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Abstract. We call a semigroup on which the Green’s quasiorder
≤J (≤L, ≤R) is operation-compatible, a≤J -compatible (≤L-compatible,
≤R-compatible) semigroup. We study the classes of≤J -compatible,
≤L-compatible and ≤R-compatible semigroups, using the smallest
operation-compatible quasiorders containing Green’s quasiorders
as a tool. We prove a number of results, including the following.
The class of ≤L-compatible (≤R-compatible) semigroups is closed
under taking homomorphic images. A regular periodic semigroup
is ≤J -compatible if and only if it is a semilattice of simple semi-
groups. Every negatively orderable semigroup can be embedded
into a negatively orderable ≤J -compatible semigroup.

1. Introduction

Green’s relations L, R and J are one of the most important tools
in studying the structure of semigroups. They can also be viewed
from a less common angle: as being defined via quasiorders (or pre-
orders), which we shall refer to as Green’s quasiorders and denote by
≤L, ≤R and ≤J , respectively. Studying the properties of these qua-
siorders is of interest, because of the importance of Green’s relations
and due to the fact that in a certain sense these associated quasiorders
contain ‘more information’ about a semigroup than Green’s relations:
given only a Green’s quasiorder on a semigroup we can reconstruct
the corresponding Green’s relation, whereas the converse is not true.
We shall call a semigroup S ≤L-compatible, ≤R-compatible and ≤J -
compatible, respectively, if ≤L, ≤R and ≤J is operation-compatible on
S. The aim of this paper is to explore some properties of the classes of
≤L-compatible, ≤R-compatible and ≤J -compatible semigroups. These
classes are natural to consider; operation-compatible quasiorders have
the convenient property that the equivalences induced by them are con-
gruences, hence yield factor semigroups. We shall denote the smallest
operation-compatible quasiorders containing ≤L, ≤R and ≤J by ≤ ◦

J
,
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≤ ◦
R

and ≤ ◦
J

, respectively. In [9] it was shown that there is a close con-

nection between ≤ ◦
J

and the filters of a semigroup, and thus ≤ ◦
J

can

be used to determine the lattice of filters and the largest semilattice
image of a semigroup.

2. Definitions and observations

2.1. Main concepts. A quasiorder (or preorder) on a set is a reflexive
and transitive relation. If S is a semigroup, by S1 one denotes S if
it has an identity element or, otherwise, S with an added identity
element. We shall call Green’s quasiorders the relations defined on
every semigroup as follows:

Definition 2.1. For any elements s, t of a semigroup S let
• s ≤L t if and only if s = xt for some x ∈ S1,
• s ≤R t if and only if s = ty for some y ∈ S1,
• s ≤J t if and only if s = xty for some x, y ∈ S1.

It is easy to show that the relations ≤L,≤R and ≤J are quasiorders
and that L = ≤L ∩ ≤−1L , R = ≤R ∩ ≤−1R and J = ≤J ∩ ≤−1J .

A quasiorder ≤ on a semigroup S is left (right) operation-compatible
if for all a, b, c ∈ S, a ≤ b implies ca ≤ cb (ac ≤ bc). A quasiorder is
operation-compatible if it is both left and right operation-compatible.
Clearly, ≤L (≤R) is right (left) operation-compatible on every semi-
group. However, Green’s quasiorders are not operation-compatible in
general. As operation-compatible quasiorders on any semigroup form
a complete lattice, for any quasiorder on a semigroup there exists a
smallest operation-compatible quasiorder containing it.

Definition 2.2. We call a semigroup ≤J -compatible (≤L-compatible,
≤R-compatible) if ≤J (≤L, ≤R) is operation-compatible on S.

Definition 2.3. Denote by≤ ◦
J

(≤ ◦
L
, ≤ ◦
R

) the smallest operation-compatible

quasiorder containing ≤J (≤L, ≤R).

Relations ≤ ◦
J

, ≤ ◦
L

and ≤ ◦
R

will be a useful instrument for us in this pa-

per because, obviously, a semigroup is ≤J -compatible (≤L-compatible,
≤R-compatible) if and only if ≤J = ≤ ◦

J
(≤L = ≤ ◦

L
, ≤R = ≤ ◦

R
).

In [10] a description of ≤ ◦
J

, ≤ ◦
J

and ≤ ◦
R

was given. In Lemma 2.1

below we give another description, which will be convenient later. In
this lemma, for any relation θ, θ denotes the transitive closure of θ.
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Let S be a semigroup. Define the relation ≺ ◦
J

as follows: for any

s, t ∈ S let s ≺ ◦
J
t if and only if s = t1s1t2 and t = t1t2 for some

t1, t2, s1 ∈ S1. Define the relation ≺ ◦
L

(≺ ◦
R

) as follows: for any s, t ∈ S
let s ≺ ◦

L
t (s ≺ ◦

R
t) if and only if t2 ∈ S, t1, s1 ∈ S1 (t1 ∈ S, t2, s1 ∈ S1).

Lemma 2.1. In every semigroup
(1) ≤ ◦

J
= ≺ ◦

J
(2) ≤ ◦

L
= ≺ ◦

L
(3) ≤ ◦

R
= ≺ ◦

R
.

Proof. We only prove Statement 1, since Statements 2 and 3 can be
verified similarly.

If a ≤J b then a = sbt for some s, t ∈ S1; since a = sbt ≺ ◦
J
sb ≺ ◦

J
b,

we have a≺ ◦
J
b. Therefore, ≤J ⊆ ≺ ◦

J
. It is obvious that if a ≺ ◦

J
b then

for any s, t ∈ S1, sat ≺ ◦
J
sbt. Hence, if a≺ ◦

J
b then for any s, t ∈ S1

sat≺ ◦
J
sbt. Therefore, ≺ ◦

J
is operation-compatible. Obviously, ≺ ◦

J
is

transitive. Therefore, ≤ ◦
J
⊆ ≺ ◦

J
.

It is obvious that ≺ ◦
J

is contained in the operation-compatible closure

of ≤J . Hence, ≺ ◦
J

is contained in the transitive operation-compatible

closure of ≤J , which is exactly ≤ ◦
J

. Therefore, ≤ ◦
J
⊇ ≺ ◦

J
. �

2.2. Examples of classes of ≤J -compatible semigroups.

Proposition 2.1. Every group and every commutative semigroup is
≤J -compatible, ≤L-compatible and ≤R-compatible.

Proof. The result follows from the fact that in a group or in a commu-
tative semigroup ≺ ◦

J
⊆ ≤J , ≺ ◦

L
⊆ ≤L and ≺ ◦

R
⊆ ≤R and from Lemma

2.1. �

As we shall see in Sections 4 and 5, every band is ≤J -compatible, but
not necessarily ≤L-compatible and ≤R-compatible.

2.3. Monoids. As the following statements demonstrate, results con-
cerning ≤ ◦

J
are not affected by a semigroup being a monoid; however,

results concerning ≤ ◦
L

and ≤ ◦
R

are affected by this fact.



4 ZSÓFIA JUHÁSZ, ALEXEI VERNITSKI

Proposition 2.2. Consider a semigroup S and a monoid M = S ∪ 1
with the neutral element 1, where 1 6∈ S. Then the relation ≤ ◦

J
on S

is equal to the restriction of ≤ ◦
J

on S.

Proof. This follows from the description of ≤ ◦
J

in Lemma 2.1. �

Proposition 2.3. In every monoid ≤ ◦
J

= ≤ ◦
L

= ≤ ◦
R

.

Proof. From the definition it follows that in any monoid M we have
≺ ◦
J

= ≺ ◦
L

= ≺ ◦
R

. Therefore, by Lemma 2.1, ≤ ◦
J

= ≤ ◦
L

= ≤ ◦
R

. �

3. Congruences

3.1. Induced equivalence relations. For any element s in a semi-
group S and any congruence θ on S, sθ shall denote the image of s
under the natural homomorphism S → S/θ.

Lemma 3.1. Let S be a semigroup and let s, t ∈ S be such that s ≤ ◦
J
t

(s ≤ ◦
L
t, s ≤ ◦

R
t). Then for any congruence θ on S, sθ ≤ ◦

J
tθ (sθ ≤ ◦

L
tθ,

sθ ≤ ◦
R
tθ) in S/θ.

Proof. If s ≤ ◦
J
t then by Lemma 2.1 there exist s = s0, s1, . . . , sn =

t ∈ S such that si ≺ ◦
J
si+1 for every 0 ≤ i ≤ n − 1. Fix an arbitrary

0 ≤ i ≤ n−1. Then si = abc and si+1 = ac for some a, b, c ∈ S1. Hence
sθi = aθbθcθ and sθi+1 = aθcθ (where for 1S ∈ S1 we have 1θS = 1T ∈ T 1),
and so sθi ≺ ◦

J
sθi+1. Therefore by Lemma 2.1 sθ ≤ ◦

J
tθ. (The proof is

similar for ≤ ◦
L

and ≤ ◦
R

.) �

Definition 3.1. Denote by
◦
J ,

◦
L and

◦
R the equivalences ≤ ◦

J
∩ ≤−1◦

J
,

≤ ◦
L
∩ ≤−1◦

L
and ≤ ◦

R
∩ ≤−1◦

R
, respectively.

For any operation-compatible quasiorder ≤, ≤ ∩ ≤−1 is a congruence

(see [13] for instance), hence
◦
J ,

◦
L and

◦
R are congruences.

Definition 3.2. Let us say that a semigroup is
◦
J -trivial (

◦
L-trivial,

◦
R-trivial) if

◦
J (

◦
L,

◦
R) is the identity relation on S.

We call a quasiorder on a semigroup S a negative quasiorder if st ≤ s
and st ≤ t for every s, t in S; S is called negatively orderable if there
exists an operation-compatible negative partial order on S.



SEMIGROUPS WITH OPERATION-COMPATIBLE GREEN’S QUASIORDERS 5

Proposition 3.1. A semigroup is
◦
J -trivial if and only if it is negatively

orderable.

Proof. If a semigroup S is
◦
J -trivial then, obviously, ≤J is an operation-

compatible negative partial order on S. If there is an operation-compatible
negative partial order ≤ on S then ≺ ◦

J
⊆ ≤, by the definition of ≺ ◦

J
,

hence, ≤ ◦
J
⊆ ≤, therefore, ≤ ◦

J
is an order and, hence,

◦
J is the identity

relation. �

According to the usual convention, let us call a congruence θ on a

semigroup S a
◦
J -trivial congruence (

◦
L-trivial congruence,

◦
R-trivial

congruence) if S/θ is a
◦
J -trivial semigroup (

◦
L-trivial semigroup,

◦
R-

trivial semigroup).

Proposition 3.2. In any semigroup S, the congruence
◦
J (

◦
L,

◦
R) is

the smallest
◦
J -trivial (

◦
L-trivial,

◦
R-trivial) congruence.

Proof. Let S be a semigroup. First we prove that
◦
J is contained in

every
◦
J -trivial congruence on S. Let θ be a

◦
J -trivial congruence on

S and let s, t ∈ S be such that s
◦
J t. Then we have s ≤ ◦

J
t and

t ≤ ◦
J
s. By Lemma 3.1 in the factor semigroup S/θ we have sθ ≤ ◦

J
tθ

and tθ ≤ ◦
J
sθ. Then tθ

◦
J sθ and since θ is a

◦
J -trivial congruence, we

have tθ = sθ. Therefore
◦
J ⊆ θ.

We show that
◦
J is a

◦
J -trivial congruence on S. Suppose that s

◦
J ≤ ◦

J
t

◦
J

and t
◦
J ≤ ◦

J
s

◦
J for some s and t in S. Then – by Lemma 2.1 – there

exists a sequence s = s0, . . . , sn = t in S such that s
◦
J
i ≺ ◦

J
s

◦
J
i+1 for

every 0 ≤ i ≤ n− 1. By definition of ≺ ◦
J

for every 0 ≤ i ≤ n− 1 there

exist ai, bi, ci ∈ S1 such that s
◦
J
i = a

◦
J
i b

◦
J
i c

◦
J
i and s

◦
J
i+1 = a

◦
J
i c

◦
J
i (where for

1S ∈ S1, 1
◦
J
S is defined as 1

◦
J
S = 1

S/
◦
J
∈ (S/

◦
J )1). Then s

◦
J
i = a

◦
J
i b

◦
J
i c

◦
J
i =

(aibici)
◦
J and s

◦
J
i+1 = a

◦
J
i c

◦
J
i = (aici)

◦
J , hence si

◦
J aibici ≤ ◦

J
aici

◦
J si+1,

thus si ≤ ◦
J
si+1 for every 0 ≤ i ≤ n − 1. By transitivity s ≤ ◦

J
t

follows. Similarly we can show that t ≤ ◦
J
s, thus s

◦
J t and so s

◦
J = t

◦
J

holds. Therefore S/
◦
J is a

◦
J -trivial semigroup and

◦
J is a

◦
J -trivial

congruence.
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The statement regarding the congruences
◦
L and

◦
R can be proved sim-

ilarly. �

As a comment to the previous result, we would like to emphasize that

we do not say that every congruence containing
◦
J is

◦
J -trivial. For in-

stance, a free semigroup obviously has non-
◦
J -trivial factor semigroups,

and it is
◦
J -trivial. Indeed, let A be an alphabet. Then – by Lemma

2.1 – it is easy to show that for any u, v in the free semigroup A+ we
have u ≤ ◦

J
v if and only if v is a subword of u. Hence u ≤ ◦

J
v and

v ≤ ◦
J
u imply u = v, and so A+ is

◦
J -trivial.

One might think incorrectly that if in a semigroup J =
◦
J (L =

◦
L,

R =
◦
R) then it is a ≤J -compatible (≤L-compatible, ≤R-compatible)

semigroup. However, this is wrong even in semigroups which are
◦
J -

trivial; now we present an example of a
◦
J -trivial semigroup which is

not ≤J -compatible.

Example 3.1. For any positive integer n, the semigroup OEn of all
order-preserving decreasing mappings on an n-element set is well known
to be negatively orderable (we cannot find this observation in the liter-
ature formulated explicitly, although it is implicit in, for instance, [6]).

Hence, OEn is
◦
J -trivial. Consider the mappings α, β ∈ OE4 defined

as follows. Let α : 4 7→ 3, 3 7→ 2, 2 7→ 1 and β : 4 7→ 3, 3 7→ 3, 2 7→ 1
(and 1 7→ 1, as in every element of OEn). Then α 6≤J β, since
rank(α) � rank(β) (where the rank of a mapping is the size of its
image) . Let us demonstrate that α ≤ ◦

J
β (α ≤ ◦

J
β, α ≤ ◦

R
β). In-

deed, let α1 : 4 7→ 4, 3 7→ 2, 2 7→ 2, β1 : 4 7→ 4, 3 7→ 3, 2 7→ 1 and
β2 : 4 7→ 3, 3 7→ 3, 2 7→ 2. It is easy to see that β = β1β2 and
α = β1α1β2, hence by Lemma 2.1 α ≤ ◦

J
β (α ≤ ◦

J
β, α ≤ ◦

R
β).

As to an example of a completely different kind, any free semigroup

with at least two generators is also a
◦
J -trivial semigroup with ≤ ◦

J
6=

≤J .

3.2. Homomorphic images of ≤L-compatible, ≤R-compatible
and ≤J -compatible semigroups. The class of ≤J -compatible semi-
groups is not closed with respect to subsemigroups (for example, a
counterexample can be produced on the basis of Corollary 6.1 below).
However, the following is true:
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Theorem 3.1. The class of ≤J -compatible (≤L-compatible, ≤R-compatible)
semigroups is closed under taking homomorphic images.

Proof. Let S be a ≤J -compatible semigroup and let T be a homomor-
phic image of S under a homomorphism α : S → T . Let s, t ∈ S
be such that α(s) ≤ ◦

J
α(t) in T . Then – by Lemma 2.1 – there is a

sequence s = s0, s1, . . . , sn = t ∈ S such that for every 0 ≤ i ≤ n − 1,
α(si) = α(ai)α(bi)α(ci) and α(si+1) = α(ai)α(ci) for some ai, bi, ci ∈ S1

(where for 1S ∈ S1, α(1S) is defined as α(1S) = 1T ∈ T 1). Let us fix
an index 0 ≤ i ≤ n − 1. Then aibici ≤ ◦

J
aici in S and as ≤ ◦

J
=≤J in

S, there exist ui, vi ∈ S1 such that aibici = uiaicivi. Then α(si) =
α(aibici) = α(uiaicivi) = α(ui)α(aici)α(vi) ≤J α(aici) = α(si+1).
Hence, α(si) ≤J α(si+1) and by transitivity, α(s) ≤J α(t). For ≤L
and ≤R the statement can be proved similarly. �

4. Regular periodic ≤J -compatible (≤L-compatible,
≤R-compatible) semigroups

In this section we shall provide a description of regular periodic ≤J -
compatible, ≤L-compatible and ≤R-compatible semigroups.

By J ] one denotes the smallest congruence containing J . It is well
known that in regular semigroups the congruence J ] plays a special
role: it is the smallest semilattice congruence; see, for instance, Propo-
sition 3.2.3 in [5].

Lemma 4.1. In a regular semigroup, J ] =
◦
J .

Proof. From Proposition 3.2 and from J ⊆
◦
J it follows that J ] ⊆

◦
J .

Let us prove that
◦
J ⊆ J ]. Indeed, by Proposition 3.2,

◦
J is the

smallest
◦
J -trivial congruence. At the same time, J ] is the smallest

semilattice congruence. Since every semilattice is
◦
J -trivial, J ] is a

◦
J -trivial congruence, hence by Proposition 3.2

◦
J ⊆ J ]. �

Example 4.1. As the following example shows, in a regular semigroup

R] 6=
◦
R in general. Consider the variety MK1 of semigroups defined by

the identities x = x2 and xy = xyx within the variety of all semigroups
(the notation was first introduced in [11]). Let B denote the band
which is free in MK1 with generators A = {a1, . . . , an} for some n ≥ 3.
Since B is a band, it is a regular semigroup. It is easy to see that R
is the identity relation on B, hence R] = R is also the identity. We
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show that
◦
R is not the identity on B. For a1, a2, a3 in B we have

a1a2a3 ≥ ◦
R
a1a3a2a3 = a1a3a2 and a1a3a2 ≥ ◦

R
a1a2a3a2 = a1a2a3, hence

a1a2a3
◦
R a1a3a2. It is easy to see – and it also follows from Lemma

5.1 which will be proved in Subsection 5.2 – that a1a2a3 6= a1a3a2 in

B. Therefore
◦
R is not the identity relation on B and thus R] 6=

◦
R.

Similarly we can show that in a regular semigroup L] 6=
◦
L in general.

Lemma 4.2. If S is a ≤J -compatible band of simple semigroups then
S is a ≤J -compatible semigroup.

Proof. Let S be a ≤J -compatible band of simple semigroups and let
θ be a ≤J -compatible band congruence on S such that each θ-class is
a simple semigroup and let R = S/θ. For every s ∈ S let θs denote
the θ-class of s. Let s, t ∈ S be such that s ≤ ◦

J
t. Then by Lemma

3.1 we have sθ ≤R◦
J
tθ. Since R is a ≤J -compatible band, it implies

sθ ≤RJ tθ and thus sθ = xθtθyθ for some x, y ∈ S1 (where for 1S ∈ S1,
1θS is defined as 1θS = 1R ∈ R1). Hence sθ = xθtθyθ = (xty)θ and thus
s θ xty and – since θs is a simple semigroup – s ≤J xty ≤J t.

�

The following statement is a classical result, see, for instance, Theorem
1.3.10 in [7] or Theorem 4.1.3 in [8]:

Theorem 4.1. (Clifford’s Theorem) Every completely regular semi-
group is a semilattice of completely simple semigroups.

Corollary 4.3. Every completely regular semigroup is a ≤J -compatible
semigroup.

Since every band is completely regular, by Corollary 4.3:

Corollary 4.4. Every band is a ≤J -compatible semigroup.

Theorem 4.2. For a regular periodic semigroup S the following are
equivalent:

(1) S is a ≤J -compatible semigroup
(2) S is a band of simple semigroups
(3) S is a semilattice of simple semigroups.

Proof. 1 ⇒ 2 Let S be a regular periodic ≤J -compatible semigroup.

Then J =
◦
J in S, hence by Proposition 3.2, J is a

◦
J -trivial con-

gruence on S. Therefore B = S/J is a
◦
J -trivial semigroup. Since S
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is regular, every J -class of S contains an idempotent. It follows that
each J -congruence class of S is a semigroup, hence B is a band. We
show that every J -congruence class is a simple semigroup. For any
element s ∈ S let JSs , L

S
s , R

S
s denote the J ,L and R-class, respectively

of s in S. Let T be an arbitrary J -class of S. We show that LT = LS|T
and RT = RS|T . Let s, t ∈ T be such that s LS t. Let e ∈ LSs be an
idempotent (as S is regular, such an idempotent exists, see Proposition
2.3.2 in [8]) and let s′ ∈ JSs be an inverse of s such that s′s = e. (Such
an inverse exists, see [8]). Then e is a right identity in LSs (see Propo-
sition 2.3.3 in [8]), therefore t = te = tss′s and thus t ≤TL s. Similarly
we can show s ≤TL t, hence sLT t follows. Therefore LT = LS|T and
RT = RS|T can be verified similarly. Since S, T are periodic, we have
J T = LT ◦RT = LS|T ◦RS|T = J S|T = T × T and thus T is a simple
semigroup.

2 ⇒ 1 It follows from Lemma 4.2 and Corollary 4.4.

3 ⇒ 2 This implication is trivial.

1 ⇒ 3 Let S be a regular periodic ≤J -compatible semigroup. Then

by Proposition 3.2 and Lemma 4.1, J =
◦
J = J ] is a semilattice

congruence on S. Above we proved that each J -class in a regular
periodic semigroup is a simple semigroup, thus S is a semilattice of
simple semigroups. �

Definition 4.1. A band is called a left (right) normal band if it satisfies
the identity xyz = xzy (xyz = yxz).

Lemma 4.5. In any left normal band ≤ ◦
R

= ≤R ⊆ ≤L; in any right
normal band ≤ ◦

J
= ≤L ⊆ ≤R.

Proof. Let B be a left normal band. The containment ≤R ⊆ ≤ ◦
R

trivially holds. To verify ≤ ◦
R
⊆ ≤R it is sufficient to show that ≤R

is operation-compatible. Clearly, ≤R is left operation-compatible. We
show that ≤R is also right operation-compatible. Let s, t ∈ B be such
that s ≤R t, namely, s = tr for some r ∈ B. Then for any u ∈ B,
su = tru = tur ≤R tu, thus ≤R is right operation-compatible, and
hence ≤ ◦

R
= ≤R.

As to the second part of the statement, let s, t ∈ B be such that s ≤R t,
namely, s = tr for some r ∈ B. Then s = tr = ttr = trt ≤L t and
thus, ≤R ⊆ ≤L.

The dual statement can be proved similarly. �
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Lemma 4.6. Every left normal band is
◦
R-trivial, and every right nor-

mal band is
◦
L-trivial.

Proof. Let B be a left normal band. Let e, f ∈ B be such that e ≤ ◦
R
f

and f ≤ ◦
R
e. By Lemma 4.5 it implies e ≤R f and f ≤R e, hence there

exist x, y ∈ B such that e = fx, f = ey. Then f = ey = fxy = eyxy =
ey2x = eyx = fx = e holds.

The dual statement can be proved similarly. �

Lemma 4.7. Let S be a band. The following conditions are equivalent:

(1) S is
◦
L-trivial (

◦
R-trivial);

(2) S is
◦
L-trivial (

◦
R-trivial) and ≤L-compatible(≤R-compatibl9);

(3) S is a right (left) normal band.

Proof. 3 ⇒ 2 By Lemma 4.6 every right (left) normal band is
◦
L-trivial

(
◦
R-trivial). By Lemma 4.5 every right (left) normal band is an ≤L-

compatible semigroup (≤R-compatible semigroup).

2 ⇒ 1 Obvious.

1 ⇒ 3 Indeed, in a band we have xyz ≤ ◦
R
xzyzy = xzy. In the same

way, xzy ≤ ◦
R
xyz. If the band is

◦
R-trivial then xyz = xzy, hence, the

band is left normal. The result for right normal bands can be proved
in the same way. �

Theorem 4.3. A regular periodic semigroup is an ≤L-compatible semi-
group (≤R-compatible semigroup) if and only if it is a right normal band
(left normal band) of L-simple (R-simple) semigroups.

Proof. Let S be a regular periodic semigroup which is a right normal
band of L-simple semigroups; thus, there is a congruence θ on S such
that θ is a right normal band congruence and every θ-class is L-simple.
We show that ≤L = ≤ ◦

J
in S. Clearly, ≤L ⊆ ≤ ◦

J
. Let s, t ∈ S be

such that s ≤ ◦
J
t. Let B = S/θ. For any s ∈ S let sθ denote the

image of s under the natural homomorphism S → S/θ. By Lemma 3.1
sθ ≤ ◦

J
tθ follows. By Lemma 4.7 B is ≤L-compatible semigroup, hence

sθ ≤ ◦
J
tθ implies sθ ≤L tθ and therefore sθ = xθtθ for some x ∈ S1

(where 1θ = 1B ∈ B1). Then sθ = xθtθ = (xt)θ, hence s θ (xt) and
since each θ-class of S is L-simple, it implies s ≤L xt ≤L t. Thus
≤ ◦
J
⊆ ≤L and hence ≤ ◦

J
= ≤L.
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For the other direction, let S be a regular periodic ≤L-compatible semi-

group. Then clearly, L =
◦
L on S and hence by Proposition 3.2, L is

the smallest
◦
L-trivial congruence on S. In a regular semigroup every

L-class of S contains an idempotent (see [8]), hence B = S/L = S/
◦
L

is a band. By Proposition 3.2 B is
◦
L-trivial, therefore – by Lemma 4.7

– B is a right normal band. Let L be an arbitrary L-class of S. Since
L is a band congruence on S, L is a subsemigroup of S. Let s, t ∈ L
be arbitrary elements and m be a positive integer such that sω = sm.
Then sω ∈ L is a right identity in L (see [8]), hence tsm = tsω = t
and thus t ≤LL s in L. Similarly, s ≤LL t. Therefore, L is an L-simple
semigroup. �

5. Counterexamples

Every completely regular semigroup is ≤J -compatible; an example be-
low shows that not every inverse semigroup is ≤J -compatible.

Every band is ≤J -compatible; an example below shows that not every
band is ≤L-compatible (≤R-compatible).

5.1. An inverse semigroup which is not ≤J -compatible. We
shall demonstrate through an example that not every inverse semi-
group is a ≤J -compatible semigroup. Consider the set X = {a, b, c}
and define the partial transformations α, β, γ on X as follows: α =
{(a, b), (b, c)}, β = {(b, c), (c, a)}, γ = {(c, a), (a, b)}. The inverses (in
the relation sense) α−1, β−1 and γ−1 of these partial transformations are
also partial transformations on X. Let S denote the semigroup of par-
tial transformations generated by {α, β, γ, α−1, β−1, γ−1}. It is known
that this semigroup is an inverse semigroup. Then αγ = {(b, a)} and
αβγ = {(a, a), (b, b)}. Since |Im(αβγ)| = 2 > 1 = |Im(αγ)|, we have
αβγ �J αγ, but clearly αβγ ≤ ◦

J
αγ. Therefore ≤ ◦

J
6= ≤J in S.

5.2. A band which is not ≤R-compatible. As we have seen in
Corollary 4.4 every band is a ≤J -compatible semigroup. Here we shall
show through two examples that the analogous statements involving
≤L-compatible and ≤R-compatible semigroups, respectively, do not
hold.

Like in Example 4.1, consider the variety MK1 of bands defined by the
identities x = x2 and xy = xyx within the variety of all semigroups.
Let B denote the band which is free in MK1 with generators A =
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{a1, . . . , an} for some n ≥ 3. Obviously, B ∼= A+/θ where θ is the
smallest MK1-congruence on A+.

For any word w ∈ A+ the content of w, denoted by c(w), is the set of
all letters of w; let f(w) denote the first letter of w and let i(w) denote
the subword of w obtained by keeping only the first occurrence of each
letter of w and deleting all other letters of w. Let w denote the image
of w under the natural homomorphism A+ → A+/θ.

The following two facts can be found in literature [12, 3, 4] and are not
difficult to prove.

Lemma 5.1. Let v, w ∈ A+ be arbitrary words. Then
(1) we have w θ i(w);
(2) we have v θ w if and only if i(v) = i(w);
(3) if v θ w then c(v) = c(w) and f(v) = f(w).

Lemma 5.2. Let a, b ∈ B and i(a) = x1x2 . . . xp, i(b) = y1y2 . . . yq.
We have a ≤R b if and only if q ≤ p and xi = yi for every 1 ≤ i ≤ q.

Theorem 5.1. Let a, b ∈ B. We have a ≤ ◦
R
b if and only if c(b) ⊆ c(a)

and f(a) = f(b).

Proof. (⇒) Suppose a ≤ ◦
R
b. Then by Lemma 2.1 for some positive

integer m there exist elements a = a0, a1, . . . , am = b ∈ B such that
ai ≺ ◦

R
ai+1 for every 0 ≤ i ≤ m − 1. Let us fix an arbitrary index

0 ≤ i ≤ m − 1. By definition there exist d ∈ B and e, f ∈ B1 such
that ai = def and ai+1 = df . Let wai , wai+1

, wd ∈ A+ and we, wf ∈ A∗
be such that ai = wai , ai+1 = wai+1

, d = wd, e = we and f = wf
(where for the empty word λ ∈ A∗, λ is defined as λ = 1 ∈ B1).
Then clearly ai = wd we wf = wdwewf and ai+1 = wdwf . Therefore
c(ai+1) = c(wdwf ) ⊆ c(wdwewf ) = c(ai) and f(ai+1) = f(wdwf ) =
f(wdwewf ) = f(ai), hence c(b) ⊆ c(a) and f(a) = f(b) follows.

(⇐) Suppose c(b) ⊆ c(a) and f(a) = f(b) and let a = x1x2 . . . xp,
b = y1y2 . . . yq for some x1x2 . . . xp, y1y2 . . . yq ∈ A+. Then by defini-
tion {y1, y2, . . . , yq} = c(b) ⊆ c(a) = {x1, x2, . . . , xp} and x1 = f(a) =
f(b) = y1. Also i(y1x1x2 . . . xpy2 . . . yq) = i(x1x1x2 . . . xpy2 . . . yq) =
i(x1x2 . . . xp). Therefore by Lemma 5.1 we have a = x1x2 . . . xp =
y1x1x2 . . . xpy2 . . . yq = y1 x1x2 . . . xp y2 . . . yq ≤ ◦

R
y1 y2 . . . yq = y1y2 . . . yq =

b, hence a ≤ ◦
R
b. �

Corollary 5.3. Let a, b ∈ B and i(a) = x1x2 . . . xp, i(b) = y1y2 . . . yq.
We have a ≤ ◦

R
b if and only if {y1, y2, . . . , yq} ⊆ {x1, x2, . . . , xp} and

x1 = y1.
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Proof. The statement follows from Lemma 5.1 and Theorem 5.1. �

Example 5.1. Let n ≥ 3 be an integer. Then the free semigroup in
MK1 over an n-element set is not an ≤R-compatible semigroup. This
follows from the fact that the conditions describing ≤R in Corollary
5.3 and ≤R in Lemma 5.2 are clearly not equivalent.

The dual variety MK2 of bands is defined by the identities x = x2 and
yx = xyx within the variety of all semigroups. Similarly to the above
proof we can show that for any integer n ≥ 3 the semigroup which is
free in MK2 over an n-element set is not an ≤L-compatible semigroup.

6. Embedding into a ≤J -compatible semigroup

Every semigroup can be embedded into a simple semigroup as was
proved by R. H. Bruck (see [1] or [2]). Since every simple semigroup is
clearly a ≤J -compatible semigroup, we have the following statement:

Corollary 6.1. Every semigroup can be embedded into a ≤J -compatible
semigroup.

In the rest of this section we shall show that if a semigroup S is
◦
J -

trivial then S can be embedded into a ≤J -compatible semigroup which

is also
◦
J -trivial.

Let S be an arbitrary semigroup. For each triple (a, b, c) ∈ S3 let

us introduce new elements
−→
abc and

←−
abc (not contained by S), and let

A = {
−→
abc,
←−
abc | a, b, c ∈ S}. Consider the free semigroup (S ∪ A)+.

For any word w ∈ S+ let w denote the element of S represented by w.
Let ≈ denote the congruence on (S ∪ A)+ generated by the set of all
relations of the form st = st where s, t ∈ S.

Let ∼ denote the congruence on (S ∪ A)+ generated by the set of

relations of the form
−→
abc ac

←−
abc = abc where a, b, c ∈ S. Let θ denote

the smallest congruence on (S ∪ A)+ containing ≈ and ∼, and let
←→
S = (S ∪ A)+/θ. For any w ∈ (S ∪ A)+ let θ(w) denote the image of

w under the natural homomorphism (S ∪ A)+ → (S ∪ A)+/θ =
←→
S .

By a ≈-step we shall understand replacing, in a word w ∈ (S ∪ A)+,
a two-letter factorword of the form st by a one-letter factorword st or
vice versa, a factorword of the form st by st, for some s, t ∈ S. By
a ∼-step we shall understand replacing, in a word w ∈ (S ∪ A)+, a
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factorword of the form
−→
abc ac

←−
abc by abc or vice versa, a factorword of

the form abc by
−→
abc ac

←−
abc, for some a, b, c ∈ S. By an inserting step

we shall understand inserting a letter from S ∪ A somewhere between
two letters of a word w ∈ (S ∪A)+, or before the first or after the last
letter of w.

The following statement is straightforward, as it follows immediately
from the definition of θ:

Lemma 6.2. For any words v, w ∈ (S ∪ A)+, θ(v) = θ(w) holds if
and only if there is a finite sequence v = v0, v1, . . . , vn = w ∈ (S ∪A)+

such that for every 0 ≤ i ≤ n− 1, vi+1 can be obtained by applying one
≈-step or one ∼-step to vi.

Lemma 6.3. If θ(v) ≤ ◦
J
θ(w) for some v, w ∈ (S ∪ A)+ then there

exists a sequence w = w0, w1, . . . , wn = v ∈ (S ∪ A)+ such that for
every 0 ≤ i ≤ n− 1 wi+1 can be obtained from wi by one ≈-step or one
∼-step or one inserting step.

Proof. Since ≤ ◦
J

is the transitive closure of ≤′◦
J

, hence, it is sufficient to

prove the statement for words v, w ∈ (S∪A)+ such that θ(v) ≤′◦
J
θ(w).

Let v, w ∈ (S ∪ A)+ be such that θ(v) ≤′◦
J
θ(w). Then by definition

there exist w1, w2, u ∈ (S∪A)∗ such that θ(w) = θ(w1)θ(w2) and θ(v) =

θ(w1)θ(u)θ(w2) (where for the empty word λ we put θ(λ) = 1 ∈
←→
S 1).

Then θ(w) = θ(w1w2) and θ(v) = θ(w1uw2). By Lemma 6.2, w1w2 can
be obtained from w by ≈- and ∼- steps and similarly, v can be obtained
from w1uw2 by ≈- and ∼-steps. Clearly, w1uw2 can be obtained from
w1w2 by inserting steps, hence the statement follows. �

Starting from now, when we speak about factorwords or subwords of a
word w, we shall normally mean factorwords or subwords whose posi-
tion within w is fixed. This should not lead to confusion.

Now we are going to extend the w notation to certain ‘good words’
over (S ∪ A)+. Let us call a word w ∈ (S ∪ A)+ a bracketed word if

the first and last letters of w are
−→
abc and

←−
abc, respectively, for some

a, b, c ∈ S. For a bracketed word w ∈ (S∪A)+ with first letter
−→
abc let w

be defined as w = abc. Let us call a sequence w1, w2, . . . , wk ∈ (S∪A)+

of words a good sequence if for every 1 ≤ i ≤ k either wi ∈ S+ or wi
is a bracketed word. For a good sequence w1, w2, . . . , wk ∈ (S ∪ A)+

define π(w1, w2, . . . , wk) as π(w1, w2, . . . , wk) =
∏k

i=1wi.
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Let w ∈ (S ∪ A)+ be an arbitrary word. Let us call a good sequence
w1, w2, . . . , wk a good factor-sequence of w, if w can be written in the
form w = u0w1u1w2 . . . wkuk, for some ui ∈ (S∪A)∗, 0 ≤ i ≤ k. For any
word w ∈ (S∪A)+, define the trace Tr(w) of w as the set Tr(w) consist-
ing of elements π(w1, . . . , wk) for all good factor-sequences w1, . . . , wk
of w. Let us call a good factor-sequence w1, . . . , wk of w S-merged if it
contains all letters from S occurring in w and such that any two words
w1, . . . , wk from S+ do not neighbor one another within w; in other
words, if w = u0w1u1w2u2 . . . wkuk for some ui ∈ (S ∪ A)∗, 0 ≤ i ≤ k,
then we have ui ∈ A∗ for each ui, and if wj, wj+1 ∈ S+ then uj is not
empty.

The following statement is easy to prove:

Lemma 6.4. Let w ∈ (S∪A)+. For any good factor-sequence w1, w2, . . . , wk
of w there is an S-merged good factor-sequence y1, . . . , ym of w such that
for every 1 ≤ i ≤ k there is a 1 ≤ j ≤ m such that wi is a factorword
of yj and π(y1, . . . , ym) ≤ ◦

J
π(w1, . . . , wk).

Proof. Let s1s2 . . . sl be the subword of w which we obtain by deleting
the factorwords w1, w2, . . . , wk from w and also deleting all letters of w
from A. If s1s2 . . . sl is not the empty word then for every 1 ≤ i ≤ l we
have si ∈ S, hence si is a (one-letter) good factorword of w. Consider
the factor-sequence v1, v2, . . . , vk+l of w which consists of all the factors
wi, 1 ≤ i ≤ k and sj, 1 ≤ j ≤ l. Then v1, v2, . . . , vk+l is a good
factor-sequence which contains all letters of w from S. If s1s2 . . . sl
is the empty word then let l = 0 and let v1, v2, . . . , vk be identical
to w1, w2, . . . , wk. In both cases – as w1, . . . , wk is a subsequence of
v1, v2, . . . , vk+l – we have π(v1, v2, . . . , vk+l) = Πk+l

i=1vi ≤ ◦
J

Πk
i=1wi =

π(w1, w2, . . . , wk).

If v1, . . . , vk+l is S-merged then the proof is complete. Otherwise there
exists an index 1 ≤ i ≤ k + l − 1 such that vi, vi+1 ∈ S+ and vi and
vi+1 are neighboring factorwords in w. Let v′i = vivi+1 ∈ S+ be the
word obtained by the concatenation of the words vi and vi+1. Then
v1, . . . , vi−1, v

′
i, vi+2, vi+3, . . . , vk+l is a good factor-sequence of w. Since

v′i = vivi+1, we have π(v1, . . . , vi−1, v
′
i, vi+2, vi+3, . . . , vk+l) = π(v1, v2, . . . , vk+l).

By the repeated use of such concatenations of factorwords eventually
we shall obtain an S-merged good factor-sequence y1, y2, . . . , ym of w
such that π(y1, y2, . . . , ym) = π(v1, . . . , vk+l) ≤ ◦

J
π(w1, . . . , wk). (The
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process will terminate after finitely many steps, since by each con-
catenation we decrease the number of factorwords in our good factor-
sequence by one.) It is easy to see that for every 1 ≤ i ≤ n, wi is a
factorword of yj for some 1 ≤ j ≤ m. �

Lemma 6.5. If v, w ∈ (S ∪ A)+ are such that θ(v) ≤ ◦
J
θ(w) then for

any r ∈ Tr(w) there exists r′ ∈ Tr(v) such that r′ ≤ ◦
J
r.

Proof. By Lemma 6.3, it is sufficient to prove the statement for the
cases when v can be obtained from w by one ≈- , one ∼- or one in-
serting step. Let r ∈ Tr(w) be arbitrary and let w1, . . . , wk be a good
factor-sequence of w such that r = π(w1, . . . , wk). By Lemma 6.4 it
is sufficient to prove the statement for the case when w1, . . . , wk is
S-merged.

Case 1 : v can be obtained from w by one ≈-step. Let s, t ∈ S be such
that by changing the factorword st in w to st or changing the factor-
word st to st, we can obtain v. Let z and z′ denote the factorword
which is changed before and after the change, respectively. Then z is
a factorword of wi for some 1 ≤ i ≤ k (as w1, . . . , wk is S-merged).
Let w′i denote the factorword obtained from wi by changing the fac-
torword z of wi to z′. Then clearly, w1, . . . , wi−1, w

′
i, wi+1, . . . , wk is a

good factor-sequence of v and r′ = π(w1, . . . , wi−1, w
′
i, wi+1, . . . , wk) =

π(w1, . . . , wi−1, wi, wi+1, . . . , wk) = r, hence the statement follows.

Case 2 : v can be obtained from w by one ∼-step. Let z and z′ denote
the factorwords of w and v, respectively, such that z is changed to

z′ in the ∼-step. If z =
−→
abcac

←−
abc for some a, b, c ∈ S then from the

definition of a ∼-step it follows that we have one of two situations:
(1) z is a factorword of some wi where wi is a bracketed word; or (2)

z =
−→
abcwi

←−
abc where wi = ac, for some 1 ≤ i ≤ k.

In case (1), z is a factorword of wi for some 1 ≤ i ≤ k where wi is
a bracketed word. Let w′i denote the factorword obtained from wi by
changing z to z′. If the first letters of z and wi are identical then z′ = wi
and since w1, . . . , wi−1, z

′, wi+1, . . . , wk is a good factor-sequence of v,
the statement follows. If the first letters of z and wi are different
then w′i = wi and as w1, . . . , wi−1, w

′
i, wi+1, . . . , wk is a good factor-

sequence of v, the statement follows. In case (2), when z =
−→
abcwi

←−
abc

then z′ = abc ≤ ◦
J
ac = wi, hence π(w1, . . . , wi−1, z

′, wi+1, . . . , wk) ≤ ◦
J

π(w1, . . . , wi−1, wi, wi+1, . . . , wk) and since w1, . . . , wi−1, z
′, wi+1, . . . , wk

is a good factor-sequence of v, the statement follows.
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Now consider the opposite direction. If z = abc for some a, b, c ∈ S then
z is a factorword of wi for some 1 ≤ i ≤ k. If wi ∈ S+ then wi = y1abcy2
for some y1, y2 ∈ S∗ and w1, . . . , wi−1, y1,

−→
abcac

←−
abc, y2, wi+1, . . . , wk is a

good factor-sequence of v and as wi = y1 abc y2 = y1
−→
abc ac

←−
abc y2 thus

π(w1, . . . , wk) = π(w1, . . . , wi−1, y1,
−→
abcac

←−
abc, y2, wi+1, . . . , wk),

hence the statement follows. If wi is a bracketed word then let w′i be
the word obtained from wi by changing z to z′. Then clearly w′i = wi,
thus π(w1, . . . , wk) = π(w1, . . . wi−1, w

′
i, wi+1, . . . wk) and since

w1, . . . , wi−1, w
′
i, wi+1, . . . , wk is a good factor-sequence of v, the state-

ment follows.

Case 3 : v can be obtained from w by one inserting step. Let x ∈ S∪A
denote the letter inserted into w in the inserting step. For any fac-
torword wi of w let us say that x splits wi if x is inserted into w
between two consecutive letters of wi. If z does not split wi for any
1 ≤ i ≤ k then w1, . . . , wk is a good factor-sequence of v. If x splits
wi for some 1 ≤ i ≤ k then let y1, y2 ∈ S+ be such that wi = y1y2
and x is inserted between y1 and y2 in the inserting step. If wi ∈ S+

then w1, . . . , wi−1, y1, y2, wi+1, . . . , wk is a good factor-sequence of v and
π(w1, . . . , wi−1, y1, y2, wi+1, . . . , wk) = π(w1, . . . , wk). If wi is a brack-
eted word then let w′i = y1xy2. Then w1, . . . , wi−1, w

′
i, wi+1, . . . , wk is a

good factor-sequence of v, and as w′i = wi, therefore
π(w1, . . . , wi−1, w

′
i, wi+1, . . . , wk) = π(w1, . . . , wk). Hence, in both cases

the statement follows. �

The following statement is easy to prove:

Lemma 6.6. If w ∈ S+ then for every t ∈ Tr(w), w ≤ ◦
J
t.

Lemma 6.7. Let S be
◦
J -trivial. Then if v, w ∈ S+ are such that

θ(v)
◦
J θ(w) then v = w.

Proof. Since w1 = w is a good factor-sequence of w and θ(v) ≤ ◦
J
θ(w),

by Lemma 6.5 there exists r ∈ Tr(v) such that r ≤ ◦
J
w. By Lemma

6.6 v ≤ ◦
J
r, hence v ≤ ◦

J
w. Similarly, w ≤ ◦

J
v holds and by

◦
J -triviality

of S, v = w follows. �

Let Ŝ =
←→
S /

◦
J and let τ denote the natural homomorphism (S ∪

A)+ →
←→
S /

◦
J = Ŝ.
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Lemma 6.8. S can be embedded into the semigroup Ŝ and Ŝ is a
◦
J -

trivial semigroup.

Proof. Define the map α : S → Ŝ in the following way: for any s ∈ S
let α(s) = τ(w) where w ∈ (S ∪ A)+ is such that s = w. Then
τ is clearly well-defined and a homomorphism. By Lemma 6.7, τ is

injective, hence is an embedding of S into Ŝ. By Proposition 3.2 Ŝ is

a
◦
J -trivial semigroup. �

Consider the infinite sequence S = T0, T1, . . . of semigroups such that

Ti+1 = T̂i for every i ≥ 0 and define the semigroup T as the projective
limit of S = T0, T1, . . . that is: let the set of elements of T be equal to⋃∞
i=0 Ti; if s, t ∈ T then let k be the smallest index such that s, t ∈ Tk

and define the product of s and t in T as the product of s and t in Tk.

Lemma 6.9. If S is a
◦
J -trivial semigroup and T is defined as above

then:
(1) S can be embedded into T

(2) T is
◦
J -trivial

(3) T is a ≤J -compatible semigroup.

Proof. 1. This is obvious from the definition of T .

2. Suppose s, t ∈ T and s
◦
J t. Then, thanks to our description of

◦
J in

Lemma 2.1, we also have s
◦
J t within one of the semigroups Ti. The

semigroup Ti is
◦
J -trivial by Proposition 3.2; therefore, s = t. Hence,

T is
◦
J -trivial.

3. We only need to prove that for any s, t ∈ T if s ≤ ◦
J
t then s ≤J

t. Indeed, suppose that s ≤ ◦
J
t. By Lemma 2.1, it is sufficient to

consider the case s ≤′◦
J
t. By the definition of ≤′◦

J
, there exist elements

s1, t1, t2 ∈ T 1 such that s = t1s1t2, t = t1t2. Assume that s1, t1, t2 ∈
T ; if some of these elements are equal to 1, the proof can be easily
modified accordingly. Consider a semigroup Ti containing all these

elements s1, t1, t2 ∈ T . In the semigroup
←→
Ti we have

−−−→
t1s1t2t

←−−−
t1s1t2 =

−−−→
t1s1t2t1t2

←−−−
t1s1t2 = t1s1t2 = s and thus s ≤J t in

←→
Ti . Clearly this

inequality is preserved when we factorise by
◦
J to produce Ti+1. Since

Ti+1 is a subsemigroup of T , we have s ≤J t in T . �

From the results of this section, the theorem below follows.
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Theorem 6.1. Every
◦
J -trivial semigroup can be embedded into a

◦
J -

trivial ≤J -compatible semigroup.

In the beginning of this section we have recalled that every semigroup
can be embedded into a simple (that is, J -simple) semigroup. However,
it is easy to show that not every semigroup can be embedded into an
L-simple (or R-simple) semigroup. There is a certain analogy between

this and what happens with
◦
J -trivial semigroups (as described in The-

orem 6.1) versus
◦
L-trivial (or

◦
R-trivial) semigroups, see the example

below.

Lemma 6.10. Let S be a semigroup and let s, t, a, b ∈ S. If s ≤L t
and ta = tb then sa = sb.

Proof. Since s ≤L t, one has s = ct for some c ∈ S1 and thus sa =
cta = ctb = sb. �

Example 6.1. We give an example of an
◦
L-trivial semigroup which

cannot be embedded into any ≤L-compatible semigroup (not only into

an
◦
L-trivial ≤L-compatible semigroup). As we stated in Example 3.1

OE4 is an
◦
L-trivial semigroup. Consider the following mappings in

OE4. Let α1 : 4 7→ 4, 3 7→ 3, 2 7→ 1 (and 1 7→ 1, as in every element of
OEn). Let α2 : 4 7→ 4, 3 7→ 2, 2 7→ 2. Let α3 : 4 7→ 3, 3 7→ 3, 2 7→ 2.
Let α = α1α3 and let β = α1α2α3. By definition, β ≤ ◦

J
α. It is easy

to see that αα1 = αα3. However, βα1 6= βα3. Therefore, by Lemma
6.10, in no semigroup containing OE4 as a subsemigroup, we can have
β ≤L α.
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