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Prior experience with a stimulus profoundly affects how it is

processed, perceived, and acted upon. One striking finding is

that repeated items seem to last for less time than novel or rare

ones. This link between the processing of stimulus identity and

the perception of stimulus duration has important implications

for theories of timing, and for broader accounts of the

organization, purpose, and neural basis of perception. Here, we

examine the nature and basis of the repetition effect on

subjective duration. Contrary to unitary accounts which equate

repetition effects with implicit expectations about forthcoming

stimuli, new work suggests that first-order repetition and

second-order repetition–expectations differentially affect the

perception of time. We survey emerging evidence from

behavioural studies of time perception and neuroscientific

studies of stimulus encoding which support this view, and

outline key questions for the future.
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The world is not completely chaotic. The same objects

recur at and for regular amounts of time [1], and extracting

these regularities to predict what will happen when is a

core function of the nervous system [2�,3]. The effect of

prior stimulus processing on the internal measurement of

time therefore speaks to basic issues in cognitive and

neural science, and there is a strong empirical link be-

tween repetition and time perception: stimuli which have

been encoded in the recent past are perceived to last

longer than rare or novel items [4,5]. Here, we discuss

recent research which has illuminated the nature of this

repetition effect, and how these findings cast new light on

the neural and computational basis for subjective time.

The reality and generality of the repetition
effect
The repetition effect comes in several guises [4–8]. Most

commonly, it is investigated by presenting a standard
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stimulus (e.g., a black circle) of fixed duration several

times in succession, with a deviant ‘oddball’ (e.g., a black

square) of variable duration occurring towards the end of

the stream. Participants typically judge the oddball’s

duration as longer than the standard’s. The compression

of the repeated standards relative to the oddball has been

found for auditory and visual stimuli, for simple and

complex stimuli, and for oddballs that deviate from the

standards in their colour, movement, shape, pitch, or

orientation [5,9–11].

The oddball task is problematic. It requires people to

compare a single oddball with multiple standard presen-

tations whose subjective durations may themselves vary,

and it confounds novelty with sequential position (odd-

balls occur towards the end). Indeed, a recent study found

that, when the stimuli appeared in sequence around the

perimeter of an invisible circle, oddballs were judged to

have the same duration as standards presented at the

same point in the sequence (although the usual repetition

effect was found when all items occurred in a fixed central

location) [12].

An alternative, two-interval paradigm presents just two

stimuli and compares trials where the second item is a

repeat of the first to trials on which it is novel [4]. This de-

confounds the effects of repetition and sequence-posi-

tion, but nonetheless produces a robust repetition effect

for faces, complex pictures, simple icons, and meaning-

less letter strings, and across a range of duration judg-

ments and procedural variations [4,13,14�].

One recent concern is that the repetition effect may be a

form of response bias or heuristic [4,15,16]. However,

when participants simply classified oddballs as ‘same’ or

‘different’ from the standards (rather than shorter/longer)

the point of subjective equality was still shifted, indicat-

ing that the effect involves a genuine perceptual distor-

tion [17].

In short, the repetition effect is a robust and widespread

feature of time perception — albeit with some constraints

(Table 1). How is it to be explained, and what does it tell

us about the nature of subjective time?

Traditional explanations
Broadly speaking, two explanations have been invoked to

explain the repetition effect (Figure 1). The first appeals

to the pacemaker-accumulator framework that dominates

much research on timing [18–20] (Figure 1a). Specifically,

rare items might increase the rate of an internal pace-

maker so that more pulses are accumulated than for a
www.sciencedirect.com
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Table 1

Some boundary conditions on the repetition effect.

Finding Implication

Icons comprised of repeated tiles were judged no different from those

made up of diverse elements [14�]

Repetition has to be temporal, not spatial

Oddball effect reverses at for very brief presentations (<100 ms) [5], and

some memory tasks show longer apparent durations for items

previously on a study-list [70]

At the judgement stage, participants may use a

‘fluency heuristic’, inferring that easier-to-process

items ‘must’ have been seen for longer

The effect is short-lived, disappearing when the inter-stimulus interval

increases to 2000 ms [14�]

Basic repetition effects may reflect low-level adaptation

Temporal production/reproduction tasks have produced mixed results

[4,5,14�]

Additional effects such as desire to spend longer studying

novel items may also be at work

Receding-disc oddballs are not always judged longer than static

standards [22,53]

Other non-temporal variables that affect time perception

can overwhelm the repetition effect
repeated item. The pacemaker acceleration has been

attributed to unexpected stimuli being more ‘arousing’

[8], and/or capturing attention and increasing the rate of

information processing [5,10]. Independent measures of

arousal (e.g., physiological recordings) or attentional allo-

cation have not been attempted, so direct evidence is

lacking. However, oddballs only expand subjective time

at durations longer than approximately 300 ms, consistent

the pacemaker needing time to accelerate [21]. Moreover,

the apparent duration of a central target is increased by

peripheral (asynchronous) oddballs irrespective of their

spatial distance, suggesting a global expansion of subjec-

tive time [10], although the argument is weakened by the

lack of cross-modal effects [11,22] and the fact that

stimulus novelty produces a fixed increment in apparent

duration rather than acting multiplicatively with physical

time, as would be expected if there were more ‘pulses per

second’ [4,23,24].

The second explanation is that repeated stimuli evoke

smaller neural responses (‘repetition suppression’) and

that the size of the evoked neural response — the coding
efficiency — provides the metric of subjective time [25,26]

(Figure 1b). Repetition suppression may reflect neural

adaptation [27], or a decrement in the number of neurons

needed to represent the item [28], but time-perception

researchers have typically favoured a predictive coding
interpretation. Under this account, the brain generates

predictions about forthcoming stimuli such that activation

at a given stage of processing reflects the discrepancy

between incoming information and expectations that

have been back-projected from later/higher stages in

the hierarchy [3,29].

In support of a predictive-coding explanation, the oddball

effect is greater following more repetitions of the standard

[9,30] and for more deviant oddballs [9,30,31], consistent

with stronger violations of expectation and mirroring the

magnitude of evoked neural responses [32] (but see [9],

for a more complex possibility). Similarly, oddball effects

generalize across eyes whereas low-level adaptation

effects such as Troxler fading do not [31].
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Despite their differences, the pacemaker-based and cod-

ing-efficiency accounts share the assumption that repeti-

tion effects are a manifestation of implicit expectations:

repeated stimuli seem to last for less time because they

are expected.

Beyond the unitary accounts: two routes to
subjective time
Neuroscientists have sought to test whether repetition

suppression reflects predictive coding rather than purely

low-level adaptation by presenting many pairs of stimuli

and varying the proportion of trials for which the second

item is a repetition of the first. A ‘pure’ repetition effect

should be independent of the repetition probability [33]

(Figure 2, top row). However, if repetition suppression

reflects implicit expectations, it should be more pro-

nounced when repeats are common and novel stimuli

are correspondingly even more surprising than usual

(Figure 2, middle row). Initial fMRI work with face

stimuli found the latter [34], and the pattern has replicat-

ed with across modalities, tasks, and imaging techniques

[35–37].

Recent work has applied this approach to time percep-

tion [14�]. Participants saw pairs of faces and judged

whether the second was shown for more or less time

than the first. Repeats were, on average, judged longer

than novel items, but this effect was more pronounced

when repetitions were rare — exactly the opposite of an

expectation-based account and the pattern seen in neu-

roimaging studies (Figure 2, bottom row). The effect

generalized to other types of stimuli and judgement

tasks, and in one experiment the usual repetition effect

actually reversed when repetitions were common, so that

repeated items were judged to last longer than novel

ones.

These findings argue against a unitary account of the

repetition effect and suggest that first-order repetition

and second-order repetition–expectations exert opposing

influences, with the former leading to compression and

the latter to expansion of subjective time.
Current Opinion in Behavioral Sciences 2016, 8:110–116
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Figure 1
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Three accounts of the repetition effect. (a) A generic pacemaker-accumulator model of timing. Novel stimuli have been posited to increase

pacemaker rate by producing a surprise-driven surge of arousal or attention-based increase in information processing. (b) A coding efficiency

framework. Successive repetitions evoke progressively smaller responses, which recover upon presentation of a different item. (c) A new

framework. Subjective time depends on the overall strength of the percept. Repetition-induced adaptation weakens the effective signal-strength,

but higher-level expectations boost the gain for relevant features. More broadly, variables such as intensity [23], salience, and directed attention

[47], which facilitate stimulus identification, categorization and so forth, will also expand subjective time [49].
What might underlie these opposing effects? Recent

research has shown that exposure to a low-level stimulus

feature produces a spatially specific compression of ap-

parent duration for stimuli sharing that feature [38–40].

For example, adapting to a drifting dot pattern com-

pressed the apparent duration of subsequent stimuli at

that location relative to stimuli at unadapted locations,

but only when the test item drifted in the same direction

as the adaptor [41]. Such effects occur for multiple

features/modalities, and when the adaptor is only briefly
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presented [42–44]. Attempts to identify the basis for the

adaptation suggest multiple loci, cortical and subcortical,

throughout the processing hierarchy [41,45]. Thus, ‘pure’

(first-order) repetition effects in time perception may

reflect the same relatively low-level adaptation effects,

albeit for objects that are comprised of myriad features

rather than the simple stimuli used in adaptation studies.

That the repetition effect disappears after approximately

2000 ms may imply that these processes involve a basic

physiological mechanism such as neural fatigue [14�].
www.sciencedirect.com
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Figure 2
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Three types of repetition–expectation interaction. Top row: repetition effects may be independent of ‘higher order’ expectations. Panel a shows

repetition suppression (RS) for nonsense ‘letters’ that was unaffected by whether repetitions were common and expected (high reprate) or rare

and surprising (low reprate) [61�]. Panel b plots the same pattern from cellular recordings from monkey cortex (HRR, high repetition rate; LRR, low

repetition rate; alt, novel stimulus; rep, repeated stimulus; Kaliukhovic and Vogels, 2011, Cerebral Cortex, 21, 1547–1558, by permission of Oxford

University Press [33]). Panel c shows a situation where RS for faces was more pronounced when repetitions were predictable [34]; panel d shows

the same expectation effect in RS for objects [63]. The bottom row shows opposing effects of repetition and repetition–expectation in time

judgments: repeats seem shorter than novel items, but this effect diminishes when repetition is predictable, both for faces (panel e) and non-face

images (panel f) [14�].

Panel c adapted by permission from Macmillan Publishers Ltd.: Nature Neuroscience, Ref. [34], 2008.
Meanwhile, when expectations are created by manipula-

tions other than stimulus repetition, greater preparation

expands apparent duration. Cuing the location of a forth-

coming object, either exogenously (e.g., by flashing a dot

at the location [46]) or endogenously (e.g., with an arrow

cue; [47]) lengthens its apparent duration, as does increas-

ing the predictability of when a stimulus will appear [48].

When stimuli are spatio-temporally predictable, they are
www.sciencedirect.com 
processed better and seem to last longer, and to the extent

that repeated stimuli are expected, they should have

expanded apparent duration — contra the pacemaker

and coding-efficiency accounts but consistent with the

effects of changes in repetition rate [14�].

Thus, the repetition effect depends on the interplay

between ‘bottom-up’ and ‘top-down’ processes, with
Current Opinion in Behavioral Sciences 2016, 8:110–116
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apparent duration shortened by low-level adaptation but

boosted by the expectation-driven direction of processing

resources to relevant features (Figure 1c). When repeats

are highly probable, the first item in each pair serves as a

valid cue to the features of the second, and this cuing

mitigates the low-level adaptation that normally com-

presses the apparent duration of repeated items.

These ideas fit within a broader framework in which

subjective time depends on the ‘perceptual strength’ of

the stimulus — the vividity of the representation and the

ease of information–extraction [49]. Variables that weak-

en the effective sensory input will compress apparent

duration; those that boost the signal (e.g., by increasing

the gain for relevant features) will expand subjective

time.

Neuroscientific advances
These conceptual developments are complemented by

recent discoveries in neuroscience.

First, studies have examined the links between repeti-

tion–suppression and time judgments [50]. When human

observers were shown a sequence of dot-motion stimuli,

they judged an oddball with a different motion-direction

to last longer than the repeated standards. When the same

stimuli were presented to monkeys, cellular responses in

area MT declined with each repetition of the standard but

recovered for the oddball. Modelling showed how the

leaky integration of these responses by higher cortical

areas could turn this adaptation-based suppression into a

duration code, with shorter responding for repeated sti-

muli [32]. More direct evidence comes from an MEG

study using a two-interval task with simple visual stimuli.

Repeated stimuli had both shorter judged duration and

smaller onset-responses than non-repeats, and the size of

the onset-responses predicted the duration judgments – a

further indication that repetition suppression/adaptation

compresses the apparent duration of recently encoun-

tered stimuli [51], although studies using the oddball

paradigm offer different perspectives [52,53].

Elsewhere, it is becoming clear that the interplay between

repetition and expectation is more complex than early

work implied. An EEG study with face stimuli has found

repetition suppression at parietal and central sites 300–
400 ms post-onset, with only the central effect being

moderated by repetition probability [36]. Likewise,

MEG recording with auditory stimuli has found early

(40–60 ms), intermediate (100–200 ms) and late

(200+ ms) suppression effects driven by repetition, expec-

tation, and their interaction, respectively [54�] (see also

[55]). Thus, first-order and second-order expectations may

modulate different stages of processing, consistent with a

hierarchical predictive-coding framework [56] — although

no imaging study thus far has found a pattern of activity
Current Opinion in Behavioral Sciences 2016, 8:110–116 
changes that matches the behavioural effects of repetition-

rate on time perception.

Finally, there is a growing appreciation that repetition

does not always suppress neural responses. The converse

repetition enhancement has long been known [57] and recent

work has identified key factors that determine whether

repetition suppresses or enhances the evoked responses.

Specifically, enhancement is common for stimuli which

are degraded or masked (e.g., [58]), and of low familiarity

[59]. In addition, it has been conjectured that repetition

enhancement may occur when stimulus repetitions are

unexpected, or when attention is directed towards the

stimulus [60�]. Perhaps relatedly, recent imaging studies

have found that the effects of repetition-rate on repetition

suppression may depend on stimulus familiarity

[61�,62,63]. It will be crucial to see whether these mod-

erators likewise alter the effects of repetition on time

perception.

Conclusions
Repetition, expectation, and subjective time are inti-

mately linked, and these associations provide fundamen-

tal insights into the nature and neural basis of perception.

The work reviewed here suggests a number of key

questions for the future:

� Can we directly map the behavioural effects of

repetition and expectation onto neural data? No imaging

study has yet found the repetition–expectation interac-

tion found in time perception responses, but there is an

urgent need to combine both types of measurement in

unified studies. Our lab has recently made a start in this

direction, but more needs to be done.

� Does the repetition effect occur in the ‘real world’ —

with longer durations, complex stimuli, and one-off

retrospective judgments? Whether effects generalize in

this way is practically important, and also informs

understanding of the underlying neuro-cognitive

mechanisms [64,65].

� How is the repetition effect in time perception

modulated by other types of expectation–manipula-

tion? For example, recent neuroimaging has found

additive (not interactive) effects of repetition and

expectation when repetition and non-repetition of

faces is equally likely and the gender of the first face

reliably signals whether the second will be a repeat or

novel [55]. Likewise, the identity of the first stimulus

could reliably signal the identity of the second (B

follows A), signal equiprobability for two items (B and

C equally likely to follow A) or signal a completely

novel item.

� Do the factors that putatively lead to neural repetition

enhancement likewise modulate the effect of repeti-

tion on subjective time? For example, is the repetition

effect different for familiar and unfamiliar faces?
www.sciencedirect.com
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� Can we integrate the repetition effect into formal

mathematical and neural models of time perception

(e.g., [66–68])? Particularly promising might be recent

work in which object identity and object duration are

both encoded by different properties of neural

oscillators, providing a possible basis for a link between

prior exposure to an item and its apparent duration

[69�].
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