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Abstract—The area of Ambient Assisted Living (AAL) focuses 

on developing new technologies which can improve the quality of 

life and care provided to elderly and disabled people. In this paper, 

we propose a novel system based on 3D RGB-D vision sensors and 

Interval Type-2 Fuzzy Logic based Systems (IT2FLSs) employing 

the Big Bang Big Crunch (BB-BC) algorithm for the real time 

automatic detection and summarization of important events and 

human behaviours from the large-scale data. We will present 

several real world experiments which were conducted for AAL 

related behaviours with various users. It will be shown that the 

proposed BB-BC IT2FLSs outperforms the Type-1 FLSs 

(T1FLSs) counterpart as well as other conventional non-fuzzy 

methods, and the performance improvement rises when the 

amount of subjects increases.   

 
Index Terms—Interval Type-2 fuzzy logic systems, 3D machine 

vision, event summarization. 

 

I. INTRODUCTION 

he World Health Organization (WHO) estimated that in 

2050, there will be 1.91 billion people aged 65 years and 

over worldwide [1]. Hence, recently, there have been 
increased interests in Ambient Assisted Living (AAL) 

technologies due to the increase of ageing population, shortage 

of caregivers and the increasing costs of healthcare [2], [3], [4]. 

Employing advanced machine vision based systems for 

behaviour and event detection as well as event summarization 

in AAL applications can help to increase the level of  care  and 
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decrease the associated costs. However, the great expansion of 

deploying and utilizing video sensors can lead to massive 

amounts of redundant video data which require high associated 

costs related to data storage in addition to the human resources 

spent on watching or manually extracting key video 

information. This problem is becoming increasingly obvious as 

the number of video cameras in use is estimated to be 100 

million worldwide [5] and the estimated number of in-use 

cameras is 5.9 million in United Kingdom owning the largest 

amount of camera in the world.  

Many intelligent applications of AAL and healthcare have 

been reported based on behaviour and activity recognition. 

Recognizing and categorizing human behaviour into one of 

several behaviour classes falls under the generic class of pattern 

recognition problems which aims to determine the mapping 

between behavioural feature space and action categories. To 

describe and represent the behaviour of the human subject, 

behavioural features are used and can be captured by different 

types of sensors such as cameras, 3D sensors, RFID sensors, 

and wearable sensors, etc. In [6], a method was introduced to 

analyse the behaviour of watching TV for diagnosing health 

conditions. In [7], researchers have proposed an algorithm to 

analyse risk of falling down for elderly users according to the 

walking patterns. Wan et al. [8] developed a behaviour 

recognition system to prevent the wandering behaviour of 

dementia patients. Lin et al. [9] utilized RFID sensors to detect 

if a dementia patient has approached an unsafe region in order 

to avoid potentially injurious situations. Barnes et al. [10] 

presented a low-cost solution to realizing an intelligent remote 

telecare system to assess the lifestyle activity data of the elderly. 

However, the system is simple and is functional limited. Hoey 

et al. [11] introduced a cognitive rehabilitation system using 

AAL technologies to help the elderly with dementia. Another 

cognitive orthotics system [12] analyses a model of the 

everyday activity plan according to multi-level events for the 

purpose of cognitive orthotics. However, unlike our system, 

extendable recognition for complex behaviour and activity 

together with the summarization of the frequency, duration, 

timestamp and the user information is not implemented in these 

conventional systems.  

Machine vision based behaviour recognition and 

summarization in real-world AAL is a very difficult task due to 
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the high levels of encountered uncertainties caused by the large 

number of subjects, behaviour ambiguity between different 

people, occlusion problems from other subjects (or non-human 

objects such as furniture) and the environmental factors such as 

illumination strength, capture angle, shadow and reflection, etc. 

Dynamic models of behaviour characteristics can be 

constructed by utilizing statistics-based algorithms, for 

example Conditional Random Fields (CRF) [13] and Hidden 

Markov Model (HMM) [14]. However, the accuracy was not 

satisfactory. Dynamic Time Warping (DTW) is another classic 

algorithm [15] for behaviour recognition. However, DTW only 

returns exact values and thus is inadequate for modelling the 

behaviour uncertainty and activity ambiguity. To handle the 

high-levels of uncertainty associated with the real-world 

environments, Fuzzy Logic Systems (FLSs) have been 

employed. Various linguistic summarization methods based on 

Type-1 FLSs (T1FLSs) have been proposed where [16], [17] 

employed T1FLSs for fall down detection. These type-1 fuzzy-

based approaches perform well in predefined situations where 

the level of uncertainty is low. But these methods require multi-

camera calibration which is inconvenient and time-consuming. 

In [18], [19] T1FLSs were used to analyse the input data from 

wearable devices to recognize the action. However, such 

wearable devices are intrusive and could be uncomfortable and 

inconvenient as the deployment of wearable devices is 

invasive for the skin and muscles of the users. T1FLS was used 

in [20], [21] to analyse the spatial and temporal features for 

efficient human behaviour recognition. However, there are 

intra- and inter- subject variations in behavioural characteristics 

which cause high levels of uncertainty. In [20], [22], [23], 

IT2FLS performed much better than T1FLS in human event 

detection and summarization.   

The contribution of this paper is that we employed a 3D 

Kinect video camera and we proposed and developed a novel 

linguistic video summarisation system which is capable of 

robustly detecting and summarising the important events of 

several human subjects within an ambient assisted living 

environment. The proposed robust framework for behaviour 

recognition is based on interval type-2 fuzzy logic system 

whose membership functions and rule base were automatically 

constructed from the raw input data and were automatically 

optimised by the Big Bang Big Crunch (BB-BC) optimisation 

algorithm [24], [25]. Our system outperforms the traditional 

and type-1 fuzzy counterparts and was successfully deployed 

and used in real world environments. 

The rest of the paper is organized as follows. Section II 

presents the overview of the hardware platform and the system 

Graphical User Interface (GUI). Section III introduces the 

proposed BB-BC based IT2FLS for the behaviour recognition 

and event linguistic summarization. Section IV presents the 

experiments and results. Finally conclusions are presented in 

section V.  

II. OVERVIEW OF THE EMPLOYED HARDWARE PLATFORM OF 

RGB-D SENSOR AND THE GUI OF THE PROPOSED SYSTEM  

The Kinect is one of the most popular RGB-D sensors in 

recent years. It has been applied in the fields of intelligent 

environments and robotics as an affordable but robust 

replacement for various types of wearable sensors, expensive 

distance sensors and conventional 2D cameras. It has been 

successfully used in various applications including object 

tracking and recognition [26] as well as 3D indoor mapping and 

human activity analysis [27]. We use Kinect v2 shown in Fig. 

1a as the 3D sensor and its skeleton tracker to obtain the 3D 

data which describes the skeleton joints of the user in the scene 

shown in Fig. 1b.  

Our system detects six behaviours which are crucial for AAL 

activities which are falling down, drinking/eating, walking, 

running, sitting and standing in ambient assisted living 

environment.  

The GUI of the proposed system has two parts where the first 

part is used to continuously capture the 2D/3D sensing data and 

analyse behaviours of the human subjects in real-time. Since 

this event detection is connected to the back-end event 

database, once an activity is detected, the system will 

summarize the relevant details of an event and store it into the 

back-end server.  

Meanwhile, if the detected event is an urgent emergency, a 

 
Fig. 2.  The front-end GUI for the event search, linguistic summarisation and 

video  

 

  

 
(a) 

 
(b) 

Fig. 1.  Main RGB-D sensor and its 3D skeleton tracker (a) Kinect v2, (b) 3D 

Skeleton and joints of Kinect v2 
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warning message will be sent to relevant caregivers so that 

instant action can be taken. The second part of the GUI is shown 

in Fig. 2 and it deals with the event retrieval, linguistic 

summarisation and playback. An example has been given in 

Fig. 2, where the user has selected searching the event category 

“Fallingdown” from the target behaviour list and inputted 

further refinement of the retrieval criteria, the particular subject 

number as well as a fixed time period to retrieve the relevant 

events from the back-end event database server. Finally, the 

retrieved events with details to the front-end GUI. The results 

of event retrieval are depicted in the list showing the relevant 

activities which have previously been detected and stored. The 

details of the selected event in the retrieval list is shown in the 

event information section, and the retrieved events can be used 

to play back the video matching the sequences the user wants 

to browse.   

III. THE PROPOSED BB-BC BASED INTERVAL TYPE-2 FUZZY 

LOGIC SYSTEM FOR THE EVENT DETECTION AND LINGUISTIC 

SUMMARIZATION OF VIDEO MONITORING 

A. Overview of Type-2 Fuzzy Logic Systems 

The IT2FLS (shown in Fig. 3a) uses the interval type-2 fuzzy 

sets [28] (shown in Fig. 3b) to represent the inputs and/or 

outputs of the FLS. In the interval type-2 fuzzy sets all the third 

dimension values are equal to one [28], [29]. The use of interval 

type-2 FLS helps to simplify the computation of the type-2 FLS 

[29]. More information regarding the interval type-2 FLS and 

its benefits can be found in [28], [29], [30]. 

B. Overview of the Proposed System   

Fig. 4 provides an overview of our proposed system. There 

are two phases in the system which are the learning phase and 

the recognition phase. In the learning phase, the training data 

for each behaviour category are collected from the real-time 

Kinect data captured from the subjects in different 

circumstances and situations. Then behaviour feature vectors 

based on the distance and angle feature information are 

computed and extracted from collected Kinect data so as to 

model the motion characteristics. From the results of the 

features extraction, the type-1 fuzzy Membership Functions 

(T1MFs) of the fuzzy systems are then recognized/ 

known/discovered via Fuzzy C-Means Clustering (FCM) [31]. 

After that, the type-2 MFs are produced by using the obtained 

type-1 fuzzy sets as the principal membership functions which 

are then blurred by a certain percentage to create an initial 

Footprint of Uncertainty (FOU). Then, with the learned 

membership functions, the rule base of the type-2 fuzzy system 

is constructed automatically from the input feature vectors. 

Finally, a method based on the BB-BC algorithm is used to 

optimize the parameters of the IT2FLS which will be employed 

to recognize the behaviour and activity in the recognition phase.  

It should be pointed that we generated initial fuzzy sets and 

rules for the FLSs which we then optimized via the BB-BC 

approach as such initial fuzzy sets and rules provided a good 

starting point for the BB-BC to converge fast to the optimal 

position. If we started from random fuzzy sets and rules, the 

BB-BC will take very long time to converge to optimal values.  

During the recognition phase, the real-time Kinect data and 

HD video data are captured continuously by the RGB-D sensor 

monitoring the scene. From the real-time Kinect data, 

behaviour feature vectors are firstly extracted and used as input 

values for the IT2FLSs-based recognition system.  

In our fuzzy system, each behaviour model is described by 

the corresponding rules, and each output degree represents the 

likelihood between the behaviour in the current frame and the 

trained behaviour model in the knowledge base. The candidate 

behaviour in the current frame is then classified and recognized 

by selecting the candidate model with the highest output degree. 

Once important events are detected by the optimized IT2FLS, 

linguistic summarization is performed using the key 

information such as the output action category, the starting time 

and ending time of the event, the user’s number and 

 
Fig. 4.  Overview of our proposed system. 

  

 
                                                           (a) 

 
                                                          (b) 

Fig. 3. (a) Structure of the type-2 FLS. (b) An interval type2 fuzzy set. 
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identification, and the relevant HD video data and video 

descriptions. After that, the summarized event data is efficiently 

stored in our back-end server of event SQL database from 

where the users can access locally or remotely by using our 

front-end Graphical User Interface (GUI) system and perform 

event searching, retrieval and playback. The details of the 

employed phases are discussed in the following subsections. 

C. Learning Phase   

1) Fuzzy c-means 

The Fuzzy c-mean (FCM) algorithm developed by Dunn [32] 

and later improved by Bezdek [31] is an unsupervised 

clustering method to classify the unlabelled data by minimizing 

an objective function. In this paper, the FCM is used to compute 

the clusters of each feature to generate the type-1 fuzzy 

membership functions for the fuzzy-based recognition system. 

2) Feature Extraction 

 Joint-angle Feature Representation 

For each frame, the skeleton is a sequence of graphs with 15 

joints, where each node has its geometric position represented 

as a 3D point in a global Cartesian coordinate system. For any 

three different 3D points 𝑃1, 𝑃2 , and 𝑃3, an angle feature θ is 

defined by these three 3D joints 𝑃1 , 𝑃2 and 𝑃3 at a time instant. 

The angle θ is obtained by calculating the angle between the 

vectors 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , and 𝑃2𝑃3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   based on the following equation: 

 

  𝜃 = 𝑐𝑜𝑠−1 (
𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × 𝑃2𝑃3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | |𝑃2𝑃3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
)                     (1) 

 

 Joint-position Feature Representation 

In order to model the local “depth appearance” for the joints, 

the joint positions are computed to represent the motion of the 

skeleton. For distance, between joint i and joint j, the arc-length 

distance is calculated: 

 

𝐷𝑖𝑗 = ‖𝑃𝑖 − 𝑃𝑗‖                       (2) 

 

where || · || is the Euclidean norm. 

 Posture Representation 

To perform efficient behaviour recognition, an appropriate 

posture representation is essential to model the gesture 

characteristics. In this work, we use Kinect v2 to extract the 3D 

skeleton data which comprises 3D joints which are shown in 

Fig. 5. After that, based on the 3D joints obtained, we compute 

the posture feature using the joint vectors as shown in Fig. 5. In 

the applications of AAL environments, the main focus is to 

understand the users’ daily activities and regular behaviours to 

create ambient context awareness such that ambient assisted 

services can be provided to the users in the living environments. 

Therefore, in our current application scenarios of ambient 

assisted living environments, we recognize and summarize the 

following behaviours: drinking/eating, sitting, standing, 

walking, running, and lying/falling down to provide different 

ambient assisted services. The purpose of choosing these 

behaviours as target categories is that they are common and 

important behaviours and activities in AAL environments. We 

detect fall-down event so that our system can send a warning 

message to the nearby caregivers or other people who can help 

[33] [34]. Our system summarises the frequency of the drinking 

activity to ensure that the user drinks enough water throughout 

the day to avoid dehydration [35] [36]. By a daily 

summarization of the sitting and lying duration and frequency, 

healthcare advice would be provided if the user remains 

inactive/active most of the time [6], [10]. The detection results 

of running demonstrate a potential emergency happening [37], 

[38]. From the detection results of standing and walking, our 

system obtains the location and trajectory of the subject so that 

services, such as wandering prevention, can be provided to 

dementia patients [8]. Also, the risk of falling down can be 

reduced by analysing the pattern of standing and walking [7]. 

Furthermore, cognitive rehabilitation services can be provided 

to help the elderly with dementia by summarizing this series of 

daily activities [11], [12]. Moreover, in intelligent 

environments, the electric appliances can be intelligently tuned 

and controlled according to the user’s behaviour and activity to 

maximize their comfort and safety while minimizing the 

consumed energy. To achieve the robust recognition and 

summarization of behaviours in AAL environments, we use the 

angles and distance of the joint vectors as the input features 

which are highly relevant when modelling the target behaviours 

in AAL environments. The identified behaviours are extendable 

to enlarge the recognition range of the target behaviour by 

adding the needed joints. 

As most behaviours in daily activity such as drinking, eating, 

waving hands, taking pills, etc., are related to the upper body, 

in this work in order to recognize behaviour and activity, we 

focus on the following joints: spine base (𝑃𝑠𝑏), spine shoulder 

(𝑃𝑠𝑠), elbow left (𝑃𝑒𝑙), hand left (𝑃ℎ𝑙), elbow right (𝑃𝑒𝑟), hand 

right (𝑃ℎ𝑟). Since our algorithm is highly extendable, more 

joints can easily be added and utilized for more application 

scenarios. Based on the discussion above, the pose feature is 

obtained by calculating the joint-angle feature and joint-

position feature of the selected joints, as given in the following 

procedure: 

(1) Compute the vectors 𝑃𝑠𝑠𝑃𝑒𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑃𝑠𝑠𝑃ℎ𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ modelling the left arm, 

and  𝑃𝑠𝑐𝑃𝑒𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,  𝑃𝑠𝑐𝑃𝑒𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ modelling the right arm.  

(2) Angle features of the left arm 𝜃𝑎𝑙 can be obtained by 

calculating the angle between vectors 𝑃𝑠𝑠𝑃𝑒𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑃𝑠𝑠𝑃ℎ𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ based on 

Equation (1). Similarly, angle features of the right arm 𝜃𝑎𝑟 can 

 
Fig. 5.   3D feature vectors based on the Kinect v2 skeleton model 
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be computed by applying the same process on 𝑃𝑠𝑠𝑃𝑒𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑃𝑠𝑠𝑃ℎ𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 
(3) Based on Equation (2), position feature 𝐷ℎ𝑙, 𝐷ℎ𝑟 of the 

vectors 𝑃𝑠𝑠𝑃ℎ𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑃𝑠𝑠𝑃ℎ𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  can be obtained.  In order to recognize 

activities, the status (3D position and angle) of the spine of the 

human subject is modelled in a way which is invariant to 

orientation and position, as shown below: 

(4) Compute the vector 𝑃𝑠𝑠𝑃𝑠𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, modelling the entire spine of 

the subject, and 𝑃𝑠𝑠𝑃𝑘𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,  𝑃𝑠𝑠𝑃𝑘𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗   modelling the left knee and right 

knee. Compute the angle 𝜃𝑘𝑙 between 𝑃𝑠𝑠𝑃𝑠𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑃𝑠𝑠𝑃𝑘𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ by using 

Equation (1). Similarly, the angle 𝜃𝑘𝑟 can be obtained by 

applying Equation (1) on the vectors 𝑃𝑠𝑠𝑃𝑠𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑃𝑠𝑠𝑃𝑘𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗  . Then, 

the bending angle 𝜃𝑏 of the body can be modeled, which is used 

mainly for analysing the sitting activity.  

 

                 𝜃𝑏 = max(𝜃𝑘𝑙, 𝜃𝑘𝑟)                       (3) 

 

(5) In order to recognize the lying/falling down activity, we 

compute the distance 𝐷𝑓 between the 3D coordinates Spine 

Base 𝑃𝑠𝑏 to the 3D Plane of the floor in the vertical direction. 

(6) We compute the movement speed of the human by 

analysing 𝑃𝑠𝑏
𝑖−1 and 𝑃𝑠𝑏

𝑖  which are the positions of the joint 𝑃𝑠𝑏 

in two successive frame i-1 and frame i. The speed 𝐷𝑠𝑏 can be 

obtained by applying Equation (2) on 𝑃𝑠𝑏
𝑖−1 and 𝑃𝑠𝑏

𝑖 . The 

movement speed 𝐷𝑠𝑏 is mainly utilized for analyzing the 

common activities: falling down, sitting, standing, walking, and 

running. 

For each tracked subject at a certain frame, the motion feature 

vector is obtained:  

 

          M = (𝜃𝑎𝑙, 𝜃𝑎𝑟, 𝐷ℎ𝑙, 𝐷ℎ𝑟, 𝜃𝑏, 𝐷𝑓, 𝐷𝑠𝑏)            (4) 
 

   For simplicity, we also denote each feature in M using the 

following format: 

 

       M = (𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6, 𝑚7)             (5) 

 

As we can see, our system is a general framework for 

behaviour recognition which can be easily extended to 

recognize more behaviour types by adding more relevant joints 

into the feature calculation. 

Each of these antecedents is represented by fuzzy sets which 

are Low, Medium, and High. The output of the fuzzy system is 

the behaviour possibility which is represented by two fuzzy sets 

which are Low and High. The type-1 fuzzy sets shown in Fig. 

6 have been obtained via Fuzzy C Means (FCM)-based 

algorithm. Specifically, in our training dataset, we use the 

FCM-based algorithm to process all the data of each antecedent 

separately. In this FCM-based algorithm, the centres clustered 

by FCM will be used as the Means 𝑚𝑘 of our Gaussian 

membership functions (𝑚𝑘 , 𝜎𝑘 , 𝑥) = exp(−
1

2
(
𝑥−𝑚𝑘

𝜎𝑘
)), where 

k = 1,…, p;  p is the number of antecedents. And 𝜎𝑘 were 

obtained by 𝜎𝑘 = (𝑚𝑘 − 𝑚𝑘−1)/3, where k = 2,…, p;  p is the 

number of antecedents. And for k = 1, 𝜎𝑘 = (𝑚𝑘+1 − 𝑚𝑘)/3. 

The type-1 output membership functions were designed by 

expert knowledge.  

 Occlusion problems and Tracking State Reliability 

For most available 3D motion capture devices in the market, 

the hardware system provides the level of the tracking 

reliability of the 3D joints. Kinect also returns to the tracking 

status to indicate if a 3D joint is tracked robustly, or inferred 

according to the neighbouring joints, or not-tracked when the 

joint is completely invisible. The 3D joints, which are occluded, 

belong to the inferred or not-tracked part. In our experiments, 

we found out that both inferred and not-tracked joints are 

unusually unreliable and will cause misclassifications. Thus, to 

solve the occlusion problem and increase the reliability, we 

only perform recognition when the tracking status of the 

essential parts related to our algorithm are tracked to avoid 

misclassifications. 

         
                                  (a)                                                     (b) 

        
                                   (c)                                                    (d)                        

         
                                   (e)                                                     (f)       

           
                                   (g)                                                     (h)        

Fig. 6.   Type-1 membership functions constructed by using FCM, (a) Type-1 

MF for 𝑚1 (b) Type-1 MF for 𝑚2 (c) Type-1 MF for 𝑚3 (d) Type-1 MF for 

𝑚4 (e) Type-1 MF for 𝑚5 (f) Type-1 MF for 𝑚6 (g) Type-1 MF for 𝑚7(h) 

Type-1 MF for the Outputs     
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3) Transforming Type-1 Membership Functions to Interval 

Type-2 Membership Functions 

In this subsection, we present the initial design process of the 

IT2FLS which will be further optimized by the proposed BB-

BC algorithm presented in the next subsection.  Fig. 7. shows 

the type-1 fuzzy sets which were extracted via FCM as 

explained in subsection C in section III. 

 
In order to construct the initial type-2 MFs modelling the 

FOU, we transform the type-1 fuzzy sets to the interval type-2 

fuzzy sets with certain mean (m) and uncertain standard 

deviation 𝜎 [𝜎𝑘1
𝑙 , 𝜎𝑘2

𝑙 ] [28], [29], i.e.,  

 

        𝜇𝑘
𝑙 (𝑥𝑘) = exp [−

1

2
(
𝑥𝑘−𝑚𝑘

𝑙

𝜎𝑘
𝑙 )] ,  𝜎𝑘

𝑙 ∈ [𝜎𝑘1
𝑙 , 𝜎𝑘2

𝑙 ]          (6) 

 

where k = 1,…, p;  p is the number of antecedents; l = 1,…, 

R; R is the number of rules. The upper membership function of 

the type-2 fuzzy set can be written as follows: 

 

                    �̅�𝑘
𝑙 (𝑥𝑘) = 𝑁(𝑚𝑘

𝑙 , 𝜎𝑘2
𝑙 , 𝑥𝑘)                        (7) 

 

The lower membership function can be written as follows: 

 

𝜇𝑘
𝑙 (𝑥𝑘) = 𝑁(𝑚𝑘

𝑙 , 𝜎𝑘1
𝑙 , 𝑥𝑘)                        (8) 

 

where 

 

                  𝑁(𝑚𝑘
𝑙 , 𝜎𝑘

𝑙 , 𝑥𝑘) = exp(−
1

2
(
𝑥𝑘−𝑚𝑘

𝑙

𝜎𝑘
𝑙 ))           (9) 

 

In order to construct the type-2 MFs in our IT2FLS, we use 

the standard deviation of the given type-1 fuzzy set (extracted 

by FCM clustering) to represent the 𝜎𝑘1
𝑙 .  𝜎𝑘2

𝑙  is obtained by 

blurring 𝜎𝑘1
𝑙  with a certain α% (α = 10, 20, 30, 40…) such that  

 

                                 𝜎𝑘2
𝑙 = (1 + 𝛼%) 𝜎𝑘1

𝑙            (10) 

where 𝑚𝑘
𝑙  is the same as the given type-1 fuzzy set. In order 

to allow for a fair comparison between the type-2 fuzzy logic 

system and type-1 fuzzy logic system, we used the same input 

features for the IT2FLS and the T1FLS. 

4) Initial Rule base construction from the raw data  

In this paper, we use an enhanced type-2 version of extended 

Wang-Mendel approach [28], [29], [39] to construct the initial 

rule base of the fuzzy system which will be further optimized 

by the proposed BB-BC algorithm presented in the next 

subsection.   

5) Optimizing the IT2FLS via BB-BC 

The main purpose of using FCM to generate the membership 

functions and using the Wang-Mendel method to construct the 

initial rule base before our BB-BC optimization is to obtain a 

good starting point in the search space, since the BB-BC quality 

of the optimization highly relies on the starting state to 

converge fast to the optimal position. If we started from random 

fuzzy sets and rules, the BB-BC will take very long time to 

converge to optimal values.  

 Big Bang-Big Crunch (BB-BC) Optimization 

The BB-BC optimization is an evolutionary approach which 

was presented by Erol and Eksin [24]. It is derived from one of 

the theories of the evolution of the universe in physics and 

astronomy, namely the BB-BC theory. The key advantages of 

BB-BC are its low computational cost, ease of implementation, 

and fast convergence. In [24], comparisons between BB-BC 

against Genetic Algorithm (GA) were performed. According to 

their comparison results, the performance of BB-BC exhibits 

superiority over an improved and enhanced genetic search 

algorithm. Furthermore, it was shown that the BB-BC 

outperforms the GA for many benchmark test functions and 

comparison experiments with a much faster convergence speed 

[24]. In [40], the BB-BC demonstrated better performance and 

outperformed the other optimisation algorithms such as genetic 

algorithms, evolution strategies algorithm, simulated annealing, 

tabu search, ant colony optimization, and harmony search. 

Similar comparison can be found in [41] which shows that BB-

BC outperforms GA in their experiments. The reason for this 

fact is that, according to [24], GA suffers from premature 

convergence, convergence speed and execution time problems 

in global optimum searching as they are generally sluggish in 

reaching the global optimum accurately and reliably in a short 

period of time. By contrast, BB-BC avoids these drawbacks and 

finds an optimum point within the maximum number of allowed 

iterations. The steps followed in a BB-BC algorithm are as 

follows [25]: 

Step 1: (Big Bang Phase): An initial generation of N 

candidates is randomly generated in the search space, similar to 

the other evolutionary search algorithms.  

Step 2: The cost function values of all the candidate solutions 

are computed.  

Step 3 (Big Crunch Phase): The Big Crunch phase comes as 

a convergence operator. Either the best fit individual or the 

centre of mass is computed. The centre of mass is calculated as:  

 

                               𝑥𝑐 =
∑

𝑥𝑖
𝑓𝑖

𝑁
𝑖=1

∑
1

𝑓𝑖
𝑁
𝑖=1

                    (11) 

 

where 𝑥𝑐 is the position of the center of mass, 𝑥𝑖 is the 

position of the candidate, 𝑓𝑖 is the cost function value of the ith 

candidate, and N is the population size. 

Step 4: New candidates are calculated around the new point 

calculated in Step 3 by adding or subtracting a random number 

whose value decreases as the iterations elapse: 

 
Fig. 7. Example of the type-2 fuzzy membership function of the Gaussian 

membership function with uncertain standard deviation σ. The shaded 

region is the Footprint of Uncertainty(FOU). The thick solid and dashed 

lines denote the lower and upper membership functions [28], [29] 
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                 𝑥𝑛𝑒𝑤 = 𝑥𝑐 +
𝛾𝜌(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

𝑘
            (12) 

 

where 𝛾 is a random number, 𝜌 is a parameter limiting search 

space, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are lower and upper limits, and k is the 

iteration step.  

Step 5: Return to Step 2 until stopping criteria have been met. 

Examples stopping criteria are: (1) current iteration number 

equals to the maximum iteration number; (2) the error (the 

difference between the current actual output and the expected 

output) is lower than a threshold value; (3) the accumulated 

running (consumed) time of the entire optimization procedure 

is larger than the given time for example five hours.  

More details and examples regarding the application of the 

BB-BC technique can be found in [24], [40], [41]. To apply BB-

BC, the first step is to determine what the input parameters are 

(i.e. which parameters in the system need to be tuned and 

optimized) and how to evaluate the quality and fitness of the 

achieved set of parameters. This allows determining the 

parameters in Equation (11). After that, the configuration of the 

BB-BC optimization can be determined by setting the search 

parameters such as the population size N and iteration count k 

to determine the search space. There is no restriction regarding 

these two parameters as the effect of N and k is only to 

determine the running time and search space. 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 

can be determined by the application scenario. The parameter r 

is determined by a random number generated in each iteration. 

The parameter 𝜌 is a positive value which could be set to 1 in 

the first iteration and then decreased while the iteration count 

increases so that the search space can be narrowed down. Once 

the parameters are determined, the BB-BC can operate 

continuously until the stopping criteria are satisfied.  

 

 Optimizing the rule base of the IT2FLS with BB-BC 

To optimize the rule base of the IT2FLS, the parameters of 

the rule base are encoded into a form of a population. The 

IT2FLS rule base can be represented as shown in Fig. 8.  

As showed in Fig. 8, 𝑚𝑗
𝑟 are the antecedents and 𝑜𝑘

𝑟  is the 

consequents of each rule respectively, where j = 1,…, p,  p is 

the number of antecedents; k = 1,…, q,  q is the number of 

behaviours; r = 1,…, R,  and R is the number of the rules to be 

tuned. However, the values describing the rule base are discrete 

integers while the original BB-BC supports continuous values. 

Thus, instead of Equation (12), the following equation is used 

in the BB-BC paradigm to round off the continuous values to 

the nearest discrete integer values modelling the indexes of the 

fuzzy set of the antecedents or consequents.  

 

𝐷𝑛𝑒𝑤 = 𝐷𝑐 + 𝑟𝑜𝑢𝑛𝑑 [
𝛾𝜌(𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛)

𝑘
]          (13) 

 

where 𝐷𝑐 is the fittest individual, r is a random number, 𝜌 is 

a parameter limiting search space, 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 are lower and 

upper bounds, and k is the iteration step.  

In this study, the rule base constructed by the Wang-Mendel 

approach [28], [29], [39] is used as the initial generation of 

candidates. After that, the rule base can be tuned by BB-BC 

using the cost function depicted in Equation (14).  

 
 Optimizing the Type-2 membership functions with BB-

BC 

In order to apply BB-BC, the feature parameters of the type-2 

membership function have to be encoded into a form of a 

population. As depicted in Equation (10), in order to construct 

the type-2 MFs, the parameter α has to be determined to obtain 

𝜎𝑘2
𝑙  while 𝜎𝑘1

𝑙  is provided by FCM. To be more accurate, the 

uncertainty factors α𝑘
𝑗
 for each fuzzy set of the MFs are 

computed, where k = 1,…, p,  p is the number of antecedents; j 

= 1,…, q, q is the number of input features. For illustration 

purposes, as in the MFs of the proposed system, three type-2 

fuzzy sets including LOW, MEDIUM and HIGH are utilized 

for modelling each of the 7 features, therefore, the total number 

of the parameters for the input type-2 MFs is 37=21. In a 

similar manner, parameters for the output MFs are also 

encoded; these are 𝛼𝐿
𝑂𝑢𝑡  for the linguistic variable LOW and 

𝛼𝐻
𝑂𝑢𝑡  for the linguistic variable HIGH of the output MF. 

Therefore, the structure of the population is built as displayed 

in Fig. 9. 

 
The optimization problem is a minimization task, and with 

the parameters of the MFs encoded as showed in Fig. 9 and the 

constructed rule base, the recognition error in our solutions 

space can be minimized by using the following function as the 

cost function. 

                         𝑓𝑖 = (1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖)                    (14) 

where  𝑓𝑖 is the cost function value of the ith candidate and 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 is the scaled recognition accuracy of the ith 

candidate. The new candidates are generated using Equation 

(12). 

 

D. Recognition Phase 

In our fuzzy system, the antecedents are 𝑚1, 𝑚2, 𝑚3, 𝑚4, 

𝑚5, 𝑚6, 𝑚7 and each of these antecedents is modelled by three 

fuzzy sets: LOW, MEDIUM, and HIGH. The output of the 

fuzzy system is the behaviour possibility which is modelled by 

two fuzzy sets: LOW and HIGH. The type-1 fuzzy sets shown 

in Fig. 6 have been obtained via FCM and the rules are the same 

as the IT2FLS.  

When the system operates in real time, we measure {𝑚1, 

𝑚2, …, 𝑚7} on the current frame and the IT2FLC is supposed 

to provide the possibilities of the candidate behaviour classes: 

drinking/eating, sitting, standing, walking, running, and 

lying/falling down. In our system, each activity category 

utilizes the same output membership function as depicted in 

Fig. 6h, and product t-norm is employed while the centre of sets 

type-reduction for IT2FLS is used (for the compared type-1 

FLS the centre of sets defuzzification is used). To recognize the 

 
      Fig. 8. The population representation for the parameters of the rule base 

 

 

 

 
      Fig. 9. The population representation for the parameters of type-2 MFs 
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current behaviour, our system works in the following pattern: 

The Kinect v2 is continuously capturing the raw 3D skeleton 

data from the subjects in the real-world intelligent environment. 

Then the raw real-time 3D Kinect data will be analysed by 

our feature extraction module to get the feature vector M = (𝑚1, 

𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6, 𝑚7) modelling the behaviour 

characteristics in the current frame.  

For the crisp input vector M, a type-2 singleton fuzzifier will 

be used to fuzzify the crisp input and obtain the upper 

µ
𝐹1

𝑖(𝑥′)and lower (µ𝐹1
𝑖(𝑥′)) membership values. 

After that, we compute the firing strength 𝑓𝑖and 𝑓
𝑖
of each 

rule, where 𝑖 = 1,… , 𝑅, and R is the number of rules, where 

  𝑓𝑖(𝑥′) = µ𝐹1
𝑖(𝑥′1) ∗ …∗ µ�̃�𝑝

𝑖 (𝑥′𝑝) and 𝑓
𝑖
(𝑥′) = µ

𝐹1
𝑖(𝑥′

1) ∗

…∗ µ
�̃�1

𝑖(𝑥′
𝑝). 

The type reduction is carried out by using the Karnik-Mendel 

(KM) approach [29] to compute the type reduced set defined by 

the interval [𝑦𝑙𝑘, 𝑦𝑟𝑘]. The reason for using KM algorithm is 

that KM approach is the standard method and most accurate 

algorithm for type-reduction in in interval type-2 fuzzy systems 

[29].  

In the end, defuzzification is computed as 
𝑦𝑙𝑘+𝑦𝑟𝑘

2
 to calculate 

the output degree of the target behaviour class. For one input 

feature vector analysed by our fuzzy system, we will have one 

output degree per candidate activity class, which models the 

possibility of the candidate activity class occurring in the 

current frame.  

In our application scenario within AAL spaces, we aim at 

recognizing the daily regular activities. However, the subject’s 

activity sequence happening in the actual environment is not a 

continuous time-series due to the occlusion problems, capturing 

angle, and the casualness of the subject which could lead to 

untargeted and unknown behaviours out of our concern range. 

To solve this problem, we are not using shoulder functions in 

our membership functions since the target behaviours are only 

modelled by the feature values ranging in the sections returned 

by FCM learned from the feature data of the concerned 

activities. Additionally, we will check if the behaviour 

candidate is confident in the current frame by checking if its 

associated output degree is higher than a confidence threshold 

t, where in our experiment we set t = 0.62. The confident 

behaviour candidates will be further considered to get the final 

recognition output.  

In our application scenario, some of the target behaviour 

categories are conflicting as it is impossible for them to be 

happening at the same moment. Therefore, in our experiment, 

we divide the target behaviour categories into several 

conflicting groups, i.e. sitting, standing, walking, running, and 

lying/falling down as a group while drinking/eating is another 

group.  

In the final step, the behaviour recognition is performed by 

choosing the confident candidate behaviour category with the 

highest output degree as the recognized behaviour class in its 

behaviour group. For example, if the outputs of sitting, 

standing, walking, running, and lying/falling down are 0.25, 

0.75, 0.64, 0.0, 0.0 and the output of drinking/eating is 0.25, 

then the final recognition result would be standing since its 

output degree is the highest among the confident candidates 

(which are standing and walking in this case) in the its group 

and the output degree of drinking/eating in the other group is 

lower than a confident level. However, in a very rare situation, 

if two confident candidate categories in a conflicting group are 

allocated with a same output degree, this demonstrates that the 

two candidates have extremely high behavioural similarity and 

cannot be distinguished in the current frame, our system ignores 

these two candidate categories in the behaviour recognition of 

the current frame.  

IV. EXPERIMENTS AND RESULTS 

In our application scenarios, we aim at recognizing the 

following behaviours: drinking/eating, sitting, standing, 

walking, running, and lying/falling down. Our experiments 

were performed in different places such as the intelligent 

apartment (iSpace) [42] and intelligent Classroom iClassroom 

[22] [43] at the University of Essex. We tested our methods 

including Type-1 Fuzzy Logic System (T1FLS) and Type-2 

Fuzzy Logic System (T2FLS) compared against the non-fuzzy 

traditional methods including Hidden Markov Models (HMM) 

and Dynamic Time Warping (DTW) on 22 subjects ensuring 

high-levels of intra- and inter- subject variation and ambiguity 

in behavioural characteristics.  

In the training stage, the training data were captured from 

different subjects where the subjects were asked to perform 

each target behaviour on average two to three times. This 

resulted in around 220 activity samples for training. In the real-

world recognition stage, we divided the subjects into different 

groups and we performed the experiments with different subject 

numbers in a scene to model different uncertainty complexity.  

The experiments were conducted on average with five 

repetitions per target behaviour by each subject in the group 

analysed by the real-time behaviour recognition system. This 

resulted in around 1,740 activity samples for testing. To 

perform a fair comparison, all the methods share the same input 

features. As in real-world environments, occlusion problems 

exist in our test cases leading to behavioural uncertainty caused 

by the occlusions of the subjects. The experiments were 

conducted with different subjects and different scenes in 

various circumstances including different illumination strength, 

partial occlusions, daytime and night time, moving camera, 

fixed camera, different monitoring angles, etc. The experiment 

results demonstrate that our algorithm is robust and effective in 

handling the high levels of uncertainties associated with real-

world environments including occlusion problems, behaviour 

uncertainty, activity ambiguity, and uncertain factors such as 

position, orientation and speed, etc. The type-2 membership 

functions used in our system, which are constructed and 

optimized by BB-BC, are shown in Fig. 10.  
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Our experiment result demonstrates that the BB-BC 

optimization improves the performance of our type-2 fuzzy 

logic system. In the BB-BC optimization procedure of the type-

2 membership functions, we set 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 to 50% and 

300%, which influences the FOU blurring factor 𝛼 in type-2 

MFs construction. In order to achieve robust recognition 

performance, in our experiment, the population size N of BB-

BC is set to 200,000. 

Based on the optimized type-2 fuzzy sets and rule base by 

utilizing BB-BC, our IT2FLSs-based system outperforms the 

counterpart T1FLSs-based recognition system, as shown in 

Table I, where the type-2 system achieves 5.29% higher 

average per-frame accuracy over the test data in the recognition 

phrase than the type-1 system. Our type-2 fuzzy logic system 

also outperforms the traditional non-fuzzy based recognition 

methods based on Hidden Markov Models (HMM) [14] and 

Dynamic Time Warping (DTW) [15]. In order to conduct a fair 

comparison with the traditional HMM-based and DTW-based 

methods, all the methods share the same input features. As 

shown in Table I, our IT2FLSs-based method with BB-BC 

optimization achieves 15.65% higher recognition average 

accuracy than the HMM-based algorithm, and 11.62% higher 

recognition average accuracy than the DTW-based algorithm. 

For the standard deviation of each subject’s recognition 

accuracy, the T2FLS-based method is the lowest, 

demonstrating the stableness and robustness of our method 

when testing on different subjects. 

When the number of subjects increases which leads to a 

higher possibility of occlusion problems with a higher-level of 

behaviours uncertainty, the difference between our method 

compared to the T1FLS-based method and the traditional non-

fuzzy methods is even higher, as shown in Table II, Table III 

and Table IV. Our T2FLS-based method remains the most 

robust algorithm with the highest recognition accuracy which 

remains roughly the same with adding more users to the scene.  

Due to the limitations of the field-of-view (70°×60°) and 

sensing distance (5 meters) of the hardware platform of the 

Kinect v2, according to our experiments, we found out that the 

reliability of the sensing data 3D skeleton will degrade if the 

user is around the boundary of the field-of-view or is around the 

sensing distance range. Furthermore, the reliability and quality 

of skeleton data will degrade if there are occlusion problems 

caused by the crowded users. This problem generates high-

levels of uncertainties in the real-world application scenario 

since the status of some of the 3D joints of the skeleton emain 

“tracked” rather than “inferred” when the human subject is not 

within the effective and robust sensing range. This problem is 

caused by the limitations of the hardware and the software 

package of the Kinect v2. Moreover, higher-level of 

uncertainties occur if the crowdedness of the users increases 

and the human subjects are acting freely. In our real-world 

experiments, the human subjects acted freely which caused 

occlusion problems resulting from the crowdedness of the users 

and objects such as tables, chairs, sofas, TV, etc. Therefore, the 

high-level of uncertainties significantly increase the difficulty 

of recognising behaviours in the real-world AAL environment. 

In order to test the system ability to handle the occlusion 

problems, we have performed particular occlusion experiments 

in which the human subjects were heavily occluded by the 

obstacles such as chairs, tables, sofas, or other human subjects. 

These noise factors have decreased the quality of the extracted 

3D skeleton and have increased the uncertainties in behaviour 

representation and recognition. As shown in Table IV, our 

IT2FLSs-based system remains robust and maintains its 

accuracy (which shows the ability to handle uncertainties) 

while outperforming the other methods and achieving 8.94%, 

24.02%, and 27.12% higher accuracy than the T1FLSs, DTW, 

and HMM based methods respectively. 

Based on the recognition results of our optimized IT2FLS, 

higher-level applications including video linguistic 

summarizations, event searching and retrieval, event playback, 

and human-machine interactions have been developed and 

deployed in iSpace and iClassroom. 

  
(a)                                                     (b) 

  
(c)                                                    (d) 

  
(e)                                                     (f) 

  
(g)                                                     (h) 

Fig. 10.   Type-2 membership functions optimized by using BB-BC, (a) 

Type-2 MF for 𝑚1 (b) Type-2 MF for 𝑚2 (c) Type-2 MF for 𝑚3 (d) Type-2 

MF for 𝑚4 (e) Type-2 MF for 𝑚5 (f) Type-2 MF for 𝑚6 (g) Type-2 MF for 

𝑚7 (h) Type-2 MF for Output 
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The results of detected events and the associated video data 

are stored in the SQL Event database server so that further data 

mining can be performed by using our event summarization and 

retrieval software. Also, the user can easily summarize the 

event of interest at the given time frame and play them back. 

Fig. 11 provides the detection results of the real-time event 

detection system deployed in different real-world intelligent 

environments such as iClassroom and iSpace at the University 

of Essex.  

 
TABLE VI 

REULTS FROM THE TUKEY TEST AS COMPUTED BY THE SPSS TOOL. 

 

 

 
 

Fig.11 Plot for group means comparison as extracted from the Tukey test within 

SPSS. 

 

We have conducted statistical analysis using the Analysis of 

Variance (ANOVA) methodology inorder to statistically verify 

our results and detect if there is statistically relevant difference 

among the compared techniques. The Four Groups involved in 

the statistical analysis were Group1 (HMM technique), Group 

2 (FTW technique), Group 3 (T1FLS technique) and Group 4 

(T2FLS technique). The resulting p-value was 0.00015 which 

is lower than the level of significance α= 0.05, which means that 

we can reject the null hypothesis and affirm that there exist 
statistical differences between the multiple distributions 

associated with each of the compared techniques. We have then 

applied the post-hoc Tukey test (using the SPSS software tool) 

where we conducted first the Levene's test which is needed for 

the Tukey test to establish the equality of variances. After 

passing the Levene’s test, we conducted the Tukey test whose 

results are reported in Table VI. Fig.11 displays the means of 

the accuracies of the four compared approaches as reported via 

SPSS. As can be seen through Table VI, there is no statistically 

significant difference between Group 1 (HMM technique) and 

Group 2 (DTW technique) as the sig value (which is 0.759) was 
bigger than 0.05. However, it can be seen that Group 4 (T2FLS) 

is significantly statistically different from the other compared 

techniques. This statistical difference can be compounded with 

the T2FLS based technique achieving the best mean accuracy 

reported in Fig.11 to confirm the superiority of the T2FLS 

based technique as reported in the abovementioned 

comparisons.  

The results of detected events and the associated video data 

are stored in the SQL Event database server so that further data 

mining can be performed by using our event summarization and 

retrieval software. Also, the user can easily summarize the 
event of interest at the given time frame and play them back 

Fig. 12 provides the detection results of the real-time event 

detection system deployed in different real-world intelligent 

environments such as iClassroom and iSpace at the University 

of Essex. The number of subjects changes according to the 

application scenario. In Fig 12a, two students are using our 

immersive learning platform [43] in iClassroom with one 

Kinect v2. In Fig 12b, the system analysed the activity of the 

three subjects in the scene in the iClassroom. In Fig 12c, 

behaviours recognition is performed in the iSpace with four 

TABLE I 

COMPARISON OF FUZZY-BASED METHODS AGAINST TRADITIONAL METHODS 

WITH ONE SUBJECT PER GROUP IN A SCENE (FIFTEEN GROUPS) 

Method Average Accuracy Standard Deviation 

HMM 70.9266% 0.175258 

DTW 74.9614% 0.129266 

T1FLS 81.2903% 0.110410 

T2FLS 86.5798% 0.086551 

 
TABLE II.  

COMPARISON OF FUZZY-BASED METHODS AGAINST TRADITIONAL METHODS 

WITH TWO SUBJECTS PER GROUP IN A SCENE (SIX GROUPS) 

Method Average Accuracy Standard Deviation 

HMM 72.4134% 0.078800 

DTW 71.6549% 0.051693 

T1FLS 79.0394% 0.157738 

T2FLS 85.8864% 0.092471 

 
TABLE III. 

 COMPARISON OF FUZZY-BASED METHODS AGAINST TRADITIONAL METHODS 

WITH THREE SUBJECTS PER GROUP IN A SCENE (FIVE GROUPS) 

Method Average Accuracy Standard Deviation 

HMM 70.1782% 0.042738 

DTW 73.7452% 0.103744 

T1FLC 78.3855% 0.128380 

T2FLC 86.1305% 0.082625 

 
TABLE IV.  

COMPARISON OF FUZZY-BASED METHODS AGAINST TRADITIONAL METHODS 

WITH FOUR SUBJECTS PER GROUP IN A SCENE (THREE GROUPS) 

Method Average Accuracy Standard Deviation 

HMM 69.5274% 0.083920 

DTW 70.1220% 0.112780 

T1FLC 76.6017% 0.080618 

T2FLC 84.7253% 0.072113 

 TABLE V. 

 COMPARISON OF FUZZY-BASED METHODS AGAINST TRADITIONAL METHODS 

IN OCCLUSION PROBLEMS HANDLING 

Method Average Accuracy Standard Deviation 

HMM 60.5395% 0.220914 

DTW 63.6414% 0.142105 

T1FLC 78.7150% 0.105513 

T2FLC 87.6638% 0.113804 
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subjects. As the scenario is in the living environment, the users 

have more freedom to act casually and the occlusion problems 

are more likely to happen with a large crowd of subjects, these 

factors lead to higher-levels of uncertainty.  

As can be seen, the user 1 who is drinking coffee is heavily 

occluded by the table in front, as well as the user 2 who is 

walking towards the door. Our IT2FLS-based recognition 

system handles the high-levels of uncertainty robustly and 

returns the correct results. 

As shown in Fig. 13a, to retrieve the interesting events of a 

certain subject conducted during a fixed time period, we 

inputted a subject number and time duration, and performed 

event retrieval via the front-end GUI. After that, the relevant 

retrieved events were shown in the result list, from where we 

selected the retrieved event and played back the HD video. 

Similarly, in Fig 13b, we were interested in the drinking 

activities that happened in the iSpace. Therefore, we selected 

the “Drinking” activity from the event category and also 

provided a certain time period. Then, the events associated with 

“Drinking” during the given time period were retrieved and 

shown in the result list for the user to play back. 

V. CONCLUSIONS 

To construct real world AAL environments, there is a need to 

develop intelligent systems which are capable of realising 

context awareness regarding the activities and behaviours of the 

human users in AAL such that particular assisted or healthcare 

services can be provided to the users. 3D vision techniques can 

provide vital and accurate context awareness information for 

AAL by modelling the behaviour characteristic with massive 

data. However, high-levels of uncertainties caused by the 

behaviour uncertainty, activity ambiguity and noise factors 

associated with the real-world environments exist in the 

captured 3D data. In this paper, we introduced a framework for 

behaviour recognition and event linguistic summarization 

utilizing a RGB-D sensor Kinect v2 based on BB-BC optimised 

Interval Type-2 Fuzzy Logic Systems (IT2FLSs) for AAL real 

world environments. We have shown that the proposed system 

is capable of handling high-levels of uncertainties caused 

occlusions, behaviour ambiguity and environmental factors. 

Our proposed system has been successfully deployed in real 

world environments occupied with various users ensuring high-

levels of intra- and inter- subject behavioural uncertainty. Our 

results demonstrated that the BB-BC based optimization 

paradigm is effective in tuning and optimizing the parameters 

of our fuzzy system. In addition, our experiment results with 

single users show that the proposed IT2FLS handles the high-

levels of uncertainties well and achieves robust recognition of 

86.57% and outperformed the T1FLS counterpart by an 

enhancement of 5.28% as well as other traditional non-fuzzy 

systems including the HMM-based system and DTW-based 

method by 15.65% and 11.61%, respectively. Moreover, it was 

shown that the proposed IT2FLS delivers consistent and robust 

recognition accuracy while the T1FLS and other conventional 

methods based on HMM and DTW shows degradations in 

recognition accuracy when increasing the number of users. 

 

   
 

  

 
                                                             (a) 

 
                                                             (b) 

 
                                                             (c)  

Fig. 12. Detection results from our real-time IT2FLS-based recognition 

system, (a) recognition results in the iClassroom with two subjects in the 

scene (b) recognition results in the iClassroom with three subjects in the 

scene (c) recognition results in the iSpace with four subjects in the scene 

leading to occlusion problems and high-levels of uncertainty 
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