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Abstract

In this paper we revisit the question of measurement of hedge fund manager-

ial skill. Using a plethora of di¤erent models, from the simplest ones, employing

a linear regression approach, to the more advanced ones, employing a quantile

regression approach, we are able to identify and exploit managerial skill. The

quantile regression approach enables us to produce robust and accurate esti-

mates of the managerial skill utilizing two di¤erent sources of information: (a)

the distribution information, regarding how the relationship between the return

of the fund and a given variable varies across the conditional quantiles of returns

and (b) factor information, regarding the di¤erent models that can be used for

pricing inference. We show that estimates of the managerial skill based on quan-

tile regressions and robust combination are superior compared to the relevant

estimates from the linear pricing equations.
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1 Introduction

Hedge funds have received a vast amount of attention over the last decades. Based on

Hedge Fund Research (HFR) estimates the total assets under management (AUM) of

the hedge fund industry increased from $39 billion in 1990 to more than $2.97 trillion

as of the second quarter of 2015. Furthermore, during the same period, the number

of active hedge funds rose from 610 to over 10,000. In brief, hedge funds are de�ned

as alternative investment vehicles which follow dynamic trading strategies and have

great �exibility by using leverage, short-selling and derivatives. Hedge funds allow

for investment strategies that di¤er signi�cantly from traditional investments, such as

mutual funds, which usually employ a non-leveraged, static buy-and-hold strategy. For

a detailed recent survey of the academic literature on hedge funds see Agarwal et al

(2015).

Linear regression models have been widely used in the hedge fund literature to

describe the relationship of hedge fund returns with a set of risk factors. The liter-

ature investigating the ability of a variety of factors to explain hedge fund returns

and to identify potential useful predictive factors is quite extensive; see, for example,

Glosten and Jaganathan (1994), Ackermann, McEnally and Ravenscraft (1999), Liang

(1999), Agarwal and Naik (2004), Mitchell and Pulvino (2001), Vrontos, Vrontos, and

Giamouridis (2008), Meligkotsidou, Vrontos and Vrontos (2009). Linear regression

models focus on modelling the conditional mean and as such describe an average re-

lationship of hedge fund returns with the set of risk factors. Given that hedge fund

returns exhibit non-normality patterns, such as fat tails and skewness (Kosowski, Naik

and Teo, 2007, Meligkotsidou, Vrontos and Vrontos, 2009), a linear setup might not be

adequate. A promising alternative route is to employ quantile regression, which is able

to capture the e¤ect of risk factors to the entire distribution of hedge fund returns.

The aim of this study is to provide an alternative approach for measuring managerial

skill based on regression quantiles. In this way, we explore managerial skill on the basis

of the entire conditional distribution of hedge fund returns. One of the bene�ts of our

approach is that it allows us to identify potential di¤erences in managerial skill across

quantiles of returns. Looking at just the conditional mean of the hedge fund return

series can �hide�interesting risk-return characteristics. Especially in cases where the

error distribution deviates from normality, i.e. when the distribution is characterised

by skewness, has outliers or fat tails, or in general if there is some uncertainty about

the shape of the distribution generating the sample, then the standard conditional

linear regression approach may not be adequate, and the quantile regression approach
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provides more robust and more e¢ cient estimates/results. Since the seminal paper of

Koenker and Bassett (1978), who �rst proposed a class of linear regression models for

conditional quantiles, a large amount of theoretical and practical work has been done

in the area of quantile regression. Several papers suggest new estimation techniques

and consider applications of and extensions to the original models (for details, see

the review papers of Buchinsky, 1998, and Yu, Lu and Stander, 2003). Applications

in the �eld of �nance include work on Value at Risk (Taylor, 1999, Chernozhukov

and Umantsev, 2001, Engle and Manganelli, 2004), option pricing (Morillo, 2000),

forecasting stock returns (Meligkotsidou, Panopoulou, Vrontos and Vrontos, 2014) and

the characterization of mutual fund investment styles (Bassett and Chen, 2001).

Summarising the aim of our paper is to produce robust and accurate estimates of

the managerial skill based on quantile regressions. We utilize two di¤erent sources

of information: distribution information, regarding how the relationship between the

return of the fund or the style and a given risk factor varies across the conditional

quantiles of returns and factor information, regarding the di¤erent models that can be

used for pricing inference. We employ a variety of combination of managerial skill and

information methodologies and evaluate their ability in an out-of-sample framework

for the period 2004-2013. This period contains the recent �nancial crisis period that

plagued the hedge fund industry. To anticipate our key results, our performance eval-

uation �ndings suggest that estimates of managerial skill based on quantile regression

(especially at left tail quantiles) and simple combination of managerial skill techniques

work better than the typically employed linear regression models. Using conditional

quantile regression improves our ability to construct style portfolios. Speci�cally, we

show that quantile regression models and the robust combination methods we introduce

account for model uncertainty and parameter instability and provide a more powerful

framework for constructing style portfolios. This is re�ected in the higher values of

the Sharpe ratio, and other risk-adjusted performance measures, of the portfolios con-

structed using the quantile regression approach relative to the linear regression based

portfolios. The results of our analysis provide useful insights to �nance researchers and

practitioners.

The remainder of the paper is organised as follows. Section 2 discusses the proposed

methodologies for measuring hedge fund managerial skill. Section 3 describes the linear

regression models and introduces their quantile regression counterparts along with the

proposed Robust Combination approach for measuring managerial skill. Section 4

describes the data and presents the empirical application, while Section 5 concludes.
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2 Hedge Fund Managerial Skill

The evaluation of the performance of di¤erent hedge fund strategies is usually based

on some measure of the managers�skill. The most commonly used measure is Jensen�s

alpha, introduced by Jensen (1968), that is the intercept in the mean regression of

the fund�s excess return on the excess return of some market index. The intuition

behind using alpha as a measure of performance is that, taking out the part of the

expected return that is explained by the market return the remaining part is explained

by the managerial skill. Obvious extensions arise if we consider the alpha of multiple

regression models, i.e. regressions of the fund�s excess returns on several economic risk

factors, built within the Arbitrage Pricing Theory context. Our main objective is to

construct funds of funds or portfolios of di¤erent strategies based on the top performing

funds or strategies.

In this paper, we employ an alternative measure of performance, similar in nature to

Jensen�s alpha, which is based on quantile regression. The quantile regression approach

models the entire distribution of hedge fund returns without assuming normality and

is more robust to the presence of outliers that could lead to a misleading calculation

of alpha and thus of the managerial skill. Besides the important theoretical properties

of the quantile regression model, estimating the managerial skill based on a synthesis

of the alphas from a series of quantile regressions enables one to identify the presence

of managerial skill not on average but also under extreme market conditions. For

example, using the quantile regressions in the lower quantiles, such as � = 0:10, 0:25

a high positive alpha in comparison with a negative alpha (or a high positive alpha

in comparison with a lower positive alpha) will identify a fund manager that is more

skillful in extreme scenarios like these. On the other hand, using the quantile regressions

in the upper quantiles, such as � = 0:75, 0:90 a high positive alpha in comparison with

a lower positive alpha will show that the fund manager depicts more skill in good

scenarios also. Thus, instead of �nding the managerial ability on average, as is done

with the linear regression models, using the quantile regression models we are able to

estimate the managerial ability from the synthesis of the respective abilities at di¤erent

quantiles or di¤erent scenarios. Another advantage of employing the managerial skill

from the set of quantile regressions is that this procedure allows us to assign relatively

higher weight to quantiles of interest, such as those in the tails of the distribution.

This is in line with some measures of performance that have appeared in the literature

such as L-performance (Darolles, Gourieroux and Jasiak, 2009), Sortino ratio (Sortino

and Prince, 1994), Omega (Shadwick and Keating, 2002), among others. Employing
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quantile regressions we can choose the quantile of interest and then the skill on which

we evaluate the managers.

To take advantage of these features, we consider using the alpha and/or the t-

statistic of alpha of a quantile regression (single factor or multi-factor) as a measure

of performance. Using a number of well-known pricing models for the estimate of the

managerial skill we adapt the respective pricing models to a quantile regression frame-

work. We show that estimates of the managerial skill based on quantile regressions are

superior in comparison with the relevant estimates from the linear pricing equations.

Furthermore, the choice of the set of pricing factors is also a way to characterize the

skills of interest (see Darolles and Gourieroux, 2010). Given the long set of candidate

explanatory variables, suggested by the extant literature, we address the issue based on

two di¤erent procedures by carefully integrating the information content in them. We

proceed in two directions; estimation of the ultimate managerial skill based on combi-

nation of managerial skills and estimation of managerial skill based on combination of

information. Combination of managerial skills combines the managerial skills that are

generated from simple models each incorporating a part of the whole information set,

while estimation of managerial skill based on combination of information brings the

entire information set into one super model to generate the ultimate managerial skill.

The roots of these approaches can be found in the forecasting literature, see Huang

and Lee (2010) and Panopoulou and Vrontos (2015) for an application in hedge funds

returns forecasting.

3 Methodology

3.1 Linear Regression Models

Following the extant literature, we employ the following linear factor models; the Cap-

ital Asset Pricing Model (CAPM) described in Sharpe (1964) and Lintner (1965), the

Fama and French (1993) three factor model, the Carhart (1997) four factor model and

the full factor model. These models typically relate the excess hedge fund returns with

a variety of risk factors. Below we provide a brief description of these models.

CAPM:

rt = �+ �1RMt + "t; (1)

where rt is the fund return in excess of the monthly return on three month Treasury
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Bill and RM is the excess market return over the three month Treasury Bill.

Fama and French three factor model:

rt = �+ �1RMt + �2SMBt + �3HMLt + "t; (2)

where SMB and HML are the "size" and "value" factors of Fama and French (1993),

respectively.

Carhart four factor model:

rt = �+ �1RMt + �2SMBt + �3HMLt + �4MOMt + "t; (3)

where MOM is the "winner minus loser" factor for capturing the momentum e¤ect of

Carhart (1997).

Full factor model:

rt = �+
NX
i=1

�ifit + "t; (4)

where fit; i = 1; :::; N; is in general the return of factor i at time t.

We model the hedge fund returns by using di¤erent information variables - pricing

factors, fit. Speci�cally we use the Fung and Hsieh factors, (Fung and Hsieh, 2001):

Return of PTFS Bond lookback straddle (BTF), Return of PTFS Currency Lookback

Straddle (CTF), Return of PTFS Commodity Lookback Straddle (CMTF), Return of

PTFS Short Term Interest Rate Lookback Straddle (STITF), Return of PTFS Stock

Index Lookback Straddle (SITF), the Fama and French�s �size�(SMB) and �book-to-

market�(HML) as well as Carhart�s �momentum�factor (MOM), and also Fama and

French�s Long Term Reversal (LTR) and Short Term Reversal (STR), and Market

Excess Return (RM). Furthermore we use the returns on the Morgan Stanley Capital

International (MSCI) world excluding the USA index (MXUS), the MSCI emerging

markets index (MEM), and the Default yield spread (DFY).

In all the above speci�cations, the errors "t are assumed to be independent and

identically normally distributed with mean equal to 0 and variance �2:

3.2 Quantile Regression Models

As aforementioned, these linear regression models can model the conditional expecta-

tion and not the entire conditional distribution of the funds excess returns. To address
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this issue, we employ quantile regression models, which allow for a higher degree of

�exibility. Speci�cally, risk factors are allowed to respond asymmetrically at the vari-

ous parts of hedge fund returns distribution. In this respect, we use quantile regression

models (Koenker and Bassett (1978), Buchinsky (1998), Yu, Lu and Stander (2003))

to model the entire distribution of hedge fund returns via modeling a set of conditional

quantiles. Information from di¤erent quantile regression models can be utilized with

the aim to construct a robust and more accurate estimate of managerial skill. More in

detail, we consider quantile regression models with a single or more pricing factors of

the form

rt = �
(�) +

NX
i=1

�
(�)
i fit + "t (5)

where � 2 (0; 1) denotes the �th quantile of rt, and the errors "t are assumed in-

dependent from an error distribution g� (") with the �th quantile equal to 0, i.e.R 0
�1 g� (")d" = � . Model (5) suggests that the �th conditional quantile of rt given

fit; i = 1; :::; N; is Q� (rtjfit) = �(�) +
PN

i=1 �
(�)
i fit, where the intercept and the regres-

sion coe¢ cients depend on � . The coe¢ cient �(�)i shows how the ith factor a¤ects

the fund returns at the level of the �th quantile. The �(�)�s are likely to be di¤er-

ent for di¤erent ��s, revealing a larger amount of information about the managerial

skill in comparison with the � of conditional mean regression. The following models/

speci�cations are employed:

Quantile CAPM:

rt = �
(�) + �(�)RMt + "t; (6)

Quantile Fama and French three factor model:

rt = �
(�) + �

(�)
1 RMt + �

(�)
2 SMBt + �

(�)
3 HMLt + "t; (7)

Quantile Carhart four factor model:

rt = �
(�) + �

(�)
1 RMt + �

(�)
2 SMBt + �

(�)
3 HMLt + �

(�)
4 MOMt + "t; (8)
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Quantile full factor model :

rt = �
(�) +

NX
i=1

�
(�)
i fit + "t; (9)

Managerial skill can be estimated using either �(�) or the t-statistic of �(�) in

the quantile regressions presented above using various quantiles of interest especially

the left tail ones (extreme negative returns). The �(�) parameters from the quantile

regressions show the impact of a number of factors on the entire conditional distribution

of hedge fund returns. Focusing on betas helps in uncovering potential di¤erences in

factor e¤ects across quantiles of returns; see for example Meligkotsidou, Vrontos and

Vrontos (2009).

3.3 Managerial Skill based on Synthesis of Regression Quan-

tiles

Given that we have a plethora of risk factors and their sensitivities for a variety of

quantiles, we propose the following way to e¢ ciently aggregate this information in our

estimate of the managerial skill within the quantile regression setup. This approach,

which we name Robust Combination (RC), constructs robust estimates of the manage-

rial skill from a set of quantile regressions (Section 3.3.1). We also go one step further

and combine the robust estimates of managerial skill obtained from di¤erent pricing

variables using simple combination methods in order to produce a �nal estimate of

the managerial skill (Section 3.3.2). In what follows, we denote the managerial skill by

Skill; and as aforementioned this can be either � or the t-statistic of � in the linear

regressions or �(�) or the t-statistic of �(�) in the quantile regressions.

3.3.1 Managerial Skill based on Regression Quantiles

Managerial skill (Skill) based on the estimated quantile models (6)-(9) employing a

set of factors i is estimated by combining speci�c quantile managerial skills, such as

Skill
(0:25)
i ; Skill

(0:50)
i and Skill(0:75)i : Following the lines of Meligkotsidou, Panopoulou,

Vrontos and Vrontos (2014), we employ the Tukey�s (1977) trimean and Gastwirth

(1966) three-quantile estimators for the mean. These are denoted by RC1 and RC2
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and are given by the following equations:

RC1 : Skilli = 0:25 � Skill(0:25)i + 0:50 � Skill(0:50)i + 0:25 � Skill(0:75)i :

RC2 : Skilli = 0:3 � Skill
( 1
3
)

i + 0:4 � Skill(
1
2
)

i + 0:3 � Skill(
2
3
)

i :

Furthermore, we use the analogue (for the managerial skill) of the alternative �ve-

quantile estimator, suggested by Judge, Hill, Gri¢ ths, Lutkepohl and Lee (1988), which

attaches more weight on extreme positive and negative events as follows:

RC3 : Skilli = 0:05 � Skill(0:10)i + 0:25 � Skill(0:25)i + 0:40 � Skill(0:50)i

+ 0:25 � Skill(0:75)i + 0:05 � Skill(0:90)i

In addition to the above three estimators, we consider a fourth one (RC4) which com-

bines information from a larger set of conditional quantiles, based on the following

formula:

RC4 : Skilli = 0:05 � Skill(0:50)i + 0:05
X
�2S

Skill
(�)
i ;

where S = f0:05; 0:10; :::; 0:95g.
Finally, we employ a �fth estimator (RC5) which places more emphasis on the lower

quantiles (adverse market conditions):

RC5 : Skilli = 0:2 � Skill(0:10)i + 0:2 � Skill(0:20)i + 0:2 � Skill(0:30)i

+ 0:2 � Skill(0:40)i + 0:2 � Skill(0:5)i

Let us give two examples in order to depict how the RC schemes could be used.

In the case of the quantile CAPM, the set of risk factors i consists of only the excess

market return over the three month Treasury Bill (RM), thus based on RC1 the Skilli
is given by the weighted average of the t-statistics of alphas of the three quantile

regressions at � = 0:25; 0:50; 0:75. When we use the quantile Fama and French 3-factor

model the set of factors employed is fRM;SMB;HMLg: In this case based on RC1
the Skilli is given by the weighted average of the t-statistics of alphas of the three

quantile regressions at � = 0:25; 0:50; 0:75 based on eq. (7) where the set of factors

fRM;SMB;HMLg is employed for each quantile regression.
The approach described above is used for the quantile CAPM, Fama and French
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3-factor model, Carhart�s 4-factor model and the full factor model.

3.3.2 Combining Schemes of Linear and Quantile Models

When a large number of factors is employed simultaneously, as for example in the case

of the full factor model, the model may su¤er from overparameterisation and impre-

cision in standard errors estimates associated with the t-statistics employed to assess

managerial skill. This model is referred to in the literature as the �kitchen sink�model

(Goyal and Welch, 2008) and in the context of predictability produces inferior results.

To this end, we propose an alternative way stemming from the forecast combination

literature (Stock and Watson, 2004).1 Speci�cally, we estimate N univariate models

each one corresponding to a candidate factor and in this way retrieve Skilli i = 1; :::; N

and then employ a synthesis of the skills from the univariate models in order to get

the ultimate skill (Skill(C)): This approach can be employed in the same way for both

linear and quantille models.

Figure 1 below presents a graphical illustration of the steps involved in the linear

approach and Figure 2 in the quantile approach.

Figure 1: Robust Combination Approach - Linear Models

Variables f1 f2 ::: fN

# # ::: #
Linear Model Skillf1 Skillf2 ::: SkillfN

! ! ! ! Skill

Figure 2: Robust Combination Approach - Quantile Models

Quantiles/ Variables f1 f2 ::: fN

::: # # ::: #
Q25 # # ::: #
Q50 # # ::: #
Q75 # # ::: #
::: # # ::: #

Skillf1 Skillf2 ::: SkillfN
! ! ! ! Skill

1For a recent contribution on equity premium predictability, see Rapach, Strauss and Zhou (2010).
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Once we have estimated Skilli for all the candidate speci�cations, we produce

combination estimates of managerial skill, Skill(C); which are weighted averages of the

N single estimates of Skilli

Skill(C) =

NX
i=1

w
(C)
i Skilli (10)

where w(C)i;t ; i = 1; :::; N are the a priori combining weights at time t. In this study,

we consider the simplest combining scheme, i.e. the mean combining scheme, which

is the one that attaches equal weights to all individual models, i.e. w(C)i;t = 1=N , for

i = 1; :::; N .2 For example, in the case of linear models we estimate the managerial

skills using the t-statistics of alphas from the N univariate regression models and then

using equation (10) we estimate the ultimate managerial skill. In a similar way, we

estimate managerial skill from quantile regression models at each quantile of interest.

For example, when the RC1 scheme is employed we estimate �rst the managerial

skill based on the �rst risk factor, Skill1; employing the quantile regression at � =

0:25; 0:50; 0:75; which is given by the weighted average of the t-statistics of alphas of

the three quantile regressions. We repeat this procedure for the rest N � 1 factors, in
order to obtain Skilli; i = 1; :::; N and �nally applying equation (10) we estimate the

ultimate managerial skill.

4 Numerical Illustration

4.1 Data

We illustrate the proposed quantile regression approach using hedge fund index data

from Hedge Fund Research (HFR). The HFR indices are equally weighted average re-

turns of hedge funds and are computed on a monthly basis. In our analysis, we use

directional strategies that bet on the direction of the markets, as well as non-directional

strategies whose bets are related to diversi�ed arbitrage opportunities rather than to

the movement of the markets. In particular, we consider eleven HFR substrategy in-

dices which include event driven (ED) substrategies such as Distressed/Restructuring

(DR) and Merger Arbitrage (MA), Equity Hedge (EH) substrategies such as Equity

2Alternatively, we could employ the trimmed mean and median combination schemes. The trimmed
mean combination scheme sets w(C)i;t = 1=(N � 2) and w(C)i;t = 0 for the smallest and largest skills,
while the median combination scheme is given by the median of the skill estimates based on single
variable models. For more on combining schemes one can see Stock and Watson (2004).
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Market Neutral (EMN), Quantitative Directional (QD), Sector - Technology/Healthcare

(TH), Short Bias (SB) and Relative Value (RV) substrategies such as Fixed Income-

Asset Backed (FIAB), Fixed Income-Convertible Arbitrage (FICA), Fixed Income-

Corporate Index (FICI), Multi-Strategy (MS) and Yield Alternatives (YA). Our study

of these hedge funds uses net-of-fee monthly excess returns for a period of twenty years

(in excess of the three month US Treasury Bill) from January 1994 to December 2013.

Our out-of-sample evaluation period is equal to ten years. Our choice of these sub-

strategies is based on data availability. We include only substrategies that have 20

years of data. We exclude strategies such as Fund of Funds and Emerging Markets

and strategies with only one substrategy for the full period. Given that we evaluate

quantile models at extreme quantiles like for example 5% or 10% we need to have at

least 120 observations in order to estimate the parameters of the model.

4.2 Portfolio Construction and Performance Evaluation

In this section, we consider the bene�ts of the proposed methodology in constructing

fund of funds. Our main objective is to construct an equally weighted portfolio of hedge

funds strategies based on our approach and its ability to identify the top performing

hedge fund strategies. The evaluation of the relative performance of the constructed

portfolios is based on a variety of performance measures in a recursive out-of-sample

fashion.

The strategies are selected based on their ranking which is made according to the

t-statistic of alpha. We use the t-statistic of alpha because of the superior properties

that it has in comparison with the alpha. For each model, we formulate portfolios in a

recursive out-of sample fashion. Our implementation is concerned with the performance

of the strategies for the last ten years from January 2004 to December 2013, i.e. for the

last 120 months. We use the estimation period sample to estimate models (1-9) and we

obtain estimates of the parameters for each model and for each class of models. Next,

we obtain the estimated t-statistic of alphas for the substrategies considered, and we

rank the strategies according to the manager�s skill based on the t-statistic of alphas.

The substrategies employed belong to ED, EH or RV strategy. For all classes of models

we formulate equally weighted portfolios (each weight is equal to 1/3) based on the top

performing substrategy in each strategy. Note, that the estimation period is rede�ned

iteratively every six months in a recursive out-of-sample fashion, the estimation sample

is augmented by six monthly observations at each step in order to utilize all the available

information.

12



We examine whether the various speci�cations lead to di¤erences in the ranking of

substrategies and, hence, in the performance of the constructed portfolios. In this way,

they could have potential economic impact for a fund manager that wishes to invest

in the top performing substrategies. We expect that our proposed approach, which

captures the stylized facts of hedge fund returns will produce the best performing

portfolios.

We evaluate the di¤erent models using unconditional (out-of-sample) measures.

In particular, we consider the realized returns, the portfolio risk and the risk adjusted

realized returns. We calculate the mean return (E (rp)) within the out-of-sample period

and the cumulative return (CR) at the end of the period. As measures of risk we

compute the standard deviation of returns (�), as well as the downside risk. The

latter measures only the negative deviations from some reference value, since positive

deviations from this value are considered to be desirable. The downside risk (deviation),

DD, is given by

DD =

vuut 1

T

TX
t=1

min(0; rpt �RV )2;

where RV is the reference value, which is taken to be zero in our study. The reference

value can be thought of as a minimum acceptable return. As a measure of risk adjusted

performance we consider the Sharpe ratio (Sharpe, 1966, 1994) which is commonly used

in the performance literature3. The Sharpe ratio is calculated as the ratio of the average

portfolio return, E (rp), and the portfolio�s standard deviation of returns, �, i.e.

SR =
E (rp)

�
:

Furthermore, we consider an alternative measure of risk adjusted performance, namely

the Sortino ratio (Sortino and van der Meer, 1991, Sortino and Price, 1994), which

has several advantages over the Sharpe ratio. First, unlike Sharpe ratio, it does not

depend on the normality assumption which may not be valid in the case of pension

fund returns. Second, the Sortino ratio, instead of using the standard deviation as a

measure of risk, measures risk by the downside deviation. That is, the Sortino ratio is

3See also Darolles and Gourieroux (2010) for a battery of Sharpe performance measures, which
by the information taken into account in the computation and the potential use of the fund by the
investor.
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calculated as the ratio of the average return and the downside risk, i.e.

SOR =
E (rp)�RV

DD
:

In addition we use a performance measure that takes into account the quantiles of the

portfolio returns, the Adjusted Sharpe Index de�ned as

ASI =
Q0:50 (rp)

Q0:75 (rp)�Q0:25 (rp)

dividing the median with the interquantile range, (Gregoriou, 2006). Further we report

downside deviation (DD), Value at Risk (VaR) and Conditional Value at Risk (CVaR).

4.3 Empirical Findings

In Tables 1-5 we report the unconditional (out-of-sample) performance evaluation mea-

sures for the di¤erent models employed. Speci�cally, we calculate and present the av-

erage portfolios�returns, the portfolios�standard deviations and downside risks, the

cumulative returns and the risk adjusted performance measures, namely the Sharpe

ratio and the Sortino ratio, for our approaches. Below we discuss the results obtained

in the case of portfolios constructed using the top performing strategies.

Table 1 reports our �ndings when comparing the linear CAPM with the quantile

CAPM for quantiles of interest corresponding to the left part of the conditional dis-

tribution of hedge fund returns, i.e. � = 0:10; 0:25; 0:33; 0:50: The last �ve columns

correspond to the �ve robust combination approaches (RC1-RC5) which utilise an array

of quantiles. Our �ndings suggest that the best performing model is the RC5 closely

followed by the combination schemes RC1-RC4 and the quantile CAPM at � = 0:25

and 0:33: The portfolios constructed based on these models give a Sharpe Ratio of 0:71

and 0:69; respectively. In terms of cumulative returns, RC5 and the quantile CAPM

at � = 0:10 rank �rst attaining values of 83% and 81%;respectively. In terms of riski-

ness, quantile CAPM models (with the exception of � = 0:10 and � = 0:50); and RC

methods display the lowest risk and outperform the traditional linear CAPM model.

Similarly, all portfolios based on these quantile regression models and robust combi-

nation models outperform the simple CAPM in terms of Sharpe Ratio, Sortino Ratio,

Adjusted Sharpe Index, Cumulative Return, Mean Return and Median Return. The

majority of these portfolios have also lower VaR, Standard Deviation and Downside

Deviation in comparison with the standard CAPM.
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Table 1. Performance of CAPM and Quantile CAPM

Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.41 0.50 0.47 0.47 0.43 0.47 0.47 0.47 0.47 0.51

Q50(rP ) 0.57 0.75 0.65 0.65 0.64 0.65 0.65 0.65 0.65 0.69

SD(rP ) 0.78 1.03 0.68 0.68 0.89 0.68 0.68 0.68 0.68 0.71

DD(rP ) 0.46 0.67 0.38 0.38 0.62 0.38 0.38 0.38 0.38 0.38

V aR0:05 -1.33 -0.88 -0.73 -0.73 -1.33 -0.73 -0.73 -0.73 -0.73 -0.79

V aR0:10 -0.58 -0.73 -0.45 -0.45 -0.52 -0.45 -0.45 -0.45 -0.45 -0.46

CV aR005 -1.68 -2.75 -1.44 -1.44 -2.40 -1.44 -1.44 -1.44 -1.44 -1.44

CV aR0:10 -1.29 -1.76 -1.00 -1.00 -1.66 -1.00 -1.00 -1.00 -1.00 -1.03

CR 0.63 0.81 0.74 0.74 0.67 0.74 0.74 0.74 0.74 0.83

SR 0.53 0.48 0.69 0.69 0.48 0.69 0.69 0.69 0.69 0.71

SOR 0.90 0.75 1.24 1.24 0.70 1.24 1.24 1.24 1.24 1.33

ASI 0.69 0.81 0.90 0.90 0.89 0.90 0.90 0.90 0.90 0.86

Next, we compare the Fama and French 3-factor model with its quantile analogue

(� = 0:10; 0:25; 0:33; 0:50) and the �ve robust combination approaches (Table 2). Our

�ndings suggest that the best performing model is the quantile regression model at

� = 0:25; with second best the quantile regression model at � = 0:33: The portfolios

constructed based on these models give Sharpe Ratios of 0:55 and 0:53; respectively,

and cumulative returns of 134% and 94% for the ten year out-of sample period. We

have to note that the RC2 method ranks second in terms of returns, while the simple

linear CAPM outperforms the RC1, RC3, and RC4 combination methods based on the

SR. All portfolios based on quantile regression models and robust combination models

outperform the simple 3-factor model in terms of Adjusted Sharpe Index and have

lower VaR.
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Table 2. Performance of Fama French 3-Factor Model - Linear and Quantile

Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.56 0.56 0.56 0.72 0.53 0.52 0.63 0.51 0.51 0.56

Q50(rP ) 0.74 0.76 0.69 0.96 0.76 0.80 0.87 0.75 0.73 0.75

SD(rP ) 1.32 1.12 1.01 1.35 1.14 1.28 1.42 1.33 1.30 1.25

DD(rP ) 0.78 0.68 0.60 0.75 0.71 0.85 0.88 0.87 0.86 0.84

V aR0:05 -2.11 -1.37 -1.33 -2.05 -1.68 -1.33 -1.58 -1.33 -1.33 -1.19

V aR0:10 -1.36 -0.77 -0.50 -1.16 -0.96 -1.05 -1.09 -1.16 -0.92 -0.74

CV aR005 -2.73 -2.75 -2.24 -2.72 -2.75 -3.09 -3.26 -3.21 -3.21 -3.33

CV aR0:10 -2.20 -1.86 -1.64 -2.10 -2.00 -2.17 -2.29 -2.24 -2.09 -2.13

CR 0.93 0.95 0.94 1.34 0.87 0.84 1.09 0.82 0.81 0.95

SR 0.42 0.50 0.55 0.53 0.46 0.41 0.44 0.38 0.39 0.45

SOR 0.71 0.82 0.93 0.96 0.74 0.61 0.71 0.58 0.59 0.67

ASI 0.46 0.78 0.78 0.51 0.65 0.58 0.48 0.50 0.49 0.87

Table 3 reports our results with respect to the Carhart 4-factor model along with

the quantile analogue (� = 0:10; 0:25; 0:33; 0:50) and the �ve robust combination ap-

proaches. The best performing model is the quantile regression model at � = 0:10,

which attains a Sharpe Ratio of 0:52 and an average return of 0:62%. The portfo-

lio constructed based on the robust combination method RC5 ranks �rst in terms of

returns attaining a cumulative return of 112% and an average return of 0:64%. The

alternative quantile models and RC methods perform similarly attaining Sharpe Ratios

of 0:40 to 0:43. The majority of portfolios based on quantile regression models and

robust combination models outperform the 4-factor linear model in terms of Sharpe

Ratio, Sortino Ratio and Adjusted Sharpe Index and have lower VaR, CVaR, Standard

Deviation and Downside Deviation.
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Table 3. Performance of Carhart 4-Factor Model - Linear and Quantile

Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.53 0.62 0.52 0.61 0.57 0.57 0.58 0.58 0.58 0.64

Q50(rP ) 0.72 0.89 0.72 0.80 0.86 0.85 0.86 0.83 0.84 0.92

SD(rP ) 1.35 1.19 1.31 1.41 1.41 1.36 1.37 1.38 1.38 1.48

DD(rP ) 0.85 0.69 0.86 0.90 0.92 0.88 0.88 0.88 0.89 0.93

V aR0:05 -2.17 -1.37 -1.47 -2.05 -2.06 -1.47 -1.47 -1.47 -1.47 -2.06

V aR0:10 -1.36 -0.81 -0.93 -0.89 -1.09 -1.14 -1.14 -1.06 -1.05 -1.16

CV aR005 -3.02 -2.75 -3.25 -3.46 -3.50 -3.25 -3.25 -3.25 -3.32 -3.50

CV aR0:10 -2.36 -1.90 -2.24 -2.43 -2.44 -2.27 -2.27 -2.27 -2.32 -2.50

CR 0.87 1.08 0.84 1.05 0.96 0.96 0.99 0.99 0.99 1.12

SR 0.39 0.52 0.40 0.43 0.40 0.42 0.43 0.42 0.42 0.43

SOR 0.62 0.89 0.60 0.68 0.62 0.65 0.67 0.67 0.66 0.69

ASI 0.45 0.80 0.46 0.56 0.48 0.50 0.50 0.48 0.50 0.48

Table 4 has a similar structure with the previous tables and focuses on the per-

formance of the various speci�cations of the full factor model. This model employs

all 14 factors at hand and as such we expect increased estimation error due to over-

parameterisation. This feature is common in both quantile and linear models. It can

however be alleviated via our proposed methodology (RC approaches based on mean

combination scheme) which is discussed below. Consistent with our �ndings so far,

linear speci�cations fall short when compared to quantile and RC models. The best

performing method is the RC1 method followed by RC3, RC2, RC5 and the quantile

regression model at � = 0:50: The portfolios constructed based on these models give

Sharpe Ratios of 0:61; 0:58 and 0:54 respectively. Cumulative returns safely exceed

90% for all quantile models and robust speci�cations with the exception of RC4. In a

similar vein, these portfolios are the ones that appear less risky. As such, all portfolios

based on quantile regression models and robust combination models outperform the

full factor linear model in terms of Sharpe Ratio, Sortino Ratio and Adjusted Sharpe

Index and have also lower CVaR, Standard Deviation and Downside Deviation.
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Table 4. Performance of Full Factor Model - Linear and Quantile

Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.48 0.56 0.54 0.58 0.63 0.63 0.64 0.60 0.49 0.60

Q50(rP ) 0.85 0.81 0.69 0.76 0.71 0.69 0.72 0.69 0.71 0.77

SD(rP ) 1.73 1.47 1.22 1.24 1.17 1.04 1.18 1.04 1.42 1.11

DD(rP ) 1.24 0.87 0.77 0.75 0.55 0.43 0.57 0.46 1.06 0.59

V aR0:05 -2.10 -2.49 -2.13 -1.82 -1.52 -1.05 -1.48 -1.30 -1.35 -1.12

V aR0:10 -1.58 -1.41 -0.78 -0.75 -0.68 -0.60 -0.73 -0.65 -0.68 -0.65

CV aR005 -4.44 -3.02 -3.07 -3.04 -2.06 -1.59 -2.06 -1.64 -3.60 -2.26

CV aR0:10 -3.16 -2.48 -2.16 -2.04 -1.50 -1.18 -1.61 -1.29 -2.33 -1.56

CR 0.74 0.92 0.90 0.98 1.12 1.11 1.12 1.04 0.77 1.04

SR 0.28 0.38 0.45 0.47 0.54 0.61 0.54 0.58 0.34 0.54

SOR 0.39 0.64 0.70 0.77 1.15 1.46 1.12 1.32 0.46 1.02

ASI 0.45 0.49 0.69 0.67 0.53 0.58 0.52 0.55 0.64 0.67

Finally, Table 5 reports our �ndings for the alternative way of employing all the

factors and suitably combining them. In this way, all models include only one variable/

factor at a time and their outcome (skill) is combined (mean combining scheme) to

produce the �nal managerial skill. Linear, quantile and RC speci�cations e¢ ciently

aggregate information from the 14 factors at hand. Consistent with our �ndings so

far, linear speci�cations fall short when compared to quantile and RC models. All RC

and quantile speci�cations perform extremely well and in a similar manner attaining a

Sharpe Ratio of 0:74. Cumulative returns safely exceed 74% for all quantile models and

robust speci�cations combined with a low volatility of 0:68. Following this approach,

we get robust results.

Comparing Table 4 and 5, we have to note that even in a linear regression frame-

work, the mean combining scheme is able to produce superior SRs (0:28 vs. 0:30). In

a quantile regression setting, our mean combining scheme is superior to the full factor

quantile one judging from the related Sharpe Ratios along with all RC speci�cations.

The striking di¤erence between the �ndings of the two approaches (Tables 4 and 5)

is the substantial reduction in the portfolios�riskiness. Speci�cally, mean combination

schemes are associated with a signi�cant reduction in SD, DD, VaR and CVaR. In this

respect, portfolios generated via the mean combining scheme bear lower risk than the

ones generated based on the full factor alternative and attain higher risk adjusted re-

turns. This feature is quite appealing and probably stems from the reduced estimation

error attached to models with just one variable at a time.
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Table 5. Performance of Mean Combining Scheme - Linear and Quantile

Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.33 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47

Q50(rP ) 0.58 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

SD(rP ) 1.10 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68

DD(rP ) 0.88 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38

V aR0:05 -1.33 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73 -0.73

V aR0:10 -0.65 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45

CV aR005 -3.04 -1.44 -1.44 -1.44 -1.44 -1.44 -1.44 -1.44 -1.44 -1.44

CV aR0:10 -2.01 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

CR 0.47 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74

SR 0.30 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

SOR 0.38 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24

ASI 0.70 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Next, we focus on the composition of the portfolios formed on the basis of our

alternative methodologies. In this way, we gain insight on the di¤erences in rankings

obtained with the di¤erent approaches and the persistence in rankings which has a

direct impact on portfolio turnover. Tables 6-10 report the related �ndings for the

methodologies employed. Speci�cally, we report the number of times each sub-strategy

is picked to participate in the portfolio. As already mentioned, we rebalance the

portfolio every six months over the 10-year out-of-sample period, i.e. we have 20

rebalancing periods. At each rebalancing period, the best substrategy belonging to the

ED, EH and RV strategies gets an equal weight.

The composition of the portfolios formed on the linear and quantile CAPM is given

in Table 6. With respect to the linear CAPM, we note that the MA substrategy of

ED and the EMN sub-strategy of EH always rank �rst and participate in the portfolio.

Regarding RV substrategies, FIAB is ranked �rst in more than half rebalancing periods

(11 periods), followed by FICA that is preferred in 8 of 20 periods. Contrary to the

linear model, quantile models and RC methods always rank FIAB �rst. With respect

to EH, EMN is also ranked �rst. Turning to the ED strategy, quantile models at

� = 0:25 and � = 0:33 along with RC1-RC4 methods pick the MA as the preferred

strategy similarly to the linear model. The best performing method, RC5, is the one

that picks DR in 3 out of 20 rebalancing periods.
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Table 6. Portfolios of CAPM and Quantile CAPM

DR MA EMN QD TH SB FIAB FICA FICI MS YA

Linear 0 20 20 0 0 0 11 8 0 1 0

Q10 11 9 20 0 0 0 20 0 0 0 0

Q25 0 20 20 0 0 0 20 0 0 0 0

Q33 0 20 20 0 0 0 20 0 0 0 0

Q50 10 10 20 0 0 0 20 0 0 0 0

RC1 0 20 20 0 0 0 20 0 0 0 0

RC2 0 20 20 0 0 0 20 0 0 0 0

RC3 0 20 20 0 0 0 20 0 0 0 0

RC4 0 20 20 0 0 0 20 0 0 0 0

RC5 3 17 20 0 0 0 20 0 0 0 0

Turning to the Fama French 3-factor model, Table 7 reports the portfolio compo-

sition. The linear model picks the MA substrategy of ED and the Sector TH of EH

in all rebalancing periods, in contrast with the quantile and RC speci�cations where

a greater variability is present. For example, the best performing quantile models at

� = 0:25 and � = 0:33 select DR in 4 and 15 cases, respectively, and MA in 16 and 5

periods. FIAB is ranked �rst in all rebalancing periods when quantile and RC mod-

els are employed, while it is picked in 11 periods in the linear approach. Overall, a

greater portfolio turnover is associated with quantile and RC methods compared with

the linear model.

Table 7. Portfolios of linear 3-Factor and Quantile 3-Factor model

DR MA EMN QD TH SB FIAB FICA FICI MS YA

Linear 0 20 0 0 20 0 11 9 0 0 0

Q10 20 0 18 2 0 0 20 0 0 0 0

Q25 4 16 9 0 11 0 20 0 0 0 0

Q33 15 5 0 0 20 0 20 0 0 0 0

Q50 17 3 14 1 5 0 20 0 0 0 0

RC1 9 11 6 1 13 0 20 0 0 0 0

RC2 13 7 0 0 20 0 20 0 0 0 0

RC3 7 13 4 1 15 0 20 0 0 0 0

RC4 8 12 5 3 12 0 20 0 0 0 0

RC5 17 3 13 0 7 0 20 0 0 0 0

Table 8 reports the 4-factor portfolio composition. Similar to the 3-factor case, the
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linear model picks the MA substrategy of ED and the Sector TH of EH in the majority

of the rebalancing periods (20 and 18, respectively). On the other hand, the quantile

and RC speci�cations exhibit greater variability. For example, the best performing

quantile model at � = 0:10 selects DR in 19 periods and EMN in 16 periods. As far as

RV strategy is considered, the linear model ranks FIAB �rst in 11 periods while the

best performing quantile model ranks FIAB �rst in 19 periods.

Table 8. Portfolios of linear 4-Factor and Quantile 4-Factor model

DR MA EMN QD TH SB FIAB FICA FICI MS YA

Linear 0 20 0 2 18 0 11 7 0 2 0

Q10 19 1 16 4 0 0 19 1 0 0 0

Q25 7 13 3 1 13 3 20 0 0 0 0

Q33 16 4 0 1 14 5 20 0 0 0 0

Q50 12 8 0 0 20 0 20 0 0 0 0

RC1 9 11 0 1 19 0 20 0 0 0 0

RC2 10 10 0 1 19 0 20 0 0 0 0

RC3 7 13 0 4 16 0 20 0 0 0 0

RC4 7 13 0 8 12 0 20 0 0 0 0

RC5 17 3 0 0 20 0 20 0 0 0 0

Table 9 reports our �ndings for the full factor linear and quantile speci�cations.

Contrary to the previous linear speci�cations, a greater variability is present in the

linear full factor model. Speci�cally, DR and MA are equally selected in 10 periods

each, and the same holds for the EH strategy where QD and TH are selected in 9 and

10 times, respectively. Regarding the best performing method, namely RC1, we note

that MA is ranked �rst in 16 out of 20 cases, EMN and TH are equally selected in

half of the cases and �nally FIAB is the most frequantly selected in 14 of the cases.

The RC3 method that is the second best forms portfolios in a similar manner with a

few di¤erences. For example, MA is picked in 18 times instead of 16 and FIAB in 13

instead of 14 cases.
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Table 9. Portfolios of Linear and Quantile Full Factor Models

DR MA EMN QD TH SB FIAB FICA FICI MS YA

Linear 10 10 1 9 10 0 4 4 0 12 0

Q10 20 0 9 11 0 0 1 0 0 19 0

Q25 20 0 14 6 0 0 16 0 0 4 0

Q33 11 9 11 5 4 0 20 0 0 0 0

Q50 9 11 7 0 11 2 14 1 0 5 0

RC1 4 16 10 0 10 0 14 2 0 4 0

RC2 10 10 10 0 10 0 14 3 0 3 0

RC3 2 18 10 0 10 0 13 2 0 5 0

RC4 1 19 9 0 11 0 9 3 0 8 0

RC5 10 10 11 9 0 0 13 0 0 7 0

Portfolio composition in the case of mean combining scheme is very di¤erent com-

pared to the models considered so far. Reduced portfolio turnover is apparent in linear,

quantile and RC methods. Irrespective of the model employed, MA and EMN sub-

strategies are ranked �rst in all rebalancing periods. However, FIAB is ranked �rst in

all rebalancing periods when the quantile and RC methods are employed, while FIAB

is ranked �rst in 10 out of 20 periods in the linear case. For the rest of the cases, the

linear model selects FICA and MS in 8 and 2 periods, respectively. This di¤erence

in the portfolio composition accounts for the superiority of quantile and RC methods.

More importantly, these methods are associated with no portfolio turnover and as such

the performance measures are even more appealing from a practical perspective.

Table 10. Portfolios of Mean Combining Scheme - Linear and Quantile

DR MA EMN QD TH SB FIAB FICA FICI MS YA

Linear 0 20 20 0 0 0 10 8 0 2 0

Q10 0 20 20 0 0 0 20 0 0 0 0

Q25 0 20 20 0 0 0 20 0 0 0 0

Q33 0 20 20 0 0 0 20 0 0 0 0

Q50 0 20 20 0 0 0 20 0 0 0 0

RC1 0 20 20 0 0 0 20 0 0 0 0

RC2 0 20 20 0 0 0 20 0 0 0 0

RC3 0 20 20 0 0 0 20 0 0 0 0

RC4 0 20 20 0 0 0 20 0 0 0 0

RC5 0 20 20 0 0 0 20 0 0 0 0
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Next, we turn to the recent �nancial crisis period (2007-2009) which was quite di¢ -

cult for hedge funds as many successful hedge fund managers were hit with signi�cant

losses. Elevated credit, liquidity and systemic risk constitutes this period very di¤erent

from the period prior to 2007 or after 2009. We check whether our main �ndings per-

tain during turbulent periods, as well. Table 11 reports the average return, standard

deviation and Sharpe Ratios for the models/ speci�cations considered. Overall, for the

CAPM, Full Factor and the Mean Combining Scheme, our �ndings point to superior-

ity of quantile and RC methods. For example, in the case of the Full Factor model

(Panel D), the Sharpe ratio of the linear model is 0.08 while the respective �gures for

RC1-RC3 and RC5 are well above 0.40. In the case of the mean combining scheme,

the linear model attains a SR of 0.01, while the quantile and RC speci�cations achieve

a SR of 0.32. In the cases of the 3-factor and 4-factor models, results are mixed, as the

3-factor quantile model at � = 0:25 and � = 0:33 generate higher Sharpe Ratios than

the linear model, while this holds for the 4-factor quantile model at � = 0:10: Finally,

we should also note that similar to the full period analysis, the mean combining scheme

for quantile and RC speci�cations are associated with the creation of low risk portfolios

as indicated by the standard deviation. Findings of Table 11 show that the proposed

quantile and RC methods provide good results during volatile periods also and serve

also as a robustness check for the empirical results reported in Tables 1-5.
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Table 11. Performance during the 2007-2009 crisis

Panel A. CAPM - Linear and Quantile

Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.26 0.24 0.30 0.30 0.07 0.30 0.30 0.30 0.30 0.30

SD(rP ) 1.07 1.50 0.95 0.95 1.34 0.95 0.95 0.95 0.95 0.95

SR 0.25 0.16 0.32 0.32 0.06 0.32 0.32 0.32 0.32 0.32

Panel B. Fama French 3-Factor Model - Linear and Quantile

3F Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.44 0.21 0.46 0.55 0.21 0.21 0.35 0.25 0.23 0.32

SD(rP ) 1.78 1.52 1.46 1.77 1.52 1.89 2.07 1.98 1.95 1.89

SR 0.25 0.13 0.31 0.31 0.13 0.11 0.17 0.13 0.12 0.17

Panel C. Carhart 4-Factor Model - Linear and Quantile

Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.37 0.36 0.25 0.30 0.25 0.25 0.25 0.25 0.22 0.35

SD(rP ) 1.89 1.63 1.98 2.08 1.98 1.98 1.98 1.98 1.97 2.07

SR 0.20 0.22 0.13 0.15 0.13 0.13 0.13 0.13 0.11 0.17

Panel D. Full Factor Model - Linear and Quantile

Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.21 0.31 0.28 0.34 0.66 0.66 0.63 0.63 0.24 0.53

SD(rP ) 2.45 2.04 1.61 1.63 1.47 1.47 1.52 1.52 2.33 1.29

SR 0.08 0.15 0.17 0.21 0.45 0.45 0.41 0.41 0.10 0.41

Panel E. Mean Combining Scheme - Linear and Quantile

Linear Q10 Q25 Q33 Q50 RC1 RC2 RC3 RC4 RC5

E(rP ) 0.01 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

SD(rP ) 1.77 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

SR 0.01 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

5 Conclusions

We have developed an alternative modeling approach for the estimation of managerial

skill which is based on quantile regression models and produces robust estimates of

the managerial skill utilizing two di¤erent sources of information: (a) the distribution

information, regarding how the relationship between the return of the fund and a given

variable varies across the conditional quantiles of returns and (b) factor information,

regarding the di¤erent models that can be used for pricing inference. We show that

24



estimates of the managerial skill based on quantile regressions and the synthesis of

di¤erent quantile regression are superior in comparison with the relevant estimates from

the linear pricing equations in terms of standard risk-adjusted performance measures

such as Sharpe Ratio, Sortino Ratio and Adjusted Sharpe Index. We show that robust

combination methodologies (RC1-RC5) are producing superior results irrespective of

the weighting scheme employed for the synthesis of the quantiles. Furthermore the

portfolios based on lower quantiles, such as for � = 0:10, 0:25, 0:33 produce superior

performance relative to the linear regression analogue.
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