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SEMIGROUPS WITH OPERATION-COMPATIBLE
GREEN’S QUASIORDERS

ZSOFIA JUHASZ, ALEXEI VERNITSKI

ABSTRACT. We call a semigroup on which the Green’s quasiorder
<7 (<g, <g) is operation-compatible, a < 7-compatible (< -compatible,
<gr-compatible) semigroup. We study the classes of < 7-compatible,
<c-compatible and <g-compatible semigroups, using the smallest
operation-compatible quasiorders containing Green’s quasiorders
as a tool. We prove a number of results, including the following.
The class of </-compatible (<g-compatible) semigroups is closed
under taking homomorphic images. A regular periodic semigroup
is <z-compatible if and only if it is a semilattice of simple semi-
groups. Every negatively orderable semigroup can be embedded
into a negatively orderable < 7-compatible semigroup.

1. INTRODUCTION

Green’s relations £, R and J are one of the most important tools
in studying the structure of semigroups. They can also be viewed
from a less common angle: as being defined via quasiorders (or pre-
orders), which we shall refer to as Green’s quasiorders and denote by
<, <g and <7, respectively. Studying the properties of these qua-
siorders is of interest, because of the importance of Green’s relations
and due to the fact that in a certain sense these associated quasiorders
contain ‘more information’ about a semigroup than Green’s relations:
given only a Green’s quasiorder on a semigroup we can reconstruct
the corresponding Green’s relation, whereas the converse is not true.
We shall call a semigroup S < -compatible, <g-compatible and < ;-
compatible, respectively, if <., <z and <7 is operation-compatible on
S. The aim of this paper is to explore some properties of the classes of
<c-compatible, <g-compatible and <s-compatible semigroups. These
classes are natural to consider; operation-compatible quasiorders have
the convenient property that the equivalences induced by them are con-
gruences, hence yield factor semigroups. We shall denote the smallest
operation-compatible quasiorders containing <,, <z and <7 by < 5
1
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<z and < 5 respectively. In [9] it was shown that there is a close con-
nection between < o and the filters of a semigroup, and thus < 2 can

be used to determine the lattice of filters and the largest semilattice
image of a semigroup.

2. DEFINITIONS AND OBSERVATIONS

2.1. Main concepts. A quasiorder (or preorder) on a set is a reflexive
and transitive relation. If S is a semigroup, by S! one denotes S if
it has an identity element or, otherwise, S with an added identity
element. We shall call Green’s quasiorders the relations defined on
every semigroup as follows:

Definition 2.1. For any elements s, ¢ of a semigroup S let
o 5 <, tif and only if s = xt for some x € S*,
e 5 <p tif and only if s = ty for some y € S!,
e 5 <;tif and only if s = xty for some z,y € S'.

It is easy to show that the relations <., <z and <; are quasiorders
and that L=<, N <", R=<g N < and J = <57 N <G

A quasiorder < on a semigroup S is left (right) operation-compatible
if for all a,b,c € S, a < b implies ca < ¢b (ac < be). A quasiorder is
operation-compatible if it is both left and right operation-compatible.
Clearly, <, (<g) is right (left) operation-compatible on every semi-
group. However, Green’s quasiorders are not operation-compatible in
general. As operation-compatible quasiorders on any semigroup form
a complete lattice, for any quasiorder on a semigroup there exists a
smallest operation-compatible quasiorder containing it.

Definition 2.2. We call a semigroup <z-compatible (<,-compatible,
<g-compatible) if <7 (<r, <g) is operation-compatible on S.
Definition 2.3. Denote by < 3 (< o < 7%) the smallest operation-compatible
quasiorder containing <7 (<., <g).

Relations < 5 < 2 and < 2 will be a useful instrument for us in this pa-
per because, obviously, a semigroup is <_7-compatible (<,-compatible,
<g-compatible) if and only if <; = <s (<= <g <p= Sﬁ).

In [10] a description of Sﬁ’ <o and <jg Wwas given. In Lemma 2.1
below we give another description, which will be convenient later. In
this lemma, for any relation 6, 6 denotes the transitive closure of 6.
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Let S be a semigroup. Define the relation < - as follows: for any
s,t € Slet s '<§ t if and only if s = t1s1ty and t = tt5 for some
t1,ts, 51 € S*. Define the relation <z (<7%) as follows: for any s,t € S
let s =gt (s =<3 t)ifand only if ty € S, t1,s; € S* (t; € S, ty, 5, € ST).

Lemma 2.1. In every semigroup

(1) Sj:‘<§
(2) SLC):{EO
(3) §7022-<7%.

Proof. We only prove Statement 1, since Statements 2 and 3 can be
verified similarly.

If a <7 b then a = sbt for some s,t € S'; since a = sbt = sb =2 b,
we have a<_job. Therefore, <7 C <_j It is obvious that if a < 5 b then
for any s,t € S1, sat = sbt. Hence, if a—<_§b then for any s,t € S*
sat<_§sbt. Therefore, —<_§ is operation-compatible. Obviously, -<_§ is
transitive. Therefore, < 2 C —<_Jo

It is obvious that < 5 is contained in the operation-compatible closure
of <7. Hence, —<_§ is contained in the transitive operation-compatible
closure of <7, which is exactly < 2 Therefore, < 3 D) —<_§ O

2.2. Examples of classes of <;-compatible semigroups.

Proposition 2.1. Every group and every commutative semigroup is
< g-compatible, < -compatible and <g-compatible.

Proof. The result follows from the fact that in a group or in a commu-
tative semigroup <§ C <, =z C <, and =<3 C <z and from Lemma
2.1. O

As we shall see in Sections 4 and 5, every band is <z-compatible, but
not necessarily < -compatible and <x-compatible.

2.3. Monoids. As the following statements demonstrate, results con-
cerning < 5 are not affected by a semigroup being a monoid; however,

results concerning < 2 and < 3 are affected by this fact.



4 ZSOFIA JUHASZ, ALEXEI VERNITSKI

Proposition 2.2. Consider a semigroup S and a monoid M = S U 1
with the neutral element 1, where 1 ¢ S. Then the relation < 5 on S

is equal to the restriction of < son S.

Proof. This follows from the description of < 5 in Lemma 2.1. O

Proposition 2.3. In every monoid Sﬁ =<p=<xs.

Proof. From the definition it follows that in any monoid M we have
<= =<p= =g Therefore, by Lemma 2.1, §j:§£:§7o€. O

3. CONGRUENCES

3.1. Induced equivalence relations. For any element s in a semi-
group S and any congruence @ on S, s’ shall denote the image of s
under the natural homomorphism S — S/6.

Lemma 3.1. Let S be a semigroup and let s,t € S be such that s gﬁ t
(s <gt, s<g t). Then for any congruence 6 on S, s° <z t? (s? <z t0,
s? <z t?) in S/0.

Proof. If s gﬁ t then by Lemma 2.1 there exist s = sg, $1,...,8, =
t € S such that s; —<§ s;y1 for every 0 < i < n — 1. Fix an arbitrary
0 <i<n—1. Then s; = abc and s;; = ac for some a,b,c € S'. Hence
s? = a’t’c” and s? ; = a’c’ (where for 15 € S' we have 1% = 17 € T?),
and so s? =<2 s?.,. Therefore by Lemma 2.1 s < t?. (The proof is
similar for <z and gﬁ.) O

Definition 3.1. Denote by j , £ and R the equivalences < 2 N S}l,

<on <t <on <! ively.
<N <% and <N <% respectively.

For any operation-compatible quasiorder <, < N <! is a congruence
(see [13] for instance), hence J, £ and R are congruences.

Definition 3.2. Let us say that a semigroup is j -trivial (Lo—tm'm'al,
R-trivial) if J (L, R) is the identity relation on S.

We call a quasiorder on a semigroup S a negative quasiorder if st < s
and st <t for every s,t in S; S is called negatively orderable if there
exists an operation-compatible negative partial order on S.
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Proposition 3.1. A semigroup is j -trivial if and only if it is negatively
orderable.

Proof. 1f a semigroup S is j -trivial then, obviously, <7 is an operation-
compatible negative partial order on S. If there is an operation-compatible
negative partial order < on S then < 3 C <, by the definition of < 5

hence, < 5 C <, therefore, < 2 is an order and, hence, J is the identity
relation. 0

According to the usual convention, let us call a congruence 6 on a
semigroup S a j -trivial congruence (Eo-tm'm'al congruence, R-trivial
congruence) if S/0 is a J-trivial semigroup (ﬁo-trivial semigroup, R-
trivial semigroup).

[} o

Proposition 3.2. In any semigroup S, the congruence J (L, R) is
the smallest J-trivial (L-trivial, R-trivial) congruence.

Proof. Let S be a semigroup. First we prove that J is contained in
every J-trivial congruence on S. Let 6 be a J-trivial congruence on
S and let s,t € S be such that s J t. Then we have s gj t and

t S\; s. By Lemma 3.1 in the factor semigroup S/6 we have s’ S; tf
and t? < 3 s?. Then t? j s? and since 0 is a jo -trivial congruence, we

have t? = s?. Therefore j Cé.

We show that jo is a j -trivial congruence on S. Suppose that s7 < 2 tJ

and t7 < s7 for some s and ¢t in S. Then — by Lemma 2.1 — there

o

exists a sequence s = sg,...,s, = t in S such that sy < = sf., for
every 0 <i<n-—1. By deﬁnition of <jo for every 0 <i<n—1there

O ;7 (Where for
S j Then s‘; = a‘jb‘j ‘70
(S/T)). i

l

exist az,bl,cz € S' such that s bec- and Sl+1 =ajc
1 J J _

lg €S, 1y is deﬁned as 1g 1S/J

(a;b; cl) and 51+1 = ajcj = (azcz)j hence s; .7 a;b;c; —ﬁ a;c; ._7 Sit1,

thus s; §§ s;iy1 for every 0 < ¢ < m — 1. By transitivity s g\; t

follows. Similarly we can show that ¢ < 55 thus s j t and so s7 = tJ

holds. Therefore S/ j is a j -trivial semigroup and j is a j -trivial
congruence.
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The statement regarding the congruences £ and R can be proved sim-
ilarly. O

As a comment to the previous result, we would like to emphasize that
we do not say that every congruence containing j is J -trivial. For in-
stance, a free semigroup obviously has non—Jo -trivial factor semigroups,
and it is J-trivial. Indeed, let A be an alphabet. Then — by Lemma
2.1 — it is easy to show that for any u, v in the free semigroup A* we
have u S; v if and only if v is a subword of u. Hence u g‘; v and

v S; u imply v = v, and so A" is J-trivial.

One might think incorrectly that if in a semigroup J = j (L = EO,
R = R) then it is a <z-compatible (< -compatible, <g-compatible)
semigroup. However, this is wrong even in semigroups which are [J-

trivial; now we present an example of a J-trivial semigroup which is
not <gz-compatible.

Example 3.1. For any positive integer n, the semigroup OF,, of all
order-preserving decreasing mappings on an n-element set is well known
to be negatively orderable (we cannot find this observation in the liter-
ature formulated explicitly, although it is implicit in, for instance, [6]).

Hence, OF,, is J-trivial. Consider the mappings «, 8 € OF, defined
as follows. Let « : 4+ 3,3+— 2,2+ land f:4+— 3,3+— 3,2 +—1
(and 1 +— 1, as in every element of OFE,). Then o £ [, since
rank(a) £ rank(S) (where the rank of a mapping is the size of its
image) . Let us demonstrate that « <z B (« <z B,a<g B). In-
deed, let a1 : 4 — 4,3 — 2,2 — 2, 31 :4— 43— 3,2 — 1 and
By 4 — 3,3 — 3,2 — 2. It is easy to see that f = (10 and
o = (1o 3, hence by Lemma 2.1 « §§ B (« gﬁ B, a <z B).

As to an example of a completely different kind, any free semigroup

with at least two generators is also a J-trivial semigroup with < 2 #
<7

3.2. Homomorphic images of < ;-compatible, <g-compatible
and <;-compatible semigroups. The class of <7-compatible semi-
groups is not closed with respect to subsemigroups (for example, a
counterexample can be produced on the basis of Corollary 6.1 below).
However, the following is true:
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Theorem 3.1. The class of < 7-compatible (<.-compatible, <r-compatible)
semigroups 1s closed under taking homomorphic images.

Proof. Let S be a <g-compatible semigroup and let 7" be a homomor-
phic image of S under a homomorphism « : S — T. Let s,t € S
be such that «(s) <2 a(t) in T. Then — by Lemma 2.1 — there is a
sequence s = Sg, S1,...,5, =t € S such that for every 0 <i <n —1,
a(s;) = ala)a(b)alc) and a(s; 1) = ala;)a(c;) for some a;, by, ¢; € St
(where for 1g € S, a(lg) is defined as a(lg) = 17 € T'). Let us fix
an index 0 < ¢ <n —1. Then a;b;c; Sﬁ a;c; in S and as SL;:SJ in

S, there exist u;,v; € S such that a;b;¢c; = w;a;c;v;. Then a(s;) =

alabic;) = aluacv) = alu)a(ac)a(v;) <z alaic;) = a(si).
Hence, a(s;) <7 a(s;y1) and by transitivity, a(s) <z «(t). For <,
and <z the statement can be proved similarly. O

4. REGULAR PERIODIC < 7-COMPATIBLE (</-COMPATIBLE,
<R-COMPATIBLE) SEMIGROUPS

In this section we shall provide a description of regular periodic < ;-
compatible, < -compatible and <gr-compatible semigroups.

By J* one denotes the smallest congruence containing 7. It is well
known that in regular semigroups the congruence J* plays a special
role: it is the smallest semilattice congruence; see, for instance, Propo-
sition 3.2.3 in [5].

o

Lemma 4.1. In a reqular semigroup, J* = J.

Proof. From Proposition 3.2 and from J C j it follows that J*! C jo .
Let us prove that J C J*. Indeed, by Proposition 3.2, j is the
smallest .7 ~trivial congruence. At the same time, J* is the smallest
semilattice congruence. Since every semilattice is ._7 -trivial, J* is a
jo -trivial congruence, hence by Proposition 3.2 j c Jt U

Example 4.1. As the following example shows, in a regular semigroup
RE # R in general. Consider the variety MK of semigroups defined by
the identities = 2?2 and xy = xyx within the variety of all semigroups
(the notation was first introduced in [11]). Let B denote the band
which is free in MK; with generators A = {a4,...,a,} for some n > 3.
Since B is a band, it is a regular semigroup. It is easy to see that R
is the identity relation on B, hence R¥ = R is also the identity. We
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show that R is not the identity on B. For ay,as,a3 in B we have
10203 2.5 41030203 = A1A30) and ajazas > (1020302 = (10203, hence
a1a203 R aiazas. It is easy to see — and it also follows from Lemma
5.1 which will be proved in Subsection 5.2 — that ajasas # ajazas in
B. Therefore R is not the identity relation on B and thus R! # R.
Similarly we can show that in a regular semigroup £ # £in general.

Lemma 4.2. If S is a <g7-compatible band of simple semigroups then
S is a < z-compatible semigroup.

Proof. Let S be a <7-compatible band of simple semigroups and let
0 be a <z-compatible band congruence on S such that each 6-class is
a simple semigroup and let R = S/6. For every s € S let 05 denote
the O-class of s. Let s,t € S be such that s §§ t. Then by Lemma
o <0

3.1 we have s Since R is a <z-compatible band, it implies

J
s <B ¢ and thus s’ = 2%t%’ for some z,y € S (where for 15 € S*,
9 is defined as 14 = 1p € R'). Hence s = 29%® = (xty)? and thus
s 0 zty and — since 6, is a simple semigroup — s <7 xty <7 t.

t

The following statement is a classical result, see, for instance, Theorem
1.3.10 in [7] or Theorem 4.1.3 in [§]:

Theorem 4.1. (Clifford’s Theorem) Every completely reqular semi-
group s a semilattice of completely simple semigroups.

Corollary 4.3. Every completely reqular semigroup is a < z-compatible
Semigroup.

Since every band is completely regular, by Corollary 4.3:
Corollary 4.4. Every band is a <7-compatible semigroup.

Theorem 4.2. For a reqular periodic semigroup S the following are
equivalent:

(1) S is a <z-compatible semigroup

(2) S is a band of simple semigroups

(3) S is a semilattice of simple semigroups.

Proof. 1 = 2 Let S be a regular periodic < ;- compatlble semigroup.
Then J = j in S, hence by Proposmon 3.2, J is a j trivial con-
gruence on S. Therefore B = S/J is a j -trivial semigroup. Since S
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is regular, every J-class of S contains an idempotent. It follows that
each J-congruence class of S is a semigroup, hence B is a band. We
show that every J-congruence class is a simple semigroup. For any
element s € S let J¥ LY, RY denote the J, L and R-class, respectively
of sin S. Let T be an arbitrary J-class of S. We show that £ = L5y
and RT = R¥|r. Let s,t € T be such that s L5 t. Let e € LY be an
idempotent (as S is regular, such an idempotent exists, see Proposition
2.3.2in [8]) and let s’ € J be an inverse of s such that s's = e. (Such
an inverse exists, see [8]). Then e is a right identity in L% (see Propo-
sition 2.3.3 in [8]), therefore ¢ = te = tss's and thus ¢ <% s. Similarly
we can show s <L ¢, hence sLTt follows. Therefore £ = L] and
RT = R®|r can be verified similarly. Since S, T are periodic, we have
JT=LToRT = L7 oR5|r = T®|r =T x T and thus T is a simple
semigroup.

2 = 1 It follows from Lemma 4.2 and Corollary 4.4.
3 = 2 This implication is trivial.

1 = 3 Let S be a regular periodic <z-compatible semigroup. Then
by Proposition 3.2 and Lemma 4.1, J = .70 = J' is a semilattice
congruence on S. Above we proved that each [J-class in a regular
periodic semigroup is a simple semigroup, thus S is a semilattice of
simple semigroups. O

Definition 4.1. A band is called a left (right) normal band if it satisfies
the identity zyz = zzy (zyz = yxz).

Lemma 4.5. In any left normal band <p = <r € <g;in any right
normal band §§ =<, C <j.

Proof. Let B be a left normal band. The containment <x C < K
trivially holds. To verify < 2 C <g it is sufficient to show that <g
is operation-compatible. Clearly, <z is left operation-compatible. We
show that <g is also right operation-compatible. Let s, € B be such
that s <z t, namely, s = tr for some r € B. Then for any u € B,
su = tru = tur <g tu, thus <g is right operation-compatible, and
hence < 5= <x.

As to the second part of the statement, let s,¢ € B be such that s <g t,
namely, s = tr for some r € B. Then s = tr = ttr = trt <, t and
thUS, S'R g S[x

The dual statement can be proved similarly. U
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Lemma 4.6. Every left normal band is 7O€—tm‘vml, and every right nor-
mal band is L-trivial.

Proof. Let B be a left normal band. Let e, f € B be such that e <s f
and f <g e By Lemma 4.5 it implies e <r f and f <x e, hence there
exist z,y € B such that e = fx, f = ey. Then f = ey = fry = eyry =
ey’r = eyr = fz = e holds.

The dual statement can be proved similarly. U

Lemma 4.7. Let S be a band. The following conditions are equivalent:
(1) S is L-trivial (ﬁ—trivial};
(2) S is L-trivial (ﬁ—tm’vial} and <p-compatible(<g-compatibl9);
(3) S is a right (left) normal band.

Proof. 3 = 2 By Lemma 4.6 every right (left) normal band is L-trivial

(7O€-trivia1). By Lemma 4.5 every right (left) normal band is an <-
compatible semigroup (<z-compatible semigroup).

2 = 1 Obvious.

1 = 3 Indeed, in a band we have zyz <p TRYZY = T2Y. In the same

way, 12y <o TYZ. If the band is R-trivial then xyz = xzy, hence, the
band is left normal. The result for right normal bands can be proved
in the same way. O

Theorem 4.3. A regular periodic semigroup is an <-compatible semi-
group (<gr-compatible semigroup) if and only if it is a right normal band
(left normal band) of L-simple (R-simple) semigroups.

Proof. Let S be a regular periodic semigroup which is a right normal
band of L-simple semigroups; thus, there is a congruence 6 on S such
that 6 is a right normal band congruence and every 6-class is L-simple.
We show that <, = §§ in S. Clearly, <, C Sjo. Let s,t € S be

such that s <st Let B = S/6. For any s € S let s denote the

image of s under the natural homomorphism S — S/6. By Lemma 3.1
s? < 5 t follows. By Lemma 4.7 B is < -compatible semigroup, hence

s? §§ % implies s? <, t’ and therefore s’ = 2/ for some z € S!

(where 1Y = 15 € B!'). Then s’ = 2% = (2t)?, hence s 6 (xt) and
since each 0-class of S is L-simple, it implies s <, xt <, t. Thus
gﬁ C <, and hence gjozgﬁ.
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For the other direction, let S be a regular periodic <,-compatible semi-
group. Then clearly, £ = £ on S and hence by Proposition 3.2, L is
the smallest L-trivial congruence on S. In a regular semigroup every
L-class of S contains an idempotent (see [8]), hence B = S/L = S/ I

is a band. By Proposition 3.2 B is L-trivial, therefore — by Lemma 4.7
— B is a right normal band. Let L be an arbitrary L-class of S. Since
L is a band congruence on S, L is a subsemigroup of S. Let s,t € L
be arbitrary elements and m be a positive integer such that s* = s™.
Then s¥ € L is a right identity in L (see [8]), hence ts™ = ts¥ =t
and thus ¢ <& s in L. Similarly, s <Z ¢. Therefore, L is an £-simple
semigroup. U

5. COUNTEREXAMPLES

Every completely regular semigroup is < 7-compatible; an example be-
low shows that not every inverse semigroup is <s-compatible.

Every band is <s-compatible; an example below shows that not every
band is <,-compatible (<z-compatible).

5.1. An inverse semigroup which is not <;-compatible. We
shall demonstrate through an example that not every inverse semi-
group is a <g-compatible semigroup. Consider the set X = {a,b,c}
and define the partial transformations «a, 3,7 on X as follows: a =
{(a,b), (1,0}, 8 = {(b,0), (c:0)}, 7 = {(c.0), (a,b)}. The inverses (in
the relation sense) o', 37! and v~! of these partial transformations are
also partial transformations on X. Let S denote the semigroup of par-
tial transformations generated by {a, 3,7,a™t, 71, v}, It is known
that this semigroup is an inverse semigroup. Then a7y = {(b,a)} and
afy = {(a,a),(b,b)}. Since |[Im(apy)| =2 > 1= |[Im(ay)|, we have
afy £z ay, but clearly afy §§ ary. Therefore S; #<71in S.

5.2. A band which is not <p-compatible. As we have seen in
Corollary 4.4 every band is a < 7-compatible semigroup. Here we shall
show through two examples that the analogous statements involving
<c-compatible and <g-compatible semigroups, respectively, do not

hold.

Like in Example 4.1, consider the variety MK of bands defined by the
identities * = 2% and xy = xyr within the variety of all semigroups.
Let B denote the band which is free in MK; with generators A =
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{ai,...,a,} for some n > 3. Obviously, B = A" /0 where 0 is the
smallest MK -congruence on A™.

For any word w € A™ the content of w, denoted by c(w), is the set of
all letters of w; let f(w) denote the first letter of w and let i(w) denote
the subword of w obtained by keeping only the first occurrence of each
letter of w and deleting all other letters of w. Let w denote the image
of w under the natural homomorphism AT — A*/6.

The following two facts can be found in literature [12, 3, 4] and are not
difficult to prove.

Lemma 5.1. Let v,w € A" be arbitrary words. Then

(1) we have w 0 i(w);

(2) we have v 0 w if and only if i(v) = i(w);

(3) if v 8 w then c¢(v) = c(w) and f(v) = f(w).
Lemma 5.2. Let a,b € B and i(a) = x122...2p, i(b) = y1y2...Y,-
We have a <z b if and only if ¢ < p and x; = y; for every 1 <i <q.

Theorem 5.1. Leta,b € B. We havea < b if and only if c¢(b) C c(a)
and f(a) = f(b).

Proof. (=) Suppose a <3 b. Then by Lemma 2.1 for some positive
integer m there exist elements a = ag, ay,...,a,, = b € B such that
a; <3 Qi1 for every 0 < ¢ < m — 1. Let us fix an arbitrary index
0 < i < m — 1. By definition there exist d € B and e, f € B! such
that a; = def and a;11 = df. Let wq,, w,,,,,ws € A* and w,, wy € A*
be such that a; = wy;,ai411 = W, ,,d = wg,e = w, and f = wy
(where for the empty word A € A* X is defined as A = 1 € B').
Then clearly a;, = wy W, Wy = wWqw.wy and a;1; = wgwy. Therefore
c(air1) = c(wawy) C c(wawewy) = c(a;) and f(ai1) = f(wawy) =
fwgwewys) = f(a;), hence ¢(b) C c¢(a) and f(a) = f(b) follows.

(<) Suppose c(b) C c(a) and f(a) = f(b) and let a = TyT2 ... Tp,
b = T1y2 ..y for some x1x5 ... 2y, Y19 ...y, € AT. Then by defini-
tion {y1,v2,...,ys} = c(b) C c(a) = {x1,29,...,2,} and 21 = f(a) =
f(b) = y1. Also i(y1x12a. .. TpY2 ... Yy) = H(T1T122 ... Tpya ... Yy) =
i(x1xy...2,). Therefore by Lemma 5.1 we have ¢ = T173...72, =
YIT1T2 .. TplY2 .. - Yg = Y1 T1T2 ... Tp Y2...Yq SﬁmyQ...yq =NY2. .. Yg =
b, hence a <3 b. O

Corollary 5.3. Let a,b € B and i(a) = 122 ...2p, i(b) = t1y2. .. Yq-
We have a <5 b if and only if {y1,92, .-,y } C {z1,22,...,2,} and
Ty = Y-
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Proof. The statement follows from Lemma 5.1 and Theorem 5.1. [

Example 5.1. Let n > 3 be an integer. Then the free semigroup in
MK}, over an n-element set is not an <gz-compatible semigroup. This
follows from the fact that the conditions describing <z in Corollary
5.3 and <g in Lemma 5.2 are clearly not equivalent.

The dual variety MK, of bands is defined by the identities z = 2% and
yx = xyx within the variety of all semigroups. Similarly to the above
proof we can show that for any integer n > 3 the semigroup which is
free in MKy over an n-element set is not an <,-compatible semigroup.

6. EMBEDDING INTO A < 7-COMPATIBLE SEMIGROUP

Every semigroup can be embedded into a simple semigroup as was
proved by R. H. Bruck (see [1] or [2]). Since every simple semigroup is
clearly a <z-compatible semigroup, we have the following statement:

Corollary 6.1. Every semigroup can be embedded into a <z-compatible
Semigroup.

In the rest of this section we shall show that if a semigroup S is j -
trivial then S can be embedded into a <s-compatible semigroup which

is also j -trivial.

Let S be an arbitrary semigroup. For each triple (a,b,c) € S® let
us introduce new elements abc and abe (not contained by S), and let
A= {(Eé,éwc | a,b,c € S}. Consider the free semigroup (S U A)*.
For any word w € ST let w denote the element of S represented by w.

Let ~ denote the congruence on (S U A)* generated by the set of all
relations of the form st = st where s,t € S.

Let ~ denote the congruence on (S U A)" generated by the set of
relations of the form abcacabc = abc where a,b,c € S. Let 6 denote
the smallest congruence on (S U A)" containing ~ and ~, and let
S = (SUA)T/0. For any w € (SU A)T let f(w) denote the image of
w under the natural homomorphism (SU A)* — (SUA)T /0= S.

By a =-step we shall understand replacing, in a word w € (S U A)*,
a two-letter factorword of the form st by a one-letter factorword st or
vice versa, a factorword of the form st by st, for some s,t € S. By
a ~-step we shall understand replacing, in a word w € (SU A)*", a
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_) <__
factorword of the form abc acabe by abe or vice versa, a factorword of

the form abc by a—>bcac abe, for some a,b,c € S. By an inserting step
we shall understand inserting a letter from S U A somewhere between
two letters of a word w € (S U A)™, or before the first or after the last
letter of w.

The following statement is straightforward, as it follows immediately
from the definition of 6:

Lemma 6.2. For any words v,w € (S U A)T, 6(v) = 0(w) holds if
and only if there is a finite sequence v = vg, vy, ..., v, =w € (SUA)T
such that for every 0 < i <n—1, v;i1 can be obtained by applying one
~-step or one ~-step to v;.

Lemma 6.3. If 6(v) <s O(w) for some v,w € (S U A)T then there

exists a sequence w = wg, Wy, ..., w, = v € (S U AT such that for
every 0 <i <n—1w;11 can be obtained from w; by one =-step or one
~-step or one inserting step.

Proof. Since < 2 is the transitive closure of <’, hence, it is sufficient to
prove the statement for words v, w € (SUA)™ such that 0(v) S:; O(w).
Let v,w € (S U A)* be such that 6(v) Slﬁ f(w). Then by definition
there exist wy, we, u € (SUA)* such that 0(w) = 0(w;)0(ws) and O(v) =
0(w;)0(u)0(ws) (where for the empty word A we put #(\) =1¢€ S1).
Then 6(w) = O(wyws) and 6(v) = O(w uw,). By Lemma 6.2, wyw, can
be obtained from w by ~- and ~- steps and similarly, v can be obtained

from wyuws by ~- and ~-steps. Clearly, wjuws can be obtained from
wiws by inserting steps, hence the statement follows. 0

Starting from now, when we speak about factorwords or subwords of a
word w, we shall normally mean factorwords or subwords whose posi-
tion within w is fixed. This should not lead to confusion.

Now we are going to extend the w notation to certain ‘good words’
over (SU A)*. Let us call a word w € (S U A)* a bracketed word if

the first and last letters of w are abc and abe, respectively, for some
a,b,c € S. For a bracketed word w € (SUA)* with first letter abc let w

be defined as W = abc. Let us call a sequence wy, wy, ..., wy € (SUA)T
of words a good sequence if for every 1 < i < k either w; € ST or w;
is a bracketed word. For a good sequence wq,ws, ..., w, € (SUA)T

define m(wy, wy, ..., wy) as m(wy, we, ..., wg) = Hle w;.
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Let w € (SU A)T be an arbitrary word. Let us call a good sequence
Wi, Wa, ..., W, a good factor-sequence of w, if w can be written in the
form w = wpwyuywy . . . wyuy, for some u; € (SUA)*, 0 < i < k. For any
word w € (SUA)™, define the trace Tr(w) of w as the set Tr(w) consist-
ing of elements 7(ws,...,wy) for all good factor-sequences wy, ..., wy
of w. Let us call a good factor-sequence wy, ..., wy of w S-merged if it
contains all letters from .S occurring in w and such that any two words
wi,...,w, from ST do not neighbor one another within w; in other
words, if w = ugwiuwaus . . . wiuy for some u; € (SUA)*, 0 <i <k,
then we have u; € A* for each w;, and if w;, w;1, € ST then u; is not
empty.

The following statement is easy to prove:

Lemma 6.4. Let w € (SUA)". For any good factor-sequence wy, wy, . . .
of w there is an S-merged good factor-sequence y, . .., Ym of w such that
for every 1 <1 <k there is a 1 < j < m such that w; is a factorword

Ofyj and ﬂ-(yh s aym) Sﬁ ﬂ-(wla s ,U}k).

Proof. Let s1ss...s; be the subword of w which we obtain by deleting
the factorwords wy, ws, . .., w, from w and also deleting all letters of w
from A. If s185...5; is not the empty word then for every 1 <i <[ we
have s; € S, hence s; is a (one-letter) good factorword of w. Consider
the factor-sequence vy, vs, . .., vgy; of w which consists of all the factors
w;, 1 < ¢ < kands;, 1 <j <[ Then v,vg,...,v44 is a good
factor-sequence which contains all letters of w from S. If s185...5
is the empty word then let [ = 0 and let vy, vs,...,v; be identical
to wi,wa,...,wg. In both cases — as wy,...,wy is a subsequence of
V1, Vs, . .., Upys — We have m(vy,va, ... vpyy) = T < Ir_w; =
m(wy, we, . .., Wg).

If v1,..., v,y is S-merged then the proof is complete. Otherwise there
exists an index 1 < i < k +1[ — 1 such that v;,v;4; € ST and v; and
v;41 are neighboring factorwords in w. Let v] = vv;.; € ST be the
word obtained by the concatenation of the words v; and v;,;. Then
ULy ooy Vo1, Uy Viga, Vits, - - -, Uy 18 & good factor-sequence of w. Since

/] / —
Ul = U1, we have m(vy, ..., Vi1, V), Vig2, Vigg, -+, Ugtt) = (U1, Vay . .y

By the repeated use of such concatenations of factorwords eventually
we shall obtain an S-merged good factor-sequence y1,ys, ..., Yy, of w
such that m(y1, v, .-, Ym) = T(v1, ..., Vks1) gﬁ m(wi, ..., wg). (The

, Wi

Uk+l)-
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process will terminate after finitely many steps, since by each con-
catenation we decrease the number of factorwords in our good factor-
sequence by one.) It is easy to see that for every 1 < i < n, w; is a
factorword of y; for some 1 < j < m. O

Lemma 6.5. If v,w € (SUA)" are such that 0(v) <z 6(w) then for
any r € Tr(w) there exists r' € Tr(v) such that r’ <gr.

Proof. By Lemma 6.3, it is sufficient to prove the statement for the
cases when v can be obtained from w by one =- , one ~- or one in-
serting step. Let r € T'r(w) be arbitrary and let wy, ..., w; be a good

factor-sequence of w such that r = w(wy,...,w). By Lemma 6.4 it
is sufficient to prove the statement for the case when wy, ..., wy is
S-merged.

Case 1: v can be obtained from w by one ~-step. Let s,t € S be such
that by changing the factorword st in w to st or changing the factor-
word st to st, we can obtain v. Let z and 2’ denote the factorword
which is changed before and after the change, respectively. Then z is
a factorword of w; for some 1 < i < k (as wy,...,w is S-merged).
Let w, denote the factorword obtained from w; by changing the fac-
torword z of w; to 2. Then clearly, wy, ..., w;_1, W}, wity,...,wg is a
good factor-sequence of v and 1’ = w(wy, ..., wi_1, W, Wity ..., wWg) =
m(wy, ..., Wi_1, Wi, Wiy, - .., Wg) = 7, hence the statement follows.

Case 2: v can be obtained from w by one ~-step. Let z and 2z’ denote
the factorwords of w and v, respectively, such that z is changed to
Z' in the ~-step. If z = abcacabc for some a,b,c € S then from the
definition of a ~-step it follows that we have one of two situations:
(1) z is a factorword of some w; where w; is a bracketed word; or (2)

z = abcw;abc where w; = ac, for some 1 <17 < k.

In case (1), z is a factorword of w; for some 1 < i < k where w; is
a bracketed word. Let w! denote the factorword obtained from w; by
changing z to 2. If the first letters of z and w; are identical then 2/ = w;
and since wy, ..., w;_ 1,2, Wit1,...,w; is a good factor-sequence of v,
the statement follows. If the first letters of 2z and w; are different
then w, = w; and as wy,...,w;—1, W, wi41,...,w is a good factor-
sequence of v, the statement follows. In case (2), when z = c@wiabc
then 2/ = abe S\; ac = w;, hence m(wy, ..., wi—1, 2, Wit1,..., W) g;
(W, o W1, W, Wit 1, - - ., W) and since wy, ..., w1, 2, Wity ..., Wk
is a good factor-sequence of v, the statement follows.
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Now consider the opposite direction. If z = abc for some a, b, ¢ € S then
z 1s a factorword of w; for some 1 < ¢ < k. I_f)wi g ST then w; = yiabcys

for some y1,yo € S* and wy, ..., w;_1,y1, abcacabe, yo, witq, ..., W is a

_ =
good factor-sequence of v and as w; = y; abc Y3 = yrabe acabe 35 thus
_) H
m(wy, ..., wg) = m(wy, ..., wi_1,y1, abcacabe, yo, Wisy, . . ., W),

hence the statement follows. If w; is a bracketed word then let w} be
the word obtained from w; by changing z to z’. Then clearly E{ = w;,
thus m(wy, ..., wg) = w(wy, ... wi_1, W, Wit1,...wg) and since

Wiy .oy W1, Wy Wiy, - .., Wy 18 & good factor-sequence of v, the state-
ment follows.

Case 3: v can be obtained from w by one inserting step. Let z € SUA
denote the letter inserted into w in the inserting step. For any fac-
torword w; of w let us say that = splits w; if x is inserted into w
between two consecutive letters of w;. If z does not split w; for any
1 < i < k then wy,...,w is a good factor-sequence of v. If x splits
w; for some 1 < i < k then let y1,y, € ST be such that w; = y1ys
and z is inserted between y; and vy, in the inserting step. If w; € ST

then wy, ..., w;_1,y1, Y2, Wiyt1, - . ., Wi is a good factor-sequence of v and
(W1, o Wit 1, Y1, Y2, Wit 1y - -+, W) = w(wy, ..., wg). If w; is a brack-
eted word then let w, = yyzys. Then wy, ... wi_1, W}, witq,...,wy is a
good factor-sequence of v, and as E; = w;, therefore
m(wy, .. Wiy, W Wisq, .., wy) = w(wy, ..., wg). Hence, in both cases
the statement follows. O

The following statement is easy to prove:

Lemma 6.6. If w € ST then for every t € Tr(w), W <zt

Lemma 6.7. Let S be J-trivial. Then if v,w € ST are such that
O(v) J 0(w) then v = w.

Proof. Since w; = w is a good factor-sequence of w and 6(v) <z 0(w),
by Lemma 6.5 there exists r € Tr(v) such that r <z w. By Lemma
6.6 v < 57 hence v < 5 w. Similarly, w < 5 v holds and by .70 -triviality
of S, v = w follows. O

Let § = <?/\70 and let 7 denote the natural homomorphism (S U
A 57 =8
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Lemma 6.8. S can be embedded into the semigroup S and S is a ﬁ—
trivial semigroup.

Proof. Define the map av: S — S in the following way: for any s € S
let a(s) = 7(w) where w € (S U A)T is such that s = w. Then
7 is clearly well-defined and a homomorphlsm By Lemma 6.7, 7 is
1nJectlve hence is an embedding of S into S. By Proposition 3.2 S is

a j trivial semigroup. U

Consider the infinite sequence S = Tp, Ti, . .. of semigroups such that
T;11 = T; for every ¢ > 0 and define the semigroup 7T as the projective
limit of S = Ty, T1, ... that is: let the set of elements of T be equal to
Uiso T3; if s,t € T then let k be the smallest index such that s,t € Tj,
and define the product of s and ¢ in T" as the product of s and ¢ in T}.

Lemma 6.9. If S is a j—tm’m’al semigroup and T is defined as above
then:

(1) S can be embedded into T

(2) T is J -trivial

(3) T is a <z-compatible semigroup.

Proof. 1. This is obvious from the definition of 7.

2. Suppose s,t € T and s j t. Then, thanks to our description of j in
Lemma 2.1, we also have s j t within one of the semigroups 7;. The
semigroup 7; is j -trivial by Proposition 3.2; therefore, s = t. Hence,
T is j—trivial.

3. We only need to prove that for any s,¢t € T if s gj t then s <7
t. Indeed, suppose that s < 3 t. By Lemma 2.1, it is sufficient to
consider the case s S} t. By the definition of Sfjo , there exist elements
s1,t1,ta € TV such that s = t1sity, t = t1to. Assume that s, t1,ty €
T'; if some of these elements are equal to 1, the proof can be easily
modified accordingly. Consider a semigroup 7; containing all these

) B
elements sq,t1,t3 € T. In the semigroup 1; we have tsitott;s1ts =

t181t5t1t21\5181t2 = t181t2 = s and thus s S] t in - Clearly this
inequality is preserved when we factorise by J to produce T;.;. Since
T;11 is a subsemigroup of 7', we have s <7 tin T U

From the results of this section, the theorem below follows.
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Theorem 6.1. Fvery ﬁ—tm’vml semigroup can be embedded into a ﬁ—
trivial <g-compatible semigroup.

In the beginning of this section we have recalled that every semigroup
can be embedded into a simple (that is, J-simple) semigroup. However,
it is easy to show that not every semigroup can be embedded into an
L-simple (or R-simple) semigroup. There is a certain analogy between

this and what happens with J-trivial semigroups (as described in The-

orem 6.1) versus L-trivial (or 702—trivial) semigroups, see the example
below.

Lemma 6.10. Let S be a semigroup and let s,t,a,b € S. If s </t
and ta = tb then sa = sb.

Proof. Since s <, t, one has s = ct for some ¢ € S and thus sa =
cta = cthb = sb. 0

Example 6.1. We give an example of an L-trivial semigroup which
cannot be embedded into any <,-compatible semigroup (not only into

an L-trivial <c-compatible semigroup). As we stated in Example 3.1

OF, is an L-trivial semigroup. Consider the following mappings in
OFE,. Let a; : 44,3 3,21 (and 1 — 1, as in every element of
OFE,). Let ag : 4+— 4,3+ 2,2 2. Let ag : 4+ 3,3 3,2 +— 2.
Let @ = ajaz and let § = ajasas. By definition, f <o «. It is easy
to see that acr; = az. However, Say # fas. Therefore, by Lemma
6.10, in no semigroup containing O F, as a subsemigroup, we can have

B <, a.
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