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Abstract. matlab® is a numerical computing environment oriented to-
wards manipulation of matrices and vectors (in the linear algebra sense,
that is arrays of numbers). Until now, there was no comprehensive tool-
box (software library) for matlab to compute with Clifford algebras and
matrices of multivectors. We present in the paper an account of such a
toolbox, which has been developed since 2013, and released publically
for the first time in 2015. The paper describes the major design deci-
sions made in implementing the toolbox, gives implementation details,
and demonstrates some of its capabilities, up to and including the LU
decomposition of a matrix of Clifford multivectors.
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1. Introduction

Modern applications of Clifford algebras1 exist in many fields as diverse as
robotics (e.g., collision avoidance, pose estimation), computer vision (mo-
tion capture, orientation and tracking) and (colour) image processing (ray
tracing, image segmentation), materials science (optical tomography, space
group symmetry visualization), applied physics (vector fields, scattering and
diffraction of electromagnetic waves), and many others. For an overview of
these and further applications please see [1, 2].

In many applications, computation is important, particularly for mod-
elling and simulation, but numerical computation can also be used to study

1In the literature further common names of these algebras are geometric algebras, and
Clifford(’s) geometric algebras.
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algorithms and verify algebraic results used in algorithms. Therefore compu-
tational tools tailored to Clifford algebras are of wide applicability and indeed
there are in existence several computational libraries and tools for computing
with Clifford algebras. However, until now there has not been a comprehen-
sive software library for computing with Clifford algebras in matlab [3]. In
this paper we present details of a new library (known in matlab as a toolbox )
designed so as to extend matlab in a natural matlab-like manner to handle
arrays (including, but not limited to, vectors2 and matrices) with elements
which are Clifford multivectors in an arbitrarily chosen Clifford algebra. The
toolbox presented here is a numerical toolbox at the present time, but since
matlab includes a symbolic toolbox, there remains open the possibility of
adding symbolic manipulation at a later date.

A paper such as this, covering mathematical software, of necessity uses
terminology from both mathematics and computing. We have tried to make
clear what we mean by technical terms using footnotes or parenthetical ex-
planations.

2. Mathematical preliminaries

Definition 1 (Clifford’s geometric algebra [4, 5, 6]). Let {e1, . . . , ep, ep+1, . . .,
ep+q, ep+q+1, . . . , en}, with n = p+ q + r, e2k= Q(ek)1 = εk,

εk =


+1 : k = 1, . . . , p

−1 : k = p+ 1, . . . , p+ q

0 : k = p+ q + 1, . . . , n,

(1)

be an orthonormal base of the inner product vector space (Rp,q,r, Q), Q the
quadratic form, with a geometric product according to the multiplication rules

ekel + elek = 2εkδk,l, k, l = 1, . . . n, (2)

where δk,l is the Kronecker symbol with:

δk,l =

{
1 : k = l

0 : k 6= l.

This non-commutative product and the additional axiom of associativity gen-
erate the m-dimensional Clifford geometric algebra denoted C`p,q,r over3 R,
with m = 2n. The set {eA : A ⊆ {1, . . . , n}} with eA = eh1

eh2
. . . ehk

,
1 ≤ h1 < . . . < hk ≤ n, e∅ = 1 the unity in the Clifford algebra, forms
a graded (blade) basis of C`p,q,r

4. The grades k range from 0 for scalars, 1
for vectors, 2 for bivectors, s for s-vectors, up to n for pseudoscalars. The
quadratic space (Rp,q,r, Q) is embedded into C`p,q,r as a subspace, which is

2The word vector here means a degenerate matrix with one row or column, not a vector
in the sense used in Clifford algebras.

3 For quadratic non-degenerate Clifford algebras (see [5, § 14.3]), it would equally be

possible to replace the field of real numbers R in this definition by the field of complex

numbers C. This would also be no problem for computations with matlab.
4In the rest of the paper we denote the unity element as e0.
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identified with the subspace of 1-vectors. All linear combinations of basis ele-
ments of grade k, 0 ≤ k ≤ n, form the subspace C`kp,q,r ⊂ C`p,q,r of k-vectors.
The general elements of C`p,q,r are real linear combinations of basis blades
eA, called Clifford numbers, multivectors or hypercomplex numbers.

In general 〈A〉k denotes the grade k part of A ∈ C`p,q,r. Following [6],
the parts of grade 0 and k + s, respectively, of the geometric product of a
k-vector Ak ∈ C`p,q,r with an s-vector Bs ∈ C`p,q,r

Ak ∗Bs := 〈AkBs〉0 , Ak ∧Bs := 〈AkBs〉k+s , (3)

are called scalar product and outer product, respectively. They are bilinear
products mapping a pair of multivectors to a resulting product multivector
in the same algebra. The outer product is also associative, the scalar product
is not. Compare [5, 7] for further common derived products, e.g., left and
right contractions are algebra derivations, which generalize the inner product
of vectors to k-vectors. All these products extend by linearity to products of
general multivectors.

For non-Euclidean vector spaces with non-degenerate quadratic form
(r = 0) it is conventional to write C`p,q rather than C`p,q,0. Every k-vector B
that can be written as the outer product B = b1 ∧ b2 ∧ . . .∧ bk of k vectors
b1,b2, . . . ,bk ∈ Rp,q,r is called a simple k-vector or blade.

Multivectors M ∈ C`p,q,r have k-vector parts (0 ≤ k ≤ n): scalar part

〈M〉0 ∈ R, vector part 〈M〉1 ∈ Rp,q,r, bivector part 〈M〉2 ∈
∧2 Rp,q,r, . . . ,

and pseudoscalar part 〈M〉n ∈
∧n Rp,q,r

M =
∑
A

MAeA = 〈M〉0 + 〈M〉1 + 〈M〉2 + · · ·+ 〈M〉n . (4)

A multivector matrix or Clifford matrix is an a × b matrix A of multivector
elements, i.e., an array of a rows and b columns with each array entry Aij ,
1 ≤ i ≤ a, 1 ≤ j ≤ b, itself being a full multivector Aij ∈ C`p,q,r.

3. Introduction to the toolbox

In the rest of this paper we present an account of a new open-source5 toolbox
(software library) which enables matlab [3] to compute with arrays (includ-
ing matrices) of Clifford multivectors, i.e., elements of C`p,q,r. This toolbox is
obviously not the first software library for computing with Clifford algebras
and it is unlikely to be the last. In the 1980s, Lounesto and others cre-
ated a stand-alone calculator-like program called CLICAL [8], running under
MS-DOS, which was probably the first software for calculating with Clifford
multivectors. In the 1990s, GABLE [9, 10] was created and is of interest here
because it is a matlab package. GABLE implements only Clifford algebras
applicable to 3-dimensional space (i.e., with three basis vectors), and it can
represent only single multivectors (not arrays or matrices of multivectors).
Thus, although it is a matlab package, it does not extend matlab to handle

5GNU General Public License v3
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arrays or matrices of multivectors, rather the authors used the matlab plat-
form to support a Clifford package. The primary aim of GABLE appears to
have been education, and it does permit visualization of vectors, bivectors,
geometric and inner products etc. Development halted around 2001, and al-
though matlab has moved on through many versions since then, the package
still works on current versions of matlab.

Other libraries and packages exist for computing with Clifford algebras.
They include libraries, template libraries, and code generators for C++, Java
and other languages designed to be used as components in other software. Ex-
amples are: GAIGEN [11], GluCat [12], Gaalet [13], and GAALOP [14]. There
are also packages which run in an environment provided by a software tool
(examples of such tools include matlab, maple, Mathematica, Maxima).
Examples (in addition to GABLE, mentioned above) are the CLIFFORD
package for Maple [15] which provides very sophisticated symbolic manipu-
lation capabilities, and a Clifford package for Mathematica [16] (however it
is not clear where to obtain this package).

The new toolbox has been developed by the authors since 2013 and was
first released publicly (version 0.5) in March 2015 at Sourceforge [17]. The
current state of implementation, as of version 0.9, is:

• the underlying structure of the toolbox is complete (initialization of
algebras, internal representation of multivector arrays);
• the user can compose and decompose multivector arrays from numeric

data (for example to construct multivector arrays from data read in
from an external file);
• the matlab colon notation for sophisticated indexing of arrays, and

concatenation of arrays using square brackets are implemented for both
reading and assignment (we have overloaded6 the matlab subsref,
subsindex and subsasgn functions to make this possible);
• arithmetic functions are implemented, including the full geometric prod-

uct of two multivectors (discussed in § 4) (see Table 1); complete with
test code for a range of algebra specific multiplication tables;
• grade extraction, involutions (conjugate, reverse etc.) are implemented;

(see Table 1)
• LU decomposition and matrix inverse work, but not yet for larger alge-

bras C`p,q with more than 6 grades, i.e., p+ q > 6 (these functions are
not public yet and will be the subject of a future paper).

Some ideas used in the toolbox are derived from the Quaternion Toolbox for
matlab (QTFM) [18] which has been developed since 2005 and has been

6Overloading in computer languages means that multiple functions with the same name

are provided, each operating on a different type of data, and the appropriate function
is called automatically according to the data type of the parameters provided at run-

time. The QFTM toolbox, for example, provides two overloadings of the abs function,

which in matlab computes the absolute value of its argument (real or complex). The
quaternion toolbox provides quaternion and octonion versions of this function each of

which computes the absolute value (magnitude) of its quaternion or octonion argument
(and being vectorised, computes this for each element of an array argument).
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Table 1. Summary of key functions provided by the toolbox.

Function name Computes

abs(M) Modulus |M| =
√
||M||

bivector(M) Bivector 〈M〉2
cast(M, T) Casts/converts coefficients of M to data type T
conj(M) Clifford conjugate of a multivector
dual(M) Dual of a multivectora M∗ = MI−1

even(M) Even part
∑

k,even 〈M〉k
grade(M, k) Grade extraction 〈M〉k
left contraction(M, N) Left contraction McN
-/minus(M, N) Subtraction M−N
*/mtimes(M, N) Matrix product MN
normm(M) Norm ||M || =

∑
AM

2
A, see (4)

odd(M) Odd part
∑

k,odd 〈M〉k
part(M, k) Coefficientb Mk∈ R, 1 ≤ k ≤ m
+/plus(M, N) Addition M + N
pseudoscalar(M) Pseudoscalar 〈M〉n
reshape Reshapes an array
reverse(M) Computes the reverse of a multivector

(an involution)
right contraction(M, N) Right contraction MbN
scalar(M) Scalar 〈M〉0
scalar product(M, N) Scalar product of two multivectors
size Dimensions of a multivector array
squeeze Removes singleton dimensions from an array
sum Sums an array of multivectors
.*/times Elementwise (geometric) product
transpose Transpose of a matrix
trivector(M) Trivector 〈M〉3
unit(M) Normalise to unit modulusc : M/|M|
vector(M) Vector 〈M〉1
wedge(M, N, . . . ) Wedge productd M ∧N ∧ . . .

Bold function names are overloadings of standard matlab functions. All except

mtimes, reshape, size, squeeze, sum and transpose operate elementwise on their ar-

guments (that is the operation is applied to each element of an array of multivectors).
a For non-degenerate quadratic form Clifford algebras. I denotes the pseu-

doscalar.
b In fact, the toolbox permits coefficients to be complex, as discussed in

§ 7.3.
c For multivectors with non-zero modulus.
d Alternative common name: outer product.
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downloaded over 13,000 times. The quaternion toolbox includes many high-
level algorithms including quaternion Fourier transforms, the LU, QR, SVD
and EVD matrix decompositions, some of which have been the subject of
journal papers [19, 20, 21]. Since release 2 in 2013, QTFM also includes
basic infrastructure and some functions for computing with octonions. The
quaternion toolbox is highly vectorized7 and many functions are overloadings
of matlab functions and hence are easy to learn, since they operate largely
in the same way as the original matlab functions.

The new toolbox is more complex than the quaternion toolbox because
it handles multiple algebras, rather than one fixed algebra. The user can only
compute with one algebra at a time but it is possible to switch dynamically
from one Clifford algebra to another in the middle of a running script or
function, and to preserve the values of existing variables, making it feasible
to check that a computation works in many algebras with one script.

The authors plan to implement some functions in higher-dimensional al-
gebras by recursion to lower-dimensional algebras (that is, the toolbox itself
will internally switch to a lower-dimensional algebra matrix representation of
variables from a higher-dimensional algebra, and then return to the original
algebra before return of results). This depends on successfully implementing
isomorphisms as discussed by Lounesto [5, Chapter 16], which requires some
detailed but not fundamentally difficult programming to rearrange multivec-
tor data into a different format and handle the switch between two algebras
(most likely using a stack to preserve details of the previous algebra ready
for the return later).

We chose to create a new toolbox for matlab (and not for some other
language or maths tool) for several reasons including: experience with the
quaternion toolbox QTFM; the fact that matlab is a (mainly) numerical
tool widely used in many fields across academia and industry; the ability of
matlab to compute fast using processor-level vectorization; matlab’s no-
tation for vector and matrix operations using the colon notation to select
slices or segments of an array for read and write operations; and the exis-
tence of a large library of functions which can be used in conjunction with
a user-defined toolbox (e.g., functions for plotting/image viewing, file I/O,
statistics).

4. Initializing an algebra

Since the toolbox can handle any Clifford algebra, the user must initialize
an algebra before computing with it. This is done by specifying the num-
ber of basis vectors that square to +1, −1, and 0 (the ‘signature’, (p, q, r)
respectively) as defined in Definition 1.

7Vectorization in numerical computing refers to the efficient computation of opera-

tions on arrays of data in memory without individual access to the array elements by the
user’s code. It also usually means that the operations are implemented by single-instruction

multiple-data machine instructions rather than a sequence of machine instructions or re-

peated machine instructions operating on each datum one-by-one.
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The initialization process computes and stores a multiplication table of
size m ×m for the specified algebra (compare Definition 1), tabulating the
result of multiplication of each of the m basis elements8 ej , j = 0, . . . ,m− 1
with any other. The entries in this table contain two items of information
about the product eaeb = εabec (a, b, c ∈ {0, 1, 2, 3, . . . ,m− 1}):

1. the sign9: εab ∈ {−1, 0,+1};
2. the index c of the result (this depends only on n = p+ q+ r and not on

the individual values of p, q and r in the signature).

In describing how the toolbox works, and in thinking about it ourselves, we
have to map between multiple systems of indexing. Internally, the toolbox
uses a simple index from 1 to m to access multivector elements (matlab’s
indices start at 1). This system is used in computing products using the
table described above, but it is not what the user sees. The first element of a
multivector (the scalar part) is usually denoted by index zero, and therefore
the unit scalar is denoted by e0 when the user types it. Similarly, we provide
a means for the user to enter basis elements such as e23 by typing e23.
We call the sequence of index values ‘23’ (with strictly ascending order) a
lexical index. The toolbox handles the conversion between lexical and numeric
indices (used for indexing into the multivector internally) in a way that should
seem natural to the user (mostly by hiding the details).

The multiplication table is used to compute the full multivector (geo-
metric) product using table lookup. A concise mathematical definition of the
product of two multivectors is given by Perwass et al. [22, § 2, p. 461] using the
Einstein summation convention and assuming a tensor (3-dimensional array)
which expresses the multiplication table between basis elements. In practice,
because the tensor is sparse (mostly zero), the arrangement described above
with separate sign and index tables is much more compact. An equivalent is
stated by Schulz et al. in [23, Equation 1, § II.B] for the case of hypercomplex
algebras in general. The matrices T described in [23] are planes within the
tensor of [22]. The practical implementation is almost trivial: a multivector
variable10 is stored as an array of m numeric arrays (in fact in a matlab
cell array of length m, which we explain in more detail in § 7.1) and the m
values of one multivector are each multiplied in turn with the m values of
the other, the appropriate sign is applied to the result from the table11, and
the product is stored into or added to the appropriate element of the result
using the index from the table.

8Basis element here means the set containing the scalar e0, the n basis vectors ei,

i = 1, . . . , n, and the lexically ordered canonic combinations of the basis vectors e12 up to
the pseudoscalar (with index m− 1).

9Note that ε here is not the same ε as given in Definition 1 although it is derived from

the rule given in (2). The ‘sign’ may be zero because some algebras (with r > 0) have basis
elements that square to zero.

10Multivector variable means a matlab variable containing an array of multivectors (of

which a single multivector is just a special case).
11The full truth is this: if the sign is zero, clearly it is a waste of time to compute the

product, so in fact this step is omitted by checking the sign first.
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Entries in the sign table are computed from the rules given in Definition
1, which are sufficient to define directly all the products of basis elements up
to en. The rules for basis elements en+1 . . . em are computed by counting
the number of swaps needed to put the subscripts of a product into canonical
order. For example, the product of e24 with e134 yields a notional result e24134
which must be ‘reduced’ to a canonic basis element with appropriate sign. In
this example, moving either of the ‘4’s to make them adjacent requires two
swaps and therefore two changes of sign, which cancel out, yielding e21344.
The duplicated index ‘4’ is removed and the sign of e24 is applied to the
result. Finally, the remaining unique indices must be placed in lexical order,
involving a further swap, which requires a change of sign, giving ±e123, the
sign depending on the algebra. In practice, much of this is implemented using
bitwise logical operations, and the reader is referred to the code for further
details [17, function clifford sign table].

Entries in the index table are computed straightforwardly by mapping
lexical indices into numeric indices using a sort.

Since the computation of the multiplication table is intricate, we have
taken steps to make verification possible by comparison with other Clifford
algebra software. To do this we have implemented an export function that
can export the multiplication table to a comma-separated values file, with the
hope that other authors will do the same. Comparison between the exported
tables is straightforward. However, our internal test code also verifies the
multiplication table, by a somewhat different computation to that used to
construct it.

There are in fact two functions which compute the full multivector
product, in order to implement the two standard matlab multiplications:
one (times or .*) computes the elementwise product of two arrays (the
Hadamard product), the other (mtimes or *) computes the matrix product
(of conformable matrices or vectors). In both cases, the individual multipli-
cations of multivectors within the matrices are full geometric products. The
only difference in the coding of the two functions is which of the two standard
matlab products is used to compute the individual numerical products of
multivector coefficients. (Matrix multiplication of matrices of Clifford multi-
vectors is based on the underlying matlab matrix product, thus making use
of highly optimized and fast code developed and enhanced over many years
by the Mathworks, and of course, hardware level parallelism which matlab
employs.)

Once an algebra has been initialized, all multivector variables created
thereafter are implicitly elements of the initialized algebra. Any multivector
variables already in existence are not destroyed but they cannot be used
until the ‘signature’ is restored to the value that was in use when they were
created (every multivector variable contains a (hidden) copy of the signature
to enable this check). The function clifford signature with parameters
initializes an algebra as shown in Figure 1. Without parameters it displays a
summary of the currently initialized algebra.
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>> clifford_signature(0,3)

>> clifford_signature

Algebra Cl(0,3)

Dimensionality: 8

Number of grades: 4

Multiplication table:

| e0 e1 e2 e3 e12 e13 e23 e123

------+-----------------------------------------------

e0 | e0 e1 e2 e3 e12 e13 e23 e123

e1 | e1 -e0 e12 e13 -e2 -e3 e123 -e23

e2 | e2 -e12 -e0 e23 e1 -e123 -e3 e13

e3 | e3 -e13 -e23 -e0 e123 e1 e2 -e12

e12 | e12 e2 -e1 e123 -e0 e23 -e13 -e3

e13 | e13 e3 -e123 -e1 -e23 -e0 e12 e2

e23 | e23 e123 e3 -e2 e13 -e12 -e0 -e1

e123 | e123 -e23 e13 -e12 -e3 e2 -e1 e0

Figure 1. Initializing an algebra

5. Constructing multivector arrays

All variables in matlab are arrays (even π is represented as a 1 × 1 matrix
containing the numeric value 3.14159 . . . ), therefore by design all multivector
variables are also arrays, since they are composed of standard matlab nu-
meric arrays (each multivector variable contains a cell array of m standard
matlab numerical arrays). The reason for this design choice is to make it
possible to utilise as much as possible of the existing matlab infrastructure
for arithmetic, array indexing, display of numerical values in the command
window etc. Our toolbox is designed to extend matlab, not just use it as a
platform for Clifford algebra computations. In § 6 below we discuss an exam-
ple of this extension concept: the LU decomposition of a matrix of Clifford
multivectors. We provide an overloading of the matlab lu function to oper-
ate on matrices of multivectors, using as far as possible the same parameter
profile as the existing matlab function. This concept is not limited to named
functions: it also applies to the use of indexing using parentheses and the colon
notation; to the use of square brackets to perform concatenation of arrays;
and to the use of the dotted operator notation for elementwise operations
such as .* (elementwise product) and .^ (elementwise exponentiation).

There are several ways to build a multivector variable from given data,
such as data read in from a file:

1. Use a constructor function and supply each numerical component of the
multivector as a parameter. The constructor function is called clifford.

2. Multiply numeric quantities with basis elements and add them. The ba-
sis elements (e1, e123 etc.) are provided as parameterless functions called
e1, e123 and so on. (These are created by the initialization process.)
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>> p = clifford(1,2,3,4,5,6,7,8)

p = 1.0000 e0

+ 2.0000 e1 + 3.0000 e2 + 4.0000 e3

+ 5.0000 e12 + 6.0000 e13 + 7.0000 e23

+ 8.0000 e123

>> q = 1 * e0 + 2 * e1 + 3 * e2 + 4 * e3 + 5 * e12 ...

+ 6 * e13 + 7 * e23 + 8 * e123

q = 1.0000 e0

+ 2.0000 e1 + 3.0000 e2 + 4.0000 e3

+ 5.0000 e12 + 6.0000 e13 + 7.0000 e23

+ 8.0000 e123

>> p == q

ans = 1

Figure 2. Constructing multivectors using the constructor
function (top), then the parameterless basis functions (be-
low). (The output has been slightly edited to remove white
space and blank lines. Both methods will also work with
arrays.)

3. For testing, a random multivector generation function is provided, like
matlab’s rand function. It returns an array of unit modulus multivec-
tors.

The first two of these methods are illustrated in Figure 2. At the end of
the transcript, the equality operator (implemented for multivectors by the
toolbox) compares the variables p and q. The result is 1 (a matlab logical
(or Boolean) value), indicating true.

There are also ways to extract the geometric and numerical components
of a multivector variable. Figure 3 shows grade extraction and coefficient ex-
traction. The bivector function extracts the bivector part of its argument.
Named functions are provided to extract the scalar, vector, bivector, trivec-
tor and pseudoscalar grades. The more general grade function must be used
for higher grades, or where it is necessary to index through the grades. The
grade extraction functions return a multivector variable (even in the case of
the scalar or pseudoscalar grades), whereas the coefficient extraction function
part returns a numeric variable. Grades are indexed from zero (scalar) fol-
lowing mathematical convention. Coefficients are indexed from one (matlab
indexing convention). Thus in the example with n = 3, m = 2n = 8, the pseu-
doscalar part is grade 3 (there are four grades in this algebra with indices
0, 1, 2, 3), but it is accessed as a coefficient at index 8 (the basis coefficients
are indexed from 1 to 8).
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>> bivector(p)

ans = 5.0000 e12 + 6.0000 e13 + 7.0000 e23

>> grade(p, 2)

ans = 5.0000 e12 + 6.0000 e13 + 7.0000 e23

>> grade(p, 3)

ans = 8.0000 e123

>> part(p, 8)

ans = 8

Figure 3. Accessing parts of a multivector (the functions
will also work on multivector arrays).

6. A non-trivial test case: the LU decomposition

Now we present results from a non-trivial matrix function that has been suc-
cessfully implemented in the toolbox. The LU decomposition is a factorization
of a matrix into a lower (L) and an upper (U) triangular matrix. matlab
implements this in the form [L, U, P] = lu(A) where P is an (optional)
permutation matrix such that LU = PA. The Clifford toolbox currently im-
plements this decomposition for algebras where r = 0 (it won’t work when
some of the basis elements square to zero). Of course, there can be a problem
with computing any decomposition if the matrix to be decomposed has ele-
ments which are divisors of zero (algebraically non-invertible multivectors),
and we will address this in a forthcoming paper. The Clifford lu function
takes parameter profiles identical to the matlab function or raises an error if
a parameter profile is not supported, as you would expect. The LU decompo-
sition was implemented first because it needs no complicated computations
apart from inverses and row/column products and standard arithmetic. It
does however, require indexed access for both read and write, so this func-
tion provides a good test case for verifying much of the functionality of the
toolbox. The decomposition requires many fundamental multivector opera-
tions: multivector inverses, full multivector (geometric) products, multivector
additions, and outer (matrix products) of rows and columns of multivectors.
The LU function is not yet available in the public release, but will be the
subject of a forthcoming paper.

Figure 4 shows results from the LU decomposition of a small (3 × 3)
array in algebra C`1,1. The 3× 3 matrix A is created by the randm function
which returns an array of unit modulus random multivectors. Thus A is a
3× 3 matrix with (random, unit modulus) multivectors as elements. The lu

function computes the decomposition of A into two matrices L and U, each of
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>> clifford_signature(1,1)

>> A = randm(3);

>> [L, U, P] = lu(A)

L = 3x3 Cl(1,1) multivector array

U = 3x3 Cl(1,1) multivector array

P =

1 0 0

0 0 1

0 1 0

>> show([L, U])

e0 *

1.0000 0 0 0.6759 -0.3119 0.2112

-0.6785 1.0000 0 0 -0.8486 -0.5983

0.7731 0.3155 1.0000 0 0 -0.5460

+ e1 *

0 0 0 -0.2391 -0.8004 0.5038

-0.3510 0 0 0 -0.4131 0.3472

-0.1410 -0.3898 0 0 0 0.2240

+ e2 *

0 0 0 -0.6844 -0.2096 0.7260

-0.5940 0 0 0 -0.9474 1.4190

-0.7386 -0.1936 0 0 0 -0.7052

+ e12 *

0 0 0 -0.1326 0.4670 -0.4177

0.3806 0 0 0 0.0146 -0.3652

0.0991 0.9669 0 0 0 0.2932

>> max(max(abs(L * U - P * A)))

ans = 3.0022e-16

Figure 4. LU decomposition demonstration

which is a lower (respectively) upper triangular matrix, again with elements
which are multivectors. P, as in the matlab LU decomposition, is a real
permutation matrix such that LU = PA. The show command displays the
numerical data within a multivector array (whereas by default only size and
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>> clifford_signature(4,1)

>> A = randm(50)

A = 50x50 Cl(4,1) multivector array

>> tic, [L, U, P] = lu(A); toc

Elapsed time is 22.673430 seconds.

>> max(max(abs(L * U - P * A)))

ans = 7.9795e-09

Figure 5. LU decomposition in a larger algebra with a
larger matrix

data type information is output). The format of the output from show is based
on matlab’s representation of numeric arrays: each non-zero component of
the multivector array formed by concatenating L and U is displayed, prefixed
by its basis element. The choice here is based on two factors: compactness,
and simplicity (of use and of implementation). If we tried to show the matrix
of multivectors by displaying every element of the multivector variable in a
tabular layout representing the matrix, there would be insufficient space in
the command window to do so, without wrapping lines and making a very
confusing display. Notice the use of square brackets inside the show command
to concatenate L and U horizontally, and thus display them side-by-side. The
numeric format is controlled by matlab, so altering the format setting will
alter the format here (e.g., the number of decimal places displayed). The L
and U arrays are not output by default – but some information about them
is shown. P is a numeric matrix, so matlab displays it numerically. To verify
the result, the final command computes the difference between LU and PA.
Since the result is a multivector matrix (of rounding errors), we use abs

(the modulus function) to compute the moduli of the rounding errors. The
matlab max functions applied to the result find the largest element of the
modulus array, which confirms that LU = PA to within rounding error.

To demonstrate that this process works for larger algebras and larger
arrays, Figure 5 shows a similar computation in the conformal geometric
algebra C`3+1,1, with 32 coefficients in each multivector, on a matrix with
50 rows and columns (there are 80,000 numeric values in this matrix). The
rounding error is larger, as would be expected, but still small compared to
the magnitude of the multivector values. The elapsed time to compute this
example is shown by the tic and toc function pair to be around 20 seconds.

7. Key design and implementation issues

Key design issues that we faced were:

• Whether to permit use of one algebra at a time, or multiple algebras:
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– we chose one at a time because it does not make sense to combine
multivectors from different algebras;

– this is how CLICAL operates [8].
Working with one algebra at a time means that the algebra is always im-
plicit when we create or compute with variables, whereas with multiple
algebras the algebra would have to be specified for each operation, or
inferred from the algebra of each multivector variable (in an arithmetic
expression, for example).
• How to represent multivector variables internally for efficiency of com-

putation and simplicity of coding.
• How to represent each algebra internally.

These decisions affect all later work, whereas many other design choices can
be altered fairly easily (e.g., the display format for the numeric values of
multivectors, the names of functions etc.).

7.1. How multivectors are represented

Recall (from § 5) that in matlab, all variables are arrays. A multivector such
as:

B = a e0 + b e1 + c e2 + d e12

must have arrays (of the same size and type) for the coefficients a, b, c, d.
This applies whether B is a single multivector (a special case, referred to in
matlab as a scalar12) or an array of multivectors. For example, if B is a 2×2
matrix of multivectors, each coefficient a, b, c, d will be stored internally by
the toolbox as a standard matlab 2× 2 matrix, each in a different cell of a
‘cell’ array13 indexed from 1 to m, where m = 2n is the number of coefficients
in a multivector. The indexing capability is the reason for using cell arrays,
as well as the capability to store a conventional matrix or array in each cell.
The choice of cell arrays to store the m numeric coefficients of a multivector
variable largely avoids the need to construct our own indexing infrastructure
for arrays of multivectors (we still have to provide certain overloadings of
matlab functions, but nothing like the complexity that would be needed to
re-implement the entirety of matlab’s capabilities). The same idea is used
in QTFM [18], for the same reason: simplicity of coding. The details of the
cell array implementation are transparent to the user, of course. The data
within the cells must be of the same type (e.g., double precision floats, 32-bit
integers).

12Of course the term scalar from linear (or matrix) algebra is not the same as the

geometric algebra concept of a scalar (ae0 in the case of B). It is perfectly possible to have
a matrix of scalars in the geometric algebra sense, just as it is possible to have a matrix

of pseudoscalars or bivectors etc. All of these cases are just special cases of matrices of
multivectors.

13matlab cell arrays are a special type of array, usually used to store disparate types of
data in each element. This is contrary to the conventional computer science concept of an

array, which requires the ability to index through the array and apply the same operation
to every element, but it provides a very useful addition to the normal array concept.
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An important issue, which was considered in the original design of the
quaternion toolbox [18], but which is more important in Clifford algebras of
large dimension, is the storage of zero coefficients. In the quaternion toolbox,
a so-called pure quaternion with zero scalar part is stored with an empty
array for the scalar part. (An empty array in matlab has dimension 0 × 0
or 0 × k, and is easily tested for using the built-in function isempty.) This
means that the multiplication of two pure quaternions takes only 12 floating-
point multiplications rather than the 16 that are needed for a full quaternion
product. Additionally, the code in the toolbox is sometimes specific to the
pure quaternion case, which is easily detected by the empty scalar part.

In a Clifford algebra, computation with vectors, bivectors etc. (that is,
sparse multivectors with most grades null) is highly likely and were the zero
parts of each multivector to be stored explicitly, a great deal of wasted compu-
tation would be performed. Therefore, we took the decision that coefficients
of a multivector variable which are exactly zero are not stored explicitly. In-
stead a zero coefficient is stored as an ‘empty’ array. This choice also reduces
the amount of memory needed to store an array with zero coefficients. The
empty arrays are not visible to the user under normal circumstances: if the
user asks for the numeric value of an empty coefficient, the toolbox sup-
plies an appropriately sized array of zeros (matching the size of the non-zero
coefficients). When the value of a single multivector is displayed, empty coef-
ficients are suppressed, not displayed as zeros (as shown in Figure 3). When
an array of multivectors is displayed, coefficients which are empty arrays are
suppressed, but a coefficient which contains some zeros and some non-zero
values is displayed in standard matlab fashion, as shown in Figure 4. A vec-
tor or bivector will be displayed on one line, and the empty grades will be
suppressed from the displayed value. Figure 6 shows the use of empty cells
within a multivector. We have implemented a simple dump function to permit
inspection of the content of a multivector variable, for debugging purposes,
and the figure shows the output of this function for the case of a multivector
variable with only two non-zero coefficients.

Every multivector variable contains a copy of the three-element array
[p, q, r] (the signature in force when the multivector was created). This is
shown in Figure 6 in the first part of the output from the dump function.
This is done so that key functions such as multiplication can check that the
current algebra signature matches the signature inside the multivector: if it
does not, an error is raised and the computation stops.

Although it is possible to compute with only one algebra at a time, vari-
ables can exist in memory (the matlab workspace) simultaneously from more
than one algebra. This is an essential feature to permit recursion through al-
gebras, as we discussed in § 3. Now it is possible to explain this in slightly
more detail: we will provide a function (possibly internal to the toolbox)
that will be able to construct an isomorphic copy of an existing multivector
variable in an algebra different to the current algebra using the matrix iso-
morphisms in Lounesto’s book [5, Chapter 16]. Explicitly, each element of the
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>> M = eye(2) .* (e1 + e3)

M = 2x2 clifford multivector array

>> dump(M)

Signature:

1 2 0

Multivector:

[] [2x2 double] [] [2x2 double] [] [] [] []

Figure 6. Example of empty cells within a multivector vari-
able: there are two 2× 2 identity matrices stored in the po-
sitions corresponding to e1 and e3. matlab indicates an
empty matrix by the notation [ ].

original multivector array will be represented in the new multivector array
by a (block) array of multivectors in the new algebra. This new multivector
variable can clearly be constructed with a signature different to the current
algebra. Then the function will call the clifford signature function to ini-
tialise the new algebra (or use a cached copy of the descriptor for the new
algebra, as described in the next section). The process of constructing the
new multivector is merely a re-arrangement of the numeric values into a cell
array of different size. The isomorphisms themselves will likely be coded as
tables in the code, not computed by the toolbox.

7.2. How is each algebra represented?

When the user initializes an algebra, the function clifford signature com-
putes some internal information and stores it in a global variable called the
descriptor which is normally hidden from the user (it can be made visible by a
global statement issued in the command window, if desired). The descriptor
is a data structure with the following fields:

• the signature – the values of p, q, r;
• the number of basis vector elements (n = p+ q + r);
• the number of basis blade elements in each multivector (m = 2n)
• the multiplication table;
• a table mapping coefficients onto grades;
• an indexing table mapping from lexical indices to numeric indices into

the cell array (1 to m).

This information is reasonably compact, and easily saved and restored if we
switch from one algebra to another. (The multiplication table requires 3 bytes
of memory per entry, and m2 entries, which is 3 MB of data for an algebra
with n = 10, m = 1024.)



Clifford Multivector Toolbox 17

7.3. Data types

The numeric arrays stored inside a multivector can be of any data type sup-
ported by matlab. The default data type is the matlab double floating-
point type, but integer types are possible. We have implemented a cast

function for converting between data types, overloading the matlab func-
tion of the same name. Since the data within a multivector coefficient is a
standard matlab numeric array, multivectors can have complex coefficients
without any special coding in the toolbox. However, as the toolbox develops,
some special coding will be necessary to ensure that meaningful results are
obtained with complex multivectors, just as in the quaternion toolbox. As
in the quaternion toolbox, we will implement checking that all the compo-
nents of a multivector have the same type, but this is not yet fully done14,
and again, as in QTFM we will provide convenient functions for creating
multivector variables with complex coefficients, and extracting the real and
imaginary parts.

7.4. The basis elements e0, e1, e12 etc.

matlab does not provide a way to implement constants, so we cannot define
these important multivectors as constants. It is very important to provide
these values in a form that appears natural to the user, so that it is possible
to type something like: 2 * e2 + 3 * e13 and obtain the expected result
2e2+3e13. We have therefore implemented the basis elements as parameterless
functions:

• For any given algebra there are m parameterless functions from e0 up
to e123...n which return multivectors with the values e0 up to e123...n.
• These functions are created and written to disk during initialization of

an algebra. If they already exist on disk, and have the correct content,
they are not modified.
• The user must have write access to the disk space where the toolbox is

installed, in order to initialize the files for the first time.

The parameterless function files are not distributed with the toolbox — a
large number of files would be needed for algebras with larger values of n.
The system we have implemented means that a user who never initialises a
large algebra never creates the parameterless functions with long index values
(e.g., the file which implements e123456789).

We have limited the parameterless function files to the canonic (lexical)
ordering of the basis vector indices, because to do otherwise would result in a
huge number of function files being created15. This means of course that the
user cannot type e21 without error, but it is of course possible to type e2 *

e1 and obtain the correct result. We could implement an alternative means
of creating basis elements with non-canonic ordering. For example, a function

14The omission of this checking does not impact on the usability of the toolbox if the

user uses only the default double data type.
15The number of permutations of ‘123456789’ is 9! = 362880 and this would be the

number of files we would need to provide in place of just one parameterless function file.
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named e with a string parameter would allow e('21') (the same approach
is described for Mathematica in [16]). We have code that does almost this in
our test code, and it could be extended with suitable error checking (e.g., to
guard against e('22').

There is clearly a problem with the parameterless functions if the user
creates a variable with the same name as one of the parameterless functions,
but a similar problem also occurs in matlab itself, for example, if the user
creates a variable with the name pi, this will hide the existing matlab built-
in value of the same name, which will then cause erroneous results if the
user’s variable does not have the value π.

8. Conclusion

The current implementation of the Clifford Multivector Toolbox provides a
basis for future work to develop its capabilities up to and beyond those of
the quaternion toolbox. Future work includes the following.

• Many non-trivial functions require implementation and in some cases,
research to find how they can be optimally implemented.
• Clifford Fourier transforms [24], or at least a framework for the user to

implement them.
• Exponential function, trigonometric functions etc.
• Matrix isomorphisms to express multivectors in higher-dimensional al-

gebras using matrices of multivectors in lower-dimensional algebras.
• Better or more appropriate random multivector functions.
• More test code.
• HTML documentation in a similar manner to that in the quaternion

toolbox.

Further, we recognise that some users will want to use the toolbox with
Octave [25]. The most recent version of this software (Octave 4) has only
recently been released, and it is this version that we expect to adapt the
toolbox to work with.

E. H. would like to urge readers to apply the knowledge communicated
in this paper in accordance with the Creative Peace License [26].

Acknowledgements

Development of this toolbox was partially funded by a Scheme 4 (Research in
Pairs) grant number 41408 from the London Mathematical Society. This grant
funded a two-week visit by Stephen Sangwine to the International Christian
University in Tokyo to work with Eckhard Hitzer in March 2015. We express
our thanks to the Programme Committee of the London Mathematical Soci-
ety for this grant which enabled us to develop the toolbox to an initial public
release (version 0.5) from which we have been able to develop a rapid series
of incremental releases.



REFERENCES 19

This paper is based on an invited presentation by Stephen Sangwine
given on 29 July 2015 at the Applied Geometric Algebra in Computer Science
and Engineering Conference held in Barcelona, Spain.

References

[1] Eckhard Hitzer, Tohru Nitta, and Yasuaki Kuroe. Applications of Clif-
ford’s geometric algebra. Advances in Applied Clifford Algebras, 23
(2):377–404, June 2013. doi:10.1007/s00006-013-0378-4. Available in
preprint: http://arxiv.org/abs/1305.5663.

[2] Dietmar Hildenbrand. Foundations of Geometric Algebra Computing,
volume 8 of Geometry and Computing. Springer, Berlin, 2013. ISBN
978-3-642-31793-4.

[3] The MathWorks Inc. MATLAB, 1984–2015. http://www.mathworks.

com/products/matlab/.
[4] M. I. Falcao and H. R. Malonek. Generalized exponentials through Ap-

pell sets in Rn+1 and Bessel functions. In AIP Conference Proceedings,
volume 936, pages 738–741, 2007.

[5] Pertti Lounesto. Clifford Algebras and Spinors. Number 286 in London
Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, second edition, 2001. ISBN 978-0-521-00551-7.

[6] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus: A
Unified Language for Mathematics and Physics. Springer, Heidelberg,
1984. ISBN 978-9027725615.

[7] E. Hitzer. Introduction to Clifford’s geometric algebra. SICE Journal
of Control, Measurement, and System Integration, 51(4):338–350, April
2012. Available in preprint: http://arxiv.org/abs/1306.1660.

[8] P. Lounesto, R. Mikkola, and V. Vierros. CLICAL user manual: Com-
plex number, vector space and Clifford algebra calculator for MS-
DOS personal computers. Technical report, Institute of Mathematics,
Helsinki University of Technology, 1987. Compiled MS-DOS software
application, available from http://users.aalto.fi/~ppuska/mirror/

Lounesto/CLICAL.htm.
[9] S. Mann, L. Dorst, and T. Bouma. The making of a geometric al-

gebra package in Matlab. Research Report CS-99-27, Computer Sci-
ence Department, University of Waterloo, Canada, 1999. Available at
https://cs.uwaterloo.ca/research/tr/1999/27/CS-99-27.pdf.

[10] S. Mann, L. Dorst, and T. Bouma. The making of GABLE: a geometric
algebra package in Matlab. In E. Bayro Corrochano and G. Sobczyk, ed-
itors, Geometric Algebra with Applications in Science and Engineering,
chapter 24, pages 491–511. Birkhäuser, Boston, 2001.
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