
2t into Y2t the operator s(Lh) is applied, resulting in (22),

where ξ2t = s(Lh)ξ̄2t etc.
Turning to the equation for stocks, substituting (37) into (34)

yields

∆hy2(t) = a2t + A21A−1
11


∆hy1(t) − a1t − A12Y u

2t − z1t


+ A22Y u
2t + z2t

=

a2t − A21A−1

11 a1t

+ A21A−1

11 ∆hy1(t)

+

A22 − A21A−1

11 A12

Y u
2t + z2t − A21A−1

11 z1t . (41)

Applying the h-difference operator ∆h = 1 − Lh to (8) results in
(for j = 0, . . . , k − 1)

∆hy1(t − jh) = ∆hc1(t − jh) + F11∆hy1(t − jh − h)
+ F12∆hy2(t − jh − h) + ∆hϵ1(t − jh). (42)

Now, lagging (41) by h and substituting for ∆hy2(t − jh − h) gives

∆hy1(t − jh) = g1,t−jh + G11∆hy1(t − jh − h)

+G12Y u
2,t−jh−h + v1,t−jh, (43)

where v1t = ∆hϵ1(t)+ F12

z2,t−h − A21A−1

11 z1,t−h

and g1t , G11 and

G12 are defined in the theorem. Generalising (39) yields

Y u
2,t−lh =

k−l−1
p=0

Gp
22g2,t−lh−ph +

k−l
p=1

Gp−1
22 G21∆hy1(t − lh − ph)

+Gk−l
22 Y u

2,t−kh +

k−l−1
p=0

Gp
22v2,t−lh−ph. (44)

Using (44) to substitute for Y u
2,t−jh−h in (43) provides

∆hy1(t − jh) = g1,t−jh + G11∆hy1(t − jh − h)

+G12

k−j−2
p=0

Gp
22g2,t−jh−h−ph

+

k−j−1
p=1

Gp−1
22 G21∆hy1(t − jh − h − ph)

+Gk−j−1
22 Y u

2,t−1 +

k−j−2
p=0

Gp
22v2,t−jh−h−ph


+ v1,t−jh (45)

= ḡ1,t−jh +

k−j
p=1

Φ11,p∆hy1(t − jh − ph)

+ Φ12,jY u
2,t−1 + ξ̄1,t−jh, (46)

where ḡ1,t−jh = g1,t−jh + G12
k−j−1

p=1 Gp−1
22 g2,t−jh−ph, the Φ11,j

(j = 2, . . . , k) and Φ12,j are defined in the theorem, and ξ̄1,t−jh =

v1,t−jh + G12
kj−1

p=1 Gp−1
22 v2,t−jh−ph. The final step is to apply the

operator s(Lh) to transformY u
2,t−1 intoY2,t−1, resulting in (19) – (21)

as required, where ξ1,t−jh = s(Lh)ξ̄1,t−jh etc.
The autocovariance structure of ξt can be obtained by noting

that ξt = s(Lh)ξ̄t , and that, in turn, ξ̄t =
k−1

j=0 Rjvt−jh, where



M.J. Chambers / Journal of Econometrics 193 (2016) 390–404 403
vt = [v′

1t , v
′

2t ]
′ has the representation

vt =

 t

t−h
K0(t − r)ζ (dr) +

 t−h

t−2h
K1(t − h − r)ζ (dr),

and the Rj (j = 0, . . . , k − 1) are defined by

R0 =



I 0
0 0
0 0
...

...
0 0
0 0
0 I


, R1 =



0 G12
I 0
0 0
...

...
0 0
0 0
0 G22


, R2 =



0 G12G22
0 G12
I 0
...

...
0 0
0 0
0 G2

22


,

Rj =



0 G12G
j−1
22

0 G12G
j−2
22

...
...

0 G12
I 0
0 0
...

...
0 0
0 Gj

22


, j = 3, . . . , k − 2,

Rk−1 =



0 G12Gk−2
22

0 G12Gk−3
22

...
...

0 G12G22
0 G12
I 0
0 Gk−1

22


.

The precise formulae come about by noting that

v1t = ∆hϵ1(t) + F12

z2,t−h − A21A−1

11 z1,t−h


=

 t

t−h
[F11(t − r) : F12(t − r)] ζ (dr)

−

 t−h

t−2h
[F11(t − h − r) : F12(t − h − r)] ζ (dr)

+

−F12A21A−1

11 : F12
  t

t−h
ζ (dr),

v2t = ϵ2t − F21A−1
11 z1,t−h

=

 t

t−h


P0,21(t − r) : P0,22(t − r)


ζ (dr)

+

 t−h

t−2h


P1,21(t − h − r) : P1,22(t − h − r)


ζ (dr)

+

−F21A−1

11 : 0
  t

t−h
ζ (dr).

The random vector vt is thus an MA(1) process with variance
matrix Ωv0 and autocovariance matrix Ωv1 as defined in Table 2.
This enables the autocovariances of ξ̄t and, hence, of ξt itself to be
derived. �

Supplementary results

Lemma 1. Let s(z) =
k−1

j=0 z j and F(z) =
k−1

j=0 Fjz j, where s(z) is
a scalar polynomial and F0, . . . , Fk are matrices. Then the convolution
s(z)F(z) is of the form

H(z) = s(z)F(z) =

k−1
j=0

k−1
l=0

Flz j+l
=

2k−2
j=0

Hjz j,

where

Hj =

min{j,k−1}
l=max{0,j−(k−1)}

Fl =


j

l=0

Fl, j = 0, . . . , k − 1,

k−1
l=j−(k−1)

Fl, j = k, . . . , 2k − 2.

Proof of Lemma 1. Collecting terms in common powers in the
polynomial yields

H(z) = F0 + (F0 + F1)z + (F0 + F1 + F2)z2

+ · · · + (F0 + F1 + · · · + Fk−1)zk−1

+(F1 + · · · + Fk−1)zk + (F2 + · · · + Fk−1)zk+1

+ · · · + Fk−1z2k−2.

The matrices in this expression can be represented as stated
above. �

Derivation of expressions for c(t) in Section 5.2. From (6)wehave

c(t) =

 t

t−h
eA(t−s)(µ + γ s)ds = C1µ + C∗

1 γ ,

where

C1 =

 t

t−h
eA(t−s)ds =

 h

0
eArdr,

C∗

1 =

 t

t−h
seA(t−s)ds =

 h

0
(t − r)eArdr = C1t − C2,

C2 =

 h

0
reArdr.

Hence c(t) = (C1µ − C2γ ) + C1γ t . When A is nonsingular
the expressions for C1 and C2 follow from matrix generalisations
of standard integral formulae. For nonsingular A the stated
expressions follow from using the infinite series representation of
eAr and integrating term by term, yielding

C1 =

 h

0

∞
j=0

1
j!
Ajr jdr =

∞
j=0

1
j!
Aj
 h

0
r jdr

=

∞
j=0

1
j!
Aj hj+1

(j + 1)
= h

∞
j=0

1
(j + 1)!

Ajhj,

C2 =

 h

0

∞
j=0

1
j!
Ajr j+1dr =

∞
j=0

1
j!
Aj
 h

0
r j+1dr

=

∞
j=0

1
j!
Aj hj+2

(j + 2)
= h2

∞
j=0

1
j!(j + 2)

Ajhj,

as required.

Data used in Section 6. The monthly UK CPI data were obtained
from the Office for National Statistics while the monthly US
CPI data and daily exchange rate data were obtained from the
FRED database provided by the Federal Reserve Bank of St. Louis.
As mentioned in the text, the daily exchange rate observations
were also aggregated to weekly and monthly frequencies. For the
monthly series the last available daily observation was used. For
the weekly series, the daily dates chosen depended on the number
of days in the month. For months with 31 days, the four weekly
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values correspond to days 8, 16, 24 and 31; for months with 30
days, the observations correspond to days 8, 15, 23 and 30; while
for February, days 7, 14, 21 and 28/29 were used. This ensures that
the weekly data are in accordance with the monthly data i.e. the
observation for the fourth week in the month corresponds to the
last day of the month, as for the monthly data. In cases where
the required day corresponds to a weekend or holiday, the value
immediately prior to the required day was used.
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