
For Peer Review
 

 

 

 

 

 

Physiological basis for visual discomfort:  

Application in lighting design 
 

 

Journal: Lighting Research & Technology 

Manuscript ID LRT-15-0099.R1 

Manuscript Type: Review 

Date Submitted by the Author: n/a 

Complete List of Authors: Wilkins, Arnold; University of Essex, Psychology 

Keywords: 
visual stress, patterns, natural images, discomfort, flicker, saccadic 
suppression, migraine 

Abstract: 

Visual discomfort occurs when the statistics of the retinal image depart 
from those of natural scenes, particularly in respect of an excess energy at 
spatial frequencies close to 3 cycles/degree. Computer models suggest that 

uncomfortable stimuli are processed with a larger and less sparse neural 
response. Uncomfortable stimuli usually evoke a relatively large 
oxygenation of the visual cortex of the brain, consistent with inefficient 
neural encoding.  The discomfort may be homeostatic. The neural 
computation that sustains sight is therefore likely to be more complex 
when the visual scene is spatially periodic, when the colour contrast is high 
or when saccadic suppression is impaired by flicker that is too rapid to be 
seen. 

  

 

 

http://mc.manuscriptcentral.com/LRT

Lighting Research & Technology
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74373828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For Peer Review

A J Wilkins  PHYSIOLOGICAL BASIS FOR VISUAL DISCOMFORT 

 

 

 

 

 

Physiological basis for visual discomfort:  

Application in lighting design 

 

Arnold J Wilkins DPhil 

 

 University of Essex, Colchester, UK  

 

 

 

 

Keywords 

visual stress, patterns, natural images, discomfort, flicker, saccadic suppression, migraine  

 

Address for correspondence 

Department of Psychology 

University of Essex 

Colchester CO4 3SQ 

01206873333 

arnold@essex.ac.uk 

 

  

Page 1 of 25

http://mc.manuscriptcentral.com/LRT

Lighting Research & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

A J Wilkins  PHYSIOLOGICAL BASIS FOR VISUAL DISCOMFORT 

Abstract 

Visual discomfort occurs when the statistics of the retinal image depart from those from 

natural scenes, particularly in respect of an excess energy at spatial frequencies close to 3 

cycles/degree. Computer models suggest that uncomfortable stimuli are processed with a 

larger and less sparse neural response. Uncomfortable stimuli usually evoke a relatively large 

oxygenation of the visual cortex of the brain, consistent with inefficient neural encoding.  The 

discomfort may be homeostatic. The neural computation that sustains sight is therefore likely 

to be more complex when the visual scene is spatially periodic, when the colour contrast is 

high or when saccadic suppression is impaired by flicker that is too rapid to be seen. 

  

Page 2 of 25

http://mc.manuscriptcentral.com/LRT

Lighting Research & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

A J Wilkins  PHYSIOLOGICAL BASIS FOR VISUAL DISCOMFORT 

 

1 Introduction 

We will demonstrate that visual discomfort can be caused by images in which the spatial, 

chromatic and temporal features depart from those usually found in nature.  

Natural scenes have a particular spatial structure –the complexity of the image remains the 

same across spatial scale. The Fourier spectrum decreases in amplitude with increasing 

spatial frequency. In many natural images, this decrease in amplitude is approximately 

proportional to the reciprocal of spatial frequency (1/f). 

INSERT FIGURE 1 ABOUT HERE 

A plot of amplitude against spatial frequency on log-log coordinates therefore has a slope 

close to    -1  1-5, see Figure 1.  

The chromatic structure of images of nature is constrained and colour contrasts are modest.6 

The temporal variation in brightness is largely circadian.7 We will explore each of these 

natural attributes in turn. 

2 Spatial structure of images  

 Neural computation 2.1

Given that the visual system has adapted to process natural images, one might expect that 

images with the spatial structure exemplified in Figure 1 would be computationally easy for 

the visual system to process. This expectation is borne out in several ways. 

Visual processing is more efficient when images have a 1/f amplitude spectrum.2 The human 

contrast sensitivity function is optimised for encoding images with this structure.8 Also, the 

receptive fields of neurons in the primary visual cortex are such that images with 1/f structure 

produce a sparse cortical response.9 The defining characteristic of this sparse response is 

that few neurons are active while many are inactive, thereby reducing metabolic demand. 

Hibbard and O’Hare10 have used a computational model of visual area V1 to show that 

uncomfortable stimuli such as striped patterns, which are rare in nature and do not conform to 

a 1/f structure, result in an excess of “neural activity” and a non-sparse distribution of “neural” 

firing. Penacchio, Otazu, Wilkins, and Harris11 have extended this finding using a more 

elaborate model that includes the excitatory and inhibitory connections between neurons. 

They show that the sparseness of the distribution of neural firing correlates negatively with 

discomfort. 

 Visual discomfort and 1/f 2.2

The above theoretical work therefore suggests that images are processed inefficiently by the 

brain if they do not posses a 1/f structure. Images of this kind are usually uncomfortable to 
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look at. Juricevic, Land, Wilkins and Webster12 asked observers to rate the discomfort from 

meaningless images composed of filtered noise or randomly disposed randomly sized 

rectangles. For both categories of image, the discomfort was minimal with a 1/f Fourier 

amplitude spectrum i.e. when the slope was -1 on log-log coordinates; the central pattern in 

Figure 2 has a slope of -1. The discomfort increased when the slope was greater or less than 

-1, as in the flanking patterns.  

Fernandez and Wilkins13 showed that it is not simply the slope of the amplitude spectrum that 

is critical in determining discomfort. A variety of observers viewed images of non-

representational modern art. Again, images with a 1/f spectrum were rated as comfortable to 

look at. In this experiment, however, the uncomfortable images had a spectrum that departed 

from 1/f in terms of the shape, not the slope, of the Fourier amplitude spectrum. The 

uncomfortable art had a curvilinear spectrum with an excess (relative to 1/f) of contrast 

energy at mid-range spatial frequencies. The human visual system is generally most sensitive 

to mid-range spatial frequencies, those within an octave of 3 cycles per degree.14 Using 

artificial images made by filtering random noise, Fernandez and Wilkins13 (2008) confirmed 

that departures from 1/f were responsible for discomfort if the spatial frequency was close to 3 

cycles per degree. By exchanging the phase and amplitude of comfortable and uncomfortable 

images they showed that the discomfort was determined by the amplitude rather than the 

phase information. O'Hare and Hibbard15 used images constructed from filtered noise and 

controlled for the apparent contrast of the stimuli. They also found that an excess of energy at 

mid spatial frequencies determined discomfort ratings, although with a spatial frequency 

tuning that was slightly lower than that obtained by Fernandez and Wilkins.13  

INSERT FIGURE 2 ABOUT HERE 

The Fourier amplitude spectrum is two-dimensional – it reflects the periodicity of the images 

at all orientations (vertical, horizontal and all orientations in between). The studies described 

above measured the Fourier amplitude spectrum by averaging over all orientations, as in 

Figure 1. Averaging over orientations loses the distinction between periodicity in one 

orientation and that in another. Wilkins et al.16 showed that checkerboards (which have 

contrast energy in several orientations) are less uncomfortable than stripes in which the 

energy varies only in one orientation. Penacchio and Wilkins17 therefore measured the Fourier 

amplitude in two dimensions. Instead of averaging over all orientations and fitting a straight 

line on log-log coordinates, as had previously been done, they fitted a cone with slope of -1 to 

the two-dimensional log amplitude spectrum. The residual error in the fit provided a useful 

index that could reliably predict how uncomfortable the image was. The residual error 

increased as the structure of the image departed from that expected for a natural image. 

Penacchio and Wilkins17 used seven sets of images: photographs of everyday scenes, of 

buildings, of animals, images of randomly generated polka dots and non-representational art. 

All the images were rated for discomfort. Despite the large range of images, the index 

explained 17% of the variance in judgments of discomfort. The prediction was improved when 
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the residuals were weighted to take account of the greater sensitivity to mid-range spatial 

frequencies, as reflected in a published estimate of the contrast sensitivity function.18 From 

these two principles gleaned from the literature (without fitting any parameters) they were 

able to explain an average of 27% of the variance in judgments of discomfort of a wide range 

of images. This is surprising given the variation between people. Figure 3 shows an example 

of an image that is recognized by the algorithm as uncomfortable, and one that is comfortable. 

In summary, two related factors were found to predict judgments of discomfort: 1. departure 

from the statistics of natural images, and 2. excess energy at the spatial frequencies to which 

the human visual system is generally most sensitive, i.e about 3 cycles per degree.  

Using grating patterns with this spatial frequency Wilkins et al16 showed that the discomfort 

increased linearly with the spatial extent of the visual cortex to which the pattern projected. 

The discomfort is therefore determined not only by the spatial frequency but by the size of a 

pattern. 

INSERT FIGURE 3 ABOUT HERE 

3 Hypermetabolism and discomfort 

We have seen that images with Fourier amplitude spectra that depart from 1/f are not 

efficiently processed and are uncomfortable to look at. In theory, at least, they involve a less 

sparse coding and a greater neural response overall. As will now be shown, the theory is 

supported by physiological evidence that the neural response to these uncomfortable images 

is indeed greater than to images that are comfortable.  

When a visual stimulus is observed, there is a change in the oxygenation of the blood 

reaching the visual cortex - the cortical haemodynamic response. The cortical haemodynamic 

response to visual stimuli reflects the activity of large numbers of neurons and their local 

collective demand for oxygenated blood. The relationship between the amplitude of the 

haemodynamic response and the size of the neuronal response is complex and indirect. It is 

affected by many factors such as blood flow and glial cell activity, but generally broadly 

reflects local field potentials.19 The response can be measured using functional magnetic 

resonance imaging (fMRI) and near infrared spectroscopy (NIRS). As we will now see, both 

techniques show that the oxygenation is greater when the visual stimulus is uncomfortable.  

Haigh et al.20 used NIRS of the visual cortex and found that coloured patterns gave a larger 

oxyhaemoglobin response if they had large differences in their component colours and were 

therefore uncomfortable to view. Huang et al.21, measured the Blood Oxygen Level Dependent 

(BOLD) response to achromatic gratings with a range of spatial frequencies and showed that 

those with mid spatial frequency (which are uncomfortable) gave the largest response. 

It is also quite generally the case that individuals who are susceptible to discomfort show a 

larger BOLD response than those who are not. Huang et al.21 showed that patients with 
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migraine who reported high levels of discomfort from patterns gave a BOLD response with 

relatively high amplitude. Martin et al.22 compared 19 patients with migraine and 19 controls. 

Patients with migraine had a larger number of activated occipital voxels than controls. 

Cucchiara et al.23 found that in migraine patients who experienced aura the number of 

symptoms of discomfort they reported by questionnaire correlated with the amplitude of the 

BOLD response to visual stimulation. 

Although the studies reviewed in the above paragraph concerned patients with migraine, the 

relationship between discomfort and the size of the haemodynamic response occurs 

independently of this diagnosis. Thus, Alvarez-Linera Prado et al.24 compared 20 photophobic 

patients with 20 controls who viewed a light source at various intensities. There was a direct 

relationship between stimulus intensity and the size of the BOLD response, and the response 

was higher in the photophobic patients, particularly at low and medium light intensities. 

Chouinard, Zhou, Hrybouski, Kim, and Cummine25 reported a case study of an individual with 

visual stress. The BOLD response was measured when lists of words were read, and an 

elevated activity was found in a variety of visual and somatosensory areas. Bargary, Furlan, 

Raynham, Barbur, and Smith26 compared normal participants with high and low discomfort 

glare thresholds while they identified the orientation of a Landolt C surrounded by peripheral 

sources of glare. The group that was sensitive to discomfort glare had an increased BOLD 

response localized at three discrete bilateral cortical locations: in the cunei, the lingual gyri 

and in the superior parietal lobules.  

There is therefore a relationship between discomfort and the magnitude of the haemodynamic 

response in the visual cortex both in terms of the stimuli that evoke discomfort, which 

generally induce a large response, and in terms of the individuals who are susceptible to 

discomfort, in whom the response is larger than in others.  It is possible that the discomfort is 

homeostatic. As with any other pain, it encourages withdrawal and thereby acts to reduce the 

use of energy by the brain. The brain constitutes 2% of body weight but consumes 20% of the 

body’s energy. Only a small fraction, perhaps 1%, of the cerebral cortex can be supplied with 

energy and be active at any given time,27,28 so conservation of metabolic energy is an 

important requirement. 

4 Colour contrasts and light source chromaticity 

So far, consideration has been limited to patterns of luminance but we now consider 

differences in colour. Haigh et al. 20 measured the discomfort from gratings with bars that 

alternated between two colours. They showed that discomfort from these patterns was 

predicted from the separation of the chromaticities in the CIE 1976 UCS diagram: the larger 

the separation, the greater the discomfort and the larger the haemodynamic response evoked. 

This was the case in many studies and for a large gamut of colours, some with different 

luminance. Juricevic et al.12 also showed that discomfort was greater for images with a large 

colour difference. They used images comprising random dots or randomly disposed 
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rectangles and measured the colour difference in terms of the L – M and S – LM chromatic 

plane.  Large colour contrasts are rare in the natural world,6,12 so once again, in both the 

studies by Haigh et al.20 and Juricevic et al.,12 discomfort was associated with images that are 

rare in nature. Large colour contrasts are not necessarily rare in the modern urban 

environment, as Figure 4 shows. It is not yet known whether large colour contrasts in day-to-

day settings can give rise to discomfort, but a comparison of the left and right images in 

Figure 4 suggests that they might.  

Such colour contrasts are, of course, affected by the spectral power distribution of the 

lighting, and this in itself can be responsible for discomfort. There are large individual 

differences in people’s preference for the colour of lighting, and these individual differences 

have a neurological basis. Huang et al. 29 asked patients with migraine to observe text in an 

apparatus that permitted the separate control of the hue, saturation and luminance and the 

illuminating light. They selected a chromaticity that optimised the visual comfort of the page. 

Wearing coloured filters, they later observed patterns of stripes. Three filters were compared; 

one provided the chosen chromaticity, one provided a chromaticity that differed by about 6 

jnd’s and one simply reduced the luminance by an amount equivalent to the reduction 

afforded by the other two filters. When a stressful (3 cycles/degree) pattern was observed, the 

BOLD response was selectively reduced with the filter that provided the chosen chromaticity. 

The other filters had no such effect.  The BOLD response to the filters did not differ when a 

non-stressful pattern (spatial frequency 0.5 cycles/degree) was observed. In migraine patients 

the BOLD response is usually abnormally large when stressful patterns are observed,21,29 so 

the reduction in the haemodynamic response with a coloured filter suggests a possible 

therapy for migraine, and helps to explain the strong aversion to colour schemes that people 

sometimes express. 

INSERT FIGURE 4 ABOUT HERE 

5 Temporal characteristics 

Variation in brightness over time, when it is rapid, is usually called flicker. Flicker is 

perceptible at low frequencies. It is not only uncomfortable, but can cause seizures16.  As 

frequency is increased there comes a point at which a flickering light appears steady, the so-

called critical flicker fusion threshold (CFF). Even though the light may appear steady when 

its frequency is above the CFF, the flicker may nevertheless have perceptible effects on the 

appearance of a moving target (stroboscopic effect), and movements of the eyes may give 

rise to a perceptible array of multiple images (phantom array). These perceptible effects are 

spatial and are the combined effect of the temporal variation in brightness and target 

displacement on the retina.  Because the eyes move at up to 700 degrees per second during 

a saccade (rapid jerk of the eye) the spatial effects of flicker can be perceived at frequencies 

in the kilohertz range.30  
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When our eyes make a saccade we are usually unaware of the motion of the image across 

the retina. This is partly because of active neural mechanisms of suppression,31 partly 

because of masking by the images before and after the saccade,32 but also partly because the 

motion of the image on the retina is continuous and its velocity is outside the range that 

occurs during fixation, to which the neurons are most sensitive.33 Under flickering illumination 

the image on the retina is not continuous but a series of discrete images; the normal 

mechanisms of saccadic suppression then break down, and the intrasaccadic images can 

sometimes be perceived. This is particularly noticeable at night when automobile backlights 

use LEDs that are lit periodically. A trail of lights is visible with each saccade. This is a 

distraction: the normal processes of computation that sustain perception are rendered more 

complex. Such interference with saccadic suppression may be one reason why supra-CFF 

flicker has been shown to interfere with eye movements34,35 and to induce headaches. Wilkins 

et al.
36 studied the daily incidence of headaches and eye-strain in office workers over a five-

month period. Halfway through this period the circuitry controlling the fluorescent lighting in 

the offices was changed from low frequency wire-wound ballast to high frequency solid-state 

ballast and vice versa. The change occurred without the awareness of the office occupants, 

half of whom received the low frequency lighting first, and half second. The low frequency 

ballast gave light that varied at 100Hz by about 35% of maximum. The high frequency ballast 

had little variation at 100Hz. The incidence of headaches was halved under the high 

frequency ballast. The reduction was due largely to the few occupants who suffered frequent 

headaches.  

INSERT FIGURE 5 ABOUT HERE 

6 Application to lighting design 

 Spatial configuration 6.1

We have shown that visual images from nature are processed efficiently and comfortably.  

When the spatial characteristics of an image are unnatural the neural processing is inefficient, 

metabolic demand increases and discomfort ensues. The discomfort increases with the spatial 

extent of the visual cortex to which the stimulus projects, larger patterns being more 

uncomfortable. A simple algorithm described by Penacchio and Wilkins17 predicts discomfort 

from images on the basis of departures from 1/f structure, particularly those that involve 

excess contrast energy at mid spatial frequencies.  The algorithm should be helpful in 

avoiding discomfort from lighting design, as, for example, in the spatial arrangement of 

luminaires Figure 5 (left). Striped patterns such as shown here have Fourier amplitude 

spectra that depart maximally from 1/f. Similar considerations apply to arrays of point sources 

on ceilings, and LED lamps on cars, Figure 5 (right), although the latter are small in area and 

therefore less uncomfortable. The discomfort depends both on the spatial frequency of the 

array and the retinal subtense (extent of the visual cortex to which the pattern projects) 

according to functions published by Wilkins et al.16  
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 Colour 6.2

Both the light source chromaticity and colour contrasts within a living space affect comfort, but 

they do so individually, with large variations between people. Light sources and large surface 

areas with strongly saturated colour (particularly red) can induce headache.37 When lighting a 

space with a strong colour pattern that cannot be avoided, the effects of the pattern can be 

reduced by using a light source with a  limited gamut, thereby reducing the colour saturation. 

 Flicker 6.3

Flicker in the range 4-60Hz can induce seizures in a small proportion of the population with 

photosensitive epilepsy. It can also induce headaches. Seizures and headaches are most 

likely when the flicker is between 15 and 20Hz38. Flicker in this frequency range is sometimes 

produced when 50Hz compact fluorescent lamps ignite (author’s measurements). If these 

lamps are used in public places with occupancy sensors they ignite automatically without 

warning and constitute an unacceptable hazard.  

Flicker from fluorescent lighting is rarely visible as such. Nevertheless observers with high 

CFF are more likely to complain of fluorescent lighting39. Flicker can be appreciated at 

frequencies in the kilohertz range, well above the CFF. This is due to the patterns formed 

during rapid eye movements. 

Although fluorescent lighting with the more efficient high frequency electronic ballast has now 

largely replaced the low frequency circuitry, the legacy of inefficient unhealthy lighting is still 

with us.  In a survey of schools in Britain in 2009, 80% of classrooms were found to be lit with 

low-frequency circuitry.40  

INSERT FIGURE 6 ABOUT HERE 

The contemporary challenge is to prevent the flicker from LED lighting - both flicker that is 

below the CFF and flicker that is above the CFF and therefore usually imperceptible but not 

necessarily innocuous. A recent survey of LED lamps available on the market has found that 

many flicker, and for some the variation is greater than for fluorescent lamps.41 Under these 

circumstances it seems likely that the introduction of LED lighting will be met with complaints 

and resistance similar to those that accompanied the introduction of compact fluorescent 

lighting (which also often flickered). IEEE has published guidance on the acceptable limits for 

flicker broadly similar to those in Figure 6 right. It is to be hoped that this guidance will help 

prevent the various negative health impacts that result from supra-CFF flicker, which have 

been summarized by Wilkins, Veitch and Lehman.43 Note that Paplowski and Miller41 express 

the variation in terms of the flicker index, which takes some account of the atypical waveforms 

from LED lamps, whereas Lehman and Wilkins42 express the variation in terms of the simpler 

percent modulation.  It is possible that in due course both expressions can be subsumed in a 

formulation that applies appropriate weights to the Fourier series derived from the waveform 

by which the light varies over time. In unpublished work Drury and Wilkins have found that the 
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visibility of intrasaccadic flicker is greater at 300Hz than at 100Hz, presumably because the 

pattern formed on the retina during the flight of the eye has spatial characteristics that are 

closer to the peak of the spatial contrast sensitivity function14. This finding suggests that the 

recommendations of IEEE 178942 are not conservative. 

Paplowski and Miller41 summarised the conditions that contribute to a higher risk of adverse 

responses to flicker as follows: long exposure, large area of retina receiving stimulation, and 

high luminance.  In all these respects exposure to lighting is of high risk, and the exposure 

cannot be avoided.  

7 Conclusion 

The human visual system evolved to process images from nature.  In the modern urban 

environment the visual images it is required to process make the neural computation involved 

in sight more complex than it needs to be, with consequences for discomfort, cortical 

metabolism and, more generally, for health. The beneficial effects of exercise in natural 

surroundings (“green exercise” 44) may perhaps be explained in these terms, as perhaps can 

other examples that support the so-called “biophylia hypothesis”.45 

The spatial configuration of lamps and luminaires is often such as to induce discomfort. The 

use of large areas of highly saturated colours can also cause discomfort for some individuals. 

It is a mistake to assume that a lamp is “flicker free” simply because the flicker cannot be 

seen. It is essential that the lighting industry does not repeat the mistakes of the past. 

Imperceptible flicker from lighting has adversely affected the lives of many, if not most 

individuals who suffer migraine45 and future generations should not have to bear this burden. 
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Figure Legends 

Figure 1 – 1/f amplitude spectra for luminance and chrominance for the 29 scenes measured 

by Parraga et al.3  

Figure 2 – Examples of meaningless patterns of filtered random dots. The slopes of the 

amplitude spectra (left-right) are -2, -1.5, -1, -0.5 and 0 (From Jurecevic et al. 12). 

Figure 3 – Examples of artwork by Debbie Ayles that is recognized as uncomfortable (left) 

and comfortable (right) by the algorithm of Penacchio and Wilkins.17  

Figure 4 – (left) Strong colour contrasts in a primary school (Courtesy of EME Furniture, reproduced 

with permission); (right) same figure with contrasts reduced 

Figure 5 – Uncomfortable configurations of luminaires and lamps 

Figure 6 – Acceptable and unacceptable limits of flicker: left: from Paplowski and Miller (2013),; right: 

from Lehman and Wilkins (2014). Note the linear axes on the left figure and logarithmic axes on the 

right figure. Reproduced with permission. 
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Figure 1 – 1/f amplitude spectra for luminance and chrominance for the 29 scenes 

measured by Parraga et al.
3
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Figure 2 – Examples of meaningless patterns of filtered random dots. The slopes of the 

amplitude spectra (left-right) are -2, -1.5, -1, -0.5 and 0 (from Jurecevic et al. 
12
). 
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Figure 3 – Examples of artwork by Debbie Ayles that is recognized as uncomfortable 

(left) and comfortable (right) by the algorithm of Penacchio and Wilkins.
17
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Figure 4 – (left) Strong colour contrasts in a primary school (Courtesy of EME Furniture, 

reproduced with permission); (right) same figure with contrasts reduced 
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Figure 5 – Uncomfortable configurations of luminaires and lamps 
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Figure 6 – Acceptable and unacceptable limits of flicker: left: from Paplowski and Miller
41
; right: 

from Lehman and Wilkins
42
. Note the linear axes on the left figure and logarithmic axes on the 

right figure. Reproduced with permission. 
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Figure 1 – 1/f amplitude spectra for luminance and chrominance for the 29 scenes measured by Parraga et 
al.3  
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Figure 2 – Examples of meaningless patterns of filtered random dots. The slopes of the amplitude spectra 
(left-right) are -2, -1.5, -1, -0.5 and 0 (From Jurecevic et al. 12).  
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Figure 3 – Examples of artwork by Debbie Ayles that is recognized as uncomfortable (left) and comfortable 
(right) by the algorithm of Penacchio and Wilkins.17  
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Figure 4 – (left) Strong colour contrasts in a primary school (Courtesy of EME Furniture, reproduced with 
permission); (right) same figure with contrasts reduced.  
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Figure 5 – Uncomfortable configurations of luminaires and lamps.  
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Figure 6 – Acceptable and unacceptable limits of flicker: left: from Paplowski and Miller 41; right: from 
Lehman and Wilkins 42. Note the linear axes on the left figure and logarithmic axes on the right figure. 

Reproduced with permission.  
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